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Minimal and maximal descriptions of concepts are two important notions in covering-
based rough sets. Many issues in covering-based rough sets (e.g., reducts, approximations,
etc.) are related to them. It is well known that, it is time-consuming and error-prone when
set representations are used to compute minimal and maximal descriptions in a large scale
covering approximation space. To address this problem, matrix-based methods have been
proposed in which calculations can be conveniently implemented by computers. In this
paper, motivated by the need for knowledge discovery from large scale covering informa-
tion systems and inspired by the previous research work, we present two novel matrix-
based approaches to compute minimal and maximal descriptions in covering-based rough
sets, which can reduce the computational complexity of traditional methods. First, by
introducing the operation ‘‘sum” into the calculation of matrix instead of the operation
‘‘�”, we propose a new matrix-based approach, called approach-1, to compute minimal
and maximal descriptions, which does not need to compare the elements in two matrices.
Second, by using the binary relation of inclusion between elements in a covering, we pro-
pose another approach to compute minimal and maximal descriptions. Finally, we present
experimental comparisons showing the computational efficiency of the proposed
approaches on six UCI datasets. Experimental results show that the proposed approaches
are promising and comparable with other tested methods.

� 2020 Elsevier Inc. All rights reserved.
1. Introduction

Covering, as a widely used form of data representation, has been applied to many practical applications. Covering-based
rough sets, as an efficient means for dealing with covering data, was first proposed by Zakowski [1]. As one of the meaningful
extension models of rough sets [2], it has attracted much attention and induced lots of interesting results [3–14,34]. Pomy-
kala [3] introduced several pairs of dual approximation operators of covering-based rough sets. Bonikowski et al. [4] studied
the covering-based rough approximation operators based on the mutual correspondence of the concepts of extension and
intension. Mordeson [5] applied covering-based rough sets to ideal theory and discussed basic properties of the upper
approximation operator and showed how it can be used to give algebraic structural properties of certain subsets. Tsang
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et al. [6] proposed a new upper approximation operator of covering-based rough sets, which may help to extract more effi-
cient rules. Zhu and Wang [7,8] proposed three types of covering-based rough sets and introduced the notions of reduct and
exclusion of a covering. Grzymala-Busse [15–18] has done a series of studies on the missing attribute values, which also an
important aspect of covering-based rough approximation operators. Liu and Sai gave a comparison of two types of rough sets
induced by coverings [19]. Qin et al. discussed some properties of five pairs of dual covering approximation operators, and
presented conditions with which these covering approximation operators are identical [20]. Zhang and Luo changed five
pairs of covering approximation operators into the same pair of relation approximation operators [21]. Restrepo et al. inves-
tigated partial order relation for approximation operators in covering based rough sets [22]. Restrepo et al. used the concepts
of duality, conjugacy and adjointness to establish relationships between the most commonly used covering approximation
operators [23]. Zhu et al. [9,10] discussed some measurements of uncertainty in covering-based rough sets. Ma [11] intro-
duced some types of neighborhood-related covering rough sets. Zhang et al. [24] have shown the closeness of union and
intersection operations of rough approximation pairs. As a guideline and directional research of covering-based rough sets,
Yao et al. [12] proposed a framework for the study of covering based rough set approximations. They summarized and clas-
sified the existing approximation operators into element-based, granule-based and subsystem-based definitions, which
enables us to reproduce many existing approximation operators and introduce some new approximation operators.

Minimal and maximal descriptions of concepts are two important notions in covering-based rough sets. Many issues in
covering-based rough sets, e.g., reducts, approximations, etc., are related to them. In most cases, it is time-consuming and
error-prone when set representations are used to compute minimal and maximal descriptions in a large scale covering
approximation space. Especially, with the increase of the volume of data, it is becoming more and more difficult to process
them. To address this problem, matrix-based methods have been proposed in which calculations can be conveniently imple-
mented by computers. Recently, research on the matrix-based representation for covering-based rough sets has been a hot
topic in the area of rough set theory. For example, Wang et al. [25] defined two characteristic matrices of a covering and
represented equivalently three types of existing covering approximation operators by using those two boolean characteristic
matrices. Tan et al. [26] introduced matrix-based methods to compute set approximations and reducts in a covering decision
information system. Lang et al. [27] presented incremental approaches for computing the second and sixth lower and upper
approximations of sets in the dynamic covering approximation spaces, where the characteristic matrices of dynamic cover-
ings are updated by the way of immigration and emigration of objects. Huang et al. [28] presented a matrix-based represen-
tation of rough fuzzy approximations by a Boolean matrix associated with a matrix operator in dynamic fuzzy decision
systems. Wang and Zhu [29] first constructed a bipartite graph by using a covering, and then presented two equivalent rep-
resentations of a pair of covering upper and lower approximation operators according to the constructed bipartite graph.
Yang and Hu [30] studied the matrix representations and interdependency of three pairs of L-fuzzy covering-based approx-
imation operators and proposed some necessary and sufficient conditions under which two L-fuzzy coverings to generate the
same L-fuzzy covering-based approximation operators. In Ref. [32], Wang and Zhang defined several matrices and matrix
operations for computing the minimal and maximal descriptions, together with the corresponding approximation operators,
and presented the method to calculate reductions of coverings. Although the results in Ref. [32] showed an interesting view
to investigate the combination between matrices and covering-based rough sets, there still exist some drawbacks that

should be addressed. For example, noting that the result of AðCÞ � ATðCÞ is symmetric, we only need to calculate the upper
triangle elements in the matrix, which can reduce the number of calculations. In this paper, motivated by the need for
knowledge discovery from large scale covering information systems and inspired by the work of Wang et al. [32], we present
two novel matrix-based approaches to compute minimal and maximal descriptions in covering-based rough sets, which can
reduce the computational complexity of traditional methods.

The motivation of this paper is outlined as follows.

� New calculation strategies are developed, which provide new methods to compute minimal and maximal descriptions in
covering-based rough sets.

� The proposed calculation methods are promising and comparable with the existing methods in the literature.

The paper is organized as follows. The next section introduces some preliminary concepts and properties regarding
covering-based rough sets. In Section 3, we present two kinds of calculating methods for minimal and maximal descriptions
in covering-based rough sets. The experimental results are given in Section 4. Finally, some conclusions are included in the
last section.

2. Preliminaries

In this section, we give some basic definitions about covering approximation space, minimal description and maximal
description in covering-based rough sets. Throughout the paper, we suppose that U is a nonempty and finite set, named
universe.

Definition 1. [1] Let U be a universe of discourse and C a family of nonempty subsets of U. If [C ¼ U, then C is called a
covering of U. The ordered pair hU; Ci is called a covering approximation space.
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Coverings are a type of common and important data organization mode, and covering-based rough sets which serve as a
generalization of Pawlak’s rough sets [2] are an effective tool to deal with this kind of data. One example is that an attribute
or an attribute subset in incomplete information systems induces a covering instead of a partition. Another example is that a
tolerance relation on a universe also generates a covering. It has been attracted increasing research interest about covering
and covering-based rough sets [35–39]. Since a partition of a universe is a family of disjoint subsets of the universe, then it is
a special case of a covering. It is part of the reason why covering-based rough sets attract increasing research interest.

Definition 2 [7]. Let hU;Ci be a covering approximation space, x 2 U, then mdCðxÞ ¼
fK 2 C : x 2 K ^ ð8S 2 CÞ ðx 2 S ^ S#K ) K ¼ SÞg is called the minimal description of x.

Given an approximation space hU;Ci, for any object x 2 U, the minimal descriptor of x contains the core objects in the
approximation space that are related to x, and the minimal descriptor may provide a simple and key description for x when
we discuss the issue of set approximations in hU;Ci.

Definition 3 [7]. Let hU;Ci be a covering approximation space, x 2 U, then MDCðxÞ ¼ fK 2 C : x
2 K ^ ð8S 2 CÞðx 2 S ^ K# S ) K ¼ SÞg is called the maximal description of x.

The maximal descriptor of x contains all objects in the approximation space that are related to x, and the maximal
descriptor may provide a detailed and comprehensive description for x when we discuss the issue of set approximations
in hU;Ci.

Yao et al. [12] have pointed out that the utilization of the maximal descriptors of objects is equally reasonable as the uti-
lization of the minimal ones in a covering approximation space.

3. Two matrix-based calculation approaches for minimal and maximal descriptions in covering-based rough sets

In this section, we first introduce the matrix-based approaches proposed by Wang and Zhang [32], and give some exam-
ples to show how to calculate the minimal and maximal descriptions by using Wang’s approaches. Second, we propose two
novel matrix-based approaches, called matrix-based approach-1 and matrix-based approach-2, respectively, to compute the
minimal and maximal descriptions in covering-based rough sets. In other words, in this paper we study the minimal and
maximal descriptions in covering-based rough sets from the view of modified matrix, where matrix-based approaches pro-
posed in Ref. [32] are served as a basis of matrix-based approach-1 and matrix-based approach-2. We also give some exam-
ples to show how to calculate the minimal and maximal descriptions by using matrix-based approach-1 and matrix-based
approach-2. In addition, we analyze the time complexities of different approaches.

3.1. Wang’s approach for calculating minimal and maximal descriptions

Definition 4 [25]. Let U ¼ fx1; x2; . . . ; xmg be a universe of discourse, C ¼ fK1;K2; . . . ;Kng be a covering of U, then matrix

AðCÞ ¼ ðaijÞn�m is called a matrix representation of C, where for any 1 6 i 6 n and 1 6 j 6 m; aij ¼ 1; xj 2 Ki;
0; xj R Ki;

�
.

We can also express AðCÞ in the form of vectors, that is, AðCÞ ¼ ðaijÞn�m ¼
a1

a2

..

.

an

0
BBB@

1
CCCA, where for any

1 6 i 6 n;ai ¼ ðai1; ai2; . . . ; aimÞ.
The following example is employed to show how we obtain a matrix representation of a covering.

Example 1 [32]. Let U ¼ fx1; x2; x3; x4; x5g and C ¼ fK1;K2;K3;K4g, where K1 ¼ fx1; x2g,
K2 ¼ fx1; x3g;K3 ¼ fx1; x2; x3g;K4 ¼ fx4; x5g. From Definition 4, the matrix representation of C can be figured out as follows.
AðCÞ ¼

K1

K2

K3

K4

x1 x2 x3 x4 x5
1 1 0 0 0
1 0 1 0 0
1 1 1 0 0
0 0 0 1 1

0
BBB@

1
CCCA
Lemma 1 ([31,32]). Let C ¼ fK1;K2; . . . ;Kng be a covering of U ¼ fx1; x2; . . . ; xmg, then AðCÞ � ATðCÞ ¼ ðbijÞn�n, where
bij ¼ jKi \ Kjj.
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In fact, Lemma 1 can be used to calculate the number of conjoint elements of Ki and Kj, where 1 6 i; j 6 n. It can be easily

proved that the result of AðCÞ � ATðCÞ is a symmetric matrix.

Definition 5 [32]. Let C ¼ fK1;K2; . . . ;Kng be a covering of U ¼ fx1; x2; . . . ; xmg, then for any 1 6 j 6 m,

AðCÞxj ¼
b1
b2

..

.

bn

0
BBB@

1
CCCA, where for any 1 6 i 6 n; bi ¼ ai; aij – 0

0; aij ¼ 0

�
.

The function of Definition 5 is to find those Ki which contains xj in AðCÞ, and if the Ki does not contain xj, then we set bi as
zero vector.

Definition 6 [32]. Let C ¼ fK1;K2; . . . ;Kng be a covering of U ¼ fx1; x2; . . . ; xmg, then AðĈÞ ¼ AðCÞ � 1m�n.
In fact, the function of Definition 6 is to calculate how many elements in each Ki. Example 2 is employed to show how

Definitions 6 and 7 work.

Example 2 [32]. (Example 1; continuation)
AðCÞx1 ¼

1 1 0 0 0
1 0 1 0 0
1 1 1 0 0
0 0 0 0 0

0
BBB@

1
CCCA; AðĈÞ ¼

2 2 2 2
2 2 2 2
3 3 3 3
2 2 2 2

0
BBB@

1
CCCA:
From Example 2, one can find that the last row of AðCÞx1 is zero vector because the element x1 does not belong to K4.

Moreover, one can also see that the elements in each row of AðĈÞ are the same because each row just shows the number

of elements in each Ki. For instance, the third row of AðĈÞ is ð3;3;3;3Þ, which indicates that there are three elements in K3.

Definition 7 [32]. Let C ¼ fK1;K2; . . . ;Kng be a covering of U ¼ fx1; x2; . . . ; xmg and AðCÞxj � A
TðCÞxj ¼ ðastÞn�n, then

ast ¼ jKs \ Ktj and ast > 0 if and only if xj 2 Ks \ Kt , where ‘‘�” denotes the multiplication of any two matrices and AT the
transposition of A.
Definition 8 [32]. Let A1 ¼ ðaijÞn�n and A2 ¼ ðbijÞn�n be two matrices. We define an operation � as follows:

A3 ¼ A1 � A2 ¼ ðdiÞn�1, where di ¼ 1; aii ¼ bii ^ ði– j ) aij – bijÞ
0; otherwise

�
.

Definition 9 [32]. Let C ¼ fK1;K2; . . . ;Kng be a covering of U ¼ fx1; x2; . . . ; xmg, for any Cl #C, we define:

(1) f ðC1Þ ¼ ðyiÞn�l, where yi ¼ 1, if Ki 2 C1, else yi ¼ 0.

(2) f ðmdðxiÞÞ ¼ AðCÞxiA
TðCÞxi � ATðĈÞ.

(3) f ðMDðxiÞÞ ¼ AðCÞxi � A
TðCÞxi � AðĈÞ.

In fact, Definitions 7–9 characterize a method for computing minimal and maximal descriptions.

Example 3 [32]. (Example 1; continuation)
f ðmdðx1ÞÞ ¼ AðCÞx1 � A
TðCÞx1 � ATðĈÞ

¼

1 1 0 0 0

1 0 1 0 0

1 1 1 0 0

0 0 0 0 0

0
BBBBB@

1
CCCCCA

�

1 1 1 0

1 0 1 0

0 1 1 0

0 0 0 0

0 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA

�

2 2 2 2

2 2 2 2

3 3 3 3

2 2 2 2

0
BBBBB@

1
CCCCCA

T

¼

2 1 2 0

1 2 2 0

2 2 3 0

0 0 0 0

0
BBBBB@

1
CCCCCA

�

2 2 2 2

2 2 2 2

3 3 3 3

2 2 2 2

0
BBBBB@

1
CCCCCA

T

¼

1

1

0

0

0
BBBBB@

1
CCCCCA
Hence, mdðx1Þ ¼ fK1;K2g.
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f ðMDðx1ÞÞ ¼ AðCÞx1 � A
TðCÞx1 � AðĈÞ ¼

2 1 2 0
1 2 2 0
2 2 3 0
0 0 0 0

0
BBB@

1
CCCA

2 2 2 2
2 2 2 2
3 3 3 3
2 2 2 2

0
BBB@

1
CCCA ¼

0
0
1
0

0
BBB@

1
CCCA
Hence, we have that MDðx1Þ ¼ fK3g.
As a summary, the approach mentioned in Ref. [32] can be summed up as Algorithm 1. The total time complexity of Algo-

rithm 1 is OðjCjjUj þ ðjCj þ jCj2ÞjUjÞ, and steps 9–20 are the main part of Algorithm 1 for calculating the minimal descriptions.

The time complexity of steps 9–20 is OððjCj þ jCj2ÞjUjÞ.

Algorithm 1. Wang’s Matrix approach for computing minimal descriptions

3.2. Modified approaches for calculating minimal and maximal descriptions

In this subsection, derived from Algorithm 1, we shall propose two new matrix-based approaches, called approach-1 and
approach-2 respectively, to compute the minimal and maximal descriptions. Two detailed examples are employed to help
better understand the proposed approaches. Moreover, we also analyze the time complexity of the proposed algorithms.

3.2.1. Approach-1 for calculating minimal and maximal descriptions
In approach-1, we replace the operation ‘‘�” in Algorithm 1 with a ‘‘sum” operation. The sum operation does not need to

compare the elements in two matrices, which can reduce the calculation complexity and improve the efficiency of Algorithm 1.

Definition 10. Let C ¼ fK1;K2; . . . ;Kng be a covering of universe U ¼ fx1; x2; . . . ; xmg, and AðCÞxj � A
TðCÞxj ¼ ðcstÞn�n, then

(1) We define ðcstÞn�n ¼ ðv1;v2; . . . ;vnÞ, where vi ¼
c1i
c2i
..
.

cni

0
BBB@

1
CCCA, i ¼ 1;2; . . . ;n.
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(2) We define SðCÞxj ¼ ðdiÞn�1 ¼ v1 þ v2 þ � � � þ vn ¼

Pn
i¼1c1iPn
i¼1c2i
..
.

Pn
i¼1cni

0
BBB@

1
CCCA ¼

d1

d2

..

.

dn

0
BBB@

1
CCCA:

(3) We define yi ¼ 1; di ¼ minfdj dj > 0; j 2 f1;2; . . . ngg��
0; otherwise

�
. where ‘‘min” denotes the minimum value, and

minfdj dj > 0; j 2 f1;2; . . .ngg�� means that we should first find all the values which satisfy dj > 0, and then select the
minimum one from them.
Definition 11. Let C ¼ fK1;K2; . . . ;Kng be a covering of universe U, for any C1 #C, the characteristic function of C1 is defined

as gðC1Þ ¼ ðqiÞn�1, where qi ¼ 1; Ki 2 C1

0; otherwise

�
.

Theorem 1. Let C ¼ fK1;K2; . . . ;Kng be a covering of universe U ¼ fx1; x2; . . . ; xmg, and AðCÞxj � A
TðCÞxj ¼ ðastÞn�n, the character-

istic function gðmdðxjÞÞ ¼ ðyiÞn�1. If yi ¼ 1 then Ki 2 mdðxjÞ, else Ki R mdðxjÞ.
Proof. Suppose that xj 2 Ks and xj 2 Kt , AðCÞxj ¼
b1
b2

..

.

bn

0
BBB@

1
CCCA then
AðCÞxj � A
TðCÞxj ¼ ðastÞn�n ¼

b1

b2

..

.

bn

0
BBBB@

1
CCCCA � bT

1 bT
2 � � � bT

n

� � ¼
b1 � bT

1 b1 � bT
2 � � � b1 � bT

n

b2 � bT
1 b2 � bT

2 � � � b2 � bT
n

� � � � � � � � � � � �
bn � bT

1 bn � bT
2 � � � bn � bT

n

0
BBBB@

1
CCCCA:
Therefore, ast ¼ bs � bT
t , where s; t 2 f1;2; . . . ;ng. According to Proposition 2 in [20], we have that ast ¼ bs � bT

t > 0.
Then, on the one hand, according to Definition 10, we have that.

di ¼ ai1 þ ai2 þ � � � þ ain ¼ bi � bT1 þ bi � bT2 þ � � � þ bi � bTn , noting that bs � bTt > 0, then di > 0, where i 2 f1;2; . . . ;ng.
On the other hand, if di ¼ minfds; dig, then ds � di > 0, where s; i 2 f1;2; � � � ;ng.

At same time, we know that
ds � di ¼ ðbs � bT
1 þ bs � bT

2 þ � � � þ bs � bT
nÞ � ðbi � bT

1 þ bi � bT
2 þ � � � þ bi � bT

nÞ
¼ ðbs � bT

1 � bi � bT
1Þ þ ðbs � bT

2 � bi � bT
2Þ þ � � � þ ðbs � bT

n � bi � bT
nÞ:
As we know AðCÞxj � A
TðCÞxj is a special case of AðCÞ � ATðCÞ, where AðCÞ � ATðCÞ ¼ ðbijÞn�n, and

AðCÞ ¼ ðatjÞn�m ¼
a1

a2

..

.

an

0
BBB@

1
CCCA; atj – 0.

Therefore,
ds � di ¼ ðbs � bT
1 � bi � bT

1Þ þ ðbs � bT
2 � bi � bT

2Þ þ � � � þ ðbs � bT
n � bi � bT

nÞ
¼ ðas � aT

1 � ai � aT
1Þ þ ðas � aT

2 � ai � aT
2Þ þ � � � þ ðas � aT

n � ai � aT
nÞ ¼ ðbs1 � bi1Þ þ ðbs2 � bi2Þ þ � � � þ ðbsn � binÞ:
Then, according to Lemma 1,
ds � di ¼ ðbs1 � bi1Þ þ ðbs2 � bi2Þ þ � � � þ ðbsn � binÞ ¼ ðjKs \ K1j � jKi \ K1jÞ þ � � � þ ðjKs \ Knj � jKi \ KnjÞ > 0:
Then, we have that Ks � Ki, that is to say Ki 2 mdðxjÞ. This completes the proof. h.
Definition 12. Let C ¼ fK1;K2; . . . ;Kng be a covering of universe U ¼ fx1; x2; . . . ; xmg, and

AðCÞxj � A
TðCÞxj ¼ ðastÞn�n; SðCÞxj ¼

d1

d2

..

.

dn

0
BBB@

1
CCCA, We define
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hi ¼
1; di ¼ maxfdjjdj > 0; j 2 f1;2; . . .ngg
0; otherwise;

�

where ‘‘max” denotes the maximum value, and maxfdj dj > 0; j 2 f1;2; . . . ngg�� means that we should first find all the values
which satisfy dj > 0, and then select the maximum one from them.

Theorem 2. Let C ¼ fK1;K2; . . . ;Kng be a covering of universe U ¼ fx1; x2; . . . ; xmg, and AðCÞxj � A
TðCÞxj ¼ ðastÞn�n, the

characteristic function gðMDðxjÞÞ ¼ ðhiÞn�1. If hi ¼ 1 then Ki 2 MDðxjÞ, else Ki R MDðxjÞ.
Proof. We omit the proof of Theorem 2, since it can be proved in a similar way as Theorem 1.

Example 4 Example 1; continuation. 0 1
AðCÞx1 � A
TðCÞx1 ¼

1 1 0 0 0

1 0 1 0 0

1 1 1 0 0

0 0 0 0 0

0
BBBBB@

1
CCCCCA

�

1 1 1 0

1 0 1 0

0 1 1 0

0 0 0 0

0 0 0 0

BBBBBBBB@

CCCCCCCCA
¼

2 1 2 0

1 2 2 0

2 2 3 0

0 0 0 0

0
BBBBB@

1
CCCCCA

) SðCÞx1 ¼

2þ 1þ 2þ 0

1þ 2þ 2þ 0

2þ 2þ 3þ 0

0þ 0þ 0þ 0

0
BBBBB@

1
CCCCCA

¼

5

5

7

0

0
BBBBB@

1
CCCCCA

) gðmdðx1ÞÞ ¼

1

1

0

0

0
BBBBB@

1
CCCCCA
; gðMDðx1ÞÞ ¼

0

0

1

0

0
BBBBB@

1
CCCCCA
:

Hence, mdðx1Þ ¼ fK1;K2g;MDðx1Þ ¼ fK3g.
AðCÞx2 � A
TðCÞx2 ¼

1 1 0 0 0

0 0 0 0 0

1 1 1 0 0

0 0 0 0 0

0
BBBBB@

1
CCCCCA

�

1 0 1 0

1 0 1 0

0 0 1 0

0 0 0 0

0 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA

¼

2 0 2 0

0 0 0 0

2 0 3 0

0 0 0 0

0
BBBBB@

1
CCCCCA

) SðCÞx2 ¼

2þ 0þ 2þ 0

0þ 0þ 0þ 0

2þ 0þ 3þ 0

0þ 0þ 0þ 0

0
BBBBB@

1
CCCCCA

¼

4

0

5

0

0
BBBBB@

1
CCCCCA

) gðmdðx2ÞÞ ¼

1

0

0

0

0
BBBBB@

1
CCCCCA
; gðMDðx2ÞÞ ¼

0

0

1

0

0
BBBBB@

1
CCCCCA
:

Hence, mdðx2Þ ¼ fK1g;MDðx2Þ ¼ fK3g. 0 1
AðCÞx3 � A
TðCÞx3 ¼

0 0 0 0 0

1 0 1 0 0

1 1 1 0 0

0 0 0 0 0

0
BBBBB@

1
CCCCCA

�

0 1 1 0

0 0 1 0

0 1 1 0

0 0 0 0

0 0 0 0

BBBBBBBB@

CCCCCCCCA
¼

0 0 0 0

0 2 2 0

0 2 3 0

0 0 0 0

0
BBBBB@

1
CCCCCA

) SðCÞx3 ¼

0þ 0þ 0þ 0

0þ 2þ 2þ 0

0þ 2þ 3þ 0

0þ 0þ 0þ 0

0
BBBBB@

1
CCCCCA

¼

0

4

5

0

0
BBBBB@

1
CCCCCA

) gðmdðx3ÞÞ ¼

0

1

0

0

0
BBBBB@

1
CCCCCA
; gðMDðx3ÞÞ ¼

0

0

1

0

0
BBBBB@

1
CCCCCA
:

Hence, mdðx3Þ ¼ fK2g;MDðx3Þ ¼ fK3g.



C. Liu et al. / Information Sciences 539 (2020) 312–326 319
AðCÞx4 � A
TðCÞx4 ¼

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2

0
BBB@

1
CCCA ) SðCÞx4 ¼

0
0
0
2

0
BBB@

1
CCCA ) gðmdðx4ÞÞ ¼

0
0
0
1

0
BBB@

1
CCCA; gðMDðx4ÞÞ ¼

0
0
0
1

0
BBB@

1
CCCA:
Hence, mdðx4Þ ¼ fK4g;MDðx4Þ ¼ fK4g.
AðCÞx5 � A
TðCÞx5 ¼

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2

0
BBB@

1
CCCA ) SðCÞx5 ¼

0
0
0
2

0
BBB@

1
CCCA ) gðmdðx5ÞÞ ¼

0
0
0
1

0
BBB@

1
CCCA; gðMDðx5ÞÞ ¼

0
0
0
1

0
BBB@

1
CCCA:
Hence, mdðx5Þ ¼ fK4g;MDðx5Þ ¼ fK4g.
As a summary, the above mentioned approach can be summed up as Algorithm 2. Algorithm 2 is an improved matrix-

based algorithm for computing minimal and maximal descriptions in covering-based rough sets. The total time complexity
of Algorithm 2 is OðjCjjUj þ ðjCj þ jCjÞjUjÞ, and steps 9–26 are the main part of Algorithm 2 for calculating the minimal
descriptions. The time complexity of steps 9–26 is OððjCj þ jCjÞjUjÞ, which shows that Algorithm 2 is more efficient than Algo-
rithm 1.

Algorithm 2. Approach-1 for computing minimal descriptions
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In this subsection, derived from Algorithm 1, we shall propose two new matrix-based approaches, called approach-1
and approach-2 respectively, to compute the minimal and maximal descriptions. Two detailed examples are employed
to help better understand the proposed approaches. Moreover, we also analyze the time complexity of the proposed
algorithms.

3.2.2. Approach-2 for calculating minimal and maximal descriptions
In this subsection, we shall propose another kind of matrix-based approach to compute the minimal and maximal

descriptions in covering-based rough sets.
Let U ¼ fx1; x2; . . . ; xmg be a universe of discourse, C ¼ fK1;K2; . . . ;Kng be a covering of U, then matrix AðKsÞ ¼ ðasiÞ1�m is

called a matrix representation of Ks and matrix Að� KsÞ ¼ ð� asiÞ1�m is called a matrix representation of � Ks, where for

any 1 6 s 6 n and 1 6 i 6 m, asi ¼ 1; xj 2 Ks;
0; xj R Ks

�
, � asi ¼ 0; xj 2 Ks;

1; xj R Ks

�

Theorem 3. Let C ¼ fK1;K2; . . . ;Kng be a covering of U ¼ fx1; x2; . . . ; xmg;AðCÞ ¼ ðaijÞn�m is a matrix representation of C, for any

Ks;Kt 2 Cðs– tÞ, AðKsÞ � ATð� KtÞ ¼ 0 if and only if Ks #Kt .
Proof. For any Ks;Kt 2 C(s – t), if AðKsÞ ¼ ðasjÞ1�m ¼ ðas1; as2; � � � ; asmÞ, AðKtÞ ¼ ðatjÞ1�m ¼ ðat1; at2; � � � ; atmÞ, then

AðKsÞ � ATð� KtÞ ¼ 0 () Ks\ � Kt ¼ £ () Ks #Kt . This completes the proof. h
Definition 13. Let C ¼ fK1;K2; . . . ;Kng be a covering of U ¼ fx1; x2; . . . ; xmg, Ks 2 C, we define

ut ¼
1; xj 2 Kt ^ ð8Ks 2 CÞðxj 2 Ks ^ Ks #Kt ) Kt ¼ KsÞ
0; otherwise

�
.

Theorem 4. Let C ¼ fK1;K2; . . . ;Kng be a covering of U ¼ fx1; x2; . . . ; xmg, Ks 2 C, the characteristic function wðmdðxjÞÞ ¼ ðutÞn�1.
If ut ¼ 1, then Kt 2 mdðxjÞ, else Kt R mdðxjÞ.
Proof. Theorem 4 can be easily proved by using Definition 2.
Definition 14. Let C ¼ fK1;K2; . . . ;Kng be a covering of U ¼ fx1; x2; . . . ; xmg, Ks 2 C, we define

gs ¼
1; xj 2 Kt ^ ð8Ks 2 CÞðxj 2 Ks ^ Kt #Ks ) Kt ¼ Ks

0; otherwise

�
.

Theorem 5. Let C ¼ fK1;K2; . . . ;Kng be a covering of U ¼ fx1; x2; . . . ; xmg, Ks 2 C, the characteristic function fðMDðxjÞÞ ¼ ðgsÞn�1.
If gs ¼ 1, then Ks 2 MDðxjÞ, else Ks R MDðxjÞ.
Example 5 Example 1; continuation. According to Example 1, we can obtain the following results:

AðK1Þ � ATð� K2Þ ¼ ð1;1;0;0;0Þ � ð0;1;0;1;1ÞT ¼ 1,

AðK1Þ � ATð� K3Þ ¼ ð1;1;0;0;0Þ � ð0;0;0;1;1ÞT ¼ 0,
AðK1Þ � ATð� K4Þ ¼ ð1;1;0;0;0Þ � ð1;1;1;0;0ÞT ¼ 2,
AðK2Þ � ATð� K1Þ ¼ ð1;0;1;0;0Þ � ð0;0;1;1;1ÞT ¼ 1,

AðK2Þ � ATð� K3Þ ¼ ð1;0;1;0;0Þ � ð0;0;0;1;1ÞT ¼ 0,
AðK2Þ � ATð� K4Þ ¼ ð1;0;1;0;0Þ � ð1;1;1;0;0ÞT ¼ 2,

AðK3Þ � ATð� K1Þ ¼ ð1;1;1;0;0Þ � ð0;0;1;1;1ÞT ¼ 1,
AðK3Þ � ATð� K2Þ ¼ ð1;1;1;0;0Þ � ð0;1;0;1;1ÞT ¼ 1,
AðK3Þ � ATð� K4Þ ¼ ð1;1;1;0;0Þ � ð1;1;1;0;0ÞT ¼ 3,

AðK4Þ � ATð� K1Þ ¼ ð0;0;0;1;1Þ � ð0;0;1;1;1ÞT ¼ 2,
AðK4Þ � ATð� K2Þ ¼ ð0;0;0;1;1Þ � ð0;1;0;1;1ÞT ¼ 2,
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AðK4Þ � ATð� K3Þ ¼ ð0; 0;0;1;1Þ � ð0;0;0;1;1ÞT ¼ 2.
From Theorem 3, we can conclude that K1 #K3 and K2 #K3.

For x1: As x1 is included in K1;K2 and K3, we can obtain the vector

1
1
1
0

0
BB@

1
CCA.

According to Theorems 4 and 5, and considering that K1 #K3 and K2 #K3, we can obtain the following results:
wðmdðx1ÞÞ ¼

1

1

0

0

0
BBBBB@

1
CCCCCA

) mdðx1Þ ¼ fK1;K2g; fðMDðx1ÞÞ ¼

0

0

1

0

0
BBBBB@

1
CCCCCA

) MDðx1Þ ¼ fK3g:
In a similar way, we can obtain the following results:
wðmdðx2ÞÞ ¼

1

0

0

0

0
BBBBB@

1
CCCCCA

) mdðx2Þ ¼ fK1g; fðMDðx2ÞÞ ¼

0

0

1

0

0
BBBBB@

1
CCCCCA

) MDðx2Þ ¼ fK3g:
wðmdðx3ÞÞ ¼

0

1

0

0

0
BBBBB@

1
CCCCCA

) mdðx3Þ ¼ fK2g; fðMDðx3ÞÞ ¼

0

0

1

0

0
BBBBB@

1
CCCCCA

) MDðx3Þ ¼ fK3g:
wðmdðx4ÞÞ ¼

0

0

0

1

0
BBBBB@

1
CCCCCA

) mdðx4Þ ¼ fK4g; fðMDðx4ÞÞ ¼

0

0

0

1

0
BBBBB@

1
CCCCCA

) MDðx4Þ ¼ fK4g:
wðmdðx5ÞÞ ¼

0

0

0

1

0
BBBBB@

1
CCCCCA

) mdðx5Þ ¼ fK4g; fðMDðx5ÞÞ ¼

0

0

0

1

0
BBBBB@

1
CCCCCA

) MDðx5Þ ¼ fK4g:
The method discussed above can be summarized as Algorithm 3, which is also a matrix-based method for calculating

minimal and maximal descriptions. The total time complexity of Algorithm 3 is OðjCjjUj þ jCj þ jCj2jUjÞ. Steps 10–20 are
the main part of Algorithm 3 for calculating the minimal and maximal descriptions, whose time complexity is

OðjCj þ jCj2jUjÞ.
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Algorithm 3. Approach-2 for computing minimal and maximal descriptions
4. Experimental analysis

In this section, in order to evaluate our algorithms, we conduct some experiments on a personal computer with 64-bit
Windows10, Intel(R) Core(TM) i5-6500 CPU@3.2 GHz, and 8 GB memory. The software is MATLAB R2016b. The objective
of the following experimental results is to compare the efficiency of the proposed methods and the existing methods. For
the sake of clarification, the methods described in Ref. [32], approach-1 and approach-2 proposed in this paper are denoted
as Matrix approach-0, Matrix approach-1 and Matrix approach-2, respectively. Since our approaches only deal with discrete
attributes, we employ Rosetta software ( http://www.lcb.uu.se/tools/rosetta/) to fill in some missing values and transform
the numerical and continuous attributes into the discrete ones. We perform the experiments on six datasets available from
the UCI machine leaning repository [33]. The characteristics of the six datasets are summarized in Table 1.

In the experiments, we gradually increase the size of data sets, and compare the time of various approaches (i.e., Matrix
approach-0, Matrix approach-1 and Matrix approach-2) for calculating the minimal and maximal descriptions in covering-
based rough sets. More concretely, we divide each date set T into ten subsets, which is denoted by fU1;U2; . . . ;U10g, where U1

contains the top 10% elements in T; U2 contains the top 20% elements in T,. . ., and U10 is the whole data set, so the size of U1
Table 1
Description of the datasets.

No. Data sets Number of objects Number of attributes

1 Iris 150 4
2 German 1000 21
3 Statlog (Image Segmentation) 2310 19
4 Chess 3196 36
5 Bach Choral Harmony 5665 17
6 Anuran Calls (MFCCs) 7195 22

http://www.lcb.uu.se/tools/rosetta/


Fig. 2. Comparisons of computational time of maximal descriptions with the size increasing gradually.

Fig. 1. Comparisons of computational time of minimal descriptions with the size increasing gradually.
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Fig. 4. Comparisons of running time of maximal descriptions on six datasets.

Fig. 3. Comparisons of running time of minimal descriptions on six datasets.
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to U10 is gradually increasing. For each 1 6 i 6 10; Ui is chosen as a temporary data set to compute the minimal or maximal
descriptions.

Experimental results of three kinds of matrix-based approaches on various datasets are given in Figs. 1–4. According to
the above experimental results, we can see that the computation time of each approach is growing when the size of data set
is gradually increasing, but the computation times of Matrix approach-1 and Matrix approach-2 are less than or equal to that
of Matrix approach-0. From the above results, we can also see that when dealing with a small data set which contains less
than 1000 samples, Matrix approach-2 performs better than Matrix approach-0 and Matrix approach-1. However, when
dealing with a larger data set which contains more than 1000 samples, both Matrix approach-1 and Matrix approach-2
are more efficient than Matrix approach-0. Therefore, we can conclude that Matrix approach-1 and Matrix approach-2 pro-
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posed in the paper are more efficient than Matrix approach-0 for computing the minimal and maximal descriptions in
covering-based rough sets.
5. Conclusions

In this paper, based on some work of the minimal description and the maximal description, we mainly discuss matrix
approaches to computing minimal and maximal descriptions in covering-based rough sets. Within this framework, we have
proposed two new methods for computing minimal and maximal descriptions in covering-based rough set. Approach-1 is
based on the operation ‘‘sum” which does not need to compare the elements in two matrix and Approach-2 is based on
the binary relation of inclusion between elements in a covering. Finally, we present experimental comparisons showing
the computational efficiency of the proposed methods and the experimental results show that the proposed methods are
effective and efficient.
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