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Attribute reduction is a critical issue in rough sets theory. In recent years, there are many
kinds of attribute reduction proposed, such as positive region preservation reduction, gen-
eralized decision preservation reduction, distribution preservation reduction, maximum
distribution preservation reduction, and relative discernibility relation preservation reduc-
tion. General reduction approaches to obtaining various types of reducts also have been
explored, but they are computationally time-consuming in the condition of large-scale data
processing. In this study, we focus on the efficient general reduction algorithm to obtain
five typical reducts mentioned above. At first, we introduce a concept called granularity
space to establish a unified representation of five typical reducts. Based on the unified rep-
resentation, we construct two quick general reduction algorithms by extending the posi-
tive region approximation to the granularity space. Then, we conduct a series of
comparisons with existing reduction algorithms in aspects of theoretical analysis and
experiments to evaluate the performance of the proposed algorithms. The results of anal-
ysis and experiments indicate that the proposed algorithms are effective and efficient.

� 2020 Elsevier Inc. All rights reserved.
1. Introduction

Rough sets theory, introduced by Z. Pawlak [24] in 1982, is an efficient tool for imprecise, incomplete and uncertain infor-
mation processing [11,28,47]. Currently, rough sets theory has been successfully applied to many practical problems, includ-
ing machine learning [1,40], pattern recognition [9,10], data mining [35], decision support systems [15], etc.

Attribute reduction is one of the core concepts in rough sets[32]. It represents the process of obtaining attribute reduct,
i.e., a minimal set of attributes that can preserve the same ability of classification as the entire attribute set. Main studies of
attribute reduction can be classified into two categories: the appropriate definition of attribute reduction and the efficient
reduction algorithm.

The appropriate definition of attribute reduction is a prerequisite for the good performance of attribute reducts in clas-
sification. After analyzing the relation of the positive region and the classification rule in consistent decision tables, Pawlak
proposed the positive region preservation reduction [24]. Kryszkiewicz proposed two types of reduction for inconsistent
decision tables: the generalized decision preservation reduction and the distribution preservation reduction [17], which
guarantee the property of possible decisions of objects and the decision class membership distribution of objects unchanged
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respectively. After that, Zhang et al. [48] presented the maximum distribution preservation reduction as a compromise
between the capability of the generalized decision preservation reduction and the complexity of the distribution preserva-
tion reduction. Thereafter, it emerged as a mainstream that researchers design appropriate attribute reduction definitions
based on understanding the relationship between different attribute reductions. Liu et al. [21] presented the distribution
preservation reduction, the maximum distribution preservation reduction, and the generalized decision preservation reduc-
tion in the way of the classic reduction. Furthermore, Ref [23] classified the existing reduction into three types: the region
preservation reduction, the decision preservation reduction, and the relationship preservation reduction. Meanwhile, the rel-
ative discernibility relation preservation reduction was proposed. Then, Zhou et al. [49] reviewed the existing attribute
reduction, and concluded that there were six different types of attribute reduction for complete inconsistent decision tables.
On this basis, Jia et al. [14] explored the reduction definition from the user’s perspective to alleviate the difficulties of choos-
ing appropriate attribute reduction for specific applications. After reviewing the discernibility relation of different reducts,
Ge et al. [6] proposed a unified definition of five types of attribute reduction.

The efficient reduction algorithm [18,22,38] is the central focus of researchers’ studies. Attribute reduction algorithms can
be grouped into two classes [33]: the discernibility matrix-based algorithm [29,30] and the heuristic algorithm. Many
researchers studied the discernibility matrix-based attribute reduction algorithms because it is easily understandable and
can find all reducts [3,17,23,37,41,44,48,49]. However, the discernibility matrix-based method is computationally expensive.
Therefore, heuristic approaches are applied to attribute reduction processes. The heuristic approach is composed of two
parts: the heuristic function and the search strategy [45]. The heuristic function is the fitness function of a heuristic
approach. Existing definitions of heuristics are mainly based on three aspects: dependency degree [8], entropy [31,34,43],
and consistency [2,7,19]. The search strategy is the control structure of the heuristic approach. There are two basic search
strategies in heuristic approaches [36]: the directional search strategy and the non-directional search strategy. The direc-
tional search strategy contains three kinds of methods: the deletion method, the addition method, and the addition-
deletion method, and it has been applied in mainstream heuristic reduction algorithms. The non-directional search strategy
is usually applied in evolutionary algorithms [4,13,16] and some optimization methods [12,46]. To further increase the com-
putational efficiency, many researchers studied acceleration mechanisms of the heuristic attribute reduction method. Ref
[6,42] computed equivalence classes using a classic sort algorithm, which improved the speed of attribute reduction algo-
rithms. Qian et al. [26] presented a counting sort algorithm to reduce the computation cost of positive regions and core attri-
butes. Furthermore, Qian et al. [27] studied an acceleration strategy for the positive region preservation reduction and three
types of entropy reductions. Liang et al. [20] developed a new accelerator that simultaneously decreased the size of the uni-
verse and the number of attributes in each iteration process of attribute reduction.

There are five types of representative reduction for complete inconsistent decision tables, i.e., positive region preservation
reduction, generalized decision preservation reduction, distribution preservation reduction, maximum distribution preser-
vation reduction, and relative discernibility relation preservation reduction. Ref [14] explored the general attribute reduction
definition and Ref [6] researched the approaches to obtaining those five typical reducts. However, existing general reduction
algorithms are computationally time-consuming in processing large-scale data due to the lack of an efficient framework of
reduction theory. To alleviate this problem, we propose a new unified representation of five typical reducts, and on this basis,
we propose two quick general reduction algorithms.

Firstly, to construct a new definition of general attribute reduction, we introduce the concept of granularity space and
analyze the properties of its binary relation. By associating the indiscernibility relation of granularity space with the indis-
cernibility relation of five reducts, we construct the definition of general attribute reducts in the way of granularity space.
Finally, by extending the positive region approximation to granularity space, we develop two quick general reduction algo-
rithms. Meanwhile, a series of analyses in aspects of theory and experiments are conducted to evaluate the effectiveness and
efficiency of proposed algorithms. Two major contributions of this study are listed as follows. (1) We introduce a concept
named granularity space to represent five attribute reductions in a unified framework; (2) We extend the positive region
approximation to the granularity space and design a new acceleration strategy for general attribute reduction algorithms,
which can expand the acceleration domain from the positive region to the universe of decision tables.

The rest of this paper is organized as follows. In Section 2, we briefly review preliminary notions related to five types of
representative reduction and the classic definition of the general reduct. Besides, we discuss the process of the discernibility
matrix-based reduction method. In Section 3, we analyze the room for improvement in the classic general reduct definition
and propose the granularity space as an example to support the analysis. After that, we present the quick general heuristic
reduction algorithms based on granularity space. Besides, we explain the advantage of proposed algorithms and their rela-
tionship to existing reduction algorithms. In Section 4, we conduct a series of experiments with several UCI data sets to eval-
uate the performance of proposed reduction algorithms. Finally, Section 5 concludes this paper and brings some remarks
about the work of this paper.
2. Preliminaries

In this part, we briefly review the concepts of decision tables, the notions of five representative attribute reducts, and the
definition of general reducts. Next, we brush up on the discernibility matrix-based reduction algorithm, which is the kin of
two proposed algorithms.
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The research object of rough sets theory is called the information system, which can be expressed as a four-tuple, i.e.,
U;A;V ; fð Þ. Here U stands for the universe of discourse, a non-empty finite set of instances. A is the set of attributes,
V ¼ S

a2AVa is the set of all attribute values, and f : U � A ! V is an information function that maps an object in U to exactly
one value in Va. For x 2 U; a 2 A, we have f x; að Þ 2 Va. In the classification problem, the information system contains two
kinds of attributes, and it can be characterized by a decision table DT ¼ U;C [ D;V ; fð Þ with C \ D ¼ £, where an element
of C is called a condition attribute, C is called the condition attribute set, an element D is called a decision attribute, and
D is called the decision attribute set [20].

For the condition attribute set B#C, the indiscernibility relation IND Bð Þ is defined by
IND Bð Þ ¼ x; yh i jx; y 2 U; f x; að Þ ¼ f y; að Þ;8a 2 Bf g. For an instance x 2 U, the equivalence class of x, being represented as
x½ �B, is described by y jy 2 U; x; yh i 2 IND Bð Þf g. The family of all equivalence classes of IND Bð Þ, i.e., the partition determined
by B, is denoted by U=IND Bð Þ or simply U=B. X, a non-empty subset of U, is called a concept of U. The B-lower approximation
B Xð Þ and the B-upper approximation B Xð Þ of the concept X are respectively defined by B Xð Þ ¼ x 2 U j x½ �B #X

� �
and

B Xð Þ ¼ x 2 U j x½ �B \ X – £
� �

. The classification ability of conditional attribute C is measured by the relation between
IND Cð Þ and IND Dð Þ, and there are some uncertain situations that objects x; y with the same value of conditional attributes
perform differently in the decision attributes. The uncertain situations are represented as the difference between two
notions, i.e., positive region and boundary region which are induced from indiscernibility relation. The B-positive region
POSB Dð Þ and B-boundary region BNDB Dð Þ are defined as
POSB Dð Þ ¼
[

X2U=D
B Xð Þ;

BNDB Dð Þ ¼
[

X2U=D
B Xð Þ � B Xð Þ� �

:

POSB Dð Þ consists of objects which perform consistently in decision; BNDB Dð Þ is comprised of objects which perform
inconsistently in decision. Generally, we take the difference between them as a measurement of the classification ability
of B. In this viewpoint, an attribute set B#C satisfying POSB Dð Þ ¼ POSC Dð Þ is meaningful for feature selection and knowledge
representation. Exactly speaking, B, an attribute set satisfying POSB Dð Þ ¼ POSC Dð Þ ^ 8B0 � B;POSB0 Dð Þ– POSC Dð Þ� �

, is called
positive region preservation attribute reduct. After proposing the positive region preservation attribute reduct, many exten-
sions of that are investigated. Considering the focus of paper, we list five typical reducts’ definitions summarized in Ref [49]
here.

Definition. Given a decision table DT ¼ U;C [ D;V ; fð Þ,

(1) B is a positive region preservation reduct (denoted as PRPR) of Cwith respect to D if B satisfies POSB Dð Þ ¼ POSC Dð Þ and
8B0 � B; POSB0 Dð Þ– POSC Dð Þ;
(2) B is a generalized decision preservation reduct (denoted as GDPR) of C with respect to D if B satisfies
8x 2 U; dB xð Þ ¼ dC xð Þ and 8B0 � B; 9x 2 U; dB0 xð Þ – dB xð Þ, where dB xð Þ ¼ f y;Dð Þ jx 2 U ^ y 2 x½ �B

� �
;

(3) B is a distribution preservation reduct (denoted as DPR) of C with respect to D if B satisfies 8x 2 U;lB xð Þ ¼ lC xð Þ and
8B0 � B; 9x 2 U;lB0 xð Þ– lB xð Þ, where

lB xð Þ ¼ P D1j x½ �B
� �

; P D2j x½ �B
� �

; � � � ; P DjU=Djj x½ �B
� �� �

; P Djj x½ �B
� � ¼ jDj\ x½ �B j

j x½ �B j ; x 2 U;Dj 2 U=D j ¼ 1;2; � � � ; jU=Djð Þ;
(4) B is a maximum distribution preservation reduct (denoted as MDPR) of C with respect to D if B satisfies

8x 2 U;/B xð Þ ¼ /C xð Þ and 8B0 � B; 9x 2 U;/B0 xð Þ – /B xð Þ, where /B xð Þ ¼ Djj j x½ �B\Dj j
j x½ �B j ¼ max

jU=Dj

k¼1

j x½ �B\Dk j
j x½ �B j

n o� �
;

(5) B is a relative discernibility relation preservation reduct (denoted as DRPR) of C with respect to D if B satisfies
IND BjDð Þ ¼ IND CjDð Þ and8B0 � B; IND B0jD� �

– IND BjDð Þ, where IND BjDð Þ ¼ x; yh i 2 U � U j ^ 8a 2 B ! f x; að Þ ¼ f y; að Þð Þ_f
f x;Dð Þ ¼ f y;Dð Þg.

Those five reducts can be taken as the special cases of the general reduct proposed by Yao et al. [45], which can be written
as follows.

Definition. Given a decision table DT ¼ U;C [ D;V ; fð Þ and a certain property P of DT, an attribute set B#C is called a
reduct of C if it satisfies the following three conditions:

(1) Evaluability condition: the property can be represented by an evaluation function e : 2C ! L;�ð Þ;
(2) Jointly sufficient condition: e Að Þ � e Bð Þ;
(3) Individually necessary condition: for any B0 � B; – g e A � e B0� �� �� �

.

Here e : 2C ! L;�ð Þ is an evaluation or fitness function, which maps an attribute set to an element of a poset L equipped
with the partial order relation �, i.e., � is relexive, anti-symmetric and transitive. Attribute reduction algorithms, approaches
to obtaining a reduct or reducts, can be classified into two groups: the discernibility matrix-based algorithm and the heuris-
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tic algorithm. For the limitation of paper focus, here we only review the discernibility matrix-based algorithm. A general dis-
cernibility matrix given by Miao et al. [23] is defined as follows.

Definition. Given a decision table DT ¼ U;C [ D;V ; fð Þ, its discernibility matrix DM ¼ DM x; yð Þð Þ is a jUj � jUj matrix.
DM x; yð Þ for an object pair x; yð Þ is a j x; yh i 2 DIS CjDð Þ; f x; að Þ– f y; að Þ; a 2 Cf g, where DIS CjDð Þ is the relative discernibility
relation.

The relative discernibility relation of five typical reducts can be written as follows.

(1) The relative discernibility relation of PRPR is defined by DIS CjDð Þ ¼ x; yh i jx; y 2 POSC Dð Þ ^ f x;Dð Þ – f y;Dð Þ _ x 2f
POSC Dð Þ ^ y R POSC Dð Þg;
(2) The relative discernibility relation of GDPR is defined by DIS CjDð Þ ¼ x; yh i jdC xð Þ– dC yð Þf g;
(3) The relative discernibility relation of DPR is defined by DIS CjDð Þ ¼ x; yh i jlC xð Þ– lC yð Þ� �

;
(4) The relative discernibility relation of MDPR is defined by DIS CjDð Þ ¼ x; yh i j/C xð Þ– /C yð Þf g;
(5)The relative discernibility relation of DRPR is defined by DIS CjDð Þ ¼ x; yh i j f x;Cð Þ– f y;Cð Þ ^ f x;Dð Þ – f y;Dð Þf g. Based
on the discernibility matrix, one can get the reduct through the following discernibility function.
DF DMð Þ ¼ V W

DM x; yð Þð Þ j8x; y 2 U;DM x; yð Þ –£f g. The expression
V W

DM x; yð Þð Þf Þg is the conjunction of allW
DM x; yð Þð Þ while

W
DM x; yð Þð Þ is the disjunction of condition attributes in DM x; yð Þ. The discernibility function can be

transformed to a reduced disjunctive form, and each conjunctor of the reduced disjunctive form is a reduct or a superset
of a reduct.

3. Granularity space and the quick general reduction algorithm

In this section, we represent five typical reducts in a unified way, and develop two quick general reduction algorithms. In
subSection 3.1, to show the reason why we introduce the granularity space, we firstly analyze some promotable points of the
existing general reduct definitions from aspects of the reduct definition construction and reduction algorithm designing.
After that, we analyze the relationship between the indiscernibility relation of the granularity space and the indiscernibility
relation of five typical reducts to perceive the association between granularity space and reducts. Based on that association,
we present five typical reducts in the way of granularity space. At the end of this subsection, we show the power and sim-
plicity of the granularity space-based general reduct definition in the comparison to the existing general reduct definitions.
In subSection 3.2, to increase the efficiency of reduction algorithms, we extend the positive region approximation to the
granularity space and design a new acceleration strategy called granularity approximation, which expands the acceleration
domain from the positive region to the universe of decision tables. Based on granularity approximation, we develop two
quick general reduction algorithms and present the relationship between the proposed reduction algorithms and the existing
reduction algorithms. In subSection 3.3, we show the difference between the proposed algorithms and the related work in
Ref [6]. For a better understanding of proposed algorithms, we provide a calculation example of obtaining positive region
preservation reduct using proposed algorithms.

3.1. Granularity space: an alternative of general attribute reduct definition

One of the most important parts in rough sets is the answer to what the reduct is. The general reduct definition proposed
by Yao et al. [45] has been proven as a remarkable candidate. It’s such a powerful definition that there are so many research-
ers adopting it to accomplish the reduct definition construction and reduction algorithm designing. However, there is still
some room for improvement in Yao’s definition. Firstly, we could extend the focus on the subset of C to expand the infor-
mation scale we take into account during data processing. Secondly, we can enhance the flexibility of reduction algorithm
designing by abandoning the way of constructing reduct definition, i.e., using evaluation or fitness function to measure the
relationship between different attributes, which results in the complexity of theory for that only one more fitness function
was proposed before we could propose a new type of attribute reduction. To achieve these improvements, we would propose
a new definition of general reduct.

Information granules naturally give rise to hierarchical structures: the same problem or system can be perceived at dif-
ferent levels of specificity (detail) depending on the complexity of the problem, available computing resources, and partic-
ular needs to be addressed [39]. In rough sets, information granules can be represented as a partition of the universe. For the
convenience of writing, we denote the partition of the universe U as the granularity to emphasize the hierarchical structure
of data. Given a non-empty finite set U, a granularity G of U is defined as
G ¼ Xi j
[
Xi�G

Xi ¼ U ^ Xi \ Xj ¼ £; i– j
� �( )

:

The indiscernibility relation and the discernibility relation of G is defined as follows.

Definition 1. Given a granularity G of a finite non-empty set U, the indiscernibility relation and the discernibility relation of
G are defined by
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IND Gð Þ ¼ x; yh i j x; yh i 2 Xi � Xi ^ Xi 2 Gf g;
DIS Gð Þ ¼ x; yh i j x; yh i 2 Xi � Xj; i– j

� � ^ Xi;Xj 2 G
� �

:

The indiscernibility relation of the granularity G of U is.

(1) symmetric, i.e., for 8x 2 U, we have x; xh i 2 IND Gð Þ;
(2) transitive, i.e., for 8x; y; z 2 U, if x; yh i; y; zh i 2 IND Gð Þ, we have x; zh i 2 IND Gð Þ;
(3) relexive, i.e., for 8x; y 2 U,if x; yh i 2 IND Gð Þ, we have y; xh i 2 IND Gð Þ.

On the other side, the discernibility relation of a granularity G of U is relexive, i.e., for 8x; y 2 U, if x; yh i 2 DIS Gð Þ, one can
get y; xh i 2 DIS Gð Þ. Another point needed to be reminded of is that IND Gð Þ [ DIS Gð Þ ¼ x; yh i j x; yh i 2 U � Uf g.

Definition 2. Granularity space can be represented in a two-tuple GS ¼ G;Oð Þ, where G is a granularity of a finite non-empty
set U;O is a set of operators on elements of G. The ancestor granularity space of G is defined by ANC Gð Þ ¼ G; [f gð Þ; the
granularity subspace of G is defined by SPR Gð Þ ¼ G; /f gð Þ, where / U ¼ P;Q jP [ Q ¼ U ^ P \ Q ¼ £f g.

Granularity space is the set of granularity generated from doing several operations specified by O on G. In particular, we
specify G 2 G; /f gð Þ and G 2 G; [f gð Þ. As a result, we can construct the following lemma.

Lemma 1. Given a granularity G of a finite non-empty set U, for 8G0 2 ANC Gð Þ, we have IND G0� � � IND Gð Þ;DIS G0� �
#DIS Gð Þ; for

8G0 2 SPR Gð Þ, we have IND G0� �
# IND Gð Þ;DIS G0� � � DIS Gð Þ.
Proof. Taking into account IND Gð Þ [ DIS Gð Þ ¼ U � U; IND Gð Þ \ DIS Gð Þ ¼ £, all we need to do for proving Lemma 1 true is
proving true either 8G0 2 ANC Gð Þ; IND G0� � � IND Gð Þ or 8G0 2 SPR Gð Þ; IND G0� �

# IND Gð Þ. According to Definition 2, for
8G0 2 ANC Gð Þ, it can be implied that for 8E 2 G0, there exists a set PE#G such that

S
Pi2PEPi ¼ E. As a result, we can get

£# x; yh i jx 2 Pi 2 PE; y 2 S
Pj2PE�Pi

Pj; Pi; Pj 2 PE; x; y 2 E
n o

) DIS G0� �
#DIS Gð Þ. That is to say, Lemma 1 is true.

To enhance the understanding of concepts introduced above, here we provide a calculation example of the granularity
space.

Example 1. Given U ¼ x1; x2; x3f g;G ¼ x1f g; x2; x3f gf g, we know ANC Gð Þ ¼ G; [f gð Þ ¼ G;Uf g. let Q denotes as
x1f g; x2f g; x3f gf g, we have SPR Gð Þ ¼ G; /f gð Þ ¼ G;Qf g, IND Uð Þ ¼ U � U;DIS Uð Þ ¼ £; IND Gð Þ ¼ x1; x1h i; x2; x2h i; x3; x3h i;f

x2; x3h i; x3; x2h ig;DIS Gð Þ ¼ x1; x2h i; x2; x1h i; x1; x3h i;f
x3; x1h ig; IND Qð Þ ¼ x1; x1h i; x2; x2h i; x3; x3h if g;DIS Qð Þ ¼ x1; x2h i; x2; x1h i; x1; x3h i; x3; x1h i; x2; x3h i; x3; x2h if g. It is apparent that
8G0 2 ANC Gð Þ; IND Gð Þ# IND G0� �

i.e., DIS Gð Þ � DIS G0� �
and 8G0 2 SPR Gð Þ;DIS Gð Þ#DIS G0� �

i.e., DIS Gð Þ � DIS G0� �
.

Theorem 1. Given a decision table DT ¼ U;C [ D;V ; fð Þ and a granularity G ¼ U=C, for any type of reduct B, we have
U=B 2 ANC Gð Þ.

U=B 2 ANC Gð Þ can be induced from B#C. In other words, for 8B#C, if y 2 x½ �C , we have y 2 x½ �B. Here we summarize the
useful conclusions drawn by analyzing the granularity space. The first is that for 8B#C , we have
U=B 2 ANC U=Cð Þ; IND Bð Þ � IND Cð Þ and DIS Bð Þ#DIS Cð Þ. Reviewing on the discernibility relation of five typical reducts, we
can imply that there are some redundant elements in existing discernibility relation. Secondly, ANC U=Cð Þ contains all gran-
ularity induced by B#C, and it indicates the possibility of designing the reduction algorithms by obtaining some special
granularity. Here we re-construct the discernibility relation and the indiscernibility relation of five reducts from the perspec-
tive of granularity.

Definition 3. Given a decision table DT ¼ U;C [ D;V ; fð Þ, the discernibility relation and the indiscernibility relation of
reducts are defined as follows.
DIS PRPRð Þ ¼ x; yh i jy R x½ �C ^ x; y 2 POSC Dð Þ ^ f x;Dð Þ – f y;Dð Þ _ x R POSC Dð Þ ^ y 2 POSC Dð Þð Þ� �
IND PRPRð Þ ¼ x; yh i jy 2 x½ �C _ y R x½ �C ^ x; y R POSC Dð Þ _ x; y 2 POSC Dð Þ ^ f x;Dð Þ ¼ f y;Dð Þð Þ� �
DIS GDPRð Þ ¼ x; yh i jy R x½ �C ^ dC xð Þ– dC yð Þ� �
IND GDPRð Þ ¼ x; yh i jy 2 x½ �C _ y R x½ �C ^ dC xð Þ ¼ dC yð Þ� �
DIS DPRð Þ ¼ x; yh i jy R x½ �C ^ lC xð Þ – lC yð Þ� �
IND DPRð Þ ¼ x; yh i jy 2 x½ �C _ y R x½ �C ^ lC xð Þ ¼ lC yð Þ� �
DIS MDPRð Þ ¼ x; yh i jy R x½ �C ^ /C xð Þ– /C yð Þ� �
IND MDPRð Þ ¼ x; yh i jy 2 x½ �C _ y R x½ �C ^ /C xð Þ ¼ /C yð Þ� �
DIS DRPRð Þ ¼ x; yh i jy R x½ �C ^ x 2 BNDC Dð Þ _ y 2 BNDC Dð Þ _ x; y 2 POSC Dð Þ ^ f x;Dð Þ– f y;Dð Þð Þ� �
IND DRPRð Þ ¼ x; yh i jy 2 x½ �C _ x; y 2 POSC Dð Þ ^ f x;Dð Þ ¼ f y;Dð Þ� �



Table 1
A decision table for indicating the information scale of granularity space.

U a1 a2 d

x1 0 0 0
x2 1 0 1
x3 1 1 0
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For the discernibility relation and the indiscernibility relation of five typical reducts, it is worth stressing that for
8Red 2 PRPR;GDPR;DPR;MDPR;DRPRf g; IND Redð Þ is.

(1) symmetric, i.e., for 8x 2 U; xh , we have xi 2 IND Redð Þ,
(2) transitive, i.e., for 8x; y; z 2 U, if x; yh i; y; zh i 2 IND Redð Þ, we have x; zh i 2 IND Redð Þ,
(3) relexive, i.e., for 8x; y 2 U, if x; yh i 2 IND Redð Þ, we have y; xh i 2 IND Redð Þ. On the other side, the discernibility relation of
Red, i.e. DIS Redð Þ, is relexive, which means that for 8x; y 2 U, if x; yh i 2 DIS Redð Þ; y; xh i is an element of DIS Redð Þ. In addi-
tion, we also have DIS Redð Þ \ IND Redð Þ ¼ £; IND Redð Þ [ DIS Redð Þ ¼ U � U. As a result, we can imply the following
theorem.
Theorem 2. Given a decision table DT ¼ U;C [ D;V ; fð Þ and B#C, we have

(1) DIS PRPRð Þ#DIS Bð Þ () POSB Dð Þ ¼ POSC Dð Þ;
(2) DIS GDPRð Þ#DIS Bð Þ () 8x 2 U; dB xð Þ ¼ dC xð Þ;
(3) DIS DPRð Þ#DIS Bð Þ () 8x 2 U;lB xð Þ ¼ lC xð Þ;
(4) DIS MDPRð Þ#DIS Bð Þ () 8x 2 U;/B xð Þ ¼ /C xð Þ;
(5) DIS DRPRð Þ#DIS Bð Þ () IND BjDð Þ ¼ IND CjDð Þ.
Proof. According to definitions of related reducts and the discernibility matrix-based reduction algorithm, it is easy to know
that items (2), (3), and (4) of Theorem 2 are true. So here we just prove the correctness of items (1) and (5).

(1) Sufficiency: We make an assumption that if DIS PRPRð Þ#DIS Bð Þ, there is an object x 2 POSC Dð Þ satisfying x R POSB Dð Þ.
It can be inferred that there exists an object y R x½ �C ; f y;Dð Þ – f x;Dð Þ satisfying y 2 x½ �B. Thus, we have
x; yh i R DIS Bð Þ; x; yh i R DIS PRPRð Þ and this conflicts with the definition of DIS PRPRð Þ. As a result, our assumption is not true,
and we know DIS PRPRð Þ#DIS Bð Þ ) POSB Dð Þ ¼ POSC Dð Þ.

Necessity: We make an assumption that if POSB Dð Þ ¼ POSC Dð Þ, there exists a pair x; yh i 2 DIS PRPRð Þ such that
x; yh i R DIS Bð Þ. If x 2 POSC Dð Þ ^ y 2 POSC Dð Þ ^ f x;Dð Þ – f y;Dð Þ ^ x; yh i R DIS Bð Þ, we know x; y R POSB Dð Þ and
POSB Dð Þ– POSC Dð Þ. That is conflicted with our assumption, i.e., POSB Cð Þ ¼ POSC Dð Þ. If x 2 POSC Dð Þ ^ y R POSC Dð Þ, we know
x 2 y½ �B, and that implies x R POSB Dð Þ and POSC Dð Þ– POSB Dð Þ. In summary, if POSB Dð Þ ¼ POSC Dð Þ, then we have
DIS PRPRð Þ#DIS Bð Þ.

(5) Sufficiency: Assume that if DIS DRPRð Þ#DIS Bð Þ, there exists a pair x; yh i R IND CjDð Þ ^ x; yh i 2 IND BjDð Þ. That means
9y R x½ �C ; y 2 x½ �B; f x;Dð Þ – f y;Dð Þ. Then we know x; yh i 2 DIS DRPRð Þ; x; yh i R DIS Bð Þ, and it conflicts with our assumption
DIS DRPRð Þ#DIS Bð Þ. Finally, we get DIS DRPRð Þ#DIS Bð Þ ) IND BjDð Þ ¼ IND CjDð Þ.

Necessity: Assume that if IND BjDð Þ ¼ IND CjDð Þ, we have 9 x; yh i 2 DIS RPRð Þ such that x; yh i R DIS Bð Þ. If
y R x½ �C ^ x 2 BNDC Dð Þ _ y 2 BNDC Dð Þð Þ, we have 9p 2 x½ �C ; 9q 2 y½ �C ; f p;Cð Þ – f q;Cð Þ; f p;Dð Þ – f q;Dð Þ. Because x; yh i 2 IND Bð Þ,
we have p 2 q½ �B. We get p; qh i 2 IND BjDð Þ and p; qh i R IND CjDð Þ. It is conflicted with IND BjDð Þ ¼ IND CjDð Þ. If
x; y 2 POSC Dð Þ ^ f x; dð Þ – f y; dð ÞÞ, according to x; yh i 2 IND Bð Þ, it is obvious that x; yh i 2 IND BjDð Þ. Noticing x; yh i R IND CjDð Þ,
we know that our assumption is not true. In summary, IND BjDð Þ ¼ IND CjDð Þ ) DIS DRPRð Þ#DIS Bð Þ.

For the convenience of writing, we specify that Red is an element of PRPR;GDPR;DPR;MDPR;DRPR;DRPRf g if there is no
additional delaration. According to Theorem 1, 2 and Lemma 1, we can construct a unified definition of general attribute
reduct using granularity space.

Theorem 3. Given a decision table DT ¼ U; C [ D;V ; fð Þ and the target reduct Red;B is a Red of C iff B satisfies the following
conditions.

(1) U=B 2 ANC U=Cð Þ \ SPR TGran Redð Þð Þ;
(2) 8B0 � B;U=B0 does not satisfy condition (1).

Here TGran Redð Þ stands for U=IND Redð Þ.
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In fact, item 1ð Þ can be written in short as U=B 2 SPR TGran Redð Þð Þ because of 8B#C;U=B 2 ANC U=Cð Þ. Theorem 3 makes
the reduct space more accurate by replacing ANC U=Cð Þ \ SPR Uð Þ with ANC U=Cð Þ \ SPR TGran Redð Þð Þ. The core difference of
Theorem 3 to the existing general reduct definitions is the attention paid toward the objects’ distribution, i.e., granularity
space, instead of the relationship between different attribute sets. There are three improvements of the general reduct
defined by the objects’ distribution. Firstly, the information space we take into consideration is greater, i.e.,
jANC U=Cð Þj P j U=BjB#Cf g. It is obvious that we have 8B#C;U=B 2 ANC U=Cð Þ and 9G 2 ANC U=Cð Þ satisfies G – U=B. It
can be seen from the data in Table 1 that, the information space may vary when different reduct definitions are taken into
account, i.e., if we take Yao’s definition as the reference of attribute reduction, the information space we take care of can be
expressed as U;U= a1f g;U= a2f g;U= a1; a2f gf g; if we consider granularity space as the way of reducts representation, the infor-
mation space should be U;U= a1f g;U= a2f g;U= a1; a2f g; x1; x3f g; x2f gf gf g. The expansion of information space makes it possible
to design the more efficient reduction algorithms, and GS is a good example. Secondly, general reducts defined by granularity
space is independent of heuristic functions. That is to say, there is no need to design new heuristic functions for proposing
new type of attribute reduction. All we need for the construction of a new type of attribute reduction is extending or redefin-
ing the definition of target granularity space, i.e., the definition of TGran Redð Þ \ ANC U=Cð Þ. When it comes to attribute reduc-
tion approaches, it is more flexible in heuristic functions during designing heuristic attribute reduction algorithms based on
granularity space because the input of reduction algorithms is definite, i.e., a given granularity space. For example, GS can
work well for obtaining five typical reducts with three classical heuristic functions, i.e., dependency degree, consistency,
and entropy. For the limitation of the focus of this paper, we do not further explore it here. Thirdly, we can expand the accel-
eration domain from positive region into the universe and it is helpful to increase the efficiency of reduction algorithms. We
would explain it in Section 3.2.

Keeping in mind that IND Redð Þ is an equivalence relation, we can construct Algorithm 3.1 for computing TGran Redð Þ. First
step of CTGA is getting the partition U=C because TGran Redð Þ is an element of ANC U=Cð Þ. Then, CTGA scans all the combi-
nations of e1; e2h i; e1; e2 2 U=C, and merges equivalence classes if x; yh i 2 IND Redð Þ : x 2 e1; y 2 e2; e1– e2. After the merging
step, the variable TG stores TGran Redð Þ. The upper bound of time complexity of computing TGran Redð Þ using CTGA is

O jUjjC [ Dj þ jUj2
� 	

. Noticing that the time complexity of merging step is O jUj2
� 	

, we design key converters, whose gener-

ated keys are then hashed by a function implemented in Python’s dictionary, to increase the efficiency of merging step.
Algorithm3.1 Calculating the target granularity algorithm(CTGA)
Input: decision table DT ¼ U;C [ D;V ; fð Þ and target reduct Red 2 PRPR;GDPR;DPR;MDPR;DRPRf g

Output: Target granularity of relative reduct.

1: Compute TG ¼ U=C

2: for ec1 2 TG do

3: for ec2 2 TG� ec1 do

4: if x; yh i 2 IND Redð Þ : x 2 ec1; y 2 ec2 then

5: ec1 :¼ ec1 [ ec2

6: TG :¼ TG� ec2

7: end if

8: end for

9: end for

10: return TG
Definition 4. Given a decision table U;C [ D;V ; fð Þ and U=D ¼ D1;D2; � � � ;Dnf g, some key converters are defined as
(1) Key x; PRPRð Þ ¼ i; if x 2 POSC Dð Þ ^ f x;Dð Þ ¼ Di

nþ 1; otherwise

�
;

(2) Key x;GDPRð Þ ¼ dC xð Þ;
(3) Key x;DPRð Þ ¼ lC xð Þ;
(4) Key x;MDPRð Þ ¼ /C xð Þ;
(5) Key x;DRPRð Þ ¼ i; if x 2 POSC Dð Þ ^ f x;Dð Þ ¼ Di

f x;Cð Þ; otherwise

�

Along this way, we can construct an auxiliary key converter Keya Key x;Redð Þð Þ, which maps Key x;Redð Þ to a set of objects,
for storing the target granularity TGran Redð Þ. The key converters Key and Keya can be constructed in the time complexity of
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O jUjjC [ Djð Þ and O jUjð Þ. As a result, the upper bound of time complexity of computing TGran Redð Þ using CTGKC is
O jUjjC [ Dj þ 2jUjð Þ.
1

Algorithm3.2 Calculating target granularity using key converters (CTGKC)
This algorithm is not related to the granularity search in granularity computing area.
Input: decision table DT ¼ U;C [ D;V ; fð Þ and target reduct Red 2 PRPR;GDPR;DPR;MDPR;DRPRf g

Output: Target granularity of relative reduct in hash function way.

1: Compute U=C

2: for ec 2 U=C

3: t :¼ Key x;Redð Þ;Keya tð Þ :¼ Keya tð Þ [ xf g, where x 2 ec

4: end for

5: return Keya
3.2. Granularity search: an efficient general reduction method

In this part, we focus on the efficient reduction algorithms. Based on the unified representation of five typical reducts, we
present a heuristic function called granularity approximation for efficient attribute reduction algorithms. Subsequently, we
develop two quick general attribute reduction algorithms.

Definition 5. Given a decision table DT ¼ U;C [ D;V ; fð Þ and a granularity G of U, the granularity approximation of G in U=B
is defined as GA U=B;Gð Þ ¼ S

x½ �B jx 2 U; x½ �B # x½ �G
� �

, where x½ �G stands for a set of objects that belong to the same set in G.

If we take G as equivalence classes determined by an attributes set Z, granularity approximation can be written as
POSB Zð Þ. It is consistent with the uncertainty processing measurement in Pawlak attribute reduction. Obviously, if
GA U=B;TGran Redð Þð Þ ¼ U, we have U=B 2 SPR TGran Redð Þð Þ. Thus, the general reduct Definition 3 can be re-written as
follows.

Theorem 4. Given a decision table DT ¼ U;C [ D;V ; fð Þ and the target granularity TGran Redð Þ; B is a Red of C iff B satisfies
(1) GA U=B;TGran Redð Þð Þ ¼ U
(2) 8B0 � B;GA U=B0;TGran Redð Þ� �

– U.

For the granularity G of U, it is easy to know that 8P#Q #C;GA U=P;Gð Þ#GA U=Q ;Gð Þ. According to Definition 5, the attri-
bute significance for given attribute sets can be defined as follows.

Definition 6. Given DT ¼ U;C [ D;V ; fð Þ and target granularity G, the weeded significance of a 2 B#C in B for G is defined as
Sig� a;B;Gð Þ ¼ jGA U=B;Gð Þ � GA U=B� af g;Gð Þj; the joined significance of a 2 C � B in B for G is defined as
Sigþ a;B;Gð Þ ¼ jGA U=B [ af g;Gð Þ � GA U=B;Gð Þ, where jSj represents the cardinality of set S.

To increase the computation efficiency of the significance function, we explore the faster approach with the deletion of
objects unrelated to the calculation. For the convenience of writing, we use Sigþ a;B;G;Uð Þ to represent the attribute signif-
icance, which denotes the value of the significance measure on the universe U. One can prove the following theorem of rank
preservation.

Theorem 5. Given a decision table DT ¼ U;C [ D;V ; fð Þ, an attribute set B#C, a granularity G of U and a set
U0 ¼ U � GA U=B;Gð Þ, for 8a; b 2 C � B, if Sigþ a;B;G;Uð Þ 6 Sigþ b; B;G;Uð Þ, we have Sigþ a;B;G;U0� �

6 Sigþ b;B;G;U0� �
.

Proof. From the definition of Sigþ a;B;G;Uð Þ, we know that its value only depends on the function GA U=B;Gð Þ. Since
U0 ¼ U � GA U=B;Gð Þ, one can know GA U0=B;G

� � ¼ GA U=B [ af g;Gð Þ � GA U=B;Gð Þ. Therefore, we have
Sigþ a;B;G;Uð Þ
Sigþ a;B;G;U0� � ¼ jGA U=B [ af g;G;Uð Þ � GA U=B;G;Uð Þj

jGA U=B [ af g;G;U0� �� GA U=B;G;U0� �j ¼ 1
So Sigþ a;B;G;Uð Þ > Sigþ b;B;G;Uð Þ () Sigþ a;B;G;U0� �
> Sigþ b;B;G;U0� �

.
Now we can construct the attribute reduction algorithm based on granularity approximation as Algorithm 3.3, i.e., GS1.



Table 2
The complexity description.

Algorithms Compute TGran Compute core Iteration structure

QGARA-FS O jUjjCjð Þ O jCj2jUj
� 	

O
PjC�crj

i¼1 jUj jcrj þ ið Þ
� 	

QGARA-BS O jUjjCjð Þ / O
PjCj

i¼1jUj jCj � iþ 1ð Þ
� 	

GS O jUjjCjð Þ O jCj2jUj
� 	

O
PjC�crj

i¼1 jUij jcrj þ ið Þ
� 	

GSV O jUjjCjð Þ / O
PjCj

i¼1jUij � i
� 	
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Algorithm3.3 Granularity Search (GS)
Input: decision table DT ¼ U;C [ D;V ; fð Þ and target reduct Red

Output: A reduct of C

1: Compute the target granularity G according to Algorithm 3.2;

2: Compute Sig� ak;C;G;Uð Þ; k 6 jCj

3: Put ak into core, where Sig� ak;C;G;Uð Þi0

4: red :¼ core; i :¼ 0;U0 :¼ U

5: while jUij > 0

6: Calculate amax : amax ¼ argmaxa2C�redSig

þ a; red;G;Uiþ1ð Þ

7: red :¼ red [ amaxf g

8: Compute Uiþ1 :¼ Ui � GA Ui=red;G;Uið Þ

9: i :¼ iþ 1;

10: end while

11: return red
The reason why we termed Algorithm 3.3 as granularity search is to emphasize the intuition of finding a granularity in the
given space. GS consists of four parts: the computation of target granularity, the calculation of core attributes, the selection
of attribute with maximal significance, termination judgment. The complexity of computing TGran Redð Þ is

O jUjjC [ Dj þ 2jUjð Þ; the complexity of calculating core attributes is O jUjjCj2
� 	

; the complexity of remaining steps is

O
PjC�crj

i¼1 jUij jcrj þ iþ 1ð Þ
� 	

, where cr denotes the set of core attributes. According to the attribute reduction algorithms in

Ref [6,19], the granularity search algorithm can be simplified to further increase the time efficiency by removing the part
of computing core attributes and the attribute with maximal significance. For convenience, we denote granularity search
without computing core attributes and the attribute with maximal significance as GSV.

Algorithm3.4 A Granularity Search Variant(GSV)

Input: decision table DT ¼ U;C [ D;V ; fð Þ and target reduct Red
Output: A reduct of C
1: Compute the target granularity G according to Algorithm 3.2;
2: red :¼ £; i :¼ 0 and U0 :¼ U
3: while jUij > 0 do
4: flag :¼ False
5: for a 2 C � red do
6: if Sigþ a; red;G;Uið Þ > 0 then
7: flag :¼ True
8: red :¼ red [ af g
9: Compute Uiþ1 :¼ Ui � GA Ui=red;G;Uið Þ
10: i :¼ iþ 1
11: end if
12: end for
13: if flag is False and jUij > 0
14: red :¼ red [ a0f g, where a0 is an arbitrary attribute of C
15: end if
16: end while
17: return red
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We present the comparison of the upper bound of relevant algorithms time complexity in Table 2, in which ‘‘/” denotes
that the step does not exist in this algorithm. QGARA-FS and QGARA-BS are general reduction algorithms proposed in Ref [6].
Taking into consideration the reduction results of QGARA-BS and GSV are partly detemined by the attribute order scanned,
we divide four algorithms into two groups for comparison. One is GS vs: QGARA-FS; another is GSV vs: QGARA-BS. The upper

bound of time complexity of GS is O jUjjCj þ jUjjCj2 þPjC�crj
i¼1 jUij jcrj þ iþ 1ð Þ

� 	
, where cr denotes core attributes. However, the

upper bound of time complexity of QGARA-FS is O jUjjCj þ jUjjCj2 þPjC�crj
i¼1 jUj jcrj þ iþ 1ð Þ

� 	
. Obviously, the time complexity

of GS is lower than that of QGARA-FS. Meanwhile, the upper bound of time complexity of GSV is O jUjjCj þ PjCj
i¼1jUij � i

� 	� 	
,

which is lower than the upper bound of time complexity of QGARA-BS, i.e., O jUjjCj þPjCj
i¼1jUj jCj � iþ 1ð Þ

� 	
. When it comes to

the relationship to the existing heuristic functions, reduction algorithms and acceleration mechanisms of the heuristic
reduction algorithm, the granularity approximation is an extension of a dependency degree; two proposed algorithms,
i.e., GS and GSV, can be taken as the improved edition of algorithms proposed in Ref. [6], and the reason why GS and GSV
are more efficient is that the reduct defined from the perspective of granularity; as an acceleration strategy, the granularity
approximation can be taken as the extension or the special case of the positive region approximation. Besides, GS and GSV
are kin to discernibility matrix-based reduction algorithms, which pay attention to the discernibility relation of reducts
instead of the indiscernibility relation of reducts. It is worth trying to apply GS and GSV to address the problems where dis-
cernibility matrix-based reduction algorithms have got applied.

3.3. The analysis of granularity space

In this part, the relation and difference between the perspective of granularity and the relative discernibility relation are
analyzed. Furthermore, attribute reduction processes related to two perspectives are also compared. In the end, to provide
principled intuition of proposed algorithms, we show the process of GS for obtaining the positive region preservation reduct.
For the convenience of comparison and the consistency of writing with Ref [6], let D 2 PRPR;GDPR;DPR;MDPR;DRPRf g
denote as the specific type of reduct, general attribute reduct can be defined in the way of relative discernibility relation
as follows.

Definition. Given the general decision table DTD ¼ U;C [ D;VD; f Dð Þ, the attribute subset B#C is a D-reduct of C with
respect to D, iff it satisfies the following two conditions:

(1) IND BjDDð Þ ¼ IND CjDDð Þ
(2) 8B0 � B;U=B0 does not satisfy condition 1ð Þ.

DD is an attribute satisfying U=DD ¼ TGran Dð Þ.
In comparison to IND BjDDð Þ ¼ IND CjDDð Þ;GA U=B;TGran Redð Þð Þ ¼ U is simpler because of jU=Cj 6 jUj and

jIND CjDð Þj 6 jUj2. In addition, the granularity based reduct definition is more intuitive. For the calculation of general reduct,
based on relative discernibility relation, B#C is a superset of D-reduct if WD BjDð Þ ¼ WD CjDð Þ, where

WD BjDð Þ ¼ jUj2 �WD Dð Þ �Wd Bð Þ þWD D [ Bð Þ ¼ jUj2 �P
Xi2U=DjXij2 �

P
Xj2U=BjXjj2 þ

P
Xk2U=B[DjXkj2; based on the granularity

space, it is GA U=B;U=DDð Þ ¼ U for the determination of the superset of D-reduct, where

GA U=B;U=Dð Þ ¼ S
x½ �Bj x½ �B # x½ �DD

n o
¼ POSB DDð Þ. Here we provide an example of presenting the difference between two gen-

eral reduct definitions and reduction process.
Example 2. A calculation example of the positive region preservation attribute reduction. For Table 3, we have

U ¼ x1; x2; � � � ; x11f g;C ¼ a1; a2; � � � ; a6f g;D ¼ df g, and U=C ¼ X1;X2;X3;X4;X5;X6f g ¼ x1f g; x2f g; x3; x4f g; x5; x6f g; x7; x8; x9f g;f
x10; x11f gg;U=D ¼ P1; P2; P3f g ¼ x1; x3; x5; x7f g; x2; x4; x6; x8; x9; x10f g; x11f gf g.
Assume that we know TGran PRPRð Þ ¼ x1f g; x2f g; x3; x4; � � � ; x6f gf g, and we want to express B ¼ a1; a2f g is a superset of the

positive region preservation reduct, it can be written in relative discernibility realtion way, i.e.,
IND BjDDð Þ ¼ x1; x2h i; x2; x1h i; x1; x3h i; x3; x1h i; � � �f g ¼ IND CjDDð Þ, or in the way of granularity space, i.e.,
U=B 2 SPR TGran Redð Þð Þ;U=B ¼ TGran Redð Þ. Let U=P denote as TGran PRPRð Þ;U=C;U=P and U=B can be drawn as Fig. 1, in
which objects contained in a rectangle belong to the same equivalence class. From the relation of U=P;U=B, we can easily
know B is a positive region preservation reduct. As mentioned above, the general reduct defined by granularity space is sim-
pler and more intuitive than that defined by the relative indiscernibility relation.

To help the understanding of the proposed algorithms, here we show the process of Algorithm 3.3 for obtaining a positive
region preservation reduct.

An example of Algorithm 3.2 for computing the target granularity
Considering X1 � POSC Dð Þ, we have 8x 2 X1;Key x; PRPRð Þ ¼ f x1; dð Þ ¼ 1;Keya 1ð Þ:add x1ð Þ ¼ x1f g.
Considering X2 � POSC Dð Þ, we have 8x 2 X2;Key x; PRPRð Þ ¼ f x2; dð Þ ¼ 2;Keya 2ð Þ:add x2ð Þ ¼ x2f g.
Considering X3 � BNDC Dð Þ, we have 8x 2 X3;Key x; PRPRð Þ ¼ 4;Keya 4ð Þ:add X3ð Þ ¼ x3; x4f g.
Considering X4 � BNDC Dð Þ, we have 8x 2 X4;Key x; PRPRð Þ ¼ 4;Keya 4ð Þ:add X4ð Þ ¼ x3; x4; x5; x6f g.
Considering X5 � BNDC Dð Þ, we have 8x 2 X5;Key x; PRPRð Þ ¼ 4;Keya 4ð Þ:add X5ð Þ ¼ x3; x4; x5; x6; x7; x8; x9f g.



Table 3
A decision table.

U a1 a2 a3 a4 a5 a6 d

x1 0 0 0 0 0 0 1
x2 1 0 0 0 0 0 2
x3 1 1 0 0 0 0 1
x4 1 1 0 0 0 0 2
x5 1 1 0 0 1 1 1
x6 1 1 0 0 1 1 2
x7 1 1 0 1 1 1 1
x8 1 1 0 1 1 1 2
x9 1 1 0 1 1 1 2
x10 1 1 1 1 1 1 2
x11 1 1 1 1 1 1 3

Fig. 1. Granularity comparison.
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Considering X6 � BNDC Dð Þ, we have 8x 2 X6;Key x; PRPRð Þ ¼ 4;Keya 4ð Þ:add X6ð Þ ¼ x3; x4; x5; x6; x7; x8; x9; x10; x11f g.
Finally, we get Keya 1ð Þ ¼ x1f g;Keya 2ð Þ ¼ x2f g;Keya 4ð Þ ¼ x3; x4; x5; x6; x7; x8; x9; x10; x11f g and TGran PRPRð Þ ¼ x1f g; x2f g;f

x3; x4; x5; x6; x7; x8; x9; x10; x11f gg.
An example for calculating core attributes
According to Algorithm 3.2, we get G ¼ TGran PRPRð Þ ¼ x1f g; x2f g; x3; x4; � � � ; x11f gf g. Firstly, we compute the partition of U

determined by C, i.e., U=C ¼ X1;X2;X3;X4;X5;X6f g ¼ x1f g; x2f g; x3; x4f g; x5; x6f g; x7; x8; x9f g; x10; x11f gf g. Secondly, we calculate
the significance of every element of C to determine whether the element is a core attribute or not. For attribute a1, we have
U=C � a1f g ¼ x1; x2f g; x3; x4f g; x5; x6f g; x7; x8; x9f g; x10; x11f gf g and Sig� a1;C;Gð Þ ¼ jU � x3; � � � ; x11f gj ¼ 2. According to
Sig� a1;C;Gð Þ > 0, we know that a1 is a core attribute. For attribute a2, we have
U=C � a2f g ¼ x1f g; x2; x3; x4f g; x5; x6f g; x7; x8; x9f g; x10; x11f gf g and Sig� a2;C;Gð Þ ¼ jU � x1; x5; x6; � � � ; x11f gj ¼ 3. According to
Sig� a2;C;Gð Þ > 0, we know that a2 is a core attribute. For attribute a3, we have
U=C � a3f g ¼ x1f g; x2; x3; x4f g; x5; x6f g; x7; x8; x9; x10; x11f gf g and Sig� a3;C;Gð Þ ¼ 0. As a result, we know a3 is not a core attri-
bute. For attribute a4, we have U=C � a4f g ¼ x1f g; x2; x3; x4f g; x5; x6; x7; x8; x9f g; x10; x11f gf g and Sig� a4; C;Gð Þ ¼ 0. So we know
a4 is not a core attribute. For attributes a5 and a6, we have U=C � a5f g ¼ U=C � a6f g ¼
x1f g; x2f g; x3; x4f g; x5; x6f g; x7; x8; x9f g; x10; x11f gf g and Sig� a5;C;Gð Þ ¼ Sig� a6;C;Gð Þ ¼ 0. Thus, neither a5 nor a6 is not a core

attribute. Finally we get core ¼ a1; a2f g.
Example of Algorithm 3.3 for obtaining a positive region preservation reduct
Now we get G ¼ TGran PRPRð Þ ¼ x1f g; x2f g; x3; x4; � � � ; x6f gf g and reduct ¼ core ¼ a1; a2f g. As a result, we can get

U ¼ U � GA reductð Þ ¼ £. Because U is £, Algorithm 3.3 outputs reduct ¼ a1; a2f g.
4. Experiments and analyses

The objective of following experiments in this section is to show the effectiveness and the efficiency of the attribute
reduction algorithms, i.e., GS and GSV. Experiments are divided into three aspects. First, we employed 12 data sets in Table 4
to verify the performance of time consumption of GS, GSV, QGARA-FS, and QGARA-BS. Then, the computational time of algo-



Table 4
UCI Data Sets.

ID Data sets Cases Attributes Classes cC Dð Þ
1 Shuttle 58000 10 7 0.230
2 Mushroom 5644 23 6 0.536
3 Tic 9822 86 2 0.968
4 Segmentation 2310 20 7 0.989
5 Pima-indians-diabetes 768 9 2 0.995
6 Splice 3190 61 3 0.999
7 Dermatology 358 34 6 1
8 Wdbc 569 31 2 1
9 CNAE9 1080 856 9 1
10 Semeion 1593 267 10 1
11 DNA 2000 181 3 1
12 Connect4 67557 43 3 1
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rithms GS, GSV, QGARA-FS and QGARA-BS with the increase of the size of objects and attributes was compared. Finally, we
evaluated the classification accuracy of reducts generated by general attribute reduction algorithms using the naive bayes
classifier and the decision tree classifier.

We carried out all the attribute reduction algorithms in experiments on a personal computer with Windows 10, Intel(R)
Core(TM) CPU i5-8265U 1.60GHZ and 8 GB RAM memory. The software used was Visual Studio Code 1.3.8, and the program-
ming language was Python 3.7.

The data sets used in experiments are all downloaded from UCI repository of machine learning data sets [5] whose basic
information is outlined in Table 4. For the sake that reduction algorithms can address only symbolic data, data sets contain-
ing continuous attributes,i.e., Segmentation, Pima-indians-diabetes, and Wdbc, were preprocessed by equal-width dis-
cretization algorithms. For data sets with missing values,i.e., Mushroom, we removed the objects with missing values to
achieve uniform treatment of all data sets. The last column of Table 4, i.e., cC Dð Þ, stands for the positive region dependency
degree jPOSC Dð Þj=jUj. The data set is consistent when cC Dð Þ ¼ 1; otherwise, the data set is inconsistent. As shown in Table 4,
Shuttle, Mushroom, Tic, Segmentation, Pima-indians-diabetes, and Splice are inconsistent and the other 6 data sets are con-
sistent. Taking into consideration the similar results of five types of reducts under the general reduction algorithms, we
mainly took positive region preservation reduction and relative discernibility relation preservation reduction results to ver-
ify the difference of four reduction algorithms.
4.1. Efficiency comparison of four general attribute reduction algorithms

In this subsection, to show the time efficiency of proposed algorithms, we presented the time consumption of four attri-
bute reduction algorithms in obtaining reducts, and experiments results were shown in Tables 5 and 6.

Table 5 indicated the computational time of QGARA-FS, QGARA-BS, GS, and GSV for obtaining a positive region preserva-
tion reduct on 12 data sets. We can see that GSV was the fastest in four attribute reduction algorithms, and GS was faster
than QGARA-FS. From results of experiments on both consistent and inconsistent decision tables, the computational time
of four algorithms in obtaining positive region preservation reduct followed this order: QGARA-FS PGS, QGARA-FS >GSV.
GS performed better than QGARA-BS on small-scale data sets. However, in processing the large-scale data, it consumedmore
time than QGARA-BS for that the computation of the attribute with maximal significance was time-consuming. For most of
the cases in experiments, the computational time of GS can reduce over half the computation time of QGARA-FS, such as data
sets 2(Mushroom), 3(Tic), 4(Segmentation), etc. In the same condition, GSV can reduce over half of the computation time of
QGARA-BS, such as data sets 5(Pima-indians-diabetes), 7(Dermatology), 9(CNAE9), etc. In summary, for calculating positive
region preservation reducts on the consistent and inconsistent decision tables, the general attribute reduction algorithms
proposed in this paper, i.e. GS and GSV, were more efficient than the existing general attribute reduction algorithms, i.e.,
QGARA-FS and QGARA-BS. Table 6 shows the time consumption of four general reduction algorithms for obtaining a relative
discernibility relation preservation reduct. For the consistent decision table, a positive region preservation reduct is also a
relative discernibility relation preservation reduct. Thus, the results of the time consumption of four general reduction algo-
rithms on six consistent data sets were similar to the statistics of Table 5. For the time consumption of general reduction
algorithms on six inconsistent data sets, we can know that the computational time of GS was less than that of QGARA-FS,
and the same condition to GSV and QGARA-BS. In brief, the results of Table 6 were consistent with the observations of Table 5.
In summary, for calculating relative discernibility relation preservation reduct on the consistent and inconsistent decision
tables, the general reduction algorithms proposed in this paper were more efficient than the existing general reduction
algorithms.



Fig. 2. The time of general reduction algorithms versus the size of objects.
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Fig. 3. The time of general reduction algorithms versus the size of attributes.
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4.2. Comparison of reduction algorithms for different proportion data sets

In this subsection, to further compare the efficiency of general reduction algorithms, we compared the computational
time of QGARA-FS, QGARA-BS, GS, and GSV for obtaining a positive region preservation reduct with the increase of the size
of objects and the size of attributes.

Fig. 2 shows detailed change trends of the time consumption of each algorithm for obtaining a positive region preserva-
tion reduct with the number of objects increasing. In Fig. 2, the x-coordinate denotes the percentages of objects to the uni-
verse, while the y-coordinate concerns the time consumption of algorithms. We employed 8 data sets with different scale
(Mushroom, Tic, Splice, Dermatology, Wdbc, CNAE9, DNA, and Connect4) to verify the performance of time consumption
of QGARA-FS, QGARA-BS, GS, and GSV. Generally speaking, the computational time of four algorithms increased with the
increase of the percentages of objects to the universe. The same as 5 and 6, GS was more efficient than QGARA-FS and
GSV was faster than QGARA-BS. When dealing with the same UCI data sets, it is often the case that the computational time
of GS was less than that of QGARA-FS, and equal to that of QGARA-BS for small-scale data. But in presence of large-scale data
sets, QGARA-BS performed better than GS. It can be observed in many data sets, such as Fig. 2 (c), (e), (g). The computational
time of GSV was less than that of the other three general reduction algorithms. The computational time of QGARA-FS
increased distinctly in comparison to GS when the number of objects was increasing; the computational time of QGARA-
BS increased distinctly in comparison to GSV when the number of objects was increasing.

In Fig. 3, the x-coordinate pertains to the percentages of attributes to the conditional attributes of the data set, while the
y-coordinate concerns the time consumption of algorithms. We took 8 data sets (Mushroom, Tic, Segmentation, Splice, Der-
matology, Wdbc, CNAE9, and DNA) to verify the performance of the computational time of QGARA-FS, QGARA-BS, GS, and
GSV for obtaining a relative discernibility realtion preservation reduct. The result of QGARA-FS, QGARA-BS, GS, and GSV
was similar to the result induced from Fig. 2.
Table 5
Time consumption for obtaining PRPR.

ID Time of Time of Time of Time of
QGARA-FS(s) QGARA-BS(s) GS(s) GSV(s)

1 9.326 7.967 6.562 1.676
2 11.788 1.990 1.816 0.213
3 192.414 18.784 17.890 1.581
4 1.215 0.772 0.521 0.117
5 0.123 0.109 0.067 0.018
6 27.328 3.790 5.638 0.406
7 1.139 0.216 0.233 0.024
8 1.533 0.272 0.259 0.040
9 1095.294 67.414 129.634 2.199
10 162.241 13.839 35.478 2.247
11 94.026 9.592 21.678 3.702
12 889.698 61.010 137.170 17.500

Table 6
Time consumption for obtaining DRPR.

ID Time of Time of Time of Time of
QGARA-FS(s) QGARA-BS(s) GS(s) GSV(s)

1 10.885 9.831 7.489 4.103
2 3.640 2.419 2.064 1.864
3 200.923 19.734 19.231 3.168
4 1.423 0.925 0.648 0.244
5 0.157 0.140 0.099 0.044
6 29.326 4.279 6.016 0.794
7 1.145 0.263 0.258 0.051
8 1.570 0.357 0.312 0.065
9 1152.034 70.652 129.052 2.061
10 175.911 14.870 36.988 2.057
11 95.743 10.190 20.596 3.522
12 894.983 60.119 132.542 16.472



Table 7
The classification accuracy of decision tree with PRPR found by five algorithms.

ID Raw QGARA-FS QGARA-BS GS GSV CSFS

2 0.551 0.603 0.608 0.614 0.574 0.599
3 0.896 0.892 0.898 0.897 0.896 0.901
4 0.943 0.938 0.937 0.937 0.939 0.825
5 0.685 0.687 0.689 0.682 0.689 0.695
6 0.900 0.656 0.449 0.760 0.804 0.872
7 0.936 0.604 0.735 0.789 0.867 0.685
8 0.926 0.940 0.905 0.916 0.933 0.935
9 0.856 0.873 0.859 0.870 0.874 0.867
11 0.901 0.857 0.494 0.871 0.580 0.932
12 0.476 0.478 0.462 0.481 0.475 0.471

Average 0.807 0.753 0.704 0.782 0.763 0.778

Table 8
The classification accuracy of decision tree with DRPR found by five algorithms.

ID Raw QGARA-FS QGARA-BS GS GSV CSFS

2 0.551 0.554 0.551 0.558 0.551 0.584
3 0.896 0.896 0.898 0.897 0.894 0.900
4 0.943 0.938 0.940 0.938 0.942 0.819
5 0.685 0.682 0.685 0.685 0.691 0.684
6 0.900 0.651 0.455 0.762 0.809 0.873
7 0.936 0.590 0.746 0.787 0.878 0.685
8 0.926 0.938 0.902 0.907 0.931 0.933
9 0.856 0.872 0.853 0.870 0.871 0.862
11 0.901 0.861 0.502 0.868 0.580 0.933
12 0.476 0.477 0.466 0.477 0.477 0.472

Average 0.807 0.746 0.700 0.775 0.762 0.775

Table 9
The classification accuracy of naive bayes with PRPR found by five algorithms.

ID Raw QGARA-FS QGARA-BS GS GSV CSFS

2 0.649 0.557 0.650 0.565 0.582 0.668
3 0.777 0.885 0.895 0.896 0.896 0.805
4 0.603 0.575 0.570 0.575 0.605 0.519
5 0.682 0.682 0.682 0.682 0.682 0.682
6 0.792 0.545 0.519 0.657 0.576 0.778
7 0.977 0.602 0.769 0.763 0.933 0.682
8 0.902 0.804 0.865 0.889 0.874 0.753
9 0.949 0.909 0.901 0.907 0.933 0.887
11 0.924 0.767 0.535 0.827 0.594 0.894
12 0.597 0.601 0.599 0.606 0.597 0.599

Average 0.785 0.693 0.698 0.737 0.727 0.727

Table 10
The classification accuracy of naive bayes with DRPR found by five algorithms.

ID Raw QGARA-FS QGARA-BS GS GSV CSFS

2 0.649 0.595 0.642 0.595 0.642 0.649
3 0.777 0.891 0.895 0.896 0.896 0.805
4 0.603 0.575 0.570 0.575 0.605 0.519
5 0.682 0.682 0.682 0.682 0.682 0.682
6 0.792 0.545 0.519 0.657 0.576 0.778
7 0.977 0.602 0.769 0.763 0.933 0.682
8 0.902 0.804 0.865 0.889 0.874 0.753
9 0.949 0.909 0.901 0.907 0.933 0.887
11 0.924 0.767 0.535 0.827 0.594 0.894
12 0.597 0.601 0.599 0.606 0.597 0.599

Average 0.785 0.697 0.698 0.740 0.733 0.725
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4.3. Comparison of classification accuracy for general attribute reduction algorithms

As we know, there are many factors to the diversity of reducts obtained by reduction algorithms, such as reduction cri-
terion, search strategy, and heuristic functions used, etc. That is to say, the different general reduction algorithms with the
same reduction criterion may generate different reducts. To evaluate the effect of reduct obtained by different general reduc-
tion algorithms, we randomly selected 10 data sets as test objects from Table 4. We utilized the original data and the reduced
data, which is generated by five algorithms QGARA-FS, QGARA-BS, GS, GSV, and chi-square feature selection(CSFS for short),
to train naive bayes classifier and decision tree classifier based on the 10-fold cross-validation method. For chi-square fea-
ture selection, naive bayes classifier, and decision tree classifier, we used its implementation in [25]. Regarding the param-
eter K in CSFS, determining howmany attributes are contained in reduced data, we assigned K as the cardinality of the reduct
generated by GS. It is worth noticing that CSFS is not related to attribute reduction in theory and the reason why we put it
into comparisons is to do the evaluation of GS and GSV in feature selection perspective. For convenience of comparison, we
take the output of CSFS as a PRPR when K is assigned with the cardinality of the PRPR generated by GS; we take the output of
CSFS as a DRPR when K is assigned with the cardinality of the DRPR generated by GS. The classification accuracy to the raw
data and the reduced data generated by different algorithms were shown in Tables 7–10, where the column ”Raw” repre-
sents the classification accuracies of the classifier trained on raw data sets, the boldface highlights the highest accuracy
among different algorithms, and the row ”Average” represents average classification accuracy of reduction algorithms on
10 data sets, which can be interpreted as an estimated value of classification accuracy obtained by the output of related
reduction algorithm over unknown data sets. Obviously, for most of reduced data sets, reduced data can retain similar clas-
sification accuracy as the entire data set.

For Table 7, the order of algorithms in the number of achieving the most classification accuracy is CSFS(4) >GSV(3) >GS
(2) Q >GARA-FS(1) >QGARA-BS(0). The order of algorithms in the average of classification accuracy on 10 data sets is GS
(0.782) >CSFS(0.778) >GSV(0.763) >QGARA-FS(0.753) >QGARA-BS(0.704). GS achieves the best average classification accu-
racy on 10 data sets. That is to say, the steadiness of algorithms QGARA-FS, QGARA-BS, CSFS, and GSV in classification accu-
racy is not as good as GS. Furthermore, the PRPR obtained by GS and GSV performs better than that obtained by QGARA-FS
and QGARA-BS in the average classification accuracy of decision tree classifier. When it comes to the reduced data generated
in the criterion of relative discernibility relation preservation reduction, GSV and CSFS obtain the highest classification accu-
racy 4 times; QGARA-FS obtains the highest classification accuracy 3 times; GS obtains the highest classification accuracy 1
time; QGARA-BS obtains the highest classification accuracy 0 times. GSV and CSFS perform the best in times of achieving the
best classification accuracy. Observing the average classification accuracy on ten data sets, GS is also the best of five, i.e., GS
(0.775) PCSFS(0.775) >GSV(0.762) >QGARA-FS(0.746) >QGARA-BS(0.700). As a result, the DRPR obtained by GS and GSV
performs better than that obtained by QGARA-FS and QGARA-BS in the average classification accuracy of decision tree
classifier.

In the classification accuracy results of naive bayes classifier on reduced data generated in the criterion of positive region
preservation reduction and relative discernibility relation preservation reduction, GS was the best one in the classification
accuracy average on 10 data sets, and GSV was the second.

Furthermore, we also used the t-test to compare the average 10-fold cross-validation based accuracies over each dataset.
Taking the classification accuracies of reducts obtained by GS, GSV, QGARA-FS, and QGARA-BS as the sampling results of four
random variables VGS;VGSV ;VQFS and VQBS, we set up original hypothesis as H0 : VGS ¼ VQFS _ VGSV ¼ VQBS and assigned 0:05 as
the significance level a. For convenience of evaluation, we took as a comparison case the average 10-fold cross-validation
based accuracies of the same classification algorithm (naive bayes or decision trees) with two reducts (PRPR or DRPR) gen-
erated by the comparative algorithms (GS v.s. QGARA-FS or GSV v.s. QGARA-BS) over a dataset, and there are 80 (2 classifi-
cation algorithms � 2 types of reduct � 2 comparisons � 10 datasets) comparison cases in experiment. In experimental
result, there are only 19 cases rejecting the original hypothesis. That is to say, from the perspective of statistics inference,
there are only 23.75% of cases actually supporting that the proposed algorithms are better than the existing algorithms;
the remaining 76.25% of cases support the original hypothesis. As a result, four algorithms tie in the aspect of classification
accuracy, and if time permitted, it is a reasonable choice of selecting the existing general reduction algorithms for data
processing.

In the experimental part, we made a series of comparisons between the proposed general attribute reduction algorithms
and the existing general attribute reduction algorithms. We could draw conclusions listed as.

(1) In time consumption of the algorithms to obtain reducts, GS performed well in dealing with small-scale data. When
processing large-scale data sets, GSV and QGARA-BS were good choices for attribute reduction;
(2) According to the experiments, the classification accuracies of reducts generated by GS and GSV are competitive as that
generated by QGARA-FS and QGARA-BS.

5. Conclusion

In this study, we focus on the effective and efficient general reduction approach to obtain five types of reducts on the
complete decision tables. We introduce a concept termed as granularity space and represent five typical reducts with gran-
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ularity space. Based on the unified representation, we develop two quick general reduction algorithms. In comparison to the
existing general reduction algorithms, the proposed algorithms have two advantages as follows.

(1) The proposed algorithms are more efficient. In the process of attribute reduction, GS can reduce one half of the com-
putation time of QGARA-FS, and GSV can reduce over one half of the computation time of QGARA-BS.
(2) The reducts generated by proposed algorithms perform well as that generated by the existing reduction algorithms in
the classification accuracy of decision tree classifier and naive bayes classifier. Over the data sets in experiments, the aver-
age classification accuracy of decision tree classifier and naive bayes classifier trained on reduced data generated by GS
and GSV is equal to or higher than that trained on reduced data generated by QGARA-FS and QGARA-BS.

However, it is notable that the general reduction definitions and algorithms proposed in this paper are only suitable for
the complete decision table. There exist many generalized decision tables, such as incomplete decision tables, interval-
valued decision tables. Research on the extension of granularity space for the generalized decision tables will be investigated
in future work.
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