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Abstract
Semi-supervisedmulti-view learningmachine is developed to process the corresponding semi-supervisedmulti-view data sets
which consist of labeled and unlabeled instances. But in real-world applications, for a multi-view data set, only few instances
are labeled with the limitation of manpower and cost. As a result, few prior knowledge which is necessary for the designing
of a learning machine is provided. Moreover, in practice, different views and features play diverse discriminant roles while
traditional learning machines treat these roles equally and assign the same weight just for convenience. In order to solve
these problems, we introduce Universum learning to obtain more prior knowledge and assign different weights for views and
features to reflect their diverse discriminant roles. The proposed learning machine is named as weight-and-Universum-based
semi-supervised multi-view learning machine (WUSM). In WUSM, we first obtain weights of views and features. Then, we
construct Universum set to obtain more prior knowledge on the basis of these weights. Different from traditional construction
ways, the used construction way makes full use of the information of all labeled and unlabeled instances rather than only a
pair of positive and negative training instances. Finally, we design the machine with the usage of the Universum set along
with original data set. Our contributions are given as follows. (1) With the usage of all (labeled, unlabeled) instances of
the data set, the Universum set provides more useful prior knowledge. (2) WUSM considers the diversities of views and
features. (3) WUSM advances the development of semi-supervised multi-view learning machines. Experiments on bipartite
ranking, feature selection, dimensionality reduction, classification, clustering, etc. validate the advantages of WUSM and
draw a conclusion that with the introduction of Universum learning, view weights, and feature weights, the performance of a
semi-supervised multi-view learning machine is boosted.
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1 Introduction

Semi-supervised multi-view data set consists of labeled
instances and unlabeled instances. Each instance can be
represented by multiple distinct feature sets (views). The
solutions to process this kind of data sets is called semi-
supervised multi-view learning machines. For such a data
set, compared with the unlabeled instances, the labeled ones
can provide more useful prior knowledge which is nec-
essary for the designing of a learning machine. While in
real-world applications, data sets are generated and collected
very quickly. With the limitation of manpower and cost, we
cannot label all instances and in practice, only few instances
are labeled. As a result, many multi-view data sets only pro-
vide few prior knowledge. Moreover, different views (text,
video, image, etc.) and features (text size, text color, text
thickness, etc.) play diverse discriminant roles. For exam-
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ple, text and video give people different understanding of
data sets and text size and text color bring different sensory
stimulations. While for the sake of convenience, traditional
learning machines treat these roles equally and assign the
same weight. So few prior knowledge and equivalent dis-
criminant roles of views and features limit the improvement
in the performances of learning machines.

Thus in this work, we pay more attention to the following
two research questions. One is how to increase useful prior
knowledge, the other is how to reflect diverse discriminant
roles of views and features.

The targets of our research are increasingmore useful prior
knowledge, considering thedifferences of views and features,
and finally enhancing the performances of semi-supervised
multi-view learning machines.

In order to state the research questions and targets clearly,
the rest parts of this section are organized as follows.

1.1 Why is the topic important

Semi-supervised multi-view data set consists of labeled
(class label is known beforehand) and unlabeled (class label
is unknown beforehand) instances. Each instance consists of
multiple views and each view represents information of the
instance in a certain area. Take a web page data set X for
example (see Fig. 1).X is a semi-supervised multi-view data
set and it consists of three instances. The first two have been
labeled and the third one has not been labeled. Each instance
xi (i ∈ {1, 2, 3}) is a web page from the Internet and pos-
sesses three views, text (x1i ), image (x2i ), and video (x

3
i ). Let

xv
i be v-th view of i-th instance andXv = {xv

i }3i=1 represents
v-th view, then X = {Xv}3v=1 (Xu et al. 2016).

With the coming of big-data age and development ofmod-
ernization of industry, semi-supervised multi-view data sets
are common in the various walks of life including multi-
view clustering (Tzortzis and Likas 2012), handwritten digit
recognition (Sun and Zhang 2011), human gait recognition
(Deng et al. 2016), image recognition (Wu et al. 2016; Zhu
et al. 2016; Wang et al. 2014). For example, in port (Port of
Shanghai, Port of Rotterdam, etc.), there are many contain-
ers in and out of the port every day. The multiple camera
sets in the port take a lot of pictures of containers (pictures
from a camera form a view of the data set) and the staff col-
lect and label these pictures so as to design an identification
tracking system. This system aims to track the containers and
promises the safety and accurate loading and unloading of
these containers. While with the limitation of manpower and
cost, the staff can collect many pictures but hard to label all of
them. In this event, the collected data set is a semi-supervised
multi-view one and the performance of the system will be
degraded. As a result, the working efficiency of the port will
slow down and the national trade will be disturbed further.
Thus, the effective processing of semi-supervisedmulti-view

data sets is very important in many fields including logistics
industry and even national trade.

In order to process such a kind of data sets, semi-
supervised multi-view learning machines (Sheikhpour et al.
2017) including multi-view semi-supervised classification
via adaptive regression (MVAR, developed by Tao et al.
(2017)), co-labeling (developed by Xu et al. (2016)), sparse
Markov chain-based semi-supervised multi-instance multi-
label method (sparse Markov, developed by Han et al.
(2015)), and semi-supervised multi-view hash model
(SSMVH, developed by Zhang and Zheng (2017)) are pro-
posed and popularly used.

Although related experiments validate the effectiveness of
these machines, there are two problems that should be taken
into consideration. The first one is that if the manpower and
cost are very limited, the number of labeled instances will be
far less than that of the unlabeled ones, and then the above-
mentioned machines cannot process that well. The second
one is that for a multi-view data set, different views and fea-
tures play diverse discriminant roles. While the mentioned
machines treat them equally by assigning the same weight
and neglect the differences of views and features. There is
no doubt, these two problems will disturb the processing
of real-world applications and degrade the performances of
corresponding learning machines. Furthermore, the worse
performances of learning machines will delay the develop-
ment of national economy and industry. Thus, researching
and solving these problems is an important topic.

1.2 What are the research questions

As what we said above, there are two research questions in
our work. One is how to increase useful prior knowledge, the
other is how to reflect diverse discriminant roles of views and
features.

1.2.1 How to increase useful prior knowledge

Although above-mentioned machines achieve considerable
success in the domain of machine learning (Sheikhpour et al.
2017), availability of only few labeled instances may affect
classification performance (Liu et al. 2016; Dhar 2014).
See Fig. 2a,1 the learning machine fails to learn a robust
hyperplane with insufficient labeled instances and enormous
unlabeled instances. Indeed, aswe said before, due to labeling
instances is a high-cost task, thus many real-world data sets
consist of insufficient labeled instances and sufficient unla-
beled instances. This phenomenon limits the improvement
in performance for learning machines. In order to boost the
performance, Vapnik and Kotz (1982) develop an algorithm,
Universum, to encode prior knowledge by given instances. In

1 Example in this figure is also given in Liu et al. (2016).
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Fig. 1 Example of a
semi-supervised multi-view data
set

general, Universum learning collects some instances which
do not belong to any class of data, but do belong to the same
domain as the problem. These collections are named Uni-
versum instances which reflect some prior knowledge. By
Universum, we can obtain a robust decision hyperplane, see
Fig. 2b.

Besides for Vapnik and Kotz (1982), some other refer-
ences also validate that a semi-supervised learning machine
with Universum has a better classification performance, par-
ticularly under conditions of insufficient labeled instances.
For example, Universum support vector machine (U-SVM,
developed byWeston et al.)Weston et al. (2006) is developed
to demonstrate that using Universum as a penalty term of the
standard support vector machine (SVM) objective function
can enhance classification performance. UAdaBoost.MH
developed by Liu et al. (2016) explores how Universum
impacts semi-supervised learning with insufficient labeled
instances for the first time. Moreover, Lap-Universum (U-
Lap) and NLap-Universum (U-NLap) which are developed
by Zhang et al. (2008) propose a graph-based framework
to formulate the semi-supervised learning with Univer-
sum problems. With U-Lap and U-NLap, performance of

graph-based algorithms can be boosted further. Document
clustering with Universum (DCU, developed by Zhang et al.
(2011)) validates that Universum instances are useful for
semi-supervised clustering task. Regularizedmatrix-pattern-
oriented classification machine with Universum (U-RMM,
developed by Li et al. (2017)) validates that Universum is
also fit to matrix-instances classification tasks. Due to the
advantages ofUniversum,Universum learninghas beengrad-
ually spread into body pose recognition (Peng et al. 2008),
boosting strategy (Shen et al. 2012), dimensionality reduc-
tion technique (Chen et al. 2012), and multi-view learning
(Wang et al. 2014; Liu et al. 2014).

But there is a common problem existing in Universum
even though aboveUniversum-based learningmachines have
been validated effectiveness. According to Zhang et al.
(2011) and Weston et al. (2006), there are three widely used
ways to construct Universum set. Namely, Universum set
can be composed of instances from other non-target classes,
randomly constructed instances, or instances constructed by
randomly combining instances from different classes. For
these three ways, they have some disadvantages. In terms
of the first way, if instances from some other non-target
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Fig. 2 a Example of
semi-supervised multi-view
learning without Universum. b
Example of semi-supervised
multi-view learning with
Universum
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classes are also insufficient, Universum learning won’t work
well. For the second way, although constructing instances in
random can bring sufficient Universum instances, it still can-
not promise these Universum instances provide enough prior
knowledge. For the third way (also called random averaging,
RA, developed by Cherkassky et al.), it has been proposed
in Cherkassky and Dai (2009) for the first time and accord-
ing to Cherkassky and Dai (2009), Universum instances are
constructed by randomly selecting a pair of positive and
negative training instances, and averaging them. Since each
constructed Universum instance depends on a pair of posi-
tive and negative training instances rather than all (labeled,
unlabeled) instances, so the provided useful prior knowledge
is still limited even though this way constructs sufficient Uni-
versum instances.

Thus how to select a feasible way to construct sufficient
and useful Universum instances so as to increase useful prior
knowledge is the first research question.

1.2.2 How to reflect diverse discriminant roles of views and
features

Compared with the first research problem, the second one is
easy to understand.

According to what we said before, for a real-world semi-
supervised multi-view data set, different views and features
play diverse discriminant roles on designing a learning
machine and they should be assigned different weights. For
example, for a container data set, picture view is more impor-
tant than text view to track and recognize the container and
we should assign a larger weight for picture view. Another
example, for an artwork data set, we want learn about it from
text introduction (i.e., text view) and since text content is
more important than text color, so we should assign a larger
weight for text content. While traditional learning machines
treat these views and features have an equivalent role and
assign a same weight. This is not feasible and we cannot
assign weights for views and features in random without the
consideration of their information. Thus how to assign feasi-

ble weights to reflect diverse discriminant roles of views and
features is the second research problem.

1.3 What is aim of our work

Since there are twomain research problems should be solved
in our work, thus the aims of work are given as follows.

First, this work aims to design a feasible way to construct
sufficient and useful Universum instances and increase more
useful prior knowledge. Second, this work aims to assign fea-
sible weights for views and features so as to reflect diverse
discriminant roles of them. After solve these two research
problems, the performances of semi-supervised multi-view
learning machines can be enhanced and finally, the develop-
ment of national economy and industry can be boosted.

1.4 Why is to propose theWUSMmodel: motivation
and originality

Motivation: in our work, we should solve two research
problems. For the first one, we adopt the following idea.
According to the ways to construct Universum set which
we mentioned before, it is found that averaging operation
can mix some prior knowledge belonging to positive and
negative training instances. Inspired by this operation, we
can put a question that why not to consider the mean of all
instances, all labeled instances, or all unlabeled instances? In
other words, if we take the mean of all (labeled, unlabeled)
instances as a reference point and select some or both orig-
inal instances as alternative instances, maybe averaging this
mean and an alternative instance will obtain sufficient Uni-
versum instanceswithmore prior knowledge due to thismean
also includes prior knowledge. For the second one, in order
to reflect diverse discriminant roles of views and features,
some improvements are proposed including weighted multi-
view clustering (WMVC, developed by Xu et al. (2016)).
WMVC is a multi-view clustering method to extract global
and local features and WMVC aims to find the optimal clus-
ter assignment with the consideration of view weights and
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feature weights. In other words, with the usage of WMVC,
we can assign feasible weights for views and features.

Originality: in terms of these two problems, we design
some schemes for trial to increase more useful prior knowl-
edge and assign feasible view weights and feature weights
with WMVC used. In general, we first obtain view weights
and feature weights of a semi-supervised multi-view data set
by WMVC. Second, on the base of these weights, we design
some schemes to construct Universum set with more prior
knowledge and in terms of these schemes, the mean of all
instances, all labeled instances, or all unlabeled instances is
taken into consideration. Third, we apply the Universum set
along with the original data set to a semi-supervised multi-
view learning machine. For this proposed learning machine,
we name it a weight-and-Universum-based semi-supervised
multi-view learning machine (WUSM). To the best of our
knowledge, this is the first trial for the combination of aver-
aging all (labeled, unlabeled) instances with WMVC.

According to the framework of WUSM, we can adopt the
mean of all instances, all labeled instances, or all unlabeled
instances to increase more useful prior knowledge and adopt
WMVC to reflect diverse discriminant roles of views and
features. Thus the two research problems can be solved by
WUSM and the aim of our work can be attained in theory.
That’s why we propose the WUSM model.

1.5 Contributions

OurWUSM has three main contributions. First, it makes full
use of the information of all (labeled, unlabeled) instances
rather than only a pair of positive and negative training
instances to construct Universum set. This contribution indi-
cates the Universum set possesses more useful prior knowl-
edge. Second, it adopts WMVC to assign feasible weights of
views and features and reflect their diverse discriminant roles.
Third, this is the first trial to construct Universum set with the
combination of averaging all (labeled, unlabeled) instances
and WMVC. This trial advances the development of semi-
supervised multi-view learning machines. With the usage of
WUSM, in the tasks of bipartite ranking, feature selection,
dimensionality reduction, classification, clustering, etc., per-
formances of semi-supervised multi-view learning machines
boost.

1.6 Organization of our work

The rest of this paper is organized as follows. Section 2
reviews semi-supervisedmulti-view learningmachines, Uni-
versum learning, and the ways to construct Universum set.
Description of WUSM is given in Sect. 3. Experiments are
given in Sect. 4. Section 5 shows further discussions. Sec-
tion 6 gives the conclusions and future work.

2 Related work

This section reviews some classical semi-supervised multi-
view learning machines, Universum learning, and ways to
construct Universum set.

2.1 Semi-supervisedmulti-view learningmachines

Semi-supervised multi-view learning machines aim to pro-
cess multi-view data sets with insufficient labeled instances
and sufficient unlabeled instances (Seliya and Khoshgoftaar
2007; Nie et al. 2011; Wang 2011; Liu et al. 2014; Huang
et al. 2014) andMVAR(Tao et al. 2017), co-labeling (Xuet al.
2016), and SSMVH (Zhang andZheng 2017) arewidely used
machines.

MVAR adopts adaptive regression to address semi-
supervised multi-view classification problems. Regressing
to class labels directly makes MVAR efficient in calcula-
tion and can be applied to large-scale data sets; co-labeling
is developed to solve the multi-view weakly labeled learn-
ing problem. It models the learning problem on each view
as a weakly labeled learning problem and learns an optimal
classifier from a set of pseudo-label vectors constructed by
using the classifiers trained from other views; SSMVH is a
model incorporating a portion of label information. SSMVH
minimizes loss jointly on multi-view features when using
relaxation on learning hashing codes, explores statistically
uncorrelatedmulti-view features for constructing hash codes,
and preserves locally compact coding.

Related experiments have validated the advantages of the
abovemachines. But according to Schölkopf et al. (1997) and
Epshteyn and DeJong (2006), prior knowledge has proven
useful for classification and it is notoriously difficult to apply
in practice due to the difficulty of explicitly specifying prior
knowledge. Thus, the scope of applications of these methods
are limited.

2.2 Universum learning

Universum learning was initially proposed by Vapnik and
Kotz (1982) and it encodes prior knowledge by given
instances. To the best of our knowledge, the first learning
machine to explore howUniversum impacts semi-supervised
learning machine with insufficient labeled instances is U-
SVM (Weston et al. 2006). U-SVM collects instances which
do not belong to any target class as Universum instances and
helps to encode prior knowledge by representing meaning-
ful concepts in the same domain. Then, Sinz et al. (2008)
analyze the influence of the Universum on U-SVM further.

In the recent ten years (specially from 2016 to present),
with the success of Universum learning, many learning
machines with Universum are proposed in the field of graph-
based methods (Zhang et al. 2008), clustering (Zhang et al.
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2011), boosting strategy (Shen et al. 2012), dimensionality
reduction techniques (Chen et al. 2012) and so on. For exam-
ple, UAdaBoost.MH (Liu et al. 2016), U-RMM (Li et al.
2017), Universum canonical correlation analysis (UCCA,
developed byChen et al. (2018)) and non-parallel hyperplane
Universum support vector machine (U-NHSVM, developed
by Zhao et al. (2019)).

UAdaBoost.MH incorporates Universum learning with
AdaBoost.MH which maintains a set of weights over all
training instances.Moreover, UAdaBoost.MH is a new learn-
ing machine with using boosting techniques and Universum
instances;U-RMMadopts a previousworkMatMHKS(Chen
et al. 2007) which is developed by Chen et al. and can be
used to classify the matrixized instances as the basic and
incorporates it with Universum learning (Li et al. 2017);
UCCA aims to find basis vectors in multiple views to
ensure that correlations between projections of target data
aremutuallymaximized but correlations between projections
of Universum data and target data mutually minimized; U-
NHSVM shows flexibility by exploiting the prior knowledge
ensconced in Universum and provides consistency by con-
structing two non-parallel hyperplanes simultaneously.

Although many learning machines with Universum are
proposed and developed in this decade, there are some issues
should be overcome. First is that some learning machines
with Universum are developed on the base of supervised
learning problems and they have no ability to process semi-
supervised learning problems, for example, Uboost. Second
is that performances of those learning machines with Uni-
versum are influenced by the ways to construct Universum
set.

2.3 Ways to construct Universum set

As what we mentioned above, different ways to construct
Universum set affect the performances of learning machines.
For example, U-SVM (Weston et al. 2006) collects instances
which from some other non-target classes as the Univer-
sum instances and these Universum instances can encode
prior knowledge of data. But U-SVM will be useless when
instances of other classes are insufficient and how to choose
Universum instances from non-target classes so as to achieve
the most improvement is also not taken into consideration
in U-SVM. Thus, finding in-between Universum (FIBU,
developed by Chen and Zhang (2009)) is proposed to select
informative Universum instances, i.e., in-between Univer-
sum (IBU) instances which deposit in between the two
different classes. After that, in order to enhance the prior
knowledge further, RA (Cherkassky and Dai 2009) gath-
ers Universum instances using a random selection approach,
in which instances are constructed by randomly selecting a
pair of positive and negative training instances, and aver-
aging them. Zhu (2016) and Li et al. (2017) improve RA

and develop a creating in-between Universum (CIBU) algo-
rithm, respectively. CIBU selects a pair of neighbor training
instances rather than a pair of positive and negative training
instances to construct Universum set. The CIBU developed
by Zhu (abbr. CIBU-Zhu) is adapted to vector instances
including the data sets fromUCImachine learning repository
(Asuncion and Newman 2007) while the CIBU developed by
Li et al. (abbr.CIBU-Li) is adapted tomatrix instances includ-
ing images. Moreover, v-twin support vector machine with
Universum (Uv-TSVM, developed by Xu et al.) is proposed
(Xuet al. 2016) and it is different fromCIBU. InUv-TSVM, it
uses two Hinge loss functions to locate Universum instances
in a non-parallel insensitive loss tube rather than construct-
ing Universum instances by randomly combining neighbor
instances. Although these ways can construct sufficient Uni-
versum instances and possess more prior knowledge about
data sets, they still neglect the various discriminant roles of
different views and features.

3 Weight-and-Universum-based
semi-supervisedmulti-view learning
machine

WedevelopWUSMwith the following three steps to improve
the performance of a traditional semi-supervised multi-view
learning machine.

3.1 Obtaining weights of views and features based
onWMVC (Xu et al. 2016)

Suppose X = {Xv}Vv=1={xi }Ni=1 is a semi-supervised multi-
view data set where V is the number of views and N is the
number of training instances. The v-th view is Xv={xv

i }Ni=1,
the i-th instance is xi = {xv

i }Vv=1, and x
v
i represents v-th view

of i-th instance. For each view Xv , its dimension is dv and
this indicates the view consists of dv features.

Then letωv denotes theweight of v-th view and τv
l denotes

the weight of l-th feature of v-th viewwhere v = 1, 2, . . . , V
and l = 1, 2, . . . , dv with the constraints ωv ≥ 0, τv

l ≥
0,

∑V
v=1 ωv = 1,

∑dv

l=1 τv
l = 1. Then the whole semi-

supervised multi-view data set is divided into M clusters
withWMVC and if xi belongs to k-th cluster, we let δik = 1,
otherwise, δik = 0. Here, for any instance xi ,

∑M
k=1 δik = 1.

In order to take the weights into consideration, we con-
struct the objective function with Eq. (1) where εH =
∑V

v=1(ωv)
p ∑N

i=1
∑M

k=1 δik || diag(τ v)(xv
i − mv

k ) ||2 + β
∑V

v=1 || τv ||2, τv = {τv
1 , τ v

2 , . . . , τ v
dv }, and diag(τ v) is a

diagonal matrix. Moreover,mv
k = (

∑N
i=1 δik xv

i )/(
∑N

i=1 δik)

represents the cluster center of k-th cluster in the v-th view.
Furthermore, β

∑V
v=1 || τv ||2 is used to control the sparsity

of the feature weight vectors τv , ∀v so as to avoid the situa-
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tion that only few features are selected in getting a very small
but meaningless objective value. According to priori knowl-
edge of data, exponential parameter p and balance parameter
β are selected to help controlling the sparsity of the view
weight vector ω = {ωv}Vv=1 and the feature weight vectors
τv , ∀v = 1, 2, . . . , V , respectively.

With the solution of Eq. (1), ω = {ω1, ω2, . . . , ωV } and
feature weight vectors τv , ∀v = 1, 2, . . . , V can be obtained
and optimized. Reference Xu et al. (2016) shows the detailed
procedure.

min
δik ,ωv,τ v

εH

s.t .
M∑

k=1

δik = 1, ∀i, δik ∈ {0, 1}

V∑

v=1

ωv = 1, ωv ≥ 0

dv
∑

l=1

τv
l = 1, ∀v, τ v

l ≥ 0 (1)

3.2 Constructing Universum set based on labeled
and unlabeled instances

In our work, in order to obtain more prior knowledge, we
refer to the meaning of averaging operation, compute the
mean of all (labeled, unlabeled) instances and designing
some schemes to construct Universum set with more useful
prior knowledge. Table 1 shows the codes of the used ways
to construct Universum set and details are given as follows.

(A) Center is computed by all instances.
U̇1−1: We first compute the mean of all instances as a

center. Then we take the midpoint of an instance and the
center to construct Universum set.

U̇1−2: We first compute the mean of all instances as a
center. Then we select K instances which locate nearest
from this center. Finally we take the midpoint of a selected
instance and the center to construct Universum set.

U̇1−3: We first compute the mean of all instances as a
center. Then we select K instances which locate farthest
from this center. Finally we take the midpoint of a selected
instance and the center to construct Universum set.

U̇1−4: We first compute the mean of all instances as a
center. Thenwe select K instanceswhich locatenearest from
this center to construct Universum set.

U̇1−5: We first compute the mean of all instances as a
center. Then we select K instances which locate farthest
from this center to construct Universum set.

(B) Center is computed by unlabeled instances.
U̇2−1, U̇2−2, U̇2−3, U̇2−4, and U̇2−5 are very similar with

U̇1−1, U̇1−2, U̇1−3, U̇1−4, and U̇1−5, respectively.The differ-

Algorithm 1 Semi-supervised multi-view learning machine
with Universum set for a binary class classification problem.
Input:
The labeled positive set: LP ; The labeled negative set: LN ;
The unlabeled set: UL; The Universum set: Un;
Index of iteration: i ; The maximum iteration: T ;
The number of labeled instances in each step: M ;
The number of unlabeled instances which are added into the labeled

set in each step: m;
Other parameters of the learning machine;
The predicted unlabeled instances which locate far from the center of

positive or negative Universum instances are reliable instances.
Output:
Decision function of the learning machine;

1: Construct Un, train the semi-supervised multi-view learning
machine on Un, LP , and LN and get decision function.

2: Apply decision function to classifyUL andUn.UL is classified as
two different classes, UL+ and UL− while Un is also classified as
two different classes, Un+ and Un−.

3: Compute the mean of Un+ as p-center while the mean of Un− as
n-center.

4: Select m unlabeled instances in UL+ which are farthest from p-
center as UP and m unlabeled instances in UL− which are farthest
from n-center as UN ;

5: Let LP = {LP ;UP } and LN = {LN ;UN }.
6: Then let i = i + 1, go to 1 until i = T or these sets don’t change

anymore;

ence is that the center is depended on unlabeled instances
rather than all instances. Moreover, during the processing,
Universum set is changed since the unlabeled instances are
changed. Take U̇2−1 as an example. We first compute the
mean of unlabeled instances as a center. Second, we take the
midpoint of each instance (including the labeled and unla-
beled) and the center to construct Universum set. Third, we
apply the Universum set, unlabeled set, and labeled set to
a semi-supervised multi-view learning machine. After the
training of the semi-supervisedmulti-view learningmachine,
some unlabeled instances will be labeled, and the set of unla-
beled instances will be changed. Meanwhile, the Universum
set will also be changed.

(C) Center is computed by labeled instances.
U̇3−1, U̇3−2, U̇3−3, U̇3−4, and U̇3−5 are very similar with

U̇2−1, U̇2−2, U̇2−3, U̇2−4, and U̇2−5, respectively. Only dif-
ference is that the mean of labeled instances is taken as a
center.

3.3 Applying Universum set to a semi-supervised
multi-view learningmachine

After constructingUniversum set, we train a semi-supervised
multi-view learning machine with labeled, unlabeled, and
Universum set. Procedure is given in Fig. 3 and Algorithm1
and an example is given in Fig. 4. According to Fig. 3, for
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Table 1 The codes of used
Universum set construction
ways

Code Way Code Way Code Way

U̇1−1 All-all-mid U̇2−1 Unlabeled-all-mid U̇3−1 Labeled-all-mid

U̇1−2 All-near-mid U̇2−2 Unlabeled-near-mid U̇3−2 Labeled-near-mid

U̇1−3 All-far-mid U̇2−3 Unlabeled-far-mid U̇3−3 Labeled-far-mid

U̇1−4 All-near-self U̇2−4 Unlabeled-near-self U̇3−4 Labeled-near-self

U̇1−5 All-far-self U̇2−5 Unlabeled-far-self U̇3−5 Labeled-far-self

Fig. 3 Framework of how to
apply Universum set and the
original data set to a
semi-supervised multi-view
learning machine

Fig. 4 Example of the
framework that how to apply
Universum set and the original
data set to a semi-supervised
multi-view learning machine

a binary class problem,2 we first train a semi-supervised
multi-view learning machine on labeled and Universum set.

2 For multiple classes, it can be divided into several binary class prob-
lems and the solution is the combination of optimal results of those
binary class problems.

Second, with the usage of this learning machine, we classify
the unlabeled and Universum set iteratively. The classified
results can be labeledwith ‘+’ or ‘−’ or other symbols. Third,
guided by some criterions of selection, we select some reli-
able instances from the predicted unlabeled instances and
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update the original labeled and unlabeled sets. The procedure
will stop if these sets don’t change anymore or the maximum
iteration achieves.

In the framework, the criterions of selection represents
that if the predicted unlabeled instances locate far from the
classification boundary, or center computed by all labeled and
unlabeled instances, or center computed by Universum set
(shown in Algorithm 1), we think these predicted unlabeled
instances are reliable.

3.4 How to apply weights of views and features

When we compute the center, mean, or midpoint, weights
of views and features should be used. Simply speaking, in
order to get the center, mean, or midpoint, the weights are
treated as coefficients and weighted average method is used
for computation. Moreover, in order to search the nearest
or farthest instances, the distances between two points or
instances should be computed. For example, if there are two
instances, xi = {xv

i }Vv=1 and x j = {xv
j }Vv=1 where xv

i or xv
j

represents the v-th view of i-th or j-th instance, respectively,
and suppose the weight of v-th view is ωv and weight of l-th
feature of this view is τv

l . Then the distance between them is

d = ∑V
v=1

∑dv

l=1

∣
∣
∣
∣
∣
∣ωvτ

v
l (xv

il − xv
jl)

∣
∣
∣
∣
∣
∣
2

2
where xv

il (x
v
jl ) is l-th

feature of v-th view of i-th ( j-th) instance.

3.5 Computational complexity analysis

Computational complexity ofWUSM consists of three parts,
namely, complexity of obtaining weights of views and
features, complexity of constructing Universum set, and
complexity of carrying out the semi-supervised multi-view
learning machine with Universum set. In terms of obtain-
ing weights of views and features, according to WMVC
(Xu et al. 2016), the complexity should be O(NMd + d +
V NM). For the complexity of constructing Universum set,
it should be O(N ) in generally. For carrying out the semi-
supervisedmulti-view learningmachine with Universum set,
the complexity is depended on the one of the used learning
machine. We suggest this complexity be O(A). Then the
total computational complexity ofWUSM is O(NMd+d+
V NM) + O(N ) + O(A). Compared with previous learn-
ing machines, the additional computational complexity of
WUSM is O(NMd + d + V NM) + O(N ).

Moreover, according to the total computational complex-
ity of WUSM, it is found the complexity is nothing to do
with the number of classes. Thus, in WUSM, converting
the multi-class problems into several binary problems won’t
bring additional computational complexity in theory.

3.6 Convergence

Convergence is an important index to measure the per-
formance of a learning machine. According to the above
contents, due to constructing Universum set need not to
optimize some parameters, thus the convergence of WUSM
depends on the convergence of WMVC and the one of used
semi-supervisedmulti-view learningmachine. Since the con-
vergence ofWMVC can be promised by Xu et al. (2016) and
the one of used semi-supervisedmulti-view learningmachine
can be promised by related reference, thus the convergence
of our proposed WUSM is also guaranteed.

3.7 Advantage ofWUSM over other existing
methods

Compared with the traditional semi-supervised multi-view
learning machines, the proposed WUSM can process the
multi-view data sets with insufficient labeled instances and
enormous unlabeled instances. Moreover, it can take the
diverse discriminant roles of views and features into con-
sideration.

Compared with the traditional ways to construct Univer-
sum set, with the WUSM used, information of all instances,
all labeled instances, or all unlabeled instances is taken into
consideration during the construction ofUniversum set. Then
more useful prior knowledge is provided.

4 Experiments

Experimental setting andperformance comparisons are given
in this section.

4.1 Experimental setting

Experimental setting includes description of data sets and
compared methods, parameter setting, and experimental set
up.

4.1.1 Description of data sets

WUSM are conducted on multi-view data sets Mfeat (see
Table 2), Reuters (see Table 3), and Corel (see Table 4). With
the limitation of this paper, we describe them in simple as
follows. The details can be found inWMVC (Xu et al. 2016).

Mfeat3 consists of features of handwritten numerals (‘0’–
‘9’) extracted from a collection of Dutch utility maps. Each
handwritten numeral (class) has 200 instances and each

3 http://archive.ics.uci.edu/ml/datasets/Multiple+Features.
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Table 2 Detailed information of
Mfeat. In this table, number of
features represents dimension

View No. instances No. features No. digits

Profile correlations (fac) 2000 216 10

Fourier coefficients of the character shapes (fou) 2000 76 10

Karhunen–Love coefficients (kar) 2000 64 10

Pixel averages in 2 × 3 windows (pix) 2000 240 10

Zernike moments (zer) 2000 47 10

Morphological features (mor) 2000 6 10

Table 3 Detailed information of
Reuters. In this table, vocabulary
size represents dimension

View No. documents Vocabulary size Topic No. documents Percentage (%)

English (EN) 18,758 21,513 C15 18,816 16.84

French (FR) 26,648 24,839 CCAT 21,426 19.17

German (GR) 29,953 34,279 E21 13,701 12.26

Spanish (SP) 12,342 11,547 ECAT 19,198 17.18

Italian (IT) 24,039 15,506 GCAT 19,178 17.16

M11 19,421 17.39

Table 4 Detailed information of
Corel. In this table, number of
features represents dimension

View No. images No. features No. categories

Color histogram (Col-h) 1000 32 10

Color histogram layout (Col-hl) 1000 32 10

Color moments (Col-m) 1000 9 10

Co-occurrence texture (Coo-t) 1000 16 10

instance has 6 views (Asuncion andNewman2007);Reuters4

consists of machine translated documents (instances) which
are written in 5 different languages (views) and these docu-
ments are also categorized into 6 different topics (classes)
(Amini et al. 2009, 17); Corel5 contains image features
extracted from a Corel image collection (Asuncion andNew-
man 2007). In our experiments, we randomly select 1000
photo images (instances) from10 various categories (classes)
and each category has 100 photos. The 10 categories are C0-
Africa, C1-Beach, C2-Building, C3-Buses, C4-Dinosaurs,
C5-Elephants, C6-Flowers, C7-Horses, C8-Mountains and
C9-Food and for each instance, 4 sets of features (views) are
adopted.

4.1.2 Description of compared methods

In order to validate the effectiveness of WUSM, some
traditional Universum construction ways are used for com-
parisons. They are CIBU-Zhu (Zhu 2016), CIBU-Li (Li et al.
2017), and Uv-TSVM (Xu et al. 2016).

4 http://archive.ics.uci.edu/ml/datasets/Reuters+RCV1+RCV2+Multi
lingual\%2C+Multiview+Text+Categorization+Test+collection.
5 http://archive.ics.uci.edu/ml/datasets/Corel+Image+Features.

Moreover, we adopt multiple semi-supervised multi-view
learning machines for comparisons in different fields so
that the effectiveness of WUSM can be validated in dif-
ferent applications (see the following contents and detailed
description of each machine can be found in their respective
references).

Bipartite ranking: semi-supervised multi-view ranking
(SmVR, developed by Usunier et al. (2011)).

Feature selection: multi-view Laplacian sparse feature
selection (MLSFS, developed by Shi et al. (2015)).

Dimensionality reduction:multiple-view semi-supervised
dimensionality reduction (MVSSDR,developedbyHouet al.
(2010)).

Classification: multi-view semi-supervised learning pro-
posed by Zhu et al. (MvSs-Zhu (Zhu et al. 2016) , multiple-
viewmultiple-learner (MVML, developed by Sun and Zhang
(2011)), co-graph (developed by Du et al. (2013)), adap-
tive multi-view selection (AMVS, developed by Yang et al.
(2014)), MVAR (Tao et al. 2017), co-labeling (Xu et al.
2016).

Clustering: semi-supervised unified latent factor learning
(SULF, developedby Jiang et al. (2014)) and semi-supervised
three-way clustering (SSTC, developed by Yu et al. Yu et al.
(2017)).
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Table 5 Parameter settings of WUSM

Step Parameter Notation Initial value

1 The weight of v-th
view

ωv
1
V

The weight of l-th τv
l

1
dv

Feature of v-th view

Exponential
parameter

p {5, 10, 15, 20, 25, 30}

Balance parameter β (0, 1]
The number of
clusters

M Based on the
ground-truth labels of
the instances

2 Number of nearest K {1, . . . , Ne−max}
Or farthest neighbors

3 The maximum
iteration

T 100

Number of unlabeled m {0.1, 0.2, . . . , 1%}
Instances which are
added into the
labeled set in each
step

× Nul

Limited by the length of this paper, for each experimental
subsection, if there is no special explanation, we only show
the results on one data set. But the conclusions derived from
the results are also fit to other two data sets.

4.1.3 Parameter setting

First, we select 10% instances of each data set for test in
randomand the rest 90%are used for training. For the training
set, we further label 10%, 20%, 30%, 40%, 50%, 60%, 70%,
80%, and 90% instances and the rest are used as unlabeled
instances, respectively, in random.

Second, due to WUSM consists of three steps (see
Sects. 3.1, 3.2, 3.3), thus in Table 5 (steps 1, 2, and 3) shows
the corresponding parameter settings. Moreover, in Table 5,
Ne−max = Nt − Nmax. Nt is the total number of train-
ing instances and Nmax is the number of instances from
largest training class.6 Nul is the number of original unla-
beled instances. Furthermore, since we construct Universum
set with 15 ways and select reliable instances with 3 crite-
rions, so in order to show experimental results clearly, we
adopt symbols in Table 6 to simplify the clarifications.

Third, parameter settings of other compared Universum
construction ways are given in Table 7.

6 For example, a training data set consists of three classes, one has 100
instances, another has 120 instances, and the third has 140 instances,
then Ne−max = 220.

Fourth, parameter settings of other compared semi-
supervised multi-view learning machines can be found in
their respective references.

Moreover, in order to get best parameters, we adopt grid-
search approach. Simply speaking, for any one of Universum
sets, we try all other parameters and get the corresponding
best parameters for each Universum set. Then we conduct
experiments on 45 kinds of Universum sets and choose the
best one.

4.1.4 Experimental set up

All computations are performed on a node of compute clus-
ter with 16 CPUs (Intel Core Due 3.0GHz) running RedHat
Linux Enterprise 5 with 48GB main memory. The coding
environment is MATLAB 2016.

4.2 Performance comparisons for different
applications

4.2.1 Bipartite ranking performances comparisons

In this experiment, we first adopt WUSM to construct more
Universum instances and then apply the Universum set along
with the original data set into SmVR until optimal decision
function of SmVR is gotten. Similar with what SmVR has
done (Usunier et al. 2011) and for convenience, we show
the average precision (AvP) and area under the ROC7 curve
(AUC) for SmVR on Reuters (see Table 8).

From this table, if we rank these compared Universum
construction ways in terms of AUC and AvP, it is found that
for each class (topic), WUSM > CIBU-Li > CIBU-Zhu >

Uv-TSVM > Original. Namely, with WUSM, SmVR per-
forms best while without any Universum processing, SmVR
performs worst. The experimental results indicate that

• Averaging all (labeled, unlabeled) instances brings more
prior knowledge compared with averaging a pair of train-
ing instances.

• Although CIBU-Zhu and CIBU-Li both select a pair
of neighbor training instances to construct Universum
set, CIBU-Li has a better performance than CIBU-Zhu.
As Zhu and Gao (2015) said, compared with an algo-
rithm based on vector instances, an algorithm based on
matrix instances has two advantages, one is reducing
the computational complexity and the other is improv-
ing the classification performance. Since CIBU-Li is
designed on the base ofmatrix instanceswhileCIBU-Zhu
is developed on the base of vector instances, so CIBU-Li
outperforms CIBU-Zhu in average.

7 ROC: receiver operating characteristic.
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Table 6 Symbols and orders of different Universum construction ways
and criterions for WUSM. Here, ã represents ‘far from the classifica-
tion boundary’, b̃ represents ‘far from center computed by all labeled

and unlabeled instances’, c̃ represents ‘far from center computed by
Universum set’

Criterion ã b̃ c̃ Criterion ã b̃ c̃ Criterion ã b̃ c̃

U̇1−1 1-U̇11ã 16-U̇11b̃ 31-U̇11c̃ U̇2−1 6-U̇21ã 21-U̇21b̃ 36-U̇21c̃ U̇3−1 11-U̇31ã 26-U̇31b̃ 41-U̇31c̃

U̇1−2 2-U̇12ã 17-U̇12b̃ 32-U̇12c̃ U̇2−2 7-U̇22ã 22-U̇22b̃ 37-U̇22c̃ U̇3−2 12-U̇32ã 27-U̇32b̃ 42-U̇32c̃

U̇1−3 3-U̇13ã 18-U̇13b̃ 33-U̇13c̃ U̇2−3 8-U̇23ã 23-U̇23b̃ 38-U̇23c̃ U̇3−3 13-U̇33ã 28-U̇33b̃ 43-U̇33c̃

U̇1−4 4-U̇14ã 19-U̇14b̃ 34-U̇14c̃ U̇2−4 9-U̇24ã 24-U̇24b̃ 39-U̇24c̃ U̇3−4 14-U̇34ã 29-U̇34b̃ 44-U̇34c̃

U̇1−5 5-U̇15ã 20-U̇15b̃ 35-U̇15c̃ U̇2−5 10-U̇25ã 25-U̇25b̃ 40-U̇25c̃ U̇3−5 15-U̇35ã 30-U̇35b̃ 45-U̇35c̃

Table 7 Parameter settings of
other compared Universum
construction ways

Method Parameter Notation Initial value

CIBU-Zhu Number of nearest neighbors K 3

Control parameter Uxk {0.1, 0.2, . . . , 1, 2, . . . , 10}
CIBU-Li Number of nearest neighbors K 3

Control parameter U Ak {0.01, 0.1, 0.3, 0.5, 0.8,
1, 1.2, 1.5, 1.8, 2}

Uv-TSVM Control parameter v {0.1, 0.2, . . . , 0.9, 1}
Slack parameter ε {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}
Constant parameter c {2i |i = −4,−3, . . . , 8}
Gaussian kernel parameter γ {2i |i = −4,−3, . . . , 8}

Table 8 AvP and AUC for SmVR on Reuters in terms of bipartite ranking performance. Here, original represents the original Reuters without any
Universum processing and the best performance is given in bold

Topic C15 CCAT E21 ECAT GCAT M11

Reuters AvP AUC AvP AUC AvP AUC AvP AUC AvP AUC AvP AUC

Original 0.443 0.783 0.347 0.708 0.307 0.667 0.308 0.682 0.519 0.846 0.711 0.881

Uv-TSVM 0.451 0.785 0.350 0.720 0.307 0.681 0.309 0.692 0.536 0.848 0.717 0.884

CIBU-Zhu 0.452 0.799 0.360 0.724 0.308 0.696 0.309 0.700 0.542 0.856 0.736 0.884

CIBU-Li 0.454 0.802 0.360 0.726 0.313 0.713 0.314 0.711 0.543 0.864 0.740 0.889

WUSM 0.460 0.817 0.361 0.738 0.315 0.721 0.315 0.729 0.546 0.876 0.771 0.925

• Since Uv-TSVM pays more attention to locate Univer-
sum instances rather than the construction of Universum
instances, thus sometimes Uv-TSVM cannot promise the
prior knowledge of Universum instances be sufficient.
That’s why Uv-TSVM cannot perform better than other
three Universum construction ways.

• Since Universum instances can provide some prior
knowledge of data, thus without any Universum process-
ing means no more prior knowledge can be provided.
According to the experiments about bipartite ranking,
WUSM is validated to be effective for this task. In other
words, withWUSM used, SmVR can improve its perfor-
mance in both AUC and AvP.

4.2.2 Feature selection performances comparisons

In this experiment, we adopt MLSFS which utilizes multi-
view Laplacian regularization to boost semi-supervised
sparse feature selection performance to validate the advan-
tage of WUSM for feature selection.

First, we show the average performances of MLSFS for
Mfeat fromdifferent evaluationmetrics8 including precision,
recall, specificity, accuracy, and F-measure. See Fig. 5. From
this figure, it is found that WUSM can outperform others in
average in terms of feature selection performance. More-

8 For these evaluation metrics, precision = TP
TP+FP , recall =

TP
TP+FN , specificity = TN

TN+FP , accuracy = TP+TN
TP+FP+TN+FN , and

F-measure = 2recall×precision
recall+precision . Here, TN: true negative, TP: true pos-

itive, FP: false positive, FN: false negative.
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Fig. 6 Performance variation of MLSFS with different numbers of selected features and percentages of labeled training instances when Mfeat used

over, with the increasing of percentage of labeled training
instances, the performance of MLSFS is also boosted, espe-
cially under the case of WUSM.

Second, we illustrate the performance of MLSFS varies
when the number of selected features changes. For conve-
nience, Universum construction way WUSM and data set
Mfeat are adopted for illustration. Indeed, for other cases, the
conclusions are similar. Although different views of a multi-
view data set have different features, we still show the total
number of selected features. In Fig. 6, we illustrate values
of evaluation metrics of MLSFS varies when the number of
selected features and percentage of labeled training instances
change with Mfeat used. From this figure, it is found that
values of evaluation metrics of MLSFS increases with the
number of selected features increases, and then it decreases
with the number of selected features increases after arriving
the peak. This result is similar with the ones given in Shi et al.
(2015) which indicates that with WUSM used, MLSFS still
keeps its properties.

4.2.3 Dimensionality reduction performances comparisons

As is known to all, information derived from some or all
views (features) can guide the labeling of a multi-view data
set. Thus, the performance varies under different number of
views and features is worthy to be discussed. A good method
to change the number of views or features is dimensional-
ity reduction. Different from feature selection which aims
to select a subset of relevant features (variables, predictors)
for use in model construction, dimensionality reduction aims

to reduce the number of random variables under considera-
tion via obtaining a set of principal variables. Here, we adopt
MVSSDR (Hou et al. 2010) for experiments so as to validate
the effectiveness of WUSM in dimensionality reduction and
discuss the influence of number of used views, percentages of
labeled training instances, and dimensions. For convenience,
we only adopt Mfeat to show the experimental results. In
terms of this experiment, Fig. 7 shows the performance com-
parisons ofMVSSDRwithUniversumconstructionways and
numbers of views used onMfeat. Figure 8 shows the accuracy
of MVSSDR under different numbers of views and dimen-
sions on Mfeat.9 Figure 9 shows the accuracy of MVSSDR
under different percentages of labeled training instances and
dimensions on Mfeat and in this figure,m represents the per-
centage of labeled training instances.

According to these figures, we can draw the following
conclusions. (1) Numbers of views has a great influence
on the performance of MVSSDR and more views brings
a better performance no matter which evaluation metric is
adopted. (2) In terms of different evaluation metrics, it is
found that the average rank of different Universum con-
struction ways is WUSM > CIBU-Li > CIBU-Zhu >

Uv-TSVM > Original. This result is very similar with
the one given in 4.2.1. While compared with the previous
experimental results, in the task of dimensionality reduction,
WUSM brings a larger promote. Especially, for precision,
recall, and F-measure, the performance values of WUSM

9 Limited by the length of this paper, we only show the results about
accuracy rather than precision, recall, specificity, and F-measure. But
the results on other evaluation metrics won’t change our conclusions.
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Fig. 7 Performance comparisons with different Universum construction ways and numbers of views when MVSSDR and Mfeat used
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Fig. 8 The average accuracy of MVSSDR under different numbers of views and dimensions when Mfeat and WUSM used

are at least twice than others. This indicates that withWUSM
used, it can label instances accurately further. (3) Under the
same number of view, a higher dimension brings a higher
performance. (4) Similarly, under the same number of dimen-
sion, more views used brings a better performance. But it is
found that when the view number is 3, the performance is
slight better than the performance when the number of view
is 2. For this phenomenon, we find the reason depends on
the used data set. For Mfeat which is a data set with six
views, if we want to label the instances with a high accuracy,
we need at least information from four views. Only two or
three views used won’t bring a great improvement on perfor-

mance. (5) Even though under few cases, when the number of
dimension is fixed, a larger percentage cannot bring a better
performance, but on average, when more training instances
are labeled, the performances are better. (6) All experimen-
tal results validate that a dimensionality reduction learning
machine can achieve better performances by fusing different
kinds of features frommore views.WhenWUSM is adopted,
the performances of the machine are boosted further.
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Fig. 9 The average accuracy of MVSSDR under different percentages of labeled training instances and dimensions when Mfeat and WUSM used

4.2.4 Classification performances comparisons

Here we adopt Corel and learning machines MvSs-Zhu (Zhu
et al. 2016), MVML (Sun and Zhang 2011), co-graph (Du
et al. 2013), AMVS (Yang et al. 2014), MVAR (Tao et al.
2017), co-labeling (Xu et al. 2016) for experiments. Then
we show the accuracy comparisons with different Universum
construction ways, percentages of labeled training instances,
and learning machines. Figure 10 shows the corresponding
accuracies comparisons. From this figure, some conclusions
are given as follows. (1) On average, the rank of different
Universum construction ways is WUSM > CIBU-Li >

CIBU-Zhu > Uv-TSVM > Original. But on some cases,
for example, with MvSs-Zhu adopted, when the percentages
of labeled training instances are 60% and 70%, the perfor-
mance of CIBU-Li is not worse than that ofWUSM. Another
example, with MVAR used, when the percentage of labeled
training instances is 90%, Uv-TSVM performs better than
CIBU-Li. As we know, since we select instances for training
and labeling in random, so sometimes, if the selected labeled
instances can provide enough useful prior knowledge, they
can also boost the performances of other compared Univer-
sum construction ways. (2) When the percentages of labeled
training instances are higher, the accuracy of each learning
machine is better. This is very easy to understand. As we
know, labeled instances can provide useful prior knowledge
and guide the training and designing of a learning machine.
Thus, more labeled instances can provide more useful prior
knowledge and the performances of learning machines can
boost.

4.2.5 Clustering performances comparisons

In order to show the effectiveness of WUSM on the task of
clustering, we adopt Corel, learning machines SULF (Jiang
et al. 2014) and SSTC (Yu et al. 2017) for experiments. The
measure indexes include clustering accuracy (CA) and nor-
malized mutual information (NMI) and their definitions can
refer to Jiang et al. (2014). In generally speaking, a larger CA
and NMI indicate a better clustering performance. Then, we
use Table 9 to show the related experimental results. Accord-
ing to this table, we can draw the following conclusions. (1)
The rank of different Universum construction ways is same
as before. Namely, our proposed WUSM still outperforms
others. (2) Compared with the ‘Original’ case, the perfor-
mance under the ‘WUSM’ case has a 10% improvement
at least. This result indicates with the usage of weights of
views and features and providing more useful prior knowl-
edge, instances in an area are more representative and the
accuracy of clustering is higher. (3) For WUSM, the aver-
age standard deviations of CA and NMI are small and this
means the performance of WUSM is stable. As a summary,
WUSM can enhance the ability of clustering effectively and
compared with other Universum construction ways, WUSM
brings a higher improvement in terms of CA and NMI.

5 Further discussion

In this section, we provide some further discussions as fol-
lows.
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Fig. 10 Accuracy comparisons with different Universum construction ways and percentages of labeled training instances under different classifi-
cation learning machines when Corel is used

Table 9 CA (average std) and
NMI (average std) on Corel with
SULF and SSTC and different
Universum construction ways
used

WUSM CIBU-Li CIBU-Zhu Uv-TSVM Original

SULF-CA 0.712 (0.009) 0.681 (0.011) 0.664 (0.003) 0.639 (0.001) 0.622 (0.029)

SULF-NMI 0.660 (0.019) 0.627 (0.020) 0.613 (0.007) 0.608 (0.017) 0.601 (0.024)

SSTC-CA 0.735 (0.037) 0.703 (0.008) 0.692 (0.014) 0.644 (0.025) 0.633 (0.028)

SSTC-NMI 0.681 (0.008) 0.662 (0.024) 0.652 (0.009) 0.613 (0.004) 0.611 (0.028)

5.1 Significance analysis

In order to check whether the differences between WUSM
and other compared methods are significant, we adopt
Friedman–Nemenyi statistical test (Demsar 2006) and
Wilcoxon rank sum test (Barros et al. 2018).

First, in terms of Friedman–Nemenyi statistical test, Table
10 shows the average ranks ofWUSM,CIBU-Li, CIBU-Zhu,
Uv-TSVM, and without Universum construction ways (i.e.,
original semi-supervisedmulti-viewdata set and using ‘Orig-
inal’ to represent such a case) according to all experimental
results including the given ones and not given ones (some
experimental results are not given since we find the results
are similar with the given ones). Rank differences between
WUSMandothers are alsogiven. For theneedof comparison,
we regard a semi-supervised multi-view learning machine
as a problem and we show the ranks of WUSM, CIBU-Li,
CIBU-Zhu, Uv-TSVM, and original on different problems.
For the Friedman–Nemenyi test, we treat each problem as
a ‘data set’ and finally, we give the average ranks. Then
with the results of this table and refer to Demsar (2006),

we first carry out Friedman test and Friedman statistic χ2
F =

12×11
5(5+1) [1.00002+2.05452+2.94772+4.00232+4.99092−
5(5+1)2

4 ] = 43.2855 and FF = (11−1)χ2
F

11(5−1)−χ2
F

= 605.8153, fur-

ther, F0.05(5− 1, (5− 1)(11− 1)) = F0.05(4, 40) = 2.6060
and F0.10(5− 1, (5− 1)(11− 1)) = F0.10(4, 40) = 2.0909.
Since FF > 2.6060 and FF > 2.0909, so we can reject the
null hypothesis and say the differences between all compared
methods onmultiple ‘data sets’ are significant. Thenwe carry
outNemenyi test for pairwise comparisons. The critical value
for Universum construction ways at q0.05 is 2.728 and corre-

sponding critical difference (CD) is 2.728
√

5·(5+1)
6·11 = 1.8392

while the one at q0.10 is 2.459 and corresponding CD is

2.459
√

5·(5+1)
6·11 = 1.6579. Since the rank difference between

WUSM and CIBU-Zhu (Uv-TSVM, Original) is larger than
1.8392 and 1.6579, sowe can say the performance ofWUSM
is better than the one of CIBU-Zhu (Uv-TSVM, Original)
and their difference is significant. When for the difference
between WUSM and CIBU-Li, the difference is not signifi-
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Table 10 Average ranks of WUSM, CIBU-Li, CIBU-Zhu, Uv-TSVM, and original on different problems

Problem WUSM CIBU-Li CIBU-Zhu Uv-TSVM Original

SmVR 1.0000 2.0000 3.0000 4.0000 5.0000

MLSFS 1.0000 2.0500 2.9500 4.0000 5.0000

MVSSDR 1.0000 2.1000 2.9000 4.0250 4.9750

MvSs-Zhu 1.0000 2.0000 3.0000 4.0000 5.0000

MVML 1.0000 2.1500 2.8500 4.0000 5.0000

Co-graph 1.0000 2.0250 2.9750 4.0000 5.0000

AMVS 1.0000 2.0750 2.9250 4.0000 5.0000

MVAR 1.0000 2.2000 2.8000 4.0250 4.9250

Co-labeling 1.0000 2.0000 3.0250 3.9750 5.0000

SULF 1.0000 2.0000 3.0000 4.0000 5.0000

SSTC 1.0000 2.0000 3.0000 4.0000 5.0000

Average 1.0000 2.0545 2.9477 4.0023 4.9909

Rank difference – 2.0545 − 1 = 1.0545 2.9477 − 1 = 1.9477 4.0023 − 1 = 3.0023 4.9909 − 1 = 3.9909

cant. But in generally, from all experiments, we can validate
the effectiveness of WUSM from an average point.

Second, in terms of Wilcoxon rank sum test which is a
nonparametric test, we first let ‘learning machine’-‘measure
index’ be a problem, for example, SmVR-AvP indicates the
case in Sect. 4.2.1. Then we compute the ranksum according
to the ‘measure index’ between WUSM and the compared
Universum construction way (for example, Uv-TSVM). The
significance level is 5%. Table 11 shows the related exper-
imental results. In this table, each element in this table
represents the ranksum between WUSM and the compared
Universum construction way for a problem. For example, in
the first row and second column, value ‘0.0083’ indicates
that with SmVR used, according to the results of AvP, the
ranksum between WUSM and Uv-TSVM is ‘0.0083’ and
the ranksum rejects the null hypothesis of equal medians at
the default 5% significance level. In other words, according
to AvP, with SmVR used, the difference between WUSM
and Uv-TSVM is significant. According to this table, we can
draw a conclusion that in most cases, the ranksums between
WUSM and the compared Universum construction ways are
smaller than 0.05 and their differences are significant. For
those cases which are not significant, we can also validate
that the difference between WUSM and CIBU-Li is not sig-
nificant again.

5.2 Rademacher complexity analysis

Rademacher complexity is a widely used evaluation crite-
ria for a learning machine (Bartlett et al. 2002; Koltchinskii
2001; Koltchinskii and Panchenko 2000; Mendelson 2002)
and it can be used to measure the generalization risk bound
for learningmachines in qualitative analysis (Schölkopf et al.
1999; Wang et al. 2012). The classical risk bound theory

(Vapnik and Chervonenkis 1971) is given in the following
equation.

P(ϕ �= g(x)) ≤ P̂N (ϕ �= g(x)) + c

√
VC(�)

N
(2)

whereVC(�) represents theVapnik-Chervonekis dimension
of� and P̂N represents the empirical risk error of the function
g. Here,� is a {±1}-valued function class and g is a subset of
class� on the data set {xi , ϕi }Ni=1 where xi ∈ R

d and its class
label is ϕi ∈ {+1,−1}. Actually, the function of VC(�) is
used to measure the complexity of the class function �. The
Rademacher complexity is an alternative notion of VC(�)
(Koltchinskii 2001) which is given in the following equation.

P(ϕ �= g(x)) ≤ P̂N (ϕ �= g(x)) + RN (�)

2
+

√
ln(1/δ)

2N
(3)

In Eq. (3), P is a probability distribution on χ × {±1} and
{xi , ϕi }Ni=1 is chosen independently according to P .� is also
a {±1}-valued function classwhile the domain of� isχ , with
probability at least 1−δ over {xi , ϕi }Ni=1. g is a functionwhich
belongs to �. The RN (�) is the generalization risk bound of
� with the Rademacher complexity. The Rademacher com-
plexity is defined with Eqs. (4) and (5) (Koltchinskii 2001;
Wang et al. 2012).

R̂N (�) = E

[

sup
g∈�

| 2
N

N∑

i=1

σi g(xi ) ‖ x1, . . . , xN

]

(4)

where E is the operator of the expected value of a ran-
dom variable. Here, g(xi ) is the classification function of
�, {σi }Ni=1 is a set whose members are chosen from {1,−1}
arbitrarily, and xi s represent independent instances selected
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Table 11 Wilcoxon rank sum
test analysis with different
problems. The case which the
difference between WUSM and
the compared Universum
construction way is not
significant is shown in bold

Original Uv-TSVM CIBU-Zhu CIBU-Li

SmVR-AvP 0.0339 0.0083 0.0031 0.0542

SmVR-AUC 0.0377 0.0368 0.0198 0.0440

MLSFS-precision 0.0005 0.0005 0.0012 0.0106

MLSFS-recall 0.0056 0.0040 0.0040 0.0142

MLSFS-specificity 0.0244 0.0142 0.0019 0.0011

MLSFS-accuracy 0.0028 0.0008 0.0028 0.0056

MLSFS-F-measure 0.0056 0.0040 0.0142 0.0244

MVSSDR-precision <0.0001 <0.0001 <0.0001 <0.0001

MVSSDR-recall 0.0142 <0.0001 0.0008 <0.0001

MVSSDR-specificity 0.0003 <0.0001 <0.0001 <0.0001

MVSSDR-accuracy 0.0002 <0.0001 <0.0001 <0.0001

MVSSDR-F-measure <0.0001 <0.0001 <0.0001 <0.0001

MvSs-Zhu-accuracy 0.0106 0.0315 0.0006 0.0066

MVML-accuracy 0.0171 0.0012 0.0324 0.0535

Co-graph-accuracy 0.0012 0.0090 0.0123 0.0586

AMVS-accuracy 0.0021 0.0063 0.0109 0.0181

MVAR-accuracy 0.0000 0.0002 0.0286 0.0197

Co-labeling-accuracy 0.0315 0.0042 0.0049 0.0050

SULF-CA <0.0001 <0.0001 0.0717 0.0134

SULF-NMI 0.0021 0.0040 0.0002 0.0106

SSTC-CA <0.0001 <0.0001 0.0003 <0.0001

SSTC-NMI 0.0385 <0.0001 0.0070 0.0635

from χ according to the probability distribution P . Then the
Rademacher complexity of � is

RN (�) = ER̂N (�) (5)

In general, a smaller Rademacher complexity indicates
a better performance. Here, we use Table 12 to show
the Rademacher complexities of different semi-supervised
multi-view learningmachines with different Universum con-
struction ways used. According to this table, it is found that
WUSM can make a semi-supervised multi-view learning
machine have a smaller Rademacher complexity and this
means that the learning machine will have a better perfor-
mance in average.

5.3 What kind of Universum set is more effective

As we know, there are three simple ways to construct Uni-
versum sets. Different ways can construct diverse Universum
sets, and what kind of Universum set is more effective is nec-
essary to be discussed. Here, we further discuss eachway and
elaborate its advantages or disadvantages.

The first way to construct Universum set is selecting
instances from some other classes that are known unlikely
to belong to any of the target classes. The representative
learning machine is U-SVM and its kernel version (Weston

et al. 2006). For this way, the construction operation seems
to be timesaving due to we need not to average anything,
just select some instances. But how to select feasible Univer-
sum instances from non-target classes should be considered.
If we select some instances with a wrong way, the perfor-
mance of a learning machine will be affected and decreased.
See Fig. 11, we use a kernel-based U-SVM (i.e., U-SVM
adopts kernel functions to process nonlinear classification
tasks) for experiments and the black solid line represents
the testing decision boundary. Instances are constructed in
random. Then, according to this figure, it is found that selec-
tion of Universum instances from non-target classes is a key
to get a feasible testing decision boundary. Good Univer-
sum set brings a better testing decision boundary while bad
Universum set affects the testing decision boundary to a cer-
tain extent. This phenomenon is also mentioned in Chen and
Zhang (2009). Moreover, for this way, if the instances from
non-target classes are insufficient, for example, only two or
three instances in non-target classes, and then Universum set
construction ways of this way will not work well. Because
few instances cannot provide enough prior knowledge.

The second way is selecting instances in random to con-
struct Universum set. The representative learning machine
is FIBU (Chen and Zhang 2009) and FIBU selects informa-
tive instances, i.e., IBU instances which deposit in between
the two different classes to construct Universum set. Com-
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Table 12 Rademacher
complexities of different
semi-supervised multi-view
learning machines and
Universum construction ways
used. The best Rademacher
complexity for each
semi-supervised multi-view
learning machine is given in
bold

WUSM CIBU-Li CIBU-Zhu Uv-TSVM Original

SmVR 0.1203 0.1220 0.1421 0.1427 0.1510

MLSFS 0.1063 0.1153 0.1184 0.1226 0.1314

MVSSDR 0.0461 0.0477 0.0499 0.0512 0.0522

MvSs-Zhu 0.0712 0.0736 0.0745 0.0773 0.0809

MVML 0.0831 0.0956 0.0968 0.0983 0.1011

Co-graph 0.0732 0.0778 0.0782 0.0849 0.0867

AMVS 0.1312 0.1390 0.1457 0.1540 0.1602

MVAR 0.0612 0.0705 0.0791 0.0832 0.0891

Co-labeling 0.0681 0.0782 0.0905 0.1072 0.1085

SULF 0.0781 0.0834 0.0953 0.1015 0.1028

SSTC 0.0512 0.0555 0.0647 0.0712 0.0771
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Fig. 11 Testing decision boundaries of kernel-basedU-SVMwith three
cases on a set of randomly constructed instances. Left: no Universum
instance is selected; middle: some instances from the non-target classes

are selected as Universum oneswhile the selection is not good; (3) right:
some instances from the non-target classes are selected as Universum
ones and the selection is good

pared with the first way, this operation avoids the selection
of bad Universum instances. Moreover, this operation makes
the number of IBU be small compared to that of the whole
non-target classes. But this way still exists a latent dan-
ger. If all constructed instances locate very closer to the
target instances, then they will be nonsense. See Fig. 12.
We construct the instances in random and adopt a variant
of kernel-based U-SVM (i.e., the Universum instances are
selected by FIBU) to classify these instances. According to
this figure, we can see if the construction is not good, the
obtained testing decision boundary will not work well.

For the thirdway, there are two sub-kinds.One is randomly
selecting a pair of positive and negative training instances,
and averaging them, for example, RA (Cherkassky and Dai
2009) and RPNA (random positive and negative average)

(Liu et al. 2014). The other is selecting a pair of neighbor
training instances in random and averaging them, for exam-
ple, CIBU-Li (Li et al. 2017) and CIBU-Zhu (Zhu 2016).
Since the averaging operation makes the Universum instance
locate in the center rather than nearby of two instances, thus
both of them can avoid the disadvantages of Universum set
constructionways of the secondway.Butmethods of the third
way introduce the prior knowledge of a pair of instances each
time, this kind of prior knowledge is not sufficient.

For our WUSM, it also adopts the averaging operation.
Different from themethods of the thirdway,WUSMaverages
the center and an instance. The center is depended on all
(labeled, unlabeled) instances. This means our WUSM can
introduce much more prior knowledge at once.
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Fig. 12 Testing decision
boundaries of a variant of
kernel-based U-SVM
(Universum instances are
selected by FIBU) with three
cases on a set of randomly
constructed instances. Left: no
IBU instance is constructed and
selected; middle: some IBU
instances are constructed and
selected while the selection is
not good; right: some IBU
instances are constructed and
selected and the selection is
good
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According to the discussion, we can draw a conclusion
that ourWUSM is more effective than other compared ways.
Related previous experimental results can also validate it.

6 Conclusions and future work

Semi-supervised multi-view learning machines are easy to
be affected by only few labeled instances which provide lim-
ited prior knowledge. Thus some scholars have developed
Universum learning to construct Universum sets so as to
add more prior knowledge. While the traditional construc-
tion ways neglect to consider the various discriminant roles
of views and features. Thus thiswork considers their weights,
designs some schemes to construct Universum set with the
introduction of operation of averaging and notion of center
so as to overcome the disadvantages of some traditional Uni-
versum construction ways.

The new developed learning machine is named weight-
and-Universum-based semi-supervised multi-view learning
machine (WUSM). The procedure of WUSM consists of
three steps. First is obtaining weights of views and features
by an effective weighted multi-view clustering approach
WMVC, second is constructing Universum set by some
schemes which introduce operation of averaging and notion
of center, and third is applying the whole data set including
constructed Universum set to a semi-supervised multi-view
learning machine.

The novelty of our proposed WUSM is that (1) it con-
siders the information of all (labeled, unlabeled) instances
to construct Universum set and introduce more useful prior
knowledge; (2) it assigns feasible weights for views and
features and considers their diverse discriminant roles; (3)
this is the first trial to construct Universum set with the

combination of averaging all (labeled, unlabeled) instances
and the feasible weights of views and features. Our work
advances the development of semi-supervised multi-view
learning machines.

Related experiments on three multi-view data sets Mfeat,
Reuters, and Corel validate the usefulness of WUSM in
different fields including bipartite ranking, feature selec-
tion, dimensionality reduction, classification, and clustering.
Furthermore, discussions about significance, Rademacher
complexity, etc. also validate the effectiveness of WUSM.

Although our WUSM performs better in some fields, we
should notice its limitations. First, with the coming of big-
data age, more and more data sets are generated in every
minute and should be online processed with limitation of
the storage. This cannot be solved by the current version
of WUSM. Second, deep learning which is a good method
to extract more features is not used in our work and this
limits the improvement in the performance ofWUSM. Thus,
according to these limitations, our future directions should
cover the following parts. First, we should propose an online-
version WUSM so as to process the data generated all the
time. Second, in our future work, we want to combine deep
learning with WUSM so as to extract more useful features
and enhance the performance of the semi-supervised multi-
view learning machines.
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