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Abstract
Multi-view clustering aims to group multi-view samples into different clusters based on the similarity. Since side informa-
tion can describe the relation between samples, for example, must-links and cannot-links, thus multi-view clustering with 
the consideration about side information along with samples can get more feasible clustering results. As a recent developed 
multi-view clustering approach, multi-view matrix completion (MVMC) constructs similarity matrix for each view and 
casts clustering into a matrix completion problem. Different from traditional multi-view clustering approaches, MVMC 
enforces the consistency of clustering results on different views as constraints for alternative optimization and the global 
optimal solution can be obtained. Although related experiments show that MVMC exhibits impressive performance, it still 
neglects the possibility of a sample belonging to a cluster. In this paper, we consider the possibility on the base of entropy 
and develop an entropy-based multi-view matrix completion for clustering with side information (EMVMC). Experiments 
on multi-view datasets Course, Citeseer, Cora, WebKB, NewsGroup, and Reuters validate the effectiveness of EMVMC.

Keywords Multi-view clustering · Fuzzy membership · Matrix completion

1 Introduction

1.1  Background

Multi-view datasets consist of samples with multiple views, 
and each view corresponds to a feature group. Suppose, 
we collect multiple videos from YouTube and each video 
appears in multiple varied forms, e.g., visual, audio, and 
text. Then, each form also has multiple features. For exam-
ple, text possesses color, size, shape, and some other fea-
tures. We regard these forms as views, and then a multi-view 
video dataset is composed of these collected videos.

In order to process multi-view datasets, some multi-view 
learning machines or multi-view approaches [1–8] are devel-
oped and they are applied to different applications including 

multi-view classification, multi-view representation, multi-
view clustering [9–15], etc. Among these applications, 
multi-view clustering has been paid more attention by recent 
researchers. Multi-view clustering aims to group multi-view 
samples into different clusters based on the similarity, and it 
has plenty of real applications, such as data summarization 
[16], text mining [17, 18], bioinformatics [19]. According to 
these applications, some multi-view clustering approaches 
are developed including the following four cases. First, Rab-
bouch et.al developed a clustering approach to count and 
recognize the vehicles [16]. Second, Azadani et. al. [17] 
proposed a well-established data mining technique called 
frequent itemset mining to employ a minimum spanning tree 
based clustering algorithm to discover various subthemes of 
the document and then the most informative sentences in a 
document can be selected. Third, Zheng et. al. [18] devel-
oped a corpus-based enrichment approach for short text clus-
tering. Fourth, Dougherty et. al. [19] designed a clustering 
approach to divide the gene-expression microarrays. Related 
experiments have validated the effectiveness of these devel-
oped clustering approaches in corresponding fields.
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1.2  Problem and recent solutions

But it is found that these approaches exist the following 
problems. First, in order to process multi-view datasets, 
some clustering approaches concatenate all features from 
multiple views into a single one. Although this opera-
tion brings a convenience in mathematic, it has an vital 
drawback, namely the dimension of concatenation feature 
matrices is usually high which may trigger the curse of 
dimensionality and result in a high computational cost. 
Second, the approach of concatenation treats different 
views equally which is not appropriate since the difference 
between views is ignored. Third, these approaches ignore 
the side information of multi-view samples. Indeed, side 
information can describe the relation between samples, 
for example, must-links and cannot-links and this kind 
of information can guide the multi-view clustering from 
a new point.

In order to process these problems, researchers have 
developed many solutions including multi-view clustering 
via robust nonnegative matrix factorization (MVCRNMF) 
[20] and multi-view matrix completion (MVMC) approach 
[21]. MVCRNMF is mainly used for community detection 
and its key idea is to build a multi-view robust nonnegative 
matrix factorization (NMF) model with the co-regularized 
constraint on community indicator matrices of link view 
and content view. This can make link and content infor-
mation complement each other during the factorization 
process of NMF.

Different from MVCRNMF, MVMC has more widely 
application fields and it can solve above problems. As [21] 
said, side information describes the relation between sam-
ples and there are two kinds of side information, label-
level and sample-level. Side information with label-level 
is hard to be used in real-world applications [21] while the 
one with sample-level is convenient to be collected since 
this kind of information can be reflected through pairwise 
constraints. In terms of pairwise constraints, they are 
always consisted of two parts, must-link (M) and cannot-
link (C). A must-link (cannot-link) represents that the pair 
of samples should (not) be assigned into the same cluster. 
Due to it is convenient to gather pairwise constraints, thus, 
some scholars pay attention to clustering with sample-
level side information and develop some multi-view clus-
tering approaches. Among these approaches, MVMC is a 
new developed (which is proposed in 2017) and effective 
one for clustering with side information. Related experi-
ments have shown that MVMC constructs a pairwise simi-
larity matrix Sv for the vth view independently and casts 
clustering task into a matrix completion problem based 
on given pairwise constraints and feature information 
from multiple views. Then, the final pairwise similarity 

matrix S is learned by controlling S and Sv in different 
views to approach each other. The global optimal solution 
is obtained by projective alternative optimization since the 
objective function is jointly convex.

1.3  Proposal

Although related experiments [21] have shown that MVMC 
can efficiently utilize side information and outperform some 
previous multi-view clustering approaches, it has a key 
defect. In MVMC, one adopts Eq. (1) to construct a pairwise 
similarity matrix Sv in vth view where R is the number of 
clusters and �v

r
∈ {0, 1}n is the membership vector of the rth 

cluster in the vth view, where uv
i,j
= 1 if the jth sample xj is 

assigned to the rth cluster and zero, otherwise. Here, n is the 
total number of samples. According to Sv , it is found the 
belonging of sample xj has only two cases, belongs or not 
belongs. This indicates that the relationship between cluster 
and sample is clear. While as we know, in real-world appli-
cations, each sample belongs to a cluster with a possibility. 
For example, a sample belongs to cluster A with a 30% pos-
sibility while belongs to cluster B with a 70% possibility.

During the procedure of MVMC, the possibility is not taken 
into consideration, thus we will overcome it. Due to entropy 
is used to evaluate the class certainty of each sample and 
fuzzy membership between samples [22], thus we combine 
entropy with MVMC and propose an entropy-based multi-
view matrix completion for clustering with side information 
(EMVMC).

1.4  Motivation, novelty, contribution

According to what we have said before, the motivation of 
EMVMC is introducing entropy into the MVMC so as to 
consider the possibility of a sample belonging to a cluster.

Since MVMC is developed in 2017 and to the best of our 
knowledge, there is no recent multi-view clustering approach 
is developed to group multi-view samples into different clus-
ters based on the class certainty of each sample, thus our 
developed EMVMC has a novelty.

What’s more, since compared with MVMC, our EMVMC 
considers the possibility of a sample belonging to a cluster 
so as to boost the performance of a multi-view clustering 
with side information, thus contributions of EMVMC are (1) 
developing a more feasible multi-view clustering approach 
for real-world applications; (2) reflecting the degree of mem-
bership of a sample to a cluster.

(1)Sv =

R∑

r=1

�
v
r
(�v

r
)T
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1.5  Framework

The rest of this paper is organized as below. Review about 
MVMC can be found in Sect. 2. Description of EMVMC 
is given in Sect. 3. Experiments are given in Sect. 4. The 
conclusions are given in Sect. 5.

2  Review about MVMC

MVMC includes two main parts, one is clustering with side 
information and the other is matrix completion (MC) [21]. 
Thus here, we first to review these two main parts, and then 
review the framework of MVMC.

2.1  Clustering with side information

Clustering with side information has been widely used and 
developed well in recent years. We know that side infor-
mation describes relation between samples and the relation 
can be reflected by label-level and sample-level. In terms 
of sample-level, must-link and cannot-link are two ways to 
collect pairwise constraints which reflect side information. 
There are plenty of algorithms about clustering with side 
information are proposed based on distance metric learn-
ing. For example, the information theoretic metric learning 
algorithm (ITML) proposed in [23] learns a metric matrix 
with side information based on information theory. Matrix 
completion based constraint clustering (MCCC) proposed 
in [24] converts clustering to a matrix completion problem. 
Internet traffic clustering with side information (ITCSI) pro-
posed in [25] adopts a constrained expectation maximization 
(EM) algorithm for clustering.

2.2  Matrix completion

Matrix completion problem was original proposed by [26] 
for collaborative filtering in 1992. As [26] said, suppose 
that there is a low-rank matrix should be recovered and MC 
will find a matrix X that minimizes the difference with the 
given observation. However, it is still challenging because 
rank minimization problem is NP-hard and this challenging 
confuses the scholars almost 20 years until 2012. In 2012, 
[27] found that minimizing rank(X) can be realized by the 
minimization of ||X||⋆ which is the nuclear norm of X under 
broad conditions. Moreover, [28] proposed an approach to 
speed up the process of MC by utilizing side information. 
After that, MC problem gets a fast development and has 
been applied into clustering and some approaches includ-
ing graph-based clustering proposed by [29], crowd-sourced 
clustering proposed by [30], side information-related clus-
tering approach proposed by [24], subspace-learning-based 
clustering proposed by [31] have been developed.

2.3  Framework of MVMC

Suppose there is a dataset D with n samples and V views (see 
Eq. 2) and features in vth view is denoted as Xv (see Eq. 3) 
where xv

i
∈ ℝ

1×dv is the feature of xi in the vth view, and dv 
is dimension of the vth view. Then, D can be rewritten with 
Eq. (4).

After that, let M (C) denote the set of must-link (cannot-
link) constraints, (i, j) ∈ M((i, j) ∈ C) implies xi and xj should 
(not) be assigned into the same cluster. � = M

⋃
C is used 

to represent all pairwise constraints. Then, the framework 
of MVMC is given below.

According to Sect. 1.3, in the rth cluster in the vth view, 
�
v
r
∈ {0, 1}n is the membership vector where uv

r,j
= 1 if the jth 

sample xj is assigned to the rth cluster and zero, otherwise. 
Then, in the vth view, the pairwise similarity matrix Sv is given 
by Eq. (1) and Sv is a n × n matrix. Each element of Sv is 0 or 
1. If the ith row and jth column element of Sv , i.e., [Sv]i,j is 1(0), 
then xi and xj are (not) assigned to the same cluster in vth view.

Once we get S1, S2,… , SV , we can adopt Eq. (5) to get a 
finally similarity matrix S.

What’s more, according to [21] said, Sv can be expanded by 
Eqs. (6) and (7) where Mv ∈ ℝ

k×k is a positive semidefinite 
matrix and �v

j
 s ( j = 1,… , k ) are the first k left singular vec-

tor of features in Xv . Although k is able to vary over different 
views, this does not make difference to the essence of the 
problem.

Moreover, due to Mv is constrained as a positive semidefinite 
matrix, thus we have the expression given in Eq. (8) where 
�i and eigi are the ith singular value and eigenvalue of M, 
respectively. Then, since Zv is the orthogonal matrix, so we 
have the expression given in Eq. (9).

(2)D ={x1, x2,… , xn−1, xn}

(3)Xv =(x
v
1
;xv

2
;… ;xv

n
) ∈ ℝ

n×dv

(4)D ={X1,X2,… ,XV} ∈ ℝ
n×

∑V

v=1
dv

(5)S =
1

V

V∑

v=1

Sv

(6)Sv =ZvMvZ
T
v

(7)Zv =[�
v
1
, �v

2
,… , �v

k
]

(8)||||Mv
||||⋆ =

k∑

i=1

||𝜎i|| =
k∑

i=1

||eigi|| = tr(Mv)

(9)||||Sv||||⋆ =
|||
|||ZvMvZ

T
v

|||
|||⋆ = ||||Mv

||||⋆
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Thus according to the above information, the optimization 
problem of MVMC can be given with Eqs. (10), (11), and 
(12). Then, Eqs. (13) and (14) show the constraints of this 
optimization problem. Among these equations, Sob is the 
partial observations matrix, R�(⋅) ∶ ℝ

n×n
↦ ℝ

n×n is a linear 
operator which preserves the entry of S in � and 0 outside, 
C1 > 0 and C2 > 0 are two regularization parameters, ||⋅||F 
is Frobenius norm.

In order to solve this problem, MVMC first to initial {Mv}
V
v=1

 
and S by Sob , then it repeats the step (a), minimizing {Mv}

V
v=1

 
over S and step (b), minimizing S over {Mv}

V
v=1

 , until conver-
gence. Details can be referred to [21]. After optimization of 
the problem, we can get the pairwise similarity matrix S and 
the clustering results.

3  The framework of entropy‑based 
multi‑view matrix completion 
for clustering with side information 
(EMVMC)

3.1  Entropy‑based fuzzy membership of samples

Suppose there are n multi-view samples with two clusters, l 
samples belong to cluster + 1 (positive cluster) and other 
n − l samples belong to cluster − 1 (negative cluster). Then, 
we assume the fuzzy membership of a sample xi from posi-
tive cluster is m+

i
 while the one of a sample xj from negative 

cluster is m−
j
 . As [22] said, fuzzy membership can be meas-

ured by entropy, i.e., a higher cluster certainty denotes a 
lower entropy and a lower entropy means a higher fuzzy 
membership. Thus, we adopt entropy to decide the fuzzy 
membership of a sample.

First, for a sample xi , we select its k nearest neighbors 
{xi1, xi2,… , xik} . Second, among these k nearest neighbors, 
we count the number of both positive samples and nega-
tive samples and denote the numbers as num+i and num−i , 
respectively. Third, we suppose that xi belongs to positive 

(10)minS,{Mv}
m
v=1

V∑

v=1

(tr(Mv) + C1A + C2B)

(11)A =
|||
|||R�(ZvMvZ

T
v
− Sob)

|||
|||
2

F

(12)B =
|||
|||(ZvMvZ

T
v
− S)

|||
|||
2

F

(13)0 ≤ Si,j ≤ 1,∀i, j ∈ {1, 2,… , n}

(14)Mv ∈ Sk
+
, v = 1, 2,… ,m

cluster with a p+i possibility while belongs to negative clus-
ter with a p−i possibility and calculate p+i and p−i by Eqs. 
(15) and (16). Fourth, the entropy of xi is defined by Eq. (17) 
where ln represents the natural logarithm operator. Fifth, we 
design a function f (xi) whose expression is given in Eq. (18). 
Sixth, if xi is a positive sample, its fuzzy membership is m+

i
 

(see Eq. 19), otherwise, if xi is a negative sample, its fuzzy 
membership is m−

i
 (see Eq. 20) where r is the minority-to-

majority cluster ratio.

3.2  The solution of EMVMC

Once we get the fuzzy membership mi of each sample xi , 
we combine them with MVMC and get the solution of 
EMVMC. Indeed, the model of EMVMC is very simi-
lar with the one of MVMC and the only difference is that 
EMVMC introduces entropy-based fuzzy membership of 
samples. Although it looks that this introduction is not worth 
mentioning, the later experiments will validate that the intro-
duction brings an impressive performance.

Indeed, the introduction is reflected by �v
r
 . In EMVMC, 

we let �v
r
∈ {uv

r,j
}n be the membership vector of the rth clus-

ter in the vth view and different from the one in MVMC, that 
in EMVMC, uv

r,j
∈ [0, 1] , i.e., jth sample belongs to rth clus-

ter with a uv
r,j

 possibility. Then, we still get Sv and S. Indeed, 
in Sv , when [Sv]i,j is larger, the xi and xj have a larger proba-
bility to be assigned to a same cluster. After that, we opti-
mize Eqs. (10), (11), and (12) with the constraints given by 
Eqs. (13) and (14) to get the clustering results.

4  Experiments

Our experiments include four parts. First part is experimen-
tal setting, second one is clustering performance compari-
son, third one is the relation between the number of nearest 
neighbors and clustering performance, and the fourth one is 
significance analysis.

(15)p+i =
num+i

k

(16)p−i =
num−i

k

(17)Hi = − p+i ln(p+i) − p−i ln(p−i)

(18)f (xi) =1 − Hi

(19)m+
i
=f (xi)

(20)m−
i
=f (xi) × r
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4.1  Experimental setting

4.1.1  Datasets

Since EMVMC is a multi-view clustering approach, so we 
conduct the experiments on multi-view datasets Course, 
Citeseer, Cora, WebKB, NewsGroup, and Reuters. These 
datasets are also used in rank consistency based multi-view 
learning (RANC) [32] and the configurations and details can 
be referred to [32]. Here, we summary their information in 
Table 1 and describe them in simple.

Course consists of course web pages and non-course ones 
and each page has two views [5].

Both Citeseer and Cora consist of samples with two 
views, i.e., content and cites [33].

WebKB consists of web pages collected from four uni-
versities: Cornell, Texas, Wisconsin, and Washington which 
have five categories, i.e., student, project, course, stuff, and 
faculty. Each web page is described with two views: content 
and citation and we treat WebKB in four separate subdata-
sets grouped by universities [32].

NewsGroup consists of samples from six groups, i.e., M2, 
M5, M10, NG1, NG2, NG3 and we treat NewsGroup in six 
separate subdatasets corresponding to each group. For each 
sub-one, there are three views, partitioning around methods, 
supervised mutual information, and unsupervised mutual 
information [34].

Reuters consists of machine translated documents which 
are written in five different languages, i.e., English, French, 
German, Italian, and Spanish. Each language is treated as 
a view and each document can be translated from one lan-
guage to another language. Moreover, documents are also 

categorized into six different topics (classes), i.e., C15, 
CCAT, E21, ECAT, GCAT, and M11 [35, 36].

4.1.2  Compared approach and parameter setting

Since [21] has validated that MVMC outperforms some 
classical multi-view clustering algorithms including co-
regularized spectral clustering (Co-Reg) [37], multi-view 
kernel k-means algorithm (MKKM) [38], robust multi-view 
spectral clustering based on Markov chain (RMSC) [39], 
ITML [23], MCCC [24], etc., so we only adopt MVMC as 
the compared approach.

Moreover, since MVMC is the basic model of EMVMC 
and compared with MVMC, EMVMC only has one more 
particular parameter, i.e., the number of nearest neighbors, 
k. So the setting of most parameters can refer to [21] and k 
is selected from the set {1, 2,… , 20}.

4.1.3  How to get and measure clustering performance

Here, we take a dataset for instance and describe that how to 
get and measure the clustering performance.

First, for a multi-view dataset with C classes and n sam-
ples, we use a multi-view clustering approach to group the 
multi-view samples into R clusters. Sometimes samples of 
one class are fallen into multiple clusters and a cluster maybe 
includes samples from multiple classes. Here, nc

r
 denotes 

the number of samples in the rth cluster from cth class, nr 
denotes the total number of samples in the rth cluster, nc 
represents the number of samples in cth class.

Second, in terms of this dataset, we select one class as the 
positive class and other classes form the negative one. Then, 
we can get a binary class subdataset. After the repetition of 
this operation for C times, we can form C different binary 
class subdatasets.

Third, for each binary class subdataset, we define the 
label of each cluster. Simply speaking, in each cluster, if 
the number of positive samples is larger than the number of 
negative samples, we regard this cluster is positive. Other-
wise, this cluster is negative. Then, observed class labels of 
samples in a positive (negative) cluster are positive (nega-
tive) no matter their true class labels are positive or negative.

Fourth, for each binary class subdataset, we count the 
numbers of true positive (TP), false positive (FP), false neg-
ative (FN), and true negative (TN), respectively [40]. TP 
means the samples whose true and observed labels are both 
positive, FP indicates the samples whose true labels are neg-
ative while the observed labels are positive, FN denotes the 
samples whose true labels are positive while the observed 
labels are negative, TN represents the samples whose true 
and observed labels are both negative.

Fifth, we repeat the third step and fourth step for C times 
and then we can get C TPs, C FPs, C FNs, and C TNs. For 

Table 1  Brief dataset description

R is the number of clusters, n is the number of samples, V is the num-
ber of views, and d

v
 is the dimension of each view

Dataset R n V d
v
 ( v = 1, 2,… ,V)

Course 2 1051 2 66,5
Citeseer 6 3264 2 3703, 3264
Cora 7 2708 2 1433, 2708
Cornell 5 195 2 1703, 195
Texas 5 185 2 1703, 185
Washington 5 217 2 1703, 217
Wisconsin 5 262 2 1703, 262
News-M2 2 1200 3 2000, 2000, 2000
News-M5 5 500 3 2000, 2000, 2000
News-M10 10 500 3 2000, 2000, 2000
News-NG1 2 500 3 2000, 2000, 2000
News-NG2 5 400 3 2000, 2000, 2000
News-NG3 8 1000 3 2000, 2000, 2000
Reuters 6 1600 5 2000, 2000, 2000, 2000, 2000
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convenience, we sum C TPs and still use TP to denote the sum. 
For others, we carry out the same operations.

Sixth, in order to measure the clustering performances, 
we adopt the following widely used criteria: accuracy, true 
positive rate ( acc+ ), true negative rate ( acc− ), positive predic-
tive value (PPV), F-Measure, G-Mean, normalized mutual 
information (NMI), adjusted rand index (Adj-RI), and aver-
age entropy (AE). The computation expressions of accuracy, 
acc+ , acc− , PPV, F-Measure, and G-Mean are given in Eqs. 
(21)–(26), and we can see the definitions of these equations 
from [22]. The computation expression of NMI is given in Eq. 
(27) where H(�) represents the entropy of the clusters (see 
Eq. 28) and H(�) represents the entropy of the classes (see 
Eq. 29). We can refer to [41] to see the definition of NMI. For 
Adj-RI, its computation expression can be found in Eq. (30) 
and [42] where RI is the rand index (see Eq. 31) and E(⋆) 
represents the expectation of ⋆ . In Eq. (31), a is the number of 
samples whose true labels and observed labels are same while 
b is the number of samples whose true labels and observed 
labels are different. For AE, its computation expression is 
given in Eq. (32) and for each sample, its entropy is given 
by Eq. (17). What’s more, clustering time (CT) (in seconds) 
is also a widely used criterion. Its computation expression is 
given in Eq. (33) where ts represents the time when clustering 
is start and te represents the time when clustering results are 
given.

(21)accuracy =
TP + TN

TP + TN + FP + FN

(22)acc+ =
TP

TP + FN
= recall+ = sensitivity

(23)acc− =
TN

TN + FP
= recall− = specificity

(24)PPV =
TP

TP + FP
= precision

(25)F-Measure =
2 × precision × recall+

precision + recall+

(26)G-Mean =
√
acc+ × acc−

(27)
NMI =

2
∑R

r=1

∑C

c=1

nc
r

n
ln

�
nc
r
n

∑R

p=1
nc
p

∑C

q=1
n
q
r

�

H(�) + H(�)

(28)H(�) = −

R∑

r=1

nr

n
ln
(nr
n

)

Seventh, in order to show the generalization performance of 
these clustering approaches, for each dataset, 10 test runs are 
conducted and the average performance as well as standard 
deviation are presented. Concretely speaking, according to 
Table 1, we know for each dataset, they consist of multi-
ple samples. But indeed, these samples are collected from a 
larger data warehouse. So each time, we select some samples 
from this warehouse and carry out clustering. After 10 test 
runs, we can get 10 groups of clustering performances and 
the corresponding average performance and standard devia-
tion are also gotten.

4.2  Comparison about clustering performance

According to the definitions of the clustering criteria, we 
know that a smaller CT or AE indicates a better clustering 
performance while for other criteria, a higher value denotes 
a better clustering performances. Then, we adopt Table 2 and 
Table 3 to show the related experimental results. According 
to these two tables, we find that (1) on all datasets, EMVMC 
has a better result in terms of accuracy, acc− , PPV, F-Meas-
ure, G-Mean; (2) in terms of acc+ , EMVMC outperforms 
MVMC except for Washington; (3) for NMI, Adj-RI, and AE, 
EMVMC performs better on half of the datasets; (4) In terms 
of CT, although on some datasets, EMVMC has to cost more 
time due to EMVMC should compute the entropy firstly, but 
the extra time is less than 10% which is acceptable for us; (5) 
compared with MVMC, EMVMC has a smaller average stand-
ard deviation on each criterion which means the performance 
of EMVMC is more stable. Generally speaking, EMVMC has 
a better clustering performance than MVMC in average.

4.3  Relation between the number of nearest 
neighbors and clustering performance

According to the procedure of EMVMC, we know that 
the number of nearest neighbors k influences the fuzzy 

(29)H(�) = −

C∑

c=1

nc

n
ln
(
nc

n

)

(30)Adj-RI =
RI − E[RI]

maxRI − E[RI]

(31)RI =
a + b

Cn(Cn − 1)∕2

(32)AE =

n∑

i=1

Hi

(33)CT =te − ts
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membership of a sample and as a result, the clustering 
performance will also be affected. Thus here, we show the 
relation between k and clustering performance. For conveni-
ence, we only show the relation in terms of accuracy with 
Fig. 1 due to for other clustering criteria, we can draw a 
similar conclusion. According to this figure, it is found that 
the accuracy of EMVMC has an approximate monotonically 
increasing property when k ∈ [1, 10] while an approximate 
monotonically decreasing property when k ∈ [11, 20] . This 
indicates that if we want to get a better accuracy, maybe set-
ting k be 9, 10, 11 is much better. Besides that, we also find 
that for other criteria, we can get the similar results.

4.4  Significance analysis

In order to show the effectiveness of the proposed EMVMC, 
we adopt significance analysis including the paired t test 

[43] and Friedman–Nemenyi statistical test [44]. In terms 
of the paired t test [43], it is used to analyze if the differ-
ences between two compared approaches on one dataset are 
significant or not. In terms of Friedman–Nemenyi statistical 
test [44], Friedman test is used to analyze if the differences 
between all compared approaches on multiple datasets are 
significant or not while Nemenyi test is used to analyze if the 
differences between two compared approaches on multiple 
datasets are significant or not.

(A) In our experiments, the paired t test [43] is used 
to analyze that for a clustering criterion, if the difference 
between EMVMC and MVMC on one dataset is signifi-
cant or not. Concretely speaking, since for each dataset, 
we run the test for 10 times, so with EMVMC and MVMC 
used, for each clustering criterion A, each dataset B has 
10 results and we record them as A − B(EMVMC) and 
A − B(MVMC) , respectively. Then, we carry out paired t 

Table 2  Comparisons of 
clustering performance on the 
used datasets

For the first eight criteria, the higher, the better. For EMVMC, result in bold represents that the perfor-
mance of EMVMC is worse

Accuracy↑ acc+ ↑ acc− ↑ PPV↑ F-Measure↑ G-Mean↑ NMI↑ Adj-RI↑ AE↓ CT↓

EMVMC
Course 0.87 0.89 0.85 0.86 0.86 0.87 0.63 0.63 0.01 103.00
Citeseer 0.62 0.70 0.60 0.26 0.37 0.65 0.80 0.85 0.10 299.00
Cora 0.71 0.79 0.70 0.30 0.43 0.74 0.85 0.85 0.53 248.16
Cornell 0.74 0.73 0.74 0.42 0.53 0.74 0.88 0.83 0.62 17.89
Texas 0.67 0.74 0.65 0.35 0.46 0.69 0.98 0.91 0.16 16.69
Washington 0.72 0.78 0.70 0.40 0.51 0.74 0.56 0.60 0.55 21.28
Wisconsin 0.64 0.65 0.64 0.31 0.42 0.64 0.79 0.81 0.18 22.55
News-M2 0.89 0.97 0.80 0.83 0.86 0.88 0.88 0.84 0.02 158.52
News-M5 0.91 0.92 0.90 0.71 0.80 0.91 0.70 0.75 0.09 65.66
News-M10 0.78 0.79 0.78 0.28 0.42 0.78 0.78 0.78 0.13 68.97
News-NG1 0.88 0.94 0.82 0.84 0.86 0.88 0.39 0.37 0.03 66.89
News-NG2 0.89 0.93 0.87 0.65 0.75 0.90 0.78 0.76 0.55 58.10
News-NG3 0.83 0.93 0.81 0.41 0.55 0.87 0.60 0.62 0.37 133.42
Reuters 0.71 0.70 0.72 0.33 0.45 0.71 0.79 0.79 0.33 353.33
MVMC
Course 0.84 0.84 0.84 0.84 0.84 0.84 0.52 0.57 0.02 94.88
Citeseer 0.59 0.63 0.58 0.23 0.33 0.61 0.72 0.73 0.40 299.00
Cora 0.70 0.76 0.69 0.29 0.41 0.72 0.71 0.70 0.25 243.48
Cornell 0.73 0.71 0.73 0.40 0.52 0.72 0.63 0.64 0.32 16.99
Texas 0.65 0.72 0.63 0.33 0.43 0.67 0.70 0.66 0.37 17.20
Washington 0.70 0.79 0.68 0.38 0.49 0.73 0.71 0.74 0.40 19.23
Wisconsin 0.61 0.63 0.60 0.28 0.39 0.61 0.58 0.58 0.05 24.27
News-M2 0.87 0.95 0.79 0.82 0.84 0.87 0.62 0.65 0.02 162.53
News-M5 0.89 0.91 0.89 0.67 0.76 0.90 0.72 0.67 0.21 68.32
News-M10 0.74 0.73 0.74 0.24 0.36 0.74 0.84 0.84 0.21 68.95
News-NG1 0.86 0.93 0.78 0.81 0.83 0.85 0.84 0.86 0.04 71.94
News-NG2 0.87 0.92 0.86 0.62 0.72 0.89 0.52 0.51 0.55 51.88
News-NG3 0.81 0.88 0.81 0.39 0.53 0.84 0.66 0.65 0.42 146.68
Reuters 0.66 0.69 0.65 0.28 0.40 0.67 0.92 0.92 0.38 368.64
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Table 3  Comparisons of the 
standard deviation of clustering 
performance on the used 
datasets

Accuracy acc+ acc− PPV F-Measure G-Mean NMI Adj-RI AE CT

EMVMC
Course 0.05 0.07 0.08 0.03 0.05 0.02 0.05 0.03 0.00 6.84
Citeseer 0.02 0.05 0.05 0.02 0.03 0.06 0.00 0.05 0.01 17.91
Cora 0.03 0.02 0.05 0.03 0.04 0.03 0.01 0.05 0.05 23.49
Cornell 0.01 0.01 0.06 0.02 0.03 0.02 0.02 0.00 0.03 0.34
Texas 0.05 0.03 0.01 0.01 0.03 0.03 0.06 0.08 0.00 1.61
Washington 0.05 0.07 0.03 0.02 0.02 0.00 0.03 0.02 0.00 0.42
Wisconsin 0.01 0.02 0.02 0.03 0.01 0.02 0.07 0.01 0.02 1.60
News-M2 0.02 0.01 0.05 0.05 0.04 0.06 0.06 0.04 0.00 12.80
News-M5 0.05 0.05 0.09 0.01 0.00 0.06 0.01 0.05 0.00 5.29
News-M10 0.04 0.03 0.04 0.00 0.04 0.06 0.02 0.01 0.00 5.46
News-NG1 0.07 0.06 0.01 0.06 0.02 0.03 0.00 0.02 0.00 5.35
News-NG2 0.07 0.01 0.08 0.05 0.03 0.08 0.02 0.07 0.03 3.95
News-NG3 0.06 0.00 0.00 0.01 0.03 0.08 0.03 0.06 0.02 2.61
Reuters 0.07 0.05 0.03 0.00 0.04 0.03 0.05 0.01 0.01 31.38
MVMC
Course 0.14 0.05 0.08 0.05 0.16 0.11 0.08 0.11 0.00 5.14
Citeseer 0.02 0.08 0.01 0.01 0.04 0.09 0.09 0.00 0.00 10.93
Cora 0.11 0.04 0.08 0.01 0.02 0.14 0.04 0.09 0.05 19.79
Cornell 0.02 0.04 0.11 0.08 0.09 0.06 0.03 0.00 0.04 1.65
Texas 0.06 0.06 0.05 0.05 0.04 0.13 0.02 0.05 0.04 1.44
Washington 0.05 0.13 0.14 0.06 0.06 0.10 0.13 0.12 0.03 3.32
Wisconsin 0.08 0.03 0.08 0.02 0.04 0.12 0.03 0.07 0.00 2.99
News-M2 0.07 0.12 0.15 0.16 0.15 0.17 0.04 0.13 0.00 20.76
News-M5 0.01 0.07 0.07 0.08 0.14 0.13 0.03 0.13 0.04 8.14
News-M10 0.04 0.09 0.06 0.01 0.00 0.02 0.12 0.16 0.02 1.47
News-NG1 0.14 0.03 0.07 0.14 0.15 0.02 0.07 0.11 0.00 1.24
News-NG2 0.06 0.08 0.03 0.02 0.03 0.14 0.08 0.07 0.10 1.33
News-NG3 0.12 0.11 0.12 0.03 0.04 0.08 0.09 0.01 0.04 26.61
Reuters 0.10 0.11 0.09 0.01 0.02 0.11 0.13 0.17 0.01 60.87
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Fig. 1  Relation between the number of nearest neighbors and clustering performance in terms of accuracy
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test on A − B(EMVMC) and A − B(MVMC) and get a sig-
value. If sig-value is less than 0.05, it denotes that EMVMC 
and MVMC have a significant difference in this clustering 
criterion A on this dataset B. Otherwise, if the sig-value is 
more than 0.5, it denotes that EMVMC and MVMC have 
not a significant difference in A on B. What’s more, if the 
sig-value is smaller, the difference between EMVMC and 
MVMC is more significant.

(A-1) According to the definition of paired t test and sig-
value, we use Table 4 to show the sig-value of each dataset 
for each clustering criterion. From this table, it is found that 
only on NMI, Adj-RI, AE, and CT, the differences between 
EMVMC and MVMC on some datasets are not significant 
while on other criteria, their differences are significant on 
each dataset. What’s more, according to Table 2 and Table 4, 
we find that for those cases which differences are not sig-
nificant except for CT on Reuters, the performance of our 
EMVMC is not significant worse than the one of MVMC. 
In other words, for each clustering criterion, EMVMC out-
performs MVMC on each dataset in statistical except for 
CT on Reuters.

(B) In our work, we adopt Friedman–Nemenyi statistical 
test [44] to analyze the significance of difference between 
these multi-view clustering approaches on multiple datasets. 
According to the definitions of Friedman test and Nemenyi 
test, since the number of compared approaches is two, thus 
Friedman test and Nemenyi test should draw a same conclu-
sion. Now we carry out the Friedman test and Nemenyi test 
on each clustering criterion as below.

(B-1) For each clustering criterion, Friedman test ranks 
the approaches for each dataset separately, the best perform-
ing approach getting the rank of 1, the second best rank 
2,… , as shown in Table 5. If the performances are same, the 
ranks should be averaged. Further, the average ranks on each 

clustering criterion for the approaches are also assigned. 
We define that rj

i
 be the rank of jth of k approaches on the 

ith of N datasets. Then, for jth approach, the Friedman test 
compares the average ranks, namely Rj (see Eq. 34). The 
Friedman statistic �2

F
 (see Eq. 35) is distributed according 

to �2
F
 with k − 1 degrees of freedom. On the base of �2

F
 , 

another statistic FF is given in Eq. (36). In Eq. (36), FF is 
distributed according to the F-distribution with k − 1 and 
(k − 1)(N − 1) degrees of freedom. According to [44] said, 
by carrying out the Friedman test, if �2

F
 or FF is larger than 

the critical value F�(k − 1, (k − 1)(N − 1)) where � is a con-
fidence level, we should reject the null-hypothesis, namely 
the differences between all compared approaches on the mul-
tiple datasets are significant. Moreover, if FF is N / A, i.e., 
the denominator of Eq. (36) is 0, and �2

F
 is still larger than 

F�(k − 1, (k − 1)(N − 1)) , we can say that the differences 
between all compared approaches are absolute significant. 
The table of critical values can be found in any statistical 
book and in generally, � is set to be 0.05 or 0.10.

(B-2) After that, we carry out Nemenyi test and in our 
experiments, for each clustering criterion, we compute 

(34)Rj =
1

N

N∑

i=1

r
j

i

(35)�2
F
=

12N

k(k + 1)

[
k∑

j=1

R2
j
−

k(k + 1)2

4

]

(36)FF =
(N − 1)�2

F

N(k − 1) − �2
F

Table 4  The paired t test 
comparisons of EMVMC and 
MVMC on different clustering 
criteria for the used datasets

The sig-values which are not smaller than 0.5 are given in bold

Sig-value Accuracy acc+ acc− PPV F-Measure G-Mean NMI Adj-RI AE CT

Course 0.034 0.050 0.011 0.018 0.026 0.034 0.047 0.040 0.044 0.033
Citeseer 0.044 0.026 0.031 0.045 0.012 0.003 0.037 0.008 0.036 0.000
Cora 0.021 0.032 0.019 0.041 0.043 0.026 0.030 0.035 0.058 0.069
Cornell 0.017 0.028 0.014 0.039 0.031 0.021 0.020 0.042 0.039 0.012
Texas 0.032 0.029 0.033 0.015 0.049 0.031 0.042 0.028 0.001 0.031
Washington 0.029 0.013 0.038 0.039 0.044 0.019 0.047 0.013 0.035 0.036
Wisconsin 0.007 0.030 0.026 0.042 0.024 0.043 0.024 0.002 0.003 0.039
News-M2 0.017 0.018 0.016 0.014 0.015 0.017 0.028 0.032 0.003 0.025
News-M5 0.019 0.013 0.021 0.006 0.042 0.017 0.056 0.020 0.009 0.040
News-M10 0.048 0.029 0.045 0.010 0.020 0.017 0.057 0.045 0.015 0.000
News-NG1 0.025 0.013 0.039 0.030 0.028 0.026 0.022 0.053 0.043 0.047
News-NG2 0.016 0.011 0.018 0.046 0.034 0.014 0.049 0.027 0.005 0.036
News-NG3 0.013 0.019 0.007 0.048 0.037 0.030 0.061 0.028 0.001 0.021
Reuters 0.010 0.007 0.005 0.011 0.040 0.040 0.008 0.020 0.040 0.063
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the CD� with Eq. (37) where critical value q� is given in 
Table 6 [44]. If the difference of the ranks for two compared 
approaches on a clustering criterion is larger than CD� , 
we say that in terms of this criterion, the two compared 
approaches have a significant difference on all used datasets 
when confidence level is �.

(B-3) Now according to Table  5 and the procedures 
of Friedman–Nemenyi statistical test, we can get the test 
results for each clustering criterion. The results are shown in 
Table 7. According to the results given in Tables 5 and 7, it 
is found that (1) for clustering criteria accuracy, acc− , PPV, 

(37)CD� = q�

√
k(k + 1)

6N

F-Measure, and G-Mean, since �2
F
 is larger than F0.05(1, 13) 

and F0.10(1, 13) and then FF is N / A, so EMVMC and MVMC 
have an absolute significant difference on multiple datasets 
in terms of these criteria. Moreover, since the average rank 
difference of EMVMC and MVMC is 2 − 1 = 1 , and 1 is 
larger than CD0.05 and CD0.10 , thus we can also draw a same 
conclusion; (2) for acc+ , since both �2

F
 and FF are larger 

than F0.05(1, 13) and F0.10(1, 13) and the average rank differ-
ence of EMVMC and MVMC is 1.93 − 1.07 = 0.86 which is 
larger than CD0.05 and CD0.10 , so we can draw a conclusion 
that EMVMC and MVMC have a significant difference on 
multiple datasets in terms of acc+ ; (3) for other four crite-
ria, since both �2

F
 and FF are smaller than F0.05(1, 13) and 

F0.10(1, 13) and the average rank differences of EMVMC and 

Table 5  Rank comparisons of multi-view clustering approaches on the used datasets for each clustering criterion

EMVMC/MVMC Accuracy acc+ acc− PPV F-Measure G-Mean NMI Adj-RI AE CT

Course 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 2/1
Citeseer 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1.5/1.5
Cora 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 2/1 2/1
Cornell 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 2/1 2/1
Texas 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
Washington 1/2 2/1 1/2 1/2 1/2 1/2 2/1 2/1 2/1 2/1
Wisconsin 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 2/1 1/2
News-M2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
News-M5 1/2 1/2 1/2 1/2 1/2 1/2 2/1 1/2 1/2 1/2
News-M10 1/2 1/2 1/2 1/2 1/2 1/2 2/1 2/1 1/2 2/1
News-NG1 1/2 1/2 1/2 1/2 1/2 1/2 2/1 2/1 1/2 1/2
News-NG2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 2/1
News-NG3 1/2 1/2 1/2 1/2 1/2 1/2 2/1 2/1 1/2 1/2
Reuters 1/2 1/2 1/2 1/2 1/2 1/2 2/1 2/1 1/2 1/2
Average 1/2 1.07/1.93 1/2 1/2 1/2 1/2 1.43/1.57 1.36/1.64 1.29/1.71 1.46/1.54

Table 6  Critical values for the 
two-tailed Nemenyi test

No. approaches 2 3 4 5 6 7 8 9 10

q0.05 1.960 2.343 2.569 2.728 2.850 2.949 3.031 3.102 3.164
q0.10 1.645 2.052 2.291 2.459 2.589 2.693 2.780 2.855 2.920

Table 7  Friedman–Nemenyi 
statistical test comparisons 
of multi-view clustering 
approaches on the used datasets 
for each clustering criterion

accuracy acc+ acc− PPV F-Measure G-Mean NMI Adj-RI AE CT

N 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00
k 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
�2

F
14.00 10.29 14.00 14.00 14.00 14.00 0.29 1.14 2.57 0.07

FF N/A 36.00 N/A N/A N/A N/A 0.27 1.16 2.93 0.07
F0.05(1, 13) 4.6672 4.6672 4.6672 4.6672 4.6672 4.6672 4.6672 4.6672 4.6672 4.6672
F0.10(1, 13) 3.1362 3.1362 3.1362 3.1362 3.1362 3.1362 3.1362 3.1362 3.1362 3.1362
CD0.05 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52
CD0.10 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44
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MVMC are both smaller than CD0.05 and CD0.10 , so we can 
say that in terms of these four criteria, EMVMC and MVMC 
have not a significant difference on multiple datasets. Indeed, 
according to Table 4, we know that on some datasets includ-
ing Cora, News-M5, News-M10, News-NG1, News-NG3, 
and Reuters, the differences between our EMVMC and the 
compared MVMC are not significant and that’s why on mul-
tiple datasets, they cannot have a significant difference. But 
according to what we have said in paired t test, namely on 
most of those datasets and corresponding criteria, the per-
formance of EMVMC is not significant worse than the one 
of MVMC, so we can also draw a conclusion here that for 
each clustering criterion, EMVMC outperforms MVMC on 
multiple datasets in statistical.

5  Conclusions

Multi-view matrix completion (MVMC) is a multi-view 
clustering approach with side information including must-
link and cannot-link and in MVMC, the relationship between 
cluster and sample has only two cases, sample belongs to 
a cluster and sample does not belong to a cluster. But in 
real-world applications, each sample belongs to a cluster 
with a possibility. Thus in our work, we introduce entropy 
to evaluate the class certainty of each sample and develop an 
entropy-based multi-view matrix completion for clustering 
with side information (EMVMC). Different from MVMC, 
EMVMC reflects the fuzzy membership between samples.

In order to validate the effectiveness of our EMVMC, 
multi-view datasets Course, Citeseer, Cora, WebKB, News-
Group, and Reuters are adopted for experiments. Then, 
we show the clustering performance comparison, relation 
between the number of nearest neighbors and clustering per-
formance, and significance analysis.

According to the experimental results, it is found that (1) 
EMVMC outperforms MVMC on each dataset in terms of 
accuracy, acc− , PPV, F-Measure, and G-Mean; (2) EMVMC 
has a better performance on most of the datasets in terms 
of acc+ , NMI, Adj-RI, AE, and CT; (3) the performance 
of EMVMC is more stable; (4) when the number of near-
est neighbors k is set to be 9, 10, 11, the performance of 
EMVMC is much better; (5) in terms of each clustering cri-
terion, according to paired t test, EMVMC has a better per-
formance than MVMC on each dataset in statistical except 
for CT on Reuters and according to Friedman–Nemenyi 
statistical test, EMVMC is significant better than MVMC 
on multiple datasets in statistical. In generally, our proposed 
EMVMC combines the entropy with MVMC and boosts the 
clustering performance in average.
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