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a b s t r a c t 

Image retrieval algorithms based on the whole image exhibit high complexity due to background inter- 

ference, low-level description abilities and large storage requirements, while image retrieval algorithms 

based on the saliency detection have been found to have low accuracy owing to the lack of important 

information in extracted salient regions caused by the uncertainty of the salient regions of the image. 

In this paper, we propose a shadowed-set-based image retrieval algorithm, and develop techniques of 

an automatic selection of two threshold parameters by combining saliency detection and edge detection, 

which automatically determine shadowed regions. The developed algorithm uses shadowed set theory to 

divide the image into salient regions, non-salient regions and shadowed regions, in order to extract the 

useful information of the image and ignore irrelevant one. As a consequence, this leads to the salient 

regions and the shadowed regions to be jointly involved in the retrieval process. The experimental re- 

sults reported for several datasets show that the proposed algorithm can effectively im prove the retrieval 

accuracy compared with the existing state-of-the-art algorithms. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Currently, digital images have been widely encountered in ev-

eryday life, such as product images available on shopping plat-

forms, life photos on social platforms, various digital pictures on

major search platforms, and others. With the rapid growth of im-

age databases, finding the target image from the massive image

databases becomes an important research topic. Image retrieval is

one of the active research pursuits. Its objective is to find the most

similar images to the query image from the massive images. 

The earliest image retrieval technique was Text Based Image Re-

trieval.(TBIR [1] ), which allows users to type in some keywords and

then keyword-related images are retrieved. Its biggest drawback is

the need for a large number of manual annotations, because arti-

ficially describing an image with a few words only is inefficient,

and is not sufficient to fully cover all the features of the image.

Therefore, TBIR comes with evident limitations. 
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Next, Content Based Image Retrieval (CBIR [2] ) algorithms were

roposed. CBIR usually extracts low-level features such as color,

exture and shape of the image to represent the image, and then

elects the appropriate measure to calculate similarity between im-

ges. Common image features are color histogram [3] , bag of word

BOW [4] ), spatial envelop model (GIST [5] ), scale invariant fea-

ure SIFT [6] , to identify several alternatives. Content-based image

etrieval technology can be divided into whole-image-based im-

ge retrieval algorithms [7–13] and salient-regions-based image re-

rieval algorithms [14–16] . The main problems of image retrieval

ased on the whole image are the noise of the extracted features,

he limitation of the low level features, and the large storage space

equired. Actually, people tend to pay more attention to the objects

ith obvious distinguishing ability in the image. Therefore, in the

eld of image retrieval, in order to improve the efficiency and re-

uce the time complexity of retrieval, a series of saliency detection

lgorithms [17–19] were introduced. The salient regions of an im-

ge usually refer to the most appealing visual regions of the image.

ue to the semantic information being taken into account, extract-

ng and using the salient regions of an image works better than the

hole-image-based image retrieval. However, image retrieval algo-

ithms based on saliency detection have the problem that salient

egions tend to easily lose important information due to the un-

ertainty of salient regions, so the binary mask based on saliency

https://doi.org/10.1016/j.patcog.2019.01.029
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2019.01.029&domain=pdf
mailto:zhanghongyun@tongji.edu.cn
mailto:zhaocairong@tongji.edu.cn
mailto:dqmiao@tongji.edu.cn.
https://doi.org/10.1016/j.patcog.2019.01.029


H. Zhang, T. Zhang and W. Pedrycz et al. / Pattern Recognition 90 (2019) 390–403 391 

m  

t  

a  

s

 

t  

i  

h  

s  

l  

n  

t  

i  

a  

e

 

b  

s  

E  

t  

o  

s  

m  

c  

p  

t  

r  

c  

a  

p  

e  

v  

u  

r  

r  

i  

s  

l  

a  

u  

g  

p  

(

 

 

 

 

 

 

 

 

 

 

i  

b  

t  

b  

t  

c

2

 

r  

s  

p

2

 

m  

m  

a  

i  

t  

p  

t  

o  

c  

w  

t  

d  

a  

i  

t  

f  

l  

f  

i  

i  

r  

w  

[

 

f  

h  

n  

t  

T  

l  

h  

a  

r

g  

m  

o

2

 

i  

o  

g  

t  

s  

p  

r  

r  

t  

i  

(

 

g  

g  

f  

r  
ap segmentation can-not accurately reflect the salient informa-

ion of the image. For example, the salient regions are classified

s background regions, which will result in inaccurate retrieval re-

ults. 

Methods based on deep learning networks are developed with

he success of CNN framework. Xia et al. [20] first combined hash-

ng with CNN. Afterwards, Lin et al. [21] developed CNN based

ashing. Also, VGGNet [22] is applied to hash-based image repre-

entation. Saliency detection algorithms are also expanded to deep

earning frameworks [23–25] , which made saliency detection tech-

iques more accurate. However, training a deep network is very

ime consuming and need big datasets. Without big data as an

nput, these methods can easily fall into over fitting and hardly

chieve good results. In daily life image classification, there still

xist some application scenarios whose dataset is not very big. 

To address these problems, a new image retrieval algorithm

ased on shadowed sets is proposed in this study. The shadowed

et theory is mainly used for data description and data selection.

ssential (core) data and boundary data can be automatically ob-

ained with the use of shadowed sets. The key problem in shad-

wed set theory is the determination of the two parameters of a

hadow set (so-called upper approximation α and lower approxi-

ation β). Most recent research is concerned with some empiri-

al determination of these values of the parameters. The algorithm

roposed in this paper can automatically determine the values of

hese two parameters, and apply shadowed set theory to salient-

egion-based image retrieval. First, the upper approximation is cal-

ulated from the saliency map obtained by the saliency detection

lgorithm. We use the threshold of adaptive segmentation as up-

er approximation. Then the lower approximation is obtained by

dge detection of the original image. It is calculated with the mean

alue of the gray value of edge regions. After determining the val-

es of these two parameters, we can split the image into the three

egions, namely salient regions, non-salient regions and shadowed

egions. We consider the regions where the gray value of the pixel

s greater than upper approximation as salient regions, and con-

ider the regions where the gray value of the pixel is smaller than

ower approximation as non-salient regions. The shadowed regions

re located where the gray value of the pixels are between the

pper approximation and lower approximation. Finally, salient re-

ions and shadowed regions are jointly involved in the retrieval

rocess. We adopt the iterative-quantization-based hash algorithm

ITQ [9] ) as the retrieval algorithm. 

Our method exhibits the following important characteristics: 

1. The underlying originality of the proposed method relies on

the application of the shadowed sets theory in image retrieval,

which is a first approach involving shadowed sets in this cate-

gory of problems. 

2. Techniques of automatic parameter selection are developed

for automatically obtaining shadowed regions by combining

saliency detection and edge detection. 

3. A three-way division approach of images is presented to au-

tomatically split an image into three regions: salient regions,

non-salient regions, and shadowed regions. 

4. The salient regions and the shadowed regions are jointly used

as the correctly detected regions to improve performance of

segmentation and accuracy of retrieval. 

This paper is organized as follows: in Section 2 , we briefly

ntroduce the related works, including image retrieval algorithms

ased on the whole image and those based on the saliency detec-

ion. In Section 3 , we elaborate on the image retrieval model com-

ined with the shadowed set theory. The fourth section focuses on

he experimental results and discussions. Finally in Section 5 , con-

lusions are covered. 
. Related studies 

In this section, we briefly introduce the relate work of image

etrieval algorithms based on the whole image and those based on

aliency detection,which are highly related to our work in this pa-

er. 

.1. Image retrieval algorithms based on the whole image 

Image retrieval algorithms based on the whole image have

ade significant progress in recent ten years. The bag of word

odel (BOW [4] ) is a traditional model of text processing. It was

pplied to image retrieval in 1997 to “visualize” the features of the

mage and to contribute to large-scale image retrieval. Although

he “bag of word” model has achieved good results in the ap-

lications, it still exhibits some problems. The biggest problem is

he quantization loss of “characterization” of visual features. In

rder to address this problem, multiple allocation and soft allo-

ation methods have been applied to the quantization of visual

ords. Some studies also combine local features with color fea-

ures [11] or with spatial distribution as a weight [10] , so as to re-

uce the error caused by local features. In addition, hash-based im-

ge retrieval [7–9,26] is a fast image retrieval algorithm proposed

n recent years. It converts the image features into binary hash fea-

ures, and only needs to calculate the Hamming distance between

eatures during retrieval. The process is very fast. The main prob-

em with such algorithms is the lack of attention paid to spatial in-

ormation on features. In recent years, the visibility of deep learn-

ng has led to intensive research focused on deep learning, which

s aimed to extract image features; notably very good results were

eported. Xia et al. [20] first combined hashing with CNN. After-

ards, Lin et al. [21] developed CNN based hashing. Also, VGGNet

22] is applied to hash-based image representation. 

Image retrieval algorithms based on the whole image take the

eature of the whole image into account. These algorithms ex-

ibit some limitations. First, they usually include some background

oise and are affected by existing interferences. Second, the fea-

ures of the whole image exhibit low-level description abilities.

hird, these algorithms require a large storage space. Last but not

east, the algorithms coming from this category are of relatively

igh complexity. In real world problems, people tend to pay more

ttention to the obvious objects in the scene. Based on this, some

esearchers proposed saliency-detection-based image retrieval al- 

orithms, which can comprehensively capture and consider the se-

antic information of images and in this manner reduce the size

f features and the complexity of the algorithm. 

.2. Image retrieval algorithms based on saliency detection 

Compared with image retrieval algorithms based on the whole

mage, the salient-regions-based image retrieval algorithms not

nly can avoid the noise and interference caused by the back-

round feature, but also can consider the semantic information of

he image. The task of saliency detection [17–19] is to extract the

et of pixels that have obvious differences from the surrounding

ixels in the image, such as color, edge, texture, etc., as the salient

egions of the image. Salient-regions-based image retrieval algo-

ithms fall into two main categories: 1) Query pruning or early

ermination by using saliency map (saliency pruning, SP); 2) Us-

ng saliency map to weight the visual features or image patches

saliency weighting, SW). 

The retrieval algorithms using only the features of salient re-

ions (saliency pruning) were almost developed regardless of back-

round information. Reference [15] uses saliency map to filter the

eature points, in order to improve the speed of large-scale image

etrieval. Besides, it sorts the rest of the feature points according to
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Fig. 1. Main idea of proposed algorithm: image retrieval based on shadowed sets. 
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the saliency map, which not only can improve the retrieval speed,

but can also ensure the accuracy. Being different from saliency

pruning, saliency weighting means that different regions can be as-

signed different weights by saliency map. In [14] , the local features

and global features are weighted by saliency. 

Many improvements have been made based on the salient-

regions-based image retrieval algorithm from different aspects,

such as integrating spatial information, modifying segmentation

methods or changing saliency detection algorithms. However, the

importance of the easily lost fuzzy regions between the salient

regions and non-salient regions is rarely considered in salient-

regions-based image retrieval. In fact, due to the uncertainty of the

salient regions of images, there exist fuzzy regions which cannot

be simply defined as salient or non-salient regions. To solve this

problem, in this study we propose an adaptive image retrieval al-

gorithm based on shadowed sets theory. 

3. Image retrieval based on shadowed sets 

Traditional image detection algorithms based on saliency detec-

tion divide the image into salient regions and non-salient regions,

which is a two-way (binary) division. The main problem of this

type of algorithm is that it is unable to handle the uncertainty of

the image. Hence, we introduce shadowed set theory to realize a

new split of the image, which splits an image into three regions:

salient regions, non-salient regions, and shadowed regions. First,

graph-based manifold ranking [19] is used to generate the saliency

map. Given this saliency map, adaptive threshold leads to the up-

per approximation to extract the salient regions. Then the edge

of the image is detected by the Sobel edge operator. We obtain

the lower approximation from the edge information, so that the

shadowed regions are extracted automatically. Finally the salient

regions and the shadowed regions are jointly involved in the re-

trieval. ITQ [9] is used as the retrieval algorithm. Fig. 1 shows the

essence of the proposed approach. 

3.1. Shadowed sets 

The concept of shadowed sets was proposed by Pedrycz [27] .

The shadowed set theory preserves the core fuzzy information of

the object through a three-valued logic mapping, which essen-

tially delivers a concise representation of the concept of fuzzy

sets. Assuming that X is a fuzzy set, the shadowed set maps this

fuzzy set to a three-valued space described in the following form
1, 0, [0, 1]}. 0 means the element does not belong to X (exclu-

ion). 1 indicates that the sample belongs to X (inclusion). The in-

erval [0, 1] indicates that the sample may or may not belong to X ,

hich constitutes a shadow of the construct. 

Definition 1. Assume that the membership function of fuzzy

ets is f ( x ). Let f (x ) = 1 , if f ( x ) > α; let f (x ) = 0 , if f ( x ) < β . If

< f ( x ) < α, we let f ( x ) ∈ [0, 1]. This is equivalent to mapping x to

, 1 and the unit interval [0,1], ie f : X → {0, 1, [0, 1]}. The mapping

s referred to as a shadowed set. 

Shadowed sets theory is usually used to deal with the problem

f uncertainty. Since 1998, shadowed sets has emerged as a new

ay to model ways of representing and processing fuzzy sets, the

heory has been used by many scholars in different fields. Cattaneo

roposed an algebraic method to define the relationship between

uzzy sets and shadowed sets [28] . Pedrycz applied shadowed sets

o fuzzy clustering in many papers in order to improve the cluster-

ng effect [29–32] . Zhou et al. applied the data selection method

f shadowed sets into neural networks to improve its performance

33] . In 2017, there have been progress made in the shadowed set

heory. Cai et al. [34] interpreted dynamic fuzzy sets by means

f shadowed sets. Claudia [35] presented an approach to obtain

he shadowed set for Triangular and Gaussian membership func-

ion. Yao proposed a framework for constructing shadowed sets

nd three-way approximations of fuzzy sets in [36] . 

.2. Image segmentation combined with shadowed sets 

Inspired by the theory of shadowed sets, if we can extract the

hadowed regions of images, we may improve the retrieval accu-

acy. The crucial point is using the image information determine

utomatically these three regions. At present, the values of the two

arameters α and β are empirically determined. Therefore, to be

ble to adapt to the image content, we develop techniques of an

utomatic selection of two parameters by combining saliency de-

ection and edge detection, which automatically determine shad-

wed regions. In this way the image is split into salient regions,

on-salient regions and shadowed regions (fuzzy regions). 

.2.1. Determination of parameter α based on the saliency detection 

nd adaptive segmentation 

Based on the saliency detection of early works, we use graph-

ased manifold ranking [19] algorithm to obtain the saliency map

nd adaptively obtain the parameter α on it. In order to avoid

he accuracy being influenced by illumination variant and affine
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Fig. 2. Saliency detection via graph-based manifold ranking [19] . 
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ransformation, we extract SIFT (scale invariant feature) [6] feature

efore saliency detection. SIFT feature is represented by vectors in

ifferent directions, which is invariant to image scale and illumi-

ation. Specifically, graph-based manifold ranking is a bottom-up

aliency detection algorithm. First, the graph is constructed by ap-

lying SLIC [37] algorithm to the SIFT feature extracted from orig-

nal images. Second, the sparse color histogram features of each

uper pixel patches is extracted, and the super pixel patches at

he four edges of the image are considered as the background seed

odes. Third, manifold ranking algorithm [38] is used to calculate

he four initial saliency maps of the seed nodes. Finally, the four

aps are multiplied and merged into a single saliency map and

he overall flow of saliency detection is visualized in Fig. 2 . 

Saliency can be used as a weight or a selector. A method of

ssigning saliency is to use a threshold to binarize the saliency

ap, and generate a mask map to mask the original image. The

hreshold of the saliency map can be fixed or adaptive. The fixed

hreshold is determined in an empirical fashion, while the adap-

ive threshold is expressed as twice the average gray value of the

aliency map. According to the obtained saliency map (the right-

ost image in Fig. 4 ), we can find that there is an obvious differ-

nce in gray scale between salient regions and non-salient regions.

o we adaptively set the upper approximation through the adap-

ive threshold. 

= 

2 

∑ 

x,y S(x, y ) 

m × n 

(1) 

Where m and n denote the height and width of the image, re-

pectively, S ( x, y ) represents the saliency value of the saliency map

t the position ( x, y ), x, y, m and n satisfy 1 ≤ x ≤ m and 1 ≤ y ≤ n . 

Therefore, the salient region S ( x, y ) should satisfy the following

nequality: 

2 

∑ 

x,y S(x, y ) 

m × n 

≤ S(x, y ) ≤ 255 (2) 

Once the threshold value has been set, the regions of the

aliency map that are lower than the threshold is set as 0, and

he regions that larger than the threshold is set to 1. This bina-

ized map is a mask. We use it to mask the original image several

imes, in order to obtain the salient regions of the image; refer to

ig. 3 . 
.2.2. Development of the parameter β based on edge detection 

From Fig. 3 , we note that the salient regions of the images can

xpress the most obvious parts of the images, but still lose some

seful regions of the images that are similar to the background or

re different from the saliency regions. Those are the dark pony

n the first sample image, some white portion of the scarf in the

econd sample image, the bottom of the color bucket in the third

ample image, the medal of the circle in the fourth sample image,

nd the golden pattern of the carpet in the fifth sample image. As

hese regions tend to include obvious boundary between salient

egions or background regions, large gradient changes in pixel val-

es can occur on the digital representation of the images. There-

ore, in order to “fill in” these missing “fuzzy” regions, we compute

he lower approximation of the saliency map in conjunction with

he edge detection algorithm to obtain the boundary regions of the

mages. 

We propose to employ Sobel-operator-based edge detection be-

ause of its stability and robustness. The Sobel operator is a dis-

rete differentiation operator, computing an approximation of the

radient of the image intensity function. As a small, separable, and

nteger-valued filter, it is used to convolve the image in the hori-

ontal and vertical directions. If we define I as the source image, G X 

nd G Y are two images which at each point contain the horizontal

nd vertical derivative approximations, respectively. The final gra-

ient G can be calculated as the sum of the squares of G X and G Y .

he computations are completed as follows: 

 X = Sobel X ∗ I, G Y = Sobel Y ∗ I, G = 

√ 

G 

2 
X 

+ G 

2 
Y 

(3)

Where Sobel X = 

[ −1 0 +1 

−2 0 +2 

−1 0 +1 

] 

, Sobel Y = 

[ −1 −2 +1 

0 0 0 

+1 +2 +1 

] 

. 

Fig. 4 shows the Sobel edge detection result obtained for a sam-

le image, in which the edge regions are outlined with white out-

ine. Recall that the gray value at the edge regions is denoted as

dge ( x, y ). 

Since the missing useful regions tend to include obvious bound-

ry between salient regions and background regions, we take the

daptive mean value of the edge regions as the lower approxima-

ion β . 

= 

λ
∑ 

x,y edge (x, y ) 
(4) 
N 
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Fig. 3. The first line shows sample pictures and the second line shows the salient regions we extract. 

Fig. 4. sample image and its edge detection. 
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Where N represents the number of pixels in the edge regions,

λ denotes the adaptive coefficient, and the shadowed regions are

extracted by the following inequality: 

λ
∑ 

x,y edge (x, y ) 

N 

≤ S(x, y ) < 

2 

∑ 

x,y S(x, y ) 

m × n 

(5)

In addition, the extraction of the non-salient regions should sat-

isfy the relationship: 

0 ≤ S(x, y ) < 

λ
∑ 

x,y edge (x, y ) 

N 

(6)

In this way, we can automatically obtain the upper and lower

approximations based on the shadowed sets. Hence, the image is

divided into the three regions: salient regions, non-salient regions,

and shadowed regions. As shown in Fig. 5 , the first line displays

the original sample images, the second line shows the salient re-

gions, while the third line shows the shadowed regions, and the

fourth line shows the non-salient regions. In the figure, the black

regions represent the filtered regions and the colored regions are

the reserved areas. 

In the proposed algorithm, the parameter λ is crucial for ex-

tracting shadowed regions and non-salient regions. Different values

of the parameter λ determine whether certain shadowed regions

are reasonable or not. However, it is difficult to select proper value

for this parameter because it would be different for data sets with

different images. Since β is smaller than α and λ is between 0 and

1, we inspect several possible values to find optimal result. Em-

pirically, it was found that when we set λ = 2 / 7 , the parameters

form a sound option. In the reported experiment in Section 4.5 ,

the value of the parameter λ is further verified. 

The retrieval algorithm extracts visual feature on salient regions

and shadowed regions, as shown in Fig. 6 , which preserves more

valid information than saliency-detection-based image retrieval al-

gorithms that extract features only on salient regions. 

3.3. Shadowed-sets-based image retrieval 

After extracting the features of the salient regions and shad-

owed regions of the image, iterative quantization (ITQ [9] ) based

algorithm is used for image retrieval. ITQ is an unsupervised al-

ternating minimization scheme inspired by multi-class spectral

clustering and the orthogonal Procrustes problem. It is simple and

efficient. The main idea of ITQ is to find a rotation of zero-centered

data so as to minimize the quantization error of mapping this data
o the vertices of a zero-centered binary hypercube. Hence, the

imilarity between different images can be expressed by XOR op-

ration, which is very suitable for large data sets. So we employ

TQ in this version of work. We first extract the GIST [5] features

ased on the Gabor filtering as the input of ITQ. It is extracted

y Gabor filters at 4 scales and 8 directions to convolute with

he image, so as to generate 32 features maps of the input im-

ge. Each feature map is divided into 16 regions. Next, the mean

alue of each region is computed. Finally, the 16 mean values of

2 feature maps are aggregated to 16 × 32 GIST feature. Suppose

he feature of each image extracted by a dataset X with n images

s { x 1 , x 2 , . . . , x n } , x i ∈ R d , that form the rows of the data matrix

 = [ x 1 , x 2 , . . . , x n ] 
T ∈ R n ×d , d = 512 . We assume that the points are

ero-centered, i.e., 
∑ n 

i =1 x i = 0 . Our goal is to learn a binary code

atrix B ∈ {−1 , 1 } n ×c , where c presents the code length. The de-

ailed algorithm can be found in [9] . 

Overall, the shadowed-sets-based image retrieval algorithm is

ivided into two steps. The first step is an offline indexing of all

he images present in the dataset. Then we form the binary repre-

entation of the images. The second step is the online indexing of

uery image, and then calculate the distance between all the im-

ges in the dataset and the query image, so as to identify the most

imilar images. 

In the offline indexing step, we firstly calculate the saliency

ap S ∈ R a × b according to the saliency detection algorithm with

he aid of the graph-based manifold ranking [19] . Then we form

he two parameter α and β according to Sections 3.2.1 and

ection 3.2.1 , respectively. With the use of the two parameters, we

xtract the salient and shadowed regions ( I × M ), where × means

 multiplication of the value of the matrix I with the correspond-

ng position in the matrix M while M denotes the mask map which

atisfies the following relationship: M(x, y ) = 1 if β ≤ S ( x, y ) ≤ 255,

nd M(x, y ) = 0 if 0 ≤ S ( x, y ) < β . 

Finally, we binarize the GIST feature as B ∈ R 1 × c according to

TQ [9] , where c represents the number of bits. 

In the online retrieval step, the first step is indexing the query

mage according to Algorithm 1 , and getting x feature ∈ R 1 c as the

lgorithm 1 offline indexing. 

nput: Original image I ∈ R a ×b 

utput: The binary representation B ∈ R 1 ×c 

: Calculate the saliency map S ∈ R a ×b 

: Form the upper approximation α according to 3.2.1 

: Form the lower approximation β according to 3.2.2 

: Extract the salient and shadowed regions ( I × M) implied by α
nd β
: Extract the GIST feature on salient and shadowed regions

(I × M) 

: Binarize the GIST feature as B ∈ R 1 ×c 

ndex of the query image. Then, the similarity between the query

mage and images in dataset is calculated by the xor operation.
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Fig. 5. A set of sample images and their division results. 

Fig. 6. Salient Regions + Shadowed regions. 
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2 https://github.com/zhangtingwaa/mycode . 
inally, the retrieval result is obtained by sorting the entries of the

imilarity matrix. 

lgorithm 2 online retrieval. 

nput: The query image x ∈ R a ×b and the output of Algorithm 1

 

n ∈ R n ×c 

utput: similarity matrix Similarity ∈ R n ×1 

: Binarize the query image into x f eature ∈ R 1 c by Algorithm 1 

: for all B i ∈ B n do 

: Similarity (i ) = x f eature xor B i 

: end for 

: Sort Similarity 

. Experimental studies 

.1. Datasets and code 

MSRA10K Dataset: MSRA10K dataset which contains 10,0 0 0

mages with the ground truth of salient region marked by bound-

ng boxes. 

Corel-10 0 0 Dataset: This dataset contains 10,0 0 0 images be-

onging to 100 categories, which include different themes such as

ortraits, landscapes, buildings, and butterflies. In the experiment,

e use the first 90 0 0 images as a training set and the remaining

0 0 0 images as a test set. 

SIVAL Dataset: The dataset is designed for partial image re-

rieval. It contains only the salient features of the image. It consists

f 1500 images in 25 categories, with 60 images in each category. 

CIFAR-10 Dataset: This dataset contains 60,0 0 0 images. Each

mage is represented by 512-dimensional GIST feature vector ex-

racted from the original color image of size 32 × 32. Each image

s manually labeled to belonging to one of the ten classes. Two

mages are considered to be semantically similar if they share the

ame class label. Otherwise, they are treated as semantically dis-

imilar. 
The core code of the proposed method can be obtained on the

ithub. 2 

.2. The comparison of performance of the segmentation 

We compared the proposed algorithm with several state-of-the-

rt saliency detection algorithms on the MSRA10K database. In our

ethod, the correctly detected salient regions include salient re-

ions and shadowed regions. Performance was evaluated by as-

essing precision, recall, and F -measure. Precision is the ratio of

orrectly detected salient pixels to the total detected salient pix-

ls, while recall is the ratio of correctly detected salient pixels to

he ground truth salient pixels. In addition, we introduced the F -

easure to evaluate the overall performance. The F -measure value

s defined as: 

 β = 

(1 + β2 ) P recision ∗ Recall 

β2 P recision + Recall 
(7) 

Where β2 = 0 . 3 , as presented in [19] . 

According to the number of references, the proposed time and

he diversity criteria, we select four algorithms for the compara-

ive analysis, which are CB [39] , RC [40] , SEG [41] and FT [42] .

ince the saliency map obtained by the above algorithms gives the

alient value of each pixel but not binary, we adaptively divide the

aliency map into the corresponding binary mask map in the ex-

eriment. That is, the value in the set {0, 1}, where the value of

 means salient, the value of 0 means non-salient. The algorithm

roposed in this paper takes the salient regions and the shadowed

egions as retrieval regions, so the salient regions and the shad-

wed regions are set to 1, and non-salient regions are set to 0. 

Fig. 7 shows the results of comparative study. Some examples

f visualizations are shown in Fig. 8 . Fig. 8 (a) is the input im-

ge, Fig. 8 (b) is the saliency labels at the pixel level given by

he MSRA10K dataset, and Fig. 8 (c)–(f) are the division results of

B, RC, SEG and FT. From Fig. 7 , we can see that our algorithm

s 5% ∼ 15% more accurate than CB, RC, SEG and FT. The Preci-

ion, Recall, and F -measure of the algorithm CB are 0.87, 0.81 and

.85, respectively, which are only 1% lower than our algorithms on

ecall. However, the Precision and the F -measure are 7% and 6%

ower than ours respectively. The Precision, Recall and F -measure

f the algorithm RC are 0.92, 0.79 and 0.89, respectively, which

re almost the same as our algorithm in Precision and F -measure.

owever, the algorithm SEG’s Precision, Recall, F -measure are 0.85,

.59 and 0.77 respectively, which are 9%, 23% and 14% respectively

https://www.github.com/zhangtingwaa/mycode
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Fig. 7. The histogram of the comparative analysis. 

Fig. 8. Some examples of the obtained visualizations. 
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lower than for our algorithm. Algorithm FT’s Precision, Recall, F -

measure are 0.85, 0.63 and 0.79, respectively, which are 9%, 19%

and 12% lower than for our algorithm. Through observations com-

ing from experiments, it is not difficult to find that due to the

idea of shadowed sets, our algorithm can more accurately capture

salient regions of the image, which not only can be seen visually in

Fig. 8 , but also is reflected in the high Precision and Recall shown

in Fig. 7 . In addition, from Fig. 8 , we can observe that the pro-

posed algorithm can produce clearer and smoother boundaries of

the salient regions. 

4.3. Accuracy evaluation of the retrieval 

On the Corel-10 0 0 dataset, SIVAL dataset and CIFAR-10 dataset,

we use the Precision-recall (PR) curve to measure the quality of the

retrieval, where the Precision = the number of correct images re-

trieved / the number of all retrieved images, while the recall = the
umber of correct images retrieved / the number of images in the

ataset. Besides, we use MAP to measure the accuracy of the re-

rieval, which is equal to the area under the Precision-recall curve. 

Our algorithm is based on the ITQ algorithm, so we take the

TQ algorithm as a baseline for comparison. In addition, we select

ve other state-of-the-art hash-based image retrieval algorithms as

omparison algorithms: 

RR: This algorithm is similar to ITQ, except that the orthogonal

atrix R in the second step is replaced by a random orthogonal

atrix. 

LSH [7] : Locality-Sensitive Hashing (LSH) was originally pro-

osed in 1999. The basic idea is that if two data points are ad-

acent in the original data space, the probability of their adjacency

n the new data space is very large after a mapping or a projection

ransformation. On the contrary, if two data points are not adja-

ent in the original data space, the probability of their adjacency

n the new data space is very small after a mapping or a projec-

ion transformation. 

SKLSH [8] : In 2009, Raginsky et al. proposed a Shift-Invariant

ernelized Locality-Sensitive Hashing (SKL SH) model. SKL SH takes

he random mapping as the core idea and proposes a mapping

ethod which is not related to data distribution. The advantage

s that the Hamming distance between hash codes corresponds to

he translational invariant kernel value of the corresponding eigen-

ector. 

ITQ [9] (baseline): At the CVPR meeting, in 2013, Gong et al.

roposed an iterative quantization-based image retrieval algorithm

ITQ). Firstly, it uses principal component analysis to reduce the

imension of the data, and then orthogonally transforms the pro-

ection data to minimize the quantization error. 

COSDISH [12] : In 2016, considering the errors caused by the re-

axation in graph based hashing, column sampling based discrete

upervised hashing was proposed. It directly learns the discrete

ashing code from semantic information. It is an iterative method

nd shows a constant-approximation bound in each step of the al-

ernating optimization procedure. 

LGHSR [13] : In 2017, Li et al. introduced spectral rotation tech-

ique into graph based hashing algorithm. It was proposed to ad-

ress the problem of the spectral solution in real value in such

ethods deviating from the discrete solution. The binary codes are
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Fig. 9. The comparison results (PR curve) on Corel-10 0 0: (a) 16 bits; (b) 32 bits; (c) 64 bits; (d)128 bits. 
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Table 1 

MAP of the 7 image retrieval algorithms on Corel-10 0 0. 

Bits/algorithm SKLSH LSH RR COSDISH ITQ LGHSR OURS 

16 bits 0.12 0.25 0.24 0.24 0.26 0.31 0.33 

32 bits 0.20 0.25 0.39 0.41 0.42 0.54 0.54 

64 bits 0.25 0.35 0.45 0.47 0.47 0.57 0.62 

128 bits 0.48 0.46 0.54 0.51 0.51 0.58 0.69 
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btained from the modified solution via minimizing the Euclidean

istance. 

Figs. 9–11 show the PR curve of the seven retrieval algorithms

or different hash bits on the Corel-10 0 0, SIVAL and CIFAR-10

atasets, respectively. 

Fig. 9 clearly shows that our method achieve far better perfor-

ance than ITQ. The main difference between our method and ITQ

s that ITQ is based on the whole image while our method com-

ines shadowed set theory to extract the salient regions and shad-

wed regions. Hence, the intuitive viewpoint that using the pre-

isely useful regions is reasonable has been successfully verified

y our experiments. 

The results on the SIVAL dataset ( Fig. 10 ) shows that the accura-

ies of all the algorithms are slightly improved over the accuracies

btained for the Corel-10 0 0, because the same class of images on

his dataset has only the background regions changed while the

alient regions are exactly the same. However, the advantages of

he algorithm are not as obvious as that for the Corel-10 0 0. We

an note that the proposed algorithm has a significant effect on

he complex and fuzzy image, but few effects on the images with

lear foreground. An advantage in short code length is lower than

hat in long code length. 

Fig. 11 shows the comparison result for the CIFAR-10 dataset

xpressed in terms of precision and recall. We can see that the

roposed method outperforms the other methods with almost all
he code lengths. Furthermore, the performance of our method is

lso comparable, if not superior, to the state-of-the-art methods,

uch as LGHSR and COSDISH. 

Tables 1–3 show the values of the MAP (mean average preci-

ion) for the seven retrieval algorithms on the three datasets. They

how that as the code length increases, the MAP of all algorithms

s improved. As the number of bits increases from 64 bits to 128

its, the MAP of SKLSH, LSH and RR are slightly improved, while

he MAP of ITQ and the our algorithm show a little improvement.

his indicates that the influence of the code length gradually de-

reases as the code length increases. 

In addition to comparing the proposed algorithm with the im-

ge retrieval algorithms based on the whole image, we also com-

are it with the saliency-detection-based image retrieval algorithm.

n order to show the validity of the shadowed-sets-based divi-

ion proposed in this paper, GB [19] and ITQ [9] , respectively

re used as the saliency detection algorithm and the retrieval
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Fig. 10. The comparison results (PR curve) on SIVAL: (a) 16 bits; (b) 32 bits; (c) 64 bits; (d) 128 bits. 

Table 2 

MAP of the 7 image retrieval algorithms on SIVAL. 

Bits/algorithm SKLSH LSH RR COSDISH ITQ LGHSR OURS 

16 bits 0.18 0.29 0.31 0.34 0.35 0.37 0.37 

32 bits 0.24 0.31 0.43 0.47 0.49 0.55 0.56 

64 bits 0.26 0.41 0.59 0.61 0.60 0.62 0.64 

128 bits 0.48 0.49 0.64 0.66 0.66 0.64 0.65 

Table 3 

MAP of the 7 image retrieval algorithms on CIFAR-10. 

Bits/algorithm SKLSH LSH RR COSDISH ITQ LGHSR OURS 

16 bits 0.14 0.27 0.34 0.36 0.35 0.38 0.38 

32 bits 0.22 0.29 0.42 0.43 0.47 0.55 0.56 

64 bits 0.29 0.31 0.50 0.65 0.58 0.64 0.67 

128 bits 0.38 0.48 0.61 0.66 0.64 0.67 0.68 
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algorithm in the comparative experiment for the sake of fairness,

of which the code length in ITQ is 128 bits. In the feature ex-

traction section, we use three features: color histogram, BOW and

GIST. Figs. 12 , 13 and 14 show the results on the Corel-10 0 0, SIVAL

and CIFAR-10 datasets, respectively. We observe from Figs. 12 and

14 that since the difference between the background and the

foreground is rather vague, the segmentation combined with

the shadowed sets can be more accurate than the one without

shadowed sets, and the PR curve is much higher. However, due to

the clear difference between background and foreground, there is
o obvious advantage in combining shadowed sets theory on the

IVAL dataset. Furthermore, the use of shadowed set theory ex-

ibits a certain degree of significance on the retrieval accuracy. 

Tables 4–6 show the concrete value of MAP on the Corel-10 0 0,

IVAL and CIFAR-10 datasets, respectively. It is clear that on the

orel-10 0 0 dataset, the final retrieval accuracy is improved by 6%,

% and 7%, respectively, whereas on the SIVAL dataset the improve-

ents are only 1%, 2% and 6%. This indicates that the proposed al-

orithm is more effective for fuzzy images in the salient regions,

nd the GIST feature exhibits stability in the three visual features. 
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Fig. 11. The comparison results (PR curve) on CIFAR-10: (a) 16 bits; (b) 32 bits; (c) 64 bits; (d) 128 bits. 

Fig. 12. Verification of the validity (PR curve) of the shadowed sets theory on Corel-10 0 0: (a) Color Histogram; (b) BOW; (c) GIST. 

Table 4 

MAP on Corel-10 0 0. 

Method Color histogram BOW GIST 

Without shadowed region 0.53 0.52 0.55 

With shadowed region 0.59 0.60 0.68 

Table 5 

MAP on SIVAL. 

Method Color histogram BOW GIST 

Without shadowed region 0.56 0.56 0.57 

With shadowed region 0.57 0.58 0.69 
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Fig. 13. Verification the validity (PR curve) of the shadowed sets theory on SIVAL: (a) Color Histogram; (b) BOW; (c) GIST. 

Fig. 14. Verification the validity (PR curve) of the shadowed sets theory on CIFAR-10: (a) Color Histogram; (b) BOW; (c) GIST. 

Table 6 

MAP on CIFAR-10. 

Method Color histogram BOW GIST 

Without shadowed region 0.57 0.59 0.62 

With shadowed region 0.61 0.64 0.69 
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3 https://github.com/shekkizh/FCN.tensorflow . 
4.4. Comparison with deep learning algorithms 

This section first compares the accuracy and the run time of the

shadowed-set-based segmentation algorithm with those of deep

segmentation algorithms. Then, we compare the accuracy and the

run time of the proposed image retrieval algorithm with those of

deep hashing algorithms. Meanwhile, we analyze the advantages

and disadvantages of our algorithm. 

4.4.1. The comparison of the accuracy and run time to deep 

segmentation algorithms 

Dataset: PASCAL VOC 2012 [43] . PASCAL VOC 2012 is a well-

known segmentation evaluation dataset which consist of 20 object

categories and one background category. This original dataset is

split into a training set, a validation set and a test set, which con-

tain 1464, 1449 and 1456 images, respectively. This dataset is aug-

mented by the extra annotations provided by Hariharan et al. [44] ,

resulting in 10,582 training images. The performance is measured

in terms of pixel intersection-over-union (IOU) averaged across the

21 classes. 

The quantitative results of the proposed algorithm and the

competitors are presented in Table 7 . We compared our method

with three deep learning based methods: DeepLab [25] , SegNet

[23] and FCN [24] . The quantitative performance of DeepLab and

SegNet can be obtained from the study which proposed the two

algorithms [23,25] , while the quantitative performance of FCN is
btained by using the public source code available on github. 3 The

erformance of our algorithm is competitive to the state-of-the-

rt deep learning methods. We outperform competing methods

n most categories, especially in categories which report relatively

ow accuracy under other methods (bike, boat, chair, table and

ofa).This confirms that, with the consideration of fuzzy regions

etween foreground and background, our method can deal with

ore complex image data. Besides, in some categories already re-

orted high accuracy (areo, cow, mbk), our method also achieve a

ittle bit improvement. However, in the categories of bgk, bird, bus,

at, and person, our method can not achieve the best performance

mong the four methods. It is because the five categories have one

hing in common, that is, the foreground and background are rela-

ively clear there. In other words, there are nearly no fuzzy regions

xisting between the foreground and the background. Hence, the

dvantage of our method can not be manifested. 

Table 8 demonstrates the run time comparison of the methods.

he configurations of GPU is MSI GeForce GTX 1080 Ti, and we

ave two gpus on the computer. Since our algorithm is not based

n deep networks, our training time does not contain two parts

forward time and backward time). FCN, SegNet which have fully

onnected layers (turned into convolutional layers) train much

ore slowly. Here we note also that over-fitting was a big issue

n training these network models on small datasets. Instead, our

ethod is simple and efficient compared to these deep learning

ased methods. We achieve the best performance of run time on

his dataset. 

.4.2. The comparison of the accuracy and run time to deep hashing 

lgorithms 

To verify the effectiveness of the 2-threshold parameter-based

mage retrieval algorithm, the state-of-the-art deep hashing based

https://www.github.com/shekkizh/FCN.tensorflow
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Table 7 

Segmentation accuracy on PASCAL VOC 2012 test set. 

Method bkg areo bike bird boat bottle bus car cat chair cow 

DeepLab 92.1 78.4 33.1 78.2 55.6 65.3 81.3 75.5 78.6 25.3 69.2 

SegNet 89.6 76.5 32.2 73.5 50.1 71.2 83.4 76.1 82.1 22.7 67.7 

FCN 91.2 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 

OURS 90.2 86.1 45.7 77.1 67.8 75.9 81.4 76.3 80.3 42.5 80.5 

Method table dog horse mbk person plant sheep sofa train tv mean 

DeepLab 52.7 75.2 69.0 79.1 77.6 54.7 78.3 45.1 73.3 56.2 66.4 

SegNet 56.4 76.5 69.6 77.7 58.2 52.4 72.9 45.2 69.8 54.3 64.7 

FCN 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2 

OURS 64.7 80.4 75.0 80.8 76.0 61.5 79.2 53.8 73.9 66.0 72.1 

Table 8 

Run time of segmentation on PASCAL VOC 2012 dataset. 

Method Forward pass(ms) Backward pass(ms) Training time(ms) Test time(ms) 

DeepLab 297.06 360.73 657.79 25.52 

SegNet 632.50 708.71 1341.21 63.36 

FCN 516.09 694.11 1210.20 59.24 

OURS – – 197.34 5.93 

Fig. 15. The influence of the adaptive parameter λ on Corel-10 0 0, SIVAL and CIFAR-10 respectively. 

Table 9 

Performance comparison (mAP, %) of different bits on 

CIFAR-10 dataset. 

bits/method CNNH DLBH DeepBit OURS 

16 bit 31.9 77.5 17.8 38.4 

32 bit 54.7 80.8 23.9 56.2 

64 bit 58.4 84.4 24.7 67.9 

128 bit 63.2 89.6 33.8 68.4 
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mage retrieval algorithms are also taken into consideration in

he comparison experiments. We compared our method with

NNH [20] , DLBH [21] (Deep Learning of Binary Hash Codes

or Fast Image Retrieval) and DeepBit [22] on the CIFAR-10

ataset. 

Table 9 shows the CIFAR-10 retrieval results based on the mean

verage Precision (mAP) of the top 10 0 0 returned images with

espect to different bit lengths. Our method improves the per-

ormance of DeepBit by 10.6%, 32.3%, 43.2% and 34.6% mAP with

espect to 16, 32, 64 and 128 hash bits, respectively and achieve

ompetitive results compared to CNNH. However, DLGH achieve

he best performance in the four methods. This may account

or the effective feature extraction technique of DLGH. Generally

peaking, our method reports competitive performance results

ompared to deep-hashing-based image retrieval algorithms. This

ndicates the proposed method is effective to learn binary

escriptors. The experiments also reveal that 2-threshold
arameter-based segmentation technique can improve the hashing

erformance. 

Since run time is another aspect used to measure the qual-

ty of algorithms, we also test the training time of the four al-

orithms. Being different from deep learning methods, the train-

ng time does not contain two parts (forward time and backward

ime), while it is composed of segmentation time and retrieval

ime, which are recorded before and after a plus symbol, respec-

ively. The hash bit is set to 128 because the longer the hash

its, the higher mAP these algorithm achieves. We show the time

ass under relatively high retrieval accuracy. According to Table 10 ,

NNH and DLBH need relatively high train time. The commonality

f the two method is that they are both based on CNN framework.

n the CNN framework, the fully connected layers will cost too

uch time. DeepBit makes much effect on optimizing the training

ime of the deep network. However, it still costs more time than

ur method. Our method can outperform DeepBit even if plus the

egmentation time (183.71ms). About test time, our method also

utperforms other methods. Hence, the proposed method is able

o achieve the competitive performance with the shortest training

ime. 

Although our method outperforms most of the other algo-

ithms in the experiments, larger datasets such as ImageNet

re not concluded because of the limits to the hardware.

s is well known, DL methods achieve excellent performance

n big datasets. They extract efficient features from numer-

us images. Therefore, our method provides a simple and quick
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Table 10 

Run time comparison (128 bit) on CIFAR-10 dataset. 

Method Forward pass(ms) Backward pass(ms) Training time(ms) Test time(ms) 

CNNH 885.49 1063.32 1948.81 93.20 

DLBH 894.55 1108.53 2003.08 132.23 

DeepBit 202.06 310.46 512.52 22.83 

OURS – – 183.71 + 223.85 6.43 + 7.95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

solution to image retrieval task and is suitable for relatively small

datasets. 

4.5. Evaluation of the influence of the adaptive parameter λ on the 

retrieval results 

Fig. 15 shows the influence of the adaptive parameter λ on

the retrieval results. On Corel-10 0 0 and CIFAR-10, the best per-

formance is achieved when λ is set to 2/7. While on the SIVAL

dataset, 2/5 is the best choice of λ. Considering that SIVAL is

clear in the task of distinguishing the salient regions and non-

salient regions. We advise 2/7 to be the best value of the adaptive

parameter λ. 

Hence, we can set its value as 2/7, as this value produces the

best results. If it is smaller than 2/7, the shadowed regions are

too large and some background interference information cannot be

ruled out. When it is bigger than 2/7, the shadowed regions are

too small, and the result is close to the image retrieval algorithm

based on saliency detection, which does not combine shadowed

sets. This choice of parameter is provided with a certain degree of

robustness since it is validated on two public datasets. 

5. Conclusions 

The study developed a shadowed set-based image retrieval al-

gorithm. Based on the saliency-detection-based image retrieval al-

gorithm, our approach exploits the shadowed set theory, splits the

image into salient regions, non-salient regions and shadowed re-

gions, and uses the shadowed regions and salient regions as the

useful information for the retrieval. For the images having clear

salient regions, the algorithm does not increase the redundant re-

gions. In other words, it exhibits a significant level of robustness.

A number of comparative experimental studies completed for the

two publicly available large datasets show that the approach devel-

oped in the study can effectively improve the accuracy of image re-

trieval. However, there is still some room for further improvement

in terms of feature selection. The division of salient regions is sen-

sitive to color, and the salient regions can-not be easily identified if

they have the color similar to the color of the background regions.

Future studies may focus on ways on how to establish better fea-

ture extraction methods so that more semantic content of images

could be captured and efficiently used in the classification and re-

trieval processes. Also, more state-of-the-art methodology will be

employed to make our framework more creative. 
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