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Abstract
In some information system with order features, when users consider “greater than” or “less than” relations to a certain 
degree rather than in the full sense, using traditional methods may face great limitations. In light of natural connections 
among concept lattice, inclusion degree, order relations, and the feasibility of mutual integration among the three (concept 
lattice is essentially a type of data analysis tool using binary relations as research objects, while inclusion degree is a type of 
powerful tool for measuring uncertain order relations), the paper attempts to analyze uncertain order relations quantitatively 
within the framework of integration theory of concept lattice and inclusion degree. By which, the research scope of order 
relations undergoes an expansion-to-contraction process. Namely, certain order relations are first expanded to fuzzy or uncer-
tain relations, and then the fuzzy or uncertain relations are allowed to contract to a degree of certainty by setting threshold 
parameters. Clearly, by properly widening the research scope of order relations, the model not only has good robustness 
and generalization ability, but also can meet actual needs flexibly. On this basis, solutions for algebraic structure, reduction, 
core, dependency, et al. are further studied deeply in ordered information systems. In short, the paper, as a meaningful try 
and exploration, is conducive to the integration of theories, and may offer some new and feasible ways for the study of order 
relations and ordered information systems.

Keywords Concept lattice · Inclusion degree · Ordered information systems · Uncertain order relations

1 Introduction

In the cognitive course, humans always tend to classify same 
or similar subjects into one class based on similar features, 
or close distances, or functional convergence, and then mark 
this class as a word to form an abstract concept. In this case, 
a concept is a unit of thought, and a large conceptual sys-
tem can be gradually established for humans to cognize the 
objective world. By simulating humans’ conceptual cogni-
tive process, Wille pioneered concept lattice in 1982, also 
known as formal concept analysis [40], which, as an impor-
tant application branch of order and lattice theory, is essen-
tially a type of data analysis tool using binary relations as the 
main research objects. On the one hand, by defining a pair 
of intent and extent operators, it can obtain concepts of rich 
semantics from data, and any concept consists of two parts-
intent and extent; on the other hand, with help of the lattice 
algebra structure, it can intuitively present order relation-
ships among concepts. In recent years, theories, methods, 
and tools for concept lattices are under continuous update 
[18, 22, 23, 27, 34, 53], especially the integration of concept 
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lattice with rough sets [2, 3, 11, 12, 35, 36, 39, 49], fuzzy 
sets [7, 15, 19, 32], granular computing [13, 16, 17, 29, 38, 
41, 58], et al., making the theoretical system increasingly 
sophisticated and also greatly improving the analysis capa-
bility to complex-datas.

1.1  Concept lattice and order relations

It is known that, as a special type of binary relations, order 
relations are universal, and can intuitively show the sequence 
or size relationship among objects. For instance, being early 
versus being late, being superior versus being inferior, or 
being tall versus being short are all concrete manifestations 
of order relations, and in particular, transitivity is the most 
basic feature of order relations.

Definition 1 “≼ ” is called an order relation on the set L, if 
it satisfies following conditions for all elements x, y, z ∈ L

1.  reflexivity: x ≼ x;
2.  antisymmetry: x ≼ y and x ≠ y ⇒ not y ≼ x;
3.  transitivity: x ≼ y and y ≼ z ⇒ x ≼ z.

In the case, we say (L,≼) is an order set.
There is a natural connection between one-valued con-

texts and order relations. Generally, order relations can 
always be divided into two different types, namely internal 
ones and external ones. Here, an internal one refers to the 
order relation existing within a single set, for instance, “ ≼ ” 
is internal in (V ,≼) . An external one refers to the order rela-
tion among sets, for instance, “ ≼ ” is external in (V ∪W,≼) , 
where “ ≼ ” represents the order relation from the set V to 
the set W.

(1) An internal order relation is a special form of the exter-
nal one, i.e., although (V ∪ V ,≼) and (V ,≼) have some 
differences in the form of expression, they are essen-
tially the same.

(2) Any order relations, whether internal or external, 
always can be uniformly expressed in a formal context, 
i.e., by the rule 

(V ∪W,≼) and (V ,W,R≼) can be converted to each 
other, where (V ,W,R≼) is a formal context. That means 
we can use concept lattice to analyze order relations. 
In the following, (V ,W,R≼) is simplified as (V ,W,≼).

  For instance, for any internal order relation, it always 
can be shown in two ways, one is in the form of formal 
context shown in Table 1, the other is represented as 
the order set shown in Fig. 1.

Considering that concept lattice is a data analysis 
tool using formal contexts as research objects, and both 
(V ∪W,≼) and (V ,W,R≼) are two different manifestations 
of the same subject, in the following, to facilitate a unified 
formalization, for any order relation, whether internal or 
external, it will be represented as a formal context, namely, 
(V ,≼) will be expressed in the form of (V ,V ,≼) , mean-
while, (V ∪W,≼) will be formalized as (V ,W,≼).

v ≼ w ⇔ (v,w) ∈ R≼, v ∈ V , w ∈ W

Table 1  A typical formal 
context
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Fig. 1  A typical order set
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1.2  Inclusion degree and order relations

It is known that boundary ambiguity of concepts is univer-
sal, and even lots of opposite concepts such as “beautiful” 
versus “ugly”, and “good” versus “bad” have no absolutely 
clear-cut distinction. In the case, to define a fuzzy concept 
accurately, it is necessary to quantitatively describe its 
extent. For this reason, Zadeh proposed fuzzy sets theory 
in 1965 [52]. It does not simply approve or disapprove 
for an object whether belongs to or not belongs to a set. 
Instead, it can use values of some membership function to 
express the uncertainty.

It is also known that classical order relations are clear, 
definite, and unambiguous, namely, they merely consider 
“greater than” or “less than” in a full sense, and allow-
ing only one of the two relations to be valid. In fact, the 
oversimplification of “relations” usually prevents the dis-
covery of potentially valuable knowledge from seemingly 
unrelated things. Especially, when some user allows subtle 
errors, or considers a certain degree of order relations, the 
use of traditional certain order relation analysis logic will 
face great limitations and may even lead to completely 
erroneous conclusions.

To solve problems similar to the above, Zhang et al. 
proposed inclusion degree theory [55, 56]. The theory, 
as a new method for measuring uncertain relations, is of 
great theoretical significance in advancing the research of 
relations from the certainty stage to the uncertainty stage.

Essentially, fuzzy sets broadens the research scope of 
sets by means of membership functions [37, 44, 48], while 
inclusion degree broaden the research scope of relations 
by means of inclusion degree functions. It is noteworthy 
that inclusion degree can not only quantitatively describe 
the inclusion relations among sets, but also provide an 
effective quantitative analysis method for uncertain order 
relations.

In recent years, inclusion degree has been extensively 
studied [4, 45, 50], and applied to a variety of fields such as 
pattern recognition [14], neural networks [33], uncertain rea-
soning [57]. Young and Fan defined inclusion degree from 
an axiomatic perspective [6, 51]. Zhang et al. stated that 
inclusion degree in a broad sense is the generalization of a 
variety of uncertain reasoning methods including uncertain 
probabilistic reasoning, evidential reasoning, fuzzy reason-
ing, and information reasoning. That is to say, inclusion 
degree provides a unified theoretical framework and general 
principle for uncertain reasoning [55, 56]. Liang and Xu 
revealed relations between inclusion degree and various met-
rics in rough sets and proved that relevant metrics in rough 
sets could be attributed to inclusion degree [20, 46]. Qian 
et al. established relationships among the consistency, inclu-
sion degree and fuzzy measure in some different types of 
decision tables [24]. Zhang et al. proposed a framework for 

comparing two interval sets by inclusion measures, which 
can be used to three-way decisions [54].

1.3  Inclusion degree, concept lattice and order 
relations

Being able to deal with uncertainty is an important ability 
for humans to achieve cognition and reasoning. Here, con-
sidering that inclusion degree is an effective measurement 
method to describe uncertain order relations while concept 
lattice is essentially a type of data analysis tool using binary 
relations as research objects, including order relations, so 
there is a significant connection among inclusion degree, 
concept lattice, and order relations. In this case, concept lat-
tice and inclusion degree, as special relation analysis tools, 
will certainly help to deal with order relations. That is to say, 
exploring the integration theory among the three is not only 
rational to some extent, but is of important theoretical sig-
nificance. From a macro-perspective, the integration theory 
helps to abstract a new data analysis framework, which may 
provides a more stronger theoretical basis for the uncertain 
order relations processing; from a micro-perspective, the 
integration theory can not only expand the data-analysis 
scope of concept lattice from certain order relations to 
uncertain order relations but also may provide some new 
valuable ideas for the expansion of concept intent and extent.

At present, the integration studies on inclusion degree 
and concept lattice are rare and still in their early stage. 
Qu et al. introduced inclusion degree to FCA, and proved 
intents, extents and implications can be reconstructed by 
inclusion degree. These results will be helpful to understand 
the essence of concepts and the structure of concept lattice, 
and can be regarded as the main foundation of quantitative 
measures for FCA [28]. When processing large-scale data 
or solving some complicated problem, the size of the lattice 
may be too large to be handled. To solve the problem, Xie 
et al. provided a new method from the perspective of inclu-
sion degree [43]. Xiao and He applied concept lattice and 
inclusion degree to the field of integrating multi-source geo-
ontologies [42]. For obtaining a concept lattice of appropri-
ate complexity and size, on the basis of inclusion degree and 
neighborhood system, Ma et al. proposed a method which 
could effectively reduce the number of concepts while con-
serving the main formal structure [21].

1.4  Knowledge acquisition models in ordered 
information systems

To date, for ordered information systems, although scholars 
have proposed many types of dominance-based rough set 
models [1, 5, 9, 10, 25, 26, 30, 47], most ones are based on 
certain order relations, and thus may be greatly limited in 
actual application. It is known that compared to equivalence 
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relations, similarity relations are not concerned with “equal” 
or “unequal” but with the degree of similarity. Similarly, 
compared with classical order relations, uncertain order rela-
tions are not concerned with “greater than” or “less than” 
in a full sense, but with the degree to which the relation 
“greater than” or “less than” is valid. Clearly, when a cer-
tain degree of error is allowed or a certain degree of some 
order relation is considered, lots of traditional dominance-
based rough set models will be incapable. In the case, how 
to advance the research scope of order relations from cer-
tainty to uncertainty, or how to reasonably analyze uncer-
tain order relations, has gradually become research focus in 
recent years.

In fact, uncertain order relation always plays an important 
role, which is more effective to meet and explain the actual 
human decision-making process. To date, research results 
in the area are very few. For the reason, the study mainly 
focuses on the integration of concept lattice and inclusion 
degree to solve the problems in ordered information sys-
tems, and further attempts to offer some feasible idea for the 
analysis of uncertain order relations as well as the common 
problems of algebraic structure, reduction, core and depend-
ency in ordered information systems.

Following sections are arranged as follows: Sect.  2 
recalls basic notions of concept lattice and inclusion degree 
briefly; Sect, 3 discusses the integration of concept lattice 
and inclusion degree; Sect. 4 widens the research scope of 
order relations from certainty to uncertainty, and then intro-
duces threshold parameters to contract the research scope 
of order relations from uncertainty to a certain degree of 
certainty; Sect. 5 details corresponding solution methods 
to the problems of algebraic structure, reduction, core, and 
dependency within the integration framework of concept lat-
tice and inclusion degree; Sect. 6 discusses perspectives for 
further works.

2  Basic notions of concept lattice 
and inclusion degree

To facilitate follow-up research, the section primarily serves 
as an introduction to some basic notions [8, 57].

Definition 2 [28] In (L, L,≼) , for all x, y ∈ L , if  D(y∕x) 
meets following conditions

(1) 0 ≤ D(y∕x) ≤ 1;
(2) if x ≼ y , then D(y∕x) = 1;
(3) if x ≼ y ≼ z , then D(x∕z) ≤ D(x∕y);
(4) if  x ≼ y ,  then for each z ∈ L  there exists 

D(x∕z) ≤ D(y∕z).

then we say D  is an inclusion degree of (L, L,≼).

D(y∕x) reflects the degree of x being less than y; it not only 
reflect certain order relations, such as x ≼ y ⇔ D(y∕x) = 1 , 
but can quantitatively reflect uncertain order relations, such 
as 0 ≤ D(y∕x) ≤ 1.

A formal context (G, M, I) consists of two sets G and M 
and the binary relation I ⊆ G ×M from the set G to the set 
M. Especially, If I is a kind of order relation, we usually say 
(G, M, I) is an order context. Note that, in the following, for 
any formal context (G, M, I), if no otherwise specified, it 
refers to an order context denoted as (G,M,≼).

In K = (G,M,≼) , for any A ⊆ G , we define

Correspondingly, for any B ⊆ M , we define

(A, B) is called a concept in K, if A� = B and B� = A . Let 
(A, B) be a concept, we say A and B are concept extent and 
concept intent separately. Further more, for concepts (A1,B1) 
and (A2,B2) , if there exists the following order relationship

then (B(K),≼) is a complete lattice, where B(K) is the set 
of all concepts in K.

P r o p o s i t i o n  1  I n  (G,M,≼)  ,  l e t 
A,A1,A2 ⊆ G,B,B1,B2 ⊆ M , then

3  The integration theory of concept lattice 
and inclusion degree

It is known that inclusion degree is mainly used to measure 
the degree of inclusion relationship among sets. A common 
inclusion degree model is as follows:

It is easy to observe that �(Y∕X) denotes the extent to which 
the set X is included in the set Y. �(Y∕X) is derived from the 
set theory, and does not have complicated external forms of 
expression, nor does it have complex internal logic, thereby 
making it very easy for people to recognize and understand 
the essence of inclusion degree.

In recent years, although scholars have proposed many 
complex inclusion degree models for measuring uncertain 
inclusion relations or uncertain order relations, those models 
are essentially derived from the extension and expansion of 
�(Y∕X) , with the core ideas not having undergone dramatic 
change. Similarly, the inclusion degree model D that will be 

A� = {m ∈ M|g ≼ m, ∀g ∈ A}

B� = {g ∈ G|g ≼ m, ∀m ∈ B}

(A1,B1) ≼ (A2,B2) ⇔ A1 ⊆ A2 ⇔ B2 ⊆ B1

(1) A1 ⊆ A2 ⇒ A�
2
⊆ A�

1
(2) B1 ⊆ B2 ⇒ B�

2
⊆ B�

1

(3) A ⊆ A��; B ⊆ B�� (4) A� = A���; B� = B���

�(Y∕X) =
|X ∩ Y|
|X|
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constructed in this study is also derived from �(Y∕X) . In the 
following, we will discuss in-depth the link between �(Y∕X) 
and D  in Definition 2 to provide a modeling basis for con-
structing an inclusion degree function specific to uncertain 
order relations.

Definition 3 In (V ,V ,≼) , for any v ∈ V  we define

v↑ and v↓ are called the upper bound and the lower bound of 
v separately.

For instance, for the nodes V3 and V4 in Fig. 1, the corre-
sponding upper bounds and lower bounds are shown in Fig. 2.

Lemma 1 In (V ,V ,≼) , for v,w ∈ V  , there exists

Here, we employ the nodes V3 and V7 in Fig. 1 as exam-
ples. In Fig.  1, we can easily obtain V7 ≼ V3 as well as 
the conclusion shown in Fig.  3. In the case, we have 
V7 ≼ V3 ⇔ V

↑

3
⊆ V

↑

7
⇔ V

↓

7
⊆ V

↓

3
 immediately, that is also 

can be used to verify the conclusion in Lemma 1.
As shown by Lemma  1, there is a close relationship 

between certain order relations and certain inclusion relations, 
and these can be transformed into each other. Does this mean 
that there is also a close connection between inclusion degree 
functions specific to order relations and inclusion degree 
functions specific to inclusion relations? The answer to this 
question is “yes” in this study, which means that there must 
be a close connection of �(Y∕X) to D in Definition 2. In the 
case, this study proposes the following rationalization criterias, 
which will provide a modeling basis for the construction of D.

Criterion 1: The higher the degree to which w↑ is included 
in v↑ , if and only if the higher the confidence level of w ∈ V  
being greater than v ∈ V . Namely,

In what follows, any D  constructed by upper bounds is 
denoted as ���_.

v↑ = {w ∈ V|v ≼ w}, v↓ = {w ∈ V|w ≼ v}

v ≼ w ⇔ w↑ ⊆ v↑ ⇔ v↓ ⊆ w↓

�(v↑∕w↑) ↑ , if and only if D(w∕v) ↑

Criterion 2: The higher the degree to which w↓ is 
included in v↓ , if and only if the higher the confidence 
level of v ∈ V  being greater than w ∈ V  . Namely,

�(v↓∕w↓) ↑ , if and only if D(v∕w) ↑

In what follows, any D  constructed by lower bounds is 
denoted as ���_.

In essence, both ���_ and ���_ can be used to measure 
the uncertain order relations in (V ,V ,≼) , but from different 
perspectives of data analysis. Of course, it is also possible 
to expand from a single perspective to a collaborative per-
spective, that is, to conduct fusion on the above-mentioned 
inclusion degree models of different perspectives to avoid 
the limitations and one-sidedness under a single perspec-
tive. Next, from the perspective of concept lattice, this 
study will construct two different types of inclusion degree 
models that matches above viewpoints.

Definition 4 In (G,M,≼) , for any m1,m2 ∈ M we define

where ¬m�
1 = G − m�

1 ,  ¬ (m�
1
∩ m�

2
) = G − (m�

1
∩ m�

2
) . 

Meanwhile, for any g1, g2 ∈ G we define

where ¬ g�
1
= M − g�

1
 , ¬ (g�

1
∩ g�

2
) = M − (g�

1
∩ g�

2
).

In Definition 4, ���_(m2∕m1) is constructed mainly on 
the basis of following considerations:

(1) ���_(m2∕m1) is proportional to |¬m�
1|

|m�
1
|  , which is mainly 

used to measure the size of |m′
1| . That is, 

���_(m2∕m1) =
|¬m�

1|
|m�

1
|

×
|m�

1
∩ m�

2
|

|¬ (m�
1
∩ m�

2
)|

���_(g2∕g1) =
|g�

1
|

|¬ g�
1
|
×
|¬(g�

1
∪ g�

2
)|

|g�
1
∪ g�

2
|

|¬m�
1|

|m�
1
|

↑, if and only if |m�
1
| ↓

Fig. 2  Upper bounds and lower 
bounds of V

3
 and V

4
 in Fig. 1

Fig. 3  Upper bounds and lower 
bounds of V

3
 and V

7
 in Fig. 1



3250 International Journal of Machine Learning and Cybernetics (2019) 10:3245–3261

1 3

 That also means, when |m′
1
| becomes smaller, then the 

probability of m1 ≼ m2 or m′
1
⊆ m′

2
 may be greater.

(2) ���_(m2∕m1) is proportional to |m�
1
∩m�

2
|

|¬ (m�
1
∩m�

2
)| , which is 

mainly used to measure the size of |m�
1
∩ m�

2
| . That is, 

 In the case, there may come to such a conclusion, 
namely, on the premise of |m′

1
| with small value, if 

|m�
1
∩ m�

2
| changes from small to big, then the credibil-

ity of m1 ≼ m2 or m′
1
⊆ m′

2
 may be becoming greater.

Here, what is worth mentioning is that ���_(m2∕m1) is essen-
tially a product of two inclusion degrees, namely, both |m

�
1
∩m�

2
|

|m�
1
|  

and |¬m�
1
|

|¬m�
1
∪¬m�

2
| are all inclusion degree functions met to 

Definition 2.
Similarly, based on above viewpoints, we can also construct 

the function ���_(g2∕g1) , here, we will not elaborate.

Definition 5 In (G,M,≼) , we define

the corresponding order set is denoted as (G,G,≼) . Simi-
larly, we can define the order set (M,M,≼) , in which “ ≼ ” 
is described as

Theorem 1 ext_ is an inclusion degree of (M,M,≼) , and 
int_ is an inclusion degree of (G,G,≼).

Proof First, we prove that ext_ is an inclusion degree of 
(M,M,≼).

It can be easily verified that 0 ≤ ���_(m2∕m1) ≤ 1 holds 
from the following formula

Further more, according to Proposition 1, we have following 
conclusions

If m1 ≼ m2 , then m′
1
⊆ m′

2
 and ¬m�

2
⊆ ¬m�

1
 hold. And fur-

ther, it is easy to see that ���_(m2∕m1) = 1.
If m1 ≼ m2 ≼ m3 , then there exist m′

1
⊆ m′

2
⊆ m′

3
 and 

¬m�
3
⊆ ¬m�

2
⊆ ¬m�

1
 , and further we can obtain

|m�
1
∩ m�

2
|

|¬ (m�
1
∩ m�

2
)|

↑, if and only if |m�
1
∩ m�

2
| ↑

g1 ≼ g2 ⇔ g�2 ⊆ g�1, g1, g2 ∈ G

m1 ≼ m2 ⇔ m�
1 ⊆ m�

2, m1,m2 ∈ M

���_(m2∕m1) =
|m�

1
∩ m�

2
|

|m�
1
|

×
|¬m�

1
|

|¬m�
1
∪ ¬m�

2
|

���_(m1∕m3) =
|m�

1
|

|m�
3
|
×
|¬m�

3
|

|¬m�
1
|
≤

|m�
1
|

|m�
2
|

×
|¬m�

2
|

|¬m�
1
|
= ���_(m1∕m2)

It follows that ���_(m1∕m3) ≤ ���_(m1∕m2).
If m1 ≼ m2 , then m′

1
⊆ m′

2
 and ¬m�

2
⊆ ¬m�

1
 hold. And fur-

ther, for any m3 ∈ M , we can obtain

i.e., ���_(m1∕m3) ≤ ���_(m2∕m3) holds.
From above conclusions, we can conclude that ext_ is an 

inclusion degree of (M,M,≼) . Next, we show that int_ is an 
inclusion degree of (G,G,≼).

First, 0 ≤ ���_(g2∕g1) ≤ 1 is due to the fact,

Next, we show that ���_ meets following properties by 
Proposition 1.

If g1 ≼ g2 , then g′
2
⊆ g′

1
 and ¬g�

1
⊆ ¬g�

2
 hold, and further 

we can obtain ���_(g2∕g1) = 1 easily.
If g1 ≼ g2 ≼ g3 ,  then we have g′

3
⊆ g′

2
⊆ g′

1
 and 

¬ g�
1
⊆ ¬ g�

2
⊆ ¬ g�

3
 , and further there exists following 

conclusion

If g1 ≼ g2 , then g′
2
⊆ g′

1
 and ¬ g�

1
⊆ ¬ g�

2
 hold, and further for 

any g3 ∈ G , we have

From above conclusions, we know ���_ is an inclusion 
degree of (G,G,≼) .   ◻

For example, for the nodes V3 and V4 in Table 1, by ���_ 
we have

where V �
3
= {V1,V2,V3} , V �

4
= {V1,V2,V4} . Meanwhile, by 

���_ we have

|m�
1
∩ m�

3
|

|m�
3
|

×
|¬m�

3
|

|¬m�
1
∪ ¬m�

3
|
≤

|m�
2
∩ m�

3
|

|m�
3
|

×
|¬m�

3
|

|¬m�
2
∪ ¬m�

3
|

0 ≤
|g�

1
|

|g�
1
∪ g�

2
|
×
|¬ g�

1
∩ ¬ g�

2
|

|¬ g�
1
|

≤ 1

���_(g1∕g3) =
|g�

3
|

|g�
1
|
×
|¬ g�

1
|

|¬ g�
3
|
≤

|g�
2
|

|g�
1
|
×
|¬ g�

1
|

|¬ g�
2
|
= ���_(g1∕g2)

���_(g1∕g3) =
|g�

3
|

|g�
1
∪ g�

3
|
×
|¬ g�

1
∩ ¬ g�

3
|

|¬ g�
3
|

≤
|g�

3
|

|g�
2
∪ g�

3
|

×
|¬ g�

2
∩ ¬ g�

3
|

|¬ g�
3
|

= ���_(g2∕g3)

���_(V3∕V4) =
|V �

4
|

|¬V �
4
|
×
|¬(V �

3
∪ V �

4
)|

|V �
3
∪ V �

4
|

= 0.625

���_(V3∕V4) =
|¬V �

4|
|V �

4
|

×
|V �

3
∩ V �

4
|

|¬ (V �
3
∩ V �

4
)|

= 0.4
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where V �
3
= {V3,V5,V7,V8,V9} , V �

4
= {V4,V5,V6,V7,V8,V9}.

For other nodes Vi and Vj , the corresponding ���_(Vi∕Vj) 
and ���_(Vi∕Vj) can be found in Tables 2 and 3 separately.

Lemma 2 In (G,M,≼) , let g ∈ G,m ∈ M , then g� = g↑ , 
m� = m↓.

Lemma 3 In (G,M,≼) , let g↑
1
⊆ g

↑

2
⊆ g

↑

3
 , then following con-

clusions hold simultaneously.

(1) �(g
↑

1
∕g

↑

3
) ≤ �(g

↑

1
∕g

↑

2
);

(2) ���_(g3∕g1) ≤ ���_(g2∕g1).

Lemma 4 In (G,M,≼) , let m↓

1
⊆ m

↓

2
⊆ m

↓

3
 , then following 

conclusions hold simultaneously.

(1) �(m
↓

1
∕m

↓

3
) ≤ �(m

↓

1
∕m

↓

2
);

(2) ���_(m1∕m3) ≤ ���_(m1∕m2).

Lemmas 3 and 4 further verify that the construction of 
���_ and ���_ can well meet the Criterion 1 and the Crite-
rion 2, which can also indirectly indicate the rationality and 
feasibility of the two criteria.

Theorem 2 In (G,M,≼) , if V = G = M , then ���_ is an 
inclusion degree of (V ,V ,≼) , where ���_ is defined by

Proof It can be easily verified that 0 ≤ ���_(v2∕v1) ≤ 1 from 
the definitions of ext_ and int_ . Moreover, by Theorem 1, 
we can easily complete the following reasoning.

Let v1 ≼ v2 , then we can see ���_(v2∕v1) = 1 from 
���_(v2∕v1) = 1 and ���_(v2∕v1) = 1.

Let  v1 ≼ v2 ≼ v3 ,  s ince ���_(v1∕v3) ≤ ���_(v1∕v2) 
a n d  ���_(v1∕v3) ≤ ���_(v1∕v2)  ,  w e  c a n  o b t a i n 
���_(v1∕v3) ≤ ���_(v1∕v2) immediately.

L e t  v1 ≼ v2  ,  t h e n  fo r  a ny  v3 ∈ V  ,  s i n c e 
���_(v1∕v3) ≤ ���_(v2∕v3) and ���_(v1∕v3) ≤ ���_(v2∕v3) , 
we have ���_(v1∕v3) ≤ ���_(v2∕v3).

Form above conclusions, we can finally see ���_ is an 
inclusion degree of (V ,V ,≼) .   ◻

In the similar way, we can define the order set 
(2M , 2M ,≼) and the corresponding inclusion degree 
���_���_.

Definition 6 In (G,M,≼) , let 2M be the power set of M, 
we define

the corresponding order set is denoted as (2M , 2M ,≼).

���_(v2∕v1) =� × ���_(v2∕v1) + (1 − �)

× ���_(v2∕v1), v1, v2 ∈ V

B1 ≼ B2 ⇔ B�
1
⊆ B�

2
, B1,B2 ∈ 2M

Table 2  The quantitative 
analysis result of uncertain 
order relation in Table 1 by ���_

v
1

v
2

v
3

v
4

v
5

v
6

v
7

v
8

v
9

v
1

≼ 0.4375 0.2500 0.2500 0.1000 0.1563 0.0625 0.0357 0.0357
v
2

≼ ≼ 0.5714 0.5714 0.2286 0.3571 0.1429 0.0816 0.0816
v
3

≼ ≼ ≼ 0.6250 0.4000 0.4000 0.2500 0.1429 0.1429
v
4

≼ ≼ 0.6250 ≼ 0.4000 0.6250 0.2500 0.1429 0.1429
v
5

≼ ≼ ≼ ≼ ≼ 0.6250 0.6250 0.3571 0.3571
v
6

≼ ≼ 0.6400 ≼ 0.4000 ≼ 0.2286 0.1000 0.1000
v
7

≼ ≼ ≼ ≼ ≼ 0.5714 ≼ 0.5714 0.5714
v
8

≼ ≼ ≼ ≼ ≼ 0.4375 ≼ ≼ 0.4375
v
9

≼ ≼ ≼ ≼ ≼ 0.4375 ≼ 0.4375 ≼

Table 3  The quantitative 
analysis result of uncertain 
order relation in Table 1 by ���_

v
1

v
2

v
3

v
4

v
5

v
6

v
7

v
8

v
9

v
1

≼ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
v
2

≼ ≼ 0.1563 0.2500 0.1000 0.0156 0.0625 0.0156 0.0156
v
3

≼ ≼ ≼ 0.6400 0.6400 0.0000 0.4000 0.1000 0.1000
v
4

≼ ≼ 0.4000 ≼ 0.4000 0.0625 0.2500 0.0625 0.0625
v
5

≼ ≼ ≼ ≼ ≼ 0.0000 0.6250 0.1563 0.1563
v
6

≼ ≼ 0.0000 ≼ 0.0000 ≼ 0.0000 0.0000 0.0000
v
7

≼ ≼ ≼ ≼ ≼ 0.0000 ≼ 0.2500 0.2500
v
8

≼ ≼ ≼ ≼ ≼ 0.0000 ≼ ≼ 0.0000
v
9

≼ ≼ ≼ ≼ ≼ 0.0000 ≼ 0.0000 ≼
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Theorem 3 ���_���_ is an inclusion degree of (2M , 2M ,≼) , 
where ���_���_ is defined as

Proof The proving process is similar to that in Theorem 1, 
here which will not be discussed in detail.   ◻

In essence, above-mentioned inclusion degree models are 
all derived from �(X∕Y) , that is, despite the fact that above 
models are quite different than �(X∕Y) in terms of forms, the 
core modeling ideas remain the same.

4  Study on order relations from certainty 
to uncertainty to a degree of certainty

In practical application, by properly widening the research 
scope of order relations, It will be helpful to get more hid-
den knowledge from data. In this regard, inclusion degree 
maybe provide a feasible solution method. Here, by means 
of inclusion degree, the paper presents the following solu-
tion process:

The first step is to expand classical order relations to the 
uncertain ones, where the uncertain ones are essentially a 
special type of fuzzy order relations. For a given data set, the 
classical order relation is usually known while the inclusion 
degree function is unknown, thereby making it necessary to 
construct a reasonable inclusion function from the classi-
cal order relation and then make a quantitative description 
of uncertain order relations. For instance, suppose that we 
start with a classical order relation ≼ and derive an inclusion 
degree function ���_ . If ���_ is defined as the membership 
function 𝜇≼(v,w) , namely 𝜇≼(v,w) = ���_(w∕v) , then we can 
obtain a fuzzy order relation “ ≼∼ ”, here, 𝜇≼(v,w) essentially 
reflects the degree of v being less than w.

For instance, in Fig. 1, let us suppose that Vi represents the 
i-th solution to a problem, and that the order relation represents 
the relative superiority (or inferiority) relationship among the 
solutions. In this scenario, the relative superiority (or inferior-
ity) relationship among some solutions is clear, but for others 
the relationship is unclear. In the case, when it comes to select-
ing three relatively good solutions, it is necessary to conduct 
a quantitative analysis of the relationship between solutions 
V3 and V4 . Here, let � = 0.5 , then by means of ���_ , we have 
���_(V3∕V4) = 0.5125 and ���_(V4∕V3) = 0.6325 . Namely, 
the degree of V4 being superior to V3 is greater than the degree 
of V3 being superior to V4 . In the case, people may tend to 
believe that V4 is superior to V3 to some extent.

The second step is to contract the order relations from 
uncertainty to a degree of certainty by artificially setting 

���_���_(B2∕B1) =
|¬B�

1
|

|B�
1
|

×
|B�

1
∩ B�

2
|

|¬ (B�
1
∩ B�

2
)|
, B1,B2 ∈ P(M)

threshold parameters. In other words, it is to transform 
infinite uncertainty into finite certainty and transform the 
complex fuzzy relation into simple certain relation. In par-
ticular, let 0 ≤ � ≤ 1 , then the fuzzy order relation “ ≼∼ ” with 
𝜇≼(v,w) = ���_(w∕v) can be converted to the new certain 
relation

Follow the example in the first step, if � = 0.55 , then users 
believe that V4 is superior to V3 . However, if � = 0.5 , then 
we see V3 and V4 are all good solutions, namely, for users, 
they are indistinguishable.

Obviously, the first step can employ ���_ to widen the 
classical order relation “ ≼ ” to the fuzzy order relation 
” ≼∼ ”. In fact, the ” ≼∼ ” can also be described as a fuzzy 
order context defined as follows

A fuzzy order context is of the form (G,M,≼∼) , 
where “ ≼∼ ” is a fuzzy order relation between G and M, 
the corresponding membership function is defined as 
𝜇≼ ∶ G ×M → [0, 1] with 𝜇≼(g,m) = ���_(m∕g) . That is, 
for any (g,m) ∈ G ×M , 𝜇≼(g,m) means the degree that “m” 
is greater than “g”.

Meanwhile, the second step can further contract the 
fuzzy order relation “ ≼∼ ” into the simple certain relation 
“ ≼𝜎 ”. In fact, the “ ≼𝜎 ” can also be described as a �-order 
context defined as follows

Definition 7 Let (G,M,≼∼) be a fuzzy order context such 
that 𝜇≼(g,m) = ���(m∕g) , 0 ≤ � ≤ 1 , if

we say (G,M,≼𝜎) is a �-order context.

For example, let � = 0.5 , then by means of the method 
in Theorem 2, the certain order relation in Table 1 can be 
expanded to the fuzzy order context shown in Table 4. And 
further, let � = 0.55 , then Table 4 can be contract to the �
-order context shown in Table 5.

5  Application of the integration theory 
in ordered information systems

In this section, we try to introduce the integration theory 
to ordered information systems. Here, the reason for which 
we introduce concept lattice into information systems, 
mainly in light of the natural connection between con-
cept lattice and binary relations. Since any binary rela-
tion can be uniformly expressed as the form of one-valued 
formal context, In this case, concept lattice, as the special 
analysis tool for relations, will certainly help to deal with 
order relations and tolerance relations. In addition, how 

≼𝜎 = {(v,w)|���_(w∕v) ≥ 𝜎}

≼𝜎 =
{
(g,m) ∈ G ×M|𝜇≼(g,m) ≥ 𝜎

}
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to expand classical concept lattice and further apply to 
complex information systems, will surely be one of the 
mainstream directions of the development of concept lat-
tice in the future, so that is another reason why we apply 
concept lattice to complex information systems.

5.1  One‑valued formal contexts derived 
from ordered information systems

An information system is (U,A,V , f ) , where V = ∪a∈AVa , 
f ∶ U ×A → V  is a mapping such that f (x, a) ∈ Va for 
each a ∈ A  and x ∈ U . Normally, members of U are called 
objects, members of A  are called attributes; Va is called the 
domain of attribute a; U is called the universe of discourse.

In classic definition on information systems, for any 
m ∈ A  , there is no further description of the relationship 
between any v ∈ Vm and w ∈ Vm . But, in reality, there may 
exist some complex relationship among values in Vm , which 
often plays a determining role in scientifically and effec-
tively acquiring knowledge. At this point, we can see that 
requiring no prior knowledge is both the advantage and dis-
advantage of rough sets, considering that, the study attempts 
to introduce prior knowledge, namely scales, to further sup-
plement and expand the classical information system.

Note that the ordered information system in the paper 
refer to the one containing two types of attributes, one kind 
is nominal (the value set of any attribute consists of several 

discrete values, and different values are mutually independ-
ent), another kind is order symbolic (the value set of any 
attribute consists of several discrete values, and among val-
ues there may exist order relationship).

As an example, an ordered information system about 
cars is given in Table 6, where U = {1, 2,… , 8} is the set 
of objects and A = {a, b, c, d, e} is the set of attributes with 
a = acceleration performance, b = inner space, c = perfor-
mance/price ratio, d = weight, and e = maximum speed. 
In addition, attributes a, b, d and e are all normal, and c is 
order symbolic. Here, as the priori knowledge, (Vc,Vc,≼) is 
given in the form of order set shown in Fig. 4. In the case, 
let � = 0.5 , then by means of the method in Theorem 2, 

Table 4  A fuzzy order context 
deducted from Table 1

v
1

v
2

v
3

v
4

v
5

v
6

v
7

v
8

v
9

v
1

≼ 0.2188 0.1250 0.1250 0.0500 0.0782 0.0313 0.0179 0.0179
v
2

≼ ≼ 0.3639 0.4107 0.1643 0.1864 0.1027 0.0486 0.0486
v
3

≼ ≼ ≼ 0.6325 0.5200 0.2000 0.3250 0.1215 0.1215
v
4

≼ ≼ 0.5125 ≼ 0.4000 0.3438 0.2500 0.1027 0.1027
v
5

≼ ≼ ≼ ≼ ≼ 0.3125 0.6250 0.2567 0.2567
v
6

≼ ≼ 0.3200 ≼ 0.2000 ≼ 0.1143 0.0500 0.0500
v
7

≼ ≼ ≼ ≼ ≼ 0.2857 ≼ 0.4107 0.4107
v
8

≼ ≼ ≼ ≼ ≼ 0.2188 ≼ ≼ 0.2188
v
9

≼ ≼ ≼ ≼ ≼ 0.2188 ≼ 0.2188 ≼

Table 5  A �-order context 
deducted from Table 4

v
1

v
2

v
3

v
4

v
5

v
6

v
7

v
8

v
9

v
1

≼

v
2

≼ ≼

v
3

≼ ≼ ≼ ≼

v
4

≼ ≼ ≼

v
5

≼ ≼ ≼ ≼ ≼ ≼

v
6

≼ ≼ ≼ ≼

v
7

≼ ≼ ≼ ≼ ≼ ≼

v
8

≼ ≼ ≼ ≼ ≼ ≼ ≼

v
9

≼ ≼ ≼ ≼ ≼ ≼ ≼

Table 6  A typical ordered information system

a b c d e

1 Good Big v
1

Light High
2 Good Small v

2
Light High

3 Poor Small v
6

Light Medium
4 Poor Small v

8
Heavy Low

5 Good Big v
4

Light High
6 Good Small v

3
Light High

7 Poor Small v
5

Light Medium
8 Poor Small v

7
Heavy Low
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the result of quantitative analysis of the uncertain order 
relation in Fig. 4 is shown in Table 7, its �-order context 
is shown in Table 8, where � = 0.55.

Definition 8 In (U,A,V , f ) , we say Sm = (Vm,Vm, Im) is a 
scale of m ∈ A  , if Im ⊆ Vm × Vm.

In above definition, Sm essentially describes the relation-
ship among different values in Vm . Meanwhile, as the aux-
iliary prior knowledge, scales are useful supplement to the 
classical definition of information systems.

In fact, on the basis of scales, an ordered information 
system S can converted into an one-valued context by scal-
ing. The basic idea of scaling can be simply understood as 

the strategy for converting an information system into an 
one-valued formal context on the basis of scales. Generally 
speaking, there are many kind of ways of scaling, here, we 
will introduce a simple one [11, 31, 40].

Definition 9 Let Sm = (Vm,Vm, Im) be a �-order context as 
well as a scale of m ∈ A  , then by the rule

the ordered information system S can be transformed to an 
one-valued context

where Im is defined as

• when m is normal, Im =
{
(v, v)|v ∈ Vm

}
;

• w h e n  m  i s  o r d e r  s y m b o l i c , 
Im =

{
(v,w)|v ≼𝜎 w, v,w ∈ Vm

}
.

Clearly, in the transformation process, the scales 
Sm,m ∈ A  are essentially �-order contexts, which only 
play intermediary roles, rather the final derivative con-
text. Further more, for any values v,w ∈ Vm , K� no longer 
contains their own value information, and only reflects 
whether they meet (v,w) ∈ Im . Based on the transforma-
tion idea, K� is not only more simple than the original 
ordered information system S, but also can better embody 

(
(x, y),m

)
∈ J� ⇔ (v,w) ∈ Im, v = f (x,m) and w = f (y,m)

K� = (U2,A, J�)

Fig. 4  An order set

Table 7  Results of quantitative 
analysis of the uncertain order 
relation in Fig. 4

v
1

v
2

v
3

v
4

v
5

v
6

v
7

v
8

v
1

≼ 0.2143 0.2143 0.0715 0.0429 0.0429 0.0102 0.0000
v
2

≼ ≼ 0.5556 0.4445 0.2000 0.2000 0.0794 0.0238
v
3

≼ 0.5556 ≼ 0.4445 0.2000 0.2000 0.0794 0.0238
v
4

≼ ≼ ≼ ≼ 0.4800 0.4800 0.1715 0.0429
v
5

≼ ≼ ≼ ≼ ≼ 0.5556 0.3969 0.1191
v
6

≼ ≼ ≼ ≼ 0.5556 ≼ 0.3969 0.1191
v
7

≼ ≼ ≼ ≼ ≼ ≼ ≼ 0.2143
v
8

≼ ≼ ≼ ≼ ≼ ≼ ≼ ≼

Table 8  A �-order context 
deducted from Table 7

v
1

v
2

v
3

v
4

v
5

v
6

v
7

v
8

v
1

≼

v
2

≼ ≼ ≼

v
3

≼ ≼ ≼

v
4

≼ ≼ ≼ ≼

v
5

≼ ≼ ≼ ≼ ≼ ≼

v
6

≼ ≼ ≼ ≼ ≼ ≼

v
7

≼ ≼ ≼ ≼ ≼ ≼ ≼

v
8

≼ ≼ ≼ ≼ ≼ ≼ ≼ ≼
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the relationship between objects intuitively. For example, 
by the transformation rule in Definition 9 and the scale 
shown in Table 8, an one-valued formal context shown in 
Table 9 can be derived from Table 6.

5.2  Algebraic structure in ordered information 
systems

Concept lattice helps to endow an ordered information sys-
tem S with stronger algebraic structure. In this section, we 
present the �-concept lattice, which can organize all binary 
relations in S in the form of a lattice, which is very suit-
able for rules finding, and hierarchy and visualization of the 
knowledge.

In an information system, for any subset B ⊆ A  , it can 
always determine a binary relation RB . In the following, the 
corresponding binary relation relative to B is defined as

In K� = (U2,A, J�) , let R ⊆ U2,B ⊆ A  , then the operators 
in Section 2 will be formally represented as

and

In the case, we say (R,B) ∈ B(K�) is a �-concept, while (
B(K𝜎),≼

)
 is a �-concept lattice.

Theorem 4 In (U2,A, J�) , let B ⊆ A  , then B� = R�
B
.

Proof The result is straightforward and the proof is omit-
ted.   ◻

Lemma 5 Let (R, B) be a �-concept, D ⊆ A  . If D�� = B , 
then

R𝛿
B
={(x, y) ∈ U2|∀m ∈ B, f (x,m)

=f (y,m) or f (x,m)≼𝜎 f (y,m)}

R� = {m ∈ A|
(
(x, y),m

)
∈ J� , ∀(x, y) ∈ R}

B� = {(x, y) ∈ U2|
(
(x, y),m

)
∈ J� , ∀m ∈ B}

From above discusses, It is easy to observe that 
(B(K𝜎),≼) can endow (U,A,V , f ) with a stronger alge-
braic structure. Namely, it can organize all the binary 
relations in (U,A,V , f ) in the form of a lattice. In prac-
tical applications, users can flexibly adjust parameters 
to meet their actual needs. For example, in Table 6, let 
� = 0.5 , � = 0.55 , then by Theorem 2, the corresponding 
lattice structure is shown in Fig. 5, where for lattice nodes 
only concept intents are given (concept extents are not 
easy to show and are therefore omitted here). For another 

R�
D
= R�

B
= R

Table 9  An one-valued formal 
context derived from Table 6

a b c d e

(1, 1) × × × × ×

(1, 2) × × ×

(1, 3) ×

(1, 4)

(1, 5) × × × ×

(1, 6) × × ×

(1, 7) ×

⋮ ⋮ ⋮ ⋮ ⋮

(8, 6) × ×

(8, 7) × × ×

(8, 8) × × × × ×

Fig. 5  A lattice structure deducted from Table 6 with � = 0.55

Fig. 6  A concept lattice deducted from Table 6 with � = 0.07
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example, when � = 0.07 , the corresponding lattice struc-
ture is shown in Fig. 6.

5.3  Reduction, core and dependency in ordered 
information systems

Suppose (U,A,V , f ) is an ordered information system, if 
R�
B
≠ R�

B−m
 , then we say m ∈ B is indispensable in B ⊆ A  ; 

Further if every m ∈ B is indispensable, we say B is inde-
pendent. The set of all indispensable attributes in B is 
called the core of B denoted as CORE(B). If C ⊆ D ⊆ A  
and C is independent and R�

D
= R�

C
 , then C is called a 

reduction of D.
Here, we can see that the order set (2A, 2A,≼) and the 

corresponding inclusion degree ���_���_ , defined in Sec-
tion 3, can also be deducted from K� . In the following, by 
means of ���_���_ , the solutions to reduction, core, et al. 
will be studied.

Theorem 5 Let B, L ⊆ A  , if L ∈ △(K�) , then

where △(K�) is the set of all intents of concepts in K�.

Proof By Proposition  1 and Theorem  3, we have 
L ∈ △(K�) ⇔ L = L�� , and further implement following 
reasoning processes

which completes the proof.   ◻

Theorem  6 Let B,C ⊆ A  , following statements are 
equivalent

(1) R𝜎
B
⊆ R𝜎

C

(2) ∀L ∈ △(K�) , ���_���_(B∕L) ≠ 1 or ���_���_(C∕L) = 1 
holds

Proof It can be easily verified that following deduction pro-
cesses are true based on Proposition 1, Theorems 3 and 5.

(2)→(1):
s t a r t :  ∀L ∈ △(K�)  ,  ���_���_(B∕L) ≠ 1  o r 

���_���_(C∕L) = 1 holds 

⇒  ∀L ∈ △(K�) , B′′ ⊈ L or C′′ ⊆ L holds
⇒  Especially, for B�� ∈ △(K�) , B′′ ⊈ B′′ or C′′ ⊆ B′′ holds
⇒  C�� ⊆ B�� ⇒ B� ⊆ C� ⇒ �nd ∶ R𝜎

B
⊆ R𝜎

C

(1)→(2):
Suppose :  ∀L ∈ △(K�) ,  ���_���_(B∕L) = 1 and 

���_���_(C∕L) ≠ 1 hold.
start: Suppose

B�� ⊆ L ⇔ ���_���_(B∕L) = 1

B�� ⊆ L ⇔ B�� ⊆ L�� ⇔ L� ⊆ B� ⇔ set_inc_(B∕L) = 1

⇒  ∀L ∈ △(K�) , B′′ ⊆ L and C′′ ⊈ L hold
⇒  Especially, for the intent B�� ∈ △(K�) , B′′ ⊆ B′′ and 

C′′ ⊈ B′′ hold.
⇒  end: C′′ ⊈ B′′ holds.

Moreover, from R𝜎
B
⊆ R𝜎

C
 , we can implement following 

deduction processes

Obviously, C′′ ⊆ B′′ contradicts the earlier result C′′ ⊈ B′′ . 
This also means above Suppose is false. On account of 
this, we can immediately find that if R𝜎

B
⊆ R𝜎

C
 , then for any 

L ∈ △(K�) , ���_���_(B∕L) ≠ 1 or ���_���_(C∕L) = 1 holds. 
Hence, when R𝜎

B
⊆ R𝜎

C
 , then the conclusion (2) is true.  

 ◻

Theorem 7 Let B ⊆ A  , m ∈ B is indispensable in B, if

Proof From Theorem 6, it follows that R𝜎
B
⊈ R𝜎

B−m
 , this also 

implies that R�
B
≠ R�

B−m
 . In the case, we can see m is indis-

pensable in B.   ◻

Theorem 7 also states that for each m ∈ B , if there 
always exists corresponding L ∈ △(K�) such that 
���_���_(B∕L) = 1 and ���_���_

(
(B − m)∕L

)
≠ 1 , then it 

will be verified easily that B is independent.

Theorem 8 Let m ∈ B ⊆ AT  , if

then m ∈ CORE(B).

Proof From Theorem 6, it follows immediately that
start: ∃L ∈ △(K�) such that ���_���_(B − m∕L) = 1 and 

���_���_(B∕L) ≠ 1

⇒  R𝜎
B−m

⊈ R𝜎
B
⇒ R𝜎

B−m
≠ R𝜎

B
 ⇒  m is indispensable in B

⇒  end:  m ∈ CORE(B)

  ◻

Theorem 9 Let C ⊆ B ⊆ A  . C is a reduction of B, if follow-
ing conditions are met

(1) ∀L ∈ △(K�) , ���_���_(C∕L) ≠ 1 or ���_���_(B∕L) = 1 
holds;

(2) for any m ∈ C , there always exists corresponding 
L ∈ △(K�) such that 

R𝜎
B
⊆ R𝜎

C
⇒ B′ ⊆ C′ ⇒ C′′ ⊆ B′′

∃L ∈ △(K�) such that ���_���_
(
(B − m)∕L

)

= 1 and ���_���_(B∕L) ≠ 1

∃L ∈ △(K�) such that ���_���_
(
(B − m)∕L

)

= 1 and ���_���_(B∕L) ≠ 1
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Proof By Theorem 6, it follows that R𝜎
C
⊆ R𝜎

B
 from the con-

dition (1). Moreover, starting from C ⊆ B , one can realize 
following reasoning process based on Proposition 1 and 
Theorem 4.

Obviously, one can know that R�
C
= R�

B
 holds.

And further, by Theorems 4, 6 and R�
C
= R�

B
 , starting from 

the condition (2), there exists following induce process.
start: condition (2)

⇒  ∀m ∈ C , R𝜎
C−m

⊈ R𝜎
B
 holds

⇒  ∀m ∈ C , R�
C−m

≠ R�
B
 holds

⇒  by R�
C
= R�

B
 , we have ∀m ∈ C , R�

C−m
≠ R�

C

⇒  end: C is a reduction of B

  ◻

For example, in Table  6, let � = 0.5 , � = 0.55 , 
B = {a, c, d, e} , then by referring to Table  10, we 
can see that there exists intent L = {a, d, e} such that 
���_���_(B − c∕L) = 1 and ���_���_(B∕L) ≠ 1 , then by 
means of Theorem 8, we can judge c ∈ CORE(B) . In the 
similar way, we can further judge a, d, e ∉ CORE(B) , there-
fore, we have CORE(B) = {c} . In addition, by means of 
Theorem 9, we can see that {a, c, d} and {c, e} are all reduc-
tions of B. Here, for any L ∈ △(K�) and any subset D ⊆ B , 
the corresponding ���_���_(D∕L) can be found in Table 10.

���_���_(C − m∕L) = 1 and ���_���_(B∕L) ≠ 1

C ⊆ B ⇒ B′ ⊆ C′ ⇒ R𝜎
C
⊆ R𝜎

B

5.4  Dependency in ordered information systems

In complex information systems, there may be multiple 
forms of dependency between B ⊆ A  and D ⊆ A  , such 
as function dependency, order dependency. In the paper, 
the dependency is defined by means of R𝜎

B
⊆ R𝜎

D
 , that is, if 

R𝜎
B
⊆ R𝜎

D
 , then B

�
��������→ D is called a certain �-dependency; if 

R𝜎
B
⊈ R𝜎

D
 , then we say B

�
��������→ D is a uncertain �-dependency. 

Note that if there is no special description, any dependency 
mentioned below refers to the certain one.

It is known that the scale of dependencies extracted from 
a data set is often very large and finding valuable ones may 
be a lengthy process. In the case, how to remove worthless 
and redundant ones from mass dependencies has become 
an important issue. For the reason, the study proposes an 
analytical approach based on the inclusion-inference, which 
can eliminate a large number of redundant rules to finally 
obtain a smaller dependency set referred to as a dependency 
generation set. Namely, if we know a dependency genera-
tion set, then we can obtain all dependency by means of the 
inclusion-inference.

Theorem 10 Let B,D ⊆ A  , then following statements are 
equivalent

(1) ���_���_(D∕B) = 1;
(2) B

�
��������→ D;

(3) ∀L ∈ △(K�) , ���_���_(B∕L) ≠ 1  or  ���_���_(D∕L) = 1 
holds.

Proof Conclusions can be inferred immediately from Theo-
rem 6 and the following facts

Table 10  Quantitative analysis result of some uncertain order relation by ���_���_

△(K�) acde acd ace ade cde ac ad ae cd ce de c e

Ø 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
a 0.3913 0.3913 0.3913 0.6000 0.3913 0.5238 0.6000 0.6000 0.3913 0.3913 0.6000 0.5238 0.6000
b 0.1680 0.1680 0.1680 0.2000 0.1680 0.2348 0.2000 0.2000 0.2348 0.1680 0.2000 0.4105 0.2000
c 0.2677 0.2677 0.2677 0.2677 0.2677 0.3584 0.2677 0.2677 0.4681 0.2677 0.2677 1.0000 0.2677
d 0.2348 0.2348 0.2348 0.3600 0.2348 0.2348 0.3600 0.3600 0.4105 0.2348 0.3600 0.4105 0.3600
ab 0.4667 0.4667 0.4667 0.5556 0.4667 0.6522 0.5556 0.5556 0.4667 0.4667 0.5556 0.6522 0.5556
ac 0.7470 0.7470 0.7470 0.7470 0.7470 1.0000 0.7470 0.7470 0.7470 0.7470 0.7470 1.0000 0.7470
bc 0.4092 0.4092 0.4092 0.4092 0.4092 0.5719 0.4092 0.4092 0.5719 0.4092 0.4092 1.0000 0.4092
bd 0.4667 0.4667 0.4667 0.5556 0.4667 0.4667 0.5556 0.5556 0.6522 0.4667 0.5556 0.6522 0.5556
cd 0.5719 0.5719 0.5719 0.5719 0.5719 0.5719 0.5719 0.5719 1.0000 0.5719 0.5719 1.0000 0.5719
abc 0.7156 0.7156 0.7156 0.7156 0.7156 1.0000 0.7156 0.7156 0.7156 0.7156 0.7156 1.0000 0.7156
ade 0.6522 0.6522 0.6522 1.0000 0.6522 0.6522 1.0000 1.0000 0.6522 0.6522 1.0000 0.6522 1.0000
bcd 0.7156 0.7156 0.7156 0.7156 0.7156 0.7156 0.7156 0.7156 1.0000 0.7156 0.7156 1.0000 0.7156
abde 0.8400 0.8400 0.8400 1.0000 0.8400 0.8400 1.0000 1.0000 0.8400 0.8400 1.0000 0.8400 1.0000
acde 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
abcde 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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  ◻

Lemma 6 For every D ⊆ A  , there always exists 
���_���_(D��∕D) = 1.

Definition 10 Let D ⊆ A  be independent, we say 
���_���_(D��∕D) = 1 is basic.

Lemma 7 Let ���_���_(D��∕D) = 1 and ���_���_(B∕D) = 1 , 
then there always exists B ⊆ D′′.

Lemma 8 If D is a reduction of some subset in A  , then it 
must be independent.

inclusion-inference: Let E ⊆ E1 , F1 ⊆ F  , then 
���_���_(F1∕E1) = 1 can be inferred from set_inc_(F/E)=1. 
To understand intuitionally and easily, the inclusion-infer-
ence can also be formally represented as

Theorem 11 Any ���_���_(C∕B) = 1 can be inferred from 
some basic one by means of above inclusion-inference.

Proof For any ���_���_(C∕B) = 1 , there must exist 
���_���_(D��∕D) = 1 such that D is a reduction of B ⊆ A  , 
and then by Lemma 8, we see D is also independent. In 
the case, from ���_���_(D��∕D) = 1 and ���_���_(C∕B) = 1 , 
it follows that C ⊆ D′′ by Lemma  7. In the case, since 
���_���_(D��∕D) = 1 and D ⊆ B and C ⊆ D′′ are all 
true, ���_���_(C∕B) = 1 can be further inferred from 
���_���_(D��∕D) = 1 by means of the inclusion-inference. 
Since ���_���_(D��∕D) = 1 is basic, so we can see the con-
clusion is true.   ◻

Here, Theorem 11 states that for any ���_���_(C∕B) = 1 , 
it needn’t to be calculated, but can be inferred from some 
basic one by means of the inclusion-inference. Namely, what 
we provide to users is only the set of basic ones, from which 
users can selectively derive others to meet their specific 
needs. In the following theorem, we say D

�
��������→ D′′ is basic, 

if ���_���_(D��∕D) = 1 is basic. In the case, we can easily 
prove the following theorem.

Theorem 12 Any dependency can be inferred from some 
basic dependency.

Proof The conclusion can be inferred immediately from 
Theorems 10 and 11.   ◻

B
𝜎
�����������→ D ⇔ R𝜎

B
⊆ R𝜎

D
⇔ B� ⊆ D� ⇔ ���_���_(D∕B) = 1

���_���_(F∕E) = 1, E ⊆ E1, F1 ⊆ F

���_���_(F1∕E1) = 1

For example, in Table  6, let � = 0.5 , � = 0.55 , 
B = {c, d, e} and C = {a} . Then, by means of Theorems 7 
and 9, and by referring to Fig. 5, we can easily see that 
D = {c, e} is a reduction of B, while it is also independ-
ent. Meanwhile, by Theorem 10, we have B

�
��������→ C . In the 

case, since D�� = {a, c, d, e} , ���_���_(D��∕D) = 1 , D ⊆ B 
and C ⊆ D′′ are all true, ���_���_(C∕B) = 1 can be inferred 
from ���_���_(D��∕D) = 1 by the inclusion-inference. Here, 
D

�
��������→ D′′ is basic while ���_���_(D��∕D) = 1 is basic. That 

also means B
�
��������→ C can be inferred from the basic depend-

ency D
�
��������→ D′′.

As an effective complement to the rule-type knowledge, 
confidence degree plays an important role, which is essen-
tially a quantitative description. In the following, for every 
uncertain dependency B

�
��������→ D , the corresponding confi-

dence degree is defined as

It is easy to observe that the lower conf(B
�
��������→ D) is, the 

weaker relationship between B and D is, and the lower valu-
able of B

�
��������→ D we believe. In the case, we always introduce 

some parameter such as 0 ≤ � ≤ 1 to meet uses’ actual need. 
Namely, if conf(B

�
��������→ D) ≥ � , then we say the uncertain 

dependency B
�
��������→ D is credible. For example, in Table 6, 

let � = 0.5 , � = 0.55 , � = 0.6 , B = {a, c, e} and D = {b, d} . 
Then, for any subset of B and subset D, we can calculate 
Conf(B

�
��������→ D) , and further judge whether B

�
��������→ D is cred-

ible. Here, the related result is shown in Table 11.
To some extent, the methods, context, objectives in the 

paper is similar to the ones in the literature [12], for better 
understanding them totally, here, we give the comparison 
and analysis to reveal the similarities and differences.

In terms of macroscopic, there are some similarities, 
specifically,

(1) both help to expand the application scope of concept 
lattice, and help to understand the essence of rough sets 
from the view of concept lattice.

(2) both are oriented to information systems, and are 
employed to solve similar problems such as algebraic 
structure, core, reduction, et al.

(3) both need to transform information systems into one-
valued formal contexts, and then, the one-valued formal 
contexts can be further severed as new data sets to solve 
problems on the basis of concept lattice.

  From microscopic angle, there exist significant dif-
ferences, specially,

(1) in terms of research objects, this paper emphasizes 
order relation rather than tolerance relations.

(2) in terms of meeting users’ needs, there exists some 
major differences, namely, what is emphasized in the 
paper is how to satisfy the situation that if users con-

Conf(B
�
��������→ D) = ���_���_(D∕B)
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sider “greater than” or “less than” relations to a certain 
degree rather than in the full sense, while the literature 
[12] emphasizes the situation that users just require 
“most” rather than “all” elements in a class are similar 
to each other.

(3) in terms of technology path, both need to first transform 
information systems into one-valued formal contexts 
by means of scales, but as the most crucial, important 
and basic elements during the process of transforma-
tion, scales in this paper and ones in [12] are essential 
differences.

(4) in terms of algebraic structure, both of this paper and 
the literature [12] all can organize relations in the form 
of lattice, but the former is primarily concerned with 
order relations and the latter is more oriented towards 
tolerance relations.

(5) for how to solve issues in information systems such as 
reduction, core, dependency, et al., the literature [12], 
on the basis of concept lattice, gives some new feasible 
ideas, while this paper emphasizes the solution within 
the framework of integration theory.

In general, although there are many similarities in macro-
scopical, there are significant differences in terms of research 
background, or solution ideas, or internal modeling mecha-
nism. These differences, while enriching the theory of con-
cept lattice, will certainly lay a solid foundation for the deep 
expansion of application scope of concept lattice, and the deep 
integration of concept lattice, inclusion degree and rough sets.

6  Summary and outlook

As we known, with the research scope continues to expand, 
and the research content becomes more and more complex, it 
is always accompanied by increasingly severe inconsistency 
between the uncertainty of reality and the accuracy of clas-
sical mathematics. In the case, the research on uncertainty 
has become more and more significantly. As a special type of 
binary relations, uncertain order relation is universal, and which 

is also the focus of this study. In light of inclusion degree is a 
type of powerful tool for measuring uncertain order relations, 
while concept lattice is essentially a type of data analysis tool 
using binary relations as research objects, including order rela-
tions, the paper tries to build connections among concept lat-
tice, inclusion degree, order relations, and further offers a new 
feasible way for analyzing and processing ordered information 
systems. The mainly contributions are listed as follows:

(1) For properly widening the research scope of order 
relations, the paper offers a kind of new way from the 
perspective of the integration theory of concept lattice 
and inclusion degree, which not only has good robust-
ness and generalization ability, but also can meet actual 
needs flexibly.

(2) To solve problems such as algebraic structure, reduc-
tion, core, dependency in ordered information systems, 
the paper provides some new and simply ways within 
the framework of integration theory. Especially, for 
eliminating redundant dependencies, a new idea on 
the basis of inclusion-inference is proposed, by which 
a smaller dependency set referred to as a dependency 
generation set can be obtain. In short, the paper mainly 
focuses on the integration of concept lattice and inclu-
sion degree to solve the problems in ordered informa-
tion systems. Both theories and examples demonstrate 
the validity and rationality. Although some theoretical 
findings are achieved, which should be further supple-
mented and improved. Issues of how to autonomously 
determine parameter values, and how to extend concept 
lattice based on inclusion degree in more complex data 
sets, et al. will remain focuses of our future research.
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Table 11  Quantitative analysis 
result of some uncertain 
dependencies by confidence 
degree

b d bd

Conf Credible Conf Credible Conf Credible

a 0.6000 a
�
��������→ b 0.6000 a

�
��������→ d 0.3333

c 0.4681 0.4681 0.2677
e 0.5556 1.0000 e

�
��������→ d 0.5556

ac 0.7470 ac
�
��������→ b 0.7470 ac

�
��������→ d 0.5345

ae 0.5556 1.0000 ae
�
��������→ d 0.5556

ce 0.7156 ce
�
��������→ b 1.0000 ce

�
��������→ d 0.7156 ce

�
��������→ bd

ace 0.7156 ace
�
��������→ b 1.0000 ace

�
��������→ d 0.7156 ace

�
��������→ bd
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