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Abstract—Neighborhoods form a set-level approximation of cooperation, and therefore plays an important role in Decision
data distribution for learning tasks. Due to the advantages of Support Systems [12]. For an example, when we apply the
data generalization and nonparametric property, neighborhood eighhorhood-based classification methods to implement a
models have been widely used for data classification. However, the . - . . .
existing neighborhood-based classification methods rigidly assign Compl,!ter-Alded D!agHOSIS (CAD) system for liver cancer, it
a certain class label to each data instance and lack the strate- IS required to classify the uncertain tumors for further cautious
gies to handle the uncertain instances. The far-fetched certain diagnosis and the far-fetched certain classifications produced
classification of uncertain instances may suffer serious risks. To py the system may cause serious costs [13].
ta;fkée thiz prqb'ﬁé“’ e grofpose a “to‘(e' dsr‘tad‘fweqf_sett.to C?:”St{k‘:m Aiming to tackle the limitation of neighborhood models for
shadowed neighborhoods for uncertain data classification. For the . e .
fuzzy-rough trgnsformation in the proposed shadowed set, a step uncertain data classmcatlon_, in this paper, we utilize Shadowed
function is utilized to map fuzzy neighborhood memberships to Sets [14] to extend the traditional neighborhoods to shadowed
the set of triple typical values {0,1,0.5} and thereby partition ~ones and thereby propose a three-way classification method
a neighborhood into certain regions and uncertain boundary based on the shadowed neighborhoods. To integrate the two
(neighborhood shadow). The threshold parameter in the step important paradigms of granular computing [15], [16]: Rough

function for constructing shadowed neighborhoods is optimized
through minimizing the membership loss in the mapping of Sets [17], [18] and Fuzzy Sets [19], [20], Fuzzy Rough

shadowed sets. Based on the constructed shadowed neighborSets [21], [22] have been widely investigated to achieve the
hoods, we implement a three-way classification algorithm to unified methodology for uncertain data analysis [23]-[25].
distinguish data inStal{féC?: tiﬁéo r%erézigd ?Lizseeivaangas;g‘zgﬁgg Based on the fuzzy-rough transformation, shadowed sets are
case. Experiments valida - i ing i i
method \F/)vith shadowed neight?orr?oods is effecti)\//e to handle constructed through ma_lpplng fu_zzy memberships into a triplet
uncertain data and reduce the classification risk. set {0,[0,1],1} [26]. With the triple elements of shadowed
sets, a fuzzy concept is tri-partitioned to form a rough rep-
resentation which consists of certain positive region (denoted
by 1), certain negative region (denoted by 0) and uncertain
shadow region (denoted by [0,1]). The traditional shadowed
I. INTRODUCTION sets balance the uncertainty variations on certain and uncertain

EIGHBORHOODS are constructed through groupin gions [26], which facilitate the uncertain data clustering [27]

neighboring data instances into sets [1]. In contrast .t may not suit for supervised learning tasks. Mo_tivated by
K-Nearest Neighbors as instance prototypes [2]-[4], neighb8#iS: We propose a novel shadowed set on fuzzy neighborhood
hoods provide the set-level prototypes and thus facilitate tii¢MPerships to construct the shadowed neighborhoods of cer-
data generalization [5], [6]. Moreover, neighborhood model@in regions and_uncertam boundary (neighborhood shadow) to
are generally non-parametric and need not to assume ffSSify uncertain data. _ -
probability distribution of data, which make the neighborhood- '° implement the uncertain classification based on shad-
based learning easy to implement and flexible to data div&¥ed neighborhoods, we refer to the methodology of Three-
sity [7], [8]. The union of the homogeneous neighborhood¥2 Decisions (3WD) [28], [29] to design a three-way classi-
belonging to same class approximates the data distribution HG2UON strategy. In the process of three-way decision making,
classification [9], [10]. The classifications based on neighbdf€Cision rules are generated through tri-partitioning data space
hoods were proven to be more efficient than the classificatidf POSitive, negative and boundary regions. Like the union of
based on nearest-neighbor search [11]. neighborhoods forms an approximation of data distribution for

However, the existing neighborhood-based classificati§igssification, the union of the shadowed neighborhoods forms
methods rigidly assign a certain class label to each d&dri-partitioned approximation of data distribution for three-
instance and lack the strategies to handle the instances WY classification. The data instances will be classified into
uncertainty. The methodology of uncertain data classificatiGh®etain class or uncertain case according to their Iocatlc_)ns
is very helpful to reduce the decision risk and in the meaf€SPect to the shadowed neighborhoods, such as the positive
time improve the decision efficiency through human-machifgdions of the neighborhoods of same class certainly determine

the class of instances but the neighborhood shadows have
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We propose a novel shadowed set on fuzzy neighborhoaida shadowed set is measured by the number of the uncertain
memberships to construct shadowed neighborhoods.ifistances in the shadowed area.
the proposed shadowed set, a step function is utilized
to map neighborhood memberships to the set of tripl
typical values{0,1,0.5} and thereby partitions a neigh-
borhood into the certain positive region, negative regiol 17
and uncertain boundary region. Through minimizing the
information loss in the transformation from fuzzy mem-
berships to the shadowed set, we obtain the optimur :
threshold in the step function to optimize the constructior _ / membership \
of shadowed neighborhoods. : |
o Implement a three-way classification algorithm with A
shadowed neighborhoods (3WC-SNB). A
Based on the approximation of global data distributior ¢ 3

pa(x

2

formed by the shadowed neighborhoods, we design /Shadow
group of three-way classification rules for both the dat: /
instances within and beyond neighborhoods, and als / ! ‘
implement a three-way classification algorithm with shad min Xt o e xe max
owed neighborhoods to distinguish data instances int 2 ’
certain classes and uncertain case.

The rest of this paper is organized as follows. Section fig- 1. Shadowed set of triangular membership function.

briefly introduces the preliminaries of shadowed sets and three-

way decisions. Section Il introduces the shadowed neighbor-Fig. 1 illustrates a shadowed set constructed on a triangular
hood model, which includes neighborhood membership formgembership function. It can be found that the transformation
lation, shadowed neighborhood construction and optimizatidfom fuzzy memberships to a shadowed set relocates the uncer-
Section IV presents a three-way classification method witainty. The uncertainty in the positive and negative regions is
shadowed neighborhoods. In Section V, experimental resulgsluced, and in the meantime, the uncertainty in the shadowed
validate the effectiveness of the proposed method for uncertafi¢a is increased. Based on this, Pedrycz established the

data classification. The work conclusion is given in Section V@bjective of uncertainty invariance to optimize the threshold
parameter to construct shadowed sets.

Given a fuzzy membership function,, for any data in-
) stancer; € X, its membership 4 (x;) is briefly denoted ag;.
A. Shadowed Sets of Fuzzy-rough Transformation The uncertainty variance of transforming fuzzy memberships
As fuzzy rough sets [21], [22], shadowed sets [14], [26hto a shadowed set [14], [15] is formulated as
were proposed by Pedrycz to bridge rough sets [17], [18] and V)= S i+ Y (1— )
fuzzy sets [19], [20] and thereby provide an effective tool to <o wisl—a 2)
model and analyze the concepts with uncertainty. Shadowed card{z; € X|a < p; <1—a}l|
sets are constructed through the fuzzy-rough transformatio
of fuzzy sets. In the fuzzy-rough transformation, the fuzza/
membershipsu(z) of data instancex € X are mapped

Il. PRELIMINARIES

rhe uncertainty varianc& («)) consists of two parts: the

ncertainty decrement of membership loss in the certain
. . T regions and the uncertainty increment in the uncertain region,
into a triplet set{0, [0, 1], 1} and the mapping is forml“'Iatedwhich is represented by the number of uncertain instances

«@ . 1
zztfu[[éoj f; 1]_>th{e0,v[gl,ul(]e’sl(;;. aizfir:;r;%;fe F[E(Z Zlézrtzginr?lléggﬁ\r} the shadow. Besides the membership loss, we can also
’ ’ g ?erpret the uncertainty variance from the view of the areas

region and certain _posm_ve region, and the interval [O,ijf memberships [32], [33],
denotes the uncertain region.

In the mapping of shadowed se$§,, a € [0,0.5] is the N N
threshold parameter to tri-partition the fuzzy memberships as V(@) = |ElevatedArea(Sy;, ) + ReducedArea (S}, )

—ShadowArea (S}, )|
1, pa(z) > 1—a, (3)
Sg(x)=1¢ 00,1, a<pa()<l-a, (1)  The optimum threshold parameter should balance the
0, pa(z) < a. shadowed area and the changing areas of memberships,

The tri-partition of fuzzy memberships forms a shadoweld™ the trade off between uncertainty and membership loss.
concept representation. The low memberships of instanéés = argammv(a)' V(a) = 0 will lead to the optimum

no more thana will be reduced to the certain negativemembership thresholad*.

membership 0, the high memberships no less than « Pedrycz's shadowed sets have been investigated and extend-
will be elevated to the certain positive membership 1, aretl. Yao summarized the optimization strategies to construct
the uncertain instances whose memberships locating in gtedowed sets in the framework of three-way decision theory,
interval (o, 1 — «) constitute the shadow area. The uncertaintyhich include the strategies for minimizing distance and
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achieving the least cost [32]. Tahayori constructed the shad-given by LT = {t € L|t=a} and the set for rejection is
owed sets based on a gradual grade of fuzziness [34]. Nguyen = {b € L|b<3}. For an evaluation functiom : U — L,
proposed a distance-based shadowed approximation mettiasl Positive, Negative and Boundary regions are defined as
to transform fuzzy recommendations to determined ones [35].

Grzeforzewski presented a shadowed set approximation to POSq,5(v) = {z € Ulv(z)=a},
simplify fuzzy numbers, which also provided the interval NEGq(v) ={z € Ulv(z)=8}, 4
and trapezoidal approximation methods for fuzzy sets [36]. BNDqg(v) ={z € Ule < v(z) < 8}

Zhang proposed the game-theoretic shadowed sets, in While/

the thresholds of th mat determi arious kinds of decision-making methods have been rein-
€ threshoids ol three-way approximation were de errmn%«g.stigated within the framework of three-way decisions [47]-
by the principle of trade-off with games [37].

. . 49]. Three-way decision models were established from the
Besides the construction of shadowed sets, shadowed y

h b idel d to imol f ol . fd pectives of fuzzy sets, hesitant fuzzy sets and interval-
ave been widely used to implement soft clusterings o Qlued sets respectively [50]-[52]. The three-way decision

with uncertainty. Through mapping the fuzzy cluster MeMhodel was also revisited and extended from the views of
berships to a shadowed set with tri-partition structure, fuz%me theory [53], sequential decision making [54] and for-
clustering_ [38], [?.’9] and rough clustering [40], [41] can.be regjual concept analysis [55]. Besides, three-way decisions were
resented in a_umform frgmgwo_rk of shadqwed clustering [2,7 tilized to construct the methods of uncertain clustering [56],
Based on this, the opt|m|zat|_op strategle_s _for constructng 7], cost-sensitive classification [58], [59] and dynamic data
shadowed sets can be also utiized to optimize the threShﬁéssification [60]. Through integrating with machine learning
parameters of fuzzy and rough clusterings. Mitra propos thods, three-way decisions have been widely applied in the

a shadowed’,_‘-means algorithm which integrateg fuzzy an elds of recommendation system [61], network security [62],
rough clustering [42]. And the rough-fuzzy clustering metho anagement analysis [63], social networks [64], natural lan-

were also reinvestigated from the view pf shadowed sets [4% age processing [65], disease diagnosis [13] and software
ZE 0; prodposed a rouk?_hhquzy ci'lustermg mef[h_od based Btection [66]. Referring to the methodology of three-way
shadowed sets, In which the clusters containing uncert cisions, we expect to reformulate neighborhoods with shad-

mstancgg are modeled k_)y shadowed §ets af‘d the threSh8W§d sets and thereby implement a three-way classification
for partitioning the certain and uncertain regions of cluste ethod for uncertain data analysis

are determined through optimizing the shadowed sets [44],

[45]. In general, the existing shadowed sets aim to maintain

data uncertainty and the research focuses on the concept I1l. SHADOWED NEIGHBORHOODS

approximation and the applications of shadowed sets fAr Fuzzy Neighborhood Membership

uncertain data clustering. For the supervised learning tasks . N

such as data classification and regression, the related wo]gklo consinuct the sha(_jowe_d neighborhoods for cIaSS|f|_cat|_on,

are very limited. Irst we cpnstruct c_ertaln neighborhoods for data classmcqtlon
and fuzzify the neighborhoods to formulate the fuzzy neigh-

borhood memberships. For a data instanciés neighborhood

B. Methodologies of Three-Way Decisions consists of the surrounding instances with the same class.

Many soft computing models for leaning uncertain conceptefinition 1 Neighborhood [9]. Given a data instance €
such as Interval Sets, Many-valued Logic, Rough Sets, Fuzxy the neighborhood(z) of z is defined as
Sets and Shadowed Sets, have the common property of tri-
partitioning [28], [46]. Motivated by this, the methodology of O(z) ={y | d(z,y) <n,y € X}, (5)
Three-Way Decisions (3WD) IS Pr.o_posed as as an eXten.S'v?/Hered(:c,y) is the distance between the instaneeand y,
of the commonly used binary-decision model through addin denotes the radius of the neighborhood
a third option [29]. In general, the approach of Three-Wa '
Decisions divides the universe into the positive, negative andTo handle the mixed-type data of both numerical and sym-
boundary regions which denote the regions of acceptance, wetic attributes, we adopt HEOM (Heterogeneous Euclidean-
jection and non-commitment for ternary classifications. Spectverlap Metric) function [67] as the distance measure to
ically, for data classification, if the data instances partiallyonstruct neighborhoods. To guarantee all the instances in
satisfy the classification criteria, it is difficult to directlythe neighborhood belonging to the same class, i.e. the neigh-
identify them without uncertainty. Instead of making a binargorhood homogeneity, we adopt the measures of Nearest
decision, we use thresholds on the degrees of satisfiabilityHit N H(x) and Nearest MissVM (x) of the neighborhood
make one of three decisions: accept, reject, non-commitmeggnterz to calculate the neighborhood radius referring to the
The third option may also be referred to as a defermesirategy of neighborhood construction in [68Y.H (z) is
decision that requires further judgments. defined as the nearest instancertith the same class label
With the ordered evaluation of acceptance, the three regiarsd N M (x) is the nearest instance tq which belongs to
of decisions are formally defined through thresholding thdifferent classes. The neighborhood radius is calculated by
evaluation values. Supposd., <) is a totally ordered setn = d(x, NM(z)) — 0.01 x d(xz, NH(z)). Obviously, all the
of evaluation values, in whick< is a total order. For two instances within the neighborhood of radigidelong to the
thresholdsy < 3, suppose the set of the values for acceptansame class as.
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The union of all the neighborhoods forms a covering diy membership grade 0, and theundary regiorrepresented
data, in which some neighborhoods may be contained in otligr membership grade 0.5, which forms tiheighborhood
ones, thus we further remove the redundant neighborhoodskadow For the three regions of a shadowed neighborhood, the
simplify the model [69]. The remained neighborhoods actualpositive region represents the data instances which certainly
provide an approximation of global data distribution on sételong to the neighborhood, the negative region represents the
level and the instances within neighborhoods are uniformiystances which are certainly beyond the neighborhood, and
distributed. Next we formulate the membership distribution dhe boundary region (neighborhood shadow) consists of the
neighborhoods according to the distances from instancesirnistances which are uncertain to belong to the neighborhood.
neighborhood centers. Fig. 2 shows the shadowed neighborhoods of the data instances

Definition 2 Neighborhood Membership. Given an instance of one class for binary classification.

2 and a neighborhoo®(xy), ;. is the neighborhood center,
the membership of belonging toO(x) is defined based on
the distance between and xy,

1 e tld(z,xx)—n]

Shadowed neighborhoods
O  First class
{ Second class

Shadow 1- a > u(x) >

(6)
The formula of neighborhood membership is a logistic functiol
of ‘S’ shape, in whichd(z, =) is the distance betweenand

NO(l‘k)(x) =1- 1 + e—tld(z,zr)—n] - 1 + e—tld(z, ) —n]

O

zx, t > 1 is the function order, and the neighborhood radius %8 E o
n > 0 is adopted as the function bias. °® g o@%o °©

The neighborhood membership(,,)(z) € (0,1). It can é)%% ? é
be found that, for the instance locating at the neighborhoc _ g ©
boundary, i.e.d(z,z;) = 7, its neighborhood membership Nega"‘("i 0090; 98
[10(zy) () = 0.5 and the membership decreases as the distan . = 00 ° ‘
between data instance and neighborhood center increasing. 0 max

the next paragraphs, we briefly dengtg ., )(z) as u(z).

Fig. 2. Shadowed neighborhoods for binary classification.
B. Shadowed Neighborhood Construction

Based on the fuzzy-rough transformation of shadowed setsgrom the formula (7), we know that a shadowed neighbor-
we can transform the fuzzy neighborhood memberships |od is constructed through discretizing quantitative neighbor-
instances into rough ones and formulate a shadowed rend memberships using a step function to obtain qualified
resentation of neighborhOOdS. Different from the tradition%presentations of neighborhood be'ongingness_ The member-
shadowed sets mapping fuzzy membershipg{aol, [0,1]}  ships of the instances in the positive region are elevated from
as introduced in Section I, we propose a novel shadowed_ 1] to 1, the memberships in the negative region are
set which utilizes a step function to map fuzzy neighborhogdduced from[0,] to 0, and in the boundary region, the
memberships to the set of triple valulgs 1, 0.5} for uncertain - memberships ranging ifw, 1 — o) are simplified to a unified
data classification. Specifically, the low memberships no moggjue 0.5. The transformation from neighborhood membership

thana will be further reduced to 0 and the h|gh membershi%k (l‘) to a shadowed sy« (l‘) causes thenembership loss
no less thanl — o will be elevated to 1, and the mostyhich is formulated as -

uncertain membership value ‘0.5’ is adopted to unify the
neighborhood memberships of all the uncertain instances in
the interval(a, 1 — o). The shadowed neighborhood based on  L(a) = A- | > pur(z)+ > (1 —px(z))

the shadowed set is defined as follows. pk (@) S pk (2)21~ax
- . . : + 2 05— ()]
Definition 3 Shadowed Neighborhood. Given a neighbor- a<pp(r)<l—a
hood membershigu;(z) and a thresholda € [0,0.5], the (8)

shadowed neighborhood is constructed through defining ) consists of the membership losses in the certain pos-

shadowed set mapping of the neighborhood membership d§ve region, negative region and uncertain boundary region
respectively.A > 0 is the factor to balance the membership

Vo () 3,5 pe(z) > 1 ; ‘1)‘7 . loss of the certain regions and uncertain region and we set
(%) = 0. ’ i?xﬁgkixzy - ) A = 0.1 as default. Fig. 3 illustrates the transformation from
) k >

the neighborhood membership to a shadowed set and the
The mapping of shadowed neighborhad, (=) utilizes a corresponding membership loss. We find that for a given mem-

step function to approximate the neighborhood membershiprship function (or a set of memberships), the membership

ur(z) and partitions the space into three regions accorditmss is determined by the threshald thus we can optimize

to the neighborhood belongingness: hasitive regionrepre- the threshold to construct shadowed neighborhoods through

sented by membership grade 1, tregative regiomepresented minimizing the membership loss.
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Lemma 1 In the objective of membership logs(«), for

1 a € [0,0.5], A- > w; is monotonically increasing and
u; <
> (0.5 —u;) is monotonically decreasing with respect to
o ui>o
B 1-ar cont . a. Therefore, the threshold* which leads to the minimum
—Continuous memaoersni . .
é & Ungeriain region i L(«) should trade off the membership loss of both certain
g —— Discrete membership and uncertain regions.
5 Il Loss of membership
g 057 Based on the Lemma 1, we can infer the calculation of the
S optimal threshold to achieve the minimum membership loss
5 L(w), see the following theorem.
Zz
& Theorem 1 For a given\ € R, supposex € [0,0.5], the
membership los€(«) achieves the minimum when=£%,
0 i i * i — 0.5
- ; o i.e. the optimal threshold* = argofmn L(a) = 175

Distance from neighborhood center .
Proof L(a) = XA+ > w; + >, (0.5—1w;), according to
Fig. 3. Transformation from neighborhood membership to eivad set. i uiSa Ui >o .
Lemma 1, in the objective df(a), whena increases from

0 to 0.5, the membership loss of certain regidn > wu;

_— . . u;i <o
C. Optimization of Shadowed Neighborhood monotonically increases and the increments grow &iscreas-

The thresholdy tri-partitions the neighborhood membershipng, in the meantime, the membership loss of uncertain region
domain into certain positive, negative and uncertain shadow~ (0.5 — ;) monotonically decreases and the decrements
regions, and thereby determines the structure of the shadoweek . .
neighborhoods. Improper thresholds will cause great mefAdually reduce. Therefore, the optimal threshaldleading
bership loss and lead to over big or small uncertain regioffs e minimumL(a”) should trade off the growing loss in-
of shadowed neighborhoods. A reasonable threshold shoffgMent of the certain region and the reducing loss decrement
maintain the information of memberships when transformi the uncertain region. _ .
neighborhood memberships into a shadowed neighborhood, SUPPOser € [0,0.5] and e is a small positive number. If

Suppose the membership function of a neighborhopdis there exists no membership value in the intervala+¢], we
and the neighborhood membership of any data instance directly haveL(a) = L(a+te), otherwiseJuy, a < ux <
X is p(x;) = s, referring to the formula (8), the membershir?*’i We usedif fL(«) to denote the difference between

loss for transforming the neighborhood memberships into&® membership losg(a) and L(a+e) which can be also
shadowed set becomes considered as the gradient é@f(«) at .

dif fL =L - L
L(a) = X Z Hi + Z (1 —pa) |+ Z 0.5 — g5 :ZJ;f (C% ui(i+62 (0,(;)_ wi)—
pi<a pni>l—a a<pu;<l—a u; <ate u;>o
)

Aiming to maintain the information in the transformation, the

optimum thresholdv* should lead to the minimum member- r
ship loss, =AY wi— Y w4+
o = arg min L(«). (10) [risate ise
o _ Y 05-w)— Y (0.5—wu)
Based on the following piecewise representation of mem- u;>adte ui>a
bershipp;,
P =X | > witug— > wi| +
, <. | ui<a u;<a
u; = { /il/“ Hi = 8 g, (11)

= His o i > 00, S O05—uw)—( X (05— w)+ (05— up))

we rewrite the neighborhood memberships:adata instances e izate

=X-u, — (0.5—
{p1s oo pis oo pn } 10 {un, s ug, o un b, ug < 0.5 and refor- = (g j:k/\) .(uk _ 01.1;.)
mulate the membership loss as
From the formulas above, we know that the gradient
L{a) = A- Z u; + Z (0.5 — u;). (12) diffL(«) is the sum of the membership loss variation in the

ui <o ui>a certain and uncertain regions. Lt f f L(a) = L(a) — L(a+

L(a) consists of two parts, the first part denotes the mer} < 0, dif fL(e) = (1 +A) -up = 0.5 < 0 = up < 45

bership loss in certain regions and the second part denotesBggausea < up < a +¢ a < up =< 753 and thus
membership loss in uncertain region. Fixing the balance factér € [0, 1%5%), dif fL(a) < 0. Similarly, dif fL(a) > 0 =

A, the optimal threshold* of the minimumL(«) should trade . > %5, we havea + & > u, > 5 and infer thatva €
off the two parts of membership loss. [%,0.5], dif fL(«) > 0. Therefore,L(«) is monotonically
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decreasing in the intervgD, {%%) and increasing if{%%;,0.5] the balance factok and infer the theorem as follows.

i i ; — * _ 0.5
with respect tax. The gradientdif fL(e) =0 = o* = 33, Theorem 2 The neighborhood shadow (uncertain boundary

}Nh'Ch f|sththe o?t!mumdthresh?lc_j o tr_ade Zg th*e mimberShllBgion) is monotonically increasing with respect to the balance
oss of the certain and uncertain regions ah@n*) achieves factor A of membership loss.

the minimum membership loss.

Proof The neighborhood shadow is determined by the optimal

According to Theorem 1, for a continuous neighborho N . ; .
membership function, we set the optimal threshefd— -2:3 Ofﬂresholda and the size of shadow is denoted by the interval

TN * ok + < *__0.5 *__0.5
and for the discrete neighborhood memberships, we adopt te ’ 1-ar). VAi’AQ < ? AL S Ag, o T+ 27T,
; 5 . us we havens < «f and infer thata* monotonically
closest membership value &5 as the optimal threshold to ; ;
. A . .decreases as\ increasing. Moreover, becausg < Ay =
construct shadowed neighborhoods. Fig. 4 presents the optlrgg< 0 = 1 —af > 1— o the corresponding intervals
thresholds for the continuous neighborhood membership func,.—. ! 2 = L P 9

tion of Definition 2 under multiple\ values. Discretizing the satisfy (al.’l . o) < (9‘2’1 . @3), v_vhlch_prove that the
. ) . . . . shadow size is monotonically increasing with respech.to

continuous neighborhood membership function with muItlpr%

step lengths of 0.1, 0.2 and 0.5, we calculate the optimal

thresholds for the three sets of discrete membership values ant

present the results in Fig. 5. It can be found that the optimal Memberahio fonct
i H H L (1-a), _ ——Membership function
th_re_sholds obtained t_)y Theorem 1 are eff_ectlve to achl_eve the 1 oh=10 [ IShadow region
minimum membership loss for both continuous and discrete =4
memberships. 5 R =2
b ey oy
E (1-a), _os
600 -
A=5 § 05- .
A:Z 5 (a3
— =1 £ A=05

| — =05 > o

S z o

— . A=2

Continuous L(«) . Qy_y
% Gy =10
0 S—k L &
0 n max
Distance from neighborhood center
<,__// Fig. 6. Variation of neighborhood shadow against the baldactr A

- - o5 Fig. 6 illustrates the variation of shadow against the balance
“as “asos ' factor A = {0.5,1,2,4,10} and the shadow area gradually
o value increases as increasing. As seen from the formula (12), the
Fig. 4. Thresholding of the minimuni(a) on continuous membership.  factor factor is used to trade off the membership losses
of certain and uncertain regions in the transformation of
shadowed neighborhood, and also can be viewed as the cost
for changing the memberships in certain regions. Large values
of X indicate the great costs for reducing low memberships
_zig:gg to certain O or elevating high memberships to certain 1.
—Step=0.1 Therefore, the shadow area will be increased to include more
instances as uncertain cases to reduce the costs of certain
judgements. For the three-way classification with shadowed
20t neighborhoods, we can control the rates of uncertain instances
Discrete L(a) through adjusting the factox.

L(a)

IV. THREE-WAY CLASSIFICATION WITH SHADOWED

- NEIGHBORHOODS

Constructing a set of shadowed neighborhoods on labeled
00 I ‘L : 05 training data, we can implement a three-way classification
“os “02%u1 ' method to classify unknown data instances into certain classes
o value and uncertain case. The union of the shadowed neighborhoods
Fig. 5. Thresholding of the minimuni(«) on discrete memberships. of a class forms a tri-partitioned approximation of the data
distribution of the class. The classification of data instances
Besides the optimal membership threshold, we further irs determined by the belongingness of the instances to the
vestigate the correlation between neighborhood shadows ahéidowed neighborhoods of different classes. To classify an
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instancer, we should first determine the regionsxofn shad-
owed neighborhoods through thresholding its neighborhood
memberships.

As shown in Theorem 1, the optimum threshald of
shadowed neighborhoods is determined by the fattehich
balance the costs of the membership losses on certain and
uncertain regions. Therefore, we compute= %% to thresh-
old neighborhood memberships and partition the shadowed
neighborhoods. Referring to Theorem 2, through setting
we can adjust the shadow regions of neighborhoods and the
decision risk to suit the requirements of different classification
tasks. For the cautious decision making, we can set high

3)

2) If |SNP(z)| > 1 andVky,ky € SNP(z), class(Og,)

class(Oy,), = certainly belongs to the class of
the neighborhoods ¥ N P(z), otherwise if3k;, ks €
SNP(z) and class(Oy, ) # class(Ox,), x belongs to
multiple neighborhoods of different classes with conflict
and should be judged as an uncertain data instance.
If SNP(z)| =0, |SNU(z)| > 0, the major class of the
neighborhoods i NU (z) is Cy,, |{k|k € SNU (x) A
class(0y) = Cp }/|SNU (z)| > 60%, « belongs to the
classC,,, otherwise if[{k|k € SNU(z) Aclass(Oy) =
Cn}|/ISNU(z)| < 60%, « is judged as an uncertain
data instance.

A values to enlarge shadow regions of neighborhoods andrhe within-neighborhood classification rules indicate that, if
thereby separate more uncertain instances for delayed decigi@ shadowed neighborhoods whose positive regions contain-

making. For the efficient decision making which needs moygg

x belong to the same class, we can certainly classify the in-

automatic classifications, we can set lowalues to produce stance, otherwise belonging to heterogenous neighborhoods

narrow shadow regions and lead to a few uncertain cases. |

lead to classification conflict and should be considered

Supposeuy(x) is the membership of to the kth neigh- as an uncertain instance. dflocates in the boundary regions

borhood,POS},, NEG) and BN Dy, are the certain positive (shadows) of multiple neighborhoods, we classify the instance
region, certain negative region and the uncertain boundaffough checking whether most of these neighborhoods belong
region of the neighborhood, we distribute into the three to the same class. Fig. 7 illustrates the three-way classification

neighborhood regions in the following way.

a< pr(xr) <l—a=x € BNDy,
pr(z) < a= x € NEG,
uk(Z)Z].*Oéél'EPOSk.

With the high memberships 1 — «, POS), consists of the
data instances certainly belonging to th#h neighborhood.
NEG) consists of the instances with the low memberships
< a, which are certainly beyond the neighborhod@iV D,
consists of the uncertain instances locating in the neighbor-
hood shadow area. Obtaining the neighborhood regions of
we further define the following sets of neighborhood indexes
to describe the region location of to all the shadowed
neighborhoods.

SNP(z) = {k|lx € POS},

SNU(z) = {k|z € BNDy},
SNN(z) = {klz € NEG)}.

Fig.

rules for the instances within shadowed neighborhoods.

@ @ A Ciassiy as class 1
A Ciassify as class 2 == g N
Shadowed  Shadowed A Uncertain ’ v A\
neighborhood ~ neighborhood / /' \ X4
of class 1 of class 2 \
’5 l
A

X5A\/

(b)

\\//

(a)

7. 3-Way classification for instances within shadowem@orhoods.

(2) Classification rules beyond shadowed neighborhoods
For a data instance beyond the neighborhood sé&, we
haveVOy € O, pi(z) <

a, |SNP(z)] = 0, [SNU (z)| = 0.

Obviously, SN P(z) is the set of the indexes of the neigh- 1) wy(z) = g)naX{uk( )}, Oy is the nearest neighborhood

borhoods whose positive regions containing the instance
SNU(z) is the set of the indexes of the neighborhoods

in which z locates in the uncertain boundary region, and ) py(z) = gsg}é{uk(gj)}, Re:

SN N (z) denotes the set of neighborhoods excludiniven
a set of neighborhood® = {O,...0,...Ok}, based on
the region description ofr provided by the neighborhood
index sets, we can design a group of three-way classification
rules to classifyz in both conditions ofr within and beyond
the neighborhood saD. In the classification rules, we adopt
class(Oy) to denote the class of the neighborhd@@g i.e. the
class of the neighborhood centey.
(1) Classification rules within shadowed neighborhoods
For a data instance locating within the neighborhoods
of O, we have3O;, € O, pr(z) > «, |SNP(z)] > 1 or

3) np(w) = max{pun(a)}, pslw) =

of z, if uf( x) < Ty, x is judged as an uncertain data
max

instance.
0,08 {Of}{,uk(x)}’

Oy, O are the first and second nearest neighborhoods
of z, if pus(x) > Ty andclass(Oyf) = class(Os),
belongs to the class @; andO,.

o nax (@)},

Oy, O are the first and second nearest ne|ghborhoods
of z, if up(x) > Ty, class(Of) # class(Os) and

1 — ps(z)/pp(z) > T, = belongs to the class ady,
otherwise if1 — ps(x)/ps(x) < Ty, x is judged as an
uncertain data instance.

Different from the rules within neighborhoods, the three-

|SNU (z)| > 1. way classification of the instances beyond neighborhoods de-
1) If |[SNP(z)| = 1, = certainly belongs to the class of thepends on the distances between instances and neighborhoods.
unique neighborhood IS N P(z). If the membership of: to its nearest neighborhood is too
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small and less than the threshm' x is far from all the Algorlthm 1 Three-Way Classification with Shadowed Nelgh—

neighborhoods and should be considered as an uncertainifthoods (3WC-SNB)

stance. For the instances nearby neighborhoods, we deternfifg: 11; *a?]?[vged]\;lglgthJF\?gO?.S with the optimized thresholds

the class of: according to its nearest two neighborhoods. If the Unknown data fstance.

two neighborhoods belong to the same class, we can perfapiput: Three-way classification result of, class(z);

the certain classification. Otherwise we further check th%ﬁ 'é““a“Z? SNP(ﬁ%vSéV%(“)H@S hins of for K neiahborhood
. . . - . Compute neighbornoo membershnips of Tor neighborhoods

difference petween the mem_bersh|p$db its first and second " {u1(2), pi2(2), .., pxc ()} according to the formula (6);

nearest neighborhoods of different classes. If the memberstap//Determine the region of: according to neighborhood memberships

difference is less than the threshold, which means the 4: for each shadowed neighborhood;, do

distances fromz to the referenced two neighborhoods areg’i f %&w)(s 1:_1 O‘Sf,r\',?(x) — SNP(z) U {k};
similar, the class inconsistency of the two neighborhoods leads  else *
to the uncertain judgement of If the membership difference & if pg(z) > o then

is big enough ¥ 7,), we can certainly determine the classiof 1%:: enévf?k (@) =05, SNU(w) = SNU(z) U{k};

referring to only the nearest neighborhood. In the experiments, end if
we setTy = 0.05 and 7, = 0.1 as default. The three- 12: end for

way classification rules beyond shadowed neighborhoods éﬁ@ei’f"’l‘gﬁrﬁ‘fg)"“>p§’iﬁg§ regions of neighborhoods

illustrated in Fig. 8 . 15:  Obtain the classe§'g p of the neighborhoods i§ N P;

16: if ‘CSNP : {Cp}‘ =1 then
17: class(z) = Cp;
18: else

19: class(z) = uncertain;

'.@4 {®, A Classify as class 1 20: end if

N o A Classify as class 2 - 21: else

neighbomood noghmeresd 2 Uncerain 7 N 22 [Anstancez in boundary regions of neighborhoods

of class 1 of class 2 23: if ‘SNU(CE” 2 1 then

24: Obtain the major class’,, of the neighborhoods IS NU (z);
X 25: if LIRESNU@) pclass(O)=Cm}| > 6% then
26: class(z) = Cm;
X3 <T; 27: else
28: class(x) = uncertain;
29: end if
30: endif
X4 31: end if
32: /Instancex beyond neighborhoods
33:if [SNP(z)|=0and|SNU(z)| = 0 then
34: Compute the memberships af for the first and second nearest
neighborhoodgD¢, Os,
Fig. 8. 3-Way classification for instances beyond shadowéghherhoods. py(w) = 12%)(1({”’“ (@)}, ps(z) = 1§kéﬂ}%};k¢f{uk (z)};

35:  if py(x) < Ty then
. . L 36: class(x) = uncertain;
Summarizing the three-way classification rules within angr:  else
beyond neighborhoods, we implement a three-way classfff if class(Oy) = class(O) then

cation algorithm with shadowed neighborhoods (3WC-SNBJg. ~ oolss() = class(Oy);

The detailed flow of the algorithm is presented in Algorithm la1: if 1— ps(z)/pp(z) > Tr then
Utilizing Algorithm 1 to classify a set of data instancs a5 e ass(@) = class(Oy);

the number of instancesy| = n, it is required to calculate 44: class(z) = uncertain;

the memberships of each instance &b neighborhoods. In 4% end if

. ; . ; 48 d if
the algorithm implementation, we build uprax K matrix 4. enj?f !

of instance-neighborhood memberships to achieve this. Thgsend if

the computational complexity of the test phasig: x K). 49 Returnclass().
BecauseK < n, the classification based on neighborhoods
is more efficient than the neighbor-based classification. In
the training phase, the construction of neighborhoods needs
to search the nearest homogeneous and heterogeneous neigbiferent from the certain classification methods, the three-
bors of each instance, thus the computational complexity why classification method based on shadowed neighborhoods
neighborhood construction i©(n?). We can further speed (S3WC-SNB) classifies data instances into certain classes and
up the neighborhood construction under divide-and-conqube uncertain case, which is is helpful to avoid the farfetched
strategies, such as using KD-tree to speed up the neighblassification of uncertain (or challenging) instances and there-
searching. Moreover, extending neighborhoods to shadow®mdreduce the classification risk. To validate this, we imple-
ones requires to compute the membership threshold for eawhnt three tests in the experiment. In the first test, we compare
neighborhood and thus need¥ K) calculations. The com- the certain classification with neighborhoods and the three-way
putational complexity in training phase is summarized adassification with shadowed neighborhoods on noisy data to
O(n? + K) =~ O(n?). verify the effectiveness of 3WC-SNB for uncertain data clas-

V. EXPERIMENTAL RESULTS
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sification. The second test validates the superiority of 3W@elay the decision making and thus has less cost than false-
SNB in low-risk classification through comparing the proposequbsitive and false-negative classifications. Therefore, we set
method with other typical certain classification methods. Ipn/Cnp/Cy = 5/1/0.5 in the following tests.

the third test, we further compare 3WC-SNB with the three-

way decision method based on attribute reduction [28] 10 Test of Uncertain Data Classification

validate the superiority of the proposed method for numenc_l_o validate the effectiveness of the proposed shadowed

data analysis. Focusing on the risk of classification, we collect.

13 data sets in the areas of medicine and economics frgl%lghborhoods for uncertain data classification, we expect to

the UCI machine learning data repository to implement t ply 3WC'SNB .metho_d to classify the daf[a_ with multilevel
experiment. For all the tests in the experiment, 10-fold cro chrtgmty..The |ncon3|stengy bgtvveen Fr_a|n|_ng data and test
validation is performed on each data set. The descriptions Oq;ta gives rise to the unt_:er.talnty n cIassﬁwaﬂg_n process, thus
the adopted data sets are given in Table I. we _produce_ the unqertaln instances for c_:I_aSS|f|cat|on through
adding multilevel noise to test data. Specifically, we randomly

change the class labels of partial instances from 0% to 50% in

TABLE | the test data set and produce the test data set with multilevel
EXPERIMENTAL DATA SETS Iabel noise

Data sets _ Feafure Instance  Class Ratio  Type We construct both the shadowed neighborhoods and tradi-
Appendicitis 7 106 20% vs. 80% Numerical . | iahborhood h .. d d
Banknote Authentication 4 1372 44% vs. 56%  Numerical tiona neignobornoodas [68] On t e same trammg ata sets ?—n
g'OOF’ Trgnsftusion 4 748 24% vs. 76%  Numerical perform the three-way classification based on shadowed neigh-

Vi nter . age .
Wiseonsin Original o 699 3% vs. 66% Numerca  bOrhoods (3WC-SNB) and the certain classification based on
Efef_l_stt Cancer o 100 129 ve. 88%  Numerical the nearest neighborhoods (2WC-NB) on the test data sets
ertir VS. umerical . . . .
Garmen Credit 24 1000 30%ve 70% Numerical  With multilevel noise. Fig. 9 shows the TP rate (TP/P) and
Haberman's Survival 3 306 26% vs. 74%  Numerical  FN rate (FN/P) of 3WC-SNB and 2WC-NB against the noise
Indian Liver Patients 10 583 29% vs. 71%  Numerical | | f 0 o find th diff .
Mammographic Mass 5 961 46% vs. 54%  Numerical  level from 0% to 50%. We can find that on different noise
woraciC_Sgr_gefy i 1630 475%9 120;%/\/5. 82?0/ Nthllmericall levels, 3WC-SNB and 2WC-NB achieve the very similar

(| nsin Diagn | VS. meri
Brosst Cancer o ovs. B3 umeredl 1o rates but 3WC-SNB generates less FN rates than 2WC-
Wisconsin Prognostic 33 198 24% vs. 76%  Numerical  NB. This indicates that 3WC-SNB can correctly classify the
Breast Cancer ical . . di h .
Sensorless Drive 49 58509 csvs.c6  Numerical  typical positive instances as 2WC-NB, and in the meantime,
Diagnosis reduce the misclassifications of positive instances to negative

class through separating uncertain instances. We can also find

We set the minor class as the positive class for eatthat the gap of FN rate between 3WC-SNB and 2WC-NB
data set. For an example, in the breast cancer data s&fswidening as the noise level increasing, which means the
the class of ‘malignant’ will be set as the positive classhree-way classification with shadowed neighborhoods tends
Suppose the number of the positive-class instances is P amdecognize more uncertain instances when the test data sets
the number of the negative-class instances is N, TP and &bhtain more noise.
denote the numbers of true positive and false positive classified
instances, TN and FN denote the numbers of true ne
and false negative classified instances. To overall evalue
classification methods, we adopt the measuredafuracy
Precision Recall RateF1 Score Ratio of Uncertain Instanc
(UR) and Classification Costas the evaluation criteria. T
calculations of these measures are listed as follows.

—A—2WC-NB
—©—3WC-SNB

/ 7

=g

Accuracy = (TP +TN)/(P+ N),
Precision =TP/(TP + FP), 4

0 0
— 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Recall Rate = TP/P’ . Noise level (%) Noise level (%)
F1 Score = 2 - Precsion - Recall/(Precsion + Recall),
UR = [{z|z € Xiest A class(z) = uncertain}|/| Xiest|, Fig. 9. TP rates and FN rates of 3WC-SNB and 2WC-NB on noisy. data

Cost = Cnp - g5 + Cpn - 725 + Cu - UR.
Due to the similar TP rates and less FN rates, the three-

In the cost measure, the cost of correct classification way classification based on shadowed neighborhoods achieves
zero,Cnp, Cpy, Cy denote the costs of false-positive clasmore precise classification results than the certain classifica-
sification, false-negative classification and the classification tidn based on traditional neighborhoods. Fig. 10 illustrates the
uncertain instances respectively. For the medical and economriecision, recall rates, classification costs and F1 scores of the
data, misclassifying positive instances (of minor class) atassification results produced by 3WC-SNB and 2WC-NB
negative ones causes more costs than the misclassificatbarthe multilevel noisy data sets. More detailed evaluations of
of negative instances, such as classifying malignant tumahe classification results are presented in Table Il. Comparing
as benign will suffer more risk than judging benign tumoraith 2WC-NB, 3WC-SNB produces the higher recall rates
as malignant. The classification of uncertain instances widhd F1 scores, and the lower classification costs. Especially
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for the data sets with heavy noise (much uncertainty), tledassification methods: Cost-sensitive Bayes, Cost-sensitive

proposed three-way classification method can avoid the seri@ecision Trees and Cost-sensitive Bayes Net [71]. Figure 11

misclassifications and greatly reduces the classification riskand Table Il present the average classification results on all
the test data sets for each classification method and the details
are listed in the appendix.

100
S = 9 ) I ]
(%)
o
I Naive Bayes
< 1 | Decision Tree (J48)
0.2 0.2 < I svm
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50 § 4 | cost-sensitive Bayes
Noise level (%) Noise level (%) = [ cost-sensitive J48
> 4 |CIcost-sensitive BayesNet
3WC-SNB
14 2
—A—2WC-NB —A— 2WC-NB N
—o— X —o— X
3WC-SNB . 3WC-SNB oo |
(=]
o
9 c |
g 2
@ S 1
o = L ail L
L o5 2 L
2 ® Cost  Accuracy Precision Recall F1 score
o Measures
4 . . .pe . .
02 0 Fig. 11. Comparison of classifications of different methods
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Noise level (%) Noise level (%)
TABLE Il

Fig. 10. Classification results of 3WC-SNB and 2WC-NB on naisya. CLASSIFICATION RESULTS OF OF DIFFERENT CLASSIFICATION METHODS

Methods Cost Acc Prec Recall F1

(107%) (%) (%) (%) (%)
TABLE Il Naivle'Bayes 57.81 81.17 82.85 81.17 81.07
CLASSIFICATION RESULTS ON MULTILEVEL NOISY DATA g@%s'on'-rree (J48) 45%;16 83‘3‘59 858%'27 83%15 858_%}(150
Nome Weliols TP PN _Cost Ao Pec Rec FL  Cousonsvessd 2420 oLo 101 125 8597
0%  SwC-NB 094 006 013 096 097 094 095 53,%'_55,3;””6 Bayes Net 20?572'71 81_72(‘9695 87?91523 92_71?497 89?23639

3WC-SNB 0.83 0.10 0.29 0.80 0.94 0.89 0.91
2WC-NB 0.85 0.15 0.33 0.92 0.94 0.85 0.89 . . .
3WC-SNB__ 0.76 0.14 0.40 0.76 0.86 0.85 0.85 From the experlmental results, we find that comparing

2WC-NB 078 022 049 087 087 078 083 wjth the certain classification methods, the proposed uncertain
15% 3WC-SNB 0.67 0.24 0.68 0.70 0.86 0.73 0.79 hod I d | | ifi . Thi
2WC-NB 0.69 0.31 0.77 0.81 0.88 0.69 0.77 metho generally proauces lower classi ication accuracy. IS
20% 3\\//\/\/2-25518 g-gg 8-§g g-gg g-g; 8-;2 g-gg 8-;11 is because that the uncertain data instances without class labels
TWCSNE 058 030 085 065 073 066 069 ;hould not be counted in the_ calculat_lt_)n qf accuracy. However,
2WC-NB_ 060 040 100 073 075 060 067 jn contrast to all the certain classification methods, 3WC-
3WC-SNB 0.51 0.39 1.07 0.56 0.65 0.57 0.60 ; :
2WCNB 051 049 123 065 063 o051 os6 SNB achieves higher recall rates and F1 scores, and thereby
3WC-SNB 035 053 161 041 051 040 045 induces the lower classification costs. Only considering the
2WC-NB 0.36 0.64 1.81 0.50 0.52 0.36 0.43 Y : i H
ro BWCSNE 035 053 154 042 049 040 044 class!f!cat!on error, SVM and decision trees pr_qducg precise
2WC-NB 036 064 174 051 049 036 041 Cclassification results but suffer too much classification costs.
3WC-SNB 0.35 0.51 1.55 0.43 0.51 0.41 0.45 i H i ifi H i i i
45%  SuCNB. 036 064 182 049 050 036 042 Involving rlsks_ .of misclassifications in cIaSS|f_|(?at|qn process,
3WCSNB 036 051 153 043 051 041 045 the cost-sensitive methods reduce the classification costs but
2WCNB 036 064 179 050 051 036 042 gyerclassify datainstances into the more risky class. Different
from the cost-sensitive methods forcing to classify instances
i . i o into the classes of high risks, 3WC-SNB reduces classification
B. Comparison with Certain Classification Methods costs through delaying the challenging classifications of a
The second test overall evaluates the proposed shadowd@tited number of uncertain instances. In general, the uncer-
neighborhood-based uncertain classification method througin classification method based on shadowed neighborhoods
comparing with multiple kinds of certain classification metheutperforms the certain classification methods and is effective
ods. We compare 3WC-SNB method with three elegant clas-reduce the classification costs.
sification methods: Naive Bayes, Support Vector Machine ) ) o
(SVM) and Decision Trees (J48) [70]. Moreover, focusin§- Comparison with Three-Way Decision Method
on the evaluation of classification risk, we also compare Besides the certain classification methods, we also compare

the proposed method with other three typical cost-sensitittee proposed three-way classification method 3WC-SNB with
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10%
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30%

35%

50%
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another elegant Three-Way Decision (3WD) method which &lopted in the probabilistic attribute reduction. Depending on

constructed based on Probabilistic Attribute Reduction [28he superiorities of shadowed neighborhoods in numerical data
Probabilistic attribute reduction formulates three-way decisigmocessing and the optimization of thresholding parameter,

rules through constructing the probabilistic attribute reducthe proposed 3WC-SNB method achieves stable and precise
which partition data instances into positive, negative ardassification results.

boundary regions for a given class. Different from the shad-

owed neighborhoods constructed on the numerical data (or VI. CONCLUSION

mixed-type data), probabilistic attribute reduction is used to In this paper, we propose a novel shadowed set to construc-
extract decision rules from symbolic data sets and requireshadowed neighborhoods for uncertain data classification.

data discretization for numerical data analysis. Moreover, dpecifically, the proposed shadowed sets utilize a step function
ferent from 3WC-SNB estimates the membership threshold to map neighborhood memberships to the set of typical certain

through optimizing the neighborhood shadow, 3WD methaghd uncertain membership values and thereby partition a
utilizes a pair of parametets, ) € [0, 1], a < 3 to threshold neighborhood into the certain positive, negative and uncertain

the memberships and thereby tri-partitions data instances iggundary regions. The threshold parameter in the step function
certain classes and uncertain case. for constructing shadowed neighborhoods is optimized through

minimizing the membership loss in the shadowed mapping.

Based on the constructed shadowed neighborhoods, we also

100 EESWD-MOL _ | design three-way classification rules and thereby implement a
ool B swo-oons M | three-way classification algorithm to distinguish data instances
[Jawc-sne = into certain classes and uncertain case. Experiments verify the

o | superiorities of the proposed three-way method for classifying

uncertain data and reducing classification risks.

Our future works may include the following issues. First,
the memberships of shadowed neighborhood are computed
based on distances, and thereby model the ball-shaped data
distribution well but are not flexible enough for complex data
1 distributions. To handle the diverse data, we should consider

70f .

60 T

50 T

Values (%)

i 1 the distributions in local regions to compute neighborhood
Cost Accuacy Precison  Recal | Fiscore memberships. Second, we will further investigate the optimiza-
Measures tion strategy of shadowed neighborhoods through involving the

classification error (or costs) in the objective. The final issue is
Fig. 12. Comparison of classifications of 3WC-SNB and diszeet SWD  that, we adopt Euclidean distances to construct the neighbor-
hoods and compute the memberships, but this distance metric
will be not effective for high-dimensional data. Therefore the
CLASSIFICATIONRESUJF,ASBC!_FEWC-SNBAND WD WITH feature reduction and kernel methods will be further involved
DISCRETIZATION in the construction of shadowed neighborhoods.

Methods TP FN UR Cost  Acc Prec Recall F1

%) (%) (%) (1072 (%) %) ) (%
3WD-MDL 76.36 13.39 7.42 28.28 86.97 97.39 83.71 88.27
3WD-5bins 83.13 16.87 0 3458 92.1 95.93 83.13 88.62

APPENDIXA

3WD-3bins 74.6 2228 14 4429 8875 96.11 76.59 84.58 TABLE V
3WC-SNB 95.65 O 15.79 7.89 84.21 100 9565 97.78 CLASSIFICATION RESULTS ON DATA SET'A PPENDICITIS
Methods TP Cost2 Acc Prec  Recall F1
Performing 3WD method to classify the numerical data, () (1077) (%) (%) (%) (%)
. L . . . Naive Bayes 85.80 44.34 8585 86.10 85.80 86.00
we apply both the supervised Multi-interval Discretization pecision-Tree (348) 8580 3302 8585 84.90 8580 85.10
method (MDL) and the unsupervised Equal-width DiscretizaSvVM 75.01 50.07 8333 7501 75.01 75.01
. hod (5 bi d 3 bi 721to di i th . agost—sensmve Bayes 89.60 25.47 89.62 89.20 89.60 89.30
tion method (5 bins an ins) [72] to discretize the numericakst.sensitive J48 79.20 3208 7924 73.00 79.20 73.80
attribute values of the test data sets, and set the threshofdstsensitive Bayes Net 80.20 19.81 80.19 80.20 80.20 89.00
. . WC-SNB 100.00 5.00 90.00 100.00 100.00 100.00
parametersy = 0.5, 8 = 0.8 as default. Figure 12 illustrates
the classification results of 3WC-SNB and 3WD with different
discretization strategies and Table IV presents the details. The TABLE VI
experimental results indicate that the classification based on CLASSIFICATION RESULTS ON DATA SETBANKNOTE’
: . : o -
3WD is no_t stable.for d_lfferent dlscret.lzatlon methods. Th Ceods oA e RecaT F
preprocessing of discretization may bring about the informa- ) (1072 %) (%) (%) (%)
tion loss and thus make the three-way decision rules produdgive Bayes 84.30 4198  84.25 8430 84.30 84.20
) . e . Decision-Tree (J48) 9850 4.66 9854 9850 9850 98.50
imprecise classification results. Besides the effects of datgym - 100.00 0.00  100.00 100.00 100.00 100.00
discretization, the classification of 3WD is also sensitive to thecost-sensitive Bayes 7980 28.06 7981 8280 79.80 78.80
. . . Cost-sensitive J48 98.01 372 9803 9810 9800 98.00
threshold parameter setting. The quality of the decision rulegostsensitive Bayes Net  83.70 21.57 8367 8610 83.70 83.10
generated by the attribute reducts relies on the predefindd _3WC-SNB 93.30 1277 8321 8537 9333 8917
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TABLE VII TABLE XII
CLASSIFICATION RESULTS ON DATA SETBLOOD’ CLASSIFICATION RESULTS ON DATA SETINDIAN LIVER PATIENTS’
Methods TP Cost  Acc Prec Recall F1 Methods TP Cost  Acc Prec  Recall F1
(%) (1072 %) %) (%) (%) (%) (1072 %) %) (%) (%)
Naive Bayes 75.40 47.06 7540 7100 7540 71.60 Naive Bayes 55.70 215.78 55.75 79.20 55.70 56.00
Decision-Tree (J48) 7780 56.95 77.81 76.40 77.80 76.90 Decision-Tree (J48) 69.10 79.76 6895 66.90 69.10 67.60
SVM 78.67 9545 64.84 78.67 78.67 78.67 SVM 51.35 14795 50.68 51.35 51.35 51.35
Cost-sensitive Bayes 76.70 3289 76.74 7250 76.70 70.60 Cost-sensitive Bayes 56.90 208.40 56.96 78.80 56.90 57.50
Cost-sensitive J48 76.20 2381 76.20 76.20 76.20 86.50 Cost-sensitive J48 7140 2864 7136 71.40 71.40 83.30
Cost-sensitive Bayes Net  74.46 2558 77.88 75.70 74.46 85.54 Cost-sensitive Bayes Net  70.50 35.68 70.49 59.80 70.50 60.20
3WC-SNB 76.19 2333 6533 8421 76.19 80.77 3WC-SNB 97.56 37.93 68.97 70.18 9756 81.63
TABLE VIl TABLE XIlI
CLASSIFICATION RESULTS ON DATA SETWOBC’ CLASSIFICATION RESULTS ON DATA SETM OGRAPHIC
Methods TP Cost  Acc Prec Recall F1 Methods TP Cost  Acc Prec Recall F1
) (1072 (%) (%) (%) (%) ) (1072 (k) (%) (%) (%)
Naive Bayes 96.00 16.66 9599 96.20 96.00 96.00 Naive Bayes 82,50 61.60 8252 8290 8250 82.50
Decision-Tree (J48) 94.60 16.88 94.56 94.60 94.60 94.60 Decision-Tree (J48) 82.40 51.30 8241 8240 8240 82.40
SVM 97.83  9.09 97.10 97.83 97.83 97.83 SVM 9545 10.53 96.77 9545 9545 95.45
Cost-sensitive Bayes 95.70 16.88 95.71 95.80 95.70 95.70 Cost-sensitive Bayes 82.00 4422 8199 8220 82.00 81.90
Cost-sensitive J48 92.00 1545 9199 92.10 92.00 91.80 Cost-sensitive J48 76.00 34.03 7596 79.90 76.00 74.70
Cost-sensitive Bayes Net  96.90 10.59 96.85 96.90 96.90 96.90 Cost-sensitive Bayes Net  82.20 34.44 82.20 83.20 82.20 81.90
3WC-SNB 97.73 7.35 98.53 100.00 97.73 98.85 3WC-SNB 63.41 4511 77.24 76.47 63.41 79.93
TABLE IX TABLE XIV
CLASSIFICATION RESULTS ON DATA SETFERTILITY’ CLASSIFICATION RESULTS ON DATA SETTHORACIC'
Methods TP Cost  Acc Prec Recall F1 Methods TP Cost  Acc Prec  Recall F1
(%) (1072 %) %) (%) (%) (%) (1072 %) %) (%) (%)
Naive Bayes 88.05 60.00 88.05 88.05 88.05 93.60 Naive Bayes 7790 6553 77.87 78.10 77.90 78.00
Decision-Tree (J48) 85.00 63.00 85.00 77.10 85.00 80.90 Decision-Tree (J48) 82.80 73.40 82.77 7580 82.80 78.30
SVM 85.71 75.00 75.00 8571 8571 85.71 SVM 89.66 48.65 83.78 89.66 89.66 89.66
Cost-sensitive Bayes 75.00 53.00 75.00 82.60 75.00 78.10 Cost-sensitive Bayes 63.80 5745 63.83 81.00 63.80 69.00
Cost-sensitive J48 78.00 54.00 78.00 82.10 78.00 79.80 Cost-sensitive J48 7280 62.13 7277 79.00 72.80 75.30
Cost-sensitive Bayes Net  53.00 59.00 53.00 84.40 53.00 60.70 Cost-sensitive Bayes Net  83.00 74.05 82.98 75.30 83.00 78.20
3WC-SNB 100.00 10.05 90.08 90.08 100.00 94.74 3WC-SNB 97.50 1596 82,98 84.78 97.50 90.70
TABLE X TABLE XV
CLASSIFICATION RESULTS ON DATA SETGERMANCREDIT’ CLASSIFICATION RESULTS ON DATA SETWDBC’
Methods TP Cost  Acc Prec Recall F1 Methods TP Cost  Acc Prec Recall F1
) (1072 (%) (%) (%) (%) %) (1072 k) (%) (%) (%)
Naive Bayes 75.70 6190 7570 7470 75.70 74.90 Naive Bayes 93.00 2250 92.97 93.00 93.00 93.00
Decision-Tree (J48) 7390 6890 73.90 7290 73.90 73.20 Decision-Tree (J48) 93.30 17.22 93.32 93.40 93.30 93.30
SVM 83.64 20.69 79.35 83.64 83.64 83.64 SVM 88.89 20.69 93.10 88.89 88.89 88.89
Cost-sensitive Bayes 73.40 39.00 73.40 7210 73.40 68.20 Cost-sensitive Bayes 93.00 21.79 92,97 93.00 93.00 93.00
Cost-sensitive J48 70.10 30.05 71.00 70.10 70.10 82.40 Cost-sensitive J48 94.00 12.30 94.02 9430 94.00 94.10
Cost-sensitive Bayes Net  71.18 29.95 70.33 70.33 71.18 81.10 Cost-sensitive Bayes Net  94.90 12.83 94.90 95.00 94.90 94.90
3WC-SNB 81.69 3050 61.89 77.33 81.69 79.45 3WC-SNB 100.00 9.65 85.96 100.00 100.00 93.33
TABLE XI TABLE XVI
CLASSIFICATION RESULTS ON DATA SETHABERMAN’ CLASSIFICATION RESULTS ON DATA SETWPBC’
Methods TP Cost  Acc Prec Recall F1 Methods TP Cost  Acc Prec  Recall F1
(%) (1072 %) %) (%) (%) (%) (1072 %) %) (%) (%)
Naive Bayes 7480 4216 7484 7150 7480 70.30 Naive Bayes 67.20 119.70 67.17 7210 67.20 68.90
Decision-Tree (J48) 7190 66.01 7189 69.00 7190 69.80 Decision-Tree (J48) 75.80 68.69 7576 75.10 75.80 75.40
SVM 82.14 109.09 69.70 82.14 82.14 82.14 SVM 85.71 60.01 80.01 8571 8571 8571
Cost-sensitive Bayes 7420 3758 74.18 70.10 74.20 67.90 Cost-sensitive Bayes 7270 79.80 7273 7230 7270 7250
Cost-sensitive J48 73.50 26.47 7352 7350 7350 84.70 Cost-sensitive J48 7131 2574 76.26 76.30 71.31 86.75
Cost-sensitive Bayes Net  75.33 30.56 71.32 7350 75.33 8140 Cost-sensitive Bayes Net  76.40 36.74 76.26 76.30 76.40 86.50
3WC-SNB 100.00 19.35 80.65 80.65 100.00 89.29 3WC-SNB 94.44 3250 85.00 9444 9444 94.44
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[22] S. Nanda, S. Majumdar. Fuzzy rough sets. Fuzzy sets and systems,
Methods TP Cost2 Acc Prec  Recall F1 45(2):157-160, 1992.
Naive Bayes gg)go %037 ) (Z‘g 5 (0/_2,)9 90 (%38 5 (%)98 90 [23] R. Jensen, Q. Shen. Fuzzy-rough sets assisted attribute selection. IEEE
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