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Abstract—Neighborhoods form a set-level approximation of
data distribution for learning tasks. Due to the advantages of
data generalization and nonparametric property, neighborhood
models have been widely used for data classification. However, the
existing neighborhood-based classification methods rigidly assign
a certain class label to each data instance and lack the strate-
gies to handle the uncertain instances. The far-fetched certain
classification of uncertain instances may suffer serious risks. To
tackle this problem, we propose a novel shadowed set to construct
shadowed neighborhoods for uncertain data classification. For the
fuzzy-rough transformation in the proposed shadowed set, a step
function is utilized to map fuzzy neighborhood memberships to
the set of triple typical values {0, 1, 0.5} and thereby partition
a neighborhood into certain regions and uncertain boundary
(neighborhood shadow). The threshold parameter in the step
function for constructing shadowed neighborhoods is optimized
through minimizing the membership loss in the mapping of
shadowed sets. Based on the constructed shadowed neighbor-
hoods, we implement a three-way classification algorithm to
distinguish data instances into certain classes and uncertain
case. Experiments validate the proposed three-way classification
method with shadowed neighborhoods is effective to handle
uncertain data and reduce the classification risk.

Index Terms—Shadowed neighborhood, fuzzy rough transfor-
mation, three-way classification, uncertain data analysis.

I. I NTRODUCTION

NEIGHBORHOODS are constructed through grouping
neighboring data instances into sets [1]. In contrast to

K-Nearest Neighbors as instance prototypes [2]–[4], neighbor-
hoods provide the set-level prototypes and thus facilitate the
data generalization [5], [6]. Moreover, neighborhood models
are generally non-parametric and need not to assume the
probability distribution of data, which make the neighborhood-
based learning easy to implement and flexible to data diver-
sity [7], [8]. The union of the homogeneous neighborhoods
belonging to same class approximates the data distribution for
classification [9], [10]. The classifications based on neighbor-
hoods were proven to be more efficient than the classifications
based on nearest-neighbor search [11].

However, the existing neighborhood-based classification
methods rigidly assign a certain class label to each data
instance and lack the strategies to handle the instances with
uncertainty. The methodology of uncertain data classification
is very helpful to reduce the decision risk and in the mean-
time improve the decision efficiency through human-machine
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cooperation, and therefore plays an important role in Decision
Support Systems [12]. For an example, when we apply the
neighborhood-based classification methods to implement a
Computer-Aided Diagnosis (CAD) system for liver cancer, it
is required to classify the uncertain tumors for further cautious
diagnosis and the far-fetched certain classifications produced
by the system may cause serious costs [13].

Aiming to tackle the limitation of neighborhood models for
uncertain data classification, in this paper, we utilize Shadowed
Sets [14] to extend the traditional neighborhoods to shadowed
ones and thereby propose a three-way classification method
based on the shadowed neighborhoods. To integrate the two
important paradigms of granular computing [15], [16]: Rough
Sets [17], [18] and Fuzzy Sets [19], [20], Fuzzy Rough
Sets [21], [22] have been widely investigated to achieve the
unified methodology for uncertain data analysis [23]–[25].
Based on the fuzzy-rough transformation, shadowed sets are
constructed through mapping fuzzy memberships into a triplet
set {0, [0, 1], 1} [26]. With the triple elements of shadowed
sets, a fuzzy concept is tri-partitioned to form a rough rep-
resentation which consists of certain positive region (denoted
by 1), certain negative region (denoted by 0) and uncertain
shadow region (denoted by [0,1]). The traditional shadowed
sets balance the uncertainty variations on certain and uncertain
regions [26], which facilitate the uncertain data clustering [27]
but may not suit for supervised learning tasks. Motivated by
this, we propose a novel shadowed set on fuzzy neighborhood
memberships to construct the shadowed neighborhoods of cer-
tain regions and uncertain boundary (neighborhood shadow) to
classify uncertain data.

To implement the uncertain classification based on shad-
owed neighborhoods, we refer to the methodology of Three-
Way Decisions (3WD) [28], [29] to design a three-way classi-
fication strategy. In the process of three-way decision making,
decision rules are generated through tri-partitioning data space
into positive, negative and boundary regions. Like the union of
neighborhoods forms an approximation of data distribution for
classification, the union of the shadowed neighborhoods forms
a tri-partitioned approximation of data distribution for three-
way classification. The data instances will be classified into
a certain class or uncertain case according to their locations
respect to the shadowed neighborhoods, such as the positive
regions of the neighborhoods of same class certainly determine
the class of instances but the neighborhood shadows have
uncertainty for classification. The contributions of this paper
are summarized as follows.

• Construct and optimize shadowed neighborhoods for
modeling uncertain data.
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We propose a novel shadowed set on fuzzy neighborhood
memberships to construct shadowed neighborhoods. In
the proposed shadowed set, a step function is utilized
to map neighborhood memberships to the set of triple
typical values{0, 1, 0.5} and thereby partitions a neigh-
borhood into the certain positive region, negative region
and uncertain boundary region. Through minimizing the
information loss in the transformation from fuzzy mem-
berships to the shadowed set, we obtain the optimum
threshold in the step function to optimize the construction
of shadowed neighborhoods.

• Implement a three-way classification algorithm with
shadowed neighborhoods (3WC-SNB).
Based on the approximation of global data distribution
formed by the shadowed neighborhoods, we design a
group of three-way classification rules for both the data
instances within and beyond neighborhoods, and also
implement a three-way classification algorithm with shad-
owed neighborhoods to distinguish data instances into
certain classes and uncertain case.

The rest of this paper is organized as follows. Section II
briefly introduces the preliminaries of shadowed sets and three-
way decisions. Section III introduces the shadowed neighbor-
hood model, which includes neighborhood membership formu-
lation, shadowed neighborhood construction and optimization.
Section IV presents a three-way classification method with
shadowed neighborhoods. In Section V, experimental results
validate the effectiveness of the proposed method for uncertain
data classification. The work conclusion is given in Section VI.

II. PRELIMINARIES

A. Shadowed Sets of Fuzzy-rough Transformation

As fuzzy rough sets [21], [22], shadowed sets [14], [26]
were proposed by Pedrycz to bridge rough sets [17], [18] and
fuzzy sets [19], [20] and thereby provide an effective tool to
model and analyze the concepts with uncertainty. Shadowed
sets are constructed through the fuzzy-rough transformation
of fuzzy sets. In the fuzzy-rough transformation, the fuzzy
membershipsµA(x) of data instancesx ∈ X are mapped
into a triplet set{0, [0, 1], 1} and the mapping is formulated
as Sα

µA
: X → {0, [0, 1], 1}. Referring to the fuzzy rough

sets [30], [31], the values 0 and 1 denote the certain negative
region and certain positive region, and the interval [0,1]
denotes the uncertain region.

In the mapping of shadowed setsSα
µA

, α ∈ [0, 0.5] is the
threshold parameter to tri-partition the fuzzy memberships as

Sα
µA

(x) =







1, µA(x) ≥ 1− α,
[0, 1] , α < µA(x) < 1− α,
0, µA(x) ≤ α.

(1)

The tri-partition of fuzzy memberships forms a shadowed
concept representation. The low memberships of instances
no more thanα will be reduced to the certain negative
membership 0, the high memberships no less than1 − α
will be elevated to the certain positive membership 1, and
the uncertain instances whose memberships locating in the
interval(α, 1−α) constitute the shadow area. The uncertainty

of a shadowed set is measured by the number of the uncertain
instances in the shadowed area.

Fig. 1. Shadowed set of triangular membership function.

Fig. 1 illustrates a shadowed set constructed on a triangular
membership function. It can be found that the transformation
from fuzzy memberships to a shadowed set relocates the uncer-
tainty. The uncertainty in the positive and negative regions is
reduced, and in the meantime, the uncertainty in the shadowed
area is increased. Based on this, Pedrycz established the
objective of uncertainty invariance to optimize the threshold
parameter to construct shadowed sets.

Given a fuzzy membership functionµA, for any data in-
stancexi ∈ X , its membershipµA(xi) is briefly denoted asµi.
The uncertainty variance of transforming fuzzy memberships
into a shadowed set [14], [15] is formulated as

V (α) = |
∑

µi≤α

µi +
∑

µi≥1−α

(1− µi)−

card{xi ∈ X |α < µi < 1− α}|.
(2)

The uncertainty varianceV (α) consists of two parts: the
uncertainty decrement of membership loss in the certain
regions and the uncertainty increment in the uncertain region,
which is represented by the number of uncertain instances
in the shadow. Besides the membership loss, we can also
interpret the uncertainty variance from the view of the areas
of memberships [32], [33],

V (α) = |ElevatedArea(Sα
µA

) +ReducedArea(Sα
µA

)
−ShadowArea(Sα

µA
)|.

(3)
The optimum threshold parameterα∗ should balance the

shadowed area and the changing areas of memberships,
i.e. the trade off between uncertainty and membership loss.
α∗ = argmin

α
V (α), V (α) = 0 will lead to the optimum

membership thresholdα∗.
Pedrycz’s shadowed sets have been investigated and extend-

ed. Yao summarized the optimization strategies to construct
shadowed sets in the framework of three-way decision theory,
which include the strategies for minimizing distance and
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achieving the least cost [32]. Tahayori constructed the shad-
owed sets based on a gradual grade of fuzziness [34]. Nguyen
proposed a distance-based shadowed approximation method
to transform fuzzy recommendations to determined ones [35].
Grzeforzewski presented a shadowed set approximation to
simplify fuzzy numbers, which also provided the interval
and trapezoidal approximation methods for fuzzy sets [36].
Zhang proposed the game-theoretic shadowed sets, in which
the thresholds of three-way approximation were determined
by the principle of trade-off with games [37].

Besides the construction of shadowed sets, shadowed sets
have been widely used to implement soft clusterings of data
with uncertainty. Through mapping the fuzzy cluster mem-
berships to a shadowed set with tri-partition structure, fuzzy
clustering [38], [39] and rough clustering [40], [41] can be rep-
resented in a uniform framework of shadowed clustering [27].
Based on this, the optimization strategies for constructing
shadowed sets can be also utilized to optimize the threshold
parameters of fuzzy and rough clusterings. Mitra proposed
a shadowedC-means algorithm which integrates fuzzy and
rough clustering [42]. And the rough-fuzzy clustering methods
were also reinvestigated from the view of shadowed sets [43].
Zhou proposed a rough fuzzy clustering method based on
shadowed sets, in which the clusters containing uncertain
instances are modeled by shadowed sets and the thresholds
for partitioning the certain and uncertain regions of clusters
are determined through optimizing the shadowed sets [44],
[45]. In general, the existing shadowed sets aim to maintain
data uncertainty and the research focuses on the concept
approximation and the applications of shadowed sets for
uncertain data clustering. For the supervised learning tasks,
such as data classification and regression, the related works
are very limited.

B. Methodologies of Three-Way Decisions

Many soft computing models for leaning uncertain concepts,
such as Interval Sets, Many-valued Logic, Rough Sets, Fuzzy
Sets and Shadowed Sets, have the common property of tri-
partitioning [28], [46]. Motivated by this, the methodology of
Three-Way Decisions (3WD) is proposed as as an extension
of the commonly used binary-decision model through adding
a third option [29]. In general, the approach of Three-Way
Decisions divides the universe into the positive, negative and
boundary regions which denote the regions of acceptance, re-
jection and non-commitment for ternary classifications. Specif-
ically, for data classification, if the data instances partially
satisfy the classification criteria, it is difficult to directly
identify them without uncertainty. Instead of making a binary
decision, we use thresholds on the degrees of satisfiability to
make one of three decisions: accept, reject, non-commitment.
The third option may also be referred to as a deferment
decision that requires further judgments.

With the ordered evaluation of acceptance, the three regions
of decisions are formally defined through thresholding the
evaluation values. Suppose(L,≺) is a totally ordered set
of evaluation values, in which≺ is a total order. For two
thresholdsα ≺ β, suppose the set of the values for acceptance

is given byL+ = {t ∈ L|t≻α} and the set for rejection is
L− = {b ∈ L|b≺β}. For an evaluation functionv : U → L,
the Positive, Negative and Boundary regions are defined as

POSα,β(v) = {x ∈ U |v(x)≻α},
NEGα,β(v) = {x ∈ U |v(x)≺β},
BNDα,β(v) = {x ∈ U |α ≺ v(x) ≺ β}.

(4)

Various kinds of decision-making methods have been rein-
vestigated within the framework of three-way decisions [47]–
[49]. Three-way decision models were established from the
perspectives of fuzzy sets, hesitant fuzzy sets and interval-
valued sets respectively [50]–[52]. The three-way decision
model was also revisited and extended from the views of
game theory [53], sequential decision making [54] and for-
mal concept analysis [55]. Besides, three-way decisions were
utilized to construct the methods of uncertain clustering [56],
[57], cost-sensitive classification [58], [59] and dynamic data
classification [60]. Through integrating with machine learning
methods, three-way decisions have been widely applied in the
fields of recommendation system [61], network security [62],
management analysis [63], social networks [64], natural lan-
guage processing [65], disease diagnosis [13] and software
detection [66]. Referring to the methodology of three-way
decisions, we expect to reformulate neighborhoods with shad-
owed sets and thereby implement a three-way classification
method for uncertain data analysis.

III. SHADOWED NEIGHBORHOODS

A. Fuzzy Neighborhood Membership

To construct the shadowed neighborhoods for classification,
first we construct certain neighborhoods for data classification
and fuzzify the neighborhoods to formulate the fuzzy neigh-
borhood memberships. For a data instancex, its neighborhood
consists of the surrounding instances with the same class.

Definition 1 Neighborhood [9]. Given a data instancex ∈
X , the neighborhoodO(x) of x is defined as

O(x) = {y | d(x, y) ≤ η, y ∈ X}, (5)

whered(x, y) is the distance between the instancesx and y,
η denotes the radius of the neighborhood.

To handle the mixed-type data of both numerical and sym-
bolic attributes, we adopt HEOM (Heterogeneous Euclidean-
Overlap Metric) function [67] as the distance measure to
construct neighborhoods. To guarantee all the instances in
the neighborhood belonging to the same class, i.e. the neigh-
borhood homogeneity, we adopt the measures of Nearest
Hit NH(x) and Nearest MissNM(x) of the neighborhood
centerx to calculate the neighborhood radius referring to the
strategy of neighborhood construction in [68].NH(x) is
defined as the nearest instance tox with the same class label
and NM(x) is the nearest instance tox, which belongs to
different classes. The neighborhood radius is calculated by
η = d(x,NM(x)) − 0.01× d(x,NH(x)). Obviously, all the
instances within the neighborhood of radiusη belong to the
same class asx.
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The union of all the neighborhoods forms a covering of
data, in which some neighborhoods may be contained in other
ones, thus we further remove the redundant neighborhoods to
simplify the model [69]. The remained neighborhoods actually
provide an approximation of global data distribution on set
level and the instances within neighborhoods are uniformly
distributed. Next we formulate the membership distribution of
neighborhoods according to the distances from instances to
neighborhood centers.

Definition 2 Neighborhood Membership. Given an instance
x and a neighborhoodO(xk), xk is the neighborhood center,
the membership ofx belonging toO(xk) is defined based on
the distance betweenx and xk,

µO(xk)(x) = 1−
1

1 + e−t[d(x,xk)−η]
=

e−t[d(x,xk)−η]

1 + e−t[d(x,xk)−η]
.

(6)
The formula of neighborhood membership is a logistic function
of ‘S’ shape, in whichd(x, xk) is the distance betweenx and
xk, t ≥ 1 is the function order, and the neighborhood radius
η > 0 is adopted as the function bias.

The neighborhood membershipµO(xk)(x) ∈ (0, 1). It can
be found that, for the instance locating at the neighborhood
boundary, i.e.d(x, xk) = η, its neighborhood membership
µO(xk)(x) = 0.5 and the membership decreases as the distance
between data instance and neighborhood center increasing. In
the next paragraphs, we briefly denoteµO(xk)(x) asµk(x).

B. Shadowed Neighborhood Construction

Based on the fuzzy-rough transformation of shadowed sets,
we can transform the fuzzy neighborhood memberships of
instances into rough ones and formulate a shadowed rep-
resentation of neighborhoods. Different from the traditional
shadowed sets mapping fuzzy memberships to{0, 1, [0, 1]}
as introduced in Section II, we propose a novel shadowed
set which utilizes a step function to map fuzzy neighborhood
memberships to the set of triple values{0, 1, 0.5} for uncertain
data classification. Specifically, the low memberships no more
thanα will be further reduced to 0 and the high memberships
no less than1 − α will be elevated to 1, and the most
uncertain membership value ‘0.5’ is adopted to unify the
neighborhood memberships of all the uncertain instances in
the interval(α, 1−α). The shadowed neighborhood based on
the shadowed set is defined as follows.

Definition 3 Shadowed Neighborhood. Given a neighbor-
hood membershipµk(x) and a thresholdα ∈ [0, 0.5], the
shadowed neighborhood is constructed through defining a
shadowed set mapping of the neighborhood membership as

Nα
µk
(x) =







1, µk(x) ≥ 1− α,
0.5, α < µk(x) < 1− α,
0, µk(x) ≤ α.

(7)

The mapping of shadowed neighborhoodNα
µk
(x) utilizes a

step function to approximate the neighborhood membership
µk(x) and partitions the space into three regions according
to the neighborhood belongingness: thepositive regionrepre-
sented by membership grade 1, thenegative regionrepresented

by membership grade 0, and theboundary regionrepresented
by membership grade 0.5, which forms theneighborhood
shadow. For the three regions of a shadowed neighborhood, the
positive region represents the data instances which certainly
belong to the neighborhood, the negative region represents the
instances which are certainly beyond the neighborhood, and
the boundary region (neighborhood shadow) consists of the
instances which are uncertain to belong to the neighborhood.
Fig. 2 shows the shadowed neighborhoods of the data instances
of one class for binary classification.

Shadow 1- α > µ(x) > α

Negative

µ(x) <= α

Positive µ(x) >= 1- α

0 max

f1

0

max

f2

Shadowed neighborhoods
First class
Second class

Fig. 2. Shadowed neighborhoods for binary classification.

From the formula (7), we know that a shadowed neighbor-
hood is constructed through discretizing quantitative neighbor-
hood memberships using a step function to obtain qualified
representations of neighborhood belongingness. The member-
ships of the instances in the positive region are elevated from
[1 − α, 1] to 1, the memberships in the negative region are
reduced from[0, α] to 0, and in the boundary region, the
memberships ranging in(α, 1−α) are simplified to a unified
value 0.5. The transformation from neighborhood membership
µk(x) to a shadowed setNα

µk
(x) causes themembership loss

which is formulated as

L(α) = λ ·

[

∑

µk(x)≤α

µk(x) +
∑

µk(x)≥1−α

(1− µk(x))

]

+
∑

α<µk(x)<1−α

|0.5− µk(x)|.

(8)
L(α) consists of the membership losses in the certain pos-
itive region, negative region and uncertain boundary region
respectively.λ > 0 is the factor to balance the membership
loss of the certain regions and uncertain region and we set
λ = 0.1 as default. Fig. 3 illustrates the transformation from
the neighborhood membership to a shadowed set and the
corresponding membership loss. We find that for a given mem-
bership function (or a set of memberships), the membership
loss is determined by the thresholdα, thus we can optimize
the threshold to construct shadowed neighborhoods through
minimizing the membership loss.
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Fig. 3. Transformation from neighborhood membership to shadowed set.

C. Optimization of Shadowed Neighborhood

The thresholdα tri-partitions the neighborhood membership
domain into certain positive, negative and uncertain shadow
regions, and thereby determines the structure of the shadowed
neighborhoods. Improper thresholds will cause great mem-
bership loss and lead to over big or small uncertain regions
of shadowed neighborhoods. A reasonable threshold should
maintain the information of memberships when transforming
neighborhood memberships into a shadowed neighborhood.

Suppose the membership function of a neighborhood isµ(x)
and the neighborhood membership of any data instancexi ∈
X is µ(xi) = µi, referring to the formula (8), the membership
loss for transforming the neighborhood memberships into a
shadowed set becomes

L(α) = λ·





∑

µi≤α

µi +
∑

µi≥1−α

(1 − µi)



+
∑

α<µi<1−α

|0.5− µi|.

(9)
Aiming to maintain the information in the transformation, the
optimum thresholdα∗ should lead to the minimum member-
ship loss,

α∗ = argmin
α

L(α). (10)

Based on the following piecewise representation of mem-
bershipµi,

ui =

{

µi, µi ≤ 0.5,
1− µi, µi > 0.5,

(11)

we rewrite the neighborhood memberships ofn data instances
{µ1, ..., µi, ..., µn} to {u1, ..., ui, ..., un}, ui ≤ 0.5 and refor-
mulate the membership loss as

L(α) = λ ·
∑

ui≤α

ui +
∑

ui>α

(0.5− ui). (12)

L(α) consists of two parts, the first part denotes the mem-
bership loss in certain regions and the second part denotes the
membership loss in uncertain region. Fixing the balance factor
λ, the optimal thresholdα∗ of the minimumL(α) should trade
off the two parts of membership loss.

Lemma 1 In the objective of membership lossL(α), for
α ∈ [0, 0.5], λ ·

∑

ui≤α

ui is monotonically increasing and
∑

ui>α

(0.5− ui) is monotonically decreasing with respect to

α. Therefore, the thresholdα∗ which leads to the minimum
L(α) should trade off the membership loss of both certain
and uncertain regions.

Based on the Lemma 1, we can infer the calculation of the
optimal threshold to achieve the minimum membership loss
L(α), see the following theorem.

Theorem 1 For a givenλ ∈ R
+, supposeα ∈ [0, 0.5], the

membership lossL(α) achieves the minimum whenα= 0.5
1+λ

,
i.e. the optimal thresholdα∗ = argmin

α
L(α) = 0.5

1+λ
.

Proof L(α) = λ ·
∑

ui≤α

ui +
∑

ui>α

(0.5− ui), according to

Lemma 1, in the objective ofL(α), whenα increases from
0 to 0.5, the membership loss of certain regionλ ·

∑

ui≤α

ui

monotonically increases and the increments grow asα increas-
ing, in the meantime, the membership loss of uncertain region
∑

ui>α

(0.5− ui) monotonically decreases and the decrements

gradually reduce. Therefore, the optimal thresholdα∗ leading
to the minimumL(α∗) should trade off the growing loss in-
crement of the certain region and the reducing loss decrement
of the uncertain region.

Supposeα ∈ [0, 0.5] and ε is a small positive number. If
there exists no membership value in the interval(α, α+ε], we
directly haveL(α) = L(α+ε), otherwise∃uk, α < uk ≤
α+ε. We usediffL(α) to denote the difference between
the membership lossL(α) and L(α+ε) which can be also
considered as the gradient ofL(α) at α.

diffL(α) = L(α+ε)− L(α)
= λ ·

∑

ui≤α+ε

ui +
∑

ui>α

(0.5− ui)−
[

λ ·
∑

ui≤α

ui +
∑

ui>α+ε

(0.5− ui)

]

= λ ·

[

∑

ui≤α+ε

ui −
∑

ui≤α

ui

]

+

[

∑

ui>α+ε

(0.5− ui)−
∑

ui>α

(0.5− ui)

]

= λ ·

[

∑

ui≤α

ui + uk −
∑

ui≤α

ui

]

+

[

∑

ui>α+ε

(0.5− ui)− (
∑

ui>α+ε

(0.5− ui) + (0.5− uk))

]

= λ · uk − (0.5− uk)
= (1 + λ) · uk − 0.5.

From the formulas above, we know that the gradient
diffL(α) is the sum of the membership loss variation in the
certain and uncertain regions. LetdiffL(α) = L(α)−L(α+
ε) ≤ 0, diffL(α) = (1 + λ) · uk − 0.5 ≤ 0 ⇒ uk ≤ 0.5

1+λ
.

Becauseα < uk ≤ α + ε, α < uk ≤ 0.5
1+λ

and thus
∀α ∈ [0, 0.5

1+λ
), diffL(α) ≤ 0. Similarly, diffL(α) ≥ 0 ⇒

uk ≥ 0.5
1+λ

, we haveα + ε ≥ uk ≥ 0.5
1+λ

and infer that∀α ∈

[ 0.5
1+λ

, 0.5], diffL(α) ≥ 0. Therefore,L(α) is monotonically
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decreasing in the interval[0, 0.5
1+λ

) and increasing in[ 0.5
1+λ

, 0.5]

with respect toα. The gradientdiffL(α) = 0 ⇒ α∗ = 0.5
1+λ

,
which is the optimum threshold to trade off the membership
loss of the certain and uncertain regions andL(α∗) achieves
the minimum membership loss.

According to Theorem 1, for a continuous neighborhood
membership function, we set the optimal thresholdα∗ = 0.5

1+λ
,

and for the discrete neighborhood memberships, we adopt the
closest membership value to0.51+λ

as the optimal threshold to
construct shadowed neighborhoods. Fig. 4 presents the optimal
thresholds for the continuous neighborhood membership func-
tion of Definition 2 under multipleλ values. Discretizing the
continuous neighborhood membership function with multiple
step lengths of 0.1, 0.2 and 0.5, we calculate the optimal
thresholds for the three sets of discrete membership values and
present the results in Fig. 5. It can be found that the optimal
thresholds obtained by Theorem 1 are effective to achieve the
minimum membership loss for both continuous and discrete
memberships.
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Fig. 4. Thresholding of the minimumL(α) on continuous membership.
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Fig. 5. Thresholding of the minimumL(α) on discrete memberships.

Besides the optimal membership threshold, we further in-
vestigate the correlation between neighborhood shadows and

the balance factorλ and infer the theorem as follows.

Theorem 2 The neighborhood shadow (uncertain boundary
region) is monotonically increasing with respect to the balance
factor λ of membership loss.

Proof The neighborhood shadow is determined by the optimal
thresholdα∗ and the size of shadow is denoted by the interval
(α∗, 1 − α∗). ∀λ1, λ2 ∈ R

+, λ1 ≤ λ2, α∗
1=

0.5
1+λ1

, α∗
2=

0.5
1+λ2

,
thus we haveα∗

2 ≤ α∗
1 and infer that α∗ monotonically

decreases asλ increasing. Moreover, becauseλ1 ≤ λ2 ⇒
α∗
2 ≤ α∗

1 ⇒ 1 − α∗
2 ≥ 1 − α∗

1, the corresponding intervals
satisfy (α∗

1, 1 − α∗
1) ⊆ (α∗

2, 1 − α∗
2), which prove that the

shadow size is monotonically increasing with respect toλ.

Fig. 6. Variation of neighborhood shadow against the balancefactor λ

Fig. 6 illustrates the variation of shadow against the balance
factor λ = {0.5, 1, 2, 4, 10} and the shadow area gradually
increases asλ increasing. As seen from the formula (12), the
factor factorλ is used to trade off the membership losses
of certain and uncertain regions in the transformation of
shadowed neighborhood, and also can be viewed as the cost
for changing the memberships in certain regions. Large values
of λ indicate the great costs for reducing low memberships
to certain 0 or elevating high memberships to certain 1.
Therefore, the shadow area will be increased to include more
instances as uncertain cases to reduce the costs of certain
judgements. For the three-way classification with shadowed
neighborhoods, we can control the rates of uncertain instances
through adjusting the factorλ.

IV. T HREE-WAY CLASSIFICATION WITH SHADOWED

NEIGHBORHOODS

Constructing a set of shadowed neighborhoods on labeled
training data, we can implement a three-way classification
method to classify unknown data instances into certain classes
and uncertain case. The union of the shadowed neighborhoods
of a class forms a tri-partitioned approximation of the data
distribution of the class. The classification of data instances
is determined by the belongingness of the instances to the
shadowed neighborhoods of different classes. To classify an
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instancex, we should first determine the regions ofx in shad-
owed neighborhoods through thresholding its neighborhood
memberships.

As shown in Theorem 1, the optimum thresholdα∗ of
shadowed neighborhoods is determined by the factorλ which
balance the costs of the membership losses on certain and
uncertain regions. Therefore, we computeα∗ = 0.5

1+λ
to thresh-

old neighborhood memberships and partition the shadowed
neighborhoods. Referring to Theorem 2, through settingλ,
we can adjust the shadow regions of neighborhoods and the
decision risk to suit the requirements of different classification
tasks. For the cautious decision making, we can set high
λ values to enlarge shadow regions of neighborhoods and
thereby separate more uncertain instances for delayed decision
making. For the efficient decision making which needs more
automatic classifications, we can set lowλ values to produce
narrow shadow regions and lead to a few uncertain cases.

Supposeµk(x) is the membership ofx to the kth neigh-
borhood,POSk, NEGk andBNDk are the certain positive
region, certain negative region and the uncertain boundary
region of the neighborhood, we distributex into the three
neighborhood regions in the following way.

α < µk(x) < 1− α ⇒ x ∈ BNDk,

µk(x) ≤ α ⇒ x ∈ NEGk,

µk(x) ≥ 1− α ⇒ x ∈ POSk.

With the high memberships≥ 1−α, POSk consists of the
data instances certainly belonging to thekth neighborhood.
NEGk consists of the instances with the low memberships
≤ α, which are certainly beyond the neighborhood.BNDk

consists of the uncertain instances locating in the neighbor-
hood shadow area. Obtaining the neighborhood regions ofx,
we further define the following sets of neighborhood indexes
to describe the region location ofx to all the shadowed
neighborhoods.

SNP (x) = {k|x ∈ POSk},
SNU(x) = {k|x ∈ BNDk},
SNN(x) = {k|x ∈ NEGk}.

Obviously,SNP (x) is the set of the indexes of the neigh-
borhoods whose positive regions containing the instancex,
SNU(x) is the set of the indexes of the neighborhoods
in which x locates in the uncertain boundary region, and
SNN(x) denotes the set of neighborhoods excludingx. Given
a set of neighborhoodsO = {O1, ...Ok, ...OK}, based on
the region description ofx provided by the neighborhood
index sets, we can design a group of three-way classification
rules to classifyx in both conditions ofx within and beyond
the neighborhood setO. In the classification rules, we adopt
class(Ok) to denote the class of the neighborhoodOk, i.e. the
class of the neighborhood centerxk.

(1) Classification rules within shadowed neighborhoods
For a data instancex locating within the neighborhoods

of O, we have∃Ok ∈ O, µk(x) > α, |SNP (x)| ≥ 1 or
|SNU(x)| ≥ 1.

1) If |SNP (x)| = 1, x certainly belongs to the class of the
unique neighborhood inSNP (x).

2) If |SNP (x)| > 1 and∀k1, k2 ∈ SNP (x), class(Ok1
)

= class(Ok2
), x certainly belongs to the class of

the neighborhoods inSNP (x), otherwise if∃k1, k2 ∈
SNP (x) and class(Ok1

) 6= class(Ok2
), x belongs to

multiple neighborhoods of different classes with conflict
and should be judged as an uncertain data instance.

3) If |SNP (x)| = 0, |SNU(x)| > 0, the major class of the
neighborhoods inSNU(x) is Cm, |{k|k ∈ SNU(x) ∧
class(Ok) = Cm}|/|SNU(x)| ≥ 60%, x belongs to the
classCm, otherwise if|{k|k ∈ SNU(x)∧ class(Ok) =
Cm}|/|SNU(x)| < 60%, x is judged as an uncertain
data instance.

The within-neighborhood classification rules indicate that, if
the shadowed neighborhoods whose positive regions contain-
ing x belong to the same class, we can certainly classify the in-
stance, otherwisex belonging to heterogenous neighborhoods
will lead to classification conflict andx should be considered
as an uncertain instance. Ifx locates in the boundary regions
(shadows) of multiple neighborhoods, we classify the instance
through checking whether most of these neighborhoods belong
to the same class. Fig. 7 illustrates the three-way classification
rules for the instances within shadowed neighborhoods.

a b

x1
x2

x3

x4

x5

x6

x7

Fig. 7. 3-Way classification for instances within shadowed neighborhoods.

(2) Classification rules beyond shadowed neighborhoods
For a data instancex beyond the neighborhood setO, we

have∀Ok ∈ O, µk(x) ≤ α, |SNP (x)| = 0, |SNU(x)| = 0.

1) µf (x) = max
Ok∈O

{µk(x)}, Of is the nearest neighborhood

of x, if µf (x) < Tf , x is judged as an uncertain data
instance.

2) µf (x) = max
Ok∈O

{µk(x)}, µs(x) = max
Ok∈O−{Of}

{µk(x)},

Of , Os are the first and second nearest neighborhoods
of x, if µf (x) ≥ Tf and class(Of) = class(Os), x
belongs to the class ofOf andOs.

3) µf (x) = max
Ok∈O

{µk(x)}, µs(x) = max
Ok∈O−{Of}

{µk(x)},

Of , Os are the first and second nearest neighborhoods
of x, if µf (x) ≥ Tf , class(Of) 6= class(Os) and
1 − µs(x)/µf (x) ≥ Tr, x belongs to the class ofOf ,
otherwise if1 − µs(x)/µf (x) < Tr, x is judged as an
uncertain data instance.

Different from the rules within neighborhoods, the three-
way classification of the instances beyond neighborhoods de-
pends on the distances between instances and neighborhoods.
If the membership ofx to its nearest neighborhood is too
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small and less than the thresholdTf , x is far from all the
neighborhoods and should be considered as an uncertain in-
stance. For the instances nearby neighborhoods, we determine
the class ofx according to its nearest two neighborhoods. If the
two neighborhoods belong to the same class, we can perform
the certain classification. Otherwise we further check the
difference between the memberships ofx to its first and second
nearest neighborhoods of different classes. If the membership
difference is less than the thresholdTr, which means the
distances fromx to the referenced two neighborhoods are
similar, the class inconsistency of the two neighborhoods leads
to the uncertain judgement ofx. If the membership difference
is big enough (≥ Tr), we can certainly determine the class ofx
referring to only the nearest neighborhood. In the experiments,
we set Tf = 0.05 and Tr = 0.1 as default. The three-
way classification rules beyond shadowed neighborhoods are
illustrated in Fig. 8 .

Tf

Tr

x1

x2

x3

x4

Fig. 8. 3-Way classification for instances beyond shadowed neighborhoods.

Summarizing the three-way classification rules within and
beyond neighborhoods, we implement a three-way classifi-
cation algorithm with shadowed neighborhoods (3WC-SNB).
The detailed flow of the algorithm is presented in Algorithm 1.

Utilizing Algorithm 1 to classify a set of data instancesX ,
the number of instances|X | = n, it is required to calculate
the memberships of each instance toK neighborhoods. In
the algorithm implementation, we build up an × K matrix
of instance-neighborhood memberships to achieve this. Thus
the computational complexity of the test phase isO(n ×K).
BecauseK ≪ n, the classification based on neighborhoods
is more efficient than the neighbor-based classification. In
the training phase, the construction of neighborhoods needs
to search the nearest homogeneous and heterogeneous neigh-
bors of each instance, thus the computational complexity of
neighborhood construction isO(n2). We can further speed
up the neighborhood construction under divide-and-conquer
strategies, such as using KD-tree to speed up the neighbor
searching. Moreover, extending neighborhoods to shadowed
ones requires to compute the membership threshold for each
neighborhood and thus needsO(K) calculations. The com-
putational complexity in training phase is summarized as
O(n2 +K) ≈ O(n2).

Algorithm 1 Three-Way Classification with Shadowed Neigh-
borhoods (3WC-SNB)
Input: K shadowed neighborhoods with the optimized thresholds

N = {Nα
µ1

, Nα
µ2

, ...,Nα
µK

};
Unknown data instancex;

Output: Three-way classification result ofx, class(x);
1: Initialize SNP (x), SNU(x) → ∅;
2: Compute neighborhood memberships ofx for K neighborhoods

{µ1(x), µ2(x), ..., µK(x)} according to the formula (6);
3: //Determine the region ofx according to neighborhood memberships
4: for each shadowed neighborhoodNα

µk
do

5: if µk(x) ≥ 1− α then
6: Nα

µk
(x) = 1, SNP (x) = SNP (x) ∪ {k};

7: else
8: if µk(x) > α then
9: Nα

µk
(x) = 0.5, SNU(x) = SNU(x) ∪ {k};

10: end if
11: end if
12: end for
13: //Instancex in positive regions of neighborhoods
14: if |SNP (x)| ≥ 1 then
15: Obtain the classesCSNP of the neighborhoods inSNP ;
16: if |CSNP : {Cp}| = 1 then
17: class(x) = Cp;
18: else
19: class(x) = uncertain;
20: end if
21: else
22: //Instancex in boundary regions of neighborhoods
23: if |SNU(x)| ≥ 1 then
24: Obtain the major classCm of the neighborhoods inSNU(x);
25: if |{k|k∈SNU(x)∧class(Ok)=Cm}|

|SNU(x)|
≥ 60% then

26: class(x) = Cm;
27: else
28: class(x) = uncertain;
29: end if
30: end if
31: end if
32: //Instancex beyond neighborhoods
33: if |SNP (x)| = 0 and |SNU(x)| = 0 then
34: Compute the memberships ofx for the first and second nearest

neighborhoodsOf , Os,
µf (x) = max

1≤k≤K
{µk(x)}, µs(x) = max

1≤k≤K∧k 6=f
{µk(x)};

35: if µf (x) < Tf then
36: class(x) = uncertain;
37: else
38: if class(Of ) = class(Os) then
39: class(x) = class(Of );
40: else
41: if 1− µs(x)/µf (x) ≥ Tr then
42: class(x) = class(Of );
43: else
44: class(x) = uncertain;
45: end if
46: end if
47: end if
48: end if
49: Returnclass(x).

V. EXPERIMENTAL RESULTS

Different from the certain classification methods, the three-
way classification method based on shadowed neighborhoods
(3WC-SNB) classifies data instances into certain classes and
the uncertain case, which is is helpful to avoid the farfetched
classification of uncertain (or challenging) instances and there-
by reduce the classification risk. To validate this, we imple-
ment three tests in the experiment. In the first test, we compare
the certain classification with neighborhoods and the three-way
classification with shadowed neighborhoods on noisy data to
verify the effectiveness of 3WC-SNB for uncertain data clas-
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sification. The second test validates the superiority of 3WC-
SNB in low-risk classification through comparing the proposed
method with other typical certain classification methods. In
the third test, we further compare 3WC-SNB with the three-
way decision method based on attribute reduction [28] to
validate the superiority of the proposed method for numeric
data analysis. Focusing on the risk of classification, we collect
13 data sets in the areas of medicine and economics from
the UCI machine learning data repository to implement the
experiment. For all the tests in the experiment, 10-fold cross
validation is performed on each data set. The descriptions of
the adopted data sets are given in Table I.

TABLE I
EXPERIMENTAL DATA SETS

Data sets Feature Instance Class Ratio Type
Appendicitis 7 106 20% vs. 80% Numerical
Banknote Authentication 4 1372 44% vs. 56% Numerical
Blood Transfusion 4 748 24% vs. 76% Numerical
Service Center
Wisconsin Original 9 699 34% vs. 66% Numerical
Breast Cancer
Fertility 9 100 12% vs. 88% Numerical
German Credit 24 1000 30% vs. 70% Numerical
Haberman’s Survival 3 306 26% vs. 74% Numerical
Indian Liver Patients 10 583 29% vs. 71% Numerical
Mammographic Mass 5 961 46% vs. 54% Numerical
Thoracic Surgery 16 470 15% vs. 85% Numerical
Wisconsin Diagnostic 30 569 37% vs. 63% Numerical
Breast Cancer
Wisconsin Prognostic 33 198 24% vs. 76% Numerical
Breast Cancer
Sensorless Drive 49 58509 c5 vs. c6 Numerical
Diagnosis

We set the minor class as the positive class for each
data set. For an example, in the breast cancer data sets,
the class of ‘malignant’ will be set as the positive class.
Suppose the number of the positive-class instances is P and
the number of the negative-class instances is N, TP and FP
denote the numbers of true positive and false positive classified
instances, TN and FN denote the numbers of true negative
and false negative classified instances. To overall evaluate the
classification methods, we adopt the measures ofAccuracy,
Precision, Recall Rate, F1 Score, Ratio of Uncertain Instances
(UR) and Classification Costas the evaluation criteria. The
calculations of these measures are listed as follows.

Accuracy = (TP + TN)/(P +N),
P recision = TP/(TP + FP ),
Recall Rate = TP/P,
F1 Score = 2 · Precsion ·Recall/(Precsion+Recall),
UR = |{x|x ∈ Xtest ∧ class(x) = uncertain}|/|Xtest|,
Cost = CNP · FP

P+N
+ CPN · FN

P+N
+ CU · UR.

In the cost measure, the cost of correct classification is
zero,CNP , CPN , CU denote the costs of false-positive clas-
sification, false-negative classification and the classification of
uncertain instances respectively. For the medical and economic
data, misclassifying positive instances (of minor class) as
negative ones causes more costs than the misclassification
of negative instances, such as classifying malignant tumors
as benign will suffer more risk than judging benign tumors
as malignant. The classification of uncertain instances will

delay the decision making and thus has less cost than false-
positive and false-negative classifications. Therefore, we set
CPN/CNP /CU = 5/1/0.5 in the following tests.

A. Test of Uncertain Data Classification

To validate the effectiveness of the proposed shadowed
neighborhoods for uncertain data classification, we expect to
apply 3WC-SNB method to classify the data with multilevel
uncertainty. The inconsistency between training data and test
data gives rise to the uncertainty in classification process, thus
we produce the uncertain instances for classification through
adding multilevel noise to test data. Specifically, we randomly
change the class labels of partial instances from 0% to 50% in
the test data set and produce the test data set with multilevel
label noise.

We construct both the shadowed neighborhoods and tradi-
tional neighborhoods [68] on the same training data sets and
perform the three-way classification based on shadowed neigh-
borhoods (3WC-SNB) and the certain classification based on
the nearest neighborhoods (2WC-NB) on the test data sets
with multilevel noise. Fig. 9 shows the TP rate (TP/P) and
FN rate (FN/P) of 3WC-SNB and 2WC-NB against the noise
level from 0% to 50%. We can find that on different noise
levels, 3WC-SNB and 2WC-NB achieve the very similar
TP rates but 3WC-SNB generates less FN rates than 2WC-
NB. This indicates that 3WC-SNB can correctly classify the
typical positive instances as 2WC-NB, and in the meantime,
reduce the misclassifications of positive instances to negative
class through separating uncertain instances. We can also find
that the gap of FN rate between 3WC-SNB and 2WC-NB
is widening as the noise level increasing, which means the
three-way classification with shadowed neighborhoods tends
to recognize more uncertain instances when the test data sets
contain more noise.
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Fig. 9. TP rates and FN rates of 3WC-SNB and 2WC-NB on noisy data.

Due to the similar TP rates and less FN rates, the three-
way classification based on shadowed neighborhoods achieves
more precise classification results than the certain classifica-
tion based on traditional neighborhoods. Fig. 10 illustrates the
precision, recall rates, classification costs and F1 scores of the
classification results produced by 3WC-SNB and 2WC-NB
on the multilevel noisy data sets. More detailed evaluations of
the classification results are presented in Table II. Comparing
with 2WC-NB, 3WC-SNB produces the higher recall rates
and F1 scores, and the lower classification costs. Especially
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for the data sets with heavy noise (much uncertainty), the
proposed three-way classification method can avoid the serious
misclassifications and greatly reduces the classification risk.
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Fig. 10. Classification results of 3WC-SNB and 2WC-NB on noisydata.

TABLE II
CLASSIFICATION RESULTS ON MULTILEVEL NOISY DATA

Noise Methods TP FN Cost Acc Prec Rec F1

0%
3WC-SNB 0.91 0.01 0.11 0.84 0.96 0.98 0.97
2WC-NB 0.94 0.06 0.13 0.96 0.97 0.94 0.95

5%
3WC-SNB 0.83 0.10 0.29 0.80 0.94 0.89 0.91
2WC-NB 0.85 0.15 0.33 0.92 0.94 0.85 0.89

10%
3WC-SNB 0.76 0.14 0.40 0.76 0.86 0.85 0.85
2WC-NB 0.78 0.22 0.49 0.87 0.87 0.78 0.83

15%
3WC-SNB 0.67 0.24 0.68 0.70 0.86 0.73 0.79
2WC-NB 0.69 0.31 0.77 0.81 0.88 0.69 0.77

20%
3WC-SNB 0.63 0.25 0.70 0.67 0.78 0.72 0.74
2WC-NB 0.65 0.35 0.85 0.77 0.78 0.65 0.71

25%
3WC-SNB 0.58 0.30 0.85 0.63 0.73 0.66 0.69
2WC-NB 0.60 0.40 1.00 0.73 0.75 0.60 0.67

30%
3WC-SNB 0.51 0.39 1.07 0.56 0.65 0.57 0.60
2WC-NB 0.51 0.49 1.23 0.65 0.63 0.51 0.56

35%
3WC-SNB 0.35 0.53 1.61 0.41 0.51 0.40 0.45
2WC-NB 0.36 0.64 1.81 0.50 0.52 0.36 0.43

40%
3WC-SNB 0.35 0.53 1.54 0.42 0.49 0.40 0.44
2WC-NB 0.36 0.64 1.74 0.51 0.49 0.36 0.41

45%
3WC-SNB 0.35 0.51 1.55 0.43 0.51 0.41 0.45
2WC-NB 0.36 0.64 1.82 0.49 0.50 0.36 0.42

50%
3WC-SNB 0.36 0.51 1.53 0.43 0.51 0.41 0.45
2WC-NB 0.36 0.64 1.79 0.50 0.51 0.36 0.42

B. Comparison with Certain Classification Methods

The second test overall evaluates the proposed shadowed-
neighborhood-based uncertain classification method through
comparing with multiple kinds of certain classification meth-
ods. We compare 3WC-SNB method with three elegant clas-
sification methods: Naive Bayes, Support Vector Machine
(SVM) and Decision Trees (J48) [70]. Moreover, focusing
on the evaluation of classification risk, we also compare
the proposed method with other three typical cost-sensitive

classification methods: Cost-sensitive Bayes, Cost-sensitive
Decision Trees and Cost-sensitive Bayes Net [71]. Figure 11
and Table III present the average classification results on all
the test data sets for each classification method and the details
are listed in the appendix.
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Fig. 11. Comparison of classifications of different methods

TABLE III
CLASSIFICATION RESULTS OF OF DIFFERENT CLASSIFICATION METHODS

Methods Cost
(10−2)

Acc
(%)

Prec
(%)

Recall
(%)

F1
(%)

Naive Bayes 57.81 81.17 82.85 81.17 81.07
Decision-Tree (J48) 42.46 83.89 82.07 83.75 82.60
SVM 45.87 82.75 85.64 85.64 85.64
Cost-sensitive Bayes 47.44 79.38 82.48 79.29 78.67
Cost-sensitive J48 24.20 81.25 81.91 81.25 85.37
Cost-sensitive Bayes Net 27.71 79.95 81.23 79.97 83.39
3WC-SNB 20.52 81.20 87.95 92.44 89.26

From the experimental results, we find that comparing
with the certain classification methods, the proposed uncertain
method generally produces lower classification accuracy. This
is because that the uncertain data instances without class labels
should not be counted in the calculation of accuracy. However,
in contrast to all the certain classification methods, 3WC-
SNB achieves higher recall rates and F1 scores, and thereby
induces the lower classification costs. Only considering the
classification error, SVM and decision trees produce precise
classification results but suffer too much classification costs.
Involving risks of misclassifications in classification process,
the cost-sensitive methods reduce the classification costs but
over classify data instances into the more risky class. Different
from the cost-sensitive methods forcing to classify instances
into the classes of high risks, 3WC-SNB reduces classification
costs through delaying the challenging classifications of a
limited number of uncertain instances. In general, the uncer-
tain classification method based on shadowed neighborhoods
outperforms the certain classification methods and is effective
to reduce the classification costs.

C. Comparison with Three-Way Decision Method

Besides the certain classification methods, we also compare
the proposed three-way classification method 3WC-SNB with
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another elegant Three-Way Decision (3WD) method which is
constructed based on Probabilistic Attribute Reduction [28].
Probabilistic attribute reduction formulates three-way decision
rules through constructing the probabilistic attribute reducts,
which partition data instances into positive, negative and
boundary regions for a given class. Different from the shad-
owed neighborhoods constructed on the numerical data (or
mixed-type data), probabilistic attribute reduction is used to
extract decision rules from symbolic data sets and requires
data discretization for numerical data analysis. Moreover, dif-
ferent from 3WC-SNB estimates the membership thresholdα∗

through optimizing the neighborhood shadow, 3WD method
utilizes a pair of parameters(α, β) ∈ [0, 1], α < β to threshold
the memberships and thereby tri-partitions data instances into
certain classes and uncertain case.
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Fig. 12. Comparison of classifications of 3WC-SNB and discretized 3WD

TABLE IV
CLASSIFICATION RESULTS OF3WC-SNBAND 3WD WITH

DISCRETIZATION

Methods TP
(%)

FN
(%)

UR
(%)

Cost
(10−2)

Acc
(%)

Prec
(%)

Recall
(%)

F1
(%)

3WD-MDL 76.36 13.39 7.42 28.28 86.97 97.39 83.71 88.27
3WD-5bins 83.13 16.87 0 34.58 92.1 95.93 83.13 88.62
3WD-3bins 74.6 22.28 1.4 44.29 88.75 96.11 76.59 84.58
3WC-SNB 95.65 0 15.79 7.89 84.21 100 95.65 97.78

Performing 3WD method to classify the numerical data,
we apply both the supervised Multi-interval Discretization
method (MDL) and the unsupervised Equal-width Discretiza-
tion method (5 bins and 3 bins) [72] to discretize the numerical
attribute values of the test data sets, and set the threshold
parametersα = 0.5, β = 0.8 as default. Figure 12 illustrates
the classification results of 3WC-SNB and 3WD with different
discretization strategies and Table IV presents the details. The
experimental results indicate that the classification based on
3WD is not stable for different discretization methods. The
preprocessing of discretization may bring about the informa-
tion loss and thus make the three-way decision rules produce
imprecise classification results. Besides the effects of data
discretization, the classification of 3WD is also sensitive to the
threshold parameter setting. The quality of the decision rules
generated by the attribute reducts relies on the predefinedα, β

adopted in the probabilistic attribute reduction. Depending on
the superiorities of shadowed neighborhoods in numerical data
processing and the optimization of thresholding parameter,
the proposed 3WC-SNB method achieves stable and precise
classification results.

VI. CONCLUSION

In this paper, we propose a novel shadowed set to construc-
t shadowed neighborhoods for uncertain data classification.
Specifically, the proposed shadowed sets utilize a step function
to map neighborhood memberships to the set of typical certain
and uncertain membership values and thereby partition a
neighborhood into the certain positive, negative and uncertain
boundary regions. The threshold parameter in the step function
for constructing shadowed neighborhoods is optimized through
minimizing the membership loss in the shadowed mapping.
Based on the constructed shadowed neighborhoods, we also
design three-way classification rules and thereby implement a
three-way classification algorithm to distinguish data instances
into certain classes and uncertain case. Experiments verify the
superiorities of the proposed three-way method for classifying
uncertain data and reducing classification risks.

Our future works may include the following issues. First,
the memberships of shadowed neighborhood are computed
based on distances, and thereby model the ball-shaped data
distribution well but are not flexible enough for complex data
distributions. To handle the diverse data, we should consider
the distributions in local regions to compute neighborhood
memberships. Second, we will further investigate the optimiza-
tion strategy of shadowed neighborhoods through involving the
classification error (or costs) in the objective. The final issue is
that, we adopt Euclidean distances to construct the neighbor-
hoods and compute the memberships, but this distance metric
will be not effective for high-dimensional data. Therefore the
feature reduction and kernel methods will be further involved
in the construction of shadowed neighborhoods.

APPENDIX A

TABLE V
CLASSIFICATION RESULTS ON DATA SET’A PPENDICITIS’

Methods TP
(%)

Cost
(10−2)

Acc
(%)

Prec
(%)

Recall
(%)

F1
(%)

Naive Bayes 85.80 44.34 85.85 86.10 85.80 86.00
Decision-Tree (J48) 85.80 33.02 85.85 84.90 85.80 85.10
SVM 75.01 50.07 83.33 75.01 75.01 75.01
Cost-sensitive Bayes 89.60 25.47 89.62 89.20 89.60 89.30
Cost-sensitive J48 79.20 32.08 79.24 73.00 79.20 73.80
Cost-sensitive Bayes Net 80.20 19.81 80.19 80.20 80.20 89.00
3WC-SNB 100.00 5.00 90.00 100.00 100.00 100.00

TABLE VI
CLASSIFICATION RESULTS ON DATA SET’B ANKNOTE’

Methods TP
(%)

Cost
(10−2)

Acc
(%)

Prec
(%)

Recall
(%)

F1
(%)

Naive Bayes 84.30 41.98 84.25 84.30 84.30 84.20
Decision-Tree (J48) 98.50 4.66 98.54 98.50 98.50 98.50
SVM 100.00 0.00 100.00 100.00 100.00 100.00
Cost-sensitive Bayes 79.80 28.06 79.81 82.80 79.80 78.80
Cost-sensitive J48 98.01 3.72 98.03 98.10 98.00 98.00
Cost-sensitive Bayes Net 83.70 21.57 83.67 86.10 83.70 83.10
3WC-SNB 93.30 12.77 83.21 85.37 93.33 89.17
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TABLE VII
CLASSIFICATION RESULTS ON DATA SET’B LOOD’

Methods TP
(%)

Cost
(10−2)

Acc
(%)

Prec
(%)

Recall
(%)

F1
(%)

Naive Bayes 75.40 47.06 75.40 71.00 75.40 71.60
Decision-Tree (J48) 77.80 56.95 77.81 76.40 77.80 76.90
SVM 78.67 95.45 64.84 78.67 78.67 78.67
Cost-sensitive Bayes 76.70 32.89 76.74 72.50 76.70 70.60
Cost-sensitive J48 76.20 23.81 76.20 76.20 76.20 86.50
Cost-sensitive Bayes Net 74.46 25.58 77.88 75.70 74.46 85.54
3WC-SNB 76.19 23.33 65.33 84.21 76.19 80.77

TABLE VIII
CLASSIFICATION RESULTS ON DATA SET’WOBC’

Methods TP
(%)

Cost
(10−2)

Acc
(%)

Prec
(%)

Recall
(%)

F1
(%)

Naive Bayes 96.00 16.66 95.99 96.20 96.00 96.00
Decision-Tree (J48) 94.60 16.88 94.56 94.60 94.60 94.60
SVM 97.83 9.09 97.10 97.83 97.83 97.83
Cost-sensitive Bayes 95.70 16.88 95.71 95.80 95.70 95.70
Cost-sensitive J48 92.00 15.45 91.99 92.10 92.00 91.80
Cost-sensitive Bayes Net 96.90 10.59 96.85 96.90 96.90 96.90
3WC-SNB 97.73 7.35 98.53 100.00 97.73 98.85

TABLE IX
CLASSIFICATION RESULTS ON DATA SET’FERTILITY ’

Methods TP
(%)

Cost
(10−2)

Acc
(%)

Prec
(%)

Recall
(%)

F1
(%)

Naive Bayes 88.05 60.00 88.05 88.05 88.05 93.60
Decision-Tree (J48) 85.00 63.00 85.00 77.10 85.00 80.90
SVM 85.71 75.00 75.00 85.71 85.71 85.71
Cost-sensitive Bayes 75.00 53.00 75.00 82.60 75.00 78.10
Cost-sensitive J48 78.00 54.00 78.00 82.10 78.00 79.80
Cost-sensitive Bayes Net 53.00 59.00 53.00 84.40 53.00 60.70
3WC-SNB 100.00 10.05 90.08 90.08 100.00 94.74

TABLE X
CLASSIFICATION RESULTS ON DATA SET’GERMANCREDIT’

Methods TP
(%)

Cost
(10−2)

Acc
(%)

Prec
(%)

Recall
(%)

F1
(%)

Naive Bayes 75.70 61.90 75.70 74.70 75.70 74.90
Decision-Tree (J48) 73.90 68.90 73.90 72.90 73.90 73.20
SVM 83.64 20.69 79.35 83.64 83.64 83.64
Cost-sensitive Bayes 73.40 39.00 73.40 72.10 73.40 68.20
Cost-sensitive J48 70.10 30.05 71.00 70.10 70.10 82.40
Cost-sensitive Bayes Net 71.18 29.95 70.33 70.33 71.18 81.10
3WC-SNB 81.69 30.50 61.89 77.33 81.69 79.45

TABLE XI
CLASSIFICATION RESULTS ON DATA SET’H ABERMAN ’

Methods TP
(%)

Cost
(10−2)

Acc
(%)

Prec
(%)

Recall
(%)

F1
(%)

Naive Bayes 74.80 42.16 74.84 71.50 74.80 70.30
Decision-Tree (J48) 71.90 66.01 71.89 69.00 71.90 69.80
SVM 82.14 109.09 69.70 82.14 82.14 82.14
Cost-sensitive Bayes 74.20 37.58 74.18 70.10 74.20 67.90
Cost-sensitive J48 73.50 26.47 73.52 73.50 73.50 84.70
Cost-sensitive Bayes Net 75.33 30.56 71.32 73.50 75.33 81.40
3WC-SNB 100.00 19.35 80.65 80.65 100.00 89.29

TABLE XII
CLASSIFICATION RESULTS ON DATA SET’I NDIAN L IVER PATIENTS’

Methods TP
(%)

Cost
(10−2)

Acc
(%)

Prec
(%)

Recall
(%)

F1
(%)

Naive Bayes 55.70 215.78 55.75 79.20 55.70 56.00
Decision-Tree (J48) 69.10 79.76 68.95 66.90 69.10 67.60
SVM 51.35 147.95 50.68 51.35 51.35 51.35
Cost-sensitive Bayes 56.90 208.40 56.96 78.80 56.90 57.50
Cost-sensitive J48 71.40 28.64 71.36 71.40 71.40 83.30
Cost-sensitive Bayes Net 70.50 35.68 70.49 59.80 70.50 60.20
3WC-SNB 97.56 37.93 68.97 70.18 97.56 81.63

TABLE XIII
CLASSIFICATION RESULTS ON DATA SET’M OGRAPHIC’

Methods TP
(%)

Cost
(10−2)

Acc
(%)

Prec
(%)

Recall
(%)

F1
(%)

Naive Bayes 82.50 61.60 82.52 82.90 82.50 82.50
Decision-Tree (J48) 82.40 51.30 82.41 82.40 82.40 82.40
SVM 95.45 10.53 96.77 95.45 95.45 95.45
Cost-sensitive Bayes 82.00 44.22 81.99 82.20 82.00 81.90
Cost-sensitive J48 76.00 34.03 75.96 79.90 76.00 74.70
Cost-sensitive Bayes Net 82.20 34.44 82.20 83.20 82.20 81.90
3WC-SNB 63.41 45.11 77.24 76.47 63.41 79.93

TABLE XIV
CLASSIFICATION RESULTS ON DATA SET’T HORACIC’

Methods TP
(%)

Cost
(10−2)

Acc
(%)

Prec
(%)

Recall
(%)

F1
(%)

Naive Bayes 77.90 65.53 77.87 78.10 77.90 78.00
Decision-Tree (J48) 82.80 73.40 82.77 75.80 82.80 78.30
SVM 89.66 48.65 83.78 89.66 89.66 89.66
Cost-sensitive Bayes 63.80 57.45 63.83 81.00 63.80 69.00
Cost-sensitive J48 72.80 62.13 72.77 79.00 72.80 75.30
Cost-sensitive Bayes Net 83.00 74.05 82.98 75.30 83.00 78.20
3WC-SNB 97.50 15.96 82.98 84.78 97.50 90.70

TABLE XV
CLASSIFICATION RESULTS ON DATA SET’WDBC’

Methods TP
(%)

Cost
(10−2)

Acc
(%)

Prec
(%)

Recall
(%)

F1
(%)

Naive Bayes 93.00 22.50 92.97 93.00 93.00 93.00
Decision-Tree (J48) 93.30 17.22 93.32 93.40 93.30 93.30
SVM 88.89 20.69 93.10 88.89 88.89 88.89
Cost-sensitive Bayes 93.00 21.79 92.97 93.00 93.00 93.00
Cost-sensitive J48 94.00 12.30 94.02 94.30 94.00 94.10
Cost-sensitive Bayes Net 94.90 12.83 94.90 95.00 94.90 94.90
3WC-SNB 100.00 9.65 85.96 100.00 100.00 93.33

TABLE XVI
CLASSIFICATION RESULTS ON DATA SET’WPBC’

Methods TP
(%)

Cost
(10−2)

Acc
(%)

Prec
(%)

Recall
(%)

F1
(%)

Naive Bayes 67.20 119.70 67.17 72.10 67.20 68.90
Decision-Tree (J48) 75.80 68.69 75.76 75.10 75.80 75.40
SVM 85.71 60.01 80.01 85.71 85.71 85.71
Cost-sensitive Bayes 72.70 79.80 72.73 72.30 72.70 72.50
Cost-sensitive J48 71.31 25.74 76.26 76.30 71.31 86.75
Cost-sensitive Bayes Net 76.40 36.74 76.26 76.30 76.40 86.50
3WC-SNB 94.44 32.50 85.00 94.44 94.44 94.44
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TABLE XVII
CLASSIFICATION RESULTS ON DATA SET’SDD’

Methods TP
(%)

Cost
(10−2)

Acc
(%)

Prec
(%)

Recall
(%)

F1
(%)

Naive Bayes 98.90 0.37 98.90 99.90 98.90 98.90
Decision-Tree (J48) 97.93 0.20 99.90 99.90 97.93 97.90
SVM 99.27 1.99 99.34 99.27 99.27 99.27
Cost-sensitive Bayes 97.97 0.19 98.89 99.90 97.97 99.90
Cost-sensitive J48 98.91 0.17 98.93 98.87 98.91 98.91
Cost-sensitive Bayes Net 99.19 0.23 98.97 99.17 99.19 99.17
3WC-SNB 99.82 0.15 99.00 100.00 99.82 99.41
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