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The regression is one of classical models in machine learning. Traditional regression algo-
rithms involve operations of real values, which are difficult to handle the discrete or set
data in information systems. Granules are structural objects on which agents perform com-
plex computations. The structural objects are forms of sets that can measure the uncer-
tainty of data. In order to deal with uncertain and vague data in the real world, we
propose a set-based regression model: granular regression. Granules are constructed by
introducing a distance metric on single-atom features. Meanwhile, we establish condi-
tional granular vectors, weight granular vectors and decision granules. The operations
among them induce a granular regression model. Furthermore, we propose a gradient des-
cent method for the granular regression model, and the optimal solution of granular
regression is achieved. We prove the convergence of granular regression and design a gra-
dient descent algorithm. Finally, several UCI data sets are used to test and verify the gran-
ular regression model. We compare our proposed model with popular regression models
from three aspects of convergence, fitting and prediction. The results show that the gran-
ular regression model is valid and effective.

� 2020 Elsevier Inc. All rights reserved.
1. Introduction

In 1997, American scientist Zadeh [44] originally put forward the concept of information granule. He believed that gran-
ulation, organization and causation are the fundamental stones of human cognition. Agents perform computations on com-
plex objects including behavioral patterns, classifiers, clusters, sets of rules, aggregation operations, approximate reasoning
schemes [31]. All such structural objects are called granules [31]. Polkowski presented adaptive calculus of granules in [27].
In 1999, granular computing was first presented by Lin [16] and successfully applied in data mining [17]. Skowron and
Nguyen [2,20] proposed the granular computing from rough set theory [23]. Yao analyzed granular computing from the per-
spectives of philosophy, application and computation. He held that the granular computing is a method of structured think-
ing, problem-solving and information processing [41]. Canadian academician Pedrycz pointed out that the construction of
information granules is the key to granular computing. He proposed an interval-based information granule [24] that is
applied in schemes of knowledge management. He also constructed some information granules from the perspective of fuzzy
sets and used them for clustering [25,48] and further designed a variety of granular classifiers [1,26,30], which achieved good
results. Skowron [32] defined information granules in terms of semantics and grammar, and presented the structure and cal-
culation of granules. Liu [18] proved a principle of granular resolving from rough logic. Yao proposed a neighborhood relation
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[42] and developed the neighborhood granule computing [43]. Hu analyzed the neighborhood reduction [10] and designed
some neighborhood classifiers [11,47]. Wang discussed a big data processing method using granules [35,38]. Liang and Qian
proposed some fusing and processing methods for multi-granularity data [15,28]. We analyzed structures of granules from
the views of sets and formal concept analysis [12], further described a three-level granular structure in a neighborhood sys-
tem, and analyzed some uncertainty and distance measures of granules [4]. Granules and granulation are the significant
characteristics of human cognition, which play an important role in modeling complex data and have been widely used
in many fields [6,8,29,36,37,39,49].

Models of machine learning are divided into unsupervised learning and supervised learning according to whether or not
they have labels. Unsupervised learning mainly includes: clustering (such as k-means) [9], dimensionality reduction (such as
PCA) [14] and so on [33]. Supervised learning is related to classification and regression. Classification mainly includes: linear
classifiers [3], Support Vector Machine (SVM) [13], Naive Bayesian (NB) [40], K-Nearest Neighbor (KNN) [45], Decision Tree
(DT) [7], Convolutional Neural Network (CNN) [21], integrated models and so on [22]. The models of regression are: linear
regression [19], ridge regression [5], lasso regression [34] and elastic net regression [46]. These regression models have the
advantages of simplicity and high computational efficiency. They are also the basis of building stones of deep learning.

However, most of these models are weak in dealing with uncertain and vague data that can be represented by sets. These
models are difficult to tackle set-based data since their operations involve in real values. The structure of a granule is essen-
tially a set, and the operations of granules must be a form of set operations. As methods and techniques of information gran-
ulation spring up, many methods of clustering and classification of granules are proposed under the characteristics of set or
aggregation of granules. Since regression has an ability of handling continuous real numbers, it is difficult to operate granules
by a regression process. From a new angle, we propose a data representation based on set theory and single feature granu-
lation, and define the concepts of granule, granular vector and granular matrix. We put forward some related operations of
granule, granular vector and granular matrix, which induce a regression model of granules. Furthermore, we proved the con-
vergence of granular regression and propose a gradient descent method. Finally, we design a gradient descent algorithm of
granular regression, and successfully achieve good results of fitting and predicting with the form of information granules.
Several UCI data sets are used for experimental analysis, and the results show that the granular regression is valid and
effective.

2. Granules and granular vectors

Information systems are widely used in the machine learning field. We can acquire a granule according to distances
between samples on a single-atom feature in an information system. A sample forms different granules on different
single-atom features, and these granules constitute a granular vector of the sample.

Definition 1. An information system is represented as S ¼ ðX;C [ YÞ (decision table) [23], where X ¼ fx1; x2; . . . ; xng is a set of
samples, C ¼ fc1; c2; . . . ; cng is a set of features, and Y is a decision attribute or a label.
Definition 2. Let S ¼ ðX;C [ YÞ be an information system. For any two samples x1; x2 2 X and each single-atom feature c 2 C,
a distance between the samples x1; x2 on the feature c is defined as:
scðx1; x2Þ ¼ jvðx1; cÞ � vðx2; cÞj;

where vðx; cÞ 2 ½0;1� is a normalized value of sample x on c.

This is a Manhattan distance that measures the similarity between samples. If 0 < scðx1; x2Þ < 1, then x1 and x2 satisfy a
similar relation. While scðx1; x2Þ ¼ 0 or scðx1; x2Þ ¼ 1, the x1 and x2 are equivalent or distinct. Therefore, the distance metric is
not only suitable to numerical data but also to symbolic data.

Definition 3. [44] Let S ¼ ðX;C [ YÞ be an information system. For any sample x 2 X and each single-atom feature c 2 C, a
granule of x on c is defined as:
gcðxÞ ¼
Xn
j¼1

gcðxÞj ¼
Xn

j¼1

rj
x
¼ r1

x
þ r2

x
þ . . .þ rn

x
¼ ðr1; r2; . . . ; rnÞ;
where rj ¼ scðx; xjÞ is a distance between x and xj; jXj ¼ n; ‘+’ represents a union of elements, and ‘�’ is a splitter.
A granule is also named as an atom granule, while gcðxÞj is the jth nucleus of a granule. A granule is a set of ordered gran-

ular nuclei induced by distances between samples. If 8rj ¼ 1, then one ¼ ð1;1; . . . ;1Þ is called as one-granule; if 8rj ¼ 0, then
zero ¼ ð0; 0; . . . ;0Þ is called as zero-granule. For the decision attribute y 2 Y and any sample x 2 X, it is granulated as a deci-
sion granule, represented as gyðxÞ ¼

Pn
j¼1

rj
x , where rj ¼ syðx; xjÞ.

Definition 4. Let S ¼ ðX;C [ YÞ be an information system. For any sample x 2 X and a feature c 2 C, the size and the norms of
a granule gcðxÞ are defined as follows:
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(1) Size of a granule: SizeðgcðxÞÞ ¼ jgcðxÞj ¼
Pn

j¼1rj;

(2) Norm-1 of a granule: Norm-1ðgcðxÞÞ ¼ jjgcðxÞjj1 ¼ jjgcðxÞjj ¼
Pn

j¼1jrjj;
(3) Norm-2 of a granule: Norm-2ðgcðxÞÞ ¼ jjgcðxÞjj2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1r

2
j

q
.

The size of a granule is an intrinsic characteristic. In order to avoid over-fitting problem, the norms of granules are used
for regularization in a machine learning process.

Property 1. The size and norm-1 of a granule are satisfied: 0 6 jgaðxÞj ¼ jjgaðxÞjj1 6 n.
Proof. From the definition of a granule, we know rj ¼ saðx; xjÞ ¼ jvðx; aÞ � vðxj; aÞj. Since vðx; aÞ 2 ½0;1�, then rj 2 ½0;1� is
achieved. According to definitions of the size and norm-1 of the granule, we achieve jgaðxÞj P 0 and
jgaðxÞj ¼

Pn
j¼1rj ¼

Pn
j¼1jrjj ¼ jjgaðxÞjj1 6 n. So, the property is proved.
Property 2. The norm-1 and norm-2 of a granule are satisfied: 0 6 jjgaðxÞjj2 6 jjgaðxÞjj1 6 n.
Proof. From the definition of norm-1 of a granule, we know jjgaðxÞjj21 ¼ Pn
j¼1jrjj

� �2
¼ ðr1 þ r2 þ . . .þ rnÞ2. According to the

definition of norm-2 of the granule, we obtain jjgaðxÞjj22 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1r
2
j

q� �2
¼ r21 þ r22 þ . . .þ r2n. Since rj P 0, then

ðr1 þ r2 þ . . .þ rnÞ2 P r21 þ r22 þ . . .þ r2n is obtained. Therefore, 0 6 jjgaðxÞjj2 6 jjgaðxÞjj1 6 n is found.
Definition 5. Let S ¼ ðX;C [ YÞ be an information system. For any sample x 2 X and any feature subset P#C, suppose
P ¼ fc1; c2; . . . ; cmg, then the granular vector of x on P is defined as follows:
FPðxÞ ¼ ðgc1 ðxÞ; gc2 ðxÞ; . . . ; gcm ðxÞÞT ¼

gc1
ðxÞ

gc2 ðxÞ
. . .

gcm ðxÞ

2
6664

3
7775 ¼

Xn
j¼1

gc1
ðxÞj

gc2
ðxÞj
. . .

gcm ðxÞj

2
6664

3
7775 ¼

Xn
j¼1

r1j
r2j
. . .

rmj

2
6664

3
7775 ¼

Xn

j¼1

r1
r2
. . .

rm

2
6664

3
7775

j

;

where T is a transpose, ‘R’ represents a union of granular nucleus vectors, and rmj ¼ gcm ðxÞj indicates the jth granular nucleus
of gcm ðxÞ.

The granular vector is expressed by a list of granules. The elements of a granular vector are granules, and a granule is
composed of granular nuclei. Therefore, the granular vector can be formed by the union of granular nucleus vectors.

Definition 6. Let S ¼ ðX;C [ YÞ be an information system. For any sample x 2 X and any feature subset P#C, suppose
P ¼ fc1; c2; . . . ; cmg, then the size of a granular vector FPðxÞ is defined as:
jFPðxÞj ¼
Xm
i¼1

jgci
ðxÞj ¼

Xm
i¼1

Xn

j¼1

rij;
where rij ¼ sci ðx; xjÞ; jPj ¼ m and jXj ¼ n.
The size of a granular vector is also called the modulus of the granular vector. It is easy to know that the size of a granular

vector satisfies: 0 6 jFPðxÞj 6 m � n.

Theorem 1. Let S ¼ ðX;C [ YÞ be an information system. For any sample x 2 X and any feature subsets P;Q #C; FPðxÞ; FQ ðxÞ are
two granular vectors on P;Q. If P#Q, then jFPðxÞj 6 jFQ ðxÞj.
Proof. For P#Q , suppose P ¼ fa1; a2; . . . ; amg, then Q ¼ P [ B ¼ fa1; a2; . . . ; amg [ B, where B may be an empty set, and sup-
pose B ¼ fb1; b2; . . . ; bsg. From the Definition 6, we know jFPðxÞj ¼

Pm
i¼1jgai

ðxÞj ¼ Pm
i¼1

Pn
j¼1rij, then

jFQ ðxÞj ¼
Pm

i¼1jgai
ðxÞj þPs

k¼1jgbk
ðxÞj ¼ Pm

i¼1

Pn
j¼1rij þ

Ps
k¼1

Pn
j¼1rkj ¼ jFPðxÞj þ

Ps
k¼1

Pn
j¼1rkj. If B is an empty set, then s is 0, soPs

k¼1

Pn
j¼1rkj ¼ 0; otherwise,

Ps
k¼1

Pn
j¼1rkj > 0. Therefore, jFPðxÞj 6 jFQ ðxÞj is obtained.
Example 1. An information system S ¼ ðX;C [ YÞ is shown in Table 1. Suppose X ¼ fx1; x2; x3; x4g is a sample set, C ¼ fa; b; cg
is a feature set, and Y ¼ f0;0;1;1g is a decision set.

For the sample set X ¼ fx1; x2; x3; x4g, if the granulation is performed on the single-atom feature a, some granules are con-
structed as follows:



Table 1
An information system.

X a b c ) Y

x1 0.2 0.1 0.2 0
x2 0.1 0.6 0.1 0
x3 0.4 0.2 0.5 1
x4 0.7 0.1 0.5 1
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g1 ¼ gaðx1Þ ¼ 0
x1
þ 0:1

x1
þ 0:2

x1
þ 0:5

x1
¼ ð0;0:1;0:2;0:5Þ,

g2 ¼ gaðx2Þ ¼ 0:1
x2

þ 0
x2
þ 0:3

x2
þ 0:6

x2
¼ ð0:1;0;0:3;0:6Þ,

g3 ¼ gaðx3Þ ¼ 0:2
x3

þ 0:3
x3

þ 0
x3
þ 0:3

x3
¼ ð0:2;0:3; 0;0:3Þ, and

g4 ¼ gaðx4Þ ¼ 0:5
x4

þ 0:6
x4

þ 0:3
x4

þ 0
x4
¼ ð0:5;0:6; 0:3;0Þ.

If the granulation is performed on feature b, the granules are:

g5 ¼ gbðx1Þ ¼ 0
x1
þ 0:5

x1
þ 0:1

x1
þ 0

x1
¼ ð0;0:5;0:1;0Þ,

g6 ¼ gbðx2Þ ¼ 0:5
x2

þ 0
x2
þ 0:4

x2
þ 0:5

x2
¼ ð0:5;0;0:4;0:5Þ,

g7 ¼ gbðx3Þ ¼ 0:1
x3

þ 0:4
x3

þ 0
x3
þ 0:1

x3
¼ ð0:1;0:4;0;0:1Þ, and

g8 ¼ gbðx4Þ ¼ 0
x4
þ 0:5

x4
þ 0:1

x4
þ 0

x4
¼ ð0;0:5;0:1;0Þ.

If the granulation is performed on feature c, the granules are:

g9 ¼ gcðx1Þ ¼ 0
x1
þ 0:1

x1
þ 0:3

x1
þ 0:3

x1
¼ ð0;0:1;0:3;0:3Þ,

g10 ¼ gcðx2Þ ¼ 0:1
x2

þ 0
x2
þ 0:4

x2
þ 0:4

x2
¼ ð0:1;0;0:4;0:4Þ,

g11 ¼ gcðx3Þ ¼ 0:3
x3

þ 0:4
x3

þ 0
x3
þ 0

x3
¼ ð0:3;0:4;0;0Þ, and

g12 ¼ gcðx4Þ ¼ 0:3
x4

þ 0:4
x4

þ 0
x4
þ 0

x4
¼ ð0:3;0:4;0;0Þ.

If the granulation is performed on label Y, the decision granules are:

d1 ¼ gYðx1Þ ¼ 0
x1
þ 0

x1
þ 1

x1
þ 1

x1
¼ ð0;0;1;1Þ,

d2 ¼ gYðx2Þ ¼ 0
x2
þ 0

x2
þ 1

x2
þ 1

x2
¼ ð0;0;1;1Þ,

d3 ¼ gYðx3Þ ¼ 1
x3
þ 1

x3
þ 0

x3
þ 0

x3
¼ ð1;1;0;0Þ, and

d4 ¼ gYðx4Þ ¼ 1
x4
þ 1

x4
þ 0

x4
þ 0

x4
¼ ð1;1;0;0Þ.

The size, norm-1 and norm-2 of granule g1 are:

Sizeðg1Þ ¼ jgaðx1Þj ¼ 0þ 0:1þ 0:2þ 0:5 ¼ 0:8;
Norm-1ðg1Þ ¼ jjgaðx1Þjj1 ¼ 0þ 0:1þ 0:2þ 0:5 ¼ 0:8; and

Norm-2ðg1Þ ¼ jjgaðx1Þjj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0þ 0:12 þ 0:22 þ 0:52

p
¼ 0:5477.

If C ¼ fa; b; cg, then the granular vector of x1 on C is:
FCðx1Þ ¼ ðg1; g5; g9ÞT ¼ ðgaðx1Þ; gbðx1Þ; gcðx1ÞÞT ¼ ðð0;0:1;0:2;0:5Þ; ð0;0:5;0:1;0Þ; ð0;0:1;0:3;0:3ÞÞT

¼

0

0:1

0:2

0:5

2
666664

3
777775
þ

0

0:5

0:1

0

2
666664

3
777775
þ

0

0:1

0:3

0:3

2
666664

3
777775
:

The size of the granular vector FCðx1Þ is:

jFCðx1Þj ¼ ð0þ 0:1þ 0:2þ 0:5Þ þ ð0þ 0:5þ 0:1þ 0Þ þ ð0þ 0:1þ 0:3þ 0:3Þ ¼ 2:1:
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3. Operations of granules and granular matrices

The granules are forms of sets with structural data. A granular vector is an ordered array composed by granules that are
results of granulating on several single-atom features. Therefore, we can construct granular matrices based on these granular
vectors. Furthermore, we induce some operations on these granules and granular matrices.

Definition 7. Let S ¼ ðX; C [ YÞ be an information system. For any x 2 X and 8a; b 2 C, suppose

s ¼ gaðxÞ ¼
Pn

j¼1
sj
x ; t ¼ gbðxÞ ¼

Pn
j¼1

tj
x are two granules of x on a and b, then operations of addition, subtraction,

multiplication and division among the two granules are defined as follows:
sþ t ¼ gaðxÞ þ gbðxÞ ¼
Xn

j¼1

sjþtj
x ¼ ðs1 þ t1; s2 þ t2; . . . ; sn þ tnÞ;

s� t ¼ gaðxÞ � gbðxÞ ¼
Xn

j¼1

sj�tj
x ¼ ðs1 � t1; s2 � t2; . . . ; sn � tnÞ;

s � t ¼ gaðxÞ � gbðxÞ ¼
Xn
j¼1

sj �tj
x ¼ ðs1 � t1; s2 � t2; . . . ; sn � tnÞ;

s=t ¼ gaðxÞ=gbðxÞ ¼
Xn
j¼1

sj=tj
x ¼ ðs1=t1; s2=t2; . . . ; sn=tnÞ;
where ‘R’ represents a union, and ‘�’ is a splitter. In division operation, if tj ¼ 0, then it sets a tiny number approximated to
zero.

Definition 8. Let S ¼ ðX;C [ YÞ be an information system, where C ¼ fc1; c2; . . . ; cmg. For any sample x 2 X, suppose s ¼ gci ðxÞ
is a granule of the sample x on ci. For the sample set X and the feature set C, a granular matrix is defined as follows:
FCðXÞ ¼ ðFc1 ðXÞ; Fc2 ðXÞ; . . . ; Fcm ðXÞÞ ¼

gc1 ðx1Þ; gc2 ðx1Þ; . . . ; gcm ðx1Þ
gc1 ðx2Þ; gc2 ðx2Þ; . . . ; gcm ðx2Þ

. . .

gc1 ðxnÞ; gc2 ðxnÞ; . . . ; gcm ðxnÞ

2
6664

3
7775 ¼

FCðx1ÞT
FCðx2ÞT

. . .

FCðxnÞT

2
66664

3
77775 ¼ ðFCðx1Þ; FCðx2Þ; . . . ; FCðxnÞÞT
Since a granule is composed of granular nuclei, we can express the granular matrix by a union of granular nucleus matri-
ces, which is showed in the follows:
FCðXÞ ¼

gc1 ðx1Þ;gc2 ðx1Þ; . . . ;gcm ðx1Þ
gc1 ðx2Þ;gc2 ðx2Þ; . . . ;gcm ðx2Þ

. . .

gc1 ðxnÞ;gc2 ðxnÞ; . . . ;gcm ðxnÞ

2
6664

3
7775¼

Xn

j¼1

gc1 ðx1Þj;gc2 ðx1Þj; . . . ;gcm ðx1Þj
gc1 ðx2Þj;gc2 ðx2Þj; . . . ;gcm ðx2Þj

. . .

gc1 ðxnÞj;gc2 ðxnÞj; . . . ;gcm ðxnÞj

2
6664

3
7775¼

Xn

j¼1

r11j; r12j; . . . ; r1mj

r21j; r22j; . . . ; r2mj

. . .

rn1j; rn2j; . . . ; rnmj

2
6664

3
7775¼

Xn

j¼1

r11; r12; . . . ; r1m
r21; r22; . . . ; r2m

. . .

rn1; rn2; . . . ; rnm

2
6664

3
7775

j

;

where rnmj ¼ gcm ðxnÞj is the jth granular nucleus of the granule gcm ðxnÞ.

Definition 9. Given an information system S ¼ ðX;C [ YÞ, there are two feature subsets P;Q #C, where P ¼ fp1; p2; . . . ; pkg
and Q ¼ fq1; q2; . . . ; qmg. For two sample subsets S; T#X, they are S ¼ fs1; s2; . . . ; sng and T ¼ ft1; t2; . . . ; tkg. Let gpi ðsÞ be a
granule of sample s 2 S on pi and gqi ðtÞ be a granule of sample t 2 T on qi, their cardinalities are equal, which are
cardðgpi ðsÞÞ ¼ cardðgqi ðtÞÞ ¼ n. For the sample set S, a granular matrix on P is
FPðSÞ ¼ ðFp1 ðSÞ; Fp2 ðSÞ; . . . ; FpkðSÞÞ ¼

gp1
ðs1Þ; gp2

ðs1Þ; . . . ; gpk
ðs1Þ

gp1
ðs2Þ; gp2

ðs2Þ; . . . ; gpk
ðs2Þ

. . .

gp1
ðsnÞ; gp2

ðsnÞ; . . . ; gpk
ðsnÞ

2
6664

3
7775:
For the sample set T, a granular matrix on Q is
FQ ðTÞ ¼ ðFq1 ðTÞ; Fq2 ðTÞ; . . . ; Fqm ðTÞÞ ¼

gq1
ðt1Þ; gq2

ðt1Þ; . . . ; gqm
ðt1Þ

gq1
ðt2Þ; gq2

ðt2Þ; . . . ; gqm
ðt2Þ

. . .

gq1
ðtkÞ; gq2

ðtkÞ; . . . ; gqm
ðtkÞ

2
6664

3
7775:
The multiplication of FPðSÞ and FQ ðTÞ is defined as
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FPðSÞ � FQ ðTÞ ¼

gc1 ðx1Þ; gc2 ðx1Þ; . . . ; gcm ðx1Þ
gc1 ðx2Þ; gc2 ðx2Þ; . . . ; gcm ðx2Þ

. . .

gc1 ðxnÞ; gc2 ðxnÞ; . . . ; gcm ðxnÞ

2
6664

3
7775;
where gcm ðxnÞ ¼ gp1
ðsnÞ � gqm

ðt1Þ þ gp2
ðsnÞ � gqm

ðt2Þ þ . . .þ gpk
ðsnÞ � gqm

ðtkÞ.
The foregoing definition of multiplication of granular matrices is a general form. We can give another form based on gran-

ular nucleus, which is illustrated in the below.

Definition 10. According to the definition of the granular matrix with granular nuclei, suppose that two granular matrices

are S ¼ Pn
j¼1

s11; s12; . . . ; s1k
s21; s22; . . . ; s2k

. . .
sn1; sn2; . . . ; snk

2
664

3
775
j

and T ¼ Pn
j¼1

t11; t12; . . . ; t1m
t21; t22; . . . ; t2m

. . .
tk1; tk2; . . . ; tkm

2
664

3
775
j

, then the multiplication of two granular matrices is defined

as
S � T ¼
Xn

j¼1

r11; r12; . . . ; r1m
r21; r22; . . . ; r2m

. . .

rn1; rn2; . . . ; rnm

2
6664

3
7775

j

;

where rnm ¼ sn1 � t1m þ sn2 � t2m þ . . .þ snk � tkm.

Theorem 2. The multiplication of granular matrices by a general form is equivalent to that by a granular nucleus form.
Proof. According to the Definition 7, Definition 8 and Definition 9, it is easy to be proved.
Example 2. The following granules are obtained from Example 1. We have g1 ¼ 0
x1
þ 0:1

x1
þ 0:2

x1
þ 0:5

x1
¼ ð0;0:1;0:2;0:5Þ and

g5 ¼ 0
x1
þ 0:5

x1
þ 0:1

x1
þ 0

x1
¼ ð0;0:5;0:1;0Þ. Then, g1 þ g5 ¼ 0þ0

x1
þ 0:1þ0:5

x1
þ 0:2þ0:1

x1
þ 0:5þ0

x1
¼ ð0;0:6;0:3;0:5Þ.

For the sample set X ¼ fx1; x2; x3; x4g and the feature set C ¼ fa; b; cg, the granular matrix is:
FCðXÞ ¼

FCðx1ÞT
FCðx2ÞT
FCðx3ÞT
FCðx4ÞT

2
66664

3
77775 ¼

ðð0;0:1;0:2;0:5Þ; ð0;0:5;0:1;0Þ; ð0;0:1;0:3;0:3ÞÞ
ðð0:1; 0;0:3;0:6Þ; ð0:5; 0;0:4;0:5Þ; ð0:1;0;0:4;0:4ÞÞ
ðð0:2;0:3; 0;0:3Þ; ð0:1; 0:4; 0;0:1Þ; ð0:3;0:4;0;0ÞÞ
ðð0:5;0:6;0:3;0Þ; ð0; 0:5; 0:1;0Þ; ð0:3;0:4;0;0ÞÞ

2
6664

3
7775
Suppose a granular matrix S ¼
ðð0;0:1;0:2;0:5Þ; ð0;0:5;0:1;0ÞÞ
ðð0:1;0;0:3;0:6Þ; ð0:5;0;0:4;0:5ÞÞ
ðð0:2;0:3;0;0:3Þ; ð0:1;0:4;0;0:1ÞÞ
ðð0:5; 0:6;0:3;0Þ; ð0;0:5;0:1;0ÞÞ

2
664

3
775 and a granular matrix T ¼

ðð0;0:1;0:2;0:5Þ; ð0;0:5;0:1;0Þ; ð0; 0:1;0:3;0:3ÞÞ
ðð0:1;0;0:3;0:6Þ; ð0:5;0;0:4;0:5Þ; ð0:1;0;0:4;0:4ÞÞ

� �
. Then S � T ¼

ðð0;0:01;0:07;0:25Þ; ð0;0:05;0:06;0Þ; ð0;0:01;0:1;0:15ÞÞ
ðð0:05;0;0:18;0:6Þ; ð0:25;0;0:19;0:25Þ; ð0:05;0;0:25;0:38ÞÞ
ðð0:01;0:03;0;0:21Þ; ð0:05;0:15;0;0:05Þ; ð0:01;0:03;0;0:13ÞÞ

ðð0;0:06;0:09;0Þ; ð0;0:3;0:07;0Þ; ð0;0:06;0:13;0ÞÞ

2
664

3
775.

4. The granular regression with a gradient descent method

According to different features, a sample can be granulated into some granules, which compose a granular vector. At the
same time, decision values of the samples are granulated into decision granules. For these aggregate granules or granular
vectors, we propose a granular regression model, provide an optimized solution, and design a gradient descent algorithm.

4.1. The model of granular regression

Definition 11. Let S ¼ ðX; C [ YÞ be an information system, where the sample set is X ¼ fx1; x2; . . . ; xng and the feature set is

C ¼ fc1; c2; . . . ; cmg. For 8x 2 X, suppose that a granular vector over C is FCðxÞ ¼ ðgc1 ðxÞ; gc2 ðxÞ; . . . ; gcm ðxÞÞT , and a decision

granule over Y is gY ðxÞ. Given a shared weight granular vectorWC ¼ ðwc1 ;wc2 ; . . . ;wcm ÞT , wherewci is a weight granule, then a
granular regression model for the sample x is
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f ðxÞ ¼ FCðxÞTWC � gY ðxÞ ¼ ðgc1 ðxÞ � wc1 þ gc2 ðxÞ � wc2 þ . . .þ gcm ðxÞ � wcm Þ � gYðxÞ:

As for all the sample set in X, its granular regression model is:
f ðx1Þ ¼ FCðx1ÞTWC � gYðx1Þ ¼ ðgc1 ðx1Þ � wc1 þ gc2 ðx1Þ � wc2 þ . . .þ gcm ðx1Þ � wcm Þ � gY ðx1Þ;
f ðx2Þ ¼ FCðx2ÞTWC � gYðx2Þ ¼ ðgc1 ðx2Þ � wc1 þ gc2 ðx2Þ � wc2 þ . . .þ gcm ðx2Þ � wcm Þ � gY ðx2Þ;
. . .

f ðxnÞ ¼ FCðxnÞTWC � gYðxnÞ ¼ ðgc1 ðxnÞ � wc1 þ gc2 ðxnÞ � wc2 þ . . .þ gcm ðxnÞ � wcm Þ � gY ðxnÞ:

For convenience, the above formulas are expressed as
f ðXÞ ¼ FCðXÞWC � gYðXÞ, where FCðXÞ is a granular matrix.

Definition 12. Give an information system S ¼ ðX;C [ YÞ, for 8x 2 X, the decision granule is gY ðxÞ, then the loss function of
granular regression for x is
jjgeðxÞjj2 ¼ jjFCðxÞTWC � gY ðxÞjj2:
As for the whole sample set, it has n samples and m features that can be represented by a matrix, noted as X. The loss
function for X is
jjgeðXÞjj2 ¼ jjFCðXÞWC � gYðXÞjj2:

FCðxÞTWC is a product of two granular vectors. The result of FCðxÞTWC � gYðxÞ is a granule. It can be seen that the loss func-

tion is the norm-2 of a granule.

4.2. The optimization of granular regression

From the analysis in the previous subsection, we can see that a granular regression model is that the decision granular
vector subtracts the product of granular matrix and weight granular vector. In order to get the best weight granular vector,
we minimize the loss function of granular regression. The formula is expressed as follows:
WC ¼ argmin
WC

1
2
jjFCðXÞWC � gYðXÞjj22:
Here is the least square of the loss function. To facilitate calculation, a constant of 1/2 is added. Since
1
2 jjFCðXÞWC � gYðXÞjj22 ¼ 1

2 ðFCðXÞWC � gYðXÞÞTðFCðXÞWC � gY ðXÞÞ, then the loss function of granular regression is represented

as JðWCÞ ¼ 1
2 ðFCðXÞWC � gYðXÞÞTðFCðXÞWC � gYðXÞÞ. The derivative of the loss function of granular regression is proved in

detail below.

Theorem 3. If the loss function of granular regression is JðWCÞ ¼ 1
2 ðFCðXÞWC � gY ðXÞÞTðFCðXÞWC � gY ðXÞÞ, then its derivative is

FCðXÞTðFCðXÞWC � gY ðXÞÞ.
Proof. Suppose FCðXÞ ¼
Pn

j¼1

r11; r12; . . . ; r1m
r21; r22; . . . ; r2m

. . .
rn1; rn2; . . . ; rnm

2
664

3
775

j

; WC ¼
wc1
wc2
. . .
wcm

2
664

3
775 ¼ Pn

j¼1

s1
s2
. . .
sm

2
664

3
775

j

; gY ðXÞ ¼
Pn

j¼1

t1
t2
. . .
tn

2
664

3
775

j

, then

JðWCÞ ¼ 1
2 ðFCðXÞWC � gYðXÞÞTðFCðXÞWC � gY ðXÞÞ ¼ 1

2

Pn
j¼1

r11; r12; . . . ; r1m
r21; r22; . . . ; r2m

. . .
rn1; rn2; . . . ; rnm

2
664

3
775

j

Pn
j¼1

s1
s2
. . .
sm

2
664

3
775

j

�Pn
j¼1

t1
t2
. . .
tn

2
664

3
775

j

8>><
>>:

9>>=
>>;

T

�

Pn
j¼1

r11;r12;. .. ;r1m
r21;r22;. .. ;r2m

.. .
rn1;rn2; .. . ;rnm

2
664

3
775

j

Pn
j¼1

8>><
>>:

s1
s2
. . .
sm

2
664

3
775

j

�Pn
j¼1

t1
t2
. ..
tn

2
664

3
775

j

¼ 1
2

Pn
j¼1

r11;r12; . .. ;r1m
r21;r22; . .. ;r2m

. . .
rn1;rn2; .. .;rnm

2
664

3
775

s1
s2
.. .
sm

2
664

3
775�

t1
t2
. ..
tn

2
664

3
775

8>><
>>:

9>>=
>>;

T

j

r11;r12; .. . ;r1m
r21;r22; .. . ;r2m

. ..
rn1;rn2;. . .;rnm

2
664

3
775

s1
s2
. ..
sm

2
664

3
775�

t1
t2
.. .
tn

2
664

3
775

8>><
>>:

9>>=
>>;

j

9>>=
>>;

. h

Set Xj ¼
r11; r12; . . . ; r1m
r21; r22; . . . ; r2m

. . .
rn1; rn2; . . . ; rnm

2
664

3
775

j

; Wj ¼
s1
s2
. . .
sm

2
664

3
775

j

;Yj ¼
t1
t2
. . .
tn

2
664

3
775

j

, then JðWCÞ ¼ 1
2

Pn
j¼1ððXW � YÞTðXW � YÞÞj. Since f ðWÞ ¼

ðXW � YÞTðXW � YÞ ¼ ðWTXT � YTÞðXW � YÞ ¼ WTXTXW �WTXTY � YTXW þ YTY , so @f ðWÞ
@W ¼ @ðWTXTXW�WTXTY�YTXWþYTYÞ

@W ¼
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2XTXW � XTY � ðYTXÞT ¼ 2ðXTXW � XTYÞ. Since WC ¼
wc1
wc2
. . .
wcm

2
664

3
775 ¼ Pn

j¼1

s1
s2
. . .
sm

2
664

3
775

j

, so @JðWC Þ
@WC

¼ @JðWC Þ

@
Pn

j¼1
Wj

� � ¼

@12

Pn

j¼1
ððXW�YÞT ðXW�YÞÞj

@
Pn

j¼1
Wj

� � ¼ @ð12 ðX1W1 � Y1ÞTðX1W1 � Y1Þ þ 1
2 ðX2W2 � Y2ÞT

ðX2W2�Y2Þþ...þ1
2ðXnWn�YnÞT ðXnWn�YnÞÞ

@ðW1 ;W2 ;...;WnÞ¼ðXT
1X1W1�XT

1Y1 ;X
T
2X2W2�XT

2Y2 ;...;X
T
nXnWn�XT

nYnÞ¼
Pn

j¼1
ðXTXW�XTYÞj

. Since FCðXÞ ¼
Pn

j¼1

r11; r12; . . . ; r1m
r21; r22; . . . ; r2m

. . .
rn1; rn2; . . . ; rnm

2
664

3
775

j

¼ Pn
j¼1ðXÞj;WC ¼

wc1
wc2
. . .
wcm

2
664

3
775 ¼ Pn

j¼1

s1
s2
. . .
sm

2
664

3
775

j

¼ Pn
j¼1ðWÞj; gYðXÞ ¼

Pn
j¼1

t1
t2
. . .
tn

2
664

3
775

j

¼ Pn
j¼1ðYÞj, thus @JðWC Þ

@WC
¼ Pn

j¼1ðXTXW � XTYÞj ¼ FCðXÞTðFCðXÞ

WC � gYðXÞÞ. So, the theorem is proved.
According to the proof of derivative of the loss function, we can use a gradient descent method to solve the approximate

optimal solution of the granular regression model.
The gradient descent formula of the granular regression model is represented as follows:
Wtþ1
C ¼ Wt

C � aFCðXÞTðFCðXÞWt
C � gY ðXÞÞ;
where a is a learning rate. FCðXÞWt
C � gYðXÞ is a granular residual. If the granular residual sets E, then the formula is abbre-

viated as: Wtþ1
C ¼ Wt

C � aFCðXÞTE.

4.3. The gradient descent algorithm for granular regression

In the previous chapter, we give the derivative of the loss function of granular regression and prove it. Therefore, it
ensures the feasibility of the gradient descent method for solving the optimization problem of a granular regression model.
We use the gradient descent with sample by sample. After a sample is granulated into granules, a granular vector is con-
structed. The granular vector is convoluted with a shared weight granular vector to produce a new feature granule. The pro-
duced granule is compared with the decision granule to obtain a granular residual, then the residual propagates back to
correct the shared weight granular vector. All samples are computed once, called a round of iteration, and then the error
has accumulated. When the error is small enough, the iteration terminates. The total error after each iteration is called gran-
ular error. There are two forms of granular error, which are expressed as follows:
GMSE ¼ 1
n2

Xn
i¼1

jjFCðxiÞTWt
C � gY ðxiÞjj2;

GMAE ¼ 1
n2

Xn
i¼1

jjFCðxiÞTWt
C � gYðxiÞjj:
Suppose the training set has a total of n samples, and xi represents the ith sample. FCðxiÞ is a granular vector of xi on the
feature set C, and gYðxiÞ represents a decision granule of xi on a decision. t denotes the number of iterations. The granular
weight shared by all samples is updated as follows:
W2
C ¼ W1

C � aFCðx1ÞðFCðx1ÞTW1
C � gYðx1ÞÞ;

W3
C ¼ W2

C � aFCðx2ÞðFCðx2ÞTW2
C � gYðx2ÞÞ;

. . . ;

Wtþ1
C ¼ Wt

C � aFCðxnÞðFCðxnÞTWt
C � gY ðxnÞÞ:
Repeat the above steps until GMSE or GMAE converges.
The gradient descent principle of granular regression is given in detail, so we can design the gradient descent learning

algorithm of granular regression, which is described as follows.
Algorithm: Gradient Descent Algorithm of Granular Regression (GDAGR) (01) GMSEð0Þ = þ1;DGMSE ¼ GMSEð0Þ; (02)

While DGMSE > � Do (03) t ¼ 1; (04) For i ¼ 1;2; . . . ;n (05) ResidualðiÞ ¼ Pm
j¼1gcj

ðxiÞ � wi
cj
� yYðiÞ; (06)

For j ¼ 1;2; . . . ;m (07) PartialðjÞ ¼ gcj
ðxiÞ � ResidualðiÞ; (08) End For (09) Wiþ1

C ¼ Wi
C � a � Partial;

(10) End For (11) GMSEðtÞ ¼ 1
n2
Pn

i¼1jjResidualðiÞjj2; (12) DGMSE ¼ GMSEðt�1Þ � GMSEðtÞ; (13) t ¼ t þ 1; (14)
End While

In the gradient descent algorithm, it is an iterative and convergent process. The update process is sample by sample with
constantly changing weights. The parameter a is a learning rate for tuning the learning speed.
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5. Experimental analysis

In the following experiments, we use UCI data sets Slump, Concrete and QSAR to test several regression models. Slump
has seven conditional features and three decision features. In order to reduce the regression error, we expand the conditional
features. Each feature multiplies oneself or another to induce a new feature, then we get 49 features, and plus the original 7
features, so a total of 56 features are obtained. For the three decision features (SLUMP, SLOW, CS), we randomly select the
SLOW as a decision feature in these experiments. Similarly, Concrete and QSAR have eight conditional features expanded to
72 features respectively. We compare our proposed model with traditional regression models from the convergence and
regression error on Slump data set, and further analyze the learning rate of granular regression on different data sets.

In the granular regression model, the weight granular vector is initial a random value and changed by a training process.
The test sample is granulated into a granular vector, which is calculated with the weight granular vector, and then a predic-
tive result is obtained. It is a granule, not a real number. Therefore, it is necessary to optimize the predictive result to achieve
a real value. Let there be n training samples with a label set Y ¼ fy1; y2; . . . ; yng. After the granulation and prediction of the
test sample t, a predictive granule is obtained. Suppose it is gt ¼ ðr1; r2; . . . ; rnÞ, how to get the predictive real value? In fact, it
is an optimization problem. The formula is expressed as follows:

y0 ¼ argmin
y0

Pn
i¼1

ððy0 � yiÞ2 � r2i Þ
2
.

Similarly, we derive the function, use a traditional gradient descent algorithm to solve it, then we obtain the predictive
value. In this way, we can compare our proposed granular regression with the classical regression models.
5.1. Convergence analysis of granular regression

In this subsection, we use all samples for granulation and training to check whether the regression error converges or not,
and compare the convergence effect with the traditional linear regression and ridge regression. The Mean Absolute Error
(MAE) is used for evaluating regression models. It is expressed as follows:
MAE ¼ 1
n

Xn

i¼1

jjy0i � yijj
The experimental results are shown in Figs. 1 and 2. In Fig. 1, the horizontal axis represents the number of iterations and
the vertical axis represents the regression error. In Fig. 2, the horizontal axis shows the number of iterations and the vertical
axis represents the subtraction of errors between adjacent iterations.

Fig. 1 shows that the fitting errors of the three regressions decrease monotonously with the increasing of iterations. The
fitting error of linear regression is close to that of ridge regression. The fitting error of linear regression is smaller than that of
ridge regression. The fitting error of granular regression is smaller than those of linear regression and ridge regression.

Fig. 2 illustrates that the subtraction of adjacent fitting errors decreases with the increasing of iterations. When the num-
ber of iterations reaches 100,000, the subtraction of adjacent fitting errors is close to zero. Therefore, granular regression,
linear regression and ridge regression converge. The convergence speeds of linear regression and ridge regression are very
close. The convergence speed of granular regression is faster than those of linear regression and ridge regression.
Fig. 1. Fitting errors of all samples.



Fig. 2. Subtraction of adjacent fitting errors for all samples.
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5.2. Comparisons of granular regression and classical regressions

The classical regression models include linear regression and ridge regression. We use MAE to evaluate the prediction
performance of regression algorithms. Eighty percent of the data set is used for training and twenty percent for predicting.
For the linear, ridge and granular regressions, we use gradient descent methods. The number of iterations is related to the
prediction error. Therefore, we draw a comparison in Figs. 3–10. In Figs. 3 and 7, the horizontal axis is the number of iter-
ations and the vertical axis represents the regression evaluation index MAE. In Figs. 4–6, the horizontal axis is the number of
samples of the training set and the vertical axis shows the fitting values of the training set with fifty thousand iterations. In
Figs. 8–10, the horizontal axis is the number of samples of the test set and the vertical axis represents the predictive values of
the test set with fifty thousand iterations.

Fig. 3 shows that the fitting error of the training set decreases monotonously with the increasing of iterations, and the
fitting error of granular regression is smaller than that of linear regression, and the fitting error of linear regression is smaller
than that of ridge regression.

From Figs. 4–6, we can see that the fitting curves of linear regression and ridge regression are appropriate, and the fitting
effect of granular regression is evident.

In Fig. 7, the predictive error of granular regression decreases monotonously with the increasing of iterations. The predic-
tive errors of linear regression and ridge regression are not monotonic. When the number of iterations is small, the predictive
error of ridge regression is smaller than that of linear regression; and when the number of iterations is large, the predictive
error of linear regression is smaller than that of ridge regression. Moreover, the predictive error of granular regression is
smaller than those of linear regression and ridge regression.

From Figs. 8–10, we can see that the linear regression, ridge regression and granular regression have similar predictive
effects. Because the predictive errors of the three methods are large, ranging from 0.17 to 0.2, the prediction effects of
Fig. 3. Fitting errors of the training set.



Fig. 4. Fitting curves of the training set for linear regression.

Fig. 5. Fitting curves of the training set for ridge regression.

Fig. 6. Fitting curves of the training set for granular regression.
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Fig. 7. Predictive errors of the test set.

Fig. 8. Predictive curves of the test set for linear regression.

Fig. 9. Predictive curves of the test set for ridge regression.
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the three methods are not obvious. Moreover, the predictive error of granular regression is smaller than those of linear
regression and ridge regression, the predictive curve of granular regression is slightly better than those of the other two.



Fig. 10. Predictive curves of the test set for granular regression.

Fig. 11. Learning rate influence of granular regression for Slump data set.

Fig. 12. Learning rate influence of granular regression for Concrete data set.
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Fig. 13. Learning rate influence of granular regression for QSAR data set.
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5.3. Influence of learning rate of granular regression

The three data sets Slump, Concrete and QSAR are used for testing the learning rate of granular regression. The 80% sam-
ples are randomly selected for training while the rest for testing. The learning rate sets three values with a ¼ 10�3;10�4 and
10�5. The experimental results are shown in Figs. 11–13. The horizontal axis represents the number of iterations and the
vertical axis shows the mean absolute error. The maximum number of iterations is five thousand.

From Figs. 11–13, we can see that the mean absolute error decreases with the number of iterations increasing for the
granular regression. As for different data sets, the mean absolute error decreases faster while the learning rate is bigger.
In the experimental process, we also find that the mean absolute error will be not convergent when the learning rate is
too big. While the learning rate is too small, it will be convergent slowly.

6. Conclusion

In the traditional regression models, the values involved in operations are real numbers. Starting from the study of sample
granulation, a new set-form regression model is proposed by defining the concepts of granular vector and granular matrix.
Firstly, a single feature granulation method is introduced to construct information granules and granular vectors in informa-
tion systems, and the size measurement and operation rules of granular vectors are defined. Furthermore, the granular
matrix and its related operations are proposed. The granular vector and granular matrix are applied in a classification field
and the granular regression model is put forward. Secondly, the granular regression model is optimized to obtain an approx-
imate solution, and the gradient descent algorithm of the granular regression is proposed. Finally, the feasibility and validity
of the granular regression model are demonstrated by an experimental analysis. In the future work, the local granulation
method will be studied for regression and prediction in big data systems. By defining the norm of a granular vector, the gran-
ular sparse regression model will be explored for feature selection and classification in machine learning.
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