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a b s t r a c t 

Three-way decisions provide a trisecting-and-acting framework for complex problem solv- 

ing. For a cost-sensitive decision-making problem under multiple levels of granularity, se- 

quential three-way decisions have come into being. Within this framework, how to act 

upon the three pair-wise disjoint regions is the most important issue. To this end, we pro- 

pose a generalized model of sequential three-way decisions via multi-granularity in this 

paper. Subsequently, we adopt the typical aggregation strategies to implement the fol- 

lowing five kinds of multigranulation sequential three-way decisions—the weighted arith- 

metic mean multigranulation sequential three-way decisions, the optimistic multigranula- 

tion sequential three-way decisions, the pessimistic multigranulation sequential three-way 

decisions, the pessimistic-optimistic multigranulation sequential three-way decisions and 

the optimistic-pessimistic multigranulation sequential three-way decisions. Furthermore, 

we discuss the rightness and rationality of the five kinds of multigranulation sequential 

three-way decisions and also analyze the relationships and differences between them. Fi- 

nally, the experimental results demonstrate that the first four different multigranulation 

sequential three-way decisions are effective. These models will accelerate and enrich the 

development of multigranulation three-way decisions. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Three-way decision model (3WD) [41,42] is a trisecting-and-acting model for complex problem solving. The basic idea

of this model is to divide a universal set of objects into the three pair-disjoint regions and to devise the different effective

strategies to act upon those objects of each region. In recent years, there are several successful application results in many

fields such as investment management [21] , cluster analysis [17,45] , face recognition [11] , recommendation [47] and the

others [2,3,6–8,10,12,14,16,46] . However, how to act upon three probabilistic regions of 3WD is still under an active research

[5,38] . 

By considering the costs of decision results and decision processes, a typical model of 3WD, sequential three-way de-

cision (S3WD), has emerged and become a cost-effective decision-making method [43] . This model aims at achieving a

required level of accuracy with a minimal cost in obtaining evidence especially for a problem under multiple levels of gran-

ularity. Classical sequential three-way decision models [43] mainly implement a sequential, multistep three-way decision-

making using a multilevel granular structure of the universe with respect to a sequence of sets of attributes. In some cases,
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a more reasonable decision-making for complex problem solving is made under multiview granular structures. Therefore,

the extended sequential three-way decision models still consider multiple independent granular structures of the universe

for decision-making. 

As we all know, Qian et al. [23] introduced multigranulation rough set model, where the lower and upper approxi-

mations of a concept are characterized under multiple granular structures. The multigranulation rough set models using

different multiple binary relations for different information systems have been paid widespread attentions. The researches

on multigranulation rough set models mainly focus on the following three aspects. 

• The first aspect is the extended model researches on multigranulation rough set models using multiple different binary

relations. Using multiple tolerance relations, Qian et al. [24] and Yang et al. [36] discussed incomplete multigranulation

rough sets, and Xu et al. [33] constructed and discussed two types of multigranulation tolerance rough set models. Fur-

thermore, Xu et al. [32] constructed multigranulation fuzzy rough sets based on the fuzzy approximation space using

multiple fuzzy relations. Lin et al. [18] constructed multigranulation covering fuzzy rough sets in a covering approxima-

tion space. Huang et al. [9] discussed an intuitionistic fuzzy multigranulation rough set model. In addition, Qian et al.

[25] , Xu [34] , Yang and Guo [35] , Liu et al. [20] , Sun et al. [30] and Feng and Mi [4] studied different multigranulation

decision-theoretic rough set models. 

• The second aspect is knowledge discovery researches on multigranulation rough set model. Liang et al. [15] proposed an

efficient feature selection algorithm using a multigranulation view. Lin et al. [19] presented a feature selection method

using neighborhood multi-granulation fusion. Li et al. [12] , 13 ] compared multigranulation rough sets with concept lat-

tices via rule acquisition, and further constructed a three-way cognitive concept learning model via multi-granularity.

Tan et al. [31] constructed belief structures and characterize knowledge reduction in terms of evidence theory for the

multigranulation spaces with decisions. 

• The third aspect is topology analysis researches on multigranulation rough set model. Yang et al. [37] studied the hier-

archical structures of multigranulation rough sets. She and He [29] discussed the topological and lattice-theoretic prop-

erties of multigranulation rough sets. Yao [44] proposed a unified framework to classify and compare two basic models

based on the construction of a family of equivalence relations and a combination of the family of approximations, re-

spectively. 

With the insightful gain from above multigranulation discussions, one can find a more reasonable decisions for all ob-

jects should be made via sequential three-way decisions and multiview granular structures. To this end, we combine with

sequential three-way decisions and multigranulation rough sets to build a generalied sequential three-way decision model

via multi-granularity. More specifically, we adopt the different aggregation strategies to aggregate the lower approximations

and the upper approximations, and construct the weighted arithmetic mean multigranulation sequential three-way deci-

sions (WAMMS3WD), the optimistic multigranultion sequential three-way decisions (OMS3WD), the pessimistic multigran-

ultion sequential three-way decisions (PMS3WD), the pessimistic-optimistic multigranultion sequential three-way decisions

(POMS3WD) and the optimistic-pessimistic multigranulation sequential three-way decisions (OPMS3WD). Furthermore, we

discuss the rightness and rationality of these models and analyze the corresponding relationships and differences. Finally,

real-life experiments are employed to demonstrate their feasibility and effectiveness. 

The remainder of this paper is organized as follows. The next section deals with some preliminary concepts and prop-

erties regarding the Pawlak’s rough sets, multigranulation rough sets and decision-theoretic rough sets. In Section 3 , we in-

troduce the five types of multigranulation sequential three-way decisions(MS3WD) and investigate the corresponding prop-

erties. In Section 4 , we analyze the relationships and rationality among the first four types of MS3WD models. Finally,

Section 5 concludes the paper. 

2. Preliminary knowledge on decision-theoretic rough set model 

In this section, we will review some basic concepts of Pawlak rough set model, multigranulation rough set model and

decision-theoretic rough set model. For a detailed description, please refer to papers [22,26,40] . 

2.1. Pawlak rough set model 

For classification tasks, we consider a decision table which is defined as: S = (U, At = C ∪ D, { V a | a ∈ At} , { I a | a ∈ At} ) , where

 = { x 1 , x 2 , . . . , x n } is a finite non-empty set of objects, At is a finite nonempty set of attributes, C = { c 1 , c 2 , . . . , c M 

} is a set

of conditional attributes describing the objects, and D is a set of decision attributes that indicates the classes of objects. V a

is a nonempty set of values of a ∈ At. I a is an information function that maps an object x in U to exactly one value v in

V a , that is, I a ( x ) = v . For simplicity, we assume D = { d } in this paper, where d is a decision attribute which has k different

decision values, and V d = {1, 2,..., k }. A table with multiple decision attributes can be easily transformed into a table with

a single decision attribute by considering the Cartesian product of the original decision attributes. 

An indiscernibility relation with A ⊆ At is defined as IND ( A ) = { (x, y ) ∈ U × U|∀ a ∈ A [ I a (x ) = I a (y )] }. The partition gen-

erated by IND ( A ) is denoted as U / IND ( A ), or simply πA . The equivalence class containing object x in πA is given by

[ x ] IND (A ) = { y ∈ U| (x, y ) ∈ IND (A ) } . For simplicity, we write [ x ] A instead of [ x ] IND ( A ) if IND ( A ) is understood. 
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Consider a partition πD with respect to the decision attribute D and another partition πA induced by a set of conditional

attributes A . These equivalence classes induced by the partition are the basic blocks to construct the Pawlak rough set

approximations. 

For a decision class D q ∈ πD , the lower and upper approximations of D q with respect to a partition πA are defined by

Pawlak [22] : 

apr 
πA 

(D q ) = { x ∈ U| [ x ] A ⊆ D q } 
= { x ∈ U| p(D q | [ x ] A ) = 1 }; (1) 

apr πA 
(D q ) = { x ∈ U| [ x ] A ∩ D q � = ∅} 

= { x ∈ U| p(D q | [ x ] A ) > 0 } . (2) 

where p ( D q |[ x ] A ) denotes the conditional probability that an object x belongs to D q given that the object is in the equivalence

class [ x ] A , i.e., p ( D q |[ x ] A ) = 

| [ x ] A ∩ D q | | [ x ] A | . 

The lower and upper approximations of the partition πD with respect to πA are the families of the lower and upper

approximations of all the equivalence classes of πD . 

apr 
πA 

(πD ) = { apr 
πA 

(D 1 ) , apr 
πA 

(D 2 ) , . . . , apr 
πA 

(D k ) };
apr πA 

(πD ) = { apr πA 
(D 1 ) , apr πA 

(D 2 ) , . . . , apr πA 
(D k ) } . (3) 

Once we have the lower and upper approximations for each decision class, a positive, boundary and negative region of a

partition πD with respect to a partition πA is defined as follows: 

P OS πA 
(πD ) = 

⋃ 

1 ≤q ≤k 

apr 
πA 

(D q ) ; (4) 

BND πA 
(πD ) = 

⋃ 

1 ≤q ≤k 

BND πA 
(D q ) 

= 

⋃ 

1 ≤q ≤k 

( apr πA 
(D q ) − apr 

πA 
(D q )) ; (5) 

NEG πA 
(πD ) = U − P OS πA 

(πD ) ∪ BND πA 
(πD ) . (6) 

For the partition πD , we can calculate its lower and upper approximations in terms of k two-class problems. P OS πA 
(πD )

is the positive region of decision and indicates the union of all the equivalence classes defined by πA , in which each equiv-

alence class induces a certain decision. BND πA 
(πD ) is the boundary region of decision and is formed by the union of all

the equivalence classes defined by πA which induces the partial decisions. When A equals C , P OS πC 
(πD ) denotes the whole

positive region of a decision table. If a decision table is consistent, BND πC 
(πD ) = NEG πC 

(πD ) = ∅ and P OS πC 
(πD ) = U. 

2.2. QIAN’s MGRS 

In Pawlak rough set model, the target is approximated by one and only one binary relation. In many circumstances,

we often need to describe concurrently a target concept through multiple binary relations on the universe according to a

user’s requirements or targets of problem solving. Qian et al. [23,25] introduced multigranulation rough set theory(MGRS).

In these models, a target concept is approximated by a family of indiscernibility relations. In what follows, we briefly review

the optimistic and pessimistic multigranulation rough set models in [23] . 

Definition 1. Given m granular structures GS = { A 1 , A 2 , . . . , A m 

} and ∀ X ⊆ U , the optimistic multigranulation lower and

upper approximations 
m ∑ 

i =1 

A i 
O (X ) and 

m ∑ 

i =1 

A i 
O (X ) are defined as follows, respectively. 

m ∑ 

i =1 

A i 
O (X ) = { x ∈ U| [ x ] A 1 ⊆ X ∨ [ x ] A 2 ⊆ X ∨ . . . ∨ [ x ] A m ⊆ X } , 

m ∑ 

i =1 

A i 
O (X ) = ∼

m ∑ 

i =1 

A i 
O (∼ X ) . 

(7) 

where ∼ X is the complement of set X . 

The pair < 

m ∑ 

i =1 

A i 
O (X ) , 

m ∑ 

i =1 

A i 
O (X ) > is called the optimistic multigranulation rough sets of X . Here the word “optimistic”

means that only a single granular structure is needed to satisfy the inclusion condition between an equivalence class and a

target concept when the multiple independent granular structures are available. 
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Definition 2. Given m granular structures GS = { A 1 , A 2 , . . . , A m 

} and ∀ X ⊆ U , the pessimistic multigranulation lower and

upper approximations 
m ∑ 

i =1 

A i 
P (X ) and 

m ∑ 

i =1 

A i 
P (X ) are defined as follows, respectively. 

m ∑ 

i =1 

A i 
P (X ) = { x ∈ U| [ x ] A 1 ⊆ X ∧ [ x ] A 2 ⊆ X ∧ . . . ∧ [ x ] A m ⊆ X } , 

m ∑ 

i =1 

A i 
P (X ) = ∼

m ∑ 

i =1 

A i 
P (∼ X ) . 

(8)

where ∼ X is the complement of set X . 

The pair < 

m ∑ 

i =1 

A i 
P (X ) , 

m ∑ 

i =1 

A i 
P (X ) > is called the pessimistic multigranulation rough sets of X . Here the word “pessimistic”

means that all granular structures must satisfy the inclusion condition between an equivalence class and a target concept

when the multiple independent granular structures are available. 

2.3. Decision-theoretic rough sets 

In decision-theoretic rough set models, the probabilistic positive, boundary and negative regions are induced using two

tolerance threshold parameters α and β (0 ≤β < α ≤ 1) by a set of loss functions based on the Bayesian theory procedure

[39] . They overcome the weakness in Pawlak rough set model, and are the basis of three-way decisions, which can be

described as follows. 

Within the framework of three-way decisions, suppose the set of states � = { X , ¬X }, where ¬X denotes the complement

of X , the set of actions A = { a P , a B , a N }, where a P , a B and a N represent the three actions in classifying an object x , namely,

deciding x ∈ POS ( X ), deciding x should be further investigated x ∈ BND ( X ), and deciding x ∈ NEG ( X ). λPP , λBP and λNP denote

the loss incurred for taking actions of a P , a B and a N , respectively, when an object belongs to X . Similarly, λPN , λBN and

λNN denote the losses incurred for taking the corresponding actions when the object belongs to ¬X . By Bayesian decision

procedure, for an object x , the expected loss R ( a • |[ x ]) associated with taking the individual action can be expressed as 

R (a P | [ x ]) = λPP P (X | [ x ]) + λPN P (¬ X | [ x ]) , 
R (a N | [ x ]) = λNP P (X | [ x ]) + λNN P (¬ X | [ x ]) , 
R (a B | [ x ]) = λBP P (X | [ x ]) + λBN P (¬ X | [ x ]) , 

When 0 ≤ λPP ≤ λBP < λNP and 0 ≤ λNN ≤ λBN < λPN , the Bayesian decision procedure leads to the following three

minimum-risk decision rules. 

(P1) If P ( X |[ x ]) ≥ α and P ( X |[ x ]) ≥ β , decide x ∈ POS ( X ), 

(N1) If P ( X |[ x ]) ≤ γ and P ( X |[ x ]) ≤ β , decide x ∈ NEG ( X ), 

(B1) If P ( X |[ x ]) ≤ α and P ( X |[ x ]) ≥ β , decide x ∈ BND ( X ), where α = 

λPN −λBN 
(λPN −λBN )+(λBP −λPP ) 

, β = 

λBN −λNN 
(λBN −λNN )+(λNP −λBP ) 

, γ =
λPN −λNN 

(λPN −λNN )+(λNP −λPP ) 
. 

If 0 ≤ β < γ < α ≤ 1, (P1)-(B1) can be re-expressed as follows: 

(P2) If P ( X |[ x ]) ≥ α, decide x ∈ POS ( X ), 

(N2) If P ( X |[ x ]) ≤ β , decide x ∈ NEG ( X ), 

(B2) If β < P ( X |[ x ]) < α, decide x ∈ BND ( X ). 

Thus, given two parameters α and β for a decision class D q with respect to a partition πA , the probabilistic lower and

upper approximations can be defined by: 

apr (α,β) 
πA 

(D q ) = { x ∈ U| p(D q | [ x ] A ) ≥ α} 
= 

⋃ 

p(D q | [ x ] A ) ≥α

[ x ] A ; (9)

apr 
(α,β) 
πA 

(D q ) = { x ∈ U| p(D q | [ x ] A ) > β} 
= 

⋃ 

p(D q | [ x ] A ) >β

[ x ] A . (10)

The above two approximations are the key issue of the decision-theoretic rough set models. We can extend the proba-

bilistic approximations of a single decision D q to those of the entire partition πD . The lower and upper approximations of

the partition πD with respect to πA are the families of the lower and upper approximations of all the equivalence classes

of πD . For simplicity, we assume that the same loss functions are used for all decisions. 

apr (α,β) 
πA 

(πD ) = { apr (α,β) 
πA 

(D 1 ) , apr (α,β) 
πA 

(D 2 ) , . . . , apr (α,β) 
πA 

(D k ) };
apr 

(α,β) 
π (πD ) = { apr 

(α,β) 
π (D 1 ) , apr 

(α,β) 
π (D 2 ) , . . . , apr 

(α,β) 
π (D k ) } . 

(11)
A A A A 
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In decision-theoretic rough set models, three probabilistic regions (positive, boundary and negative regions) of a partition

πD with respect to a partition πA can be defined as follows: 

P OS 
(α,β) 
πA 

(πD ) = 

⋃ 

1 ≤q ≤k 

apr (α,β) 
πA 

(D q ) ; (12) 

BND 

(α,β) 
πA 

(πD ) = 

⋃ 

1 ≤q ≤k 

BND 

(α,β) 
πA 

(D q ) 

= 

⋃ 

1 ≤q ≤k 

( apr 
(α,β) 
πA 

(D q ) − apr (α,β) 
πA 

(D q )) ;
(13) 

NEG 

(α,β) 
πA 

(πD ) = U − P OS 
(α,β) 
πA 

(πD ) ∪ BND 

(α,β) 
πA 

(πD ) . (14) 

3. Sequential three-way decisions via multi-granularity 

As we all know, three-way decision model is a common problem solving strategy within the framework of decision-

theoretic rough set models. In general, the existing three-way decision-making methods are classified into two classes—a

single one-step three-way decision-making and a sequential, multi-step three-way decision-making. The former may be re-

garded as a special case of the latter. Thus, we always discuss the sequential three-way decisions. In fact, we often gradually

support an acceptance or a rejection at a particular level by modifying different ( α, β) parameters. Thus, decision-making

at a finer (lower) level needs larger considerations than decision-making at a coarser (higher) level. 

3.1. Sequential three-way decisions 

In order to facilitate this study, we will introduce the probabilistic ( αl , β l )-lower and upper approximations for three-way

decisions at lth -level to modify the original decision-theoretic rough set [27,28] . 

Definition 3. For a decision table S, a given decision class D 

l 
q , the dynamic threshold parameter sequence ( α, β) l = {( α1 ,

β1 ), ( α2 , β2 ), . . . , ( αl , β l )}, for a granular structure A i ⊆ C , the ( αl , β l )-lower approximation apr (α
l ,β l ) 

πA i 

(D 

l 
q ) and ( αl , β l )-upper

approximation apr (α
l ,β l ) 

πA i 
(D 

l 
q ) are defined by 

apr (α
l ,β l ) 

πA i 

(D 

l 
q ) = { x | p(D 

l 
q | [ x ] A i ) ≥ αl , x ∈ U 

l } , 
apr 

(αl ,β l ) 
πA i 

(D 

l 
q ) = { x | p(D 

l 
q | [ x ] A i ) > β l , x ∈ U 

l } . 
(15) 

where U 

1 = U, U 

l+1 = BND 

(αl ,β l ) 
πA i 

(D 

l 
q ) = apr (α

l ,β l ) 
πA i 

(D 

l 
q ) - apr (α

l ,β l ) 
πA i 

(D 

l 
q ) is the gradually reduced universe, [ x ] A i represents the

equivalence class including x in the partition U 

l / A i , and D 

l 
q represents the equivalence class including x in the partition U 

l / D 

l .

The pair < apr (α
l ,β l ) 

πA i 

(D 

l 
q ) , apr (α

l ,β l ) 
πA i 

(D 

l 
q ) > is called the lth -level lower and upper approximations induced by A i with

respect to D 

l 
q in U 

l . Thus, we can acquire the three probabilistic regions as follows. 

P OS 
(αl ,β l ) 
A i 

(D 

l 
q ) = apr (α

l ,β l ) 
πA i 

(D 

l 
q ) , 

= { x | p(D 

l 
q | [ x ] A i ) ≥ αl , x ∈ U 

l }; (16) 

BND 

(αl ,β l ) 
A i 

(D 

l 
q ) = apr 

(αl ,β l ) 
πA i 

(D 

l 
q ) − apr (α

l ,β l ) 
πA i 

(D 

l 
q ) , 

= { x | β l < p(D 

l 
q | [ x ] A i ) < αl , x ∈ U 

l }; (17) 

NEG 

(αl ,β l ) 
A i 

(D 

l 
q ) = U 

l − P OS 
(αl ,β l ) 
A i 

(D 

l 
q ) ∪ BND 

(αl ,β l ) 
A i 

(D 

l 
q ) 

= U 

l − { x | p(D 

l 
q | [ x ] A i ) > β l , x ∈ U 

l } , 
= { x | p(D 

l 
q | [ x ] A i ) ≤ β l , x ∈ U 

l } . 
(18) 

Similar to the classical decision-theoretic rough sets, when αl > β l , we can obtain the decision rules tie-broke: 

(S3WDP) If P (D 

l 
q | [ x ] A i ) ≥ αl , decide P OS 

(αl ,β l ) 
A i 

(D 

l 
q ) ; 

(S3WDN) If P (D 

l 
q | [ x ] A i ) ≤ β l , decide NEG 

(αl ,β l ) 
A i 

(D 

l 
q ) ; 

(S3WDB) If β l < P (D 

l 
q | [ x ] A i ) < αl , decide BND 

(αl ,β l ) 
A i 

(D 

l 
q ) . 

In what follows, we construct an algorithm for computing the probabilistic regions of sequential three-way decisions

under a granular structure as shown in Algorithm 1 . The main idea of Algorithm 1 is that it first deletes those objects

belonging to the probabilistic positive region and negative region under the first level of granular, and then obtains the
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updated universe U 2 = BND 

(α1 ,β1 ) 
A i 

(D 

1 
q ) . In the next level of granular, for the updated universe U 2 , delete the objects belong-

ing to the probabilistic positive region and negative region, and update the universe again. This process is repeated until

the updated universe becomes an empty set or no level of granular can be computed. It is easy to observe that the time

complexity of Algorithm 1 is O ( l | D q || U | 2 ). 

Algorithm 1 Computing the probabilistic regions of sequential three-way decisions under a granular structure . ~

Input: An universal set of objects, U; a dynamic threshold sequence, (α, β) l = { (α1 , β1 ) , (α2 , β2 ) , . . . , (αl , β l ) }; a granular

structure, A i ; a decision class, D q . 

Output: Three probabilistic regions, P OS 
(α,β) l 

A i 
(D q ) , BND 

(α,β) l 

A i 
(D q ) , and NEG 

(α,β) l 

A i 
(D q ) . 

Step 1. P OS 
(α,β) l 

A i 
(D q ) = ∅ , BND 

(α,β) l 

A i 
(D q ) = ∅ , NEG 

(α,β) l 

A i 
(D q ) = ∅ ; 

Step 2. t = 1, U 

t = U; 

Step 3. if U 

t = ∅ or t > l, turn to Step 9; 

Step 4. Compute P OS 
(αt ,βt ) 
A i 

(D 

t 
q ) = { x | p(D 

t 
q | [ x ] A i ) ≥ αt , x ∈ U 

t } and NEG 

(αt ,βt ) 
A i 

(D 

t 
q ) = { x | p(D 

t 
q | [ x ] A i ) ≤ βt , x ∈ U 

t } ; 
Step 5. P OS 

(α,β) l 

A i 
(D q ) = P OS 

(α,β) l 

A i 
(D q ) ∪ P OS 

(αt ,βt ) 
A i 

(D 

t 
q ) ; NEG 

(α,β) l 

A i 
(D q ) = NEG 

(α,β) l 

A i 
(D q ) ∪ NEG 

(αt ,βt ) 
A i 

(D 

t 
q ) ; 

Step 6. U 

t+1 = { x | βt < p(D 

t 
q | [ x ] A i ) < αt , x ∈ U 

t } ; 
Step 7. BND 

(α,β) t 

A i 
(D q ) = U 

t+1 ; 

Step 8. t = t + 1; turn to Step 3; 

Step 9. Output P OS 
(α,β) l 

A i 
(D q ) , BND 

(α,β) l 

A i 
(D q ) , NEG 

(α,β) l 

A i 
(D q ) . 

Example 1. Consider a universe set of objects U = { x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 , x 10 }, a partition U / A 1 = {{ x 1 , x 6 }, { x 2 , x 3 ,

x 4 , x 10 }, { x 5 }, { x 7 , x 8 , x 9 }}, and a decision class D 1 = { x 1 , x 3 , x 4 , x 6 , x 7 }. Let ( α, β) 2 = {(0.8, 0.4), (0.7, 0.5)}, we can obtain the

following conditional probabilities under a granular structure A 1 are computed as. 

p(D 1 | [ x 1 ] A 1 ) = p(D 1 | [ x 6 ] A 1 ) = 1 ;
p(D 1 | [ x 2 ] A 1 ) = p(D 1 | [ x 3 ] A 1 ) = p(D 1 | [ x 4 ] A 1 ) = p(D 1 | [ x 10 ] A 1 ) = 1 / 2 ;
p(D 1 | [ x 5 ] A 1 ) = 0 ;
p(D 1 | [ x 7 ] A 1 ) = p(D 1 | [ x 8 ] A 1 ) = p(D 1 | [ x 9 ] A 1 ) = 1 / 3 ;

1) U 

1 = U, D 

1 
1 = { x 1 , x 3 , x 4 , x 6 , x 7 }. For the first level of granular, we can compute 

P OS 
(α,β) 1 

A 1 
(D 1 ) = P OS 

(α1 ,β1 ) 
A 1 

(D 

1 
1 ) = { x 1 , x 6 };

BND 

(α,β) 1 

A 1 
(D 1 ) = BND 

(α1 ,β1 ) 
A 1 

(D 

1 
1 ) = { x 2 , x 3 , x 4 , x 10 };

NEG 

(α,β) 1 

A 1 
(D 1 ) = NEG 

(α1 ,β l ) 
A 1 

(D 

1 
1 ) = { x 5 , x 7 , x 8 , x 9 };

Thus, we can have P OS 
(α,β) 1 

A 1 
(D 1 ) = { x 1 , x 6 }, BND 

(α,β) 1 

A 1 
(D 1 ) = { x 2 , x 3 , x 4 , x 10 } and NEG 

(α,β) 1 

A 1 
(D 1 ) = { x 5 , x 7 , x 8 , x 9 }. 

2) Updating the reduced universe U 

2 = { x 2 , x 3 , x 4 , x 10 }, and the decision class D 

2 
1 

= { x 3 , x 4 , x 7 }. For the second level of

granular, we can compute 

P OS 
(α2 ,β2 ) 
A 1 

(D 

2 
1 
) = ∅ ; 

BND 

(α2 ,β2 ) 
A 1 

(D 

2 
1 
) = ∅ ; 

NEG 

(α2 ,β2 ) 
A 1 

(D 

2 
1 
) = { x 2 , x 3 , x 4 , x 5 , x 7 , x 8 , x 9 , x 10 }; 

Therefore, we can have P OS 
(α,β) 2 

A 1 
(D 1 ) = P OS 

(α1 ,β1 ) 
A 1 

(D 

1 
1 ) ∪ P OS 

(α2 ,β2 ) 
A 1 

(D 

2 
1 ) = { x 1 , x 6 }, NEG 

(α,β) 2 

A 1 
(D 1 ) = NEG 

(α1 ,β1 ) 
A 1 

(D 

1 
1 ) ∪

NEG 

(α2 ,β2 ) 
A 1 

(D 

2 
1 ) = { x 2 , x 3 , x 4 , x 5 , x 7 , x 8 , x 9 , x 10 }, and BND 

(α,β) 2 

A 1 
(D 1 ) = ∅ . 

3.2. A generalized model of multigranulation sequential three-way decisions 

The multigranulation rough sets(MGRS) employ a family of indiscernibility relations to construct the lower and upper

approximations. Given multiple granular structures GS = { A 1 , A 2 , . . . , A m 

} ( A i ⊆ R ), the multigranulation decision-theoretic

rough sets mainly select a series of actions satisfying that the overall risk is as small as possible, thus one can easily decide

an object which belongs to the probabilistic positive region, negative region or boundary region. In these models, there are

two kinds of assumptions. One assumes that the values ( αl , β l ) of m granular structures are all equal each other, namely αl 
1

= αl 
2 

= . . . = αl 
m 

= αl and β l 
1 

= β l 
2 

= . . . = β l 
m 

= β l , and the other assumes that they are not equivalent, in which each

granular structure has its independent loss or cost function itself. In this paper, we mainly study the former, and assume
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all the parameter values of each granular structure are the same. In subsequent sections, we always use P (D 

l 
q | [ x ] A i ) ≥ αl ,

P (D 

l 
q | [ x ] A i ) > β l and P (D 

l 
q | [ x ] A i ) ≤ β l to denote P (D 

l 
q | [ x ] A i ) ≥ αl 

i 
, P (D 

l 
q | [ x ] A i ) > β l 

i 
and P (D 

l 
q | [ x ] A i ) ≤ β l 

i 
, respectively. 

Given a decision class D 

l 
q , the dynamic threshold parameter sequence ( α, β) l = {( α1 , β1 ), ( α2 , β2 ), . . . , ( αl , β l )}, for m

granular structures GS = { A 1 , A 2 , . . . , A m 

}, the conditional probability of an object x is denoted as P (D 

l 
q | [ x ] A i ) (1 ≤ i ≤ m ).

Thus, we can construct the l th − l e v el lower and upper approximations 
∑ m 

i =1 A i 
� , (αl ,β l ) (D 

l 
q ) and 

∑ m 

i =1 A i 
� , (αl ,β l ) (D 

l 
q ) ( � de-

notes a generalized aggregation strategy) under the dynamic threshold parameter sequence ( α, β) l as follows. 

Definition 4. Given m granular structures GS = { A 1 , A 2 , . . . , A m 

}, a decision class D 

l 
q , and the dynamic threshold parameter

sequence ( α, β) l = {( α1 , β1 ), ( α2 , β2 ), . . . , ( αl , β l )}, the lower and upper approximations of the multigranulation sequential

three-way decisions are denoted by 
∑ m 

i =1 A i 
� , (α,β) l (D q ) and 

∑ m 

i =1 A i 
� , (α,β) l (D q ) , respectively, 

m ∑ 

i =1 

A i 
� , (α,β) l (D q ) = 

⋃ 

1 ≤t≤l 

m ∑ 

i =1 

A i 
� , (αl ,β l ) (D 

t 
q ) ;

m ∑ 

i =1 

A i 
� , (α,β) l (D q ) = 

⋃ 

1 ≤t≤l 

m ∑ 

i =1 

A i 
� , (αl ,β l ) (D 

t 
q ) . 

(19) 

where U 

1 = U , U 

t+1 = 

∑ m 

i =1 A i 
� , (αl ,β l ) (D 

t 
q ) - 

∑ m 

i =1 A i 
� , (αl ,β l ) (D 

t 
q ) is the gradually reduced universe, [ x ] A i (1 ≤ i ≤ m ) represents

the equivalence class including x in the partition U 

t / A i , D 

t 
q represents the equivalence class including x in the partition U 

t / D ,

and P (D 

t 
q | [ x ] A i ) is the conditional probability of the equivalence class [ x ] A i with respect to D 

t 
q . 

Similar to the decision-theoretic rough sets, we further extend the probabilistic approximations and regions of a decision

class D q to a partition πD . For simplicity, we assume that the same threshold parameters are used for all the decision classes.

Definition 5. Given m granular structures GS = { A 1 , A 2 , . . . , A m 

} and a decision partition πD = { D 1 , D 2 , . . . , D k }, the lower

and upper approximations of multigranulation sequential three-way decisions with respect to πD are defined as 

m ∑ 

i =1 

A i 
� , (α,β) l (πD ) = ( 

m ∑ 

i =1 

A i 
� , (α,β) l (D 1 ) , 

m ∑ 

i =1 

A i 
� , (α,β) l (D 2 ) , . . . , 

m ∑ 

i =1 

A i 
� , (α,β) l (D k )) , 

m ∑ 

i =1 

A i 
� , (α,β) l (πD ) = ( 

m ∑ 

i =1 

A i 
� , (α,β) l (D 1 ) , 

m ∑ 

i =1 

A i 
� , (α,β) l (D 2 ) , . . . , 

m ∑ 

i =1 

A i 
� , (α,β) l (D k )) . 

(20) 

According to the above definitions, the probabilistic positive, boundary and negative regions with respect to target deci-

sion partition πD can be denoted as follows: 

P OS 
� , (α,β) l 

GS 
(πD ) = 

⋃ 

1 ≤q ≤k 

m ∑ 

i =1 

A i 
� , (α,β) l (D q ) (21) 

BND 

� , (α,β) l 

GS 
(πD ) = 

⋃ 

1 ≤q ≤k 

BND 

� , (αl ,β l ) (D q ) 

= 

⋃ 

1 ≤q ≤k 

(
m ∑ 

i =1 

A i 
� , (αl ,β l ) (D 

l 
q ) −

m ∑ 

i =1 

A i 
� , (αl ,β l ) (D 

l 
q ) 

) (22) 

NEG 

� , (α,β) l 

GS 
(πD ) = U − P OS � , (α,β) l (πD ) ∪ BND 

� , (α,β) l (πD ) (23) 

As discussed above, we can conclude the monotonicity of a decision partition πD as follows. 

Proposition 1. Given m granular structures GS = {A 1 , A 2 , . . . , A m 

}, the dynamic threshold parameter sequence ( α, β) l = {( α1 ,

β1 ), ( α2 , β2 ), . . . , ( αl , β l )}, and a decision partition πD , then 

1) P OS 
� , (α,β) 1 

GS 
(πD ) ⊆ P OS 

� , (α,β) 2 

GS 
(πD ) ⊆ . . . ⊆ P OS 

� , (α,β) l 

GS 
(πD ) ; 

2) NEG 

� , (α,β) 1 

GS 
(πD ) ⊆ NEG 

� , (α,β) 2 

GS 
(πD ) ⊆ . . . ⊆ NEG 

� , (α,β) l 

GS 
(πD ) ; 

3) BND 

� , (α,β) i 

GS 
(πD ) ⊇ BND 

� , (α,β) j 

GS 
(πD )(i ≤ j). 

Proposition 2. Given m granular structures GS = {A 1 , A 2 , . . . , A m 

}, a decision class D 

l 
q , and the dynamic threshold parameter

sequence ( α, β) l = {( α1 , β1 ), ( α2 , β2 ), . . . , ( αl , β l )}. Then 

1) If 0 ≤ β l ≤ β l 
′ 

< αl 
′ ≤ αl ≤ 1, then 

m ∑ 

i =1 

A i 
� , (αl ,β l ) (D 

l 
q ) ⊆

m ∑ 

i =1 

A i 
� , (αl 

′ 
,β l 

′ 
) (D 

l 
q ) ;

m ∑ 

i =1 

A i 
� , (αl ,β l ) (D 

l 
q ) ⊇

m ∑ 

i =1 

A i 
� , (αl 

′ 
,β l 

′ 
) (D 

l 
q ) 

. 
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Fig. 1. The generalized model of multigranulation sequential three-way decisions. 
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2) If ∀ D 

l 
′ 

q ⊆ D 

l 
q ⊆ U l , then 

m ∑ 

i =1 

A i 
� , (αl ,β l ) (D 

l 
′ 

q ) ⊆
m ∑ 

i =1 

A i 
� , (αl ,β l ) (D 

l 
q ) ;

m ∑ 

i =1 

A i 
� , (αl ,β l ) (D 

l 
′ 

q ) ⊆
m ∑ 

i =1 

A i 
� , (αl ,β l ) (D 

l 
q ) 

. 

Proposition 2 shows that the bigger the value of αl , the smaller the lower approximation, and the smaller the value of

β l , the bigger the upper approximation. In addition, the more the objects of a target concept, the larger the size of the lower

and upper approximations. 

In what follows, we design a generalized model of multigranulation sequential three-way decisions as shown in Fig. 1 . In

this model, the probabilistic boundary region under the coarse level of granular is regarded as the reduced universe under

the fine level of granular. However, how to aggregate the probabilistic positive and negative regions induced from multiple

granular structures is an important research issue. 

Here we present an algorithm for computing the probabilistic regions of a generalized multigranulation sequential three-

way decision model as shown in Algorithm 2. The main idea of Algorithm 2 is that it first deletes those objects belonging

to the probabilistic positive region and negative region under the first level of granular, and then obtain the updated uni-

verse U 

2 = BND 

� , (α1 ,β1 ) 
GS 

(πD ) . In the next level of granular, for the updated universe U 

2 , delete the objects belonging to the

probabilistic positive region and negative region, and update the universe again. This process is repeated until the updated

universe becomes an empty set or no level of granular can be computed. It is easy to observe that the time complexity of

Algorithm 2 is O (l 
∑ m 

i =1 A i | U| 2 ) . 
Algorithm 2 Computing the probabilistic regions under different multigranulation sequential three-way decisions . ~

Input: An universal set of objects, U; a dynamic threshold sequence (α, β) l = {( α1 , β1 ), ( α2 , β2 ), . . . , ( αl , β l )}; m granular

structures, GS = { A 1 , A 2 , . . . , A m 

} 

Output: Three probabilistic regions, P OS 
� , (α,β) l 

GS 
(πD ) , BND 

� , (α,β) l 

GS 
(πD ) , and NEG 

� , (α,β) l 

GS 
(πD ) . 

Step 1. P OS 
� , (α,β) l 

GS 
(πD ) = ∅ , BND 

� , (α,β) l 

GS 
(πD ) = ∅ ; NEG 

� , (α,β) l 

GS 
(πD ) = ∅ ; 

Step 2. t = 1, U 

t = U; 

Step 3. if U 

t = ∅ or t > l, turn to Step 9; 

Step 4. Compute P OS 
� , (αt ,βt ) 
GS 

(πD ) = 
⋃ 

1 ≤q ≤k 

m ∑ 

i =1 

A i 
� , (αt ,βt ) (D 

t 
q ) and NEG 

� , (αt ,βt ) 
GS 

(πD ) = U 

t - 
⋃ 

1 ≤q ≤k 

m ∑ 

i =1 

A i 
� , (αt ,βt ) (D 

t 
q ) ; 

Step 5. P OS 
� , (α,β) l 

GS 
(πD ) = P OS 

� , (α,β) l 

GS 
(πD ) ∪ P OS 

� , (αt ,βt ) 
GS 

(πD ) ; NEG 

� , (α,β) l 

GS 
(πD ) = NEG 

� , (α,β) l 

GS 
(πD ) ∪ NEG 

� , (αt ,βt ) 
GS 

(πD ) ; 

Step 6. U 

t+1 = 
⋃ 

1 ≤q ≤k 

( 
m ∑ 

i =1 

A i 
� , (αt ,βt ) (D 

t 
q ) - 

m ∑ 

i =1 

A i 
� , (αt ,βt ) (D 

t 
q ) ); 

Step 7. BND 

� , (α,β) t 

GS 
(πD ) = U 

t+1 ; 

Step 8. t = t + 1; turn to Step 3; 
� , (α,β) l � , (α,β) l � , (α,β) l 
Step 9. Output P OS 
GS 

(πD ) , BND 

GS 
(πD ) , NEG 

GS 
(πD ) . 
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3.3. Five typical models of multigranulation sequential three-way decisions using different aggregation strategies 

In this subsection, we mainly focus on five typical models of multigranulation sequential three-way decisions. In order

to facilitate this study, we define Pr max and Pr min to denote the maximum and minimum probability of D 

l 
q with respect to

[ x ] A 1 as follows. 

{ 

P r max = max { P (D 

l 
q | [ x ] A 1 ) , P (D 

l 
q | [ x ] A 2 ) , . . . , P (D 

l 
q | [ x ] A m ) } , 

P r min = min { P (D 

l 
q | [ x ] A 1 ) , P (D 

l 
q | [ x ] A 2 ) , . . . , P (D 

l 
q | [ x ] A m ) } . 

(24) 

In order to apply to more multigranulation environments, we mainly discuss five different multigranulation sequen-

tial three-way decision models using different aggregation strategies. The WAMMS3WD model implements the idea of the

weighted arithmetic mean to construct the lower and upper approximations. Besides the WAMMS3WD model, we adopt

the Optimistic-Optimistic (OO), Pessimistic-Pessimistic (PP), Pessimistic-Optimistic (PO) and Optimistic-Pessimistic (OP) ag- 

gregation strategies to generate the OMS3WD, PMS3WD, POMS3WD and OPMS3WD models. Specifically, the OMS3WD 

model adopts the same aggregation strategies “seeking common ground while reserving differences (SCRD)” to deal with

the lower and upper approximations, while the PMS3WD model employs “seeking common ground while eliminating dif-

ferences (SCED)” to process those approximations. The two hybrid models—POMS3WD and OPMS3WD, use the different

strategies “SCED” /“SCRD” for aggregating the lower/upper approximations, respectively. 

3.3.1. Weighted arithmetic mean multigranulation sequential three-way decisions 

In decision-making analysis, we often use the “average thought” to judge something. As illustrated in the mean multi-

granulation decision-theoretic rough set model [25] , we can employ this idea to define a kind of mean multigranulation

sequential three-way decisions for U 

l . In this mean multigranulation decision-theoretic rough set, when the loss function is

fixed, judging the conditional probability of an object x within a target concept in m granular structures can be computed

by its mathematic expectation. That is to say, 

E(P (X | x )) = (P (X | [ x ] A 1 ) + P (X | [ x ] A 2 ) + . . . + P (X | [ x ] A m )) /m. (25)

The joint probability is estimated by the mean value of m conditional probabilities. Thus, the lower approximation con-

tains those objects in which each object requires the corresponding mean value of m conditional probabilities satisfying the

probability constraint ( ≥α) between its equivalence class and the approximate target, while its upper approximation col-

lects those objects in which each object requires the corresponding mean value of m conditional probabilities satisfying the

probability constraint ( > β) between its equivalence class and the approximate target. We here usethe idea of the weighted

arithmetic mean(for short WAM) to construct a weighted arithmetic mean multigranulation model of sequential three-way

decisions. Thus, we use “WAMP”, “WAMB” and “WAMN” to denote the three kinds of decision rules. 

Definition 6. Given m granular structures GS = { A 1 , A 2 , . . . , A m 

}, a decision class D 

l 
q , the dynamic threshold parameter

sequence ( α, β) l = {( α1 , β1 ), ( α2 , β2 ), . . . , ( αl , β l )}, and a weighting vector ω = { w 1 , w 2 , . . . , w m 

} which satisfies that w i ∈ [0,

1] and 

∑ m 

i =1 w i = 1, the lower and upper approximations of the weighted arithmetic mean multigranulation sequential three-

way decisions are defined by 
∑ m 

i =1 A i 
WAM, (αl ,β l ) (D 

l 
q ) and 

∑ m 

i =1 A i 
WAM, (αl ,β l ) (D 

l 
q ) , 

m ∑ 

i =1 

A i 
WAM, (αl ,β l ) (D 

l 
q ) = { x | w 1 P (D 

l 
q | [ x ] A 1 ) + w 2 P (D 

l 
q | [ x ] A 2 ) + . . . + w m 

P (D 

l 
q | [ x ] A m ) ≥ αl , x ∈ U 

l } 

= { x | ∑ m 

i =1 w i P (D 

l 
q | [ x ] A i ) ≥ αl , x ∈ U 

l };
m ∑ 

i =1 

A i 
WAM, (αl ,β l ) (D 

l 
q ) = { x | w 1 P (D 

l 
q | [ x ] A 1 ) + w 2 P (D 

l 
q | [ x ] A 2 ) + . . . + w m 

P (D 

l 
q | [ x ] A m ) > β l , x ∈ U 

l } 
= U 

l − { x | ∑ m 

i =1 w i P (D 

l 
q | [ x ] A i ) ≤ β l , x ∈ U 

l } . 

(26) 

where U 

1 = U, U 

l+1 = 

∑ m 

i =1 A i 
WAM, (αl ,β l ) (D 

l 
q ) - 

∑ m 

i =1 A i 
WAM, (αl ,β l ) (D 

l 
q ) is the gradually reduced universe, [ x ] A i (1 ≤ i ≤ m ) repre-

sents the equivalence class including x in the partition U 

l / A i and P (D 

l 
q | [ x ] A i ) is the conditional probability of the equivalence

class [ x ] A i with respect to D 

l 
q . 

The pair < 

∑ m 

i =1 A i 
WAM, (αl ,β l ) (D 

l 
q ) , 

∑ m 

i =1 A i 
WAM, (αl ,β l ) (D 

l 
q ) > is called the lth -level weighted arithmetic mean multi-

granulation sequential three-way decisions. By the lower and upper approximations 
∑ m 

i =1 A i 
WAM, (αl ,β l ) (D 

l 
q ) and 
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∑ m 

i =1 A i 
WAM, (αl ,β l ) (D 

l 
q ) , the weighted arithmetic mean multigranulation boundary region of D 

l 
q is 

BND 

WAM, (αl ,β l ) (D 

l 
q ) = 

m ∑ 

i =1 

A i 
WAM, (αl ,β l ) (D 

l 
q ) −

m ∑ 

i =1 

A i 
WAM, (αl ,β l ) (D 

l 
q ) . (27)

Here we denote the lower and upper approximations under the mean multigranulation rough sets [25] as∑ m 

i =1 A i 
M, (αl ,β l ) (D 

l 
q ) and 

∑ m 

i =1 A i 
M, (αl ,β l ) (D 

l 
q ) . According to the definitions of the weighted arithmetic mean multigranulation

sequential three-way decisions, we can have the following propositions. 

Proposition 3. Given m granular structures GS = {A 1 , A 2 , . . . , A m 

}, the dynamic threshold parameter sequence ( α, β) l = {( α1 ,

β1 ), ( α2 , β2 ), . . . , ( αl , β l )}, if for all w i = 

1 
m 

(i = 1, . . . , m), then 

1) 
∑ m 

i =1 A i 
WAM, (αl ,β l ) (D 

l 
q ) = 

∑ m 

i =1 A i 
M, (αl ,β l ) (D 

l 
q ) ; 

2) 
∑ m 

i =1 A i 
WAM, (αl ,β l ) (D 

l 
q ) = 

∑ m 

i =1 A i 
M, (αl ,β l ) (D 

l 
q ) . 

Similar to the classical three-way decisions, when αl > β l , we can obtain the decision rules tie-broke: 

(WAMP) If w 1 P (D 

l 
q | [ x ] A 1 ) + w 2 P (D 

l 
q | [ x ] A 2 ) + . . . + w m 

P (D 

l 
q | [ x ] A m ) ≥ αl , decide P OS WAM, (αl ,β l ) (D 

l 
q ) ; 

(WAMN) If w 1 P (D 

l 
q | [ x ] A 1 ) + w 2 P (D 

l 
q | [ x ] A 2 ) + . . . + w m 

P (D 

l 
q | [ x ] A m ) ≤ β l , decide NEG 

WAM, (αl ,β l ) (D 

l 
q ) ; 

(WAMB) If β l < w 1 (P (D 

l 
q | [ x ] A 1 ) + w 2 P (D 

l 
q | [ x ] A 2 ) + . . . + w m 

P (D 

l 
q | [ x ] A m ) < αl , decide BND 

WAM, (αl ,β l ) (D 

l 
q ) . 

3.3.2. Optimistic multigranulation sequential three-way decisions 

In decision making analysis, we sometimes use the “Seeking common ground while reserving differences(SCRD)” strategy

[25] to evaluate the projects or professional titles. In order to facilitate this study, we suppose the parameter values ( αl , β l )

of each granular structure are equal each other. Here we define the lower and upper approximations of the optimistic

multigranulation sequential three-way decisions at lth -level. 

Definition 7. Given m granular structures GS = { A 1 , A 2 , . . . , A m 

}, a decision class D 

l 
q , and the dynamic threshold parameter

sequence ( α, β) l = {( α1 , β1 ), ( α2 , β2 ), . . . , ( αl , β l )}, the lower and upper approximations of the optimistic multigranulation

sequential three-way decisions are denoted by 
∑ m 

i =1 A i 
O, (αl ,β l ) (D 

l 
q ) and 

∑ m 

i =1 A i 
O, (αl ,β l ) (D 

l 
q ) , 

m ∑ 

i =1 

A i 
O, (αl ,β l ) (D 

l 
q ) = { x | P (D 

l 
q | [ x ] A 1 ) ≥ αl ∨ P (D 

l 
q | [ x ] A 2 ) ≥ αl ∨ . . . ∨ P (D 

l 
q | [ x ] A m ) ≥ αl , x ∈ U 

l };
m ∑ 

i =1 

A i 
O, (αl ,β l ) (D 

l 
q ) = { x | P (D 

l 
q | [ x ] A 1 ) > β l ∨ P (D 

l 
q | [ x ] A 2 ) > β l ∨ . . . ∨ P (D 

l 
q | [ x ] A m ) > β l , x ∈ U 

l } , 
= U 

l − { x | P (D 

l 
q | [ x ] A 1 ) ≤ β l ∧ P (D 

l 
q | [ x ] A 2 ) ≤ β l ∧ . . . ∧ P (D 

l 
q | [ x ] A m ) ≤ β l , x ∈ U 

l } . 

(28)

where U 

1 = U, U 

l+1 = 

∑ m 

i =1 A i 
O, (αl ,β l ) (D 

l 
q ) - 

∑ m 

i =1 A i 
O, (αl ,β l ) (D 

l 
q ) is the gradually reduced universe, [ x ] A i (1 ≤ i ≤ m ) represents

the equivalence class including x in the partition U 

l / A i and P (D 

l 
q | [ x ] A i ) is the conditional probability of the equivalence class

[ x ] A i with respect to D 

l 
q . 

The pair < 

∑ m 

i =1 A i 
O, (αl ,β l ) (D 

l 
q ) , 

∑ m 

i =1 A i 
O, (αl ,β l ) (D 

l 
q ) > is called the lth -level optimistic multigranulation sequential three-

way decisions. According to the lower and upper approximations 
∑ m 

i =1 A i 
O, (αl ,β l ) (D 

l 
q ) and 

∑ m 

i =1 A i 
O, (αl ,β l ) (D 

l 
q ) , the optimistic

multigranulation boundary region of D 

l 
q is 

BND 

O, (αl ,β l ) (D 

l 
q ) = 

m ∑ 

i =1 

A i 
O, (αl ,β l ) (D 

l 
q ) −

m ∑ 

i =1 

A i 
O, (αl ,β l ) (D 

l 
q ) . (29)

According to these definitions of the optimistic multigranulation sequential three-way decisions, one can conclude these

propositions as follows. 

Proposition 4. Given m granular structures GS = {A 1 , A 2 , . . . , A m 

}, a decision class D 

l 
q , and the dynamic threshold parameter

sequence ( α, β) l = {( α1 , β1 ), ( α2 , β2 ), . . . , ( αl , β l )}. Then, the following properties hold. 
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1) 

m ∑ 

i =1 

A i 
O, (αl ,β l ) (D 

l 
q ) = 

⋃ 

1 ≤i ≤m 

apr (α
l ,β l ) 

πA i 

(D 

l 
q ) ;

2) 

m ∑ 

i =1 

A i 
O, (αl ,β l ) (D 

l 
q ) = 

⋃ 

1 ≤i ≤m 

apr 
(αl ,β l ) 
πA i 

(D 

l 
q ) . 

When αl ∈ ( β l , Pr max ], we can decide x ∈ P OS O, (αl ,β l ) (D 

l 
q ) . As well, if β l ∈ [ Pr max , αl ), we can decide x ∈ NEG 

O, (αl ,β l ) (D 

l 
q ) .

Similar to the classical three-way decisions, we can obtain the decision rules tie-broke: 

(OP) If ∃ i ∈ {1, 2, . . . , m } such that P (D 

l 
q | [ x ] A i ) ≥ αl , decide P OS O, (αl ,β l ) (D 

l 
q ) ; 

(ON) If ∀ i ∈ {1, 2, . . . , m } such that P (D 

l 
q | [ x ] A i ) ≤ β l , decide NEG 

O, (αl ,β l ) (D 

l 
q ) ; 

(OB) Otherwise, decide BND 

O, (αl ,β l ) (D 

l 
q ) . 

3.3.3. Pessimistic multigranulation sequential three-way decisions 

As we all know, “Seeking common ground while eliminating differences (SCED)” is one of usual decision strategies for

decision making [25] . This strategy argues that one reserves common decisions while deleting inconsistent decisions, which

can be seen as a conservative decision strategy. Based on this idea, we define the lower and upper approximations of the

pessimistic multigranulation sequential three-way decisions at lth -level as follows. 

Definition 8. Given m granular structures GS = { A 1 , A 2 , . . . , A m 

}, a decision class D 

l 
q , and the dynamic threshold parameter

sequence ( α, β) l = {( α1 , β1 ), ( α2 , β2 ), . . . , ( αl , β l )}, the lower and upper approximations of the pessimistic multigranulation

sequential three-way decisions are denoted by 
∑ m 

i =1 A i 
P , (αl ,β l ) (D 

l 
q ) and 

∑ m 

i =1 A i 
P , (αl ,β l ) (D 

l 
q ) , respectively, 

m ∑ 

i =1 

A i 
P, (αl ,β l ) (D 

l 
q ) = { x | P (D 

l 
q | [ x ] A 1 ) ≥ αl ∧ P (D 

l 
q | [ x ] A 2 ) ≥ αl ∧ . . . ∧ P (D 

l 
q | [ x ] A m ) ≥ αl , x ∈ U 

l };
m ∑ 

i =1 

A i 
P, (αl ,β l ) (D 

l 
q ) = { x | P (D 

l 
q | [ x ] A 1 ) > β l ∧ P (D 

l 
q | [ x ] A 2 ) > β l ∧ . . . ∧ P (D 

l 
q | [ x ] A m ) > β l , x ∈ U 

l } , 
= U 

l − { x | P (D 

l 
q | [ x ] A 1 ) ≤ β l ∨ P (D 

l 
q | [ x ] A 2 ) ≤ β l ∨ . . . ∨ P (D 

l 
q | [ x ] A m ) ≤ β l , x ∈ U 

l } . 

(30) 

where U 

1 = U, U 

l+1 = 

∑ m 

i =1 A i 
P , (αl ,β l ) (D 

l 
q ) - 

∑ m 

i =1 A i 
P , (αl ,β l ) (D 

l 
q ) is the gradually reduced universe, [ x ] A i (1 ≤ i ≤ m ) represents

the equivalence class including x in the partition U 

l / A i and P (D 

l 
q | [ x ] A i ) is the conditional probability of the equivalence class

[ x ] A i with respect to D 

l 
q . 

The pair < 

∑ m 

i =1 A i 
P , (αl ,β l ) (D 

l 
q ) , 

∑ m 

i =1 A i 
P , (αl ,β l ) ( D 

l 
q ) > is calle d the lth -level pessimistic multigranulation sequential three-

way decisions. By the lower and upper approximations 
∑ m 

i =1 A i 
P , (αl ,β l ) (D 

l 
q ) and 

∑ m 

i =1 A i 
P , (αl ,β l ) (D 

l 
q ) , the pessimistic multi-

granulation boundary region of D 

l 
q is 

BND 

P, (αl ,β l ) (D 

l 
q ) = 

m ∑ 

i =1 

A i 
P, (αl ,β l ) (D 

l 
q ) −

m ∑ 

i =1 

A i 
P, (αl ,β l ) (D 

l 
q ) . (31) 

According to these definitions of the pessimistic multigranulation sequential three-way decisions, we have the propositions

as follows. 

Proposition 5. Given m granular structures GS = {A 1 , A 2 , . . . , A m 

}, a decision class D 

l 
q , and the dynamic threshold parameter

sequence ( α, β) l = {( α1 , β1 ), ( α2 , β2 ), . . . , ( αl , β l )}. Then, the following properties hold. 

1) 

m ∑ 

i =1 

A i 
P, (αl ,β l ) (D 

l 
q ) = 

⋂ 

1 ≤i ≤m 

apr (α
l ,β l ) 

πA i 

(D 

l 
q ) ;

2) 

m ∑ 

A i 
P, (αl ,β l ) (D 

l 
q ) = 

⋂ 

apr 
(αl ,β l ) 
πA i 

(D 

l 
q ) . 
i =1 1 ≤i ≤m 
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When αl ∈ ( β l , Pr min ], we can decide x ∈ P OS P , (α
l ,β l ) (D 

l 
q ) . As well, if β l ∈ [ Pr min , α

l ), we can decide x ∈ NEG 

P , (αl ,β l ) (D 

l 
q ) .

Similar to the classical three-way decisions, when αl > β l , we can obtain the decision rules tie-broke: 

(PP) If ∀ i ∈ {1, 2, . . . , m } such that P (D 

l 
q | [ x ] A i ) ≥ αl , decide P OS P , (α

l ,β l ) (D 

l 
q ) ; 

(PN) If ∃ i ∈ {1, 2, . . . , m } such that P (D 

l 
q | [ x ] A i ) ≤ β l , decide NEG 

P , (αl ,β l ) (D 

l 
q ) ; 

(PB) Otherwise, decide BND 

P , (αl ,β l ) (D 

l 
q ) . 

3.3.4. Pessimistic-Optimistic multigranulation sequential three-way decisions 

For the optimistic and pessimistic three-way decisions, they use the same strategies to aggregate the lower and upper

approximations. Besides, we can adopt the conservative strategy for the lower approximation and use the aggressive strategy

for the upper approximations [48] . Thus, we can define the pessimistic-optimistic multigranulation sequential three-way

decisions as follows. 

Definition 9. Given m granular structures GS = { A 1 , A 2 , . . . , A m 

}, a decision class D 

l 
q , and the dynamic threshold parameter

sequence ( α, β) l = {( α1 , β1 ), ( α2 , β2 ), . . . , ( αl , β l )}, the lower and upper approximations of the pessimistic-optimistic

multigranulation sequential three-way decisions are denoted by 
∑ m 

i =1 A i 
PO, (αl ,β l ) (D 

l 
q ) and 

∑ m 

i =1 A i 
PO, (αl ,β l ) (D 

l 
q ) , respectively,

m ∑ 

i =1 

A i 
PO, (αl ,β l ) (D 

l 
q ) = { x | P (D 

l 
q | [ x ] A 1 ) ≥ αl ∧ P (D 

l 
q | [ x ] A 2 ) ≥ αl ∧ . . . ∧ P (D 

l 
q | [ x ] A m ) ≥ αl , x ∈ U 

l };
m ∑ 

i =1 

A i 
PO, (αl ,β l ) (D 

l 
q ) = { x | P (D 

l 
q | [ x ] A 1 ) > β l ∨ P (D 

l 
q | [ x ] A 2 ) > β l ∨ . . . ∨ P (D 

l 
q | [ x ] A m ) > β l , x ∈ U 

l } 
= U 

l − { x | P (D 

l 
q | [ x ] A 1 ) ≤ β l ∧ P (D 

l 
q | [ x ] A 2 ) ≤ β l ∧ . . . ∧ P (D 

l 
q | [ x ] A m ) ≤ β l , x ∈ U 

l } . 

(32)

where U 

1 = U, U 

l+1 = 

∑ m 

i =1 A i 
PO, (αl ,β l ) (D 

l 
q ) - 

∑ m 

i =1 A i 
PO, (αl ,β l ) (D 

l 
q ) is the gradually reduced universe, [ x ] A i (1 ≤ i ≤ m ) repre-

sents the equivalence class including x in the partition U 

l / A i and P (D 

l 
q | [ x ] A i ) is the conditional probability of the equivalence

class [ x ] A i with respect to D 

l 
q . 

The pair < 

∑ m 

i =1 A i 
PO, (αl ,β l ) (D 

l 
q ) , 

∑ m 

i =1 A i 
PO, (αl ,β l ) (D 

l 
q ) > is called the lth -level pessimistic-optimistic multigranulation se-

quential three-way decisions. By the lower and upper approximations 
∑ m 

i =1 A i 
PO, (αl ,β l ) (D 

l 
q ) and 

∑ m 

i =1 A i 
PO, (αl ,β l ) (D 

l 
q ) , the

pessimistic-optimistic multigranulation boundary region of D 

l 
q is 

BND 

PO, (αl ,β l ) (D 

l 
q ) = 

m ∑ 

i =1 

A i 
PO, (αl ,β l ) (D 

l 
q ) −

m ∑ 

i =1 

A i 
PO, (αl ,β l ) (D 

l 
q ) . (33)

According to these definitions, we have the propositions as follows. 

Proposition 6. Given m granular structures GS = {A 1 , A 2 , . . . , A m 

}, a decision class D 

l 
q , and the dynamic threshold parameter

sequence ( α, β) l = {( α1 , β1 ), ( α2 , β2 ), . . . , ( αl , β l )}. Then, the following properties hold. 

1) 

m ∑ 

i =1 

A i 
PO, (αl ,β l ) (D 

l 
q ) = 

⋂ 

1 ≤i ≤m 

apr (α
l ,β l ) 

πA i 

(D 

l 
q ) ;

2) 

m ∑ 

i =1 

A i 
PO, (αl ,β l ) (D 

l 
q ) = 

⋃ 

1 ≤i ≤m 

apr 
(αl ,β l ) 
πA i 

(D 

l 
q ) . 

When αl ∈ ( β l , Pr min ], we can decide x ∈ P OS PO, (αl ,β l ) (D 

l 
q ) . As well, if β l ∈ [ Pr max , αl ), we can decide x ∈ NEG 

PO, (αl ,β l ) (D 

l 
q ) .

Similar to the classical three-way decisions, when αl > β l , we can obtain the decision rules tie-broke: 

(POP) If ∀ i ∈ {1, 2, . . . , m } such that P (D 

l 
q | [ x ] A i ) ≥ αl , decide P OS PO, (αl ,β l ) (D 

l 
q ) ; 

(PON) If ∀ i ∈ {1, 2, . . . , m } such that P (D 

l 
q | [ x ] A i ) ≤ β l , decide NEG 

PO, (αl ,β l ) (D 

l 
q ) ; 

(POB) Otherwise, decide BND 

PO, (αl ,β l ) (D 

l 
q ) . 

3.3.5. Optimistic-pessimistic multigranulation sequential three-way decisions 

As illustrated in [48] , we seem to use the aggregative strategy and the conservative strategy for the lower approxima-

tion and the upper approximation, respectively. Here we define optimistic-pessimistic multigranulation sequential three-way

decisions. 
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Definition 10. Given m granular structures GS = { A 1 , A 2 , . . . , A m 

}, a decision class D 

l 
q , and the dynamic threshold parameter

sequence ( α, β) l = {( α1 , β1 ), ( α2 , β2 ), . . . , ( αl , β l )}, the lower and upper approximations of the optimistic-pessimistic

multigranulation sequential three-way decisions are denoted by 
∑ m 

i =1 A i 
OP , (αl ,β l ) ( D 

l 
q ) and 

∑ m 

i =1 A i 
OP , (αl ,β l ) ( D 

l 
q ) , respectively,

m ∑ 

i =1 

A i 
OP, (αl ,β l ) (D 

l 
q ) = { x | P (D 

l 
q | [ x ] A 1 ) ≥ αl ∨ P (D 

l 
q | [ x ] A 2 ) ≥ αl ∨ . . . ∨ P (D 

l 
q | [ x ] A m ) ≥ αl , x ∈ U 

l };
m ∑ 

i =1 

A i 
OP, (αl ,β l ) (D 

l 
q ) = { x | P (D 

l 
q | [ x ] A 1 ) > β l ∧ P (D 

l 
q | [ x ] A 2 ) > β l ∧ . . . ∧ P (D 

l 
q | [ x ] A m ) > β l , x ∈ U 

l } 
= U 

l − { x | P (D 

l 
q | [ x ] A 1 ) ≤ β l ∨ P (D 

l 
q | [ x ] A 2 ) ≤ β l ∨ . . . ∨ P (D 

l 
q | [ x ] A m ) ≤ β l , x ∈ U 

l } . 

(34) 

where U 

1 = U, U 

l+1 = 

∑ m 

i =1 A i 
OP , (αl ,β l ) (D 

l 
q ) - 

∑ m 

i =1 A i 
OP , (αl ,β l ) (D 

l 
q ) is the gradually reduced universe, [ x ] A i (1 ≤ i ≤ m ) repre-

sents the equivalence class including x in the partition U 

l / A i and P (D 

l 
q | [ x ] A i ) is the conditional probability of the equivalence

class [ x ] A i with respect to D 

l 
q . 

The pair < 

∑ m 

i =1 A i 
OP , (αl ,β l ) (D 

l 
q ) , 

∑ m 

i =1 A i 
OP , (αl ,β l ) ( D 

l 
q ) > is calle d the lth -level optimistic-pessimistic multigranulation se-

quential three-way decisions. By the lower and upper approximations 
∑ m 

i =1 A i 
OP , (αl ,β l ) (D 

l 
q ) and 

∑ m 

i =1 A i 
OP , (αl ,β l ) (D 

l 
q ) , the

optimistic-pessimistic multigranulation boundary region of D 

l 
q is 

BND 

OP, (αl ,β l ) (D 

l 
q ) = 

m ∑ 

i =1 

A i 
OP, (αl ,β l ) (D 

l 
q ) −

m ∑ 

i =1 

A i 
OP, (αl ,β l ) (D 

l 
q ) . (35) 

According to these definitions, we have the propositions as follows. 

Proposition 7. Given m granular structures GS = {A 1 , A 2 , . . . , A m 

}, a decision class D 

l 
q , and the dynamic threshold parameter

sequence ( α, β) l = {( α1 , β1 ), ( α2 , β2 ), . . . , ( αl , β l )}. Then, the following properties hold. 

1) 

m ∑ 

i =1 

A i 
OP, (αl ,β l ) (D 

l 
q ) = 

⋃ 

1 ≤i ≤m 

apr (α
l ,β l ) 

πA i 

(D 

l 
q ) ;

2) 

m ∑ 

i =1 

A i 
OP, (αl ,β l ) (D 

l 
q ) = 

⋂ 

1 ≤i ≤m 

apr 
(αl ,β l ) 
πA i 

(D 

l 
q ) . 

Similar to the classical three-way decisions, when αl > β l , we can obtain the decision rules tie-broke: 

(OPP) If ∃ i ∈ {1, 2, . . . , m } such that P (D 

l 
q | [ x ] A i ) ≥ αl , decide P OS OP , (αl ,β l ) (D 

l 
q ) ; 

(OPN) If ∃ j ∈ {1, 2, . . . , m } such that P (D 

l 
q | [ x ] A j ) ≤ β l , decide NEG 

OP , (αl ,β l ) (D 

l 
q ) ; 

(OPB) Otherwise, decide BND 

OP , (αl ,β l ) (D 

l 
q ) . 

Remark 1. This optimistic-pessimistic multigranulation sequential three-way decisions may be wrong in some cases. For

example, suppose an object x satisfying P (D 

l 
q | [ x ] A i ) ≥ αl for some A i ⊆ C and P (D 

l 
q | [ x ] A j ) ≤ β l for some A j ⊆ C , we cannot

judge that x ∈ P OS OP , (αl ,β l ) (D 

l 
q ) or x ∈ NEG 

OP , (αl ,β l ) (D 

l 
q ) . If αl ≤ Pr max and β l < Pr min , we can decide x ∈ P OS OP , (αl ,β l ) (D 

l 
q ) .

If αl > Pr max and β l ≥ Pr min , we can decide x ∈ NEG 

OP , (αl ,β l ) (D 

l 
q ) . However, these two conditions do not always hold. In

addition, we cannot guarantee that 
∑ m 

i =1 A i 
OP , (αl ,β l ) (D 

l 
q ) ⊇

∑ m 

i =1 A i 
OP , (αl ,β l ) (D 

l 
q ) holds. Fortunately, this model is right in the

multigranulation Pawlak rough set models. Fig. 2 illustrates the four kind models of multigranulation three-way decisions

using optimistic and/or pessimistic strategies. In Fig. 2 (d), we can find objects 1 and 2 may belong to the different proba-

bilistic positive regions, meanwhile they also belong to the negative regions. 

Example 2. (Continued with Example 1 ) Consider U / A 1 = {{ x 1 , x 6 }, { x 2 , x 3 , x 4 , x 10 }, { x 5 }, { x 7 , x 8 , x 9 }}, U / A 2 = {{ x 1 , x 10 }, { x 2 ,

x 3 , x 4 , x 8 }, { x 5 }, { x 6 , x 7 , x 9 }}, D 1 = { x 1 , x 3 , x 4 , x 6 , x 7 }, w 1 = 

1 
2 , w 2 = 

1 
2 , and ( α, β) = (0.75, 0.45) and m = 2. In what follows,

we compute the conditional probabilities with respect to different partitions under two granular structures. 

1) For a granular structure A 1 , the conditional probabilities with respect to πA 1 
are computed as 

p(D 1 | [ x 1 ] A 1 ) = p(D 1 | [ x 6 ] A 1 ) = 1; 

p(D 1 | [ x 5 ] A 1 ) = 0; 

p(D 1 | [ x 2 ] A 1 ) = p(D 1 | [ x 3 ] A 1 ) = p(D 1 | [ x 4 ] A 1 ) = p(D 1 | [ x 10 ] A 1 ) = 1/2; 

p(D 1 | [ x 7 ] A 1 ) = p(D 1 | [ x 8 ] A 1 ) = p(D 1 | [ x 9 ] A 1 ) = 1/3; 
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Fig. 2. Four multigranulation models of S3WD using optimistic and/or pessimistic strategies. 

Table 1 

Comparisons of the probabilistic regions of five MS3WD models under ( α, β) = (0.75,0.45). 

No. � 

m ∑ 

i =1 

A i 
� , (α,β) (D 1 ) 

m ∑ 

i =1 

A i 
� , (α,β) (D 1 ) POS � ,( α, β) ( D 1 ) BND � ,( α, β) ( D 1 ) NEG � ,( α, β) ( D 1 ) 

1 WAM( � ) { x 1 , x 6 } { x 1 , x 2 , x 3 , x 4 , x 6 , x 7 , x 9 , x 10 } { x 1 , x 6 } { x 2 , x 3 , x 4 , x 7 , x 9 , x 10 } { x 5 , x 8 } 

2 O ( � ) { x 1 , x 6 } { x 1 , x 2 , x 3 , x 4 , x 6 , x 7 , x 8 , x 9 , x 10 } { x 1 , x 6 } { x 2 , x 3 , x 4 , x 7 , x 8 , x 9 , x 10 } { x 5 } 

3 P( � ) { ∅ } { x 1 , x 2 , x 3 , x 4 , x 6 , x 10 } { ∅ } { x 1 , x 2 , x 3 , x 4 , x 6 , x 10 } { x 5 , x 7 , x 8 , x 9 } 

4 PO ( � ) { ∅ } { x 1 , x 2 , x 3 , x 4 , x 6 , x 7 , x 8 , x 9 , x 10 } { ∅ } { x 1 , x 2 , x 3 , x 4 , x 6 , x 7 , x 8 , x 9 , x 10 } { x 5 } 

5 OP( � ) { x 1 , x 6 } { x 1 , x 2 , x 3 , x 4 , x 6 , x 10 } { x 1 , x 6 } { x 2 , x 3 , x 4 , x 10 } { x 5 , x 7 , x 8 , x 9 } 

(

 

 

 

 

 

 

2) For a granular structure A 2 , the conditional probabilities with respect to πA 2 
are computed as 

p(D 1 | [ x 1 ] A 2 ) = p(D 1 | [ x 10 ] A 2 ) = 1/2; 

p(D 1 | [ x 2 ] A 2 ) = p(D 1 | [ x 3 ] A 2 ) = p(D 1 | [ x 4 ] A 2 ) = p(D 1 | [ x 8 ] A 2 ) = 1/2; 

p(D 1 | [ x 5 ] A 2 ) = 0; 

p(D 1 | [ x 6 ] A 2 ) = p(D 1 | [ x 7 ] A 2 ) = p(D 1 | [ x 9 ] A 2 ) = 2/3; 

According to these above definitions, we can have the three probabilistic regions of five MS3WD models as shown in

Table 1 . �
However, when we set ( α, β) = (0.75, 0.5), the OPMS3WD model easily results in inaccurate results. As illustrated in

Table 2 , one can not decide whether x 1 belongs to the probabilistic positive region or the probabilistic negative region for

OPMS3WD model. 

Remark 2. For OPMS3WD model, different thresholds may lead to the ambiguous results. This conflict may be solved

through the consultation or the voting mechanism. This model may be applied in these cases such as the controversial

project and postgraduate recruitment, and so on. For the convenience, we mainly discuss the first four types of multigranu-
lation sequential three-way decision models in the remainder of this paper. 
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Table 2 

Comparisons of the probabilistic regions of five MS3WD models under ( α, β) = (0.75,0.5). 

No. � 

m ∑ 

i =1 

A i 
� , (α,β) (D 1 ) 

m ∑ 

i =1 

A i 
� , (α,β) (D 1 ) POS � ,( α, β) ( D 1 ) BND � ,( α, β) ( D 1 ) NEG � ,( α, β) ( D 1 ) 

1 WAM( � ) { x 1 , x 6 } { x 1 , x 6 } { x 1 , x 6 } ∅ { x 2 , x 3 , x 4 , x 5 , x 7 , x 8 , x 9 , x 10 } 

2 O ( � ) { x 1 , x 6 } { x 1 , x 6 , x 7 , x 9 } { x 1 , x 6 } { x 7 , x 9 } { x 2 , x 3 , x 4 , x 5 , x 8 , x 10 } 

3 P( � ) { ∅ } { x 6 } { ∅ } { x 6 } { x 1 , x 2 , x 3 , x 4 , x 5 , x 7 , x 8 , x 9 , x 10 } 

4 PO ( � ) { ∅ } { x 1 , x 6 , x 7 , x 9 } { ∅ } { x 1 , x 6 , x 7 , x 9 } { x 2 , x 3 , x 4 , x 5 , x 8 , x 10 } 

5 OP ( × ) { x 1 , x 6 } { x 6 } { x 1 , x 6 } ∅ { x 1 , x 2 , x 3 , x 4 , x 5 , x 7 , x 8 , x 9 , x 10 } 

 

 

(

(

 

(

(

 

(

(

 

(

(

3.3.6. Relationship among the first four types of multigranulation sequential three-way decisions 

In this section, we investigate the relationships among the weighted arithmetic mean multigranulation sequential three-

way decisions, the optimistic multigranulation sequential three-way decisions, the pessimistic multigranulation sequential 

three-way decisions, and the pessimistic-optimistic multigranulation sequential three-way decisions. 

Theorem 1. Given m granular structures GS = {A 1 , A 2 , . . . , A m 

}, a decision class D 

l 
q , and the dynamic threshold parameter

sequence ( α, β) l = {( α1 , β1 ), ( α2 , β2 ), . . . , ( αl , β l )} where 0 ≤ β l < αl ≤ 1, we have 

1) if 

αl = 1 , 

m ∑ 

i =1 

A i 
WAM, (αl ,β l ) (D 

l 
q ) = 

m ∑ 

i =1 

A i 
P, (αl ,β l ) (D 

l 
q ) = 

m ∑ 

i =1 

A i 
PO, (αl ,β l ) (D 

l 
q ) ⊆

m ∑ 

i =1 

A i 
O, (αl ,β l ) (D 

l 
q ) ;

2) if 

β l = 0 , 

m ∑ 

i =1 

A i 
WAM, (αl ,β l ) (D 

l 
q ) = 

m ∑ 

i =1 

A i 
O, (αl ,β l ) (D 

l 
q ) = 

m ∑ 

i =1 

A i 
PO, (αl ,β l ) (D 

l 
q ) ⊇

m ∑ 

i =1 

A i 
P, (αl ,β l ) (D 

l 
q ) . 

Theorem 2. Given m granular structures GS = {A 1 , A 2 , . . . , A m 

}, a decision class D 

l 
q , and the dynamic threshold parameter

sequence ( α, β) l = {( α1 , β1 ), ( α2 , β2 ), . . . , ( αl , β l )} where 0 ≤ β l ≤ αl ≤ 1, we have 

1) 

m ∑ 

i =1 

A i 
P, (αl ,β l ) (D 

l 
q ) = 

m ∑ 

i =1 

A i 
PO, (αl ,β l ) (D 

l 
q ) ⊆

m ∑ 

i =1 

A i 
O, (αl ,β l ) (D 

l 
q ) ;

2) 

m ∑ 

i =1 

A i 
P, (αl ,β l ) (D 

l 
q ) ⊆

m ∑ 

i =1 

A i 
PO, (αl ,β l ) (D 

l 
q ) = 

m ∑ 

i =1 

A i 
O, (αl ,β l ) (D 

l 
q ) . 

Theorem 3. Given m granular structures GS = {A 1 , A 2 , . . . , A m 

}, a decision class D 

l 
q , and the dynamic threshold parameter

sequence ( α, β) l = {( α1 , β1 ), ( α2 , β2 ), . . . , ( αl , β l )} where 0 ≤ β l < αl ≤ 1, we have 

1) 

m ∑ 

i =1 

A i 
P, (αl ,β l ) (D 

l 
q ) ⊆

m ∑ 

i =1 

A i 
WAM, (αl ,β l ) (D 

l 
q ) ⊆

m ∑ 

i =1 

A i 
O, (αl ,β l ) (D 

l 
q ) ;

2) 

m ∑ 

i =1 

A i 
P, (αl ,β l ) (D 

l 
q ) ⊆

m ∑ 

i =1 

A i 
WAM, (αl ,β l ) (D 

l 
q ) ⊆

m ∑ 

i =1 

A i 
O, (αl ,β l ) (D 

l 
q ) . 

Theorem 4. Given m granular structures GS = {A 1 , A 2 , . . . , A m 

}, the dynamic threshold parameter sequence ( α, β) l = {( α1 , β1 ),

( α2 , β2 ), . . . , ( αl , β l )}, and a decision partition πD , then 

1) 

P OS 
P, (α,β) l 

GS 
(πD ) = P OS 

PO, (α,β) l 

GS 
(πD ) ⊆ P OS 

WAM, (α,β) l 

GS 
(πD ) ⊆ P OS 

O, (α,β) l 

GS 
(πD ) ;

2) 

PO, (α,β) l O, (α,β) l WAM, (α,β) l P, (α,β) l 

NEG 

GS 
(πD ) = NEG 

GS 
(πD ) ⊆ NEG 

GS 
(πD ) ⊆ NEG 

GS 
(πD ) ;
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Fig. 3. Relationships of lower and upper approximations under four kinds of multigranulation sequential three-way decisions. 

Table 3 

Comparisons of the probabilistic regions of πD under four multigranulation sequential three-way decisions. 

No. � 

m ∑ 

i =1 

A i 
� , (α,β) (πD ) 

m ∑ 

i =1 

A i 
� , (α,β) (πD ) POS � ,( α, β) ( πD ) BND � ,( α, β) ( πD ) NEG � ,( α, β) ( πD ) 

1 WAM { x 1 , x 5 , x 6 } { x 1 , x 5 , x 6 , x 8 } { x 1 , x 5 , x 6 } { x 8 } { x 2 , x 3 , x 4 , x 7 , x 9 , x 10 } 

2 O { x 1 , x 5 , x 6 } { x 1 , x 5 , x 6 , x 7 , x 8 , x 9 } { x 1 , x 5 , x 6 } { x 7 , x 8 , x 9 } { x 2 , x 3 , x 4 , x 10 } 

3 P { x 5 } { x 5 , x 6 } { x 5 } { x 6 } { x 1 , x 2 , x 3 , x 4 , x 7 , x 8 , x 9 , x 10 } 

4 PO { x 5 } { x 1 , x 5 , x 6 , x 7 , x 8 , x 9 } { x 5 } { x 1 , x 6 , x 7 , x 8 , x 9 } { x 2 , x 3 , x 4 , x 10 } 

(

 

 

 

 

 

 

 

 

, 

 

 

 

 

 

 

 

 

 

 

 

3) 

BND 

O, (α,β) l 

GS 
(πD ) ⊆ BND 

PO, (α,β) l 

GS 
(πD ) , BND 

P, (α,β) l 

GS 
(πD ) ⊆ BND 

PO, (α,β) l 

GS 
(πD ) , BND 

WAM, (α,β) l 

GS 
(πD ) ⊆ BND 

PO, (α,β) l 

GS 
(πD ) . 

Fig. 3 illustrates the relationships of the lower and upper approximations under four kinds of multigranulation sequential

three-way decision model. One can check that the size of the probabilistic boundary region under the pessimistic-optimistic

multigranulation sequential three-way decision model is largest. However, the sizes of the probabilistic boundary regions

under the other three multigranulation sequential three-way decisions cannot be compared, which can also be verified by

Example 2 . On the other hand, one can check the size of the probabilistic positive region under the optimistic view is largest,

while that under the pessimistic view is smallest. 

Example 3. (Continued with Example 2 ) Suppose πD = {{ x 1 , x 3 , x 4 , x 6 , x 7 }, { x 2 , x 5 , x 8 , x 9 , x 10 }}, w 1 = 

1 
2 and w 2 = 

1 
2 . Here

we compute the probabilistic positive, boundary and negative regions with respect to πD as shown in Table 3 . It is obvious

that | POS O ,(0.75,0.5) ( πD )| = 3 ≥ | POS P ,(0.75,0.5) ( πD )| = 1 and | BND 

PO ,(0.75,0.5) ( πD )| = 5, which is biggest under four kinds of

multigranulation sequential three-way decisions. �

In what follows, we illustrate the computing process from multiple levels of granularity through an example. 

Example 4. Let U = { x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 , x 10 }, U / A 1 = {{ x 1 , x 9 }, { x 2 , x 3 , x 4 , x 7 }, { x 5 }, { x 6 , x 8 , x 10 }}, U / A 2 = {{ x 1 
x 10 }, { x 2 , x 4 , x 8 }, { x 3 , x 6 , x 7 , x 9 }, { x 5 }}, πD = {{ x 1 , x 3 , x 4 , x 6 , x 7 }, { x 2 , x 5 , x 8 , x 9 , x 10 }}, w 1 = 

1 
2 , w 2 = 

1 
2 , and ( α, β) 2 =

{(0.85,0.5),(0.75,0.6)}. Here we compute the probabilistic positive, boundary and negative regions with respect to πD as

shown in Table 4 . �

From Table 4 , one can check that the probabilistic boundary region becomes smaller, while the corresponding positive

and negative ones gradually turn larger. Fig. 4 illustrates the increasing trends of the three probabilistic regions under four

models of multigranulation sequential three-way decisions. In general, the size of the probabilistic positive region under the

optimistic multigranulation sequential three-way decision model is largest as illustrated in Fig. 4 (a). One may increase the

value of α to decrease the risk of three-way decision-making at different levels of granularity. On the other hand, the size

of the probabilistic positive region under the pessimistic multigranulation sequential three-way decision model is smallest

in Fig. 4 (c). One may decrease the value of α under the evaluation criteria at different levels of granularity to acquire the

alternative solutions. In such case, the pessimistic-optimistic multigranulation three-way decisions will be applied more

broadly in Fig. 4 (d). In addition, in Fig. 4 (b), the weighted arithmetic mean multigranulation three-way decisions are also a

good choice for some voting cases. 
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Table 4 

Comparisons of the probabilistic regions of πD under four multigranulation sequential three-way decisions. 

� POS � , (α,β) 1 (πD ) BND � , (α,β) 1 (πD ) NEG � , (α,β) 1 (πD ) POS � , (α,β) 2 (πD ) BND � , (α,β) 2 (πD ) NEG � , (α,β) 2 (πD ) 

WAM { x 5 } { x 2 , x 3 , x 4 , x 6 , x 7 , x 8 , x 9 , x 10 } { x 1 } { x 3 , x 5 , x 7 } { x 8 , x 9 } { x 1 , x 2 , x 4 , x 6 , x 10 } 

O { x 5 } { x 2 , x 3 , x 4 , x 6 , x 7 , x 8 , x 9 , x 10 } { x 1 } { x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 9 } { x 8 , x 10 } { x 1 } 

P { x 5 } { x 3 , x 7 , x 8 } { x 1 , x 2 , x 4 , x 6 , x 9 , x 10 } { x 3 , x 5 , x 7 } { x 8 } { x 1 , x 2 , x 4 , x 6 , x 9 , x 10 } 

PO { x 5 } { x 2 , x 3 , x 4 , x 6 , x 7 , x 8 , x 9 , x 10 } { x 1 } { x 3 , x 5 , x 7 } { x 2 , x 4 , x 6 , x 8 , x 9 , x 10 } { x 1 } 
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Fig. 4. Comparisons of the three probabilistic regions under four multigranulation sequential three-way decisions. 

Table 5 

Description of the datasets. 

No. Dataset | U | | C | | V d | 

1 Zoo 101 16 7 

2 Credit Approval 690 14 2 

3 German Credit Data 10 0 0 20 2 

4 Chess-kr-vs-kp 3,196 36 2 

5 Nursery 12,960 8 5 

6 Connect-4 67,757 42 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Experiment analysis 

In order to evaluate our algorithms, we implement some experiments on a personal computer with Windows7, 2.40 GHz

CPU and 16GB memory. The software is Visual C# 2012. The objective of the following experimental results is to compare

the sizes of the probabilistic regions under four multigranulation sequential three-way decisions. For sake of clarification, the

weighted artimatic mean multigranulation sequential three-way decisions, optimistic multigranulation sequential three-way

decisions, pessimistic multigranulation sequential three-way decisions and pessimistic-optimistic multigranulation sequen-

tial three-way decisions are abbreviated as WAMMS3WD, OMS3WD, PMS3WD and POMS3WD, respectively. Since our ap-

proaches only deal with discrete attributes, we employ Rosetta software ( http://www.lcb.uu.se/tools/rosetta/ ) to fill in some

missing values and transform the numerical and continuous data into the discrete ones. We perform the experiments on

six datasets from UCI Repository of machine learning databases [1] . The characteristics of six datasets are summarized in

Table 5 . 

4.1. Comparisons of the three probabilistic regions under different multigranulation sequential three-way decisions 

In what follows, we compare the numbers of the probabilistic positive and negative regions, and analyze the uncertainty

of the probabilistic boundary regions under different multigranulation sequential three-way decisions on six datasets. We

use αt = α (1 - (t − 1) · δ) and β t = β (1 + (t − 1) · δ) (1 ≤ t ≤ l ) to denote these threshold values under different levels

of granularity, where αt , β t and δ represent the t th -level threshold values and step length, respectively. If αt ≥ 1, let αt =

http://www.lcb.uu.se/tools/rosetta/
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Fig. 5. Comparisons of the probabilistic positive regions on six datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. As well, if β t ≤ 0, we set β t = 0. For all the datasets, we divide the whole condition attribute set into two parts, namely

two granular structure and set δ = 0.02. 

4.1.1. Comparisons of the numbers of the probabilistic positive and negative regions under different multigranulation sequential 

three-way decisions 

For such two datasets Zoo and Nursery, we set ( α, β) = (0.8, 0.4) and ( α, β) = (0.7, 0.4), respectively. Figs. 5 and 6

illustrate the number of the probabilistic positive and negative regions under different multigranulation sequential three-

way decisions. Through empirical testing, we can conclude as follows. 

• For OMS3WD, it is obvious that the size of the probabilistic positive region is larger than that of the other ones in Fig. 5 ,

even equal to the number of the objects. For PMS3WD, one can check that the size of the probabilistic negative region

is largest in general. In some cases, the number of the negative regions are zero in Fig. 6 (a) and (e) for OMS3WD and

POMS3WD. 

• For OMS3WD, the maximal numbers of the probabilistic positive regions are acquired at lower levels. However,

POMS3WD and PMS3WD need higher levels to reach the maximum of the probabilistic positive regions. For WAMS3WD,

the required numbers of granular levels are between those of the other MS3WD models. In Fig. 5 (a), the numbers of

granular levels are 2, 4, 8 and 10 for OMS3WD, WAMS3WD, PMS3WD and POMS3WD, respectively. In Fig. 5 (b)–(f), the

numbers of granular levels are the same for PMS3WD and POMS3WD. 

4.1.2. Comparisons of uncertainty of the probabilistic boundary regions under different multigranulation sequential three-way 

decisions 

We employ the deferment rate to evaluate the quality of the probabilistic boundary regions under different multigranu-

lation sequential three-way decisions as follows: 

de ferment rate : DR 

t = 

| BND 

� , (α,β) t 

GS 
(πD ) | 

| U| (36) 

The experiment results under different multigranulation sequential three-way decisions on six datasets are shown in Fig. 7 .

One can easily check that the boundary regions monotonously decrease to zeros for OMS3WD in most cases quickly. For

POMS3WD, the uncertainty of the probabilistic boundary region is much larger than those of the other MS3WD models. 
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Fig. 6. Comparisons of the probabilistic negative regions on six datasets. 

Fig. 7. Comparisons of uncertainty of the probabilistic boundary regions on six datasets. 
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Fig. 8. Comparisons of the probabilistic positive regions under different multigranulation sequential three-way decisions on German. 

Fig. 9. Comparisons of the probabilistic positive regions under different multigranulation sequential three-way decisions on Chess-kr-vs-kp. 
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Fig. 10. Four multigranulaiton sequential three-way decisions on German. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Comparisons of the size of the probabilistic positive regions under different number of granular structures 

In this subsection, we mainly compare the number of the probabilistic positive regions under different multiview gran-

ular structures. We divide the number of the whole condition attribute set M into m group. The first granular structure is

the attribute sequence { c 1 , c 2 , . . . , c M 
m 

}, the second granular structure the attribute sequence { c M 
m +1 

, c M 
m +2 

, . . . , c 2 M 
m 

}, and

so on. For German, we set the number of granular structures m to 2, 4 and 5 in Fig. 8 . For Chess-kr-vs-kp, we let m be

equal to 2, 3 and 4 as shown in Fig. 9 . One can easily find that the sizes of the probabilistic positive regions decrease with

the numbers of granular structures increase in most cases under different multigranulation sequential three-way decisions.

This is because the number of the objects in the probabilistic positive regions that induced by the less attribute subsets

become smaller. Figs. 10 and 11 illustrate the detailed change trends of the three probabilistic regions under different multi-

granualtion sequential three-way decisions with the increasing level of granularity. It is obvious that the more the granular

structures, the smaller the probabilistic positive regions, especially for POMS3WD. 

5. Conclusions 

In this paper, we propose a generalized multigranulation sequential three-way decisions. Within this framework, we

mainly adopt different aggregation strategies for fuzing the lower approximations and the upper approximations to con-

struct the five models of multigranulation sequential three-way decisions. Furthermore, we analyze the properties and re-

lationships of different multigranulation sequential three-way decisions. Finally, the experiments show that the proposed

MS3WD models are effective and efficient. 

In future research, we will focus on the study of multigranulation sequential three-way decisions using different values

of α and β for each granular structure. Extending the proposed multigranulation three-way decisions for different decision

systems will be another research direction. 
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Fig. 11. Four multigranulaiton sequential three-way decisions on Chess-kr-vs-kp. 
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