
IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 28, NO. 3, MARCH 2020 447

Three-Way Group Conflict Analysis Based on
Pythagorean Fuzzy Set Theory

Guangming Lang , Duoqian Miao, and Hamido Fujita

Abstract—In some real-world situations, Pythagorean fuzzy sets
are more powerful and effective than intuitionistic fuzzy sets to
describe vague and uncertain information, and there are many
Pythagorean fuzzy information systems for conflicts in which atti-
tudes of agents on issues are depicted by Pythagorean fuzzy num-
bers. In this paper, we first provide the concepts of positive, neutral,
and negative alliances with two thresholds and employ examples to
illustrate how to compute positive, neutral, and negative alliances
in Pythagorean fuzzy information systems for conflicts. Then, we
focus on three-way conflict analysis based on the Bayesian mini-
mum risk theory and explore examples to show how to compute the
positive, neutral, and negative alliances with a Pythagorean fuzzy
loss function given by an expert. Finally, we study how to calculate
positive, neutral, and negative alliances with group decision theory
and take examples to demonstrate how to construct the positive,
neutral, and negative alliances with a group of Pythagorean fuzzy
loss functions given by more experts.

Index Terms—Bayesian minimum risk theory, conflict analysis,
Pythagorean fuzzy information system, Pythagorean fuzzy loss
function, Pythagorean fuzzy sets (PFSs).

I. INTRODUCTION

CONFLICTS are undoubtedly one of the most essential
characteristics of human society, and the study of which is

of utmost significance both theoretically and practically. Espe-
cially, conflict analysis [1]–[21], which plays an important role
in many fields, such as business, political, and legal disputes,
investigates conflict structures with conflict, neutrality, and al-
liance relations and gives some guidance to conflict resolution.
For example, Pawlak [1] initially considered the auxiliary func-
tions and distance functions and offered deeper insight into the
structure of conflicts. Cholvy et al. [4] proposed a method for
estimating the relative reliability of information sources. Deja
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[7] transformed conflict analysis problems and conflict resolving
problems into Boolean reasoning problems with the rough sets
and Boolean reasoning methods. Jabbour et al. [9] provided
the notion of conflicting variable and investigated quantifying
conflicts in propositional logic through prime implicates. Ra-
manna et al. [13] studied how to model a combination of complex
situations among agents where there are disagreements leading
to a conflict situation. Silva and Almeida-Filho [14] presented
a multicriteria approach for analysis of conflicts in evidence
theory. Skowron and Deja [15] explained the nature of conflict
and defined the conflict situation model in a way to encapsulate
the conflict components in a clear manner. Sun et al. [18] pro-
posed a conflict analysis decision model and developed a matrix
approach for conflict analysis based on rough set theory over
two universes. Yang et al. [19] investigated evidence conflict
and belief convergence based on the analysis of the degree
of coherence between two sources of evidence and illustrated
the stochastic interpretation for basic probability assignments.
Yu et al. [20] provided the supporting probability distance to
characterize the differences among bodies of evidence and gave
a new combination rule for the combination of the conflicting
evidence. Zhu and Wang [21] studied the problems of conflicts
of interest in database access security using granular computing
based on covering rough set theory.

Three-way decision theory, proposed by Yao [22] for decision
making with less risks, promotes thinking and problem solving
in threes, such as using three regions, three elements, three views,
three levels, and three stages. Many scholars [23]–[38] have
developed three-way decision theory in theoretical and practical
aspects, which has become a new mathematical tool to deal
with uncertain information and problems. For instance, Chen
et al. [23] focused on three-way decision support for diagnosis
on focal liver lesions. Feng et al. [24] studied uncertainty and
reduction of variable precision multigranulation fuzzy rough
sets based on three-way decisions. Hu et al. [25] provided two
types of three-way decisions in three-way decision spaces and
discussed properties of the three-way decisions. Khan et al. [26]
introduced a three-way approach for learning rules in automatic
knowledge-based topic models. Li et al. [30] presented cost-
sensitive sequential three-way decision modeling using a deep
neural network. Qian et al. [31] investigated attribute reduction
for sequential three-way decisions under dynamic granulation.
Sun et al. [32] studied three-way group decision making based
on multigranulation fuzzy decision-theoretic rough sets over two
universes. Xu et al. [33] provided a three-way decision model
with probabilistic rough sets for stream computing. Yang et al.
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[37] proposed a unified model of sequential three-way decisions
and multilevel incremental processing.

Pythagorean fuzzy sets (PFSs), introduced by Yager and
Abbasov [39] for describing uncertainty, are considered as a
generalization of intuitionistic fuzzy sets (IFSs) and charac-
terized by a membership degree and a nonmembership degree
satisfying the condition that the square sum of its membership
degree and nonmembership degree is equal to or less than one.
Many investigations [39]–[57] have focused on PFSs, which
have more powerful ability than IFSs to model the uncertain in-
formation in decision making problems. For example, Beliakov
and James [41] provided the averaging aggregation functions
for preferences expressed as Pythagorean membership grades
and fuzzy orthopairs. Bustince et al. [42] investigated a his-
torical account of types of fuzzy sets and discussed their rela-
tionships. Peng and Yang [45] developed a Pythagorean fuzzy
superiority and inferiority ranking method to solve uncertainty
multiple attribute group decision making problem. Peng and
Selvachandran [46] presented an overview on PFSs with aim
of offering a clear perspective on the different concepts, tools,
and trends related to their extension and provided two novel
algorithms in decision making problems under Pythagorean
fuzzy environment. Reformat and Yager [50] proposed a novel
collaborative-based recommender system that provides a user
with the ability to control a process of constructing a list of
suggested items using PFSs. Ren et al. [51] extended the TODIM
approach to solve the multi-criteria decision making (MCDM)
problems with Pythagorean fuzzy information and analyzed how
the risk attitudes of the decision makers exert the influence on
the results of MCDM under uncertainty. Wu and Liu [52] pro-
posed a knowledge-augmented logical analysis framework for
policy conflicts in order to make services collaboration possible
and smooth. Zhang [55] presented a hierarchical QUALIFLEX
approach with the closeness index-based ranking methods for
multicriteria Pythagorean fuzzy decision analysis. Zhang et al.
[57] introduced the models of Pythagorean fuzzy rough sets over
two universes and Pythagorean fuzzy multigranulation rough
sets over two universes.

In conflict analysis, we are mainly interested in finding the
relationship among agents taking part in the dispute and study
what measures can be taken for solving the conflict. In this
paper, we investigate how to compute positive, neutral, and
negative alliances based on PFS theory. The motivations and
innovations of this paper are given by answering the following
three questions.

1) Why study conflicts based on PFS theory? In practice,
PFSs are more suitable than IFSs for describing attitudes of
agents in conflicts. For instance, when a person expresses
his preference about the degree of an issue, he gives the
degree to support this issue as

√
3
2 , and the degree to

against this issue as 1
2 , and we have (

√
3
2 )2 + ( 12 )

2 = 1

and
√
3
2 + 1

2 > 1, and IFSs cannot work in this situa-
tion. Furthermore, Pythagorean fuzzy loss functions are
more accurate than intuitionistic fuzzy loss functions for
measuring losses and risks in decision making problems,
which helps people make decisions with less losses and
risks.

2) Why investigate conflicts with three-way decision theory
and group decision theory? In conflict situations, we ask
the agents to specify their views from disagreement, neu-
tral, and agreement and classify all agents into conflict
set, neutral set, and alliance set of an agent with con-
flict, neutral, and alliance relations, respectively. We also
find that three-way decision theory partitions all agents
into positive, boundary, and negative regions based on
the Bayesian minimum risk theory, which is consistent
with the thought of conflict analysis. Moreover, we see
that Pythagorean fuzzy loss functions are given by ex-
perts, and different experts have different opinions for
the same problem and give different Pythagorean fuzzy
loss functions. We employ a group of Pythagorean fuzzy
loss functions given by many famous experts to calculate
positive, neutral, and negative alliances in conflict analysis
so as to make decisions with less losses and risks.

3) What are innovations of this paper? We have not observed
studies on Pythagorean fuzzy information systems for
conflicts, where attitudes of agents are Pythagorean fuzzy
numbers (PFNs). The innovations of this paper mainly
include the following.
1) Construct positive, neutral, and negative alliances with

three-way decision theory.
2) Classify all agents into positive, neutral, and negative

alliances based on Bayesian minimum risk theory.
3) Employ a group of Pythagorean fuzzy loss functions to

compute positive, neutral, and negative alliances with
the minimum risk.

The contributions of this paper are shown as follows. First, we
provide the concept of Pythagorean fuzzy information system
and employ an example to illustrate the difference between
Pawlak information systems and Pythagorean fuzzy informa-
tion systems. We provide the concepts of positive, neutral,
and negative alliances with two thresholds and employ several
examples to illustrate how to compute the positive, neutral, and
negative alliances in Pythagorean fuzzy information systems
for conflicts. Second, we provide the concept of Pythagorean
fuzzy loss function for conflict analysis of Pythagorean fuzzy
information systems, and illustrate mechanisms of computing
the positive, neutral, and negative alliances based on Bayesian
minimum risk theory. We also employ several examples to
illustrate how to compute the positive, neutral, and negative
alliances with a Pythagorean fuzzy loss function given by an
expert. Third, we demonstrate mechanisms of calculating the
positive, neutral, and negative alliances for conflict analysis with
group decision theory, and employ several examples to illustrate
how to construct the positive, neutral, and negative alliances
with a group of Pythagorean fuzzy loss functions given by more
experts.

The rest of this paper is organized as follows. Section II
reviews the basic concepts of PFSs and conflict analysis.
Section III proposes the concepts of positive, neutral, and nega-
tive alliances with two thresholds. Section IV focuses on three-
way conflict analysis based on Bayesian minimum risk theory.
Section V provides three-way group conflict analysis based on
group decision theory. The conclusion is given in Section VI.
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Fig. 1. Relationship between a PFN and an intuitionistic fuzzy number.

II. PRELIMINARIES

In this section, we review the related concepts of PFSs and
conflict analysis.

A. Pythagorean Fuzzy Sets

Definition 2.1 (see [53]): Let U be an arbitrary nonempty
set, and a PFS P is a mathematical object of the form as follows:

P = {< x,P (μP (x), νP (x)) > |x ∈ U}
where μP (x), νP (x) : U → [0, 1] such as μ2

P (x) + ν2P (x) ≤ 1,
for every x ∈ U , μP (x) and νP (x) denote the membership
degree and the nonmembership degree of the element x ∈ U
in P , respectively.

For convenience, we denote the PFN and the hesitant de-

gree as γ = P (μγ , νγ) and πγ =
√

1− μ2
γ − ν2γ , respectively.

Moreover, if γ = P (μγ , νγ) satisfying μγ + νγ ≤ 1, then γ is
an intuitionistic fuzzy number, and the relationship between a
PFN and an intuitionistic fuzzy number is illustrated by Fig. 1.
Therefore, PFSs, as a generalization of IFSs, are powerful for
describing imprecise information.

Definition 2.2 (see [53]): Let γ1 = P (μγ1
, νγ1

) and γ2 =
P (μγ2

, νγ2
) be PFNs. Then, a nature quasi-ordering on PFNs

is defined as follows:

γ1 ≥ γ2 if and only if μγ1
≥ μγ2

and νγ1
≤ νγ2

.

For convenience, we define the function I(γ) = γ for any PFN
γ. So γ1 ≥ γ2 ⇔ I(γ1) ≥ I(γ2). Moreover, Yager provided
multiplication and summation operations for PFNs as follows.

1) kγ = P (
√
1− (1− μ2

γ)
k, νkγ ).

2) γ1 ⊕ γ2 = P (
√

μ2
γ1

+ μ2
γ2

− μ2
γ1

∗ μ2
γ2
, νγ1

∗ νγ2
).

Definition 2.3 (see [56]): Let γ = P (μγ , νγ) be a PFN.
Then, the score function S for γ is defined as follows:

S(γ) = μ2
γ − ν2γ .

We have that −1 ≤ S(γ) ≤ 1 for the PFN γ. Especially, the
score function is effective to discern PFNs.

Definition 2.4 (see [56]): Let γ1 = P (μγ1
, νγ1

) and γ2 =
P (μγ2

, νγ2
) be PFNs. Then, the Euclidean distance d between

γ1 and γ2 is defined as follows:

d(γ1, γ2) =
1

2
(|μ2

γ1
− μ2

γ2
|+ |ν2γ1

− ν2γ2
|+ |π2

γ1
− π2

γ2
|).

Especially, we obtain the Euclidean distance between the PFN
P (μγ , νγ) and the positive ideal PFN γ+ = P (1, 0) as follows:

d(γ, γ+) =
1

2
(1− μ2

γ + ν2γ + π2
γ) = 1− μ2

γ

and the Euclidean distance between the PFN P (μγ , νγ) and the
negative ideal PFN γ− = P (0, 1) as follows:

d(γ, γ−) =
1

2
(1− ν2γ + μ2

γ + π2
γ) = 1− ν2γ .

Definition 2.5 (see [55]): Let γ = P (μγ , νγ) be a PFN,
γ+ = P (1, 0) and γ− = P (0, 1). Then, the closeness index P
for γ is defined as follows:

P(γ) =
d(γ, γ−)

d(γ, γ+) + d(γ, γ−)
=

1− ν2γ
2− μ2

γ − ν2γ
.

We see that the closeness index P(γ) of γ is constructed
based on the Euclidean distance between the PFNP (μγ , νγ) and
the positive ideal PFN γ+ and the Euclidean distance between
the PFN P (μγ , νγ) and the negative ideal PFN γ−. Especially,
we have 0 ≤ P(γ) ≤ 1 for the PFN γ.

Definition 2.6 (see [39]): Let γ = P (μγ , νγ) be a PFN.
Then, the function F for γ is defined as follows:

F (γ) =
1

2
+
√

μ2
γ + ν2γ ∗

⎛
⎝1

2
−

2 arccos(
μγ√
μ2
γ+ν2

γ

)

π

⎞
⎠ .

The function F provides an effective approach to comparing
PFNs. Moreover, by Definitions 2.2–2.6, we provide the com-
parison law for discerning PFNs as follows.

Definition 2.7: Let γ1 = P (μγ1
, νγ1

) and γ2 = P (μγ2
, νγ2

)
be PFNs, and • = I, S,P, F . Then, the following statements
can be concluded:

1) if •(γ1) > •(γ2), then γ1 is bigger than γ2, denoted by
γ1 
• γ2;

2) if •(γ1) < •(γ2), then γ1 is smaller than γ2, denoted by
γ1 ≺• γ2; and

3) if •(γ1) = •(γ2), then γ1 is equal to γ2, denoted by γ1 ∼•
γ2.

We employ the following example to illustrate how to discern
PFNs with Definition 2.7.

Example 2.8:
1) Taking γ1 = P (

√
5
3 , 1

3 ) and γ2 = P (
√
2
3 ,

√
2
3 ), we have

I(γ1) = P (
√
5
3 , 1

3 ) and I(γ2) = P (
√
2
3 ,

√
2
3 ). Since

√
5
3 >√

2
3 and 1

3 <
√
2
3 , then we have γ1 
I γ2.

Sometimes, we cannot discern PFNs with Definition 2.2.
For example, it does not work for γ1 = P (

√
5
3 ,

√
2
3 ) and

γ2 = P (
√
2
3 , 1

3 ).
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2) Taking γ1 = P (
√
5
3 ,

√
2
3 ) and γ2 = P (

√
2
3 , 1

3 ), by Def-

inition 2.3, we have S(γ1) = S(P (
√
5
3 ,

√
2
3 )) = 3

9 and

S(γ2) = S(P (
√
2
3 , 1

3 )) =
1
9 . Therefore, we have γ1 
S

γ2.
We see that the score function fails to discern some PFNs.
For example, for γ1 = P (

√
5
3 , 2

3 ) and γ2 = P ( 23 ,
√
3
3 ), we

have

S(γ1) =
1

9
and S(γ2) =

1

9
.

3) Taking γ1 = P (
√
5
3 , 2

3 ) and γ2 = P ( 23 ,
√
3
3 ), by Definition

2.5, we have

P(γ1) =
5

9
and P(γ2) =

6

11
.

Therefore, we get γ1 
P γ2.
4) Taking γ1 = P (

√
5
3 , 2

3 ) and γ2 = P ( 23 ,
√
3
3 ), by Definition

2.6, we have

F (γ1) ≈ 0.5355 and F (γ2) ≈ 0.5402.

Therefore, we get γ2 
F γ1.
We observe that there are four types of functions for compar-

ing PFNs. If we choose one of them to discern PFNs, and it does
not work, then the other functions can be applied in practical
situations.

B. Conflict Analysis

Definition 2.9 (see [1]): An information system is a 4-tuple
S = (U,A, V, f), where U = {x1, x2, . . . , xn} is a finite set of
agents, A is a finite set of issues, V = {Vc | c ∈ A}, where Vc

is the set of values of issue c, and card(Vc) > 1, f is a function
from U ×A into V .

The classical information system given by Definition 2.9
is called Pawlak information system, and information systems
mentioned in this section are Pawlak information systems.

Definition 2.10 (see [2]): Let S = (U,A, V, f) be an infor-
mation system. Then, the auxiliary function φc(x, y) for any
c ∈ A is defined as follows:

φc(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1, if c(x) · c(y) = 1 ∨ x = y
0, if c(x) · c(y) = 0 ∧ x �= y
−1, if c(x) · c(y) = −1

where c(x) and c(y) denote issue values of x and y on c,
respectively.

If φc(x, y) = 1, then x and y have the same opinion about
issue c; if φc(x, y) = 0, then it means that x or y has a neutral
opinion about issue c; and if φc(x, y) = −1, then x and y have
different opinions about issue c.

Example 2.11 (see [2]): Table I shows the information sys-
tem for the Middle East conflict, where x1, x2, x3, x4, x5, and
x6 denote six countries and c1, c2, c3, c4, c5, and c6 denote six
issues. For example, c1(x1) = −1denotes the agentx1 is against
the issue c1, and c1(x2) = +1 denotes the agent x2 supports the
issue c1, and c1(x4) = 0 denotes the agent x4 is neutral to the
issue c1.

TABLE I
INFORMATION SYSTEM FOR THE MIDDLE EAST CONFLICT

Remarks: x1, x2, x3, x4, x5, and x6 denote Israel, Egypt,
Palestine, Jordan, Syria, and Saudi Arabia, respectively. More-
over, c1 means autonomous Palestinian state on the West Bank
and Gaza; c2 denotes Israeli military outpost along the Jordan
River; c3 stands for Israel retains East Jerusalem; c4 is Israeli
military outposts on the Golan Heights; and c5 denotes Arab
countries grant citizenship to Palestinians who choose to remain
within their borders.

Definition 2.12 (see [2]): Let S = (U,A, V, f) be an infor-
mation system. Then, the distance function ρA(x, y) for x, y ∈
U is defined as follows:

ρA(x, y) =

∑
c∈A φ∗

c(x, y)

|A|
where

φ∗
c(x, y) =

1− φc(x, y)

2
=

⎧
⎪⎪⎨
⎪⎪⎩

0, if c(x) · c(y) = 1 ∨ x = y
0.5, if c(x) · c(y) = 0 ∧ x �= y
1, if c(x) · c(y) = −1

.

After that, Pawlak provided the conflict, neutral, and allied
relations for conflict analysis with Definition 2.12 as follows.

Definition 2.13 (see [2]): Let S = (U,A, V, f) be an infor-
mation system, and the distance function ρA(x, y) for x, y ∈ U .
Then, a pair x and y is said to be

1) conflict if ρA(x, y) > 0.5;
2) neutral if ρA(x, y) = 0.5; and
3) allied if ρA(x, y) < 0.5.
Pawlak also proposed the allied, conflict, and neutral sets as

follows.
Definition 2.14 (see [2]): Let S = (U,A, V, f) be an infor-

mation system. Then, the conflict, neutral, and allied sets of
x ∈ U are defined as follows.

1) CO(x) = {y ∈ U | ρA(x, y) > 0.5}.
2) NE(x) = {y ∈ U | ρA(x, y) = 0.5}.
3) AL(x) = {y ∈ U | ρA(x, y) < 0.5}.
We classify all agents with respect to x into three parts:

M(x),M(x), and AL(x). Since decision-theoretic rough set
theory is a powerful mathematical tool for depicting ambiguous
information, Lang et al. [27] investigated conflict analysis using
decision-theoretic rough set theory, which actually provides
constructive advice for decision making with less loss.

Definition 2.15 (see [27]): Let S = (U,A, V, f) be an infor-
mation system, and 0 ≤ β ≤ α ≤ 1. For any x ∈ U , the proba-
bilistic conflict, neutral, and allied sets COα

β (x), NEα
β (x), and

ALα
β (x) of x are defined as follows.

1) COα
β (x) = {y ∈ U | ρA(x, y) > α}.

2) NEα
β (x) = {y ∈ U | α ≥ ρA(x, y) ≥ β}.
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TABLE II
PYTHAGOREAN FUZZY INFORMATION SYSTEM FOR THE MIDDLE

EAST CONFLICT

3) ALα
β (x) = {y ∈ U | ρA(x, y) < β}.

In some practical situations, PFSs are effective for describing
uncertain information, and there are some Pythagorean fuzzy
information systems for conflicts, where all issue values are
PFNs, and there has been relatively little progress in developing
effective methods for studying Pythagorean fuzzy information
systems for conflicts.

III. CONFLICT ANALYSIS OF PYTHAGOREAN FUZZY

INFORMATION SYSTEMS

In this section, we investigate Pythagorean fuzzy information
systems for conflicts.

Definition 3.1: A Pythagorean fuzzy information system is
a 4-tuple S = (U,A, V, f), where U = {x1, x2, . . . , xn} is a
finite set of agents, A = {c1, c2, . . . , cl} is a finite set of issues,
V = {Vc | c ∈ A}, where Vc is the set of issue values on c, all
issue values are PFNs, and f is a function from U ×A into V .

We see that Pythagorean fuzzy information systems, as a gen-
eralization of Pawlak information systems, represent all avail-
able information and knowledge, where agents are measured by
using a finite number of issues and issue values are PFNs, which
provides more information than intuitionistic fuzzy information
systems. Furthermore, we provide matrix representation M(S)
of the Pythagorean fuzzy information system S for conflict
analysis as follows:

M(S) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

P (μ11, ν11) P (μ12, ν12) . . . P (μ1l, ν1l)
P (μ21, ν21) P (μ22, ν22) . . . P (μ2l, ν2l)

. . . . . .

. . . . . .

. . . . . .
P (μn1, νn1) P (μn2, νn2) . . . P (μnl, νnl)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

where n and l are the numbers of agents and issues, respectively.
Example 3.2:
1) We employ a Pythagorean fuzzy information system de-

picted by Table II to show the Middle East conflict,

where x1, x2, x3, x4, x5, and x6 denote six agents and
c1, c2, c3, c4, c5, and c6 denote six issues. For example, we
have c1(x1) = P (μP (x1), νP (x1)) = P (1.0, 0.0), where
μP (x1) = 1.0 denotes the support degree of the agent
x1 to the issue c1, and νP (x1) = 0.0 denotes the against
degree of the agent x1 to the issue c1; we have c5(x6) =
P (μP (x6), νP (x6)) = P (0.8, 0.4), where μP (x6) = 0.8
denotes the support degree of the agent x6 to the issue c5,
and νP (x6) = 0.4 denotes the against degree of the agent
x6 to the issue c5.

2) From Table II, we have the Pythagorean matrix M(S) of
the Pythagorean fuzzy information system S in Example
3.2(1) as in unnumbered equation shown at the bottom of
this page:

Remark: We denote Israel, Egypt, Palestinians, Jordan, Syria,
and Saudi Arabia as x1, x2, x3, x4, x5, and x6, respectively; c1
means autonomous Palestinian state on the West Bank and Gaza;
c2 denotes Israeli military outpost along the Jordan River; c3
stands for Israeli retains East Jerusalem; c4 is Israeli military
outposts on the Golan Heights; c5 notes Arab countries grant
citizenship to Palestinians who choose to remain with their
borders. Furthermore, we employ Tables I and II to depict
the Middle East conflict, and there is no relationship among
issue values of agents. We also employ Pythagorean matrix
M(S) to represent the Pythagorean fuzzy information system
S, which provides an effective tool for studying Pythagorean
fuzzy information systems for conflicts.

Definition 3.3 (see [53]): Let P={γi|γi=P (μγi
, νγi

), i=
1, 2, . . . , l} be a collection of PFNs, and K = {k1, k2, . . . , kl}
be the weight vector of γi (i = 1, 2, . . . , l), where ki indicates
the importance degree of γi, and satisfies ki ≥ 0 (i = 1, 2, . . . ,
l) and Σl

i=1ki = 1. Then, the Pythagorean fuzzy weighted av-
eraging operator R: Θl → Θ is defined as follows: R(γ1, γ2,
. . . , γl) = P (Σl

i=1kiμγi
,Σl

i=1kiνγi
).

By Definition 3.3, we aggregate a collection of PFNs {γi|γi
= P (μγi

, νγi
), i = 1, 2, . . . , l} into a PFN R(γ1, γ2, . . . , γl)

with the weight vector. For simplicity, we denote R(c1(x), c2
(x), . . . , cl(x)) as R(x) in the following discussion. Moreover,
we provide the positive, neutral, and negative alliances with two
thresholds as follows.

Definition 3.4: Let S = (U,A, V, f) be a Pythagorean fuzzy
information system, α and β are two thresholds, and • denotes
a function for PFNs. Then, the positive, neutral, and negative
alliances are defined as follows:

POA(•,α,β)(U) = {x ∈ U | •(R(x)) ≥ α}
CTA(•,α,β)(U) = {x ∈ U | β < •(R(x)) < α}
NEA(•,α,β)(U) = {x ∈ U | •(R(x)) ≤ β}.

M(S) =

⎡
⎢⎢⎢⎢⎢⎢⎣

P (1.0, 0.0) P (0.9, 0.3) P (0.8, 0.2) P (0.9, 0.1) P (0.9, 0.2)
P (0.9, 0.1) P (0.5, 0.5) P (0.1, 0.9) P (0.3, 0.8) P (0.1, 0.9)
P (0.1, 0.9) P (0.1, 0.9) P (0.2, 0.8) P (0.1, 0.9) P (0.5, 0.5)
P (0.5, 0.5) P (0.1, 0.9) P (0.3, 0.7) P (0.5, 0.5) P (0.1, 0.9)
P (0.9, 0.2) P (0.4, 0.6) P (0.1, 0.9) P (0.1, 0.9) P (0.3, 0.9)
P (0.0, 1.0) P (0.9, 0.1) P (0.2, 0.9) P (0.5, 0.5) P (0.8, 0.4)

⎤
⎥⎥⎥⎥⎥⎥⎦
.
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By Definition 3.4, we get the positive, neutral, and negative al-
liances POA(•,α,β)(U), CTA(•,α,β)(U), and NEA(•,α,β)(U)
with two thresholds α and β, and we have POA(•,α,β)(U) ∪
CTA(•,α,β)(U) ∪NEA(•,α,β)(U) ⊆ U . Furthermore, we pro-
vide four types of positive, neutral, and negative alliances when
• = I, S,P, F in Definition 3.4 as follows.

Definition 3.5: Let S = (U,A, V, f) be a Pythagorean fuzzy
information system.

1) If α and β are PFNs, and P (0, 1) ≤ β ≤ α ≤ P (1, 0),
then we define the first positive, neutral, and negative
alliances as follows:

POA(I,α,β)(U) = {x ∈ U | I(R(x)) ≥ α}
CTA(I,α,β)(U) = {x ∈ U | β < I(R(x)) < α}
NEA(I,α,β)(U) = {x ∈ U | I(R(x)) ≤ β}.

2) If −1 ≤ β ≤ α ≤ 1, then we define the second positive,
neutral, and negative alliances as follows:

POA(S,α,β)(U) = {x ∈ U | S(R(x)) ≥ α}
CTA(S,α,β)(U) = {x ∈ U | β < S(R(x)) < α}
NEA(S,α,β)(U) = {x ∈ U | S(R(x)) ≤ β}.

3) If 0 ≤ β ≤ α ≤ 1, then we define the third positive, neu-
tral, and negative alliances as follows:

POA(P,α,β)(U) = {x ∈ U | P(R(x)) ≥ α}
CTA(P,α,β)(U) = {x ∈ U | β < P(R(x)) < α}
NEA(P,α,β)(U) = {x ∈ U | P(R(x)) ≤ β}.

4) If 0 ≤ β ≤ α ≤ 1, then we define the fourth positive,
neutral, and negative alliances as follows:

POA(F,α,β)(U) = {x ∈ U | F (R(x)) ≥ α}
CTA(F,α,β)(U) = {x ∈ U | β < F (R(x)) < α}
NEA(F,α,β)(U) = {x ∈ U | F (R(x)) ≤ β}

where R(x) = (μ(x), ν(x)) and F (R(x)) = 1
2 +

√
μ(x)2+ν(x)2 ∗ ( 12−

2arccos(
μ(x)√

μ(x)2+ν(x)2
)

π ) for x ∈ U .
Example 3.6 (Continuation from Example 3.2):
1) Taking k1 = k2 = k3 = k4 = k5 = 1

5 , α = P (0.7, 0.4)
and β = P (0.25, 0.85). By Definition 3.3, we have the
Pythagorean fuzzy weighted averaging closeness index of
x1, x2, x3, x4, x5, and x6 on A as follows:

I(R(x1)) = P (0.90, 0.16), I(R(x2)) = P (0.38, 0.64),

I(R(x3)) = P (0.20, 0.80), I(R(x4)) = P (0.30, 0.70),

I(R(x5))=P (0.36, 0.70), and I(R(x6))=P (0.48, 0.58).

By Definition 3.5(1), we have POA(I,α,β)(U)={x1},
CTA(I,α,β)(U) = {x2, x4, x5, x6}, and NEA(I,α,β)(U)
= ∅. So, we classify {x1, x2, x4, x5, x6} into
POA(I,α,β)(U), CTA(I,α,β)(U), and NEA(I,α,β)(U).
But it does not work for x3. Furthermore, we see that
{x1} and {x2, x4, x5, x6} are difference alliances, but x3

does not belong to any alliance.

2) Taking α = 0.5 and β = −0.5, we have

S(R(x1)) = +0.7844, S(R(x2)) = −0.2652,

S(R(x3)) = −0.6000, S(R(x4)) = −0.4000,

S(R(x5)) = −0.3604, and S(R(x6)) = −0.1060.

By Definition 3.5(2), we have POA(S,α,β)(U) = {x1},
CTA(S,α,β)(U)={x2, x4, x5, x6}, and NEA(S,α,β)(U)
= {x3}. Furthermore, we see that {x1}, {x3}, and {x2,
x4, x5, x6} are difference alliances. Especially, {x1} and
{x3} have different opinions on issues, and {x2, x4,
x5, x6} is a neutral alliance.

3) Taking α = 0.75 and β = 0.3, we have

P(R(x1)) = 0.8368,P(R(x2)) = 0.4083,

P(R(x3)) = 0.2727,P(R(x4)) = 0.3592,

P(R(x5)) = 0.3695, and P(R(x6)) = 0.4584.

By Definition 3.5(3), we have POA(P,α,β)(U) = {x1},
CTA(P,α,β)(U) = {x2, x4, x5, x6}, and NEA(P,α,β)

(U) = {x3}. Moreover, we observe that {x1}, {x3},
and {x2, x4, x5, x6} are difference alliances. Especially,
{x2, x4, x5, x6} is a neutral alliance, and {x1} and {x3}
are opposite alliances.

4) Taking α = 0.75 and β = 0.3, we have

F (R(x1)) = 0.8547, F (R(x2)) = 0.3817,

F (R(x3)) = 0.2163, F (R(x4)) = 0.3155,

F (R(x5)) = 0.3445, andF (R(x6)) = 0.4549.

By Definition 3.5(4), we have POA(F,α,β)(U) = {x1},
CTA(F,α,β)(U) = {x2, x4, x5, x6}, and NEA(F,α,β)

(U) = {x3}. Moreover, we find that {x1}, {x3}, and
{x2, x4, x5, x6} are difference alliances. Especially,
{x2, x4, x5, x6} is a neutral alliance, and {x1} and {x3}
are opposite alliances.

By Definition 3.5, we partition the universe into three regions:
positive, neutral, and negative alliances with different operators,
and denote the positive, neutral, and negative alliances of U as
POA(U), CTA(U), andNEA(U) for simplicity. Furthermore,
we classify all agents into three regions by Definition 3.5(1)
when they are depicted by PFNs. If Definition 3.5(1) does not
work, then we choose Definition 3.5(2) to partition these agents.
Especially, if Definitions 3.5(1) and 3.5(2) do not work, we apply
Definition 3.5(3) to classify these agents.

IV. THREE-WAY CONFLICT ANALYSIS OF PYTHAGOREAN

FUZZY INFORMATION SYSTEMS

In this section, we study Pythagorean fuzzy information
systems for conflicts based on three-way decision theory and
Bayesian minimum risk theory.

Definition 4.1: A Pythagorean fuzzy loss function given by
an expert is a 3-tuple λ = (Ω,A ,L ) shown as Table III, where
Ω = {X,¬X} is a set of two states, A = {aP , aB , aN} is a set
of three actions for each state, L = {λPP , λBP , λNP , λPN ,
λBN , λNN}, X(⊆ U) and ¬X(⊆ U) indicate that an agent is
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TABLE III
PYTHAGOREAN FUZZY LOSS FUNCTION GIVEN BY AN EXPERT

TABLE IV
PYTHAGOREAN FUZZY LOSS FUNCTION

in X and not in X , respectively; aP , aB , and aN denote three
actions in classifying an agent x into POA(U), CTA(U) ,and
NEA(U), respectively; λPP , λBP , and λNP stand for the losses
of taking actions aP , aB , and aN , respectively, when an agent
belongs to X; λPN , λBN , and λNN mean the losses of taking
actions aP , aB , and aN , respectively, when an agent belongs to
¬X , where λPP , λBP , λNP , λPN , λBN , and λNN are PFNs.

For simplicity, we employ the same symbol to denote both
the set C and the corresponding state; we also denote both
the set ¬C and the corresponding state as the same symbol.
Furthermore, we assume that the loss of assigning an agent into
the boundary region is between an incorrect classification and
a correct classification. That is, the loss of right decision is less
than that of deferred decision, and the loss of deferred decision is
less than that of the wrong decision in practice. So, λPN , λBN ,
λNN λPN , λBN , and λNN should satisfy the above-mentioned
relations. Furthermore, there are four types of Pythagorean fuzzy
loss functions as follows.

1) The Pythagorean fuzzy loss function satisfying λPP ≤
λBP ≤ λNP and λNN ≤ λBN ≤ λPN .

2) The Pythagorean fuzzy loss function satisfying S(λPP )
≤S(λBP )≤S(λNP ) andS(λNN )≤S(λBN )≤S(λPN ).

3) The Pythagorean fuzzy loss function satisfying P(λPP )
≤ P(λBP ) ≤ P(λNP ) and P(λNN ) ≤ P(λBN )≤P
(λPN ).

4) The Pythagorean fuzzy loss function satisfying F (λPP )
≤F (λBP )≤F (λNP ) andF (λNN)≤F (λBN)≤F (λPN).

In practice, loss functions are very important for conflict anal-
ysis of Pythagorean fuzzy information systems, there are many
methods of deriving loss functions, such as practical experience,
and given by famous experts. Although there are plenty of loss
functions besides the aforementioned four types, we only discuss
the Pythagorean fuzzy loss functions given by experts satisfying
λPP ≤ λBP ≤ λNP and λNN ≤ λBN ≤ λPN in this section.

Example 4.2: Table IV depicts a Pythagorean fuzzy loss
function given by an expert, and λPP , λBP , λNP , λNN , λBN ,
and λPN are PFNs. Especially, we have λPP ≤ λBP ≤ λNP

and λNN ≤ λBN ≤ λPN .
Suppose λPP , λBP , λNP , λPN , λBN , and λNN are PFNs,

which satisfy λPP ≤ λBP ≤ λNP and λNN ≤ λBN ≤ λPN .
For the agent x ∈ U , the expected losses R(aP |x), R(aB |x),
and R(aN |x) under the actions aP , aB , and aN , respectively,

are shown as follows:

R(aP |x) = P(R(x)) ∗ λPP ⊕ [1− P(R(x))] ∗ λPN

R(aB |x) = P(R(x)) ∗ λBP ⊕ [1− P(R(x))] ∗ λBN

R(aN |x) = P(R(x)) ∗ λNP ⊕ [1− P(R(x))] ∗ λNN .

We see that the expected loss functions R(aP |x), R(aB |x),
and R(aN |x) are constructed on the closeness index function
P(R(x)), which are different from the expected loss functions
of reference [27]. According to Definition 4.1, we have the
expected losses R(aP |x), R(aB |x), and R(aN |x) as follows:

R(aP |x) = P

(√
1− (1− μ2

λPP
)P(R(x)), (νλPP

)P(R(x))

)

⊕ P

(√
1− (1− μ2

λPN
)1−P(R(x)), (νλPN

)1−P(R(x))

)

R(aB |x) = P

(√
1− (1− μ2

λBP
)P(R(x)), (νλBP

)P(R(x))

)

⊕ P

(√
1− (1− μ2

λBN
)1−P(R(x)), (νλBN

)1−P(R(x))

)

R(aN |x) = P

(√
1− (1− μ2

λNP
)P(R(x)), (νλNP

)P(R(x))

)

⊕ P

(√
1− (1− μ2

λNN
)1−P(R(x)), (νλNN

)1−P(R(x))

)
.

Theorem 4.3: Let R(a•|x) be the expected loss under the
action a• for the agent x ∈ U , where • = P,B,N . Then

R(aP |x)

= P

(√
1− (1− μ2

λPP
)P(R(x)) ∗ (1− μ2

λPN
)1−P(R(x)),

(νλPP
)P(R(x)) ∗ (νλPN

)1−P(R(x))
)

R(aB |x)

= P

(√
1− (1− μ2

λBP
)P(R(x)) ∗ (1− μ2

λBN
)1−P(R(x)),

(νλBP
)P(R(x)) ∗ (νλBN

)1−P(R(x))
)

R(aN |x)

= P

(√
1− (1− μ2

λNP
)P(R(x)) ∗ (1− μ2

λNN
)1−P(R(x)),

(νλNP
)P(R(x)) ∗ (νλNN

)1−P(R(x))
)
.

Proof: We assume t1=(1−μ2
λPP

)P(R(x)), t2=(1− μ2
λPN

)
1−P(R(x)), y1 = (νλPP

)P(R(x)), and y2 = (νλPN
)1−P(R(x)).

By Definition 2.1, we have

R(aP |x) = P

(√
1− (1− μ2

λPP
)P(R(x)), (νλPP

)P(R(x))

)

⊕ P

(√
1− (1− μ2

λPN
)1−P(R(x)), (νλPN

)1−P(R(x))

)

= P
(√

1− t1, y1
)⊕ P (

√
1− t2, y2)
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TABLE V
EXPECTED LOSS TABLE IR(S)

TABLE VI
SCORE TABLE SR(S)

= P
(√

1− t1 + 1− t2 − (1− t1)(1− t2), y1y2

)

= P
(√

1− t1t2, y1y2
)

= P

(√
1− (1− μ2

λPP
)P(R(x)) ∗ (1− μ2

λPN
)1−P(R(x)),

(νλPP
)P(R(x)) ∗ (νλPN

)1−P(R(x))
)
.

Furthermore, we also prove

R(aB |x)

= P

(√
1− (1− μ2

λBP
)P(R(x)) ∗ (1− μ2

λBN
)1−P(R(x)),

(νλBP
)P(R(x)) ∗ (νλBN

)1−P(R(x))
)

R(aN |x)

= P

(√
1− (1− μ2

λNP
)P(R(x)) ∗ (1− μ2

λNN
)1−P(R(x)),

(νλNP
)P(R(x)) ∗ (νλNN

)1−P(R(x))
)
. �

We observe that Theorem 4.3 illustrates that the expected
losses R(aP |x), R(aB |x), and R(aN |x) are PFNs. Especially,
it implies that how to compute the expected losses R(aP |x),
R(aB |x), and R(aN |x) with the closeness index function
P(R(x)).

Definition 4.4: Let S = (U,A, V, f) be a Pythagorean fuzzy
information system, R(aP |x), R(aB |x), and R(aN |x) are the
expected losses under the actions aP , aB , and aN , respectively,
for the agent x ∈ U . Then, the expected loss table IR(S),
score table SR(S), closeness table PR(S), and preferred table
FR(S) are defined as Tables V–VIII, respectively.

Theorem 4.5: Let S = (U,A, V, f) be a Pythagorean fuzzy
information system, R(aP |x), R(aB |x), and R(aN |x) are the
expected losses under the actions aP , aB , and aN , respectively,
for the agent x ∈ U , and • = I, S,P, F .

TABLE VII
CLOSENESS TABLE PR(S)

TABLE VIII
PREFERRED TABLE FR(S)

P: If •(R(aP |x))≤•(R(aB |x)) and •(R(aP |x))≤•(R(aN
|x)), then we have x ∈ POA(U).
B: If •(R(aB |x))≤•(R(aP |x)) and •(R(aB |x))≤•(R(aN
|x)), then we have x ∈ CTA(U).
N: If •(R(aN |x))≤•(R(aP |x)) and •(R(aN |x))≤•(R(aB
|x)), then we have x ∈ NEA(U).

Proof: It is straightforward by Bayesian minimum risk
theory. �

Example 4.6 (Continuation from Examples 3.2 and 4.2):
We compute POA(U), CTA(U), and NEA(U) based on
Definition 3.5 and Bayesian minimum risk theory as follows:

1) First, by Table III and Theorem 4.3, forxi ∈ U, 1 ≤ i ≤ 6,
we have

R(aP |xi) = P(√
1− (1− μ2

λPP
)P(R(xi)) ∗ (1− μ2

λPN
)1−P(R(xi)),

(νλPP
)P(R(xi)) ∗ (νλPN

)1−P(R(xi))
)

= P

(√
1− (1− 0.12)P(R(xi)) ∗ (1− 0.92)1−P(R(xi)),

0.8P(R(xi)) ∗ 0.21−P(R(xi))

)

R(aB |xi) = P(√
1− (1− μ2

λBP
)P(R(xi)) ∗ (1− μ2

λBN
)1−P(R(xi)),

(νλBP
)P(R(xi)) ∗ (νλBN

)1−P(R(xi))
)

= P

(√
1− (1− 0.62)P(R(xi)) ∗ (1− 0.52)1−P(R(xi)),

0.5P(R(xi)) ∗ 0.61−P(R(xi))
)

R(aN |xi) = P(√
1− (1− μ2

λNP
)P(R(xi)) ∗ (1− μ2

λNN
)1−P(R(xi)),
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TABLE IX
EXPECTED LOSS TABLE IR(S)

(νλNP
)P(R(xi)) ∗ (νλNN

)1−P(R(xi))
)

= P

(√
1− (1− 0.92)P(R(xi)) ∗ (1− 0.22)1−P(R(xi)),

0.3P(R(xi)) ∗ 0.81−P(R(xi))
)
.

Second, by Definition 4.4, we have the expected loss Table
IR(S) shown by Table IX as follows.
Third, by Theorem 4.5, we have POA(U) = {x1}, CTA
(U) = {x2, x5, x6} and NEA(U) = ∅. Obviously, it is
difficult to compare the expected losses under the actions
aP , aB , and aN for the agents x3 and x4. So, it fails to
put the agents x3 and x4 into POA(U), CTA(U), and
NEA(U). Therefore, {x1} and {x2, x5, x6} are different
alliances, but we cannot identify x3 and x4.

2) First, by Definition 2.3 and Table V, forxi ∈ U, 1 ≤ i ≤ 6,
we have

S(R(aP |xi)) = S
(
P

(√
1− (1− μ2

λPP
)P(R(xi)) ∗ (1− μ2

λPN
)1−P(R(xi)),

(νλPP
)P(R(xi)) ∗ (νλPN

)1−P(R(xi))
))

= S

(
P

(√
1− (1− 0.12)P(R(xi)) ∗ (1− 0.92)1−P(R(xi)),

0.8P(R(xi)) ∗ 0.21−P(R(xi))
))

S(R(aB |xi)) = S
(
P

(√
1− (1− μ2

λBP
)P(R(xi)) ∗ (1− μ2

λBN
)1−P(R(xi)),

(νλBP
)P(R(xi)) ∗ (νλBN

)1−P(R(xi))
))

= S

(
P

(√
1− (1− 0.62)P(R(xi)) ∗ (1− 0.52)1−P(R(xi)),

0.5P(R(xi)) ∗ 0.61−P(R(xi))
))

S(R(aN |xi)) = S
(
P

(√
1− (1− μ2

λNP
)P(R(xi)) ∗ (1− μ2

λNN
)1−P(R(xi)),

(νλNP
)P(R(xi)) ∗ (νλNN

)1−P(R(xi))
))

= S

TABLE X
SCORE TABLE SR(S)

(
P

(√
1− (1− 0.92)P(R(xi)) ∗ (1− 0.22)1−P(R(xi)),

0.3P(R(xi)) ∗ 0.81−P(R(xi))
))

.

Second, by Definition 4.4, we have the score table SR(S)
shown by Table X as follows.
Third, by Theorem 4.5, we have POA(U) = {x1}, CTA
(U) = {x2, x3, x4, x5, x6} and NEA(U) = ∅. More-
over, we find that {x1} and {x2, x3, x4, x5, x6} are differ-
ence alliances. Especially, {x1} is a positive alliance, and
{x2, x3, x4, x5, x6} is a neutral alliance.

3) First, by Definition 2.5, for xi ∈ U, 1 ≤ i ≤ 6, we have

P(R(aP |xi) = P
(
P

(√
1− (1− μ2

λPP
)P(R(xi)) ∗ (1− μ2

λPN
)1−P(R(xi)),

(νλPP
)P(R(xi)) ∗ (νλPN

)1−P(R(xi))
))

= P

(
P

(√
1− (1− 0.12)P(R(xi)) ∗ (1− 0.92)1−P(R(xi)),

0.8P(R(xi)) ∗ 0.21−P(R(xi))
))

P(R(aB |xi)) = P
(
P

(√
1− (1− μ2

λBP
)P(R(xi)) ∗ (1− μ2

λBN
)1−P(R(xi)),

(νλBP
)P(R(xi)) ∗ (νλBN

)1−P(R(xi))
))

= P

(
P

(√
1− (1− 0.62)P(R(xi)) ∗ (1− 0.52)1−P(R(xi)),

0.5P(R(xi)) ∗ 0.61−P(R(xi))
))

P(R(aN |xi)) = P
(
P

(√
1− (1− μ2

λNP
)P(R(xi)) ∗ (1− μ2

λNN
)1−P(R(xi)),

(νλNP
)P(R(xi)) ∗ (νλNN

)1−P(R(xi))
))

= P

(
P

(√
1− (1− 0.92)P(R(xi)) ∗ (1− 0.22)1−P(R(xi)),

0.3P(R(xi)) ∗ 0.81−P(R(xi))
))

.
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TABLE XI
CLOSENESS TABLE PR(S)

TABLE XII
PREFERRED TABLE FR(S)

Second, by Definition 4.4, we have the closeness Table
PR(S) shown by Table XI as follows.
Third, by Theorem 4.5, we have POA(U) = {x1}, CTA
(U) = {x2, x3, x4, x5, x6} and NEA(U) = ∅. Further-
more, we find that {x1} and {x2, x3, x4, x5, x6} are dif-
ference alliances. Especially, {x1} is a positive alliance,
and {x2, x3, x4, x5, x6} is a neutral alliance.

4) First, by Definition 4.4, we have the preferred tableFR(S)
shown by Table XII as follows.
Then, by Theorem 4.5, we have POA(U) = {x1}, CTA
(U) = {x2, x3, x4, x5, x6} and NEA(U) = ∅. More-
over, we see that {x1} and {x2, x3, x4, x5, x6} are dif-
ference alliances. Especially, {x1} is a positive alliance,
and {x2, x3, x4, x5, x6} is a neutral alliance.

5) First, we list the alliances computed using IR(S), SR
(S), PR(S), and FR(S) in Table XIII. Concretely, we
have the same alliances withSR(S), PR(S), andFR(S),
which are different from the results with IR(S); all
agents are classified into the positive, neutral, and neg-
ative alliances with SR(S), PR(S), and FR(S), but
we cannot put x3 into any alliance with IR(S); almost
all agents are classified into the neutral alliances with
IR(S), SR(S), PR(S), and FR(S), and no agents are
put into the negative alliances. Second, we have the pos-
itive alliance {x1} and the neutral alliance {x2, x5, x6}
by IR(S); we get the positive alliance {x1} and the
neutral alliance {x2, x3, x4, x5, x6} by SR(S), PR(S),
and FR(S). It is obvious that most of countries belong
to the neutral alliance, and x1 holds different opinions
on some issues, so it is a single alliance. If x1 wants to
get supports from other countries, then it must change
opinions on some issues. Third, there are so many agents
in the neutral alliance, so we should choose the appro-
priate thresholds and provide more effective approaches
for studying Pythagorean fuzzy information systems for
conflicts.

TABLE XIII
THREE ALLIANCES BASED ON IR(S), SR(S), PR(S), AND FR(S)

TABLE XIV
PYTHAGOREAN FUZZY LOSS FUNCTIONS {λ(i)|i = 1, 2, . . . ,m}

V. THREE-WAY GROUP CONFLICT ANALYSIS OF

PYTHAGOREAN FUZZY INFORMATION SYSTEMS

In this section, we investigate Pythagorean fuzzy information
systems for conflicts with group decision theory.

Suppose there arem experts {E1, E2, . . . , Em}, who give the
loss functions {λ(1), λ(2), . . . , λ(m)} shown byTable XIV,
where λ(i) = (Ω,A ,L (i)),Ω = {X,¬X} is a set of two states,
A = {aP , aB , aN}, L (i) = {λ(i)

PP , λ
(i)
BP , λ

(i)
NP , λ

(i)
PN , λ

(i)
BN ,

λ
(i)
NN}, and X(⊆ U) and ¬X(⊆ U) indicate that an agent is

in X and not in X , respectively. For simplicity, we take the
same symbol to denote both the set C and the corresponding
state. We also employ both the set ¬C and the corresponding
state as the same symbol. Furthermore, aP , aB , and aN denote
three actions in classifying an agent x into POA(U), CTA(U)

,and NEA(U), respectively; λ
(i)
PP , λ

(i)
BP , and λ

(i)
NP stand for

the losses of taking actions aP , aB , and aN , respectively,
when an agent belongs to X; λ

(i)
PN , λ

(i)
BN , and λ

(i)
NN mean the

losses of taking actions aP , aB , and aN , respectively, when
an agent belongs to ¬X , where λ

(i)
PP , λ

(i)
BP , λ

(i)
NP , λ

(i)
PN , λ

(i)
BN ,

and λ
(i)
NN are PFNs, which satisfy λ

(i)
PP ≤ λ

(i)
BP ≤ λ

(i)
NP and

λ
(i)
NN ≤ λ

(i)
BN ≤ λ

(i)
PN . For the agent x ∈ U , the expected losses

R(i)(aP |x), R(i)(aB |x), and R(i)(aN |x) under the actions
aP , aB , and aN with respect to the loss given by the expert Ei,
respectively, as follows:

R(i)(aP |x) = P(R(x)) ∗ λ
(i)
PP ⊕ [1− P(R(x))] ∗ λ

(i)
PN

R(i)(aB |x) = P(R(x)) ∗ λ
(i)
BP ⊕ [1− P(R(x))] ∗ λ

(i)
BN

R(i)(aN |x) = P(R(x)) ∗ λ
(i)
NP ⊕ [1− P(R(x))] ∗ λ

(i)
NN .
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TABLE XV
PYTHAGOREAN FUZZY LOSS FUNCTIONS {λ(i)|i = 1, 2, 3}

Example 5.1 (Continuation from Example 4.6): Table XV
depicts a collection of Pythagorean fuzzy loss functions {λ(i)

|i = 1, 2, 3}, which are given by three experts {E1, E2, E3}.
By Theorem 4.3, we have the expected losses R(i)(aP |x),

R(i)(aB |x), and R(i)(aN |x) with respect to the Pythagorean
fuzzy loss function λ(i) as follows:

R(i)(aP |x)

= P

(√
1− (1− μ2

λ
(i)
PP

)P(R(x)) ∗ (1− μ2

λ
(i)
PN

)1−P(R(x)),

(ν
λ
(i)
PP

)P(R(x)) ∗ (ν
λ
(i)
PN

)1−P(R(x))
)

R(i)(aB |x)

= P

(√
1− (1− μ2

λ
(i)
BP

)P(R(x)) ∗ (1− μ2

λ
(i)
BN

)1−P(R(x)),

(ν
λ
(i)
BP

)P(R(x)) ∗ (ν
λ
(i)
BN

)1−P(R(x))
)

R(i)(aN |x)

= P

(√
1− (1− μ2

λ
(i)
NP

)P(R(x)) ∗ (1− μ2

λ
(i)
NN

)1−P(R(x)),

(ν
λ
(i)
NP

)P(R(x)) ∗ (ν
λ
(i)
NN

)1−P(R(x))
)
.

Theorem 5.2: Let R(i)(aP |x), R(i)(aB |x), and R(i)(aN |x)
be the expected losses under the actions aP , aB , and aN using
the Pythagorean fuzzy loss function λ(i), respectively, for the
agent x ∈ U , and W = {w1, w2, . . . , wm} be the weight vector
of R(i)(a•|x)(i = 1, 2, . . . ,m, • = P,B,N). Then

R(R(1)(aP |x), . . . , R(m)(aP |x)) = P
(
Σm

i=1wi

∗
√

1− (1− μ2

λ
(i)
PP

)P(R(x)) ∗ (1− μ2

λ
(i)
PN

)1−P(R(x)),

Σm
i=1wi ∗ (νλ

(i)
PP

)P(R(x)) ∗ (ν
λ
(i)
PN

)1−P(R(x))
)
;

R(R(1)(aB |x), . . . , R(m)(aB |x)) = P
(
Σm

i=1wi

∗
√

1− (1− μ2

λ
(i)
BP

)P(R(x)) ∗ (1− μ2

λ
(i)
BN

)1−P(R(x)),

Σm
i=1wi ∗ (νλ

(i)
BP

)P(R(x)) ∗ (ν
λ
(i)
BN

)1−P(R(x))
)
;

R(R(1)(aN |x), . . . , R(m)(aN |x)) = P
(
Σm

i=1wi

∗
√

1− (1− μ2

λ
(i)
NP

)P(R(x)) ∗ (1− μ2

λ
(i)
NN

)1−P(R(x)),

Σm
i=1wi ∗ (νλ

(i)
NP

)P(R(x)) ∗ (ν
λ
(i)
NN

)1−P(R(x))
)
.

Proof: It is straightforward by Theorem 4.3. �
We see that Theorem 5.2 illustrates that the expected losses

R(R(1)(aP |x), . . . , R(m)(aP |x)), R(R(1)(aB |x), . . . , R(m)

(aB |x)), and R(R(1)(aN |x), . . . , R(m)(aN |x)) are PFNs.
Especially, it implies that how to compute the expected losses
R(R(1)(aP |x), . . . , R(m)(aP |x)), R(R(1)(aB |x), . . . , R(m)

(aB |x)), and R(R(1)(aN |x), . . . , R(m)(aN |x)) with the
closeness index function P(R(x)).

Definition 5.3: Let S = (U,A, V, f) be a Pythagorean fuzzy
information system, R(R(1)(aP |x), . . . , R(m)(aP |x)), R(R(1)

(aB |x), . . . , R(m)(aB |x)), and R(R(1)(aN |x), . . . , R(m)(aN |
x)) are the expected losses under the actions aP , aB , and aN ,
respectively, for the agent x ∈ U . Then, the group expected loss
table R(R(S)), group score table S (R(S)), group closeness
table P(R(S)), and group preferred table F (R(S)) are defined
as Tables XVI–XIX , respectively.

Theorem 5.4: Let S = (U,A, V, f) be a Pythagorean fuzzy
information system, R(aP |x), R(aB |x), and R(aN |x) are the
expected losses under the actions aP , aB , and aN , respectively,
for the agent x ∈ U , and • = I, S,P, F . Then
P ∗ : If •(R(R(1)(aP |x), . . . , R(m)(aP |x))) ≤ •(R(R(1)(aB |
x), . . . , R(m)(aB |x))) and•(R(R(1)(aP |x), . . . , R(m)(aP |x)))
≤ •(R(R(1)(aN |x), . . . , R(m)(aN |x))), then we havex∈POA
(U);
B∗ : If •(R(R(1)(aB |x), . . . , R(m)(aB |x))) ≤ •(R(R(1)(aP |
x), . . . , R(m)(aP |x))) and•(R(R(1)(aB |x), . . . , R(m)(aB |x)))
≤ •(R(R(1)(aN |x), . . . , R(m)(aN |x))), then we have x ∈
CTA(U);
N ∗ : If •(R(R(1)(aN |x), . . . , R(m)(aN |x))) ≤ •(R(R(1)(aP |
x), . . . , R(m)(aP |x))) and•(R(R(1)(aN |x), . . . , R(m)(aN |x)))
≤ •(R(R(1)(aB |x), . . . , R(m)(aB |x))), then we have x ∈
NEA(U).

Proof: It is straightforward by Bayesian minimum risk
theory. �

Example 5.5 (Continuation from Example 5.1): Taking w1

= w2 = w3 = 1
3 for Pythagorean fuzzy loss functions {λ(i)|i =

1, 2, 3}, we compute POA(U), CTA(U), and NEA(U) as
follows.

1) First, for xj ∈ U , by Theorem 5.2, we have

I(R(R(1)(aP |xj), . . . , R
(m)(aP |xj))) = P

(
Σm

i=1wi

∗
√

1− (1− μ2

λ
(i)
PP

)P(R(xj)) ∗ (1− μ2

λ
(i)
PN

)1−P(R(xj)),

Σm
i=1wi ∗ (νλ

(i)
PP

)P(R(xj)) ∗ (ν
λ
(i)
PN

)1−P(R(xj))
)
;

I(R(R(1)(aB |xj), . . . , R
(m)(aB |xj))) = P

(
Σm

i=1wi

∗
√

1− (1− μ2

λ
(i)
BP

)P(R(xj)) ∗ (1− μ2

λ
(i)
BN

)1−P(R(xj)),
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TABLE XVI
GROUP EXPECTED LOSS TABLE R(R(S))

TABLE XVII
GROUP SCORE TABLE S (R(S))

TABLE XVIII
GROUP CLOSENESS TABLE P(R(S))

TABLE XIX
GROUP PREFERRED TABLE F (R(S))

Σm
i=1wi ∗ (νλ

(i)
BP

)P(R(xj)) ∗ (ν
λ
(i)
BN

)1−P(R(xj))
)
;

I(R(R(1)(aN |xj), . . . , R
(m)(aN |xj))) = P

(
Σm

i=1wi

∗
√

1− (1− μ2

λ
(i)
NP

)P(R(xj)) ∗ (1− μ2

λ
(i)
NN

)1−P(R(xj)),

Σm
i=1wi ∗ (νλ

(i)
NP

)P(R(xj)) ∗ (ν
λ
(i)
NN

)1−P(R(xj))
)
.

Second, by Definition 5.3, we have the group expected
loss table R(R(S)) as Table XX.
Third, by Theorem 5.4, we have POA(U) = {x1}, CTA
(U) = {x2, x4, x5, x6} and NEA(U) = ∅. It is difficult
to compare the expected losses under the actions aP , aB ,
and aN for the agent x3 by Definition 2.2. So, we can-
not classify the agent x3 into POA(U), CTA(U), and
NEA(U).

TABLE XX
GROUP EXPECTED LOSS TABLE R(R(S))

Therefore, {x1} is a positive alliance, and {x2, x4, x5, x6}
is a neutral alliance. We find that{x1} and{x2, x4, x5, x6}
are difference alliances.

2) First, for xj ∈ U , by Theorem 5.2, we have

S(R(R(1)(aP |xj), . . . , R
(m)(aP |xj))) = S

(
P
(
Σm

i=1wi

∗
√

1− (1− μ2

λ
(i)
PP

)P(R(xj)) ∗ (1− μ2

λ
(i)
PN

)1−P(R(xj)),
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TABLE XXI
GROUP SCORE TABLE S (R(S))

Σm
i=1wi ∗ (νλ

(i)
PP

)P(R(xj)) ∗ (ν
λ
(i)
PN

)1−P(R(xj))
))

;

S(R(R(1)(aB |xj), . . . , R
(m)(aB |xj))) = S

(
P
(
Σm

i=1wi

∗
√

1− (1− μ2

λ
(i)
BP

)P(R(xj)) ∗ (1− μ2

λ
(i)
BN

)1−P(R(xj)),

Σm
i=1wi ∗ (νλ

(i)
BP

)P(R(xj)) ∗ (ν
λ
(i)
BN

)1−P(R(xj))
))

;

S(R(R(1)(aN |xj), . . . , R
(m)(aN |xj))) = S

(
P
(
Σm

i=1wi

∗
√

1− (1− μ2

λ
(i)
NP

)P(R(xj)) ∗ (1− μ2

λ
(i)
NN

)1−P(R(xj)),

Σm
i=1wi ∗ (νλ

(i)
NP

)P(R(xj)) ∗ (ν
λ
(i)
NN

)1−P(R(xj))
))

.

Second, by Definition 5.3, we have the group score table
S (R(S)) shown in Table XXI as follows.
Third, by Theorem 5.4, we have POA(U) = {x1}, CTA
(U) = {x2, x4, x5, x6} and NEA(U) = {x3}. There-
fore, {x1} is a positive alliance, {x2, x4, x5, x6} is a
neutral alliance, and {x3} is a negative alliance.

3) First, for xj ∈ U , by Theorem 5.2, we have

P(R(R(1)(aP |xj), . . . , R
(m)(aP |xj))) = P

(
P
(
Σm

i=1wi

∗
√

1− (1− μ2

λ
(i)
PP

)P(R(xj)) ∗ (1− μ2

λ
(i)
PN

)1−P(R(xj)),

Σm
i=1wi ∗ (νλ

(i)
PP

)P(R(xj)) ∗ (ν
λ
(i)
PN

)1−P(R(xj))
))

;

P(R(R(1)(aB |xj), . . . , R
(m)(aB |xj))) = P

(
P
(
Σm

i=1wi

∗
√

1− (1− μ2

λ
(i)
BP

)P(R(xj)) ∗ (1− μ2

λ
(i)
BN

)1−P(R(xj)),

Σm
i=1wi ∗ (νλ

(i)
BP

)P(R(xj)) ∗ (ν
λ
(i)
BN

)1−P(R(xj))
))

;

P(R(R(1)(aN |xj), . . . , R
(m)(aN |xj))) = P

(
P
(
Σm

i=1wi

∗
√

1− (1− μ2

λ
(i)
NP

)P(R(xj)) ∗ (1− μ2

λ
(i)
NN

)1−P(R(xj)),

Σm
i=1wi ∗ (νλ

(i)
NP

)P(R(xj)) ∗ (ν
λ
(i)
NN

)1−P(R(xj))
))

.

Second, by Definition 5.3, we have the group closeness
table P(R(S)) shown in Table XXII as follows.

TABLE XXII
GROUP CLOSENESS TABLE P(R(S))

TABLE XXIII
GROUP PREFERRED TABLE F (R(S))

Third, by Theorem 5.4, we have POA(U) = {x1}, CTA
(U) = {x2, x4, x5, x6} and NEA(U) = {x3}. There-
fore, {x1} is a positive alliance, {x2, x4, x5, x6} is a
neutral alliance, and {x3} is a negative alliance.

4) First, for xj ∈ U , by Theorem 5.2, we have

F (R(R(1)(aP |xj), . . . , R
(m)(aP |xj))) = F

(
P
(
Σm

i=1wi

∗
√

1− (1− μ2

λ
(i)
PP

)P(R(xj)) ∗ (1− μ2

λ
(i)
PN

)1−P(R(xj)),

Σm
i=1wi ∗ (νλ

(i)
PP

)P(R(xj)) ∗ (ν
λ
(i)
PN

)1−P(R(xj))
))

;

F (R(R(1)(aB |xj), . . . , R
(m)(aB |xj))) = F

(
P
(
Σm

i=1wi

∗
√

1− (1− μ2

λ
(i)
BP

)P(R(xj)) ∗ (1− μ2

λ
(i)
BN

)1−P(R(xj)),

Σm
i=1wi ∗ (νλ

(i)
BP

)P(R(xj)) ∗ (ν
λ
(i)
BN

)1−P(R(xj))
))

;

F (R(R(1)(aN |xj), . . . , R
(m)(aN |xj))) = F

(
P
(
Σm

i=1wi

∗
√

1− (1− μ2

λ
(i)
NP

)P(R(xj)) ∗ (1− μ2

λ
(i)
NN

)1−P(R(xj)),

Σm
i=1wi ∗ (νλ

(i)
NP

)P(R(xj)) ∗ (ν
λ
(i)
NN

)1−P(R(xj))
))

.

Second, by Definition 5.3, we have the group preferred
table F (R(S)) shown in Table XXIII as follows.
Third, by Theorem 5.4, we have POA(U) = {x1}, CTA
(U) = {x2, x4, x5, x6} and NEA(U) = {x3}. There-
fore, {x1} is a positive alliance, {x2, x4, x5, x6} is a
neutral alliance, and {x3} is a negative alliance.

5) First, we list the alliances computed using R(R(S)),S
(R(S)),P(R(S)), and F (R(S)) in Table XXIV. Con-
cretely, we have the same alliances with S (R(S)),P(R
(S)), and F (R(S)), which are different from the results
with R(R(S)); all agents are classified into the positive,

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on April 04,2020 at 09:00:53 UTC from IEEE Xplore.  Restrictions apply. 



460 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 28, NO. 3, MARCH 2020

TABLE XXIV
THREE ALLIANCES BASED ON R(R(S)),S (R(S)),P(R(S)), AND

F (R(S))

neutral, and negative alliances with S (R(S)),P(R(S)),
and F (R(S)), but we cannot put x3 into any alliance
with R(R(S)); almost all agents are classified into the
neutral alliances with R(R(S)),S (R(S)),P(R(S)),
and F (R(S)), and less agents are put into the positive
and negative alliances. Second, we have the positive al-
liance {x1} and the neutral alliance {x2, x4, x5, x6} by
R(R(S)); we get the positive alliance {x1}, the neutral
alliance {x2, x4, x5, x6}, and the negative alliance {x3}
by S (R(S)),P(R(S)), and F (R(S)). So, we find that
{x1} and {x3} belong to the positive alliance and the
neutral alliance, respectively, so they hold different opin-
ions on most of issues. In other words, they are opponents.
We also see that {x1} and {x3} are single alliances, if they
want to get supports from other countries, then they must
change opinions on some issues. Third, we put the agent
x3 into the neutral alliance in Example 4.6 with a loss
function, and we assign the agent x3 to the negative al-
liance in Example 5.5 with three loss functions. So, we find
that three-way group method is more effective than three-
way method for conflict analysis of Pythagorean fuzzy
information systems. Therefore, we should study how to
compute the expected losses of actions with more loss
functions or other types of Pythagorean fuzzy loss func-
tions and provide more effective approaches for studying
Pythagorean fuzzy information systems for conflicts in the
future.

VI. CONCLUSIONS AND FUTURE WORK

In the era of big data, the study of conflicts is of greatest
importance both practically and theoretically for human society.
In this paper, we have presented the concepts of positive, neu-
tral, and negative alliances with two thresholds, and employed
examples to illustrate how to construct the positive, neutral, and
negative alliances in Pythagorean fuzzy information systems for
conflicts. Moreover, we have studied three-way conflict analysis
of Pythagorean fuzzy information systems based on Bayesian
minimum risk theory and employed examples to illustrate how
to compute different alliances with a Pythagorean fuzzy loss
function given by an expert. Finally, we have investigated three-
way group conflict analysis of Pythagorean fuzzy information
systems and explored examples to illustrate how to calculate dif-
ferent alliances with a group of Pythagorean fuzzy loss functions
given by more experts.

In the future, we will study dynamic Pythagorean fuzzy infor-
mation systems for conflicts. Furthermore, we will provide ef-
fective algorithms for conflict analysis of dynamic Pythagorean
fuzzy information systems.
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