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a b s t r a c t 

Non-numerical classification plays an essential role in many real-world applications such as DNA analysis, 

recommendation systems and expert systems. The nearest neighbor classifier is one of the most popular 

and flexible models for performing classification tasks in these applications. However, due to the com- 

plexity of non-numerical data, existing nearest neighbor classifiers that use the overlap measure and its 

variants cannot capture the inherent ordered relationship and statistic information of non-numerical data. 

This phenomenon leads to the classification limitation of nearest neighbor classifiers in non-numerical 

data environments. To overcome this challenge, we propose a novel object distance metric, i.e., value- 

object hierarchical metric (VOHM), which is able to capture inherent ordered relationships within non- 

numerical data. Then, we construct two nearest neighbor classifiers, i.e., the value-object hierarchical 

embedded nearest neighbor classifier (VO- k NN) and the two-stage value-object hierarchical embedded 

nearest neighbor classifier (TSVO- k NN), which take advantages of both VOHM and non-numerical feature 

selection. Experiments show that both VO- k NN and TSVO- k NN could mine more knowledge from data 

and achieve better performance than state-of-the-art classifiers in non-numerical data environments. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The classification problem ( Murphy, 2012 ) is a fundamental is-

ue in the areas of machine learning, data mining, artificial intelli-

ence, and expert systems etc. It plays an essential role in many

pplications, including sentiment analysis, spam filtering, image

nalysis, text analysis, and DNA sequence analysis, etc. There ex-

st a lot of methods to solve classification tasks such as logis-

ic regression (LR) ( Murphy, 2012; Walker & Duncan, 1967 ), ran-

om forest(RF) ( Breiman, 2001; Ho, 1995 ), support vector ma-

hines(SVMs) ( Catanzaro, Sundaram, & Keutzer, 2008; Cortes &

apnik, 1995 ), artificial neural networks(ANN) and deep learn-

ng(DL) ( Bengio, Courville, & Vincent, 2013; Lecun, Bengio, & Hin-

on, 2015 ) etc., which have achieved great success in numerical en-

ironments. However, it is a big challenge to apply these models to

olve classification tasks in non-numerical environments due to the

ack of useful non-numerical distance metrics for evaluating the re-

ations between objects. 
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Non-numerical (or categorical) data is a widely used data type

n expert systems. For example, Table 1 is a staff table instance

ith non-numerical values. It is convenient for people to acquire

nowledge from non-numerical values. However, most existing

achine learning algorithms are difficult to deal with the same

roblem as humans do, because, in the perspective of machine

earning algorithms, non-numerical data does not contain the same

emantics or context that humans can easily capture and under-

tand. Hence, narrowing the gap between algorithms and humans

as become one of the critical factors to improve the classifica-

ion performance of the algorithms in non-numerical data envi-

onments. To solve the non-numerical classification problem, the

ost commonly used strategy is to convert non-numerical data

nto numerical data and process it with machine learning algo-

ithms ( Buttrey, 1998 ) such as nearest neighbor classifiers ( Chen &

uo, 2015; Hu, Yu, & Xie, 2008; Liu, Cao, & Yu, 2014 ). The k -nearest

eighbor classifier ( k NN) is one of the most frequently used non-

arametric classification models in expert systems ( Mller et al.,

019; Rodger, 2014 ), because the model has no training phase and

asy implementation. Therefore, the problem of how to convert

on-numerical data into numerical values becomes the bottleneck

f the k NN classifiers for performing non-numerical classification

asks. 
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Table 1 

An instance of the staff database. 

Name Majors Educations Hobbies Classes 

Abel Math Doctor Dancing C 1 
Chad Math Master Singing C 1 
Carter Economics Bachelor Dancing C 1 
Duncan Logic Bachelor Singing C 2 
Frank Philosophy Bachelor Singing C 2 
Jessie Economics Bachelor Swimming C 2 
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The overlap metric (or simply match coefficients) ( Boriah, Chan-

dola, & Kumar, 2008 ) is a commonly used discrepancy measure

which is able to convert data from non-numerical form into nu-

merical form. However, due to the neglect of the different contri-

butions of attributes in non-numerical classification problems, the

overlap metric can not meet the requirement of real-world ap-

plications. Although the attribute weighting ( Chen & Guo, 2015;

Chen, Ye, Guo, & Zhu, 2016; Morlini & Zani, 2012 ) based approach

satisfies these requirements, it still fails to capture latent ordered

relationships that exist in non-numerical values. For example, in

Table 1 , according to common sense, the distance of values be-

tween ‘Bachelor’ and ‘Doctor’ is obviously greater than that be-

tween ‘Bachelor’ and ‘Master’. However, capturing this latent or-

dered information is beyond the scope of the overlap measure and

attribute weighting based measures. Therefore, when the classifi-

cation algorithm processes non-numerical data, how to mine la-

tent ordered information from non-numerical values becomes one

of the basic problems to be solved. Furthermore, there also ex-

ists another complicated dependency relationship between non-

numerical values from different attributes. For example, the asso-

ciation rule ‘Beer’ ⇒ ‘Diapers’ found in the sales data would in-

dicate that if a customer buys beer, it is likely also to buy diapers

with a certain probability ( Agrawal & Srikant, 1994; Han, Pei, & Yin,

20 0 0; Zaki, 20 0 0 ). In other words, It means that there exist depen-

dency relationships between non-numerical values from different

attributes. Hence, another question is arose, namely, how to rep-

resent and capture the second relationship in non-numerical data

environments. In summary, these challenges put new requirements

to update the distance measure for non-numerical data. Data sci-

ence ( Cao, 2017a; 2017b ) shows that there exist complicated re-

lationships in data, and a lot of knowledge required intelligence

algorithm to discover. 

To overcome these problems, in this paper, we construct a novel

distance metric, called value-object hierarchical metric (VOHM), to

update the strategy of distance measure for non-numerical data.

VOHM could learn the latent ordered relationship from the value-

object hierarchy structure. At the value level, the VOHM handles

all values in a probability perspective, which could capture the la-

tent ordered relationship of values relative to the class label distri-

bution. And, at the object level, VOHM treat the distance of each

object pair as the total sum of the discrepancies from the value

level. Then, we proposed a nearest neighbor classifier that takes

advantages of both VOHM and attribute reduction. Firstly, to avoid

the curse of dimensionality and reduce calculation, we employ the

rough set theory based attribute reduction strategy to select the

required attributes. Then, we equip up the nearest neighbor clas-

sifier with VOHM to perform the classification task for the se-

lected attribute filtered data set. More specifically, we developed

two nearest neighbor classifiers, i.e., the value-object hierarchi-

cal embedded nearest neighbor classifier (VO- k NN) and the two-

stage value-object hierarchical embedded nearest neighbor classi-

fier (TSVO- k NN). 

The main contributes of this paper are summarized as follows: 

• A new distance measure for non-numerical data, i.e., VOHM, is

proposed. VOHM enables us to capture the latent ordered re-
lationship, which gives more knowledge than the overlap mea-

sure and the weighted overlap measure. 
• We propose a value-object hierarchical embedded nearest

neighbor classifier that takes advantage of VOHM. 
• We propose a two-stage value-object hierarchical embedded

nearest neighbor classifier to perform the classification task on

the reduced data set to avoid the curse of dimensionality. 

The rest of the paper is organized as follows. In Section 2 ,

e briefly do an overview of existing classifiers for non-numerical

ata. In Section 3 , we formulate the research problem and intro-

uce the preliminary notions. Section 4 defines the VO- k NN clas-

ifier. In Section 5 , we design a feature section algorithm based on

ough set theory. In Section 6 , we conduct experiments to show

he advantage of our model and algorithm. Finally, we conclude

his work in Section 7 . 

. Overview of existing classifiers for categorical data and 

elated work 

In the literature, researchers have proposed a lot of classifiers

or categorical data. This section will present an overview of them

s follows. 

.1. Decision tree based categorical classifier 

.1.1. Iterative dichotomiser 3 (ID3) 

ID3 is a classifier invented by Quinlan (1986) , which uses in-

ormation gain to generate a decision tree from the training data

et and predicts the class label of a new sample according to the

rained tree model. Given a dataset S, we let Z be a discrete ran-

om variable with possible values ˜ Z � { z 1 , z 2 , . . . , z r } representing

n attribute. We also let L be a discrete random variable with pos-

ible values ˜ L � { l 1 , l 2 , . . . , l t } representing the decision attribute.

hen, the information gain (IG) of an attribute Z is a measure of

he entropy discrepancy from before to after the set S is split on

he attribute Z , i.e., 

G (S, Z) = H(L ) − H(L | Z) , (1)

here H ( L ) is the entropy of the decision attribute L , i.e., 

(L ) = −
∑ 

l∈ ̃ L 

p(l) · log 2 p(l) , (2)

here p(l) � P r (L = l) is the ratio of the number of elements with

ecision l to the number of elements in the dataset S, and H ( L | Z )

s the conditional entropy of L given attribute Z , i.e., 

(L | Z) = 

∑ 

z∈ ̃ Z 

p(z) · H(L | z) 

= −
∑ 

z∈ ̃ Z 

p(z) ·
∑ 

l∈ ̃ L 

p(l| z) · log 2 p(l| z) , (3)

here p(l| z) � P r (L = l| Z = z) is the ratio of the number of ele-

ents with the decision l to the number of elements that satisfy

he condition Z = z in the dataset S . 

The ID3 algorithm firstly regards the training data set as the

oot of the tree. Then it will calculate all information gains of un-

sed attributes and selects one attribute which has maximum in-

ormation gain to split the set. According to this rule, the algorithm

onstructs a decision tree iteratively. After the decision tree is es-

ablished, the class label of a new object output by the tree model

s the value of the node that the object arrives. In the context of

he ID3 algorithm, the terminal node represents the class label to

hich an object belongs. 
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.1.2. C4.5 

The disadvantage of ID3 is that the information gain tends to

hoose the attribute with more values. However, in some cases,

hese attributes may not provide much valuable information. To

void this drawback, C4.5 ( Quinlan, 1993 ) uses the information

ain rate to select the split attribute from the candidate attributes.

he information gain rate of an attribute Z is defined as follows: 

ainRatio (S, Z) = 

IG (S, Z) 

SplitIn f o Z (S) 
, (4) 

here SplitIn f o Z (S) represents the split information which is de-

ned as follows: 

plitIn f o Z (S) = −
N ∑ 

j=1 

|S j | 
|S| log 2 

|S j | 
|S| , (5) 

here | · | is a function used to calculate the cardinality of a set.

 j ( j = 1 , 2 , . . . , N) is a subset of the set S, and its elements are de-

ermined by the values of the selected attribute Z . The tree model

onstruction process of C4.5 and ID3 is similar, but the different

s that the strategy for selecting candidate attributes in C4.5 is the

nformation gain rate. 

.1.3. Classification and Regression Trees (CART) 

Similar to ID3 and C4.5, CART ( Breiman, Friedman, Olshen, &

tone, 1984; Loh, 2012 ) is another decision tree classifier for cat-

gorical data.The difference between CART and ID3, C4.5 is that

he former uses attributed split Gini impurity (ASGI) to select an

ttribute to split training data set and construct a decision tree

odel. ASGI is defined as follows: 

SGI (S, Z) = 

l ∑ 

i =1 

N i 

N 

Gini (S i ) , (6)

here S i (i = 1 , 2 , . . . , l) is a subset of S and the elements of S i are

etermined by splitting S using the values of the attribute Z. N i 

nd N are cardinalities of S i and S, respectively. Gini (S i ) is the Gini

mpurity of S i , which is defined as, 

ini (S i ) = 

J ∑ 

k =1 

q k (1 − q k ) = 1 −
J ∑ 

k =1 

q 2 k , (7)

here the items of S i have J ( J ≤ N i ) classes, and q k (k = 1 , 2 , . . . , J)

s the fraction of items labeled with class k in the set S i . 
In addition to ID3, C4.5 and CART, there are also some

lassification models based on the decision tree for categorical

ata such as chi-squared automatic interaction detector (CHAID)

 Kass, 1980 ), quick unbiased and efficient statistical tree (QUEST)

 Wei-Yin, 2014 ), classification rule with unbiased interaction selec-

ion and estimation (CRUISE) ( Kim & Loh, 2001 ), generalized un-

iased interaction detection and estimation (GUIDE) ( Loh, 2009 ),

onditional inference trees (CTREE) ( Hothorn, Hornik, & Zeileis,

006 ), and various modifications of decision tree algorithms ( Kim,

016; Zhao & Li, 2017 ). 

.2. Naive Bayes classifier 

The naive Bayes (NB) classifier ( Hand & Yu, 2001; Murphy,

012 ) is a family of simple probabilistic classifiers, which holds the

ssumption of attribute conditional independence. Given a train

et T = { x (i ) , y (i ) } N 
i =1 

and the assumption, we have the definition

f naive Bayes models, i.e., 

p(x (i ) | y (i ) = c, �) = 

m ∏ 

j=1 

p(x (i ) 
j 

| y (i ) = c, � jc ) , (8)

here m is the number of features, and � is the parameter of the

aive Bayes classifier which has nm parameters for n classes and
 features, and �jc is the parameter of the conditional probabil-

ty distribution which represents the distribution of the j th feature

iven the condition y (i ) = c. Unlike the classifiers based on decision

rees, the naive Bayes model is a parametric model, which means

t needs data to fit. By using maximum likelihood estimator (MLE),

he goal of training NB classifiers is to maximize the following log-

ikelihood, i.e., 

ˆ = arg max 
�

log 

N ∏ 

i =1 

p(y (i ) ) p(x (i ) | y (i ) , �) . (9)

fter training the model, the NB classifier uses p(y | x , ˆ �) to predict

he class label for a new sample x . 

Due to the strict condition of the attribute independence hy-

othesis, Kononenko et al. relaxed this constraint and proposed

emi-naive Bayes classifiers (SNBC) ( Kononenko, 1991 ). According

o the criteria of attribute dependence, a lot of semi-naive Bayes

lassifier are proposed such as tree augmented naive Bayes (TAN)

 Jiang, Cai, Wang, & Zhang, 2012a; Zheng & Webb, 2011 ), weighted

veraged one-dependent estimator (WAODE) ( Jiang, Zhang, Cai, &

ang, 2012b ), etc. 

.3. Instance-based learning 

A classifier based on instance-based learning ( Daelemans &

an den Bosch, 2005; Russell & Norvig, 2016 ) is another nonpara-

etric classification model that can be applied to the classification

roblem for categorical data. One of the simplest instance-based

lassifiers is the k -nearest neighbor ( k NN) classifier. The bottleneck

f this approach is the problem of how to evaluate the relationship

etween objects. For the numerical data environments, there exist

 lot of distance measures for objects such as the Euclidean dis-

ance, the Manhattan distance, the Chebyshev distance, etc. How-

ver, in the non-numerical data environment, these distance mea-

ure mentioned above are not easy to apply to measure categorical

ata distance. The simplest solution to handle non-numerical data

s to convert it into binaries, and then it could be treated like nu-

erical data in k NN classification models ( Buttrey, 1998 ). For ex-

mple, a commonly used convert strategy in k NN classifier for cat-

gorical data is overlap measure ( Boriah et al., 2008 ) also known

s the Hamming distance, which is defined as, 

(ol) (x (i ) , x ( j) ) = 

d ∑ 

k =1 

I (x (i ) 
k 

, x ( j) 
k 

) , (10)

here x ( i ) and x ( j ) are feature vectors with the dimension d , and

 (u, v ) is an indicator function which means that if u = v is sat-

sfied then I (u, v ) = 1 otherwise I (u, v ) = 0 . The disadvantage of

his approach is obvious, that is, the conversion will lose the orig-

nal relationship within data, and the converted data will be lim-

ted to a hypothetical ordered relationship. Another bottleneck of

his distance measure is the assumption that all attributes play an

qual role for classifying non-numerical objects. However, in real

pplications, it is always true that not all attributes are valuable

or performing classification tasks and for predicting the label dis-

ribution of a sample. For example, noise attributes ( Li, Wen, Yu,

 Zhou, 2013 ) do not contribute to predicting label in the high

eature dimensional environment. A natural solution is to perform

eature selection ( Hu et al., 2008 ) in advance. Similarly, the clas-

ifier can give different weights to each object ( Jahromi, Parvin-

ia, & John, 2009 ) or attribute ( Chen & Guo, 2015; Morlini & Zani,

012 ) or distance ( Alamelu, Milind, & Santhosh, 2013; Jiang, Cai,

ang, & Zhang, 2014 ) to distinguish its contributions. Although the

xisting methods improved the classification ability of k NN clas-

ifiers from different angles, however, it still cannot handle non-

umerical classification problems well to achieve the performance
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Fig. 1. The architecture of VO- k NN classifier and TSVO- k NN classifier. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

List of main notations. 

Variable Explanation 

D A training dataset 

A An attribute set 

A k The k th attribute 

m The total number of objects 

d The dimension of features 

V The value set of all attributes 

V k The value set of the k th attribute ( k = 1 , 2 , . . . , d) 

V ai The i th value in V a (i = 1,2,...,| V a |) 

| V k | The cardinality of the set V k ( k = 1 , 2 , . . . , d) 

X An object set 

x ( i ) The feature vector of the i th object in X 

y The class label vector of D
y ( i ) The class label of the i th object 

F (c) 
ai 

The number of times of the value V ai appeared in the class c 

F ai The number of times of the value V ai appeared in all classes 

ξ (c) 
V ai 

The proportion of F (c) 
ai 

to F ai 

d  

b  

T

4

 

k

4

D  

s

 

 

 

 

similar to that of dealing with numerical data. The key to the prob-

lem is the distance measure of non-numerical objects should have

the same ability as the distance measure for numerical objects.

Boriah et al. (2008) conducted a comparative study of some com-

monly used categorical metrics. Although these metrics can be em-

bedded in the k NN classifier, they ignore the statistics between the

categorical data and the value-object hierarchical structure, which

affects the performance of the modified k NN classifier. Besides,

there also exist some factors that affect the classification accuracy

of the model, such as the neighbor size k ( Gou et al., 2019 ). There-

fore, in the non-numerical data environment, these factors should

be paid more attention to decrease the impact on classification

performance. 

2.4. Other methods 

Based on kernel density estimation, Chen et al. proposed a lin-

ear classifier for categorical data ( Chen et al., 2016 ). In addition to

this, there are a lot of methods ( Garc et al., 2009; Liu et al., 2014 )

similar to mutual information for measuring the feature weights of

the categorical attributes, which are embedded in the classifier for

classifying categorical objects. 

3. Problem formulation and framework 

In what follows, the dataset T consists of data objects,

i.e., T � { (x (1) , y (1) ) , (x (2) , y (2) ) , . . . , (x (m ) , y (m ) ) } , where m is the

size of the set T , and y ( i ) is the class label of the object x ( i ) .

Each object x ( i ) consists of categorical feature values, i.e., x (i ) =
{ x (i ) 

1 
, x (i ) 

2 
, . . . , x (i ) 

d 
} , where d is the total number of features. The

categorical features means that each feature has a value set with

a limited cardinality. For example, the categorical feature “sex”

maybe has two values {‘male’, ‘female’}. 

Given a training data set, the goal of the classification task is

to construct a reasonable classifier, which can correctly predict the

class label of a new object. The framework of our proposed model

VO- k NN is described in Fig. 1 . Firstly, we perform the dimension

reduction by using rough set theory to avoid the curse of dimen-

sion and reduce the calculation complexity of the algorithm. Then,

we constructed a value-object hierarchical metric for categorical
ata and embedded it into k NN classifier to predict the class la-

el for a new object. The main notations in this paper are listed in

able 2 . 

. VO- k NN classifier 

In this section, we will introduce the components of the VO-

 NN classifier. 

.1. Value-object hierarchical metric for categorical data 

efinition 1. A four tuple, D � 〈 X, y, A, V 〉 , is called a training data

et, which satisfies the following assumptions, 

(1) X = { x (i ) } m 

i =1 
is a non-empty set, which element represents

an object in one domain, and m is the total number of ob-

ject. 

(2) y = (y (1) , y (2) , . . . , y (m ) ) is a vector, which element repre-

sents the class label of the i th object. 

(3) A = { A k } d k =1 
represents the set of attributes, and d is the total

number of attributes. 
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(4) V = { V k } d k =1 
is a set of V k , and V k is the value set of the at-

tribute A k . 

For the convenience of the later description, we defined auxil-

ary information functions as follows. 

efinition 2 (auxiliary information functions, AIF) . Given a train-

ng data set D � 〈 X, y, A, V 〉 , two auxiliary information functions

re defined as follows: ψ k : 2 
X → V k , (k = 1 , . . . , d) , and the inverse

unction ψ 

−1 
k 

: 2 V k → X, (k = 1 , . . . , d) , that is, 

ψ k (O ) = W, 

ψ 

−1 
k 

(W ) = O, (11) 

here O ⊆X, W ⊆V . 

From Table 1 , for example, we can obtain the following

quations: ψ 1 ({ ′ Abel ′ , ′ Chad ′ } ) = { ′ Math ′ } and ψ 

−1 
3 

({ ′ Dancing ′ } ) =
 

′ Abel ′ , ′ Carter ′ }. 

efinition 3 (value level difference metric, VLDM) . Given a train-

ng dataset D, we denote F 

(c) 
ai 

as the number of times that the

alue V ai (V ai ∈ V a , i = 1 , 2 , . . . , | V a | , a = 1 , 2 , . . . , d) is classified into

he class c = ψ d (ψ 

−1 
a (V ai )) , and denote F ai as the total number of

imes V ai occurred in all classes, i.e., 

 ai = 

∑ 

c 

F 

(c) 
ai 

. (12) 

he frequency of value V ai with label c is defined as, 

(c) 
V ai 

= F 

(c) 
ai 

/ F ai . (13)

hen, in the value level, the difference metric for value pair {( V ak ,

 al )| ∀ k, l < | V a |} in the a th feature A a (a = 1 , 2 , . . . , d) is, 

(a ) (V ak , V al ) = 

∑ 

c 

∥∥ξ (c) 
V ak 

− ξ (c) 
V al 

∥∥t 
, t ∈ 2 

{ Z + ∪ 0 } , (14)

here ‖ · ‖ is a L p -norm. In this work, if there is no special expla-

ation about norms, then the norm we used is L 2 -norm, i.e., p = 2 .

The core idea of this definition is that we wish to tightly con-

ect the values which occur with the same relative frequency in

ll classes. 

efinition 4 (value-object hierarchical metric, VOHM) . The dissim-

larity of the object pair {( x ( i ) , x ( j ) )| ∀ i, j < m } consists of the dif-

erence existing in all of the attributes value pairs. Therefore, the

alue-object hierarchical metric for the object pair ( x ( i ) , x ( j ) ) is de-

ned as, 

(x (i ) , x ( j) ) = 

d ∑ 

a =1 

δ(a ) 
(
ψ a (x (i ) ) , ψ a (x ( j) ) 

)
. (15)

Unlike VDM ( Stanfill & Waltz, 1986 ), MVDM ( Cost &

alzberg, 1993 ), we do not need to consider the role of the

eatures and objects because we filtered out the irrelevant fea-

ures during the feature selection phase. Therefore, we ignore the

eights of features and objects in the VLDM and VOHM defini-

ions and treat the value-object as a whole from a hierarchical

erspective. 

heorem 1. Given ∀ b , d , q ∈ X, the value-object hierarchical metric

( b , d ) satisfies the following properties: 

1. �( b , d ) ≥ 0 

2. �(b, d) = �(d, b) 

3. �(b, b) = 0 

4. �(b, d) + �(d, q ) ≥ �(b, q ) 

roof. (1) For any t ∈ 2 { Z + } , i.e., t is an even number, then the

ven power of any number is greater than or equal to 0, that is,
| · || t ≥ 0; For t = 2 { 0 } = 1 , we have | · | ≥ 0. The sum of the non-

egative values is non-negative, therefore, �( b , d ) ≥ 0. 

(2) Obviously, given ∀ a ∈ { 1 , 2 , . . . , d} , the equation δ( a ) ( ψ a ( d ),

 a (b)) = δ(a ) (ψ a (b) , ψ a (d)) is always true. Then, we have the

quation 

 

a 

δ(a ) (ψ a (d) , ψ a (b)) = 

∑ 

a 

δ(a ) (ψ a (b) , ψ a (d)) , 

.e., �(d, b) = �(b, d) . 

(3) According to Eq. (14) , if d = b, then δ(a ) (b, d) = 0 . Hence,

e have the equation �(b, d) = 0 , when the equation d = b(∀ d ∈
, b ∈ b) is satisfied. 

(4) According to Eq. (15) , we have, 

�(b, d) = 

∑ 

a 

∑ 

c 

∥∥ξ (c) 
V ak 

− ξ (c) 
V al 

∥∥t 

(d, q ) = 

∑ 

a 

∑ 

c 

∥∥∥ξ (c) 
V al 

− ξ (c) 
V ap 

∥∥∥t 

�(b, q ) = 

∑ 

a 

∑ 

c 

∥∥∥ξ (c) 
V ak 

− ξ (c) 
V ap 

∥∥∥t 

orms have the following properties: for matrics A , B , it satisfies 

| A || + || B || ≥ || A + B || 
f we let a ′ = ξ (c) 

V ak 
− ξ (c) 

V al 
, b ′ = ξ (c) 

V al 
− ξ (c) 

V ap 
, and c ′ = ξ (c) 

V ak 
− ξ (c) 

V ap 
, then

e have || a ′ || + || b ′ || ≥ || a ′ + b ′ || = || c ′ || . It means that, 

∑ 

a 

∑ 

j 

(∥∥ξ (c) 
V ak 

− ξ (c) 
V al 

∥∥t + 

∥∥∥ξ (c) 
V al 

− ξ (c) 
V ap 

∥∥∥t 
)

≥
∑ 

a 

∑ 

j 

∥∥∥ξ (c) 
V ak 

− ξ (c) 
V ap 

∥∥∥t 

ence, �(b, d) + �(d, q ) ≥ �(b, q ) . �

Therefore, the value-object hierarchical metric can be used as

 distance metric with the statistic information of attribute values.

bviously, this is an advantage that the overlap distance measure

oes not have. Actually, if we place some constraints on VOHM,

hen it becomes the overlap distance measure. 

heorem 2. The overlap distance measure is a special case of the

alue-object hierarchical metric. 

roof. If we place a constraint on VLDM, i.e., 

(∗a ) (V ak , V al ) = 

{ 

I (δ(a ) (V ak , V al ) ≥ 0) , V ak � = V al ;
0 , Otherv ise. 

(16) 

here I (u ) is a function which means if u = ture is satisfied then

 (u ) = 1 otherwise I (u ) = 0 . Given ∀ b , d ∈ X , then we have the

pecial form �∗( · , · ) of VOHM, i.e., 

∗(b, d) = 

∑ 

a ∈ A 
δ(∗a ) (ψ a (b) , ψ a (d)) 

= 

∑ 

a ∈ A 
I (δ(a ) (ψ a (b) , ψ a (d)) ≥ 0) 

= 

∑ 

a ∈ A 
δ(ol) (ψ a (b) , ψ a (d)) . (17) 

bviously, the third line of Eq. (17) is equal to the overlap measure,

.e. Eq. (10) . �

.2. VO-kNN classifier 

In this work, we use VOHM to measure the distance of cate-

orical objects and propose a value-object hierarchical metric em-

edded k nearest neighbor classifier (VO- k NN) to perform classi-

cation tasks. The following Algorithm 1 outlines the prediction

lgorithm of VO- k NN. 
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Algorithm 1 The prediction algorithm of VO- k NN for categorical 

data. 

Input: D = 〈 X, y, A, V 〉 : training dataset, k : the number of nearest 

neighbors, x ′ : a query sample; 

Output: y : the class label of x . 

1: //calculate the distance dist[] between x ′ and the element in X 

by using VOHM. 

2: for i = 1 , 2 , . . . , m do 

3: dist[ i ] ← �(x ′ , x (i ) ) ; //using Equation (15). 

4: end for 

5: sort( dist); //sort dist in ascending order. 

6: C ← select (dist, k, X ) ; select the k nearest neighbors. 

7: return y ← arg max c 
∑ 

(x (i ) ,y (i ) ) ∈C I (c = y (i ) ) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 2 The heuristic feature selection algorithm based on 

the quality of rough approxiamtion. 

Input: D = 〈 X, y, A, V 〉 : training dataset; 

Output: F : the selected feature subset, γF (D ) : QRA. 

1: C ← the attribute set of X; 

2: F ← ∅ ; 
3: repeat 

4: for a ∈ C − F do 

5: GR [ a ] ← GainRatio (D, a ) ; //using Equation (4). 

6: end for 

7: a ′ ← arg max a GR [ a ] ; 

8: F ← F ∪ a ′ ; 
9: until ( P OS F (D ) == P OS C (D ) ) 

10: output F , γF (D ) ; 
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5. Two-stage VO- k NN classifier 

Due to the feature correlation, we need to select some features

that play a significant role in the classification task. In the numer-

ical environment, there exist a lot of feature selection methods,

for example, the principal component analysis (PCA). However, it

is rare to find the feature selection method for non-numerical data

except for rough set based methods. 

The core issue of feature selection is to select a feature subset

which has the same ability to distinguish all objects like the whole

attributes. One of the commonly used metrics for evaluating the

representation ability of the selected feature subset relative to the

whole feature set is the rough approximation quality ( Jia, Shang,

Zhou, & Yao, 2016; Pawlak, 1998 ). 

Definition 5. Given a training dataset D = 〈 X, y, A, V 〉 , we let ˜ x (i ) =
〈 x (i ) , y (i ) 〉 , ˜ X = { ̃  x (i ) } m 

i =1 
, and denote C, D as the conditional at-

tributes and the decision attribute, i.e., C ∪ D = A . Then, given a

feature subset F ⊆C , the quality of rough approximation (QRA)

( Pawlak, 1998 ) of ˜ X /D w.r.t. F is defined as, 

γF (D ) = 

card ( P OS F (D ) ) 

card 
(

˜ X 

) , (18)

where card ( · ) is a function to calculate the cardinality of a set.
˜ X /D � { X 1 , X 2 , . . . , X l } is the set of equivalence class of ˜ X , which is

divided by the values of the decision attribute D , and POS F ( D ) is

the positive region ( Pawlak, 1998 ) of the partition 

˜ X /D w.r.t. the

equivalence relation induced by the attribute set F , which means

that, 

P OS F (D ) = 

⋃ { [ u ] F | [ u ] F ⊆ X 

′ } , (19)

where u ∈ X, X ′ ∈ 

˜ X /D and [ u ] F is the equivalence class of u that

divided by the attribute set F . 

Therefore, the feature selection problem became an optimiza-

tion problem by using the QRA criterion. In other words, we want

to search a feature subset F ∗ which has minimal cardinality and

maximum QRA value, i.e., 

F ∗ = arg max 
F 

min | F | γF (D ) . (20)

It has been proved that computing a minimal feature sub-

set from the whole attribute set is a NP-hard problem ( Wong

& Ziarko, 1985 ). Therefore, there are a lot of methods ( Gao, Lai,

Zhou, Zhao, & Miao, 2018; Jensen & Shen, 2004; Miao & Hu, 1999;

Wang, Yu, & Yang, 2002 ) using the information gain ( Eq. (1) ) as

the searching strategy to select the candidate feature. However, as

is discussed above, the disadvantage of information gain is that it

tends to select the attribute with more values, which has lower

generalization capabilities for new samples in the classifier. Simi-

lar to C4.5, we choose the GainRatio ( Eq. (4) ) as the heuristic in-

formation to filter the candidate features. Algorithm 2 outlines the
euristic feature selection algorithm by using the quality of the

ough approximation. 

.1. Two-stage VO- k NN classifier 

Since the feature selection algorithm and the VO- k NN classi-

er are constructed, we put it all together to establish the two-

tage VO- k NN (TSVO- k NN) classifier. In the first stage, we employ

lgorithm 2 to filter out the redundant attributes. Then, we use the

utput of the first stage as the input for Algorithm 1 . Algorithm 3

lgorithm 3 The two stage VO- k NN prediction algorithm. 

nput: D = 〈 X, y, A, V 〉 : training dataset, k : the number of nearest

neighbors, x ′ : a query sample; 

utput: y : the class label of x . 

1: F ← the output of the Algorithm 2; 

2: X ′ ← X with the attribute subset F ; 

3: A 

′ ← F ; 

4: calculate the V ′ of X ′ ; 
5: D 

′ ← 〈 X ′ , y, A 

′ , V ′ 〉 ; 
6: let D 

′ as the input of Algorithm 1; 

7: y ← the output of Algorithm 1; 

8: output y ; 

utlines the details of the TSVO- k NN prediction algorithm as fol-

ows. 

.2. Complexity analysis 

Compared with k NN classifiers, the computational complexity

f the classification model VO- k NN is mainly focused on the calcu-

ation of VOHM, because the rest computation complexity of VO-

 NN equals to k NN classifiers. Suppose N is the total number of ob-

ects in an information table, D is the total number of features, and

 is the total number of class label, then the computational com-

lexity of VOHM is O ( DCM ), because the complexity of VLDM is

 ( CM ). As to the TSVO- k NN, the complexity should include the cal-

ulation of the feature selection part, which complexity is O ( DM ).

ow, suppose the cardinality of the selected attribute set is S , then

he complexity of TSVO- k NN becomes to O (DM + DCS) ≈ O (DCS) .

bviously, if the cardinality of the selected attribute set is small

han D , then the TSVO- k NN classifier is more efficient than the VO-

 NN classifier. 

. Experiments 

The empirical study of the VO- k NN and TSVO- k NN classifier is

iven in this section. We first set up the experiments by introduc-

ng the datasets and comparison methods. Then we evaluate the
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Table 3 

Description of the UCI data sets. 

Data set Abbreviation Attributes Classes Size 

Weather D1 5 2 14 

Zoo D2 17 7 101 

Soybean D3 36 4 47 

Dermatology D4 35 6 366 

Lymphography D5 19 2 148 

Breast D6 10 2 286 

Balance D7 5 3 625 

Vote D8 17 2 435 
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erformance in terms of the prediction accuracy compared with

ther methods. Besides, we also evaluate the effects of factors such

s parameter k and the selected attributes on classification perfor-

ance. 

.1. Experimental setup 

.1.1. Data sets 

To test the performance of our methods, we selected eight

atasets with categorical values, i.e., Weather, Zoo, Soybean(small),

ermatology, Lymphography, Breast-cancer (abbr. Breast), Balance

nd Vote, which are collected from UCI machine learning respon-

ory. For the sake of convenience, we use D1-D8 instead of the

revious data sets. Table 3 lists the statistics for the training data

ets. 

.1.2. Comparison methods and evaluation metric 

We used the following methods for the experiments, most of

hem being introduced in Section 2 , including our approach: 

• OL-kNN . This k NN model simply classify objects with categori-

cal attributes by using the overlap measure ( Eq. (10) ). 
• LE-kNN ( Chen & Guo, 2015 ). This model assumes that each

attribute has a different weight. It uses attribute weighting

methods based on local information entropy and applies these

weights to overlap measure. 
• GE-kNN ( Chen & Guo, 2015 ). Unlike LE-kNN , the GE-kNN model

employs the global information entropy to weighting attribute.

Then the model embeds these weights into overlap measure

to evaluate the distance between the categorical objects and to

predict the class label of the object. 
• C4.5 ( Quinlan, 1993 ). This model builds a decision tree to clas-

sify the categorical objects, according to the information gain

rate. 
• Naive Bayes(NB) ( Hand & Yu, 2001; Murphy, 2012 ). This model

assumes that the attributes are independent and need training

data to fit the parameters of the model. The trained model will

directly output the class label for the new object without com-

paring it with the neighbors. 
• VO-kNN . This is the VOHM embeded k nearest neighbor classi-

fier proposed for the categorical data in this paper. 
• TSVO-kNN . This is two stages VO-kNN which performs feature

selection task in the first stage and execute the classification

task in the second stage. 

In the experiments, we use the accuracy metric to evaluate the

erformance of the models above. 

ccuracy = 

T P + T N 

T P + F P + F N + T N 

. (21) 

here TP is the true positive, TN is the true negative, FP is the false

ositive and FN is the false negative. 
.2. Results 

Table 4 demonstrates the results of the accuracy over the eight

CI data sets, respectively. All the results are performed under the

ettings with the 10-fold cross validation strategy and the param-

ter k range from 1 to 6. And, the average performances were re-

orted in the format μ ± σ 2 , where μ is average and σ 2 is the

eviation. 

The table shows that the two new classifiers (VO- k NN, TSVO-

 NN) completely outperform the OL- k NN classifier, especially the

ccuracy of OL- k NN is zero on D1, D2, and D3 respectively. The

eason is that the overlap measure does not take into account the

otential relationship between different values in the attribute, and

he information loss caused by the comparison strategy of overlap

easure is too large so that the classification performance of OL-

 NN is unreliable. 

Both VO- k NN and TSVO- k NN have a better accuracy result than

he attribute weighted model LE- k NN and GE- k NN, except the data

et D2. Although the attribute weighted model has a good effect on

he data set D2, the calculation of the attribute weights based on

he local entropy(LE) and the global entropy(GE) that is employed

y LE- k NN and GE- k NN respectively, has a significant impact on

he performance of the classifier. For example, the performance

f LE- k NN and GE- k NN on the data set D7 is 0.3837 ± 0.1528

nd 0.6611 ± 0.0078, respectively. However, the performance of

E- k NN and GE- k NN on the data set D2 is 0.9736 ± 0.0173 and

.9356 ± 0.0136, respectively. The local entropy and global entropy

ave their advantages on different data sets, but the core issue

f the overlap measure that capturing the inherent order of the

ategorical attribute remains unresolved. It also demonstrates that

OHM considering the potential order relationship can better eval-

ate the distance between the categorical attribute values. There-

ore, as can be seen from the table, VOHM embedded k NN clas-

ifiers, i.e., VO- k NN and TSVO- k NN, have better classification per-

ormance than the attribute weighted classifier on the data set D1

nd D3-D8. 

The performance of the C4.5 classifier is only best on the data

et D6, and the rest of the results are not as good as VO- k NN and

SVO- k NN. Especially, the classification performance of the VO-

 NN exceeds C4.5 by 32.12% and 18.4% on the data set D5 and

7. It is easy to find that the C4.5 classifier is suitable for data

ets with few attributes and a few numbers of the categorical at-

ribute values such as D6. When these conditions are not met, the

erformance of C4.5 will drop significantly. This is one of the rea-

ons why C4.5 does not perform as well as VO- k NN and TSVO- k NN

n the other data sets, especially on high dimensional data sets. It

an be seen that the performance of C4.5 on the data set D1 is

.50 0 0 ± 0.35.81, which means that the algorithm is equivalent to

andom guess, which also shows that the VO- k NN and TSVO- k NN

re more reliable than C4.5 from the Table 4 . 

Similarly, the classification performance of NB is only better

han VO- k NN and TSVO- k NN on data set D7, while the perfor-

ance on the other data sets is not as good as VO- k NN and TSVO-

 NN. On the eight data set, the maximum value of the classifica-

ion performance that the VO- k NN and TSVO- k NN exceeds NB is

6.67%, while the minimum amount is -2.83%. When the attributes

f the data set are relatively independent, and the class distribu-

ion of the data set is relatively uniform such as D7, the perfor-

ance of NB is better than the VO- k NN and TSVO- k NN. However,

hen these conditions are not satisfied, the VO- k NN and TSVO-

 NN performs better than NB. 

In summary, the VO- k NN and TSVO- k NN which can capture the

nherent ordered relationship between categorical objects could

btain the intrinsic characteristics of the data, so that it is more

onducive to improve the classification performance for the cate-

orical data. 
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Table 4 

The accuracy result of the models performed on the eight data sets. 

Dataset Accuracy 

OL- k NN LE- k NN GE- k NN VO- k NN TSVO- k NN C4.5 NB 

D1 0.3571 ± 0.1195 0.6310 ± 0.1144 0.5595 ± 0.1051 0.7262 ± 0.1230 0.7381 ± 0.0738 0.5000 ± 0.3581 0.5714 ± 0.2417 

D2 0.0000 ± 0.0000 0.9736 ± 0.0173 0.9356 ± 0.0136 0.9323 ± 0.0116 0.9125 ± 0.0192 0.8955 ± 0.0189 0.9089 ± 0.0105 

D3 0.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 0.9710 ± 0.0106 1.0000 ± 0.0000 

D4 0.0000 ± 0.0000 0.9786 ± 0.0032 0.9604 ± 0.0116 0.9813 ± 0.0040 0.7996 ± 0.0157 0.9316 ± 0.0176 0.9658 ± 0.0054 

D5 0.4144 ± 0.1456 0.9741 ± 0.0079 0.9718 ± 0.0066 0.9786 ± 0.0108 0.9775 ± 0.0092 0.6574 ± 0.0236 0.9196 ± 0.0106 

D6 0.4959 ± 0.0193 0.7185 ± 0.0226 0.7191 ± 0.0202 0.6976 ± 0.0098 0.6976 ± 0.0098 0.7552 ± 0.1870 0.7202 ± 0.0021 

D7 0.2659 ± 0.1586 0.3837 ± 0.1528 0.6611 ± 0.0786 0.8160 ± 0.0199 0.8160 ± 0.0199 0.6320 ± 0.1842 0.8398 ± 0.0811 

D8 0.1625 ± 0.0443 0.9425 ± 0.0104 0.9437 ± 0.0075 0.9487 ± 0.0075 0.9433 ± 0.0059 0.9440 ± 0.0306 0.9011 ± 0.0886 

Fig. 2. The impact of the factor k for the family of the k NN classifiers. 
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6.3. The effect of the parameter k 

The parameter k is a key factor for the family of the k NN

classifier. Fig. 2 shows the trend of the classification accuracy with

k varying, which is generated by the OL- k NN, LE- k NN, GE- k NN,

VO- k NN and TSVO- k NN classifier respectively. In Fig. 3 (b)–(e) and

(h), the change of the classification accuracy is not obvious for all

of the k NN based classifiers. In other words, the parameter k is

not sensitive in the processing of the k NN based classification on
he data set D2-D5 and D8, except the OL- k NN classifier on the

ata set D5 and D8. It is not worthy of discussing the effect of

he parameter k for OL- k NN, because the classifier is not reliable

or categorical data. In Fig. 3 (f) and (g), the fluctuation of the line

roduced by the VO- k NN and TSVO- k NN is relatively stable, while

he other lines which are produced by the OL- k NN, LE- k NN and

E- k NN classifier are relatively large. In Fig. 3 (a), the value of k

as a great influence on the classification accuracy of all classifiers.

he main reason is that the distance calculated by the overlap
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Fig. 3. The box plot of the accuracy w.r.t. VO- k NN and TSVO- k NN. 
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Table 5 

Description of the selected attributes. 

Data set Abbr. Condition 

attributes 

Selected 

attributes 

Proportion 

Weather D1 4 3 75.00% 

Zoo D2 16 5 31.25% 

Soybean D3 35 2 5.71% 

Dermatology D4 34 6 17.65% 

Lymphography D5 18 3 16.67% 

Breast_cancer D6 9 9 100.00% 

Balance D7 4 4 100.00% 

Vote D8 16 9 56.25% 
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measure, weighted overlap measure, and value-object hierarchy

measure is so centralized that the uncertain of the neighbors

of the object is too high. Furthermore, the uncertainty of the

classification accuracy is brought by the concentrated character

of the data. Therefore, the parameter k plays an important role in

these types of data. 

In summary, the parameter k indeed plays an essential role in

the k NN based classifier for categorical data. The root reason is that

the performance of the k NN based classifier is decided by the in-

herent characteristic of the data distribution. Although the situa-

tions the classifier would confront in the real applications, the VO-

k NN and TSVO- k NN classifier are still less sensitive for the parame-

ter k than the other classifiers in the categorical data environment,

because the VOHM could capture the latent order relationship of

object pairs from data sets. 

6.4. The impact of feature selection 

To verify the impact of attribute reduction on the eight data

sets, we collected all the test results of the classification accuracy

with the settings k = 1 . 6 . The statistic of the selected attributes of

the eight UCI datasets is described in Table 5 . 

From the table, we could see that The feature selection al-

gorithm has a large number of compressed attributes on these

datasets except on D6 and D7. And, the minimum cardinality of the

selected attributes is 2, which means that the chosen attributes are

only 5.71% of the original attributes. 

Then, we analyze the effect of the selected attributes on these

datasets. The box plot of the comparison result of the VO- k NN and

TSVO- k NN is shown in Fig. 3 . As can be seen from the figure, the

selected attributes have the same ability of classification as the

original attributes on the dataset D3, D5, D6, D7, and D8. However,

the classification accuracy performed on the dataset D4 drops by

18.9% on average. But, the accuracy also is improved on the dataset

D1. It means that the feature selection can compress the attributes

and keep a better result than the original attributes. Although the

feature selection would decrease the representation ability of the

datasets, it also worth to add this stage to the VO- k NN classifier.

In the worst case, if the result of the accuracy drops sharply, we

could give up this stage because the data may have inherent com-

plexity characteristic. 

7. Conclusion 

Due to the complexity of the data and the lack of effective non-

numerical distance metrics, it is a challenging task of how to ex-

ploit the inherent characteristic of non-numerical data and to ef-

fectively represent it. In this work, we developed a novel value-

object hierarchical metric to capture the latent order relation-

ship from non-numerical data. And, we equip up nearest neighbor

classifier with the new non-numerical metric and rough set the-

ory based feature selection. It extends nearest neighbor classifier
o be a more robust, representative, and effective model. Experi-

ents show the validity of the model and that both VO- k NN and

SVO- k NN are more effective than the existing classifiers for non-

umerical data. 

As is mentioned before, non-numerical data is a commonly

sed data type in expert systems. The complexity of non-numerical

ata increases the difficulty of the algorithms performing the clas-

ification task. How to narrow the gap between classification al-

orithms and humans plays a crucial role to enhance the perfor-

ance of algorithms. To solve the problem, several aspects of new

odels are worth investigating in depth. 1). valid distance measures

ith more inherent relationships . Roughly speaking, objects is a mix-

ure representation of several non-numerical features. There may

xist more complex interaction between attributes. Except for the

elationship that is calculated by VOHM, we think of there should

xist more complex relationships between non-numerical values

uch as the relationships between two group attribute values, the

elationships between the values in the same group attributes etc.

he more inherent characteristic of non-numerical data is founded,

he more valid and effective the algorithm is. 2). more effective clas-

ification models . Although the k NN is an effective classification

odel to solve non-numerical classification, there also exist a lot

f classification models such as SVMs, decision tree, Naive Bayes,

tc. could be used in expert systems by incorporating the complex

elationship that is computed by VOHM. How to use these classifi-

ation models in non-numerical data environment indeed need to

tudy in the future work. 3). the strategy of feature selection . How

o select features which play crucial roles for non-numerical clas-

ification is the other problem should be taken into account in the

uture work. Reducing the redundant feature could minimize the

cale of data and running time of algorithms. Therefore, the fea-

ure selection strategy should be further explored. 
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