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Deep neural networks (DNN) have achieved remarkable results in sentiment classification. 
Some ensemble methods of DNN models and traditional feature-based models are 
proposed recently. However, to the best of our knowledge, most of the works use 
traditional ensemble combination techniques, e.g. voting and stacking, which are designed 
for weak base classifiers. So far many base classifiers, e.g. DNN, have been able to 
achieve good results in sentiment classification tasks, so there should be a new ensemble 
combination technique designed for strong base classifiers. To address this issue, we 
proposed a cost-sensitive combination technique using sequential three-way decisions 
(3WD), which is named S3WC. In S3WC, base classifiers are arranged in a linear 
arrangement, and a gate mechanism is constructed in each step to divide the objects into 
three groups, i.e., positive region, negative region and boundary region, which respectively 
correspond to acceptance, rejection and deferment in sequential 3WD. Each object is 
grouped by minimizing its total cost consisting of misclassification cost and time cost. 
The objects in boundary region require more information to decrease the misclassification 
cost, so they are reclassified by the subsequent base classifiers in order to obtain more 
information, while the time cost increases. In the experiment, we apply S3WC to DNN 
models and traditional feature-based models on five benchmark datasets, and compare its 
performance with traditional ensemble combination techniques. The experimental results 
show that S3WC outperforms any of its base classifiers in terms of classification accuracy, 
and the total cost of S3WC is lower than that of the existing ensemble combination 
techniques (e.g. majority-voting, weighted-voting, meta-learning).

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Text sentiment analysis (a. k. a. opinion mining) that analyzes people’s opinions and emotions from text is an active 
research field in natural language processing (NLP) [1]. The existing studies of sentiment classification, which is an important 
part of sentiment analysis, can be mainly grouped into two categories: lexicon-based and corpus-based approaches [2]. 
Lexicon-based approaches typically use a dictionary of sentiment words and phrases, and incorporate intensification and 
negation to compute a sentiment score for each text [3]. Corpus-based approaches treat sentiment classification as a special 
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case of text categorization problem [4], which utilize machine learning methods to extract reasonable features from texts 
and feed into a classifier to predict the sentiment [5].

The existing studies of corpus-based approaches are dominated by two main directions: traditional feature-based meth-
ods and deep learning methods. Traditional feature-based methods extract manually designed features from the text, e.g., 
N-gram (unigrams, bigrams, trigrams), Part-of-Speech (POS), term frequency-inverse document frequency (TF-IDF), and then 
use the features and a classification model to complete the sentiment classification task. The common classification models 
include naive bayes (NB), maximum entropy (ME), support vector machine (SVM) [4], SVM with NB features (NB-SVM) [6], 
etc. Deep learning models have achieved remarkable results in computer vision [7] and speech recognition [8] in recent 
years. Within NLP, many works with deep learning models have focused on learning word embeddings (a. k. a. word vec-
tors) with neural language models [9] and performing composition over these word embeddings for classification [10]. Word 
embeddings have lower dimension than bag of words (BoW), and semantic information of words is encoded into such a 
dense representation. Moreover, phrase vectors and document vectors are presented [11] to find a good representation for 
each phrase or document, respectively. Convolutional neural networks (CNN) are popular deep learning models which utilize 
layers with convolving filters that are applied to local features [12]. CNN models have been shown to be effective for NLP 
and have achieved excellent results in semantic parsing [13], search query retrieval [14], sentence modeling [15], and other 
traditional NLP tasks [10]. Kim [16] trained a simple CNN with one layer of convolution on top of word vectors obtained 
from an unsupervised neural language model for sentence-level classification, and achieved excellent results on multiple 
benchmarks.

Some ensemble methods are proposed for sentiment classification recently [17,18], but they all use traditional combi-
nation techniques, e.g. voting and stacking, which are designed for weak base classifiers. In this paper we use sequential 
3WD to construct a cost-sensitive combination technique for strong base classifiers. The methodology of three-way deci-
sions (3WD) [19] is widely applied in many theoretic fields, such as management sciences [20], social judgement theory, 
fuzzy sets theory [21], hypothesis testing in statistics, attribute reduction [22,23] and knowledge granulation [24,25]. 3WD 
are also widely used in numerous application fields, including medical decision making [26], peering review process, gov-
ernment decision [27], Email spam filtering [28], face recognition [29], clustering analysis [30] and classification [31,32]. To 
give a formal description of 3WD, Yao [33] presented a general overview on existing 3WD researches, and extended the 
rough sets-based 3WD decisions to a much wider frontier, which outlines a unified theory of 3WD. Furthermore, Yao [34]
extended 3WD to sequential 3WD, in which the cost of obtaining required information is considered.

The remainder of this paper is organized as follows. In Section 2, we introduce some related works on sentiment clas-
sification. In Section 3, we present the structure and process of S3WC. In Section 4 we report the experimental results and 
analysis. Finally, we make a conclusion in Section 5.

2. Related work

2.1. Sentiment classification

Sentiment classification is a fundamental and important study area in sentiment analysis. It hammers at detecting the 
sentiment polarity of a sentence [35] (or a document [36]) based on its textual content. Taking a panoramic view of this 
area, there are two main directions for sentiment classification: lexicon-based approaches and corpus-based approaches. 
Lexicon-based approaches typically use sentiment dictionary, intensification and negation to compute a sentiment score for 
each text. Sentiment words and phrases are marked with sentiment polar and sentiment strength in sentiment dictionary. 
There are two kinds of sentiment dictionaries according to universality. One is a universal sentiment dictionary which is 
applicable to almost all fields; the other is a domain sentiment dictionary which is applicable to specific fields. Turney [37]
proposed a simple but representative lexicon-based method to classify reviews into recommended or not recommended. 
The classification of a review is predicted by the average semantic orientation of its phrases, and the semantic orientation 
of a phrase is calculated by the mutual information between the given phrase and the word “excellent” minus the mutual 
information between the given phrase and the word “poor”. Ding et al. [38] applied negation words (e.g., not, never, cannot) 
and contrary words (e.g., but) to improve the performance of lexicon-based method. Thelwall et al. [39] developed Sen-
tiStrength with sentiment lexicon and linguistic rules for detecting sentiment strength of tweets. In lexicon-based sentiment 
classification, the problem of contextual polarity is a major cause for classification error. Cho et al. [40] presented a data-
driven method of adapting sentiment lexicon to diverse domains. In essence, the method compared the positive/negative 
review’s dictionary word occurrence ratio with the positive/negative review ratio itself to determine which sentiment words 
to be removed and which sentiment words’ polarity to be switched.

As for corpus-based approaches, Pang et al. [4] pioneered to treat sentiment classification as a special case of text 
categorization and applied three machine learning methods (NB, ME and SVM), and SVM with bag-of-word features achieved 
the best performance in their experiment. Many studies are inspired by this idea and focus on designing effective features 
to obtain a better performance on sentiment classification. Wang et al. [6] presented NB-SVM for sentiment classification 
on movie and product reviews, which is a SVM variant using NB log-count ratios as feature values. Paltoglou et al. [41]
and Kim et al. [42] studied the feature weights by investigating variants weighting functions from information retrieval. 
Katz et al. [43] presented ConSent, a novel context-based approach which was effective both in noiseless and noisy text. 
Salvador et al. [44] used meta-learning to combine and enrich several baseline methods (bag of words, n-grams, lexical 
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resource-based classifier) aiming at cross-domain polarity classification. Mohammad et al. [45] combined active learning 
and self-training to handle cross-lingual sentiment classification.

2.2. Deep learning approaches for sentiment classification

In recent years, deep learning models have been widely used in NLP. In the beginning, neural network models were used 
to learn distributed vector representations of word, paragraph [9], and document [11]. Tang et al. [46] proposed sentiment-
specific word embeddings for sentiment classification. Meanwhile, some word embeddings for specific tasks like Twitter 
sentiment classification were proposed [47]. Neural networks were further applied to sentiment classification. Kim [16]
trained a simple CNN for sentence classification, and Kalchbrenner [15] subsequently applied dynamic k-max pooling over 
time to generalize the original max pooling in traditional CNN. Recurrent neural networks (RNN) [48] and some extensions, 
such as bidirectional recurrent neural networks (BRNN) [49] and gates recurrent neural networks (GRNN) [50], were applied 
to sentiment classification. In addition to the commonly used neural networks in computer vision, Zhao et al. [51] proposed 
a self-adaptive hierarchical sentence model which is dedicated to text classification.

2.3. Ensemble methods for sentiment classification

Ensemble methods combine a set of base classifiers in order to achieve a better performance in comparison with a single 
base classifier. Rokach [52] provide an overview of ensemble methods in classification tasks and think the classification using 
ensemble methods is based on two dimensions: how predictions are combined (rule-based and meta-learning), and how 
learning process is done (concurrent and sequential).

Regarding the first dimension, rule-based approaches treat the predictions from base classifiers by a rule (e.g. majority 
voting, weighted combination, etc.), meta-learning techniques use the predictions from base classifiers as features for a 
meta-learning model. As explained in Xia et al. [53], weighted combinations of feature sets is effective in sentiment classifi-
cation tasks, since the weights of ensemble represent the relevance of different feature sets (e.g. n-grams, POS, etc.) instead 
of assigning relevance to each features individually. Fersini et al. [54] proposed several variants of voting rules and validated 
their effectiveness in a variety of datasets. In a different work, Fersini et al. [55] compared the majority voting rule with 
other approaches, and reported that average rule can ensure a better performance than other considered rules. A meta-
classifier ensemble model was evaluated by Xia et al. [56] which obtained performance improvements. Aue and Gamon [57]
proposed an adaptive meta-learning model which offers a relatively low adaptation effort to new domain. Besides, both rule 
based and meta learning ensemble models can be enriched with extra knowledge as illustrated in Xia and Zong [56]. Araque 
et al. [17] used both feature ensemble and classifier ensemble for sentiment analysis, in which feature ensemble includes 
word embedding from deep learning models and surface features (e.g. n-grams, POS, etc.), classifier ensemble includes 
rule-based technique and meta-learning technique.

As for the second dimension, concurrent models divide the original dataset into several subsets and train multiple clas-
sifiers on the subsets respectively in a parallel fashion. The most popular concurrent technique is bagging. On the contrary, 
sequential models do not divide the dataset but there is an iteration process in training steps, which taking advantage from 
previous iterations of training steps to improve the performance of global classifier. Boosting is a very common sequential 
technique. Sehgal et al. [58] used bagging and other classification algorithms in sentiment analysis tasks and reported that 
the sentiment evolution and the stock value trend are closely related. Fersini et al. [54] also used bagging techniques in sen-
timent analysis tasks and showed several experimental results including associated model complexity. Some researchers [59,
60] have reported that bagging techniques are robust to noisy data, while boosting techniques are quite sensitive. Wang 
et al. [18] studied the suitability of bagging and boosting techniques. Moreover, a different ensemble technique, random 
subspace, which divides training dataset in feature space instead of instance space, was studied and compared with bagging 
and boosting in this work.

2.4. Three-way decisions

Most of the existing ensemble methods for sentiment classification use traditional combination techniques, e.g. vot-
ing and stacking (a. k. a. meta-learning), which are proposed for weak base classifiers. With the development of machine 
learning methods for sentiment classification, the base classifiers used in ensemble method can achieve high classification 
accuracy (generally higher than 70%). It is inappropriate to use traditional combination techniques to combine these strong 
base classifiers. In this paper, we use sequential three-way decisions to construct a cost-sensitive ensemble combination 
technique for strong base classifiers. Three-way decisions, which give the inspiration for this paper, are a new interpre-
tation of rules in rough set theory [19]. The applications of three-way decisions are widely concerned in many fields. Yu 
et al. proposed a three-way clustering method for tree-based incremental overlapping clustering [30]. Zhou et al. discussed 
the applications of three-way decisions in Email spam filtering [28]. Liu et al. applied three-way decisions into investment 
decision [61] and government decision [27]. Yang and Yao investigated the applications of three-way decisions in multi-
agent decision [62]. Li et al. introduced three-way decisions to face recognition and proposed a cost-sensitive sequential 
three-way decisions method for face recognition [29]. Li et al. proposed a DNN-based sequential granular feature extraction 
method and a cost-sensitive sequential three-way decisions strategy [63]. Zhang and Min combined three-way decisions 
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Fig. 1. The structure of 3w-combination technique.

with random forest, and applied three-way decisions into recommender systems [64]. Several 3WD-based ensemble meth-
ods were proposed for clustering [65] and classification [66], but they just combined 3WD and ensemble learning to address 
clustering or classification tasks, instead of using 3WD to design a new ensemble strategy. Li et al. [66] proposed a 3WD-
based two-phase classification model, which seems similar with our work. Actually, the proposed work in this paper is a 
3WD-based ensemble combination technique, while Li et al. applied a simple ensemble learning approach to implement the 
second phase of the classification process. Furthermore, as for the model architecture, our method is N-phase while it is 
two-phase; as for cost matrix, our method is data-based while it is empirical; as for metrics, our method considers the total 
cost including misclassification cost and time cost, while it only considers misclassification cost (classification accuracy). The 
above works enrich the theoretic foundation of three-way decisions, and indicate that three-way decisions are applicable 
for many practical decision problems.

3. The proposed method

3.1. Structure

In this section, we present S3WC for the ensemble methods in sentiment classification tasks. S3WC is specific to strong 
base classifiers and its architecture is illustrated in Fig. 1. In sequential 3WD theory, decision results in each step are divided 
into three parts, namely, acceptance, rejection and deferment. This can be simply mapped to binary sentiment classifica-
tion, which corresponds to positive, negative and boundary. The objects in boundary region require more information to 
be classified into positive and negative categories, which guarantees a low misclassification cost. In this work we construct 
a component named “gate” to divide the objects into three regions by minimizing the overall cost consisting of misclassi-
fication cost and time cost in each step. Afterwards, the next base classifier is used to reclassify the objects in boundary 
region. After all the objects have obtained their determinate decisions (acceptance or rejection), the classification process is 
terminated.

3.2. Gate mechanism

Gate is the core of S3WC, and it determines which objects are divided into positive and negative regions and which 
objects flow into the next decision step. Gate can also be treated as a map mechanism between a object and its most 
suitable base classifier. In terms of classification accuracy, a gate is effective if it satisfies:

Acci(Data(i − 1)) < Acci(Data(Pi) + Data(Ni)) (1)

where Acci(Data(i − 1)) represents the prediction accuracy of classi f ieri on Data(i − 1).
We propose two strategies for the gate mechanism: mincost-gate and proportion-gate.

3.2.1. Mincost-gate
In mincost-gate, the objects are divide into three regions by minimizing the total cost consisting of misclassification cost 

and time cost. The misclassification cost in the i-th gate is calculated by the loss matrix [33] shown in Table 1. Let ei denote 
the classification error rate of the i-th base classifier on the dev set, n denote the number of base classifier. The losses in 
Table 1 are set as follows:

λi
P P = λi

N N = ei

λi
P N = λi

N P = 1

λi
B P = λi

BN =
{

ei + 1∑n
k=i+1

1
ek

, i = 1,2, ...,n − 1

1+ei
2 , i = n

(2)
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Table 1
λi

P P , λi
B P and λi

N P denote the losses incurred for deciding 
an object to respectively positive region, boundary region 
and negative region in the i-th gate, when the gold label 
of this object is positive. λi

P N , λi
BN and λi

N N denote the 
losses incurred for taking the same actions in the i-th 
gate when the gold label of this object is negative.

P N

P λi
P P λi

P N
B λi

B P λi
BN

N λi
N P λi

N N

Firstly, we prove the loss values defined in equation (2) satisfy the assumptions in three-way decisions [33] which are:

λi
P P < λi

B P < λi
N P , λi

N N < λi
BN < λi

P N , (3)

(λi
P N − λi

BN)(λi
N P − λi

B P ) > (λi
BN − λi

N N)(λi
B P − λi

P P ), (4)

For strong base classifiers, we make the assumption 0 < ei < 0.3, for i = 1, 2, ..., n, then (3) is obviously satisfied since 
ei + 1∑n

k=i+1
1

ek

≤ ei + en < 0.6. For (4):

(4) ⇔ 1 − (ei + 1∑n
k=i+1

1
ek

) > ei + 1∑n
k=i+1

1
ek

− ei

⇔ 1∑n
k=i+1

1
ek

<
1 − ei

2

⇐ en <
1 − ei

2
,

(5)

en <
1−ei

2 is obviously satisfied since 0 < ei < 0.3. Furthermore, the definition of loss values in equation (2) makes λi
B P −λi

P P , 
λi

BN − λi
N N negatively correlated with n − i, positively correlated with ek , for k = i + 1, ..., n, which means the greater the 

number of base classifiers after the current, and the lower their classification error rate, then the samples are more likely 
to be divided into boundary region in current step.

Let PrP , PrN respectively denote the prediction probabilities of the positive and negative categories given by the current 
base classifier, and PrP + PrN = 1. The misclassification cost in i-th step mc_costi is calculated by:

mc_costi(D P ) = λi
P P PrP + λi

P N PrN ,

mc_costi(D N) = λi
N P PrP + λi

N N PrN ,

mc_costi(D B) = λi
B P PrP + λi

BN PrN

(6)

where D P , D N , D B denote the decisions to assign the object to positive region, negative region and boundary region, 
respectively.

The total cost in i-th step costi is calculated by:

costi(D P ) = mc_costi(D P ) +
i∑

j=1

t_cost j,

costi(D N) = mc_costi(D N) +
i∑

j=1

t_cost j,

costi(D B) = mc_costi(D B) +
i+1∑
j=1

t_cost j

(7)

where t_cost j denotes the time cost incurred for j-th base classifier to classify the object. The time cost of deciding the 
object to boundary region in i-th step includes not only the time cost of the first i base classifiers, but also the next base 
classifier. We select the decision with minimal total cost as the optimal decision for the i-th decision step.
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Table 2
Statistics of the five data sets used in this paper. N counts the number of instances, dist(+, −)

lists the class distribution, l represents the average sentence length, dev is the size of dev set 
and test is the size of test set. CV means 3-fold cross validation, in which one is training set, 
one is dev set and one is test set.

Data N dist(+,−) l dev test

IMDB 50000 (0.5, 0.5) 255 0.1 0.5
MR 10662 (0.5, 0.5) 18 CV CV
CR 3780 (0.64, 0.36) 17 CV CV
SUBJ 10000 (0.5, 0.5) 21 CV CV
MPQA 10462 (0.32, 0.68) 3 CV CV

3.2.2. Proportion-gate
In proportion-gate, fixed proportion of objects are selected into next base classifier. The objects are chosen according to 

their belief scores from low to high. For example, the proportion-gate with proportion of 0.1 selects 10% objects with lowest 
belief score to flow into next base classifier. The parameter proportions are fitting on the dev set. The belief score bs is 
calculated by the prediction probabilities given by the base classifiers:

bs = |PrP − PrN | (8)

4. Experiments

In this section, experiments are constructed to evaluate the performance of the proposed method.

4.1. Datasets and baseline methods

We test our model on five benchmark datasets. Summary statistics of the datasets are in Table 2. We describe each 
dataset in detail below:

• IMDB1: This is a movie reviews dataset for binary sentiment classification. The dataset provides a set of 25,000 highly 
polar movie reviews for training, and 25,000 for testing [67].

• MR2: Movie reviews dataset in which each instance is a sentence [68]. The objective is to classify each review by its 
overall sentiment polarity, either positive or negative.

• CR3: Annotated customer reviews of 14 products obtained from Amazon [69]. The task is to classify each customer 
review into positive and negative categories.

• SUBJ: Subjectivity dataset where the task is to classify a sentence as being subjective or objective [70].
• MPQA4: Phrase level opinion polarity detection subtask of the MPQA dataset [71].

We use six baseline methods as base classifiers for S3WC, including three neural network models (CNN, LSTM, MLP) 
and three traditional sentiment classification models (SVM, MNB, NB-SVM). We compare the performance of S3WC with the 
existing ensemble combination techniques (majority-voting, weighted-voting and meta-learning).

4.2. Experimental settings

In CNN we use: one convolution layer and one max-pooling layer, filter windows of 3 with 200 feature maps, dropout 
rate of 0.2, mini-batch size of 64, activation function of Relu. In LSTM we use: dropout rate of 0.2, mini-batch size of 64, 
activation function of Relu. In MLP we use: two hidden layers with 64 hidden units, dropout rate of 0.5, mini-batch size 
of 64, activation function of Tanh. Training is done through stochastic gradient descent over shuffled mini-batches with the 
adadelta update rule. In SVM and NB-SVM we use linear kernel. Since feature engineering is not the focus of this work, we 
do not use any pre-trained word embeddings for model training. In neural network models, word embeddings are randomly 
initialized. In other models, we use unigram features. In majority-voting, the prediction labels are used for voting (hard 
voting). In weighted-voting, the weights are set according to the classification accuracies of the base classifiers on the dev 
set, and the prediction probabilities are used for voting (soft voting). In meta-learning, SVM with linear kernel is applied as 
the meta-learning model. In the mincost-gate of S3WC, t_cost j defined in Eq. (7) is calculated by t_cost j = 200 × rt j , where 
rt j denotes the real time (seconds) for j-th base classifier to classify an object. Each experiment was performed 10 times.

1 http://ai .stanford .edu /~amaas /data /sentiment/.
2 http://cs .cornell .edu /people /pabo /movie -review-data/.
3 http://cs .uic .edu /~liub /FBS /sentiment -analysis .html.
4 http://www.cs .pitt .edu /mpqa.

http://ai.stanford.edu/~amaas/data/sentiment/
http://cs.cornell.edu/people/pabo/movie-review-data/
http://cs.uic.edu/~liub/FBS/sentiment-analysis.html
http://www.cs.pitt.edu/mpqa
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Fig. 2. The distribution of sample size and classification accuracy in different belief score intervals of MNB, NB-SVM, CNN on IMDB dataset.

As we all know, the performance of neural network models is sensitive to the parameters. We do not perform any 
dataset-specific parameter tuning other than early stopping, so that some base classifiers do not achieve the same results 
as other works. In this work, we focus on the performance comparison between S3WC and its base classifiers, and the 
performance comparison between S3WC and other ensemble combination techniques, whether a base classifier achieves its 
best performance on a dataset is not the concern of this work.

4.3. Accuracy analysis

We study how the belief score defined in Eq. (8) affects the classification accuracy. We divide the samples into 10 groups 
by the belief scores, and study the sample size and classification accuracy of different belief intervals. The results are shown 
in Fig. 2. We can see that the belief scores of most samples are in [0.9, 1.0]. Moreover, the higher the belief score, the 
higher the classification accuracy. The results in Fig. 2 illustrate the possibility of improving the classification accuracy by 
S3WC, because in S3WC the samples are assigned to a base classifier with a relatively high belief score.

The performance of each methods in terms of classification accuracy is shown in Table 3. To statistically measure the 
significance of performance difference, pairwise t-tests at 5% significance level are conducted between the methods. The 
results in Table 3 show that, in terms of the average accuracy, S3WC outperforms any of its base classifiers in all cases; and 
S3WC is statistically superior to any of its base classifiers in most cases according to the results of t-tests. As the number 
of base classifiers increases, the performance of S3WC is getting better, regardless of the performance of the new base 
classifier itself. For example, MLP is inferior to LSTM and CNN on MR dataset (MLP: 71.45%, LSTM: 74.64%, CNN: 75.03%), but 
we obtained a better result when pushing MLP into S3W CC L (S3W CC L : 75.54%, S3W CC LML : 75.97% for proportion-gate). 
Although the improvement of accuracy is not obvious, considering the new base classifier is much weaker than the existing 
ones, it’s satisfactory to see that the accuracy did not decline. In most cases, S3WC with proportion-gate outperforms S3WC 
with mincost-gate in terms of classification accuracy.

The classification accuracies of S3WC and other ensemble combination techniques are shown in Fig. 3. The experimen-
tal results show that both majority-voting and weighted-voting have a common problem, i.e., heavy dependence on the 
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Table 3
Performance (mean±std) of each methods in terms of classification accuracy. • indicates that S3WC is statistically superior to any of its base classifiers 
(pairwise t-test at 5% significance level). S3W CLML MN means S3WC of LSTM, MLP and MNB, S3W CC N S S means S3WC of CNN, NB-SVM and SVM, S3W C6

means the S3WC of all six baseline methods. P-Gate, M-Gate denote respectively proportion-gate and mincost-gate. The order of base classifiers in S3WC is 
consistent with the subscript (e.g. the order of base classifiers in S3W CC LML is CNN-LSTM-MLP).

Model IMDB MR CR SUBJ MPQA

SVM 85.00 ± 0.51 72.39 ± 0.27 75.84 ± 0.44 88.20 ± 0.22 82.75 ± 0.42
NB-SVM 85.57 ± 0.39 76.59 ± 0.43 79.08 ± 0.61 90.96 ± 0.20 82.15 ± 0.37
MNB 84.20 ± 0.31 76.12 ± 0.22 78.73 ± 0.64 91.06 ± 0.19 80.99 ± 0.44
MLP 84.95 ± 0.79 71.45 ± 0.68 77.11 ± 0.89 89.68 ± 0.52 82.46 ± 0.70
LSTM 87.23 ± 0.77 74.64 ± 0.78 77.23 ± 0.78 89.62 ± 0.55 82.56 ± 0.77
CNN 88.90 ± 0.71 75.03 ± 0.66 79.77 ± 0.88 88.84 ± 0.55 82.88 ± 0.81

S3W CN S S
M-Gate 86.23 ± 0.40• 77.14 ± 0.35• 79.23 ± 0.67 91.00 ± 0.30• 83.10 ± 0.51
P-Gate 86.45 ± 0.47• 77.00 ± 0.41 78.96 ± 0.51 90.92 ± 0.32 83.19 ± 0.40

S3W CML MN

M-Gate 86.40 ± 0.72• 76.66 ± 0.56 79.52 ± 0.72• 91.10 ± 0.47 82.82 ± 0.69
P-Gate 86.47 ± 0.70• 76.40 ± 0.43 80.00 ± 0.59• 91.10 ± 0.56 82.77 ± 0.60

S3W CLML

M-Gate 87.79 ± 0.69• 75.03 ± 0.77 78.02 ± 0.47• 90.22 ± 0.61 83.00 ± 0.79
P-Gate 87.90 ± 0.71• 75.26 ± 0.69• 79.31 ± 0.64• 90.40 ± 0.35• 83.13 ± 0.80•

S3W CLN S

M-Gate 88.00 ± 0.59• 76.63 ± 0.71 80.03 ± 0.57• 91.03 ± 0.35 83.18 ± 0.77•
P-Gate 88.60 ± 0.53• 76.81 ± 0.57 80.23 ± 0.88• 91.18 ± 0.33 83.04 ± 0.60

S3W CC N S

M-Gate 89.45 ± 0.65 77.00 ± 0.67• 81.55 ± 0.45• 91.00 ± 0.46 83.20 ± 0.89
P-Gate 89.77 ± 0.58 77.02 ± 0.47• 82.08 ± 0.67• 91.10 ± 0.20 83.15 ± 0.80

S3W CC L
M-Gate 89.44 ± 0.80 75.67 ± 0.72• 80.92 ± 0.55• 89.99 ± 0.51 83.07 ± 0.58
P-Gate 89.81 ± 0.82• 75.54 ± 0.64 81.27 ± 0.76• 90.04 ± 0.60 83.38 ± 0.61•

S3W CC LML

M-Gate 89.69 ± 0.29 75.99 ± 0.81• 81.32 ± 0.87• 90.06 ± 0.57 83.22 ± 0.88
P-Gate 89.86 ± 0.42• 75.97 ± 0.55• 81.73 ± 0.50• 90.28 ± 0.45 83.59 ± 0.90•

S3W CC N S LMN

M-Gate 89.78 ± 0.59• 76.94 ± 0.62• 82.21 ± 0.41• 91.00 ± 0.57• 83.29 ± 0.77•
P-Gate 89.91 ± 0.71• 77.13 ± 0.74• 83.01 ± 0.70• 91.46 ± 0.49• 83.76 ± 0.80•

S3W C6
M-Gate 89.96 ± 0.72• 77.04 ± 0.55• 82.86 ± 0.51• 91.58 ± 0.32• 83.96 ± 0.89•
P-Gate 90.15±0.72• 77.58±0.63• 83.33±0.43• 92.05±0.66• 84.86±0.73•

Fig. 3. The performance of ensemble combination techniques for different base classifiers. C-L-N-S represents the ensemble of CNN, LSTM, NB-SVM and 
SVM, other marks on the abscissa are named in a similar way. The base classifiers are ranked from highest to lowest according to their classification 
accuracy on the dev set. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
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Fig. 4. Classification accuracy of 3w-combination with proportion-gate under different proportion parameters.

performance of the base classifiers. Majority-voting and weighted-voting have good performance if and only if all the base 
classifiers have good performance. Their performance will deteriorate if a new base classifier, which performs worse than 
the average of the existing ones, is added. For example, the accuracy of weighted-voting dropped from 90.02% to 89.50% 
when MLP is added into CNN-LSTM. Meta-learning has the same problem, furthermore, the robustness of meta-learning is 
even worse than voting. The performance of meta-learning is very unstable when handling the base classifiers with differ-
ent performance. In contrast, S3WC has good performance and better robustness in terms of classification accuracy. When 
a new base classifier is added into S3WC, the overall performance will be better regardless of whether performance of the 
new base classifier is better than the average of the existing ones.

We discuss and explain the robustness of S3WC here. In the existing ensemble combination techniques including 
majority-voting, weighted-voting and meta-learning, the predictions given by each base classifiers will be more or less 
adopted. However, some poor performing base classifiers provide “noise predictions”, which reduce the overall prediction 
accuracy. Even the best base classifier will give some “noise predictions”. In S3WC, gate mechanism is applied to filter the 
“noise predictions” according to the prediction belief score, and predictions with low belief scores will be ignored. Therefore, 
S3WC is more robust than the existing ensemble combination techniques when a poor performing base classifiers is added, 
and the accuracy of S3WC increases steadily as the number of base classifiers increases.

We study the effect of the proportion parameter on the accuracy of S3WC with proportion-gate in the case of 2-model 
combination. As shown in Fig. 4, the accuracy of S3WC with proportion-gate varies with the proportion parameter, but dif-
ferent combinations of models produce similar accuracy curves. Proportion-gate S3WC with a suitable proportion parameter 
can achieve a better accuracy than its base classifiers. The optimal proportion varies in [0.1, 0.3] as shown in Fig. 4, and in 
fact the results of Algorithm 1 are within this interval.
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Algorithm 1 Proportion parameter fitting algorithm.

Input: Base classifiers C1, C2, ..., Cn; Proportion-gate dividing algorithm P G; Dev data Dd = {(xd
1, y1), (xd

2, y2), ..., (xd
k, yk)};

Output: Set of proportion parameter pp = {p1, p2, ..., pn−1}
Calculate the classification accuracy of base classifiers on dev data: acc1, acc2, ..., accn .
Sort C1, C2, ..., Cn by acc, get C(1), C(2), ..., C(n) , where acc(1) ≥ acc(2) ≥ ... ≥ acc(n) .
for t = 1 to n − 1 do

pt = argmaxpt ∈(0,1) accuracy(P G({C(1), C(2), ..., C(t+1)}, {p1, ..., pt−1, pt }), Dd)

end for
pp = {p1, p2, ..., pn−1}

Table 4
Runtime analysis of S3WC and baselines.

Dataset Method Extra training time(s) Predicting time(s) Total time(s)

IMDB

majority-voting – 112.1 112.1
weighted-voting 22.3 112.1 134.4
meta-learning 111.3 111.5 222.8
S3WC with m-gate 22.3 15.8 38.1
S3WC with p-gate 79.2 20.9 100.1

MR

majority-voting – 44.8 44.8
weighted-voting 9.1 44.5 53.6
meta-learning 45.1 44.9 90.0
S3WC with m-gate 10.2 13.7 23.9
S3WC with p-gate 39.5 6.9 46.4

CR

majority-voting – 5.1 5.1
weighted-voting 1.3 5.1 6.4
meta-learning 5.0 5.0 10.0
S3WC with m-gate 1.5 1.6 3.1
S3WC with p-gate 3.2 1.6 4.8

SUBJ

majority-voting – 24.8 24.8
weighted-voting 5.1 25.0 30.1
meta-learning 24.5 24.4 48.9
S3WC with m-gate 5.9 6.9 12.8
S3WC with p-gate 17.8 4.5 22.3

MPQA

majority-voting – 1.6 1.6
weighted-voting 0.6 1.8 2.4
meta-learning 1.6 1.5 3.1
S3WC with m-gate 0.7 0.3 1.0
S3WC with p-gate 1.7 0.3 2.0

4.4. Runtime analysis

The time cost of the ensemble methods in sentiment classification tasks consists of three parts: training time of base 
classifiers, extra training time and predicting time. Extra training time means the training time other than base classifiers 
training, e.g., the time for learning the parameters used in combination techniques. The base classifiers’ training time of 
S3WC is equal to that of the baseline combination techniques. We study the runtime of S3WC and baseline combination 
techniques in Table 4. S3WC with mincost-gate is superior to other methods in terms of running time. In S3WC, the objects 
do not require the predictions of all base classifiers in most cases, and therefore the prediction time of S3WC is less than 
that of the baseline combination techniques. S3WC with proportion-gate uses more extra training time than S3WC with 
mincost-gate, which means learning the proportion parameters is more time-consuming than calculating the total cost. 
S3WC uses more extra training time than voting, and less predicting time than both voting and meta-learning. In general, 
S3WC is slightly superior in terms of the total time cost.

4.5. Total cost analysis

We study the performance of S3WC in terms of the total cost in Fig. 5. For the sake of convenience in display, we divide 
the total cost by the number of objects to get the average cost per object on each datasets. As shown in Fig. 5, S3WC is 
superior to the baseline combination techniques in terms of the total cost on all datasets used in this work. It means that 
S3WC minimizes the total cost while ensuring good classification accuracy. S3WC with proportion-gate is superior to S3WC 
with mincost-gate in terms of the classification accuracy as shown in Table 3, but it is inferior in terms of the total cost.
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Fig. 5. The total cost of S3WC and the baseline combination techniques.

5. Conclusion

Inspired by the methodology of sequential three-way decisions, we proposed a cost-sensitive ensemble combination 
technique named S3WC which is designed for strong base classifiers in sentiment classification tasks. S3WC has a sequential 
structure, and in each step a gate is used to divide the objects into three groups: positive, negative and boundary regions. 
Instead of adopting the predictions of all base classifiers, S3WC selects only one base classifier to predict for each object. 
We propose two strategies for the gate mechanism: mincost-gate and proportion-gate. Mincost-gate divides the objects by 
minimizing the total cost consisting of misclassification cost and time cost. Proportion-gate divides the objects according to 
their prediction belief scores and fixed proportion of objects are grouped into the boundary region. The experimental results 
show that S3WC achieves a higher accuracy than any of its base classifiers, and S3WC performs better than the existing 
ensemble combination techniques (e.g. majority-voting, weighted-voting, meta-learning) in terms of accuracy, robustness, 
time complexity and the total cost in most cases. Proportion-gate outperforms mincost-gate in terms of accuracy in most 
cases, but mincost-gate is superior to proportion-gate in terms of time complexity and the total cost. In the future work, we 
will apply S3WC technique to more tasks, and experiment S3WC on more kinds of base classifiers, including homogeneous 
and heterogenous.
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