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a b s t r a c t 

Person re-identification (Re-ID) is a typical computer vision problem which matches pedestrians from 

different cameras. It remains challenging to cope with the variation in light, the change of human pose 

and view point difference. Many existing person re-identification methods may have difficulty in match- 

ing pedestrians when their pictures are similar in appearance or there is object occlusion in pictures. 

The main problem with these existing methods is that the detail and global features of the images are 

not well combined. In this paper, we improved the performance of deep CNN network with the pro- 

posed Multilevel feature extraction strategy and built a novel Multilevel triplet deep learning model cor- 

responding to our method. The Multilevel feature extraction strategy focuses on combining fine, shallow 

layer information with coarse, deeper layer information by extracting fusion feature maps from differ- 

ent layers for a better representation of pedestrians. The Multilevel triplet deep learning model (MT-net) 

provides an end-to-end training and testing plain for our feature extraction strategy. The experiment on 

the benchmark datasets validated that our multilevel triplet deep learning model had better performance 

comparing with many state-of-the-art person re-identification methods. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Person Re-Identification can be easily introduced as given one

ingle shot or multiple shots of a pedestrian and match the same

ndividual among a set of gallery pictures photographed by differ-

nt set of cameras. As a computer vision task, it remains challeng-

ng to cope with the variation in light, the change of human pose

nd view point which may increase the difficulty in matching dif-

erent individuals. Earlier studies [11,18–20,27–29,47,49] mainly fo-

us on two components: extracting discriminative and robust fea-

ures of input images as descriptors and learning an effective met-

ic to measure the similarity between input images. These methods

ostly based on man-coded features. They are restricted by the

ncontrollable visual appearance of pedestrians in different view-

oints, especially when the cameras are not overlapped. Thus the

xtracted feature descriptors are not robust enough for metric cal-

ulation. 

Recently, with the development of deep learning and the avail-

bility of large-scale person Re-ID datasets like CUHK03 [24] , Mar-

et1501 [25] and DukeMTMC-reID [41] , a bunch of effective CNN
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rameworks [1–7] were proposed for person re-identification and

hey have made significant improvement on improving the accu-

acy of re-identification. 

There are several effective deep learning models for per-

on re-identification: The verification model, classification model

nd triplet model. The verification models [2,3,31] treat re-

dentification task as a binary verification problem. The input pic-

ures of pedestrians are organized in pairs. Learned features are

apped directly to fully connected layer to measure the similar-

ty between two input pictures and then determine whether they

ere from the same or different individuals. The verification mod-

ls are generally supervised by Softmax loss. These kind of mod-

ls can’t make full use of the label of each image and the proce-

ure of training and testing is different. The classification models

14,32,33] set every individual as a class and every pedestrian has

heir labels. During the training process, discriminative features are

earned to represent the reflection of pictures. The training proce-

ure is supervised by cross-entropy loss. The testing process was

ndependent from training and the square Euclidean distance is

sed to measure the similarity between pictures. The disadvan-

ages of these models are the overmuch number of classes and

ach of them has only a few instances for training and testing.

he triplet models [9,12,38] focus on the ranking task. Input pic-

ures are organized in triplets, containing positive pairs and nega-

ive pairs. The models consider samples of positive/negative pairs

imultaneously and Euclidean distances of embedding feature map

https://doi.org/10.1016/j.patrec.2018.04.029
http://www.ScienceDirect.com
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Fig. 1. Examples of pairs of pictures that are overall approximate in appearance but 

different in details and a mismatch caused by only focusing on the overall appear- 

ance. 
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are directly compared. Triplet loss and its variants are used for su-

pervising the training process. 

Most of the methods mentioned above make operations on the

global features extracted by deep CNN network. To get these global

features, an efficient way is transfer learning, that is initializing

weights and biases with the model (ResNet [34] , GoogleNet [21] )

pretrained on ImageNet [23] and finetune the parameters with

datasets for person re-identification. This is an effective way to ex-

tract robust and discriminative global features from input pictures

for person re-identification. 

However, descriptors extracted by ResNet or GoogleNet are

mostly global, semantic features after deep convolution operations.

The small-size differences and precise details are often ignored af-

ter Pooling or Relu layers. These may cause confusion when two

individuals are overall approximate in appearance but different in

details. The left part of Fig. 1 shows two instances of this circum-

stance. We can see intuitively that the appearance and posture of

pedestrians in each group are very close. The difference lies in sev-

eral pixels and the global, semantic features may lose these details.

Besides, because of object occlusion, sometimes there is an obvi-

ous difference in some areas of the images of the same person.

This may lead a part of the global feature cannot describe pedestri-

ans and mislead the judgment while matching. At the same time,

the detail features are often ignored in the deep CNN network. If

we only consider the global feature, there will be a mismatch as

shown in the right half of Fig. 1 . 

In some works [13,15–17] , they combine fine, shallow layer in-

formation with coarse, deeper layer information to make a more

comprehensive representation of input objects. They did feature fu-

sion from different layers or regions. These works achieved good

results in the field of object detection and semantic segmen-

tation. Although there are some commonalities in computer vi-

sual aspects, person re-identification is another problem and we

cannot use these methods directly. Affected by the works men-

tioned above, we applied the idea of feature fusion to person re-

identification task. We proposed a more reasonable feature ex-

traction strategy that based on triplet model. We combine infor-

mation of each layer and concern both detail and global feature

through a standardized method. The new triplet deep learning

model shows advantages in the following aspects: Comparing with

previous deep CNN networks, the information distributed over dif-

ferent layers are collected and better organized. The detail feature

and global feature are both taken into account and the proportion

is optimized with training. This strategy took full advantages of the

pretrained model and accelerated the training process. Besides, our

model jointly composes multilevel feature extraction and represen-

tation operation for end-to-end training. The experiment on the

benchmark datasets showed that our model has an improved per-
ormance on person re-identification task by using the new feature

xtraction strategy. 

The contributions of this paper can be summarized as fol-

ows: (1) We proposed a novel Multilevel feature extract strat-

gy to combine coarse and fine information from different layers,

hich contributes to a more robust and discriminative represen-

ation of input pictures of individuals. (2) We designed an end-

o-end Multilevel triplet deep learning model (MT-net) to compute

xtracted Multilevel features efficiently for person re-identification

ask. (3) Experiments on two popular large scale datasets, CUHK03

24] and Market1501 [25] . The result showed that our model was

fficient and significantly improved the performance comparing

ith many existing state-of-the-art methods. 

. Related work 

In this part, we review existing person re-identification meth-

ds most related to our work, especially deep leaning based meth-

ds. 

Typical person re-id systems are consist of two parts: getting

obust and discriminative descriptors for the query image and the

allery images; finding an effective way to measure the distance

etween different images and constructing a distance metric for

omparing. A lot of works [10,42–45] have been done for digging

etter man-coded features from raw pictures invariant to pose,

ighting and view variations. HSV, SILTP [35] and Gabor features

36] were able to describe identities to a certain extent. Several ef-

ective metric learning and ranking algorithms [20,26,28,29] were

roposed to measure the feature map distance and distinguish be-

ween pedestrians. 

Recently, inspired by the implement of CNN network in many

omputer vision problems, people use deep CNN models for person

e-identification. Achievements have been made with the availabil-

ty of large scale datasets such as CUHK03 [2] and Market-1501 [3] .

Typical deep learning architecture for person re-identification

an be divided into two subnetworks. The first subnetwork aims to

earn a person’s representation of input images. It develops from

hallow convolutional network into today’s more popular deep

onvolutional network (ResNet, GoogleNet), which were proved to

e able to extract deep semantic features. They have good per-

ormance in learning discriminative and robust features and can

e easily transferred and fine-tuned for person re-identification

ask. Ahmed et al. [3] proposed a method which simultaneously

earns features and a corresponding similarity metric for person re-

dentification. The feature extraction structure included a layer that

omputes cross-input neighborhood differences. Zhao et al. [38] di-

ided human images into different parts and get receptive field

n the stage of feature extraction. The second subnetwork aims to

ompare the feature representation and penalize the misalignment

etween learnt similarities and ground-truth similarities. Usually

e use cross entropy loss for classification, Siamese contrastive

oss for verification and triplet loss for ranking. The Euclidean dis-

ances are utilized for comparison. Zheng et al. [2] proposed a

iamese network that simultaneously computes the identification

oss and verification loss. Hermans et al. [9] showed that, for mod-

ls trained from scratch as well as pretrained ones, using triplet

oss to perform end-to-end deep metric learning outperforms any

ther published method by a large margin. Chen et al. [1] proposed

 multi-task deep network that combines verification model and

anking model. It contains a cross-domain architecture that is ca-

able of using an auxiliary set to assist training on small target

ets. 

To improve the accuracy of object detection and classification,

here is a trend that to study the fusion of features between dif-

erent layers. A very intuitive idea is that the lower layer of the

eural network usually retains much more fine-grained features;
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Fig. 2. Proposed multilevel triplet deep learning model (MT-net). 
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nd the deeper layer usually has better semantic features. So a lot

f work has been done to combine the features of different layers.

ai et al. [15] made proposal on different layers for object detec-

ion. Kong et al. [13] improved accuracy of object classification by

ascaded features of different layers. Lin et al. [16] proposed fea-

ure image pyramid and Abhinav et al. used Top-down modulation

xtracted different layers’ features. These works showed their ad-

antages in object representation and computing accelerate. 

Inspired by these works, we proposed a novel Multilevel feature

xtract strategy and designed an end-to-end Multilevel triplet deep

earning model. Our framework was also related to transfer learn-

ng [7] , data augmentation and step-wise learning [46,48] . These

ethods improved the performance of our network. 

. Proposed multilevel deep learning model (MT-net) 

Person re-identification aims to find the images of the same

dentity with the probe image from a set of gallery images. When

wo individuals are overall approximate in appearance but differ-

nt in details or there is object occlusion in the picture, there

ill be confusion in matching individuals. To deal with this prob-

em, we proposed a novel feature extraction strategy that consider

lobal and detail feature simultaneously and built a Multilevel

riplet model for end-to-end training and testing. The proposed

ultilevel triplet model took three pictures as input. The raw pic-

ures were fed into the triplet deep convolutional network. We first

stimate the activate area from different layers then extract fea-

ures from the detected area. Concatenate the features extracted

rom layers to form fusion feature map. The extracted descriptors

onsidered both fine, shallow layer information and coarse, deeper

ayer information. To make the presentation of images from the

ame identity are closer to those from different identities, the net-

ork was optimized by triplet loss. 

.1. The overall framework 

Fig. 2 illustrates the overall framework of our methods. The

raining data was given as a set of triplets, 

nput = { T r 1 , T r 2 , T r 3 , . . . , T r n } , T r i = 〈 p 1 i p 2 i n 1 i 〉 , 
here i means the i th triplet, (p1 i p2 i ) is a positive pair of pictures

rom the same individual and (p1 i n1 i ) is a negative pair of pictures

rom different individuals. 

Triplet training images were fed into three deep CNN models

ith shared parameter for Multilevel feature extraction. The output
f each model is the extracted feature map for each picture. The

aw images were mapped into a learned feature space, denoted by

( T r i ) = 〈 ω( p 1 i ) ω ( p 2 i ) ω ( n 1 i ) 〉 . This process will be described in

etail in Section 3.2 . During training process, three network mod-

ls share parameter set. Weights and biases of the network were

ptimized by triplet loss. 

To make sure d l2 ( ω (p1 i ), ω (p2 i )) is less than d l2 ( ω(p1 i ),

(n1 i )), where d l2 means the L2-norm distance, that is 

 l2 ( ω ( p 1 i ) , ω ( p 2 i ) ) − d l2 ( ω ( p 1 i ) , ω ( n 1 i ) ) ≤ γ (1) 

In this equation γ is negative to enforce the requirement by a

redefined margin. We set γ as 0.2 empirically. 

So we use triplet loss as the loss function, which can be repre-

ented by the following equation. 

 tr = 

1 

N 

N ∑ 

i=1 

[ d l2 ( ω ( p 1 i ) , ω ( p 2 i ) ) − d l2 ( ω ( p 1 i ) , ω ( n 1 i ) ) + α] −

(2) 

here 

d l2 ( ω ( p 1 i ) , ω ( p 2 i ) ) = | | ω ( p 1 i ) − ω ( p 2 i ) | | 2 2 d l2 

( ω ( p 1 i ) , ω ( n 1 i ) ) = | | ω ( p 1 i ) − ω ( n 1 i ) | | 2 2 (3) 

When combine (1, 2, 3) 

 tr = 

1 

N 

N ∑ 

i=1 

[| | ω ( p 1 i ) − ω ( p 2 i ) | | 2 2 − | | ω ( p 1 i ) − ω ( n 1 i ) | | 2 2 + α
]

−

(4) 

here N is the number of triplets, it changes with the number of

ictures in training set. α represents the margin of positive and

egative pairs ω ( p 1 i ) ω ( p 2 i ) ω ( n 1 i ) ∈ R 

512 denotes the features of

ach input picture. 

Assume that we have 10 0 0 training pictures from

00 different pedestrians. The number of triplets N 0 ≈
 

2 
10 

∗(99 ∗10) ∗100 = 4,950,000, after preprocessing such as cutting

nd inversion for expanding training sets, N 0 will grow geomet-

ically, which ensures the number of triplets is large enough for

ptimizing our MT-network. We randomly select N triplets from

 0 in training. The size of N depends on the batchsize and epoch.

hen we set batchsize as 400 and epoch as 20, then N will be

heir product 80 0 0. 
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Fig. 3. Multilevel feature extraction module. 

Fig. 4. Example images from CUHK03 dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Example images from Market1501 dataset. 
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There are two aspects of our network structure need to be

specifically explained. The next two sections will introduce the fea-

ture extraction strategy and network optimization. 

3.2. Multilevel feature extract strategy 

In our work, we chose GoogleNet as the base CNN network for

it has the considerable capability for feature extraction to classify

general images. We transferred the Googlenet model which pre-

trained on ImageNet and initialized weights and biases with it.

During the training process, the parameters were fine-tuned to fit

the demands of person re-identification task. 

To study the fusion of features from different layers, we con-

catenated multiple feature maps from different layers. To deal with

the different output dimensions of convolution layers in Googlenet

and combine Multilevel features at the same solution, we carried

out a standardized sampling scheme, which is illustrated in Fig. 3 . 

For each feature extraction module, First we created a detected

subspace M(x,y) from an 1 ∗1 convolution layer and a sigmoid layer.

The convolution of 1 ∗1 can better combine the information of each

channel and reduce the dimension, through a sigmoid layer we got

an detected subspace and then extended the dimension of sub-

space to 512 to form M(x,y). Then we found the discriminative re-

gion of a certain layer and extract features from M(x, y). We ex-

tracted features F ext (x, y, c) over these subspaces and then let the

tensor went through an average pooling layer. The output of the

feature extraction module can be represented as f k . The input of

the feature extraction module can be represented as a tensor F(x,
, c). 

M sub ( x , y ) = Conv ( F ) 
 k ( x , y , c ) = F(x , y , c) × M sub ( x , y ) 

(5)

The feature F(x,y,c) means the c th channel over the location (x,

) and k means the k th feature extraction module. 

Before concatenated all f k as the final feature map, we imple-

ent a linear dimension-reduction layer to guarantee the consis-

ency of each feature extraction module. 

After concatenated multilevel features were extracted, we use

ocal response normalization (LRN) to normalize our feature maps

efore compute losses. 

Multilevel features carried both coarse and fine-granted fea-

ures that can represent pedestrians better. The features of lower

ayers are considered making computation more efficient without

vermuch redundant parameter. 

.3. Optimization 

The parameters of our network are donated by θ . We minimize

he triplet loss function over triplets formulated above. 

 tr = 

1 

N 

N ∑ 

i=1 

[| | ω ( p 1 i ) − ω ( p 2 i ) | | 2 2 − | | ω ( p 1 i ) − ω ( n 1 i ) | | 2 2 + α
]

−

(6)

The gradient can be formulated as: 

∂ L tr ( θ, p 1 i , p 2 i , n 1 i ) 

∂θ
= 2 

N ∑ 

i=1 

[
∂ω ( p 1 i ) 

∂θ
( ω ( n 1 i ) − ω ( p 2 i ) ) 

+ 

∂ω ( p 2 i ) 

∂θ
( ω ( p 2 i ) − ω ( p 1 i ) ) + 

∂ω ( n 1 i ) 

∂θ
( ω ( p 1 i ) − ω ( n 1 i ) ) 

]

(7)

When 

 l2 ( ω ( p 1 i ) , ω ( p 2 i ) ) − d l2 ( ω ( p 1 i ) , ω ( n 1 i ) ) ≤ γ (8)

Algorithm1: 

Input 

Training samples: { p 1 i p 2 i n 1 i } 
Output 

Parameter of network: θ

while t < T or not convergent do: 

t ← t + 1 
∂ L tr ( θ, p 1 i , p 2 i , n 1 i ) 

∂θ
= 0 

for all input image samples p 1 i p 2 i n 1 i , 

Compute feature embedding ω( p 1 i ) , ω ( p 2 i ) , ω ( n 1 i ) 

by forward propagation; 

Calculate ∂ω( p 1 i ) 
∂θ

, 
∂ω( p 2 i ) 

∂θ
, 

∂ω( n 1 i ) 
∂θ

by back propagation; 

Calculate ∂ L tr ( θ, p 1 i , p 2 i , n 1 i ) 
∂θ

according to Eq. (2 ); 

Update the parameter: θ t = θ t −1 − εt 
∂ L tr ( θ, p 1 i , p 2 i , n 1 i ) 

∂θ

end while 



C. Zhao et al. / Pattern Recognition Letters 117 (2019) 161–168 165 

 

p  

s  

o

 

t  

d  

a  

i  

t  

h

3

 

t  

i

t  

t  

t  

fi  

t  

e  

t  

i  

t

 

m  

c  

O  

t  

fi  

p  

c  

t  

t  

f  

(  

i

 

t  

l  

w  

a  

fi  

a  

d  

t  

c

 

m  

w  

l  

t

4

4

 

t  

I  

s  

a

b  

f  

d  

1  

i  

s  

t  

t  

4

 

a  

t  

(  

e  

m  

d

4

 

t  

p

 

p  

w  

1  

o  

a

 

d  

l  

s  

t  

c  

t  

t  

f  

s  

f  

t  

n

 

w  

l  

b  

i  

m  

t  

N

 

a  

1  

p

 

c  

t

4

 

C  

p

The formulation shows that the triplet loss can be easily com-

ute by one-dimensional operation. So we draw a mini-batch of

amples instead of down sampling triplets. Directly handle batch

f samples was more efficient in computation. 

We use the Goolenet model trained on the Imagenet to ini-

ialize the network parameters and use person re-identification

atasets for fine-tune. By training our MT-network with triplets

nd optimize hyper parameters with triplet loss for about 50,0 0 0

terations, the network has the ability to make the distance of pic-

ures from the same individual closer to different ones. This can

elp us to distinguish different pedestrians. 

.4. Comparison to prior works 

Here, we compare our Multilevel triplet model with state-of-

he-art person re-identification frameworks and point out similar-

ties and differences between them. 

Verification&Identification model for person re-identification: A 

ypical architecture of these models is shared Siamese CNN archi-

ecture and compute verification loss and identification loss simul-

aneously when training. It used dropout strategy to prevent over-

tting. Our Multilevel triplet model shared some similarities with

hese architectures in sharing weights and using pretrained mod-

ls. Besides, our model allows us to perform end-to-end learning

hat directly optimizes the network for final task. We can match

ndividuals by simply compute the Euclidean distance of descrip-

or vectors. 

Triplet Re-identification: Triplet model is a popular ranking

odel for person re-identification. In [9] , Alexander et al., dis-

ussed the triplet model with various triplet loss functions.

ur Multilevel triplet model share some similarities that the

riplet CNN deep learning structure with triplet loss can ef-

ciently complete end-to-end training and testing system for

erson re-identification. The triplet re-identification faces poor

onverge outcomes without hard-mining. The embedding fea-

ure map may cause overmuch clustering center. Our Multilevel

riplet model improved the accuracy by extracted fusion feature

rom different layers rather than simply transfer exist models

VGG,ResNet,GoogleNet) pretrained over ImageNet. The experiment

n CUHK03 and MARKET1501 in Section 4 shows the difference. 

Attribute learning Re-identification: Attribute learning is a new

rend in computer vision. Lin et al at [8] proposed an attribute

earning method for person re-identification. The core idea of their

ork is to get a more comprehensive representation of pedestri-

ns. The attributes are extracted from both coarse grained and

ne-grained features. Our work involves the same thought. The

ttribute learning took a lot of time and effort to make proper

atasets and it may face difficulties in overfitting. Our Multilevel

riplet model directly trained over CUHK03 and MARKET1501 and

an be easily transferred to other computer vision tasks. 

To sum up, our method extends the advantages of the triplet

odel. It can make more use of the global and local information

ith the multilevel feature extraction strategy. Besides, it calcu-

ates more efficiently and can be better expanded with the end-

o-end training plain. 

. Experiment 

.1. Datasets 

CUHK03: This dataset consists of 13, 164 images of 1,360 iden-

ities. Images are collected from 6 different pairs of camera views.

t contains both human-labeled and detected sets. We randomly

elect the provided training/test set. We randomly set two images

s the probe and gallery respectively for testing. 
Market-1501: Market-1501 contains 32,668 detected-person 

ounding boxes of 1501 identities. The images came from 6 dif-

erent cameras, one of which was low pixel. At the same time, the

ata set provides training set and test set. The training set contains

2,936 images, and the test set contains 19,732 images. The image

s automatically detected and cut by the detector, which contains

ome detection errors (close to the actual use). There are 751 iden-

ities in the training data and 750 identities in the test set. So in

he training set, there are 17.2 training data per class (each person).

.2. Evaluation metrics 

We calculated the similarities between the query images with

ll the gallery images and rank them into a list according to

he similarities. We used the Cumulative Matching Characteristic

CMC) curve and the mean Average Precision (mAP) to estimate the

xpectation of finding the correct match in the top n most similar

atches. The mean average precision (mAP) score over Market1501

ataset is reported in Table 4 . 

.3. Implementation details 

We used Caffe [22] framework to implement our Multilevel

riplet model. The settings and other details are introduced in this

art. 

Data preparation: Before training, we resized the pictures of

edestrians to 160 × 80. During the training process, the batchsize

as set as 400. There were 40 individuals on average and each has

0 pictures of them at most. We shuffled the dataset and randomly

rdered the images. We sampled two images from the same class

nd another image from a different class as a triplet. 

Network architecture: We use a subnet of GoogleNet from the

ata layer to inception_4e layer. For each convolution layer, it fol-

owed by an extra 1 × 1 convolutional layer and then a nonlinear

igmoid layer. We extracted a part of feature map by conduct ma-

rix multiplication between the output of sigmoid layer and the

onvolution layer. There are eight convolution layers and we ex-

racted features from all of them. Then we concatenated eight ex-

racted feature maps and obtain a 512-dim pedestrian descriptor

. Given a query image, its descriptor was extracted online. We

orted the cosine distance between the query and all the gallery

eatures to obtain the final ranking result. Note that the cosine dis-

ance is equivalent to Euclidean distance when the feature is L2-

ormalized. 

Training settings: We initialized the Multilevel triplet model

ith the GoogleNet model. The mini-batch size was 400. The

earning rate was set as 0.001 at the beginning and then divided

y 5 for every 20 K iterations. The weights of all new layers were

nitialized with “Xavier” . The weight decay is 0.0 0 02 and the

omentum for gradient update is 0.9. We trained our Multilevel

riplet deep learning model for 50 K iterations within 6 hours on a

VIDIA 1080Ti GPU. 

Data augmentation: To counter overfitting we performed data

ugmentation before training our network. We cropped images to

60 × 80 to generate 5 augmented images around the center by

erforming random 2D transformations for each training image. 

Dropout: Experiment shows that dropout strategy is not appli-

able for our method. So we give up dropout layers. The result of

he comparative experiments will be delivered in Section 4.4 . 

.4. Experimental results 

We carried out detailed experiments on two Re-ID datasets,

UHK03 and Market1501. The result showed the superiority of our

roposed method. 
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Fig. 6. CMC curves on CUHK03 dataset. 

Table 1 

Performance comparison on CUHK03 dataset. 

Methods Rank1 Rank5 Rank10 Rank20 

KISSME [28] 47.91% 68.75% 78.62% 87.05% 

XQDA [11] 49.75% 80.26% 89.61% 94.58% 

IDLA [3] 54.74% 86.50% 93.17% 95.54% 

PersonNet [40] 64.80% 89.40% 94.89% 98.12% 

2-stream [2] 72.94% 91.26% 95.03% 98.69% 

Part-net [38] 79.16% 94.39% 97.61% 99.41% 

Pose [37] 78.22% 93.45% 96.32% 98.84% 

T-net 64.51% 88.92% 95.47% 97.98% 

MT-net 79.34% 94.60% 98.62% 99.57% 

Table 2 

Different numbers of feature extraction modules on CUHK03. 

Num of modules Rank1 Rank5 Rank10 Rank15 Rank20 

2 68.33% 89.07% 92.56% 94.89% 96.55% 

4 70.92% 92.85% 96.28% 97.50% 98.14% 

6 75.40% 92.91% 96.89% 98.02% 98.70% 

8 79.34% 94.60% 98.62% 99.36% 99.57% 

10 75.15% 94.07% 97.46% 99.00% 99.21% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Different numbers of feature extraction modules on CUHK03 dataset. 

Table 3 

With/without dropout layer on CUHK03 dataset. 

Dropout/no dropout Rank1 Rank5 Rank10 Rank15 Rank20 

CUHK03(dropout) 20.56% 56.21% 72.64% 82.28% 87.92% 

CUHK03(no dropout) 79.34% 94.60% 98.62% 99.36% 99.57% 

Table 4 

Performance comparison on Market1501 dataset. 

Methods Rank1 Rank5 Rank10 Rank20 mAP 

KISSME [28] 46.72% 64.87% 73.18% – 12.27 

XQDA [11] 26.12% – – – 20.04 

LSTM [39] 62.44% – – – 39.21 

S-CNN [30] 66.76% – – – 40.77 

Pose [37] 78.06% 90.76% 94.17% 96.02% 58.33 

2-stream [2] 78.15% 89.84% 93.27% 95.33% 57.92 

Part-net [38] 79.44% 90.96% 93.52% 95.70% 60.40 

T-net 65.02% 84.26% 88.21% 92.70% 50.71 

MT-net 81.95% 92.53% 94.30% 96.20% 62.98 

Fig. 8. Rank-1 accuracy on market1501 dataset. 
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4.4.1. Results on CUHK03 dataset 

For CUHK03 dataset, we used the detected image set for train-

ing and testing. The training or testing sets were randomly selected

from the ‘exp_set’ folder. Fig. 6 and Table 1 illustrated the identi-

fication accuracy and CMC performance of our method comparing

with other state-of-the-art person re-identification methods. 

Our method outperformed in the accuracy by a large margin

when compared with man-coded feature extraction and metric

learning methods like KISSME [28] or XQDA [11] . When Compar-

ing with popular deep learning methods like 2-stream [2] and Pose

[37] , our MT-net is different in feature extraction strategy and op-

timize methods. We have a small increase in result. When compar-

ing with the competitive method Part-net [38] that also use triplet

loss and based on Googlenet, the rank-1 accuracy is slightly better

by 0.2%. 

In order to reflect the superiority of our method, we introduced

the T-net baseline as contrast in CUHK03 dataset. The T-net is the

triplet deep learning architecture without multilevel feature ex-

traction module. As is shown in Fig. 6 and Table 1 , the accuracy

of matching individuals was greatly enhanced when implementing

the multilevel feature extraction module in the triplet architecture.

We set different numbers of feature extraction modules and did

experiments on CUHK03 dataset to obtain the optimal parameter.

These modules are evenly distributed in different convolution lay-

ers of GoogleNet. The results were listed in Table 2 and Fig. 7 . We

found that empirically the number of modules should be set as 8. 
When we added dropout layer after the normed feature layer,

he accuracy decreased. It can be seen in Table 3 . This is because

ur method took advantage of the depth of the neural network and

he features are distributed in many layers. So the dropout strategy

ay cause the loss of information and affect the final result. 

.4.2. Results on Market1501 dataset 

For Market1501 dataset, it’s one of the largest datasets and

ur method has made success on this dataset. We compared our

ethod with other state-of-the-art methods, the result are shown

n Table 4 . Fig. 8 is the intuitionistic rank-1 accuracy. We also in-

roduced T-net as the baseline for comparing. 

We can see that the same as CUHK03 dataset, the result of our

ethod on Market1501 dataset is also good. Our method has the

ighest rank-1 accuracy and mAP. It is validated that our approach

an be applied to multiple large-scale datasets. 

Besides, we checkout the effects of module numbers and

ropout layer may have. The comparative experiment was set on
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Table 5 

Different numbers of feature extraction modules on Market1501 dataset. 

Num of modules Rank1 Rank5 Rank10 Rank15 Rank20 

2 74.78% 87.28% 90.63% 92.29% 93.51% 

4 78.10% 89.71% 92.44% 93.87% 94.58% 

6 80.37% 91.32% 93.81% 94.64%. 95.87% 

8 81.95% 92.53% 94.30% 95.51% 96.20% 

10 80.02% 90.91% 93.27% 94.08% 95.79% 

Table 6 

With/without dropout layer on Market1501 dataset. 

Dropout/no dropout Rank1 Rank5 Rank10 Rank15 Rank20 

Market15 01(dropout) 25.64% 64.77% 77.46% 84.47% 89.21% 

Market1501 (no dropout) 81.95% 92.53% 94.30% 95.51% 96.20% 

Fig. 9. Different numbers of feature extraction modules on Market1501 dataset. 
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arket1501 dataset. We got the best results in the case of 8 mod-

les with no dropout layer. This is consistent with the result on

UHK03 dataset. The results are shown in Tables 5 and 6 and

ig. 9 . 

. Conclusion 

In this work, we proposed a novel Multilevel feature extract

trategy to combine coarse and fine information from different lay-

rs, which contributes to a more robust and discriminative repre-

entation of pedestrian pictures. Further we designed an end-to-

nd Multilevel triplet deep learning model to compute extracted

ultilevel features efficiently for person re-identification task. The

xperiments on two popular large-scale datasets showed that our

odel was efficient and significantly improved the performance

ompared with many existing state-of-the-art methods. The result

alidated that our feature extract strategy learns more useful and

iscriminative features and the Multilevel triplet model is effective

nd reliable for person re-identification task. 
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