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a b s t r a c t 

In this study, a new technique of rough-fuzzy clustering based on multigranulation approx- 

imation regions is developed to tackle the uncertainty associated with the fuzzifier pa- 

rameter m . According to shadowed set theory, the multigranulation approximation regions 

for each cluster can be formed based on fuzzy membership degrees under the multiple 

values of fuzzifier parameter with a partially ordered relation. The uncertainty generated 

by the fuzzifier parameter m can be captured and interpreted through the variations in 

approximation regions among different levels of granularity, rather than at a single level 

of granularity under a specific fuzzifier value. An ensemble strategy for updating proto- 

types is then presented based on the constructed multigranulation approximation regions, 

in which the prototype calculations that may be spoiled due to the uncertainty caused 

by a single fuzzifier value can be modified. Finally, a multilevel degranulation mechanism 

is introduced to evaluate the validity of clustering methods. By integrating the notions of 

shadowed sets and multigranulation into rough-fuzzy clustering approaches, the overall 

topology of data can be captured well and the uncertain information implicated in data 

can be effectively addressed, including the uncertainty generated by fuzzification coeffi- 

cient, the vagueness arising in boundary regions and overlapping partitions. The essence 

of the proposed method is illustrated by comparative experiments in terms of several va- 

lidity indices. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

1. Introduction 

Clustering is an unsupervised learning technique to find natural groups that are implicated in data. Its main task is to

partition unlabeled patterns { x 1 , x 2 , ���, x N }, x j ∈ � 

M ( j = 1 , 2 , · · · , N ) , into C (1 < C < N ) subgroups { G 1 , G 2 , ���, G C } such that

the patterns in the same cluster (intra cluster) are expected to have the highest similarities (homogeneities) and the patterns

between different clusters (inter cluster) are expected to have the highest dissimilarities (heterogeneities). In this manner,

the data structure that is revealed by a clustering method is expected to reflect the natural geometry of the data as much

as possible. 
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Hard C-means (HCM) [14] is one of the foremost objective function-based clustering methods in which the degree of each

pattern belonging to each cluster is 0 or 1. The validity of HCM will degenerate as dealing with patterns with overlapping

areas. Fuzzy clustering, especially fuzzy C-means (FCM) [1] , as one extension of HCM, utilizes a partition matrix to evaluate

the degree of each pattern belonging to each cluster, so that the overlapping partitions can be described effectively. The

main challenge of FCM is the sensitivities to noisy patterns which may contaminate the calculations of the corresponding

prototypes and membership degrees. 

Based on rough set theory [19] , which aims at analyzing data involving uncertain, imprecise or incomplete information,

Lingras and West [13] proposed a rough C-means (RCM) clustering method. Each cluster is described not only by a proto-

type, but also with a pair of lower and upper approximations. Meanwhile, the boundary region is defined as the difference

between the lower and upper approximations. The uncertainty and vagueness arising in the boundary region of each cluster

can be captured well in RCM. Since no membership degrees are involved, the closeness of patterns to clusters cannot be

detected. 

Rough sets and fuzzy sets, as two important paradigms of granular computing [24,32,41] , are strongly complementary

to each other. Incorporating with fuzzy membership degrees, Mitra et al. [17] presented a rough-fuzzy C-means (RFCM)

clustering method which integrated the merits of both fuzzy sets and rough sets. The lower and upper approximations

are determined according to the membership degrees, rather than the individual absolute distances between a pattern and

its neighbors. Maji et al. [15] further proposed a robust rough-fuzzy C-means algorithm that integrated both probabilistic

and possibilistic memberships of fuzzy sets, which could handle overlapping clusters in noisy environments as well as the

uncertainty and vagueness in cluster definitions due to involving rough sets. 

No matter which rough-fuzzy partitive clustering methods will be used, some model parameters are involved: (a) the

weighted values that evaluate the contributions of lower approximations and boundary regions when calculating new pro-

totypes; (b) the threshold that determines the lower approximation and boundary region of each cluster; (c) the value of

fuzzifier parameter m that controls the shape of memberships. Since the contributions of lower approximations are con-

sidered more important than the contributions of boundary regions as computing the prototypes, the weighted value for

lower approximations is much higher, and its complementarity is applied for the boundary regions. Meanwhile, through the

combinational adjustments of (b) and (c), the influence caused by the weighted values can be reduced. In this case, (b) and

(c) will take over the effect of (a). 

The threshold, that determines the approximation regions of each cluster, is often selected depending on subjective tun-

ing in the available researches [16,26] . Maji et al. [15] and Sarkar et al. [28] chose this value as the average value and the

median of the difference between the highest and second highest fuzzy memberships of all the patterns, respectively. How-

ever, the same threshold is employed for all clusters though the sizes and the densities of the clusters may be significantly

diverse. Additionally, the approximation regions are partitioned based on the absolute distances or membership degrees

of individual patterns, not the global observation on data for a specific cluster, then the topology of data can not be de-

tected well with respect to this cluster. Shadowed sets [21] , as a bridge between rough sets and fuzzy sets, provide a new

scheme to granular computing. It is an example of three-way, three-valued, or three-region approximations of a fuzzy set

[4,6,29] according to the framework of three-way decisions [9,35,39] which is another new paradigm of granular comput- 

ing and can provide favorable semantical interpretation and generalized optimization methodology for determining partition

threshold values [34,36,40] . A shadowed set-based rough-fuzzy C-means (SRFCM) method was introduced in [42] which gave

a technique of automatic selection of the partition threshold. No matter which selection methods are used, an unreasonable

threshold will result in undesired approximation region partitions, and then the prototype calculations may be spoiled. 

The value of fuzzifier parameter m is very important for the updating of prototypes and the corresponding partition

matrix. A predefined value of m (mostly m = 2 ) is often used in the rough set and fuzzy set-based clustering methods

[15,16,26,28] . However, it is difficult to express the uncertain notion of fuzziness in a given data set using a single fuzzifier

value. To manage the uncertainty generated by the fuzzifier parameter m , Hwang et al. [7] proposed interval type-2 fuzzy

C-means (TFCM) which extended a pattern set to interval type-2 fuzzy sets using a pair of fuzzifier m 1 and m 2 that cre-

ated a footprint of uncertainty for the fuzzifier parameter. Linda et al. [12] further revealed a general type-2 fuzzy C-means

algorithm via the α-planes representation theorem. However, the values m 1 and m 2 mainly depend on subjective selection

or enumeration in the available studies [7,8,12] and the results need more interpretations. Recently, the notion of multi-

granulation [27,31,37] in granular computing is developed for solving human-centric problems and interpreting the obtained

results from the perspective of multiple levels of granularity. This methodology provides a new insight as analyzing the

uncertainties generated by the model parameters. 

The purpose of this paper is mainly to tackle the uncertainties associated with the two key parameters in rough set and

fuzzy set-based clustering approaches, viz., the threshold related to the approximation region partitions and the fuzzification

coefficient m . The main objectives of this paper are: (1) to optimize the partition threshold for each cluster based on shad-

owed sets, which is obtained from the perspective of the global observation on data and will be used as a cornerstone for

establishing the multi-levels of granularity for approximation regions; (2) to capture the uncertainty generated by the fuzzi-

fier parameter m in rough-fuzzy clustering methods via the variations in multigranulation approximation regions formed

under multiple values of fuzzifier parameter with a partially ordered relation, rather than at a single level of granularity

under a specific fuzzifier value; (3) to update the prototypes by combining the intermediate results obtained at different

levels of granularity. In this way, the prototypes calculated at a single level can be modified and then tend to their natural
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positions; (4) to develop a multilevel degranulation mechanism according to “granulation-degranulation” philosophy based

on which the quality of the clustering model can be evaluated. 

By integrating various granular computing technologies, i.e., fuzzy sets, rough sets, shadowed sets and the notion of

multigranulation, the uncertain information in data, including overlapping partitions, the vagueness arising in boundary

regions and the uncertainty produced by fuzzification coefficient, can be handled sufficiently. Experimental results with the

use of synthetic and real-world data illustrate the improved performance of the proposed notion in terms of several validity

indices, such as relative separation index (RS) [8] , Davies–Bouldin index (DB) [5] , Dunns index (Dunn) [2] and PBM-index

(PBM) [18] as well as the granulation-degranulation index. 

The rest of paper is organized as follows. Some rough set-based partitive clustering methods are reviewed in Section 2 .

The uncertainty generated by the fuzzifier parameter m is revealed in Section 3 . Meanwhile, multigranulation approxi-

mate regions are formed based on which a new rough-fuzzy C-means method is introduced. In Section 4 , the proposed

granulation-degranulation mechanisms based on multiple levels of granularity are explained. Comparative experiments are

presented in Section 5 . Some conclusions are given in Section 6 . 

2. Rough set-based partitive clustering methods 

In this section, some rough set-based partitive clustering algorithms will be reviewed, which include rough C-means [13] ,

rough-fuzzy C-means [17] and shadowed set-based rough-fuzzy C-means [42] . More detailed information about rough sets

and shadowed sets can be found in [19–23,25,29,33,38,40] . 

2.1. Rough C-means 

In rough set theory [19] , a concept can be described by a pair of crisp sets, i.e., the lower and upper approximations. The

lower approximation is composed of objects that belong to the concept certainly, and the upper approximation is composed

of objects that belong to the concept possibly. The lower and upper approximations approach the concept from two sides,

viz. inside and outside, as shown in Fig. 1 . The union of lower approximation and boundary region constitutes the upper

approximation in Fig. 1 . Each square in Fig. 1 represents a knowledge granule. The granulation under information in hand

is composed of all squares in Fig. 1 . If the granulation is refined enough, viz. each square (granule) is small enough, such as

a pixel, the objective concept can be certainly depicted by the lower and upper approximations. In this case, the boundary

region of this objective concept is eliminated. 

Lingras et al. [13] extended the notion of rough approximations to develop a clustering algorithm, called rough C-means

(RCM), in which all patterns were divided into three levels, i.e., core level (lower approximation, also called as core region),

boundary level and exclusion level for a fixed cluster. The new prototype calculations are only related to the core level and

boundary level, instead of all patterns as that in hard C-means (HCM) or fuzzy C-means (FCM). So the useless information

can be filtrated and numeric computation can be reduced. 

Patterns in the core level will belong to this cluster certainly and patterns in the boundary level will belong to this

cluster possibly, i.e., with vagueness and uncertainty. The rest in the exclusion level will not belong to this cluster definitely.

Generally, patterns in the core level have the most importance, patterns in the boundary level have less contribution and

patterns in the exclusion level almost make no contribution to the updating of prototypes. 

A data set with N patterns { x 1 , x 2 ,…, x N }, x j ∈ � 

M ( j = 1 , 2 , . . . , N ) is expected to group into C clusters G 1 , G 2 , …, G C . Ac-

cording to RCM, the corresponding prototypes v , v ,…, v , v ∈ � 

M ( i = 1 , 2 , . . . , C ) are renewed by the following principles:
1 2 C i 
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v i = 

{ 

w l A 1 + w b B 1 i f R G i � = ∅ ∧ R b G i � = ∅ 
B 1 i f R G i = ∅ ∧ R b G i � = ∅ 
A 1 i f R G i � = ∅ ∧ R b G i = ∅ 

(1) 

Where A 1 = 

∑ 

x j ∈ R G i x j 
card( R G i ) 

, B 1 = 

∑ 

x j ∈ R b G i x j 
card( R b G i ) 

can be considered as the contributions by the crisp core region and two-valued

boundary region, respectively. card ( X ) means the cardinality of set X . R b G i = R G i − R G i denotes the boundary region of clus-

ter G i , where R G i and R G i are the lower and upper approximations of cluster G i with respect to feature set R , respectively.

w l (0.5 < w l ≤ 1) and w b = 1 − w l are the weighted values which measure the contributions of core region and boundary

region, respectively. 

In order to determine the core region and boundary region for each cluster, Lingras et al. utilized the details as follows: 

If ‖ x j − v q ‖ − ‖ x j − v p ‖ ≤ �, then x j ∈ R G p and x j ∈ R G q . In this case, x j cannot be partitioned into the core regions of

any clusters. Otherwise, x j ∈ R G p . Where ‖ x j − v i ‖ denotes the distance between pattern x j and prototype v i . ‖ x j − v p ‖ is

the minimum of x j over all clusters and ‖ x j − v q ‖ is next to the minimum. 

The threshold � is crucial for determining the approximation regions of each cluster. The smaller the threshold is, the

more objects will belong to the core regions. On the contrary, the larger the threshold is, the more objects will belong the

boundary regions. An unreasonable threshold will result in undesired approximation region partitions which may misguide

the prototype computations. Additionally, since no membership degrees are involved, the overlapping partitions cannot be

effectively described in RCM. 

2.2. Rough-fuzzy C-means 

Incorporating with fuzzy membership degrees, Mitra et al. [17] proposed the notion of rough-fuzzy C-means (RFCM),

in which the absolute distance ‖ x j − v i ‖ was replaced by a fuzzy membership degree u ij when dividing patterns to ap-

proximation regions. This adjustment enhances the robustness of the clustering as dealing with overlapping situations. The

recomputation of prototypes is correspondingly modified as follows: 

v i = 

{ 

w l A 2 + w b B 2 i f R G i � = ∅ ∧ R b G i � = ∅ 
B 2 i f R G i = ∅ ∧ R b G i � = ∅ 
A 2 i f R G i � = ∅ ∧ R b G i = ∅ 

(2) 

Where A 2 = 

∑ 

x j ∈ R G i u i j 
m x j ∑ 

x j ∈ R G i u i j 
m , B 2 = 

∑ 

x j ∈ R b G i u i j 
m x j ∑ 

x j ∈ R b G i u i j 
m can be considered as the contributions by the fuzzy core region and fuzzy

boundary region, respectively. The weighted values 0.5 < w l ≤ 1 and w b = 1 − w l have the same interpretations as that in

RCM. u ij denotes the membership degree of pattern x j belonging to the cluster with prototype v i , and is calculated as the

same as in FCM. 

u i j = 

1 ∑ C 
k =1 ( 

‖ x j −v i ‖ 
‖ x j −v k ‖ ) 

2 
m −1 

. (3) 

u i j ∈ [0 , 1](i = 1 , 2 , . . . , C, j = 1 , 2 , . . . , N). For ∀ j , it has 
∑ C 

i =1 u i j = 1 and ∀ i , it has 0 < 

∑ N 
j=1 u i j < N . When one or more of

the distances ‖ x j − v i ‖ = 0 at any iterations, the singularity in FCM will arise. In this case, assign u i j = 1 and u k j = 0 for

∀ k � = i . The value of u ij in formula (3) depends on the value of fuzzifier parameter m and the relative distances of pattern x j 
with respect to all prototypes. The value of fuzzifier parameter m reflects the shape of fuzzy memberships. When the value

is close to 1, it implies a Boolean nature of one cluster, namely, the memberships are maximally hard. In this case, only

the memberships of patterns that have equivalent distances to each cluster are fuzzy. On the other hand, it will result in

spike-like membership functions when the value increases. In this case, the memberships are maximally fuzzy which means

only the memberships of patterns that are located around the cluster centers are assigned 1, otherwise, they are assigned

memberships of 1/ C , which can be illustrated in Fig. 2 . The uncertainty caused by fuzzifier parameter m will be discussed

in Section 3.1 in detail. In order to determine the approximation regions, the following principles are exploited. 

If u pj − u q j ≤ �, then x j ∈ R G p and x j ∈ R G q . In this case, x j cannot be partitioned into the core regions of any clusters.

Otherwise, x j ∈ R G p . u pj is the maximum of x j over all clusters and u qj is next to the maximum. 

The threshold � in RFCM is pivotal for determining the approximation regions of each cluster which is similar to RCM. 

2.3. Shadowed set-based rough-fuzzy clustering 

The notion of shadowed sets [21–23,25] , which is considered as a bridge between rough sets and fuzzy sets, provides a

simplification (approximation) technology for fuzzy sets. Zhou and Pedrycz et al. [42] proposed a shadowed set-based rough-

fuzzy clustering (SRFCM) method in which the determination of approximation regions for each cluster was transferred to an

optimization process and could be detected automatically during the clustering processes. The procedures for determining

the approximation regions of each cluster based on shadowed sets are reviewed as follows. 

Step1: Compute membership values u ij of each pattern x j to each prototype v i using formula (3); 
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Step2: Based on shadowed sets, compute optimal threshold αi for each cluster G i : 

αi = min 

α
( V i ) = min 

α

∣∣∣∣ ∑ 

j: u i j ≤α

u i j + 

∑ 

j: u i j ≥max 
j 

( u i j ) −α

( 1 − u i j ) 

− card 

({ 

x j | α < u i j < max 
j 

( u i j ) − α
} )∣∣∣∣. (4)

Step3: According to αi , determine the core region and boundary region of cluster G i . 

R G i = 

{ 

x j | u i j ≥ max 
j 

( u i j ) − αi 

} 

, 

R b G i = 

{ 

x j | αi < u i j < max 
j 

( u i j ) − αi 

} 

. (5)

From the above Steps 1–3, the threshold of each cluster is not user-defined beforehand. It can be adjusted automatically

in the clustering processes and can be optimized for each cluster independently. The core region and boundary region

regarding one cluster can be effectively divided through the global observation on data, rather than depending on individual

absolute distances or individual membership values of patterns. Subsequently, the prototypes are updated as the same as in

RFCM. The outperformance of SRFCM compared with FCM, RCM and RFCM is demonstrated by some experimental results

in [42] . 

Shadowed sets are a model of three-way approximations of fuzzy sets in which the main fundamental issue is the inter-

pretation and determination of partition thresholds. The Pedrycz’s optimization model with formula (4) is a specific case to

determine the threshold in which the formed shadows need to be interpreted with good semantics. Some other optimization

principles to determine the partition thresholds can be specified from several aspects within the framework of three-way

decision theory which can provide good semantical interpretations, such as the principle of uncertainty invariance, the prin-

ciple of minimum distance (including semantic distance) and the principle of least cost [6,40] . The selected principle should

consider the characteristics of practical applications which can be executed based on the guidelines of three-way decisions.

In rough-fuzzy clustering methods, the value of parameter m controls the shape of fuzzy memberships. The approxima-

tion region partitions for a fixed cluster may be varied according to different fuzzifier values. Unfortunately, the uncertainty

caused by fuzzification coefficient m , especially the dynamic variations of approximation regions when changing the fuzzifier

values, are not discussed in recent rough-fuzzy clustering methods. This value is often user pre-selected as implementing the

corresponding algorithms [15–17,28] . An unreasonable value of m may distort the prototype and membership degree com-

putations. To overcome this situation, the uncertainty generated by the fuzzifier parameter needs to be carefully addressed

when data information and knowledge are not enough in-hand. 
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3. Multigranulation rough-fuzzy clustering 

3.1. The uncertainty generated by fuzzifier parameter m 

As illustrated by Hwang et al. in [7] , type-1 fuzzy sets cannot sufficiently manage the uncertainty generated by a sin-

gle fuzzifier value. For the patterns in a data set which has two clusters, the relationship between their relative distances

(also considered as normalized distances) to prototypes and the corresponding membership degrees according to formula

(3) is shown in Fig. 2 . When the value of m tends to 1, the memberships are most crisp or hard. In this case, only the

patterns with relative distances around 0.5 are fuzzy. When the value of m approaches to ∞ , the memberships are most

fuzzy, and only the patterns closed to the prototypes can be partitioned definitely. Two different fuzzifier values m 1 and m 2 

(1 < m 1 < m 2 , assumed for the whole rest of paper) form a footprint of uncertainty (FOU) for memberships which can be

used to manage uncertainty generated by different fuzzifier values from the vertical direction in Fig. 2 , i.e., the variations

of memberships under the same relative distance. Available type-2 fuzzy clustering methods are mainly presented based

on this notion. Perspectively, the description of the uncertainty generated by fuzzifier values can also be drawn from the

horizontal direction in Fig. 2 , i.e., the variations of relative distances of patterns over all cluster prototypes under a specific

membership value. 

Suppose a data set with two clusters, according to formula (3), the membership degree of each pattern belonging to

each cluster can be considered as a function with respect to their relative distances and the fuzzifier parameter, namely,

u i j = u i j ( d, m ) , where d denotes the relative distance of a pattern with respect to one of the clusters. m > 1 is the fuzzifier

parameter. Denote u i j ( d, m ) = g(d, m ) , formula (3) can be rewritten as follows: 

u ij = g ( d, m ) = 

⎧ ⎨ ⎩ 

1 

1 + 

(
d 

1 −d 

) 2 
m −1 

d ∈ [ 0 , 1 ) 

0 d = 1 

(6) 

Obviously, g ( d, m ) achieves three common values no matter which values of m are used, viz. 0, 0.5 and 1, as illustrated in

Fig. 2 . According to the formulation of g ( d, m ), a proposition can be drawn as follows: 

Proposition 1. Suppose 1 < m 1 < m 2 and g ( d 1 , m 1 ) = g ( d 2 , m 2 ) , then it has: 

1) If 0 < d 1 , d 2 < 0.5, then d 2 < d 1 ; 

2) If 0.5 < d 1 , d 2 < 1, then d 1 < d 2 . 

The detailed proofs can be found in the Appendix. Proposition I reflects the influence generated by different fuzzifier values

with respect to the relative distances of patterns. It is an interesting thing that the patterns with the same membership

degree to a cluster may have different relative distances to this cluster due to different fuzzifier values. 

Given a data set with two clusters G 1 and G 2 , taking G 1 as an example, G 2 can be explained similarly. When giving a

specific fuzzifier value m = m 1 (such as m 1 = 2 ), the optimal threshold α1 ( m 1 ) = α for cluster G 1 under m 1 can be obtained

by formula (4) based on the scheme of shadowed sets. The boundary region of cluster G 1 is composed of the patterns

which have membership degrees between α and 1 − α according to formula (5). In this case, their relative distances to G 1 

are in interval ( d 1 , 1 − d 1 ) , as illustrated in Fig. 3 . The core region and the exclusion region of cluster G 1 are composed of

the patterns with relative distances in intervals [0, d 1 ] and [ 1 − d 1 , 1 ] , respectively. The approximation region partitions for

cluster G 1 under fuzzifier value m 1 can be shown in Fig. 4 (a) schematically. The green and blue regions are the core region

and boundary region of cluster G 1 , respectively. 

If the fuzzifier value m increases from m 1 to m 2 (such as m 2 = 5 ), and the partition threshold for cluster G 1 under

m 2 is assigned with the value obtained under m 1 (namely, α1 ( m 2 ) = α), the boundary region of cluster G 1 will cover the

patterns with the relative distances in interval ( d 2 , 1 − d 2 ) . Meanwhile, the core region and the exclusion region of cluster

G 1 turn to the patterns with relative distances in intervals [0, d 2 ] and [ 1 − d 2 , 1 ] , respectively. According to Proposition I,

it has ( d 1 , 1 − d 1 ) ⊂ ( d 2 , 1 − d 2 ) . It means that the core region of G 1 under the fuzzifier value m 2 (the yellow region in

Fig. 4 (b)) are contracted relative to the fuzzifier value m 1 (the green region in Fig. 4 (a)) using the same partition threshold.

The variation in exclusion region has the same contraction tendency. However, the boundary region of G 1 is extended (from

the blue region in Fig. 4 (a) to the union of green, blue and gray regions in Fig. 4 (b)). In this case, some patterns in the

core region that are definitely partitioned into cluster G 1 under m 1 will be partitioned into the boundary region of cluster

G 1 under m 2 (the green region in Fig. 4 (b)). As pointed out here, one pattern will have different membership values under

fuzzifier values m 1 and m 2 , based on which it may be divided into different approximation regions with respect to a fixed

cluster. Since the membership value of this pattern to a cluster obtained under a specific fuzzifier value m 1 or m 2 is with

uncertainties to some degree, the corresponding approximation region partitions are also with some uncertainties. Therefore,

by detecting the variations of approximation regions of a fixed cluster between different fuzzifier values m 1 and m 2 , the

uncertainty caused by the individual fuzzifier value can be captured, such as the green region in Fig. 4 (b). 

By contrast, if the fuzzifier value is tuned from m 2 to m 1 , the core region of G 1 will be extended from the patterns

with relative distances in [0, d 2 ] to the patterns with relative distances in [0, d 1 ] (from the yellow region in Fig. 4 (b) to

the green region in Fig. 4 (a)), and the boundary region will become narrow. The patterns changing from the core region
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Fig. 4. The variations of approximation regions for a fixed cluster. (a)The approximation region partitions for a fixed cluster under fuzzifier m 1 . (b) The ap- 

proximation region partitions for a fixed cluster under fuzzifier m 1 and m 2 according to the same partition threshold obtained under m 1 . (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to the boundary region ( m 1 → m 2 ) or changing from the boundary region to the core region ( m 2 → m 1 ) with respect to a

fixed cluster reflect the uncertainty generated by the fuzzifier parameter m . In this manner, the uncertainty related to the

fuzzifier parameter m in clustering processes can be captured through the approximation region variations which can form

a multigranulation structure. 

Taking the data set which has three clusters with normalized distribution (used in [42] ) as an example, the core region

and boundary region of each cluster under different fuzzifier values are shown in Fig. 5 . According to formula (4), the

partition thresholds for three clusters under m = 2 are 0.33568, 0.31872 and 0.30445, which are fixed for other fuzzifier

values. 

In Fig. 5 , when the fuzzifier value becomes 1.1, the boundary region of each cluster is contracted and the core region of

each cluster is extended. In this case, most patterns will be partitioned into the core regions, including some overlapping

and noisy patterns. When the value of m becomes larger (3 or 4), the core region of each cluster is contracted and the belt

of boundary region of each cluster is broadened. In this case, more patterns will be partitioned into the boundary regions,

including some patterns that are partitioned into the core regions or exclusive regions under smaller value m = 2 previously.

Since the core region of each cluster is contracted gradually as increasing the fuzzifier value according to Proposition I, a

multigranulation structure of core regions for each cluster under different fuzzifier values can be established which will be

specifically discussed in the next section. 

Actually, the fuzzifier value cannot be assigned with a very large value since the core regions of some clusters may

become empty, i.e., the representative patterns in the core regions are removed to the boundary regions. In this case, core

regions have no representative capacities and the calculated prototypes may be distorted due to the extended boundary

regions. The maximum value of fuzzifier parameter should guarantee the nonempty core region for each cluster. Extremely,
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there is only one pattern in the core region of a specific cluster. The selection of value m 2 with respect to the fixed value

m 1 should consider the variations in approximation regions which can form multiple levels of granularity of clusters. There

will be a balance between the representative capacities of approximation regions and the levels of granulation. 

3.2. Multigranulation construction in rough-fuzzy clustering 

As shown in Figs. 3 and 5 , the core region of each cluster is contracted gradually as increasing the values of fuzzifica-

tion coefficient with respect to the same partition threshold of this cluster. Assuming a series of fuzzifier values satisfies

1 < m 1 < m 2 < m 3 < ��� < m max , the core regions obtained under the smaller fuzzifier values can be further decomposed, as

displayed in Fig. 6 . 

In Fig. 6 , Core k and Boundary k denote the core region and boundary region of one cluster under the value of m k , respec-

tively. Boundary k means the patterns belonging to the core region of this cluster under the value of m k −1 and those also

belonging to the boundary region of this cluster under the value of m k (like the green region in Fig. 4 (b)). Exclusive k means

the patterns belonging to the exclusive region of a cluster under the value of m k −1 and those also belonging to the boundary

region of this cluster under m k (like the gray region in Fig. 4 (b)). When the fuzzifier value becomes a larger one, the new

boundary region of the cluster is formed with three parts, i.e., Boundary k , Boundar y k −1 and Exclusive k . Simultaneously, the

core region Cor e k −1 at a higher level (like the green region in Fig. 4 (a)) is decomposed to a new one Core k (like the yellow

region in Fig. 4 (b)) and Boundary k at the adjacent level below. 

The approximation regions at higher levels in Fig. 6 can be considered as coarser partitions which may involve some

noisy data or overlapping patterns in the core regions. Under this circumstance, the prototype calculations may be distorted
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C  
at a single level of granularity. By decomposing the core region of each cluster from a higher level to a lower level, some

uncertain patterns in the core region at the higher level will be wiped off from the new core region at the lower level. 

The multigranulation approximation regions constructed by increasing the value of fuzzification coefficient can be con-

sidered as a “coarse to fine” mechanism, i.e., the core region of each cluster is contracted gradually which tends to the

natural centroid of this cluster. On the contrary, the multigranulation approximation regions constructed by decreasing the

value of fuzzification coefficient can be considered as a “fine to coarse” mechanism, i.e., the core region of each cluster is

extended gradually. Two adjacent levels in the constructed multigranulation structure share some common information, i.e.,

the approximation regions at one level are obtained depending on the partition results obtained at the other level due to

the same partition threshold for each cluster. 

3.3. Rough-fuzzy clustering based on multigranulation approximation regions 

Based on the constructed multigranulation core regions of each cluster under a series of fuzzifier values with a strict

partial order, the corresponding prototypes can be computed at different levels of granularity independently, and the final

prototypes can be optimized by these candidate results. The prototype of one cluster computed at a lower level (with a

larger value of fuzzifier parameter) can be considered as the modification for the one that is obtained at a higher level

(with a smaller value of fuzzifier parameter). This notion is illustrated in Fig. 7 , where v i ( m k ) means the prototype of the

i th cluster under the fuzzifier value m k . 

In Fig. 7 , only some patterns in the boundary region at a lower level (such as m = m k ) in Fig. 6 are selected for com-

puting the prototype, instead of all patterns in the boundary region at this level. Because the patterns in Boundar y k −1 have

been exploited for computing the prototype at the upper level ( m = m k −1 ), and the patterns in Exclusive k almost make no

contribution to this cluster. v i ( m k ) can be considered as the correction for v i ( m k −1 ) due to some uncertain patterns in the

or e k −1 . A generalized framework for calculating the prototypes v i ( i = 1 , 2 , . . . , C) based on multigranulation approximation
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regions can be described as follows: 

v i = 

k max ∑ 

k =1 

βk v i ( m k ) , (7) 

where βk ∈ [0, 1] ( k = 1 , 2 , . . . , k max ) are weighted values, and satisfy 
∑ k max 

k =1 
βk = 1 . If ∀ k , βk = 

1 
k max 

, it means that the inter-

mediate result obtained at each level of granularity makes the same contribution to renewing the prototype v i . 

The levels in Figs. 6 or 7 cannot be grown unlimited due to the maximum value of fuzzifier parameter which is discussed

in Section 3.1 . This value can be achieved by the following principle. 

Given a fuzzifier value m 1 , the corresponding maximum value of fuzzifier parameter m max satisfies: 

m max = max 
m k 

{
m k |∀ G i (i = 1 , 2 , · · · , C) , 

card( ̃  R 

m k 
G i ) 

card( R 

m 1 G i ) 
> ξ

}
, (8) 

where 0 ≤ ξ < 1. R m 1 G i denotes the core region of cluster G i with respect to m 1 based on shadowed set optimization model.
 R 
m k G i denotes the core region of G i with respect to m k based on the partition threshold obtained under the fuzzifier value 

m 1 . If ξ = 0 , the core regions of each cluster obtained at all levels will not be empty during the multigranulation construc-

tion procedures. In this case, the representative capacities of the core regions at each level of granularity can be guaranteed.

Interval type-2 fuzzy clustering methods often use the FOU (footprint of uncertainty), which is formed between two

fuzzifier values m 1 and m 2 , to manage the uncertainty generated by the fuzzifier parameter. However, how to select the

two fuzzifier values is rarely discussed in the available studies [7,8,12] . Integrating interval type-2 fuzzy sets into rough-

fuzzy clustering methods is also not a straightforward task, several issues that need to be addressed, such as type reduction

and the uncertainties generated by the selected fuzzifier values. Though a generalized multigranulation framework has been

introduced for calculating prototypes, this paper will concentrate on a specific case with two fuzzifier values m 1 and m 2 ,

such that the uncertainty created by a single fuzzifier value can be well captured and iterative computation can be saved

evidently. 

Given two fuzzifier values m 1 and m 2 (1 < m 1 < m 2 ), the prototypes under m 1 are computed as follows: 

v i ( m 1 ) = 

{ 

w l A 1 
′ + w b B 1 

′ i f R 

m 1 G i � = ∅ ∧ R 

m 1 

b 
G i � = ∅ 

B 1 
′ i f R 

m 1 G i = ∅ ∧ R 

m 1 

b 
G i � = ∅ 

A 1 
′ i f R 

m 1 G i � = ∅ ∧ R 

m 1 

b 
G i = ∅ 

, (9) 

where: 

A 1 
′ = 

∑ 

x j ∈ R m 1 G i 
(
u i j ( m 1 ) 

)m 1 
x j ∑ 

x j ∈ R m 1 G i 
(
u i j ( m 1 ) 

)m 1 
, B 1 

′ = 

∑ 

x j ∈ R m 1 b 
G i 

(
u i j ( m 1 ) 

)m 1 
x j ∑ 

x j ∈ R m 1 b 
G i 

(
u i j ( m 1 ) 

)m 1 
. 

u ij ( m 1 ) denotes the membership degree of pattern x j belonging to the cluster with prototype v i under the fuzzifier value

m 1 . Similarly, the prototypes under m 2 are obtained as follows: 

v i ( m 2 ) = 

⎧ ⎨ ⎩ 

w l A 2 
′ + w b B 2 

′ i f ˜ R 

m 2 
G i � = ∅ ∧ ̃

 R 

m 2 

b 
G i � = ∅ 

B 2 
′ i f ˜ R 

m 2 
G i = ∅ ∧ ̃

 R 

m 2 

b 
G i � = ∅ 

A 2 
′ i f ˜ R 

m 2 
G i � = ∅ ∧ ̃

 R 

m 2 

b 
G i = ∅ 

, (10) 

where: 

A 2 
′ = 

∑ 

x j ∈ ̃ R 
m 

2 G i 

(
u i j ( m 2 ) 

)m 2 
x j ∑ 

x j ∈ ̃ R 
m 

2 G i 

(
u i j ( m 2 ) 

)m 2 
, B 2 

′ = 

∑ 

x j ∈ ̃  R 
m 

2 
b 

G i 

(
u i j ( m 2 ) 

)m 2 
x j ∑ 

x j ∈ ̃  R 
m 

2 
b 

G i 

(
u i j ( m 2 ) 

)m 2 
. 

u ij ( m 2 ) denotes the membership degree of pattern x j belonging to the cluster with prototype v i under the fuzzifier value

m 2 . 
˜ R 

m 2 G i has the same meaning as in formula (8), i.e., the core region of G i with respect to m 2 based on the partition

threshold obtained under the fuzzifier value m 1 . 
˜ R 

m 2 

b 
G i = R m 1 G i −˜ R 

m 2 G i = { x j | x j ∈ R m 1 G i ∧ x j ∈ R 
m 2 

b 
G i } covers the patterns

that belong to the core region of G i under m 1 and those also belong to the boundary region of G i under m 2 according to

the same partition threshold. The prototype of each cluster can be combined by the following principle: 

v i = β1 v i ( m 1 ) + β2 v i ( m 2 ) . (11) 

β1 , β2 ∈ [0, 1] and β1 + β2 = 1 , they measure the importance of candidate results obtained under m 1 and m 2 , respec-

tively. v i ( m 2 ) can be considered as the modification for v i ( m 1 ) which may be spoiled by outliers, overlapping areas or the

uncertainty generated by a single fuzzifier value. The contributions of the patterns in the core region of one cluster both

under m 1 and m 2 will be enhanced, and the contributions of the patterns that removing from the core region under m 1 to

the boundary region under m 2 will be reduced. The calculation of v i ( m 1 ) with formula (9) is the same as that in RFCM and

SRFCM. It is easily seen that the formulations in (2) and (11) can be considered equivalent if β = 0 , namely, the notion of
2 
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rough-fuzzy clustering (at a single level) is a specific case of the notion of rough-fuzzy clustering based on multigranulation

approximation regions. 

The algorithm of multigranulation rough-fuzzy clustering based on shadowed sets can be refined as follows. 

Step 5 plays an important role in the MSRFCM algorithm, based on which the embedded multigranulation approximation

regions for each cluster can be formed. The proposed multigranulation structure cannot be constructed just by implementing

the rough-fuzzy clustering methods with m 1 and m 2 separately, since the Proposition I is not satisfied in this situation. 

In order to partition a pattern to one cluster, a hard-partition principle can be formed as follows: 

u i j = 

u i j ( m 1 ) + u i j ( m 2 ) 

2 

. (12)

If u ij > u kj , for ∀ k = 1 , 2 , · · · , C and i � = k , then x j is assigned to the i th cluster G i . 

As discussed in Section 2.3 , the optimization mechanism with formula (4) is one aspect to determine the symmetrical

threshold in the model of three-way approximations of fuzzy sets based on the principle of uncertainty invariance. An

optimization-based framework for constructing three-way approximations of fuzzy sets was investigated by Yao et al. [40] ,

which includes the principle of minimum distance, and the optimization function can be interpreted as minimizing the

total errors induced by three-way approximations. The detailed discussions can be found in [6,40] . For each cluster G i , the

corresponding optimization function based on the principle of minimum distance can be described as follows: 

ηi = min 

η

(
V i 

′ ) = min 

η

∣∣∣∣∣∣ ∑ 

j: u i j ≤ η
2 

u i j + 

∑ 

j: u i j ≥ 1+ η
2 

(
1 − u i j 

)
+ 

∑ 

η
2 < u i j < 

1+ η
2 

∣∣η − u i j 

∣∣∣∣∣∣∣∣. (13)

According to ηi , the core region and boundary region of cluster G i can be determined as follows: 

R G i = 

{ 

x j | u i j ≥
1 + ηi 

2 

} 

, 

R b G i = 

{ 

x j | ηi 

2 

< u i j < 

1 + ηi 

2 

} 

. (14)

Both of the formulas (4) and (13) are optimization mechanisms for determining the partition threshold. However, they

have different semantical interpretations. The former is based on the principle of uncertainty invariance and the later is

based on the principle of minimum distance. In this study, to compare the different optimization principles in the three-

way approximations of fuzzy sets, we will also use the formulas (13) and (14) instead of formulas (4) and (5) in Steps 4 and

5 in the Algorithm I, and denote the corresponding algorithm as MSRFCMII. The results obtained by MSRFCM and MSRFCMII

will be discussed in the experimental section in detail. 

3.4. Computational complexity 

The proposed algorithms MSRFCM and MSRFCMII definitely have higher complexity than FCM due to the computation

time that is required for selecting the optimal partition threshold for each cluster. Assume the number of clusters is C ,

the number of patterns is N , the number of features of each pattern is M and the number of iterations is I . Since a pair

of fuzzifier values are involved, the asymptotical time complexity for computing partition matrix is O (2 C 2 NM ). Assume

the number of candidate partition threshold values is S , the computation for selecting partition thresholds with respect

to m 1 is O ( SCN ). The computation for dividing approximation regions under the value of m 2 is O ( CN ) and the computa-

tion for prototypes is O (2 CN ). Consequently, the computational complexity of the proposed method can be summarized as

O ( I( 2 C 2 NM + SCN + CN + 2 CN ) ) , asymptotically, O ( I( C 2 NM + SCN ) ) . 

If multiple values of m 2 are used, the proposed algorithm can be implemented repeatedly. Assuming the number of the

values of m 2 is K , the total computational complexity becomes K × O ( I( C 2 NM + SCN ) ) . Generally, N � M, N � C and N � I ,

and the maximum value of fuzzifier parameter can be achieved within a finite number of steps according to formula (8),

namely N � K , so the asymptotical time complexity of our proposed method approaches to O ( SN ). Since no closed-form

solution can be drawn for optimizing the partition thresholds, the enumerating methods are often exploited. For a practical

problem with a big data set, if N � S , the computational complexity becomes O ( N ). 

4. Multilevel granulation-degranulation mechanisms 

Some cluster validity indices are proposed to determine the true number of clusters as well as evaluating the clustering

quality. The available validity indices include fuzzy and non-fuzzy versions. The fuzzy versions are often introduced based

on the membership partitions, such as Xie–Beni index (XB) [30] , fuzzy rand index (FRI) [3] , fuzzy adjusted rand index (FARI)

[3] , and entropy based indices, such as normalized mutual information index (NMI) [10] . Non-fuzzy versions include relative

separation index (RS) [8] , Davies–Bouldin index (DB) [5] , Dunns index (Dunn) [2] , PBM-index(PBM) [18] and so on, which

measure the separation and compactness of the clusters based on the obtained prototypes. However, the fuzzy versions

of validity indices are sensitive to the selected fuzzifier values. Namely, they will change as increasing or decreasing the
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fuzzifier values under the obtained prototypes. In this case, the effectiveness of the fuzzy validity indices may be lost just

by changing the fuzzifier values. 

A novel validity index which is based on the “granulation-degranulation” mechanisms was introduced in [42] . The related 

“granulation-degranulation” mechanisms are schematically presented as in Fig. 8 . 

Essentially, clustering process can be treated as a granulation mechanism in which the information granules can be

established, that are expected to reflect the original data as much as possible, involving prototypes and associated mem-

bership degrees. Subsequently, degranulation process is applied to original patterns and reconstructed based on the results

of granulation section. Obviously, the results of degranulation, can be considered as the estimations based on the obtained

prototypes and corresponding membership degrees, are expected to be close to the original patterns ( Fig. 8 ). 

Let ˆ x j denote the estimation of pattern x j obtained by the “granulation-degranulation” mechanisms. An overall measure

of the validity of the granulation-degranulation mechanisms can be quantified as follows: 

Q = 

N ∑ 

j=1 

‖ x j − ˆ x j ‖ 

2 
, (15) 

where 

ˆ x j = 

∑ C 
i =1 u i j 

m v i ∑ C 
i =1 u i j 

m 

. 

Different from the available rough-fuzzy clustering methods, which often use a single fuzzifier value, the proposed multi-

granulation rough-fuzzy clustering method involves a series of fuzzifier values. The uncertainty generated by the fuzzifier

parameter can be captured at different levels of granularity during the granulation procedure. Similarly, the uncertainty

generated by the fuzzifier parameter should also be addressed during the degranulation procedure, which is displayed in

Fig. 9 . 

ˆ x j ( m k ) denotes the estimation of x j under the fuzzifier value m k . The series of ˆ x j ( m 1 ) , ̂  x j ( m 2 ) , ̂  x j ( m 3 ) , . . . , ̂  x j ( m ... ) can

be considered as the estimations of x j at different levels of granularity. The final degranulation result of x j , viz. ˆ x j , can be

formed as follows: 

ˆ x j = 

k max ∑ 

k =1 

βk ̂  x j ( m k ) . (16) 

βk has the same interpretation as that in formula (7). For a pair of fuzzifier values m 1 and m 2 , the degranulation is formally

described as follows: 

ˆ x j = β1 ̂  x j ( m 1 ) + β2 ̂  x j ( m 2 ) , (17) 

where: 

ˆ x j ( m 1 ) = 

∑ C 
i =1 ( u i j ( m 1 ) ) 

m 1 v i ∑ C 
i =1 ( u i j ( m 1 ) ) 

m 1 
, ˆ x j ( m 2 ) = 

∑ C 
i =1 ( u i j ( m 2 ) ) 

m 2 v i ∑ C 
i =1 ( u i j ( m 2 ) ) 

m 2 
. 
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Fig. 10. Synthetic data set. 

Table 1 

The prototypes, partition thresholds and approximation regions of synthetic data set obtained by MSRFC. 

Prototype Threshold card( R m 1 G i ) /card( ̃  R 
m 2 

G i ) /card( ̃ R m 2 
b 

G i ) 

Prototype1 Prototype2 Threshold α1 Threshold α2 Cluster1 Cluster2 

m 1 = 2 , m 2 = 2 [7.2329, 9.2036] [2.1387, 2.3345] 0.32589 0.32653 178 / 178 / 0 52 / 52 / 0 

m 1 = 2 , m 2 = 3 [7.259,9.2317] [2.1619, 2.3836] 0.33517 0.33541 178 / 157 / 21 52 / 50 / 2 

m 1 = 2 , m 2 = 4 [7.2867, 9.3198] [2.1685, 2.3802] 0.34611 0.34615 178 / 119 / 59 52 / 50 / 2 

m 1 = 2 , m 2 = 5 [7.215, 9.2465] [2.1487, 2.2542] 0.32545 0.32535 178 / 55 / 123 52 / 41 / 11 

m 1 = 2 , m 2 = 6 [7.1607, 9.2244] [2.1483, 2.2187] 0.32632 0.32653 179 / 41 / 138 51 / 33 / 18 

m 1 = 2 , m 2 = 7 [7.0998, 9.2593] [2.2334, 2.1522] 0.3251 0.32565 179 / 19 / 160 51 / 19 / 32 

m 1 = 2 , m 2 = 8 [7.169, 9.2378] [2.2653, 2.2363] 0.33139 0.33146 178 / 13 / 165 52 / 10 / 42 

m 1 = 2 , m 2 = 9 [7.1508, 9.0748] [2.2243, 2.2299] 0.31732 0.3172 179 / 4 / 175 51 / 5 / 46 

m 1 = 2 , m 2 = 10 [7.1219, 9.0521] [2.1887, 2.2348] 0.31034 0.31121 179 / 2 / 177 51 / 1 / 50 

m 1 = 2 , m 2 = 11 [7.0681, 9.0517] [2.1497, 2.2397] 0.30641 0.30611 179 / 1 / 178 51 / 0 / 51 

 

 

 

 

 

 

 

 

 

 

 

 

 

β1 and β2 have the same meaning as that in formula (11). ˆ x j ( m 1 ) and ˆ x j ( m 2 ) can be considered as the lower and upper

estimations for x j between which the uncertainty generated by the fuzzifier parameter can be detected. Under the same

number of clusters, the smaller the value of Q is, the better the established granulation-degranulation model will be. 

5. Experimental studies 

In this section, some fuzzy clustering algorithms, including FCM [1] , TFCM [7] , SRFCM [42] and proposed MSRFCM and

MSRFCMII, are compared with a synthetic data set and some data sets from UCI repository [11] . 

5.1. Synthetic data set 

The synthetic data set with a mixture of Gaussian distributions is depicted in Fig. 10 . It has two clusters with 50 data

and 200 data, respectively. The means of Cluster 1 and Cluster 2 are μ1 = [7 , 9] and μ2 = [2 , 2] , respectively. 

The results obtained by running FCM, including prototypes and corresponding membership degrees, are utilized as the

initial configurations for the implementation of TFCM, SRFCM, MSRFCM and MSRFCMII. The weighted value that evaluates

the importance of core regions is set as w l = 0 . 95 and kept as a constant for all data sets and all iterative runs. In addi-

tion, Euclidean distance is exploited, the maximum iteration number is set as 100 and the convergence condition satisfies

‖ v (t+1) 
i 

− v (t) 
i 

‖ < ε where t is an iterative step and ε is set as 0.0 0 01 for all algorithms. 

Taking m 1 = 2 as an example and this value maintains the same for all values of m 2 as tuning by one. The other values

of m 1 can be explained similarly. The weighted values that measure the importance of results obtained at different levels

of granularity are set as β1 = β2 = 0 . 5 . The prototypes, partition threshold values and approximation regions obtained by

MSRFCM are shown in Table 1 . 

From Table 1 , it can be found that, ̃  R 
m 2 G i is decreasing as increasing the value of m 2 . The number of patterns in 

˜ R 
m 2 

b 
G i

is increasing on the contrary. This means that some patterns in the core region of one cluster under value m are divided
1 
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Table 2 

The prototypes, partition thresholds and approximation regions of synthetic data set obtained by MSRFCMII. 

Prototype Threshold card( R m 1 G i ) /card( ̃  R 
m 2 

G i ) /card( ̃ R m 2 
b 

G i ) 

Prototype1 Prototype2 Threshold η1 Threshold η2 Cluster1 Cluster2 

m 1 = 2 , m 2 = 2 [7.9146, 9.3381] [2.2141, 2.5117] 0.799 0.201 94 / 94 / 0 56 / 56 / 0 

m 1 = 2 , m 2 = 3 [7.6870, 9.7244] [2.2443, 2.5239] 0.822 0.178 80 / 17 /63 56 / 52 / 4 

m 1 = 2 , m 2 = 4 [7.6528, 9.4556] [22335, 2.5096] 0.829 0.171 83 / 2 / 81 56 / 51 /5 

m 1 = 2 , m 2 = 5 [7.9032, 9.3654] [2.2316, 2.4999] 0.799 0.201 94 / 0 / 94 56 /50 / 6 

Table 3 

The comparative validity results of synthetic data set. 

m = 1 . 1 (or m 1 = 1 . 1 ) 

RS PBM Dunn Q DB Err 

FCM 0.042434 37.684 0.024977 0.85959 0.56299 6 

SRFCM 0.039538 34.938 0.024977 0.87296 0.58801 6 

TFCM 0.042434 37.684 0.024977 0.85958 0.563 6 

MSRFCM 0.0434 38.944 0.024977 0.83449 0.55071 5 

MSRFCMII 0.04476 39.783 0.024977 0.802628 0.546299 6 

TFCM avg 0.036178 29.016 0.024033 0.889588 0.722434 17.6 

MSRFCM avg 0.044133 39.512 0.025477 0.826713 0.546916 5.9 

MSRFCII avg 0.04319 38.475 0.024977 0.824515 0.555960 6 

m = 2 (or m 1 = 2 ) 

FCM 0.03942 32.677 0.027555 0.78166 0.65577 15 

SRFCM 0.046254 41.366 0.024977 0.77663 0.53388 6 

TFCM 0.04961 43.725 0.00617 0.79657 0.52977 8 

MSRFCM 0.049893 44.831 0.024977 0.76641 0.51049 6 

MSRFCMII 0.050481 43.583167 0.030533 0.737285 0.544338 12 

TFCM avg 0.047978 41.75422 0.018118 0.799809 0.555521 10.1 

MSRFCM avg 0.048602 43.60189 0.024977 0.772343 0.518502 6 

MSRFCII avg 0.051124 43.496778 0.023013 0.742912 0.554643 14.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

into the boundary region of this cluster under value m 2 according to the same partition threshold. The multigranulation

approximation regions for each cluster are formed as shown in Fig. 11 . 

As increasing the value of m 2 , the core region of each cluster under m 2 , which is obtained based on the same partition

threshold optimized under m 1 , is contracted towards to the cluster centroid. From Table 1 , the core region of Cluster 2 under

m 2 becomes empty when the value of m 2 equals to 11. In this case, the value m 2 = 10 can be considered as the maximum

value m max ( ξ = 0 ) with respect to the fixed value m 1 = 2 . It is meaningless to increase the value of m 2 more than 10, since

the representative capacity of the core region for Cluster 2 is eliminated. 

Similarly, the prototypes, partition threshold values and approximation regions obtained by MSRFCMII when fixing m 1 =
2 and varying m 2 added by 1 are shown in Table 2 . 

From Table 3 , it can be found that the core region of Cluster 1 under m 2 becomes empty when the value of m 2 equals to

5. It is meaningless to increase the value of m 2 more than 4 based on the algorithm MSRFCMII. In this way, the contraction

speed of the core region of Cluster 1 is faster than the one in MSRFCM, which are shown in Fig. 12 . 

In order to compare the validity of the proposed algorithms, the recognition rates (or called as classification accuracy) are

illustrated in Fig. 13 . The value of m 1 is tuned from 1.1 to 10 by one, and the best results obtained by MSRFCM, MSRFCMII

and TFCM with fixing m 1 and varying m 2 to the corresponding maximum value by one are selected. 

In Fig. 13 , the notation m is involved in FCM and SRFCM and the notation m 1 is associated with TFCM, MSRFCM and

MSRFCMII. It can be found that the methods TFCM, MSRFCM and MSRFCMII outperform SRFCM and FCM. FCM has the

worst performance as increasing the fuzzifier value. MSRFCMII achieves the best performance over all values of m 1 , only

four patterns are classified incorrectly. This means that the multi-valued fuzzifier-based clustering methods can capture

more uncertainties wrapped in the data, especially for the uncertainty generated by a single fuzzifier value. 

Though the methods TFCM, MSRFCM and MSRFCMII perform better when dealing with the given synthetic data set, the

performance of TFCM is more fluctuant than MSRFCM as fixing m 1 and varying m 2 , that is demonstrated in Fig. 14 . 

From Fig. 14 , it can be seen that the method TFCM performs unstably when fixing m 1 and varying m 2 . It means different

values of m 2 can capture the different degrees of uncertainty generated by a fixed fuzzifier value. However, there is a

challenging work to select an optimal value m 2 when giving a fixed value m 1 under the framework of interval type-2 fuzzy

clustering methods. Since the performance of the proposed method MSRFCM is more stable, the influence caused by m 2 can

be reduced to some extent and the maximum value of m 2 can be supervised according to formula (8). 

Moreover, according to Figs. 13 and 14 , the algorithm MSRFCMII achieves the best performance in terms of recognition

rate over different combinations of fuzzifier values m and m . However, it can be found that MSRFCMII is more sensitive to
1 2 
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Fig. 11. The approximation region partitions of clusters under different values of m 2 (fixing m 1 = 2 ) with MSRFCM (a) m 2 = 2 ; (b) m 2 = 3 ; (c) m 2 = 4 ; (d) m 2 = 

5 ; (e) m 2 = 6 ; (f) m 2 = 10 . The red squares in the figures denote the prototypes. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 
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of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the selected fuzzifier value m 1 than MSRFCM. For the dataset which has clusters with significantly different sizes (as shown

in Fig. 10 ), more patterns will be divided into the boundary region with respect to the bigger cluster according to formulas

(13) and (14) compared with MSRFCM. By contrast, the obtained core region of the smaller cluster is almost invariant since

the patterns in its boundary region are divided from the bigger cluster. So the initialization of fuzzifier value m 1 is vital

for the performance of MSRFCMII. In addition, the maximum value of fuzzifier m 2 can be quickly achieved in MSRFCMII. It

means that the core region of one of the clusters tends to empty fast. 

In order to compare the performance of the methods used in Fig. 12 comprehensively, some validity indices are utilized,

including RS [8] , DB [5] , Dunn [2] and PBM [18] . The proposed validity index Q in formula (15) and the number of patterns,

that are classified into wrong clusters (denoted as Err ), are also compared. The larger the values of RS, PBM and Dunn as

well as the smaller the values of DB, Q and Err are, the better the clustering methods will be. The best performance of TFCM,

MSRFCM and MSRFCMII are chosen as fixing m 1 and varying m 2 , and their average results of the validity indices among all

values of m 2 , denoted as TFCM avg , MSRFCM avg and MSRFCMII avg respectively, are also presented as follows ( Table 3 ). 

From Table 2 , the proposed multigranulation rough-fuzzy clustering based on shadowed sets has the best performance

than the other methods in terms of the validity indices. Subsequently, it can be found that both of the average performance

of MSRFCM and MSRFCMII are better than TFCM, the reason is that the results obtained by TFCM are fluctuant, and the

results obtained by MSRFCM and MSRFCMII (especially MSRFCM) are far more stable as illustrated in Fig. 14 . 

Additionally, only m 1 = 1 . 1 and m 1 = 2 are selected for comparison. If the fuzzifier value m 1 is selected as a large value,

most membership degrees of patterns belonging to clusters will approach to 0.5, thus the partition matrix is very soft (or

fuzzy). In this case, the core regions of some clusters may become empty and most patterns will be partitioned into the
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Fig. 13. Recognition rate of the synthetic data set. 

Algorithm 1 Multigranulation rough-fuzzy clustering based on shadowed sets (MSRFCM). 

Step 1: Assign random initial prototypes v i (i = 1 , 2 , · · · , C); 

Step 2: Compute the partition matrix u i j ( m 1 ) under the fuzzifier value m 1 ; 

Step 3: Compute the partition matrix u i j ( m 2 ) under the fuzzifier value m 2 ; 

Step 4: Compute the optimal partition threshold αi ( m 1 ) for each cluster G i (i = 1 , 2 , · · · , C) based on shadowed sets with 

formula (4). And according to αi ( m 1 ) , determine the approximation regions R m 1 G i and R 
m 1 

b 
G i for each cluster G i with respect 

to u i j ( m 1 ) ; 

Step 5: According to αi ( m 1 ) , determine the approximation regions ˜ R 
m 2 G i and 

˜ R 
m 2 

b 
G i for each cluster G i with respect to 

u i j ( m 2 ) ; 

Step 6: Calculate the values of v i ( m 1 ) (i = 1 , 2 , · · · , C) with formula (9); 

Step 7: Calculate the values of v i ( m 2 ) (i = 1 , 2 , · · · , C) with formula (10); 

Step 8: Update the prototypes with formula (11); 

Step 9: Repeat Steps 2–8 until convergence is reached. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

boundary regions of these clusters. In this case, rough set-based clustering methods cannot obtain good results. So the

fuzzifier value m 1 should be initialized with a relatively small value when using rough set and fuzzy set-based clustering

methods. 

5.2. UCI data sets 

Some benchmark data sets from UCI storage are selected for experiments, including Ionosphere, Wine and Iris. The results

are presented from Tables 4–6 . 

From the experimental results presented from Tables 4–6 , the following conclusions can be drawn: 

(1) The performances of MSRFCM and MSRFCMII are better than SRFCM, as well TFCM performs better than FCM in

terms of most validity results. It can be explained that the multiple values of fuzzifier parameter involved in the clustering

methods can capture the uncertainty generated by a single fuzzifier value sufficiently. In this way, the variations of the

membership degrees under different fuzzifier values can be detected. 

(2) The average performances of MSRFCM and MSRFCMII are better than TFCM. The improvement can be attributed to

the fact that all patterns are partitioned into three approximation regions with respect to a fixed cluster based on shadowed

sets, which helps capture the natural topology of the data. The importance of the patterns in the core regions is enhanced

and the contribution of the patterns in the exclusion regions is removed when updating the prototypes. The formed multi-

granularities of the core and boundary regions can effectively deal with the vagueness and uncertainty implicated in data

from coarse to fine, especially for the uncertain patterns belonging to the core region of one cluster at the higher levels of

granularity and those also belonging to the boundary region of this cluster at the lower levels of granularity. 

(3) The algorithm MSRFCMII achieves better performance than the one obtained by MSRFCM in terms of most validity

indices. It attributes to the optimization mechanism based on minimizing the global total error of three-way approximations

for the corresponding fuzzy sets, which can be interpreted from the perspective of minimum distance within the framework
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Fig. 14. Recognition rate of TFCM, MSRFCM and MSRFCMII as varying m 2 with respect to a fixed value of m 1 . The value of m 2 is terminated until the 

maximum value m max (ξ = 0) with respect to the fixed value m 1 is achieved in MSRFCM and MSRFCMII. (a)fixing m 1 = 1 . 1 ; (b)fixing m 1 = 2 ; (c)fixing 

m 1 = 3 ; (d)fixing m 1 = 4 . 

Table 4 

The comparative validity results of Ionosphere. 

m = 1 . 1 (or m 1 = 1 . 1 ) 

RS PBM Dunn Q DB Err 

FCM 0.00713 3.4786 0.071382 25.535 1.5357 103 

SRFCM 0.00707 3.4382 0.071382 25.547 1.5445 103 

TFCM 0.00676 3.2398 0.071382 25.641 1.5958 105 

MSRFCM 0.0072 3.608 0.08165 26.055 1.499 101 

MSRFCMII 0.00849 4.3572 0.08165 25.629 1.3659 102 

TFCM avg 0.00721 3.21231 0.071552 27.5477 1.60287 109 

MSRFCM avg 0.00777 3.87206 0.072357 25.8191 1.45611 105.4 

MSRFCMII avg 0.00796 4.00448 0.072784 25.7084 1.43203 103.7 

m = 2 (or m 1 = 2 ) 

FCM 0.00452 1.9164 0.08165 27.626 2.0598 105 

SRFCM 0.0089 4.3892 0.071382 25.879 1.3805 111 

TFCM 0.00535 2.4435 0.08165 26.917 1.8198 103 

MSRFCM 0.00865 4.5182 0.08165 26.331 1.3374 102 

MSRFCMII 0.01488 6.5158 0.05469 27.9515 1.1684 139 

TFCM avg 0.00798 3.77363 0.076307 26.5508 1.53657 111.2 

MSRFCM avg 0.01 4.95189 0.07274 26.3098 1.30217 111.8 

MSRFCMII avg 0.017084 6.33796 0.028174 27.8597 1.17704 153.9 
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Table 5 

The comparative validity results of Wine. 

m = 1 . 1 (or m 1 = 1 . 1 ) 

RS PBM Dunn Q DB Err 

FCM 0.19786 144870 0.0032949 7.0048 1.4274 6 

SRFCM 0.18569 138310 0.0032949 7.03 1.4057 7 

TFCM 0.19186 136880 0.0032949 6.9942 1.5585 6 

MSRFCM 0.21778 162630 0.0032949 6.8281 1.1985 6 

MSRFCMII 0.2311 174822 0.0032949 6.83922 1.1007 6 

TFCM avg 0.20557 141070 0.0032949 7.41532 1.63763 9.1 

MSRFCM avg 0.205378 152348 0.0032806 7.02404 1.29549 6.1 

MSRFCMII avg 0.214272 158602 0.0032949 7.0 0 099 1.27334 6 

m = 2 (or m 1 = 2 ) 

FCM 0.1249 84934 0.0032949 7.6861 2.6729 6 

SRFCM 0.24799 190920 0.0039376 6.7423 1.0257 5 

TFCM 0.20202 138400 0.0032949 6.9563 1.6974 6 

MSRFCM 0.25312 196010 0.0039376 6.9197 1.0225 5 

MSRFCMII 0.25799 198981 0.0032949 6.9296 1.02094 6 

TFCM avg 0.209305 145250.4 0.0033891 7.13764 1.7777 7.6 

MSRFCM avg 0.245763 190324 0.0036771 6.94073 1.063729 6.2 

MSRFCMII avg 0.24747 190789 0.0034734 6.950143 1.062628 6.3 

Table 6 

The comparative validity results of Iris. 

m = 1 . 1 (or m 1 = 1 . 1 ) 

RS PBM Dunn Q DB Err 

FCM 0.41775 20.925 0.045222 0.91031 0.73848 25 

SRFCM 0.41426 20.587 0.045222 0.9143 0.76068 25 

TFCM 0.41205 20.804 0.045222 0.89894 0.7277 25 

MSRFCM 0.42483 21.64 0.045222 0.87508 0.70327 25 

MSRFCMII 0.42021 21.6183 0.045222 0.87479 0.67756 25 

TFCM avg 0.404882 19.4308 0.0590778 0.942424 0.746975 26.5 

MSRFCM avg 0.417325 21.0611 0.0458811 0.895685 0.719454 24.9 

MSRFCMII avg 0.421641 21.50186 0.055734 0.891839 0.702759 25.3 

m = 2 (or m 1 = 2 ) 

FCM 0.40418 20.395 0.045222 0.89867 0.75115 24 

SRFCM 0.42356 21.731 0.045222 0.83879 0.65972 25 

TFCM 0.40801 20.796 0.045222 0.87952 0.72303 24 

MSRFCM 0.41112 20.018 0.051813 0.82688 0.65574 24 

MSRFCMII 0.39298 18.8033 0.051813 0.845692 0.6457 22 

TFCM avg 0.363399 20.4539 0.0682932 0.895771 0.740238 25.5 

MSRFCM avg 0.42016 21.4091 0.0458811 0.856106 0.65027 24.2 

MSRFCMII avg 0.393982 18.9009 0.051813 0.848854 0.647175 22.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

of three-way decisions. Additionally, the contraction speed of the core regions of some clusters in MSRFCMII are faster than

MSRFCM as increasing the values of fuzzifier m 2 . It means that the new formed core regions under fuzzifier m 2 are closely

located around the natural centroids of these clusters, which can improve the prototype calculations. 

(4) The performance of FCM and SRFCM are seriously influenced by the selected fuzzifier values as dealing with the same

data set. It means the calculated prototypes and corresponding membership degrees may be spoiled by an unreasonable

fuzzifier value. Therefore, the uncertainty caused by the fuzzifier parameter needs to be carefully addressed during the

algorithm implementations. The best performance of SRFCM is better than FCM among different fuzzifier values which also

illustrate the essence that patterns divided into different approximation regions based on shadowed sets can help capture

better the overall topology of the data. 

6. Conclusions 

The management of uncertain information in a data set, such as overlapping patterns, the uncertainty generated by

model parameters and the vagueness arising in boundary regions, is crucial for rough set and fuzzy set-based clustering

methods. A generalized multigranulation rough-fuzzy clustering method based on shadowed sets is introduced in this paper.

All patterns are partitioned into different approximation regions with an optimization process based on shadowed sets

which can capture the natural topology of data automatically. The formed multigranulation approximation regions can detect

the uncertainty generated by a single fuzzifier value. So that the uncertain information implicated in data can be handled
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as much as possible, and the prototype calculations at a single level of granularity can be modified. The improvement of

the proposed method is illustrated in terms of several validity indices as compared with other C-means clustering methods,

such as fuzzy C-means, type-2 fuzzy C-means and rough-fuzzy C-means. 

Shadowed sets is an example of three-way approximations of fuzzy sets according to the framework of three-way deci-

sion theory. It can be viewed as a special model of granular computing which can analyze problems from different levels of

information granularity. Two kinds of optimization mechanisms are used to form shadows in this paper. The quality of the

proposed clustering approach can be practically improved based on the semantical optimization principle, i.e., the principle

of minimum distance. The balance between the representative capacity of the model and the size of granules discussed in

this paper can be treated as a reference for selecting a suitable level of granularity when solving the problems. This princi-

ple can also be employed for establishing multigranulation probabilistic rough set models with three-way decisions which

is under our study and will be reported shortly. 
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Appendix 

The proofs of Proposition I: 

Proof. Since g( d 1 , m 1 ) = g( d 2 , m 2 ) , it has: 

1 

1 + ( d 1 
1 −d 1 

) 
2 

m 1 −1 

= 

1 

1 + ( d 2 
1 −d 2 

) 
2 

m 2 −1 

(18) 

Obviously, it has ( 
d 1 

1 −d 1 
) 

2 
m 1 −1 = ( 

d 2 
1 −d 2 

) 
2 

m 2 −1 . Since m 1 − 1 > 0 and 0 < d 1 < 1, so ( 
d 1 

1 −d 1 
) 

2 
m 1 −1 > 0 is satisfied. Similarly,

( 
d 2 

1 −d 2 
) 

2 
m 2 −1 > 0 . By using a logarithm function to formula (18), it has: 

2 

m 1 − 1 

log 

(
d 1 

1 − d 1 

)
= 

2 

m 2 − 1 

log 

(
d 2 

1 − d 2 

)
(19) 

Since 1 < m 1 < m 2 , so 2 
m 1 −1 > 

2 
m 2 −1 > 0 , the signs of log ( 

d 1 
1 −d 1 

) and log ( 
d 2 

1 −d 2 
) must be the same. 

(1) If log ( 
d 1 

1 −d 1 
) < 0 , and log ( 

d 2 
1 −d 2 

) < 0 , namely, 0 < d 1 , d 2 < 0.5. According to (19), it has: log ( 
d 1 

1 −d 1 
) > log ( 

d 2 
1 −d 2 

) . So

d 1 
1 −d 1 

> 

d 2 
1 −d 2 

. Further, 1 
1 

d 1 
−1 

> 

1 
1 

d 2 
−1 

. Consequently, it has d 1 > d 2 . 

(2) If log ( 
d 1 

1 −d 1 
) > 0 , and log ( 

d 2 
1 −d 2 

) > 0 , namely, 0.5 < d 1 , d 2 < 1. According to (19), it has: log ( 
d 1 

1 −d 1 
) < log ( 

d 2 
1 −d 2 

) . So

d 1 
1 −d 1 

< 

d 2 
1 −d 2 

. Further, 1 
1 

d 1 
−1 

< 

1 
1 

d 2 
−1 

. Consequently, it has d 1 < d 2 . �
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