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By reformulating and extending the properties of three-way operators, this paper investi-
gates the relationship between different kinds of three-way concept lattices. Three-way
operators are defined through eight kinds of two-way operators which are connected by
the complement operation. To examine the interrelations systematically, we study (a)
the relationship between two-way operators, (b) the relationship between two-way con-
cepts, (c) the relationship between three-way operators, and (d) the relationship between
three-way concepts. The results show that the four kinds of object-induced three-way con-
cept lattices are order isomorphic to each other and the four kinds of attribute-induced
three-way concept lattices are also order isomorphic to each other.
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1. Introduction

Concepts are fundamental units of conceptual knowledge presentation and processing. Proposed by Wille [38], formal
concept analysis (FCA) provides an effective way to formulate and interpret concepts within a formal context. A formal con-
text is a triple U;V ;Rð Þ, where U is a set of objects, V is a set of attributes, and R is a binary relation over U and V; a concept is a
pair X;Ah i, where X#U and A#V . The object set X is the maximal set of objects having all properties in the attribute set A,
called the extent of the concept; the attribute set A is the maximal set of attributes common to all objects in the object set X,
called the intent of the concept.

Over last several decades, FCA has seen a rapid development both in theoretical foundation and in application
[4,43,47,50]. Different kinds of concepts have been proposed according to different semantics. Existing results of FCA can
be classified in the following way: (i) From the perspective of research technique, one relies on constructive approach or
axiomatic approach or both to obtain different kinds of concepts. A constructive approach defines a concept through a pair
of derivation operators [6,8,26,38,48]; an axiomatic approach characterizes concepts through a set of axioms
[13,17,19,24,31,39]. (ii) From the perspective of data type, contexts are divided into formal context (which is the original
context proposed by Wille [38]), incomplete context [2,5,18,44,48], L-context [1,10], multi-scale context [23,33], triadic con-
text [15,35], decision context [37], etc. (iii) From the perspective of decision, one has two-way concepts (such as formal con-
cept [8,38], property-oriented concept [6], object-oriented concept [22,40,41], cognitive concept [19,24], L-concept [1,3,9])
and three-way concepts (such as OE-concept [26], AE-concept [26], three-way cognitive concept [13,17,21], approximate
concept [18,20], ill-known concept [5], neutrosophic concept [34]). For two-way concepts, both the intent and extent are
represented by a single set; thus, the universes are divided into two disjoint parts. For three-way concepts, at least one of
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the intent and extent is represented by a pair of sets or an interval set [44]. As a result, the universe is divided into three
disjoint parts.

Three-way concept analysis is the outcome of the combination of FCA and three-way decision [11,12,14,28,42,45]. A
semantic difference exists between three-way concepts in complete contexts and three-way concepts in incomplete contexts
(in which the connections between some objects and attributes are unknown according to current information). Qi, Wei, and
Yao [26] studied three-way concept analysis in complete formal contexts. They proposed two kinds of three-way concepts,
namely, OE-concept and AE-concept. The intent of an OE-concept is composed by two parts: a set of attributes shared by all
objects in the extent and a set of attributes not shared by any object in the extent. The extent of an AE-concept is also com-
posed by two parts: a set of objects sharing all attributes in the intent and a set of objects not sharing any attribute in the
intent. Followed by are OEP-concept and OED-concept proposed by Zhi et al. [49], and OEO-concept and AEP-concept pro-
posed by Wei and Qian [36]. In [16], Li and Deng reviewed the development of three-way concept analysis and pointed out
possible problems occurred in this area.

In an incomplete context, the actual intent and extent of a concept can not be determined precisely because of the
unknown information. Burmeister and Holzer [2] generalized the standard derivation operators to a pair of modal-style
derivation operators in incomplete contexts. The new operators give rise to a pair of certain and possible extents and a pair
of certain and possible intents of a concept. Djouadi, Dubois, and Prade [5] represented an ill-known concept through a pair
of formal concepts coming from the least and greatest completions of an incomplete context. Li, Mei, and Lv [18] introduced
the notion of approximate concept with a pair of lower and upper operators. Adopting the idea of three-way concepts from
Qi et al. [26,27], Li andWang [20] constructed OE-approximate concepts and AE-approximate concepts through a pair of pos-
itive and negative operators. Based on interval interpretation of incomplete formal contexts, Yao [44] built a framework of
three-way concept analysis for incomplete formal contexts. Four forms of partially-known concepts were investigated in the
paper: SE-SI (i.e., set extent and set intent) concept, SE-ISI (i.e., set extent and interval set intent) concept, ISE-SI (i.e., interval
set extent and set intent) concept, and ISE-ISI (i.e., interval set extent and interval set intent) concept. In this framework, the
formal concept [38] is an example of Form SE-SI, the approximate concept [18] and OE-approximate concept [20] are exam-
ples of Form SE-ISI, the AE-approximate concept [20] is an example of Form ISE-SI, and the ill-known concept [5] is an exam-
ple of Form ISE-SI.

The relationship between different kinds of concepts is a meaningful topic in FCA. In [32], Ren, Wei, and Yao studied the
structures of and relationship between SE-ISI, ISE-SI, and ISE-ISI concepts. Qi et al. [25,27,29] investigated the relationship
between three-way concept lattices and classical concept lattices. Qian, Wei, and Qi [30] studied the relationship between
object (property) oriented concept lattice and three-way object (property) oriented concept lattice. In the framework of
three-way granular computing, Yao [46] divided the eight kinds of two-way concepts into two groups—disjunctive group
and conjunctive group—and investigated the relationship between concepts in each group. To the best of our knowledge,
there is no unified framework showing the relationship between different kinds of three-way concept lattices. Inspired by
the work of Yao [46], this paper mainly discusses the relationship between three-way concept lattices in complete formal
contexts. Besides, the relationship between the eight kinds of two-way operators is investigated to facilitate the study of
the relationship between three-way concepts.

The rest of this paper is organized as follows. Section 2 reviews basic notions and properties of formal concepts. In Sec-
tion 3, we investigate first the relationship between and properties of two-way operators, and then the relationship between
two-way concepts. In a similar way, Section 4 investigates the relationship between and properties of three-way operators
and the relationship between three-way concepts. We prove the isomorphic relations between different kinds of three-way
concept lattices. The last section serves as a conclusion part.

2. Formal concepts

A useful notion in FCA is the formal context which serves as a basic structure of the theory of FCA.

Definition 1 [8]. A formal context K ¼ U;V ;Rð Þ consists of two sets U and V and a relation R between U and V. The elements
of U are called the objects of the context and the elements of V are called the attributes of the context.

Considering the maximal set of attributes shared by all objects in an object set and the maximal set of objects sharing all
attributes in an attribute set, one achieves a pair of derivation operators.
Definition 2 [8]. Let K ¼ U;V ;Rð Þ be a formal context. For a set X#U of objects, we define
X� ¼ a 2 V j8x 2 X xRað Þf g

the set of attributes common to the objects in X. Correspondingly, for a set A#V of attributes, we define
A� ¼ x 2 Uj8a 2 A xRað Þf g

the set of objects which have all attributes in A.
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Applying the operator � to a set of objects, one obtains a set of attributes owned by all objects in this object set. Similarly,
applying the operator � to a set of attributes, one obtains a set of objects having all attributes in this attribute set. An object
set and an attribute set that mutually determine each other play a key role in FCA.
Definition 3 [8]. A formal concept of the context K ¼ U;V ;Rð Þ is a pair X;Ah i with X#U and A#V such that X� ¼ A and
A� ¼ X. The set X is called the extent and A the intent of the concept X;Ah i.

Düntsch and Gediga [6,7] referred to the operator � as a kind of modal-style operator, called sufficiency operator, and
introduced another three kinds of modal-style operators: dual sufficiency operator #, necessity operator �, and possibility
operator }. Considering attributes which are not related to an object as negative attributes of the object, Qi et al. [26,27]
introduced a kind of negative operator �, called negative sufficiency operator. Afterwards, the negative necessity operator �
and negative possibility operator } were given by Wei and Qian [36] and the negative dual sufficiency operator # by Zhi
et al. [49]. Each operator derives a kind of concept; each concept divides the object universe and attribute universe into two
disjoint parts. To distinguish with three-way operators, we call the aforementioned eight kinds of derivation operators two-
way operators [26], sometimes, object-induced two-way (short for O2W) operators and attribute-induced two-way (short
for A2W) operators when considering different meanings of sets.
3. Relationship between two-way concept lattices

A formal context K ¼ U;V ;Rð Þ represents connections between objects and attributes through the binary relation R. Based
on the connections, one can define eight kinds of mappings from 2U to 2V with existential and universal quantifiers in a nat-
ural way: for X 2 2U ,
Table 1
A forma

x1
x2
x3
x4
f 1 Xð Þ ¼ a 2 V j8x 2 X xRað Þf g;
f 2 Xð Þ ¼ a 2 V j8x 2 X : xRað Þð Þf g;
f 3 Xð Þ ¼ a 2 V j8x 2 Xc xRað Þ� �

;

f 4 Xð Þ ¼ a 2 V j8x 2 Xc : xRað Þð Þ� �
;

f 5 Xð Þ ¼ a 2 V j9x 2 X xRað Þf g;
f 6 Xð Þ ¼ a 2 V j9x 2 X : xRað Þð Þf g;
f 7 Xð Þ ¼ a 2 V j9x 2 Xc xRað Þ� �

;

f 8 Xð Þ ¼ a 2 V j9x 2 Xc : xRað Þð Þ� �
;

ð1Þ
where : is the logical negation. The eight mappings correspond to the eight O2W operators, respectively:
f 1 Xð Þ ¼ X�; f 2 Xð Þ ¼ X�; f 3 Xð Þ ¼ X�; f 4 Xð Þ ¼ X�; f 5 Xð Þ ¼ X}; f 6 Xð Þ ¼ X}; f 7 Xð Þ ¼ X#; f 8 Xð Þ ¼ X#: ð2Þ

The meanings of each obtained attribute set are listed below:

(1) X� is the maximal set of attributes shared by all objects in X;

(2) X� is the maximal set of attributes not possessed by any object in X;

(3) X� is the maximal set of attributes shared by all objects in the complement of X;
(4) X� is the maximal set of attributes not possessed by any object in the complement of X;
(5) X} is the maximal set of attributes shared by at least one object in X;

(6) X} is the maximal set of attributes not possessed by at least one object in X;

(7) X# is the maximal set of attributes shared by at least one object in the complement of X;
(8) X# is the maximal set of attributes not possessed by at least one object in the complement of X.

Take as an example, Table 1 exhibits a formal context with U ¼ x1; x2; x3; x4f g and V ¼ a; b; c; d; e; ff g. The notation 1 rep-
resents that an object has an attribute; the notation 0 means that an object does not have an attribute. For X ¼ x1; x2f g, we
have
l context.

a b c d e f

0 1 0 1 1 0
1 1 1 0 1 0
0 1 0 1 0 1
1 1 1 0 0 0
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X� ¼ b; ef g; X� ¼ ff g; X� ¼ bf g; X� ¼ ef g;
X} ¼ a; b; c;d; ef g; X} ¼ a; c;d; ff g; X# ¼ a; b; c;d; ff g; X# ¼ a; c;d; e; ff g:
Remark 1. Above operators are revisited from the perspective of connections between objects and attributes. For simplicity,
we do not change the notations of each operator which have already existed in other studies. It is, however, not difficult to
find the correspondence with those notations used in [46], that is,
X� ¼ Xþ
8 ; X

} ¼ Xþ
9 ; X

� ¼ Xcþ
8; X

# ¼ Xcþ
9; X

} ¼ Xþc
8 ; X� ¼ Xþc

9 ; X# ¼ Xcþc
8 ; X

� ¼ Xcþc
9 :
The difference is that the operators in [46] were revisited from the perspective of granule computing.
Since R is a binary relation, : xRað Þ is equivalent to xRca, where Rc is the complement of R, i.e., Rc ¼ U � U � R. We can thus

rewrite definitions of negative sufficiency, necessity, negative possibility, and dual sufficiency operators in the following
way:
X� ¼ a 2 V j 8x 2 X xRcað Þ� �
;

X� ¼ a 2 V j 8x 2 Xc xRcað Þ� �
;

X} ¼ a 2 V j 9x 2 X xRcað Þ� �
;

X# ¼ a 2 V j 9x 2 Xc xRcað Þ� �
:

ð3Þ
In other words, � can be regarded as � (respectively, � as �;} as }, and # as #) defined in the dual formal context
Kc ¼ U;V ;Rcð Þ. Considering different semantics, however, each operator will be studied equally.

Inspired by Eqs. (1) and (2), the relationship between O2W operators is shown in Fig. 1a. Eight nodes represent the eight
O2W operators, respectively. A double-headed arrow line connects a pair of operators from one of which the other can be
obtained by taking the operation attached with the line. Totally, there are three different operations—Xc;Rc, and c—attached
with lines. The notation Xc means the operators connected by the line can be converted into each other by replacing X with

its complement Xc. For example, X� can be obtained by substituting Xc for X in the definition of X�, that is, X� ¼ Xcð Þ�. The
notation Rc means the operators connected by the line can be converted into each other by replacing R with its complement

Rc. For example, X� can be obtained by substituting Xc for X in the definition of X�, that is, X� ¼ X�ð ÞRc . The notation c repre-

sents the complement operation. For example, X} can be obtained by computing the complement of X�, that is, X} ¼ X�ð Þc.
From Fig. 1a, one can conclude that any two operators are mutually converted. For example, starting from X�, one can get X#

in the following way: Replace X with Xc in X� to obtain X�, and then compute the complement of X� to obtain X#, namely,

X# ¼ ðX�Þc ¼ ððXcÞ�Þc.
Table 2 summarizes the relationship between O2W operators illustrated by Fig. 1a. For notational simplicity, we omit

parentheses by simply reading operations from left to right. Take as an example, Xcð Þ�� �c
is simply denoted by Xc�c. The sixth

line of Table 2 implies four dual pairs of operators: �;#ð Þ; };�ð Þ; �;#� �
, and };�

� �
.

Fig. 1. Relationship between two-way operators.



Table 2
Relationship between O2W operators.

X� ¼ X�
Rc X} ¼ X}

Rc X� ¼ X�
Rc X# ¼ X#

Rc X� ¼ X�
Rc X} ¼ X}

Rc X� ¼ X�
Rc X# ¼ X#

Rc

X� ¼ Xc� X} ¼ Xc# X� ¼ Xc�
X# ¼ Xc} X� ¼ Xc�

X} ¼ Xc# X� ¼ Xc� X# ¼ Xc}

X� ¼ X}c X} ¼ X�c
X� ¼ X#c X# ¼ X�c X� ¼ X}c

X} ¼ X�c X� ¼ X#c X# ¼ X�c

X� ¼ Xc�
Rc X} ¼ Xc#

Rc X� ¼ Xc�
Rc X# ¼ Xc}

Rc X� ¼ Xc�
Rc X} ¼ Xc#

Rc X� ¼ Xc�
Rc X# ¼ Xc}

Rc

X� ¼ X}c
Rc X} ¼ X�c

Rc X� ¼ X#c
Rc X# ¼ X�c

Rc X� ¼ X}c
Rc X} ¼ X�c

Rc X� ¼ X#c
Rc X# ¼ X�c

Rc

X� ¼ Xc#c X} ¼ Xc�c X� ¼ Xc}c X# ¼ Xc�c
X� ¼ Xc#c X} ¼ Xc�c X� ¼ Xc}c X# ¼ Xc�c

X� ¼ Xc#c
Rc X} ¼ Xc�c

Rc X� ¼ Xc}c
Rc X# ¼ Xc�c

Rc X� ¼ Xc#c
Rc X} ¼ Xc�c

Rc X� ¼ Xc}c
Rc X# ¼ Xc�c

Rc
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The three operations, Xc;Rc, and c, are commutative with each other. For example, starting from X�, one obtains X� by
taking Xc first and Rc second, or Rc first and Xc second. But they are not commutative with any of the O2W operators. For

instance, Xc� – X�c, since Xc� ¼ X� and X�c ¼ X#; X�
Rc

� ��
– X��ð ÞRc , since ðX�

Rc Þ� ¼ X�� and X��ð ÞRc ¼ X��.

Remark 2.

(1) For an operator XH
Rc , which is obtained by replacing R with Rc in the definition of XH, one has two ways to interpret it:

XH in the formal context K and XH in the dual formal context Kc (H ¼ �;�;}, and #, respectively).
(2) In [46],Yao studied the connection between the eight kinds of two-way operators from the perspective of inference
rules and exhibited the connection through two groups of hexagons. Each hexagon reveals the relationship between four
kinds of two-way operators from positive or negative attribute view. In this study, we show the connection between the
eight kinds of two-way operators from an overall view (see Fig. 1).

For comparative study, we summarize some basic properties of O2W operators.

Proposition 1. [8,36,38,41,46] For a given formal context K ¼ U;V ;Rð Þ and X; X1; X2 #U, we have
1ð Þ X1 #X2 ) X�
2 #X�

1; X
�
2 #X�

1; X
�
1 #X�

2 ; X
�
1 #X�

2 ; X
}
1 #X}

2 ; X
}
1 #X}

2 ; X
#
2 #X#

1 ; X
#
2 #X#

1 ;

2ð Þ X#X��; X#X��; X�} #X#X}�; X�} #X#X}�; X � X##; X � X##
�

;

3ð Þ X� ¼ X���; X� ¼ X���; X}�}
�

¼ X}; X}�} ¼ X}; X�}�
�

¼ X�; X�}� ¼ X�; X### ¼ X#; X###
�

¼ X#;

4ð Þ X1 [ X2ð Þ� ¼ X�
1 \ X�

2; X1 \ X2ð Þ� ¼ X�
1 \ X�

2 ; X1 [ X2ð Þ} ¼ X}
1 [ X}

2 ; X1 \ X2ð Þ# ¼ X#
1 [ X#

2 ;

X1 [ X2ð Þ� ¼ X�
1 \ X�

2; X1 \ X2ð Þ� ¼ X�
1 \ X�

2 ; X1 [ X2ð Þ} ¼ X}
1 [ X}

2 ; X1 \ X2ð Þ# ¼ X#
1 [ X#

2 ;

5ð Þ X1 \ X2ð Þ� � X�
1 [ X�

2; X1 [ X2ð Þ� � X�
1 [ X�

2 ; X1 \ X2ð Þ} #X}
1 \ X}

2 ; X1 [ X2ð Þ# #X#
1 \ X#

2 ;

X1 \ X2ð Þ� � X�
1 [ X�

2; X1 [ X2ð Þ� � X�
1 [ X�

2 ; X1 \ X2ð Þ} #X}
1 \ X}

2 ; X1 [ X2ð Þ# #X#
1 \ X#

2 :
These properties can be mutually proved with the help of the information shown in Fig. 1a and Table 2. For example, sup-

pose X�
2 #X�

1 for X1 #X2, then X�
1 #X�

2 , since X�
1 ¼ Xc�

1 ;X
�
2 ¼ Xc�

2 , and Xc�
1 #Xc�

2 . Properties in (1) show the monotonicity of each
operator. Properties in (2) show the relationship between the original set and the derived set by two applications of an oper-
ator. Properties in (3) show that the result of three applications of an operator is the same with the result of the first appli-
cation of the operator. Properties in (4) and (5) show the distributivity of the eight operators with respect to set union and
intersection.

Table 3 shows the connections between two derived sets by applying two operators on the same set. (Even though col-
umns 2, 4, 6, and 8 contain the same results with columns 1, 3, 5, and 7, respectively, we keep them both to help to quickly
check the properties.) Tables 2 and 3 still support the equivalent representations of three applications of an operator:
X��� ¼ X}�}c; X}}} ¼ X�#�c; X��� ¼ X#�#c; X### ¼ X�}�c;

X��� ¼ X}�}c; X}}} ¼ X�#�c; X��� ¼ X#�#c; X### ¼ X�}�c:
ð4Þ
In the very same way, for a given attribute set A#V , one can define eight kinds of A2W operators using existential and
universal quantifiers:



Table 3
Connections between two derived sets by applying two operators.

X�� ¼ X}� X�� ¼ X}� X�} ¼ X}# X�# ¼ X}} X�� ¼ X}� X�� ¼ X}� X�} ¼ X}# X�# ¼ X}}

X�� ¼ X#� X�� ¼ X#� X�} ¼ X## X�# ¼ X#} X�� ¼ X#� X�� ¼ X#� X�} ¼ X## X�# ¼ X#}

X}� ¼ X�� X}� ¼ X�� X}} ¼ X�# X}# ¼ X�} X}� ¼ X�� X}� ¼ X�� X}} ¼ X�# X}# ¼ X�}

X#� ¼ X�� X#� ¼ X�� X#} ¼ X�# X## ¼ X�} X#� ¼ X�� X#� ¼ X�� X#} ¼ X�# X## ¼ X�}

X�� ¼ X}� X�� ¼ X}� X�} ¼ X}# X�# ¼ X}} X�� ¼ X}� X�� ¼ X}�
X�} ¼ X}# X�# ¼ X}}

X�� ¼ X#� X�� ¼ X#� X�} ¼ X## X�# ¼ X#} X�� ¼ X#� X�� ¼ X#� X�} ¼ X## X�# ¼ X#}

X}� ¼ X�� X}� ¼ X�� X}} ¼ X�# X}# ¼ X�} X} �� ¼ X�� X}� ¼ X��
X}} ¼ X�# X}# ¼ X�}

X#� ¼ X�� X#� ¼ X�� X#} ¼ X�# X## ¼ X�} X#� ¼ X�� X#� ¼ X�� X#} ¼ X�# X## ¼ X�}
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A� ¼ x 2 Uj 8a 2 A xRað Þf g;
A� ¼ x 2 Uj 8a 2 A xRcað Þ� �

;

A� ¼ x 2 Uj 8a 2 Ac xRað Þ� �
;

A� ¼ x 2 Uj 8a 2 Ac xRcað Þ� �
;

A} ¼ x 2 Uj 9a 2 A xRað Þf g;
A} ¼ x 2 Uj 9a 2 A xRcað Þ� �

;

A# ¼ x 2 Uj 9a 2 Ac xRað Þ� �
;

A# ¼ x 2 Uj 9a 2 Ac xRcað Þ� �
:

The meanings of each obtained object set are listed below:

(1) A� is the maximal set of objects sharing all attributes in A;

(2) A� is the maximal set of objects not possessing any attribute in A;

(3) A� is the maximal set of objects sharing all attributes in the complement of A;
(4) A� is the maximal set of objects not possessing any attribute in the complement of A;
(5) A} is the maximal set of objects sharing at least one attribute in A;

(6) A} is the maximal set of objects not possessing at least one attribute in A;

(7) A# is the maximal set of objects sharing at least one attribute in the complement of A;
(8) A# is the maximal set of objects not possessing at least one attribute in the complement of A.
Remark 3. If we do not consider the concrete meanings of sets, each A2W operator just corresponds to one O2W operator.
Therefore, the relationship between the eight kinds of A2W operators is the same with that between O2W operators
(shown in Fig. 1b). Properties of A2W operators are consequently the same with those of O2W operators. One actually
obtains the properties of A2W operators by simply replacing the object set X with an attribute set A in Proposition 1 and
Tables 2 and 3.

The connections between O2W operators and A2W operators are listed as follows. They can be mutually proved as the
properties in Proposition 1.

Proposition 2. [36,38,41,46]Let K ¼ U;V ;Rð Þ be a formal context, X#U, and A#V. Then,
(1) X#A� () A#X�;

(2) X#A� () A#X�;

(3) X#A� () X} #A;
(4) X#A� () X} #A;
(5) X � A} () X� � A;

(6) X � A} () X� � A;

(7) X � A# () X# � A;
(8) X � A# () X# � A.

Based on different O2W operators and A2W operators, we obtain different kinds of two-way concepts.
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Definition 4. Let K ¼ U;V ;Rð Þ be a formal context, X#U, and A#V . Then,

(1) X;Ah i is a �-concept (i.e., formal concept in [8] or positive formal concept in [46]) if X� ¼ A and A� ¼ X;
(2) X;Ah i is a �}-concept (i.e., object-oriented formal concept in [41] or positive object-oriented formal concept in [46])
if X� ¼ A and A} ¼ X;
(3) X;Ah i is a }�-concept (i.e., property-oriented formal concept in [6,41] or positive attribute-oriented formal concept in
[46]) if X} ¼ A and A� ¼ X;
(4) X;Ah i is a #-concept (i.e., dual positive formal concept in [46]) if X# ¼ A and A# ¼ X;

(5) X;Ah i is a �-concept (i.e., formal concept in [40] or negative formal concept in [46]) if X� ¼ A and A� ¼ X;

(6) X;Ah i is a �}-concept (i.e., negative object-induced formal concept in [46]) if X� ¼ A and A} ¼ X;

(7) X;Ah i is a }�-concept (i.e., negative attribute-induced formal concept in [46]) if X} ¼ A and A� ¼ X;

(8) X;Ah i is a #-concept (i.e., dual negative formal concept in [46]) if X# ¼ A and A# ¼ X.

A �-concept in K is a �-concept in Kc, and a �-concept in K is a �-concept in Kc. The same correspondences exist between
�}-concepts and �}-concepts, }�-concepts and }�-concepts, #-concepts and #-concepts, respectively. Besides, we have
the following equivalences between �-concept, �}-concept, #-concept, and }�-concept.

Theorem 1. [[46] Let U;V ;Rð Þ be a formal context, X#U, and A#V. Then, the following statements are equivalent:

(1) X;Ah i is a �-concept;
(2) Xc;A

� �
is �}-concept;

(3) X;Ac� �
is a }�-concept;

(4) Xc;Ac� �
is a #-concept.
Proof. We first prove that Item (1) is equivalent to Item (2). According to Definition 4, Table 2, and Remark 3, we have
X;Ah i is a � �concept () X� ¼ A; A� ¼ X () Xc� ¼ A; A}c ¼ X () Xc� ¼ A; A} ¼ Xc () Xc;A
� �

is a �}� concept:
The others can be proved similarly based on the information shown in Fig. 2. (A double line connects two equivalent
statements, and the equivalence can be proved by taking the operation attached with the line. Two nodes of the same color
in Fig. 2 correspond to a kind of two-way concept.)

Expressing one kind of two-way concept in terms of another, although theoretically possible, is somewhat inconvenient
in formulation and interpretation. From a practical point of view, it is useful to keep the eight kinds of two-way concepts. A
subset of objects generates a two-way concept; also, a subset of attributes generates a two-way concept.

Theorem 2. [8,36,38,41,46]Let K ¼ U;V ;Rð Þ be a formal context, X#U, and A#V. Then,

(1) X��;X�h i and A�
;A��h i are �-concepts;

(2) hX��;X�i and hA�
;A��i are �-concepts;
Fig. 2. Equivalences between two-way concepts.
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(3) X}�;X}
D E

and A�
;A�}

D E
are }�-concepts;

(4) X}�;X}
D E

and A�
;A�}

D E
are }�-concepts;

(5) X�};X�
D E

and A}
;A}�

D E
are �}-concepts;

(6) X�};X�
D E

and A}
;A}�

D E
are �}-concepts;

(7) X##;X#
� �

and A#
;A##

D E
are #-concepts;

(8) X##;X#
D E

and A#;A##
D E

are #-concepts.

Theorem 2 provides us a way to construct different kinds of two-way concepts by using object sets and attribute sets. The
order, supremum, and infimum of two-way concepts are defined as follows.

Definition 5. Let K ¼ U;V ;Rð Þ be a formal context, X1;X2 #U, and A1;A2 #V .
(1) [8] For two �-concepts X1;A1h i and X2;A2h i; X1;A1h i�� X2;A2h i iff X1 #X2 (equivalently, A2 #A1), and

X1;A1h i^� X2;A2h i ¼ X1 \ X2; A1 [ A2ð Þ��h i ¼ X1 \ X2; X1 \ X2ð Þ�h i;
X1;A1h i_� X2;A2h i ¼ X1 [ X2ð Þ��;A1 \ A2h i ¼ A1 \ A2ð Þ�;A1 \ A2h i: ð5Þ

(2) [46] For two �-concepts X1;A1h i and hX2;A2i; hX1;A1i��hX2;A2i iff X1 #X2 (equivalently, A2 #A1), and

hX1;A1i^�hX2;A2i ¼ hX1 \ X2; A1 [ A2ð Þ��i ¼ hX1 \ X2; X1 \ X2ð Þ�i;
hX1;A1i_�hX2;A2i ¼ h X1 [ X2ð Þ��;A1 \ A2i ¼ h A1 \ A2ð Þ�;A1 \ A2i:

ð6Þ

(3) For two �}-concepts X1;A1h i and X2;A2h i; X1;A1h i��} X2;A2h i iff X2 #X1 (equivalently, A2 #A1), and

X1;A1h i^�} X2;A2h i ¼ X1 [ X2; A1 [ A2ð Þ}�
D E

¼ X1 [ X2; X1 [ X2ð Þ�
D E

;

X1;A1h i_�} X2;A2h i ¼ X1 \ X2ð Þ�}
;A1 \ A2

D E
¼ A1 \ A2ð Þ};A1 \ A2

D E
:

ð7Þ

(4) For two �}-concepts X1;A1h i and X2;A2h i; X1;A1h i��} X2;A2h i iff X2 #X1 (equivalently, A2 #A1), and

X1;A1h i^�} X2;A2h i ¼ X1 [ X2; A1 [ A2ð Þ}�
D E

¼ X1 [ X2; X1 [ X2ð Þ�
D E

;

X1;A1h i_�} X2;A2h i ¼ X1 \ X2ð Þ�}
;A1 \ A2

D E
¼ A1 \ A2ð Þ};A1 \ A2

D E
:

ð8Þ

(5) [46] For two }�-concepts X1;A1h i and X2;A2h i; X1;A1h i�}� X2;A2h i iff X1 #X2 (equivalently, A1 #A2), and

X1;A1h i^}� X2;A2h i ¼ X1 \ X2; A1 \ A2ð Þ�}
D E

¼ X1 \ X2; X1 \ X2ð Þ}
D E

;

X1;A1h i_}� X2;A2h i ¼ X1 [ X2ð Þ}�
;A1 [ A2

D E
¼ A1 [ A2ð Þ�;A1 [ A2

D E
:

ð9Þ

(6) [40,46] For two }�-concepts X1;A1h i and X2;A2h i; X1;A1h i�}� X2;A2h i iff X1 #X2 (equivalently, A1 #A2), and

X1;A1h i^}� X2;A2h i ¼ X1 \ X2; A1 \ A2ð Þ�}
D E

¼ X1 \ X2; X1 \ X2ð Þ}
D E

;

X1;A1h i_}� X2;A2h i ¼ X1 [ X2ð Þ}�
;A1 [ A2

D E
¼ A1 [ A2ð Þ�;A1 [ A2

D E
:

ð10Þ

(7) For two #-concepts X1;A1h i and X2;A2h i; X1;A1h i�# X2;A2h i iff X2 #X1 (equivalently, A1 #A2), and

X1;A1h i^# X2;A2h i ¼ X1 [ X2; A1 \ A2ð Þ##
D E

¼ X1 [ X2; X1 [ X2ð Þ#
D E

;

X1;A1h i_# X2;A2h i ¼ X1 \ X2ð Þ##
;A1 [ A2

D E
¼ A1 [ A2ð Þ#;A1 [ A2

D E
:

ð11Þ

(8) For two #-concepts X1;A1h i and X2;A2h i; X1;A1h i�# X2;A2h i iff X2 #X1 (equivalently, A1 #A2), and

X1;A1h i^# X2;A2h i ¼ X1 [ X2; A1 \ A2ð Þ##
D E

¼ X1 [ X2; X1 [ X2ð Þ#
D E

;

X1;A1h i_# X2;A2h i ¼ X1 \ X2ð Þ##
;A1 [ A2

D E
¼ A1 [ A2ð Þ#;A1 [ A2

D E
:

ð12Þ

Denote by CH Kð Þ the set of all H-concepts in the formal context K ¼ U;V ;Rð Þ, where H ¼ �; �;�};�};}�;}�;#, and #,
respectively. According to the equivalences between two-way concepts shown in Theorem 1 and Fig. 2, we have changed the
order of �}-concepts, �}-concepts, #-concepts, and #-concepts, respectively, compared with those in [46]; consequently,
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the infimums and supremums defined in Eqs. (7), (8), (11), and (12) are different from those in [46]. The collection of two-
way concepts of the same kind forms a complete lattice with the corresponding infimum and supremum defined in Defini-
tion 5.

Theorem 3 [46]. Let K ¼ U;V ;Rð Þ be a formal context. Then, CH Kð Þ;^H;_H

� 	
is a complete lattice, where

H ¼ �; �;�};�};}�;}�;#, and #, respectively.
Proof. (We only prove that C# Kð Þ;^#;_#

� �
is a complete lattice, for the others can be similarly proved.) Let

X1;A1h i; X2;A2h i 2 C# Kð Þ. Using Proposition 1, we have
A1 \ A2ð Þ### ¼ A1 \ A2ð Þ# ¼ A#
1 [ A#

2 ¼ X1 [ X2;

X1 [ X2ð Þ# ¼ A1 \ A2ð Þ###
� 	#

¼ A1 \ A2ð Þ#
� 	#

¼ A1 \ A2ð Þ##
;

which means X1 [ X2; A1 \ A2ð Þ##
D E

2 C# Kð Þ.
By Definition 5, Proposition 1, and Remark 3, it is straightforward that
hX1 [ X2; A1 \ A2ð Þ##i�#hX1;A1i;
hX1 [ X2; A1 \ A2ð Þ##i�#hX2;A2i;
which support that X1 [ X2; A1 \ A2ð Þ##
D E

is a lower bound of X1;A1h i and X2;A2h i.
Next, we prove that X1 [ X2; A1 \ A2ð Þ##

D E
is the infimum of X1;A1h i and X2;A2h i. If not, suppose

X;Ah i�# X1;A1h i; X;Ah i�# X2;A2h i, and X1 [ X2; A1 \ A2ð Þ##
D E

�# X;Ah i. Using Definition 5, we have X1 #X and X2 #X (which

follow the result that X1 [ X2 #X), and at the same time X#X1 [ X2. Finally, we obtain X ¼ X1 [ X2; besides,

A ¼ X# ¼ X1 [ X2ð Þ# ¼ A1 \ A2ð Þ##. Equivalently saying, X1 [ X2; A1 \ A2ð Þ##
D E

is the infimum of X1;A1h i and X2;A2h i.
In a similar way, one can prove that X1 \ X2ð Þ##;A1 [ A2

D E
is a #-concept and also the supremum of X1;A1h i and X2;A2h i.

Consequently, C# Kð Þ;^#;_#

� 	
is a complete lattice.

The results in Fig. 2 imply two groups of isomorphism relation among the eight kinds of concept lattices.

Theorem 4. Let K ¼ U;V ;Rð Þ be a formal context. Then,

(1) C� Kð Þ ffi C�} Kð Þ ffi C}� Kð Þ ffi C# Kð Þ;
(2) C� Kð Þ ffi C�} Kð Þ ffi C}� Kð Þ ffi C# Kð Þ.

The notation ffi means isomorphic relation.
Proof.

(1) Given X;Ah i 2 C� Kð Þ, let f X;Ah ið Þ ¼ Xc;A
� �

. Then, Xc;A
� � 2 C�} Kð Þ, and f is a bijection between C� Kð Þ and C�} Kð Þ by

Theorem 1.
Suppose X1;A1h i; X2;A2h i 2 C� Kð Þ, then according to Eqs. (5) and (7), we have
f X1;A1h i^� X2;A2h ið Þ ¼ f X1 \ X2; A1 [ A2ð Þ��h ið Þ ¼ X1 \ X2ð Þc; A1 [ A2ð Þ��� �
;

f X1;A1h ið Þ^�}f X2;A2h ið Þ ¼ Xc
1;A1

� �^�} Xc
2;A2

� � ¼ Xc
1 [ Xc

2; A1 [ A2ð Þ}�
D E

:

It is obvious that X1 \ X2ð Þc ¼ Xc
1 [ Xc

2, and at the same time it follows from Table 3 that A1 [ A2ð Þ�� ¼ A1 [ A2ð Þ}�. Equivalently
saying, we have
f X1;A1h i^� X2;A2h ið Þ ¼ f X1;A1h ið Þ^�}f X2;A2h ið Þ;

which demonstrates that f is ^-preserving.
On the other hand, it follows from Eqs. (5) and (7) that
f hX1;A1i_�hX2;A2ið Þ ¼ f h X1 [ X2ð Þ��;A1 \ A2ið Þ ¼ h X1 [ X2ð Þ��c;A1 \ A2i;
f hX1;A1ið Þ_�}f hX2;A2ið Þ ¼ hXc

1;A1i_�}hXc
2;A2i ¼ h Xc

1 \ Xc
2

� ��}
;A1 \ A2i;
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and from Table 2 that
X1 [ X2ð Þ��c ¼ X1 [ X2ð Þ�};
Xc

1 \ Xc
2

� ��} ¼ X1 [ X2ð Þc� ��} ¼ X1 [ X2ð Þc�} ¼ X1 [ X2ð Þ�}:

Equivalently saying, we have
f X1;A1h i_� X2;A2h ið Þ ¼ f X1;A1h ið Þ_�}f X2;A2h ið Þ;

which supports that f is _-preserving.
Therefore, C� Kð Þ ffi C�} Kð Þ. Similarly, by setting f : C�} Kð Þ ! C# Kð Þ; f X;Ah ið Þ ¼ X;Ac� �

(respectively,

f : C# Kð Þ ! C}� Kð Þ; f X;Ah ið Þ ¼ Xc;A
� �

, and f : C}� Kð Þ ! C� Kð Þ; f X;Ah ið Þ ¼ X;Ac� �
), one can prove that C�} Kð Þ ffi C# Kð Þ (re-

spectively, C# Kð Þ ffi C}� Kð Þ and C}� Kð Þ ffi C� Kð Þ).
(2) The proof is similar to that of (1).

On the basis of Theorem 4, the eight kinds of concept lattices are reasonably grouped into two classes, namely,

C� Kð Þ;C�} Kð Þ; C}� Kð Þ;C# Kð Þ
n o

and C� Kð Þ;C�} Kð Þ; C}� Kð Þ;C# Kð Þ
n o

. The concept lattices in each group are order isomorphic

to each other. A similar result is given in [46], however, there is a difference in the way of the definition of infimum and
supremum of �}-concepts, �}-concepts, #-concepts, and #-concepts. Theoretically, one kind of concept lattice is enough
to generate other three kinds within the same class. To maintain the semantic interpretations of different concepts, however,
each kind of concept lattice is equally important.

4. Relationship between three-way concept lattices

Three-way concepts are defined by three-way operators. Table 4 summarizes different kinds of three-way operators
appearing in literatures [26,27,36,49], where X and Y represent object sets, and A and B represent attribute sets. To avoid
confusion, the eight kinds of object-induced three-way (short for O3W) operators are classified into two groups: Type-I
O3W operators and Type-II O3W operators; each contains four kinds of operators. In the same way, we classified the eight
kinds of attribute-induced three-way (short for A3W) operators. A Type-I O3W operator and a Type-II A3W operator deter-
mine a kind of O3W concept; a Type-II O3W operator and a Type-I A3W operator determine a kind of A3W concept. Note that

definitions of X5 and X. in Table 4 are slightly different from those in [36,49]. We change the order of X� and X� in X5 and

the order of X} and X} in X. for the convenience of operator relation discussion (see Table 5); it’s the same case for A5 and
A.. Regardless of the meanings of sets, there are totally eight kinds of three-way operators. In other word, O3W operators
and A3W operators are correspondingly same.

For two pairs of sets P;Qð Þ and Z;Wð Þ of the same meaning, define
P;Qð Þ \ Z;Wð Þ ¼ P \ Z;Q \Wð Þ;
P;Qð Þ [ Z;Wð Þ ¼ P [ Z;Q [Wð Þ;
P;Qð Þc ¼ Pc;Q c� �

:

ð13Þ
The pairs of sets are ordered in the following way:
P;Qð Þ# Z;Wð Þ () P# Z; Q #W:
4.1. Relationship between object-induced three-way concept lattices

Some basic properties of Type-I and Type-II O3W operators are listed in Propositions 3–6. We only prove the properties in
Proposition 5, for the proof of others can be found in corresponding references.

Proposition 3 [27]. For a given formal context K ¼ U;V ;Rð Þ and X;X1;X2 #U, we have
1ð Þ X1 #X2 ) XU
2 #XU

1 ; 2ð Þ X1; Y1ð Þ# X2; Y2ð Þ ) X2;Y2ð ÞV # X1;Y1ð ÞV;

3ð Þ X#XUV; 4ð Þ X;Yð Þ# X; Yð ÞVU;

5ð Þ XU ¼ XUVU; 6ð Þ X;Yð ÞV ¼ X; Yð ÞVUV;

7ð Þ X1 [ X2ð ÞU ¼ XU
1 \ XU

2 ; 8ð Þ X1;Y1ð Þ [ X2;Y2ð Þð ÞV ¼ X1;Y1ð ÞV \ X2;Y2ð ÞV;

9ð Þ X1 \ X2ð ÞU � XU
1 [ XU

2 ; 10ð Þ X1;Y1ð Þ \ X2;Y2ð Þð ÞV � X1;Y1ð ÞV [ X2;Y2ð ÞV:
Proposition 4. [36] For a given formal context K ¼ U;V ;Rð Þ and X;X1;X2 #U, we have
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1ð Þ X1 #X2 ) X5
1 #X5

2 ; 2ð Þ X1; Y1ð Þ# X2; Y2ð Þ ) X1;Y1ð Þ4 # X2;Y2ð Þ4;
3ð Þ X54 #X; 4ð Þ X;Yð Þ# X; Yð Þ45;

5ð Þ X5 ¼ X545; 6ð Þ X; Yð Þ4 ¼ X;Yð Þ454;

7ð Þ X1 \ X2ð Þ5 ¼ X5
1 \ X5

2 ; 8ð Þ X1;Y1ð Þ [ X2;Y2ð Þð Þ4 ¼ X1;Y1ð Þ4 [ X2;Y2ð Þ4;
9ð Þ X1 [ X2ð Þ5 � X5

1 [ X5
2 ; 10ð Þ X1;Y1ð Þ \ X2;Y2ð Þð Þ4 # X1;Y1ð Þ4 \ X2;Y2ð Þ4:
Proposition 5. For a given formal context K ¼ U;V ;Rð Þ and X;X1;X2 #U, we have
1ð Þ X1 #X2 ) X.

1 #X.

2 ; 2ð Þ X1;Y1ð Þ# X2; Y2ð Þ ) X1;Y1ð ÞN # X2;Y2ð ÞN;
3ð Þ X#X.N; 4ð Þ X;Yð ÞN. # X; Yð Þ;
5ð Þ X. ¼ X.N. 6ð Þ X;Yð ÞN ¼ X;Yð ÞN.N;

7ð Þ X1 [ X2ð Þ. ¼ X.

1 [ X.

2 ; 8ð Þ X1;Y1ð Þ \ X2;Y2ð Þð ÞN ¼ X1;Y1ð ÞN \ X2;Y2ð ÞN;
9ð Þ X1 \ X2ð Þ. #X.

1 [ X.

2 ; 10ð Þ X1; Y1ð Þ [ X2;Y2ð Þð ÞN � X1;Y1ð ÞN [ X2;Y2ð ÞN:
Proof.

(1) Since X1 #X2, then X.

1 ¼ X}
1 ;X

}
1

� 	
# X}

2 ;X
}
2

� 	
¼ X.

2 using Proposition 1.

(2) Suppose X1;Y1ð Þ# X2;Y2ð Þ, then X1 #X2 and Y1 #Y2 by Eq. (14). Accordingly, we have X1;Y1ð ÞN ¼
X�

1 \ Y�
1 #X�

2 \ Y�
2 ¼ X2;Y2ð ÞN.

(3) It follows from Proposition 1 that X.N ¼ X};X}
� 	N

¼ X}� \ X}� � X \ X ¼ X.

(4) It follows from Proposition 1 that X;Yð ÞN. ¼ X� \ Y�
� 	.

¼ X� \ Y�
� 	}

; X� \ Y�
� 	}
 �

# X�} \ Y�};X�} \ Y�}
� 	

#

X�};Y�}
� 	

# X;Yð Þ.
(5) According to Items (1) and (3) in Proposition 5, it follows X. #X.N.. On the other hand,

X.N. ¼ X};X}
� 	N.

¼ X}� \ X}�
� 	.

¼ X}� \ X}�
� 	}

; X}� \ X}�
� 	}
 �

# X}�} \ X}�};X}�} \ X}�}
� 	

# X}�};X}�}
� 	

¼

X};X}
� 	

¼ X.. Finally, X. ¼ X.N..

(6) According to Items (2) and (4) in Proposition 5, it follows X;Yð ÞN.N # X;Yð ÞN. On the other hand,

X;Yð ÞN.N ¼ X;Yð ÞN}; X;Yð ÞN}
� 	N

¼ X;Yð ÞN}� \ X;Yð ÞN}� � X;Yð ÞN \ X;Yð ÞN ¼ X;Yð ÞN.
(7) It follows from Item (4) in Proposition 1 that X1 [ X2ð Þ. ¼ X1 [ X2ð Þ}; X1 [ X2ð Þ}

� 	
¼ X}

1 [ X}
2 ;X

}
1 [ X}

2

� 	
¼

X}
1 ;X

}
1

� 	
[ X}

2 ;X
}
2

� 	
¼ X.

1 [ X.

2 .

(8) It follows from Item (4) in Proposition 1 that X1;Y1ð Þ \ X2;Y2ð Þð ÞN ¼ X1 \ X2;Y1 \ Y2ð ÞN ¼ X1 \ X2ð Þ� \ Y1 \ Y2ð Þ� ¼
X�

1 \ X�
2

� 	
\ Y�

1 \ Y�
2

� � ¼ X�
1 \ Y�

1

� 	
\ X�

2 \ Y�
2

� 	
¼ X1;Y1ð ÞN \ X2;Y2ð ÞN.

(9) It follows from Item (5) in Proposition 1 that X1 \ X2ð Þ. ¼ X1 \ X2ð Þ}; X1 \ X2ð Þ}
� 	

# X}
1 \ X}

2 ;X
}
1 \ X}

2

� 	
¼

X}
1 ;X

}
1

� 	
\ X}

2 ;X
}
2

� 	
¼ X.

1 \ X.

2 .

(10) It follows from Item (5) in Proposition 1 that X1;Y1ð Þ [ X2;Y2ð Þð ÞN ¼ X1 [ X2;Y1 [ Y2ð ÞN ¼ X1 [ X2ð Þ� \ Y1 [ Y2ð Þ� �
X�

1 [ X�
2

� 	
\ Y�

1 [ Y�
2

� � � X�
1 \ Y�

1

� 	
[ X�

2 \ Y�
2

� 	
¼ X1;Y1ð ÞN [ X2;Y2ð ÞN.
Proposition 6 [49]. For a given formal context K ¼ U;V ;Rð Þ and X;X1;X2 #U, we have
1ð Þ X1 #X2 ) X.
2 #X.

1; 2ð Þ X1;Y1ð Þ# X2;Y2ð Þ ) X2;Y2ð Þ/ # X1;Y1ð Þ/;
3ð Þ X � X./; 4ð Þ X;Yð Þ � X;Yð Þ/.;
5ð Þ X. ¼ X./.; 6ð Þ X;Yð Þ/ ¼ X;Yð Þ/./;
7ð Þ X1 \ X2ð Þ. ¼ X.

1 [ X.
2; 8ð Þ X1; Y1ð Þ \ X2;Y2ð Þð Þ/ ¼ X1;Y1ð Þ/ [ X2;Y2ð Þ/;

9ð Þ X1 [ X2ð Þ. #X.
1 \ X.

2; 10ð Þ X1;Y1ð Þ [ X2;Y2ð Þð Þ/ # X1;Y1ð Þ/ [ X2;Y2ð Þ/:
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The relationship between different kinds of Type-I O3W operators are exhibited in Fig. 3a. Four nodes represent the four
kinds of Type-I O3W operators, respectively. A double-headed arrow line connects a pair of operators from one of which the
other can be obtained by taking the operation (namely, Xc or c) attached with the line. The notation Xc means the operators
connected by the line can be converted into each other by replacing X with its complement Xc. For example, XU can be
obtained by replacing X with Xc in X5, that is, XU ¼ Xcð Þ5. The notation c represents the complement operation. For example,

XU can be obtained by computing the complement of X., that is, XU ¼ X.
� 	c

. (In the following discussion, we will omit the

parentheses for simplicity.) Similar interpretations are for notations in Fig. 3b. The difference is that the notation X;Yð Þc
means that the operators connected by the line can be converted into each other by replacing X and Y both with their com-
plements Xc and Yc. We list the properties in detail in Table 5 and only present the proofs of equations in the first and fifth
columns, for the others are similarly proved. According to Tables 2–4, the following hold:
Table 4
Three-w

Type

XU ¼
X5 ¼

X. ¼
X. ¼

Table 5
Relation

XU ¼

XU ¼
XU ¼
XU ¼
Xc5 ¼ Xc�;Xc�
� 	

¼ X�;X�
� 	

¼ XU;

Xc.c ¼ Xc.ð Þc ¼ Xc#;Xc#
� 	c

¼ X�c;X�c
� 	c

¼ X�;X�
� 	

¼ XU;

X.c ¼ X};X}
� 	c

¼ X}c;X}c
� 	

¼ X�;X�
� 	

¼ XU;

X;Yð ÞcN ¼ Xc; Ycð ÞN ¼ Xc� \ Yc� ¼ X� \ Y� ¼ X;Yð ÞV;

X;Yð Þc/c ¼ Xc;Ycð Þ/c ¼ Xc# [ Yc#
� 	c

¼ Xc#c \ Yc#c ¼ X� \ Y� ¼ X;Yð ÞV;

X;Yð Þ4c ¼ X} [ Y}
� 	c

¼ X}c \ Y}c ¼ X� \ Y� ¼ X;Yð ÞV:
Table 5 implies four pairs of dual operators, that is, U; .ð Þ; 5;.ð Þ; V; /ð Þ, and 4;Nð Þ. Properties of O3W operators shown
in Propositions 3–6 can be mutually proved based on the results shown in Fig. 3 and Table 5. For example, suppose X.

1 #X.

2

for X1 #X2, then it follows XU
2 #XU

1 , since XU
1 ¼ X.c

1 and XU
2 ¼ X.c

2 .
ay operators.

-I O3W operator Type-II O3W operator Type-I A3W operator Type-II A3W operator

X� ;X�
� 	

X;Yð ÞV ¼ X� \ Y�
AU ¼ A�;A�

� 	
A;Bð ÞV ¼ A� \ B�

X�;X�
� 	

X;Yð Þ4 ¼ X} [ Y} A5 ¼ A�;A�
� 	

A;Bð Þ4 ¼ A} [ B}

X};X}
� 	

X;Yð ÞN ¼ X� \ Y� A. ¼ A};A}
� 	

A;Bð ÞN ¼ A� \ B�

X#;X#
� 	

X;Yð Þ/ ¼ X# [ Y# A. ¼ A#;A#
� 	

A;Bð Þ/ ¼ A# [ A#

ship between O3W operators.

XU X5 ¼ XcU X. ¼ XcUc X. ¼ XUc X;Yð ÞV ¼ X;Yð ÞV X;Yð ÞN ¼ X;Yð ÞcV X;Yð Þ/ ¼ X;Yð ÞcVc X;Yð Þ4 ¼ X;Yð ÞVc

Xc5 X5 ¼ X5 X. ¼ X5c X. ¼ Xc5c X;Yð ÞV ¼ X;Yð ÞcN X;Yð ÞN ¼ X;Yð ÞN X;Yð Þ/ ¼ X;Yð ÞNc X;Yð Þ4 ¼ X;Yð ÞcNc
Xc.c X5 ¼ X.c X. ¼ X.

X. ¼ Xc. X;Yð ÞV ¼ X;Yð Þc/c X;Yð ÞN ¼ X;Yð Þ/c X;Yð Þ/ ¼ X;Yð Þ/ X;Yð Þ4 ¼ X;Yð Þc/
X.c X5 ¼ Xc.c X. ¼ Xc. X. ¼ X. X;Yð ÞV ¼ X;Yð Þ4c X;Yð ÞN ¼ X;Yð Þc4c X;Yð Þ/ ¼ X;Yð Þc4 X;Yð Þ4 ¼ X;Yð Þ4

Fig. 3. Relationship between O3W operators.
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Proposition 7. Let K ¼ U;V ;Rð Þ be a formal context and X; Y#U. Then,
1ð Þ XUV ¼ X.N; XU4 ¼ X./; XUN ¼ X.V; XU/ ¼ X.4;

X5V ¼ X.N; X54 ¼ X./; X5N ¼ X.V; X5/ ¼ X.4;

2ð Þ X;Yð ÞVU ¼ X;Yð Þ45
; X;Yð ÞV5 ¼ X;Yð Þ4U

; X;Yð ÞV. ¼ X;Yð Þ4.
; X;Yð ÞV. ¼ X;Yð Þ4.

;

X;Yð ÞNU ¼ X;Yð Þ/5; X;Yð ÞN5 ¼ X;Yð Þ/U; X; Yð ÞN. ¼ X;Yð Þ/.; X;Yð ÞN. ¼ X;Yð Þ/.:
Proof. For X#U, by repeatedly using properties in Table 5, we have XUV ¼ X.c
� 	V

¼ X.c
� 	cN

¼ X.N. All other items can be

proved in the same way.
Item (1) shows the connection between two derived sets by applying a Type-I and a Type-II O3W operators successively.

Item (2) shows the connection between two derived sets by applying a Type-II and a Type-I O3W operators successively.

Remark 4. Since A3W operators and O3W operators are correspondingly same, the properties of and relationship between
O3W operators discussed above also hold for A3W operators. In case of redundancy, discussions of the relationship between
and properties of A3W operators are omitted.

An O3W concept is defined by a pair of Type-I O3W and Type-II A3W operators.

Definition 6. [26,36,49] Let K ¼ U;V ;Rð Þ be a formal context, X#U, and A;B#V . Then,

(1) X; A;Bð Þh i is a U-object-induced three-way concept (short for U-O3W concept) if XU ¼ A;Bð Þ and A;Bð ÞV ¼ X;
(2) X; A;Bð Þh i is a 5-object-induced three-way concept (short for 5-O3W concept) if X5 ¼ A;Bð Þ and A;Bð Þ4 ¼ X;
(3) X; A;Bð Þh i is a .-object-induced three-way concept (short for .-O3W concept) if X. ¼ A;Bð Þ and A;Bð ÞN ¼ X;
(4) X; A;Bð Þh i is a .-object-induced three-way concept (short for .-O3W concept) if X. ¼ A;Bð Þ and A;Bð Þ/ ¼ X.

Denote by OCH
3 Kð Þ the set of all H-O3W concepts of the formal context K ¼ U;V ;Rð Þ, where H ¼ U;5;., and .. The rela-

tionship between different O3W concepts is shown in the following theorem.

Theorem 5. [49] Let K ¼ U;V ;Rð Þ be a formal context, X#U, and A;B#V. Then, the following statements are equivalent:

(1) X; A;Bð Þh i is a U-O3W concept;
(2) Xc; A;Bð Þ� �

is a 5-O3W concept;

(3) Xc; A;Bð Þc� �
is a .-O3W concept;

(4) X; A;Bð Þc� �
is a .-O3W concept.
Proof. Suppose that X; A;Bð Þh i is a U-O3W concept, then according to Table 5, we have
hX; A;Bð Þi is a U� O3W concept () XU ¼ A;Bð Þ; A;Bð ÞV ¼ X

() Xc5 ¼ A;Bð Þ; A;Bð Þ4c ¼ X

() Xcð Þ5 ¼ A;Bð Þ; A; Bð Þ4 ¼ Xc

() hXc; A; Bð Þi is a 5�O3W concept:
The other equivalences can be similarly proved.
Theorem 5 provides a theoretical support of expressing one kind of O3W concept in terms of another. Fig. 4 helps us to

explain and prove Theorem 5. Two nodes of the same color in Figs. 4a and 4b represent a kind of O3W concept. The equiv-
alence between two kinds of O3W concepts is depicted by two double lines in Figs. 4a and 4b, respectively. In consideration
Fig. 4. Equivalences between O3W concepts.
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of formulation and interpretation, even though the four kinds of O3W concepts are equivalent to each other, it is meaningful
and more convenient to use separate of them. Based on Eqs. (13) and (14), the order, infimum, and supremum of O3W con-
cepts are defined as follows.

Definition 7. Let K ¼ U;V ;Rð Þ be a formal context, X1;X2 #U, and A1;A2;B1;B2 #V .

(1) [26] For X1; A1;B1ð Þh i; X2; A2;B2ð Þh i 2 OCU
3 Kð Þ; X1; A1;B1ð Þh i�U X2; A2;B2ð Þh i iff X1 #X2 (equivalently, A2;B2ð Þ# A1;B1ð Þ),

and
X1; A1;B1ð Þh i^U X2; A2;B2ð Þh i ¼ X1 \ X2; A1; B1ð Þ [ A2;B2ð Þð ÞVU� �
¼ X1 \ X2; X1 \ X2ð ÞU� �

;

X1; A1;B1ð Þh i_U X2; A2;B2ð Þh i ¼ X1 [ X2ð ÞUV
; A1;B1ð Þ \ A2;B2ð Þ� �

¼ A1; B1ð Þ \ A2;B2ð Þð ÞV; A1;B1ð Þ \ A2;B2ð Þ� �
:

ð15Þ

(2) For X1; A1;B1ð Þh i; X2; A2;B2ð Þh i 2 OC5
3 Kð Þ; X1; A1;B1ð Þh i�5 X2; A2;B2ð Þh i iff X2 #X1 (equivalently, A2; B2ð Þ# A1;B1ð Þ), and

X1; A1;B1ð Þh i^5 X2; A2;B2ð Þh i ¼ X1 [ X2; A1; B1ð Þ [ A2;B2ð Þð Þ45
D E

¼ X1 [ X2; X1 [ X2ð Þ5h i;
X1; A1;B1ð Þh i_5 X2; A2;B2ð Þh i ¼ X1 \ X2ð Þ54

; A1;B1ð Þ \ A2;B2ð Þ
D E

¼ A1; B1ð Þ \ A2;B2ð Þð Þ4; A1;B1ð Þ \ A2;B2ð Þ
D E

:

ð16Þ

(3) For X1; A1;B1ð Þh i; X2; A2;B2ð Þh i 2 OC.
3 Kð Þ; X1; A1;B1ð Þh i�. X2; A2;B2ð Þh i iff X2 #X1 (equivalently, A1;B1ð Þ# A2;B2ð Þ), and

X1; A1;B1ð Þh i^. X2; A2; B2ð Þh i ¼ X1 [ X2; A1; B1ð Þ \ A2;B2ð Þð Þ/.h i
¼ X1 [ X2; X1 [ X2ð Þ.h i;

X1; A1;B1ð Þh i_. X2; A2; B2ð Þh i ¼ X1 \ X2ð Þ./; A1; B1ð Þ [ A2;B2ð Þh i
¼ A1; B1ð Þ [ A2;B2ð Þð Þ/; A1;B1ð Þ [ A2;B2ð Þh i:

ð17Þ

(4) [29] For X1; A1;B1ð Þh i; X2; A2;B2ð Þh i 2 OC.

3 Kð Þ; X1; A1;B1ð Þh i�. X2; A2;B2ð Þh i iff X1 #X2 (equivalently, A1;B1ð Þ# A2;B2ð Þ),
and

X1; A1;B1ð Þh i^. X2; A2;B2ð Þh i ¼ X1 \ X2; A1; B1ð Þ \ A2;B2ð Þð ÞN.
D E

¼ X1 \ X2; X1 \ X2ð Þ.
D E

;

X1; A1;B1ð Þh i_. X2; A2;B2ð Þh i ¼ X1 [ X2ð Þ.N
; A1;B1ð Þ [ A2;B2ð Þ

D E

¼ A1; B1ð Þ [ A2;B2ð Þð ÞN; A1;B1ð Þ [ A2;B2ð Þ� �
:

ð18Þ

To be consistent with the equivalences between O3W concepts, we have changed the order, infimum, and supremum of
5-O3W concepts and .-O3W concepts in [29]. The collection of O3W concepts of the same kind forms a complete lattice
with the corresponding infimum and supremum defined in Definition 7.

Theorem 6. Let K ¼ U;V ;Rð Þ be a formal context. Then, OCH
3 Kð Þ;^H;_H

� 	
is a complete lattice, where H ¼ U;5;., and .,

respectively.
Proof. (Given is the proof of OC5
3 Kð Þ;^5;_5

� �
being a complete lattice. The others can be proved similarly.) Suppose

X1; A1; B1ð Þh i; X2; A2;B2ð Þh i 2 OC5
3 Kð Þ, then X5

i ¼ Ai;Bið Þ and Ai;Bið Þ4 ¼ Xi; i ¼ 1;2. According to Proposition 1 and 4, we have
A1;B1ð Þ [ A2;B2ð Þð Þ45
� 	4

¼ A1;B1ð Þ [ A2;B2ð Þð Þ454 ¼ A1;B1ð Þ [ A2;B2ð Þð Þ4

¼ A1;B1ð Þ4 [ A2;B2ð Þ4 ¼ X1 [ X2:
Still, applying Proposition 4, it follows that
X1 [ X2ð Þ5 ¼ A1;B1ð Þ [ A2; B2ð Þð Þ454
� 	5

¼ A1;B1ð Þ [ A2;B2ð Þð Þ45
:

Therefore, X1 [ X2; A1;B1ð Þ [ A2;B2ð Þð Þ45
D E

2 OC5
3 Kð Þ.

It is straightforward from Definition 7 and Proposition 4 that
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X1 [ X2; A1; B1ð Þ [ A2;B2ð Þð Þ45
D E

�5 X1; A1; B1ð Þh i;

X1 [ X2; A1; B1ð Þ [ A2;B2ð Þð Þ45
D E

�5 X2; A2; B2ð Þh i:
Next, we prove that X1 [ X2; A1;B1ð Þ [ A2;B2ð Þð Þ45
D E

is the infimum of X1; A1;B1ð Þh i and X2; A2; B2ð Þh i. If else, suppose that

X; A;Bð Þh i is another lower bound of X1; A1;B1ð Þh i and X2; A2;B2ð Þh i, and X1 [ X2; A1;B1ð Þ [ A2;B2ð Þð Þ45
D E

�5 X; A;Bð Þh i. Then,
X1 #X and X2 #X on one hand; on the other X#X1 [ X2. This leads to X ¼ X1 [ X2 and

A;Bð Þ ¼ X5 ¼ X1 [ X2ð Þ5 ¼ A1;B1ð Þ [ A2;B2ð Þð Þ45. Equivalently saying, X1 [ X2; A1;B1ð Þ [ A2;B2ð Þð Þ45
D E

is the infimum of

X1; A1;B1ð Þh i and X2; A2;B2ð Þh i.
In a similar process, one can prove that X1 \ X2ð Þ54; A1; B1ð Þ \ A2;B2ð Þ

D E
is a 5-O3W concept and also the supremum of

X1; A1;B1ð Þh i and X2; A2;B2ð Þh i. Consequently, OC5
3 Kð Þ;^5;_5

� �
is a complete lattice.

The equivalences between different kinds of O3W concepts in Theorem 5 provide a hint on the relationship between the
four kinds of O3W concept lattices stated in Theorem 6.

Theorem 7. Let K ¼ U;V ;Rð Þ be a formal context. Then, OCU
3 Kð Þ ffi OC5

3 Kð Þ ffi OC.
3 Kð Þ ffi OC.

3 Kð Þ.
Proof. Given X; A;Bð Þh i 2 OCU Kð Þ, let f X; A;Bð Þh ið Þ ¼ Xc; A;Bð Þ� �
. Then, using Theorem 5, we have Xc; A;Bð Þ� � 2 OC5 Kð Þ, and f

is a bijection between OCU Kð Þ and OC5 Kð Þ.
Suppose X1; A1;B1ð Þh i; X2; A2;B2ð Þh i 2 OCU Kð Þ, then according to Eqs. (15) and (16), we have
f X1; A1;B1ð Þh i^U X2; A2;B2ð Þh ið Þ ¼ f X1 \ X2; A1;B1ð Þ [ A2;B2ð Þð ÞVU� �� � ¼ X1 \ X2ð Þc; A1;B1ð Þ [ A2;B2ð Þð ÞVU� �
;

f X1; A1;B1ð Þh ið Þ^5f X2; A2; B2ð Þh ið Þ ¼ Xc
1; A1; B1ð Þ� �^5 Xc

2; A2;B2ð Þ� � ¼ Xc
1 [ Xc

2; A1;B1ð Þ [ A2;B2ð Þð Þ45
D E

:

It is obvious that X1 \ X2ð Þc ¼ Xc
1 [ Xc

2, and at the same time it follows from Proposition 7 that

A1;B1ð Þ [ A2;B2ð Þð ÞVU ¼ A1;B1ð Þ [ A2;B2ð Þð Þ45. That is to say,
f X1; A1;B1ð Þh i^U X2; A2;B2ð Þh ið Þ ¼ f X1; A1;B1ð Þh ið Þ^5f X2; A2;B2ð Þh ið Þ;

which means that f is ^-preserving.

On the other hand, it follows from Eqs. (15) and (16) that
f X1; A1;B1ð Þh i_U X2; A2;B2ð Þh ið Þ ¼ f X1 [ X2ð ÞUV
; A1;B1ð Þ \ A2;B2ð Þ� �� � ¼ X1 [ X2ð ÞUVc

; A1;B1ð Þ \ A2;B2ð Þ� �
;

f X1; A1;B1ð Þh ið Þ_5f X2; A2; B2ð Þh ið Þ ¼ Xc
1; A1; B1ð Þ� �_5 Xc

2; A2;B2ð Þ� � ¼ Xc
1 \ Xc

2

� �54
; A1;B1ð Þ \ A2;B2ð Þ

D E
:

According to the properties shown in Table 5, we have
X1 [ X2ð ÞUVc ¼ X1 [ X2ð ÞU4
;

Xc
1 \ Xc

2

� �54 ¼ X1 [ X2ð Þc� �54 ¼ X1 [ X2ð Þc54 ¼ X1 [ X2ð ÞU4
;

which means
f X1; A1;B1ð Þh i_U X2; A2;B2ð Þh ið Þ ¼ f X1; A1;B1ð Þh ið Þ_5f X2; A2;B2ð Þh ið Þ:

That is to say, f is _-preserving.
Therefore, OCU

3 Kð Þ ffi OC5
3 Kð Þ. Similarly, by setting f : OC5

3 Kð Þ ! OC.
3 Kð Þ; f X; A; Bð Þh ið Þ ¼ X; A;Bð Þc� �

(respectively,

f : OC.
3 Kð Þ ! OC.

3 Kð Þ; f X; A;Bð Þh ið Þ ¼ Xc; A;Bð Þ� �
, and f : OC.

3 Kð Þ ! OCU
3 Kð Þ; f X; A;Bð Þh ið Þ ¼ X; A;Bð Þc� �

), one can prove that

C5 Kð Þ ffi OC.
3 Kð Þ (respectively, OC.

3 Kð Þ ffi OC.
3 Kð Þ and OC.

3 Kð Þ ffi OCU
3 Kð Þ).

The order isomorphic relation in Theorem 7 supports that any of the four kinds of O3W concept lattices can produce
another three. The following is an example of the application of Theorem 7.

Example 1. Table 6 is a formal context with U ¼ x1; x2; x3; x4f g and V ¼ a; b; c; d; ef g (cited from [26]). The U-O3W concept
lattice is shown in Fig. 5a, where 13 represents x1; x3f g and d; cð Þ represents df g; cf gð Þ; similar interpretations are for other
notations of different nodes. Applying Theorems 5 and 7, the 5-O3W concept lattice (shown in Fig. 5b) is obtained by
replacing all extents in Fig. 5a with their complements. The .-O3W concept lattice (shown in Fig. 5c) is obtained by
replacing all intents in Fig. 5a with their complements. The .-O3W concept lattice (shown in Fig. 5d) is obtained by replacing
all extents and intents in Fig. 5a with their complements, respectively. A line in these figures connects two O3W concepts
one of which from the lower level is the subconcept of the one in the upper level.



Table 6
A formal context (cited from [26]).

a b c d e

x1 1 1 0 1 1
x2 1 1 1 0 0
x3 0 0 0 1 0
x4 1 1 1 0 0

Fig. 5. The O3W concept lattices.
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4.2. Relationship between attribute-induced three-way concept lattices

This section mainly discusses the relationship between different kinds of A3W concept lattices. Since the properties of
A3W operators are similar to those of O3W operators, we only present some critical results of A3W concepts.

Definition 8. [26,36] Let K ¼ U;V ;Rð Þ be a formal context, X;Y#U, and A#V . Then,

(1) X;Yð Þ;Ah i is a U-attribute-induced three-way concept (short for U-A3W concept) if AU ¼ X;Yð Þ and X;Yð ÞV ¼ A;
(2) X;Yð Þ;Ah i is a 5-attribute-induced three-way concept (short for 5-A3W concept) if A5 ¼ X;Yð Þ and X;Yð Þ4 ¼ A;
(3) X;Yð Þ;Ah i is a .-attribute-induced three-way concept (short for .-A3W concept) if A. ¼ X;Yð Þ and X;Yð ÞN ¼ A;
(4) X;Yð Þ;Ah i is a .-attribute-induced three-way concept (short for .-A3W concept) if A. ¼ X;Yð Þ and X;Yð Þ/ ¼ A.

Denote ACH

3 Kð Þ the family of all H-A3W concepts of the formal context K ¼ U;V ;Rð Þ, where H ¼ U;5;., and .. The rela-
tionship between the four kinds of A3W concepts is summarized in Theorem 8 and explained through Fig. 6.



Fig. 6. Equivalences between A3W concepts.
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Theorem 8. Let K ¼ U;V ;Rð Þ be a formal context, X; Y#U, and A#V. Then, the following statements are equivalent:

(1) X;Yð Þ;Ah i is a U-A3W concept in K;
(2) X;Yð Þ;Ac� �

is a 5-A3W concept in K;

(3) X;Yð Þc;Ac� �
is a .-A3W concept in K;

(4) X;Yð Þc;A� �
is a .-A3W concept in K.

The order, infimum, and supremum of A3W concepts are defined as follows.

Definition 9. Let K ¼ U;V ;Rð Þ be a formal context, X1;X2;Y1;Y2 #U, and A1;A2 #V .

(1) [26] For X1; Y1ð Þ;A1h i; X2;Y2ð Þ;A2h i 2 ACU
3 Kð Þ; X1;Y1ð Þ;A1h i�U X2;Y2ð Þ;A2h i iff X1;Y1ð Þ# X2;Y2ð Þ (equivalently, A2 #A1),

and
X1;Y1ð Þ;A1h i^U X2; Y2ð Þ;A2h i ¼ X1; Y1ð Þ \ X2;Y2ð Þ; A1 [ A2ð ÞUV� �
¼ X1; Y1ð Þ \ X2;Y2ð Þ; X1;Y1ð Þ \ X2;Y2ð Þð ÞV� �

;
X1;Y1ð Þ;A1h i_U X2; Y2ð Þ;A2h i ¼ X1;Y1ð Þ [ X2; Y2ð Þð ÞVU

;A1 \ A2
� �

¼ A1 \ A2ð ÞU;A1 \ A2
� �

:

ð19Þ

(2) For X1;Y1ð Þ;A1h i; X2;Y2ð Þ;A2h i 2 AC5
3 Kð Þ; X1;Y1ð Þ;A1h i�5 X2;Y2ð Þ;A2h i iff X1;Y1ð Þ# X2;Y2ð Þ (equivalently, A1 #A2), and

X1;Y1ð Þ;A1h i^5 X2; Y2ð Þ;A2h i ¼ X1; Y1ð Þ \ X2;Y2ð Þ; A1 \ A2ð Þ54
D E

¼ X1; Y1ð Þ \ X2;Y2ð Þ; X1;Y1ð Þ \ X2;Y2ð Þð Þ4
D E

;

X1;Y1ð Þ;A1h i_5 X2; Y2ð Þ;A2h i ¼ X1;Y1ð Þ [ X2; Y2ð Þð Þ45
;A1 [ A2

D E
¼ A1 [ A2ð Þ5;A1 [ A2h i:

ð20Þ

(3) For X1;Y1ð Þ;A1h i; X2; Y2ð Þ;A2h i 2 AC.
3 Kð Þ; X1;Y1ð Þ;A1h i�. X2; Y2ð Þ;A2h i iff X2;Y2ð Þ# X1;Y1ð Þ (equivalently, A1 #A2), and

X1;Y1ð Þ;A1h i^. X2;Y2ð Þ;A2h i ¼ X1; Y1ð Þ [ X2;Y2ð Þ; A1 \ A2ð Þ./h i
¼ X1; Y1ð Þ [ X2;Y2ð Þ; X1;Y1ð Þ [ X2;Y2ð Þð Þ/h i;

X1;Y1ð Þ;A1h i_. X2;Y2ð Þ;A2h i ¼ X1;Y1ð Þ \ X2; Y2ð Þð Þ/.;A1 [ A2h i
¼ A1 [ A2ð Þ.;A1 [ A2h i:

ð21Þ

(4) For X1;Y1ð Þ;A1h i; X2; Y2ð Þ;A2h i 2 AC.

3 Kð Þ; X1;Y1ð Þ;A1h i�. X2;Y2ð Þ;A2h i iff X2;Y2ð Þ# X1;Y1ð Þ (equivalently, A2 #A1), and

X1;Y1ð Þ;A1h i^. X2;Y2ð Þ;A2h i ¼ X1; Y1ð Þ [ X2;Y2ð Þ; A1 [ A2ð Þ.N
D E

¼ X1; Y1ð Þ [ X2;Y2ð Þ; X1;Y1ð Þ [ X2;Y2ð Þð ÞN� �
;

X1;Y1ð Þ;A1h i_. X2;Y2ð Þ;A2h i ¼ X1;Y1ð Þ \ X2; Y2ð Þð ÞN.;A1 \ A2

D E
¼ A1 \ A2ð Þ.;A1 \ A2

D E
:

ð22Þ

The collection of A3W concepts of the same kind forms a complete lattice with the corresponding infimum and supre-
mum defined in Definition 9.

Theorem 9. Let K ¼ U;V ;Rð Þ be a formal context. Then, ACH
3 Kð Þ;^H;_H

� 	
is a complete lattice, where H ¼ U;5;., and .,

respectively.
Proof. Similar to that of Theorem 6.
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The four kinds of A3W concept lattices are order isomorphic to each other.

Theorem 10. Let K ¼ U;V ;Rð Þ be a formal context. Then, ACU
3 Kð Þ ffi AC5

3 Kð Þ ffi AC.
3 Kð Þ ffi AC.

3 Kð Þ.
Proof. Similar to that of Theorem 7.
5. Conclusion

Three-way concept analysis is a new theory which investigates concepts in the background of three-way decision. In this
paper, we examined the relationship between different kinds of three-way concept lattices in complete formal contexts by
revisiting the connections between different kinds of two-way operators. A unified framework exhibiting the relationship
between the eight kinds of two-way operators was given to gain an overall understanding of two-way operators and
two-way concepts. On the basis of the connections between two-way operators, three-way operators are classified into four
groups: Type-I O3W operators, Type-II O3W operators, Type-I A3W operators, and Type-II A3W operators. A Type-I O3W
operator and a Type-II A3W operator determine a kind of O3W concept; a Type-II O3W operator and a Type-I A3W operator
determine a kind of A3W concept. Based on the equivalences between different kinds of three-way concepts, we proved that
the four kinds of O3W concept lattices are order isomorphic to each other and the four kinds of A3W concept lattices are also
order isomorphic to each other.

The results in this paper provide a systematic understanding of three-way concepts including how to construct three-way
concept lattices through existing ones. One can define a three-way concept in incomplete formal contexts through a Type-I
O3W operator and a Type-II A3W operator, or through a Type-II O3W operator and a Type-I A3W operator [20]. Therefore,
the relationship between three-way concepts in complete formal contexts can be applied into three-way concepts in incom-
plete formal contexts. On the other hand, by generalizing formal contexts to L-contexts, sets to L-sets, and binary relations to
L-relations, one can use a similar method proposed in this paper to characterize the relationship between L-two-way con-
cepts [1,3,9] and between L-three-way concepts [10]. These two subjects are our future work.
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