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Abstract—Person re-identification (Re-ID) is a challenging task 

in the field of computer vision and focuses on matching people 

across images from different cameras. The extraction of robust 

feature representations from pedestrian images through CNNs 

with a single deterministic pooling operation is problematic as the 

features in real pedestrian images are complex and diverse. To 

address this problem, we propose a novel center-triplet (CT) 

model that combines the learning of robust feature representation 

and the optimization of metric loss function. Firstly, we design a 

fusion feature learning network (FFLN) with a novel fusion 

strategy consisting of max pooling and average pooling. Instead of 

adopting a single deterministic pooling operation, the FFLN 

combines two pooling operations that can learn high response 

values, bright features, and low response values, discriminative 

features simultaneously. Our model obtains more discriminative 

fusion features by adaptively learning the weights of the features 

learned by the corresponding pooling operations. In addition, we 

design a hard mining center-triplet loss (HCTL), a novel 

improved triplet loss, which effectively optimizes the 

intra/inter-class distance and reduces the cost of computing and 

mining hard training samples simultaneously, thereby enhancing 

the learning of robust feature representation. Finally, we proved 

our method can learn robust and discriminative feature 

representations for complex pedestrian images in real scenes. The 

experimental results also illustrate that our method achieves an 

81.8% mAP and a 93.8% rank-1 accuracy on Market1501, a 68.2% 

mAP and an 83.3% rank-1 accuracy on DukeMTMC-ReID, and a 

43.6% mAP and a 74.3% rank-1 accuracy on MSMT17, 

outperforming most state-of-the-art methods and achieving better 

performance for person re-identification. 

 
Index Terms—Person re-identification, center-triplet model, 

fusion feature representation, hard mining center-triplet loss. 
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I. INTRODUCTION 

ERSON Re-Identification (Re-ID) aims to match two 

pedestrian images from non-overlapping camera views. 

Due to the large visual variations in illumination, posture, 

viewpoint, misalignment, and background occlusions, person 

re-identification is a difficult task; some challenging examples 

are shown in Fig. 1. 

With the development of deep convolution neural networks 

(CNNs), an increasing number of works on Re-ID are seeking 

to design and train an end-to-end model directly to learn robust 

feature representation from pedestrian images. There are two 

key areas that comprise CNN-based work, the design of 

convolution neural networks and the design of the metric loss 

function. 

In the process of designing a CNN, most previous methods 

use self-designed CNN architectures to learn feature 

representation, such as the filter pairing neural network (FPNN) 

[1], the fusion feature net (FFN) [2], PersonNet [3], Spindle Net 

[4], the multi-scale context-aware network (MS-CAN) [5], the 

pedestrian alignment network (PAN) [6], etc. It is generally 

accepted that deeper networks can enrich the granularity of 

features and bring significant performance improvements. Thus, 

an increasing number of methods apply the classic pretrained 

model (VGGNet [7], GoogLeNet [8], ResNet [9]) to learn more 

discriminative deep features considering their deeper network 

structures and competitive performance, such as TriNet [10], 

AlignedReID [11], attribute-person recognition network (APN) 

[12], pose-sensitive embedding (PSE) [13], the harmonious 

attention network (HA-CNN) [14], and the 
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Fig. 1.  Some image pairs from the Market1501 [36] dataset. The upper and 

lower adjacent images have the same identity: (a) variations in illumination, 

(b) variations in posture, (c) variations in viewpoint, (d) variations in 

misalignment, (e) variations in background occlusion. 
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global-local-alignment descriptor (GLAD) [15]. The pretrained 

models extract deep features of images with deeper convolution 

layers. To avoid generating deep features with a higher 

dimensionality, the pooling layer is usually needed to reduce 

the resolution of the features and transform the deep feature 

representation into a more usable one that preserves 

discriminative information while discarding redundant details 

[16], [17], so as to overcome variations in illumination, posture, 

viewpoint, misalignment, and background occlusion. Average 

pooling and max pooling are two popular methods adopted for 

computational efficiency. For example, the original ResNet50 

adopts a global average pooling to transform a deeper feature 

representation into a simple 2048-d feature vector. However, it 

has some limitations in extracting a more robust feature 

representation. As Yu et al. argued in [17], both the average 

pooling and max pooling operators have their own drawbacks. 

Sometimes, they will produce unacceptable results. For 

example, average pooling calculates the mean of all the pixels 

within the pooling region, which will take all the low response 

values into consideration. As illustrated in Fig. 2(a), if there are 

many zero values, the contrast in the feature map will be 

reduced significantly. Regarding max pooling, it only considers 

the maximum response values and ignores the others in the 

pooling region. If most of the responses in the pooling region 

have high values, the distinguishing features will vanish after 

max pooling, as shown in Fig. 2(b).  

Learning robust and discriminative feature representation 

through a single deterministic pooling operation remains 

challenging because the features in pedestrian images from real 

scenes are more complex and diverse. To solve this problem, 

we propose a fusion feature learning network (FFLN). The 

FFLN combines max pooling and average pooling instead of 

adopting a single deterministic pooling operation, which learns 

high response values, bright features, and low response values, 

discriminative features simultaneously. It also obtains more 

discriminative fusion features by adaptively adjusting the 

weights of features learned by corresponding pooling 

operations. 

During the process of designing a metric loss function, most 

previous works regard person re-identification as a multiple 

classification task that usually adopts a softmax loss to train and 

optimize their networks for learning discriminative feature 

representation. However, these methods still incur a high error 

rate when classifying samples. The studies [19], [20], [21], [10], 

[22], [23], [24], [25] focus on minimizing the intra-class 

distance and maximizing the inter-class distance to learn more 

discriminative features. Typical methods are triplet loss [19] 

and center loss [20]. 

However, center loss and triplet loss still have some 

shortcomings. Center loss is only designed to pull samples of 

the same class to the center without maximizing the inter-class 

distance. Triplet loss optimizes the distribution of triplets by 

requiring the distance from the anchor to the positive 

(intra-class) samples to be less than the distance of the anchor 

from the negative (inter-class) samples to be meet a predefined 

margin, without considering minimizing the intra-class 

(b) A visualization illustration of the drawback of max pooling

(a) A visualization illustration of the drawback of avg pooling
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Fig. 2.  Simple samples illustrate the drawbacks of max pooling and avg pooling. Input denotes the input image sample, Output denotes the learned feature, and the 

numbers in the box represent the response values. (a) An illustration of the drawbacks of avg pooling, where the features learned by avg pooling do not represent the 

input image as well as the features learned from max pooling. (b) An illustration of the drawbacks of max pooling, where the features learned by max pooling do not 

represent the input image as well as the features learned by avg pooling. 
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distance, which usually produces a relatively large cluster of 

intra-class samples. In addition, it results in a massive dataset of 

triplets, including many negative triplets, that requires training. 

Furthermore, the negative triplets meeting the constraint 

condition of triplet loss will not contribute to the training of the 

model, as shown in Fig. 3. To deal with the problem of triplet 

loss, some improved methods have been proposed, such as 

improved triplet loss [21], trihard loss [10], quadruplet loss [22], 

margin sample mining loss [23], point-to-set (HAP2S) loss [24], 

etc. They are better at minimizing the intra-class distance and 

maximizing the inter-class distance at the same time. Although 

the performance of Re-ID has been improved, it still requires 

the mining and training of hard triplets, which is a huge time 

consuming process. Thus, the aim of designing a metric loss 

function is not only to minimize the intra-class distance and 

maximize the inter-class distance but also to reduce the cost of 

computing and mining hard training samples as much as 

possible. 

Recently, two novel methods have provided a new approach, 

namely class-wise triplet loss (CWTL) [26] and triplet-center 

loss (TCL) [27]. They both successfully combine the ideas of 

triplet loss and center loss to address the above-mentioned 

problems. Inspired by them, we propose a loss known as hard 

mining center-triplet loss (HCTL), also with the aim of 

realizing the optimization of the intra/inter-class distance and 

reducing the cost of computing and mining hard training 

samples simultaneously. 

We propose an overall framework named the center-triplet 

(CT) model in this paper, which combines the learning of 

robust feature representation and the optimization of metric 

loss function. Specifically, we firstly extract deep fusion 

features from input images through the fusion feature learning 

network (FFLN). Then, we adopt hard mining center-triplet 

loss to train the model for optimizing the intra/inter-class 

distance and reducing the cost of computing and mining hard 

training samples simultaneously, thereby achieving more 

discriminative feature representation. 

Finally, we describe the motivation and contribution of this 

paper as follows. 

Motivation. There are some limitations in the many existing 

methods:  

1) Many approaches have difficulties in learning more 

discriminative feature representations through a single 

deterministic pooling operation. 

2) Many metric learning losses have difficulties in 

realizing the optimization of the intra/inter-class 

distance and reducing the cost of computing and mining 

hard training samples simultaneously. 

Contribution. The main original contributions of our work 

are summarized as follows:  

1) We present a novel center-triplet model, combining the 

learning of robust feature representation and the 

optimization of metric loss function, which 

outperforms most state-of-the-art methods and achieves 

superior performance in person re-identification. 

2) We propose a fusion feature learning network (FFLN), 

to combine max pooling and average pooling, which 

learns high response values, bright features, and low 

response values, discriminative features simultaneously. 

It also obtains more discriminative feature 

representation by adaptively learning the weights of the 

features corresponding to different pooling operations. 

3) We propose a hard mining center-triplet loss, a novel 

improved triplet loss, which effectively realizes the 

optimization of the intra/inter-class distance and 

reduces the cost of computing and mining hard training 

samples simultaneously, thereby enhancing the 

learning of robust feature representation. 

The paper is organized as follows: In Section II, we review 

some related works about person re-identification. Section III 

elaborates on the proposed center-triplet model. Section IV 

presents the experimental results of the comparisons and 

evaluation. Finally, the conclusion is drawn in Section V. 

 

II. RELATED WORK 

Most of the existing deep learning methods for person 

re-identification generally fall into two categories. The first 

group of methods focus on designing simple and efficient 

convolutional neural networks to extract discriminative 

features that are robust to variations in illumination, posture, 

viewpoint, misalignment, and background occlusions, etc. The 

second group of methods mainly focus on designing robust 

distance metrics loss functions to deal with complex matching 

problems, thereby optimizing the network to more effectively 

learn feature representation. 

 

A. Convolutional Neural Network 

Traditional approaches have focused on low-level features, 

such as color features [28] and texture features [29]. However, 

low-level features are not sufficiently robust to large variations 

in appearance. To address it, Zhao et al. proposed a novel 

method named Multiple Metric Learning based on the 

Bar-shape Descriptor (MMLBD) [30] to capture the intrinsic 

structure information hidden in different person images. This 

was achieved through the multiple bar-shape descriptor that 

makes full use of spatial correlation between center points and 

their neighbors, which better represents the appearance of a 

person with the changes of illumination, rotation, translation 

and perspective for Re-ID. In [31], a descriptor called Maximal 

Granularity Structure Descriptor (MGSD) was proposed. This 

can capture rich local structural information from overlapping 

macro-pixels in an image, and analyze the horizontal 

occurrence of multi-granularity and maximize their occurrence 

in order to extract a robust representation for viewpoint changes. 

In [32], the similarity learning with joint transfer constraints 
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Fig. 3.  Two kinds of triplets. (a) negative triplet with da,p < da,n, da,p denotes 

the relative distance of the anchor to the positive sample, da,n denotes the 

relative distance of anchor to the negative sample. (b) positive triplet with da,n 

< da,p. 
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model was proposed to alleviate the inconsistency of data 

distributions in terms of viewpoint changes and illumination 

variations. With the development of deep learning, researchers 

began to explore how to make a model to learn robust deep 

features automatically instead of the traditional hand-designed 

features. For example, in [1], Li et al. first proposed a deep filter 

pairing neural network (FPNN) that jointly optimizes feature 

learning, photometric transforms, geometric transforms, 

misalignment, occlusions, and classification within a unified 

deep architecture. It was the first work to employ deep learning 

to person re-identification problems. In [2], the feature fusion 

net (FFN) was proposed to learn robust fusion features by 

jointly utilizing CNN features and hand-crafted features. In 

[54], the multilevel triplet deep learning model (MT-net) was 

proposed to combine fine, shallow layer information with 

coarse, deeper layer information to learn a better feature 

representation. Zhao et al. proposed SpindleNet [4], which 

firstly extracted features from several body regions and then 

merged them to learn more discriminative fusion features. In 

[15], Wei et al. proposed the GLAD framework, which 

explicitly leverages the local and global cues in the human body 

to generate a discriminative and robust representation. There 

are also some methods [5], [11] learning powerful features by 

jointing global features with local body-part features. 

However, it remains very challenging to learn robust features 

which are discriminative, reliable, and invariant to the large 

variations in illumination, posture, viewpoint, misalignment, 

and background occlusion, etc. In order to solve this problem, 

we propose a fusion feature learning network (FFLN) for 

learning discriminative feature representation. 

 

B. Metric loss function 

Traditional deep metric learning methods regard person 

re-identification as a multiple classification task and adopt 

softmax loss to train and optimize their networks. However, 

these methods usually produce large clusters in intra-class and 

heavy overlaps in inter-class, thereby having a high error rate. 

As illustrated in Fig. 4(a), 1, 2, and 3 represent the overlapping 

areas of different classes. 

To better address complex matching problems in image pairs, 

many improved deep metric learning models have been 

proposed. Wen et al. [20] firstly presented the center loss, by 

learning a center for the same class samples to pull them to their 

centers, which has been successfully used for face recognition. 

In [18], Ding et al. proposed a feature affinity-based pseudo 

labeling (FAPL) approach, which also adopted softmax loss 

joint with center loss to train the network to ensure 

discriminative feature representation learning. Specifically, the 

center loss can be formulated as: 

𝐿𝑐 =
1

2
∑ ‖𝑓𝑖 − 𝑐𝑦𝑖‖

2

2𝑃×𝐾
𝑖=1  ,                       (1) 

where P denotes the number of classes in a mini-batch, K 

denotes the number of samples in each class, the 𝑐𝑦𝑖 denotes 

the deep features of 𝑦𝑖th class center, which is computed by 

averaging the features of the corresponding classes of the 

mini-batch, and 𝑓𝑖 denotes the deep features of ith sample. 

Since the centers are used within each mini-batch instead of 

the whole training set, their updates are very unstable. It must 

be completed under the joint supervision of softmax loss during 

the training process, which provides good guidance in seeking 

better class centers. However, center loss does not consider 

how to enlarge the inter-class distance, and it still contains a 

few overlaps in the inter-class, as shown in Fig. 4(b). 

The successful application of facenet in face recognition has 

led researchers to focus on how to efficiently select triplets to 

train the end-to-end network for Re-ID. Ding et al. [19] made 

the first attempt to use a triplet framework to extract the 

features of samples and then calculate triplet loss to optimize 

the network learning process. Triplet loss aims at ensuring the 

intra-class distance is less than the inter-class distance by a 

predefined margin m, which can be computed as: 

𝐿𝑡𝑟𝑖 = ∑ 𝑚𝑎𝑥(𝑑𝑎,𝑝 − 𝑑𝑎,𝑛 + 𝑚, 0)𝑎,𝑝,𝑛
𝑦𝑎=𝑦𝑝≠𝑦𝑛

 ,           (2) 

where a, p, n denote the anchor, positive sample, and negative 

sample in each triplet, respectively, 𝑑𝑎,𝑝  denotes the relative 

distance of the positive sample to the anchor, 𝑑𝑎,𝑛 denotes the 

relative distance of the negative sample to the anchor, and m is 

the margin that is enforced between positive and negative pairs. 

The classic triplet loss has two problems. One is the 

clustering effect of the model is not significant because the loss 

does not consider how to minimize the intra-class distance. 

Another is that a sharply increasing number of triplets including 

many negative triplets with the explosive increasing of dataset, 

and the use of a large and unbalanced number of negative 

triplets could also produce poor results. Some improved 

methods are proposed based on triplet loss to solve the above 

problems. 

To deal with the problems of triplet loss, some improved 

methods have been proposed. Cheng et al. [21] optimized the 

training process of the triplet framework by adopting an 

improved triplet loss function, which requires reducing the 

distance between pairs from the same class to less than a margin 

α (α is much less than m). Hermans et al. [10] proposed the 

trihard loss (triplet loss with hard sample mining), which aims 

at selecting the hardest triplets for training. Yu et al. [24] 

proposed the hard-aware point-to-set (HAP2S) loss with an 

adaptive hard mining scheme, which aims at assigning higher 

weights to the hard samples to compute triplet loss. But the cost 
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Fig. 4.  An illustration of the distributions of deeply-learned features by (a) 

softmax loss, (b) softmax loss + center loss, (c) softmax loss + class-wise triplet 
loss, and (e) softmax loss + triplet-center loss. (d) describes the idea of the 

triplet-center loss with hard sample mining. Randomly selected identities from 

the testing set of Market1501[36]. The points with different colors denote 

features from different identities. The pentagrams denote the centers of classes. 
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of computing and mining the hard triplets is enormous. In 

addition, Ali et al. [25] proposed a nullspace kernel maximum 

margin metric learning (NK3ML) framework, which efficiently 

minimizes the intra-class distance and maximizes the 

inter-class distance. We do not discuss it here because it 

addressed the small sample size (SSS) problem. 

In summary, it is not optimal to only consider the 

optimization of the intra/inter-class distance. Optimization to 

reduce the cost of computing and mining hard samples is also 

important when training the model. Recently, two novel studies 

have attracted attention. 

Ming et al. [26] proposed the class-wise triplet loss (CWTL) 

for face recognition. Different from classic triplet loss, it aims 

to decrease the distance between the anchors and the intra-class 

centers and enlarge the distance of the anchors from the 

inter-class centers by learning the centers of the classes of 

samples and using them instead of individual samples as the 

positives and negatives to form the triplets, which can 

significantly reduce the number of triplets involved in training 

the model, thereby reducing the cost of calculation loss. The 

CWTL can be formulated as follows: 

 

 𝐿𝑐𝑤𝑡 =  ∑ ∑ 𝑚𝑎𝑥(𝐷(𝑓𝑖 , 𝑐𝑦𝑖) − 𝐷(𝑓𝑖 , 𝑐𝑙) + 𝑚, 0)𝑃
𝑙=1,𝑙≠𝑦𝑖

𝑃×𝐾
𝑖=1  ,    

(3) 

where 𝐷(𝑓𝑖  , 𝑐𝑦𝑖)  represents the squared Euclidean distance 

function denoted as follows: 

𝐷(𝑓𝑖 , 𝑐𝑦𝑖) =  ‖𝑓𝑖 − 𝑐𝑦𝑖‖
2

2
 ,                           (4) 

As illustrated in Fig. 4(c), the CWTL effectively solves the 

problems of large clusters within the intra-class and overlaps 

within the inter-class. 

Another is the work by He et al. [27], which proposed a novel 

loss function named triplet-center loss (TCL) for Multi-View 

3D Object Retrieval. They argued that center loss still results in 

small overlaps within the inter-class samples because it only 

aims at minimizing the intra-class distance, as illustrated in Fig. 

4(b). Specifically, the proposed TCL can ensure the distance 

between the samples and their corresponding center 𝑐𝑦𝑖  is less 

than the distance between the samples and their nearest 

negative center 𝑐𝑙 by a margin m. The TCL could be computed 

as follows: 

𝐿𝑡𝑐 =  ∑ max (𝐷(𝑓𝑖,𝑐𝑦𝑖) − min
𝑙≠𝑦𝑖

𝐷(𝑓𝑖 , 𝑐𝑙) + 𝑚, 0)𝑃×𝐾
𝑖=1  ,     (5) 

An illustration of the distributions of samples learned by 

TCL can be seen in Fig. 4(d)-(e). 

Inspired by CWTL and TCL, we design a hard mining 

center-triplet loss, a novel improved strategy of triplet loss that 

mines novel hard triplets for training. Finally, our loss 

effectively optimizes the intra/inter-class distance and reduces 

the cost of computing and mining hard training samples 

simultaneously. 

In general, we put forward a novel center-triplet (CT) model 

for person re-identification, which combines the learning of 

robust feature representation and the optimization of metric 

loss function. In the next section, we will present our method in 

detail. 

 

III. PROPOSED CENTER-TRIPLET MODEL 

Our center-triplet model is designed based on the classic 

triplet framework. The overall framework of our model is 

shown in Fig. 5. It is composed of two parts, the learning of 

fusion feature representation and the optimization of metric 

loss function. We first describe the overall framework of our 

method in Section III-A. Then, we elaborate on the design of 

the fusion feature learning network (FFLN) in Section III-B and 

the design of our metric loss function in Section III-C. In 

Section III-D, we compare the proposed model with similar 

methods for Re-ID. Finally, the processes of training and 

optimizing our model are introduced in Section III-E. 

 

A. The overall framework 

As illustrated in Fig. 5, our model uses mini-batch images to 
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Fig. 5.  The overall framework of the proposed Center-Triplet model, where P denotes the number of classes in a mini-batch, K denotes the number of samples in 

each class, a(cen) denotes the center feature of each class samples, p denotes the hardest positive sample that is farthest to the a(cen) with the same class label, and 

n denotes the hardest negative sample that is closest to the a(cen) with the different class label, Avg denotes getting the center feature by the averaging operation. 

Specifically, P×K images are fed to the FFLN to get the 2048-d deep fusion features. Then, the HCTL will learn the center features of classes of these fusion features 

and mine the hardest triplets to train and optimize the model for learning discriminative features, which could pull the intra-class samples closer and push the 

inter-class samples further away. 
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train the network. In each mini-batch, images are resized into 

256 × 128 pixels as inputs, and the 2048-d deep fusion features 

are extracted through the FFLN. Then, the model will learn the 

centers of classes of these fusion features and mine novel hard 

triplets to calculate loss by the proposed hard mining 

center-triplet loss (HCTL). The HCTL is better at minimizing 

intra-class distance and maximizing inter-class distance, 

thereby optimizing the network to learn more robust feature 

representation. Finally, the model provides a significant 

performance improvement for Re-ID. 

 

B. The fusion feature learning network (FFLN) 

The proposed fusion feature learning network is modified 

based on the original ResNet50. As shown in Fig. 6, the FFLN 

mainly consists of the following distinct layers: convolution 

layer, mixed pooling layer, and fusion layer. Next, we introduce 

each of these layers in detail. 

Convolution layer. We employ the convolution layers of 

ResNet50 as basic convolution layers. However, considering 

that higher spatial resolution may enrich the granularity of 

features and result in significant performance improvements, 

we try to set the last stride (last spatial down-sample operation) 

in the Conv5 layer from 2 (the last stride of the original 

ResNet50) to 1 to obtain a larger feature map (16 x 8) than the 

original size (8 x 4). 

Mixed pooling layer. Convolution layers followed by the 

mixed pooling layer consist of two parts, the max pooling layer 

and the average pooling layer. We deal with the output of the 

Conv5 layer with max pooling and average pooling at the same 

time instead of using a single deterministic pooling operation. 

Then, these two sub-part features are linked together to form a 

high dimensional feature vector of 4096-d for learning deep 

fusion features in the following fusion layer. 

Fusion layer. In the fusion layer, we mainly append a 

fully-connected layer followed by Batch Normalization (BN) 

and a Rectified Linear Unit (ReLU). The fully-connected layer 

obtains more discriminative fusion features by adaptively 

learning the weights of features, which are learned by pooling 

operations. In addition, we apply dropout [33] on the 

fully-connected layer to effectively avoid overfitting and gain 

considerable performance improvements. Finally, the network 

will output a 2048-d fusion feature for training. 

Instead of selecting a single deterministic pooling operation, 

the FFLN combines max pooling and average pooling. It, 

therefore, learns appropriate weight parameters for the 

corresponding pooled features through the fusion layer 

(fully-connected layer), which can learn high response values, 

bright features, and low response values, discriminative 

features simultaneously. It also obtains more robust features to 

ultimately represent complex pedestrian images in real scenes. 

In Section IV-D, we elaborate on the advantages of FFLN in 

feature representation. 

 

C. Hard Mining Center-Triplet Loss Function (HCTL) 

Inspired by CWTL and TCL, we propose a metric loss 

function named hard mining center-triplet loss (HCTL), a novel 

improved strategy of triplet loss. As shown in Fig. 7, it aims to 

learn the centers of the classes of samples and use them instead 

of individual samples as the anchors to form the hard triplets. 

Specifically, we firstly regard the centers of all classes in the 

mini-batch as the anchors. For each center, we select the 

hardest positive sample which has the farthest distance to it 

with the same class label and the hardest negative sample which 

has the closest distance to it with a different class label. Then, 

we use them to form the hard triplet for computing the triplet 

loss. The HCTL will control the distance between the center 𝑐𝑝 

and its farthest positive sample less than the distance between 

the center 𝑐𝑝 and its nearest negative sample by a predefined 

margin m. 

In summary, the hard mining center-triplet loss is defined as 

follows: 

𝐿ℎ𝑐𝑡 =  
1

𝑃
∑ 𝑚𝑎𝑥 (𝑚𝑎𝑥

1≤𝑖≤𝐾
(𝐷(𝑐𝑝 , 𝑓(𝑝𝑖))) −𝑃

𝑝=1

                             𝑚𝑖𝑛
𝑙≠𝑝,1≤𝑙≤𝑃,

1≤𝑗≤𝐾

(𝐷(𝑐𝑝 , 𝑓(𝑙𝑗))) + 𝑚, 0)  ,               (6) 

where 𝑐𝑝  denotes the deep features of pth class center and 

𝑓(𝑝𝑖) denotes the deep features of the ith sample in pth class. 

As the update of centers of the classes could be unstable in a 

mini-batch with the HCTL, we combine it with softmax loss for 

training. To improve the guidance provided by softmax in 

seeking better class centers, we use label-smoothing 

regularization (LSR) [34] to optimize the calculation of 

softmax loss. Thus, HCTL and softmax loss is divided into two 

parts and calculated separately. For the former, the features of 

centers of classes of training samples are learned by averaging 

the features of the corresponding classes, and then the hard 

triplets will be mined to compute HCTL by using a hard sample 
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Fig. 7.  Proposed metric loss function, hard mining center-triplet loss (HCTL). 

The HCTL joints with softmax loss to optimize the overall model. 
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mining strategy. For the latter, the deep fusion features, the 

output of FFLN will be calculated using the softmax loss 

through an added softmax layer. Finally, we need a 

hyper-parameter  𝜆  to balance our loss and softmax loss to 

calculate the total loss, which can be formulated as follows: 

𝐿 = 𝐿𝑐𝑙𝑠 + 𝜆𝐿ℎ𝑐𝑡 ,                               (7) 

where 𝐿𝑐𝑙𝑠 denotes the softmax loss, 𝐿ℎ𝑐𝑡  denotes the HCTL, 

and 𝜆 is the weight used to balance the HCTL and softmax loss. 

An illustration of the distributions of samples learned by 

HCTL joined with softmax loss can be seen in Fig. 8. 

 

D. Model Analysis and Comparison 

In this section, we compare the proposed model with similar 

methods used in feature representation and the optimization of 

metric loss function. 

Comparison in terms of feature representation. Because the 

proposed fusion feature learning network is modified based on 

the original ResNet50 and aims at addressing the drawbacks of 

adopting a single deterministic pooling operation, we mainly 

compare it with the ResNet50 (with a single deterministic 

pooling operation) in regards to feature representation. The 

ResNet50 usually extracts the deep features of inputs with 

standard convolution layers, followed by a global average 

pooling operation. In contrast, we have the following 

differences:  

1) Firstly, we try to set the last stride in the Conv5 layer 

from 2 to 1 to get a feature map with a higher spatial 

resolution for enriching the granularity of features. It 

was inspired by the following paper. In [35], Luo et al. 

proved that the ResNet50 with the last stride modified 

to 1 shows obvious improvements over the original 

ResNet50 with the last stride set to 2.  

2) In addition, both the average pooling and max pooling 

operations have their drawbacks. It is hard to attain 

discriminative feature representation for complex 

images by adopting a single deterministic pooling 

operation. Thus, we propose a fusion strategy 

consisting of two pooling operations. We modify the 

original pooling layer by adding an extra max pooling 

and adding the fusion layer to learn the weights of the 

corresponding features adaptively, which aims at 

learning high response values, bright features, and low 

response values, discriminative features simultaneously 

and obtains more robust fusion features. 

Comparison of the optimization of the metric loss function. 

Now most common models adopt softmax loss, center loss, 

triplet loss, or variations of these (improved triplet loss, trihard 

loss, HAP2S loss, etc.), or a combination of these (class-wise 

triplet loss, triplet-center loss) to optimize networks. Obviously, 

triplet loss and its varieties including class-wise triplet loss and 

triplet-center loss have a common idea: a hard sample mining 

strategy. All of them randomly select one sample as an anchor 

to build a triplet that will produce many triplets because each 

sample in the mini-batch has to be selected at least once. The 

hard sample mining strategy of HCTL contains a fundamental 

difference. It makes the first attempt that uses the center of class, 

instead of the individual sample, as the anchor, the farthest 

positive sample as the positive, and the nearest negative sample 

as the negative to form the novel hard triplet for calculating 

triplet loss. Based on such a modification, the number of triplets 

produced can be reduced significantly. 

Specially, we randomly select P classes of samples and then  

randomly sample K images from each class to form a 

mini-batch for training. This will result in a large number of 

P×K×(K-1)×(P-1)×K triplets. Since CWTL uses the centers of 

the classes to represent the global distribution of the classes 

rather than the individual samples, which only have K-1 triplets 

for each sample, in total there is a set of P×K×(K-1) triplets to 

be chosen to train CNN by using CWTL. The design of TCL 

combines the advantages of trihard loss and center loss. For 

each sample, TCL only selects the hardest negative center as a 

negative to form the triplet, which produces one triplet for each 

anchor. Finally, P×K triplets will be constructed for one 

mini-batch, which is the same as trihard loss. Far less than 

either of them, the HCTL uses the center of class as the anchor, 

only considers the distance of the center to the farthest 

intra-class sample and the distance to the closest inter-class 

sample, and only P hard triplets are selected in each mini-batch, 

where P is the number of the classes in mini-batch. Thus, the 

proposed method is more efficient at optimizing the 

intra/inter-class distance and reducing the cost of computing 

and mining hard training samples. 

In the experiments in Section IV, we compare the proposed 

method with several similar methods and demonstrate the 

performance improvements of our method. 

 

E. Training and Optimization 

The proposed model is trained and optimized by HCTL 

combined with softmax loss. Since the calculation of softmax 

loss requires an extra softmax layer, we should optimize HCTL 

and softmax loss separately during back propagation. Let {𝜔} 

denote the initialized networks parameters and 𝑓𝜔(𝑖) denote the 

fusion features of the network output of image i. The hard 

mining center-triplet loss in (6) can be expanded as follows: 

𝐿ℎ𝑐𝑡 =  
1

𝑃
∑ 𝑚𝑎𝑥 (𝑚𝑎𝑥

1≤𝑖≤𝐾
(𝐷 (

1

𝐾
∑ 𝑓𝜔(𝑝𝑖)𝐾

𝑖=1  , 𝑓𝜔(𝑝𝑖))) −𝑃
𝑝=1

𝑚𝑖𝑛
𝑙≠𝑝,1≤𝑙≤𝑃,

1≤𝑗≤𝐾

(𝐷 (
1

𝐾
∑ 𝑓𝜔(𝑝𝑖)𝐾

𝑖=1  , 𝑓𝜔(𝑙𝑗))) + 𝑚, 0) , (8) 

To simplify the calculations, let us simplify (8) as follows: 

𝐷𝑝  = 𝑚𝑎𝑥
1≤𝑖≤𝐾

(𝐷 (
1

𝐾
∑ 𝑓𝜔(𝑝𝑖)𝐾

𝑖=1  , 𝑓𝜔(𝑝𝑖))) ,              (9) 
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Fig. 8.  An illustration of the distributions of deeply-learned features learned by 

(a) softmax loss and (c) softmax loss + HCTL. (b) describes the process of 

mining the hardest triplets. The points with different colors denote deep 

features from different identities in the Market1501. 
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𝐷𝑛 = 𝑚𝑖𝑛
𝑙≠𝑝,1≤𝑙≤𝑃,

1≤𝑗≤𝐾

(𝐷 (
1

𝐾
∑ 𝑓𝜔(𝑝𝑖)𝐾

𝑖=1  , 𝑓𝜔(𝑙𝑗))) ,      (10) 

 

𝐿ℎ𝑐𝑡 =  
1

𝑃
∑ 𝑚𝑎𝑥(𝐷𝑝 − 𝐷𝑛 + 𝑚, 0)𝑃

𝑝=1  ,               (11) 

 

According to the chain rule, the derivatives of the hard 

mining center-triplet loss can be computed as follows: 

 

 
∂𝐿
ℎ𝑐𝑡

∂ω
 = {

𝜕𝐷𝑝

𝜕𝜔
 −  

𝜕𝐷𝑛

𝜕𝜔
       𝐷𝑝 − 𝐷𝑛 + 𝑚 > 0

   0                     𝐷𝑝 − 𝐷𝑛 + 𝑚 ≤ 0
 ,           (12) 

 
𝜕𝐷𝑝

𝜕𝜔
 = 𝑚𝑎𝑥

1≤𝑖≤𝐾
(2(

1

𝐾
∑ 𝑓𝜔(𝑝𝑖)𝐾

𝑖=1  −  𝑓𝜔(𝑝𝑖)) ∙ 

(
1

𝐾
∑

𝜕𝑓𝜔(𝑝𝑖)

𝜕𝜔

𝐾
𝑖=1 −

𝜕𝑓𝜔(𝑝𝑖)

𝜕𝜔
)) ,             (13) 

 
𝜕𝐷𝑛

𝜕𝜔
 = 𝑚𝑖𝑛

𝑙≠𝑝,1≤𝑙≤𝑃,
1≤𝑗≤𝐾

(2(
1

𝐾
∑ 𝑓𝜔(𝑝𝑖)𝐾

𝑖=1 − 𝑓𝜔(𝑙𝑗)) ∙ 

(
1

𝐾
∑

𝜕𝑓𝜔(𝑝𝑖)

𝜕𝜔

𝐾
𝑖=1 −

𝜕𝑓𝜔(𝑙𝑗)

𝜕𝜔
)) ,           (14) 

 

Finally, algorithm 1 shows the main training procedure 

followed by our method. 

 

IV. EXPERIMENTS 

In this section, we report on experiments to evaluate our 

method and compare the obtained results with state-of-the-art 

methods. 

 

A. Datasets 

We conduct experiments on three representative large-scale 

datasets, Market1501, DukeMTMC-ReID, and MSMT17, 

respectively. 

Market1501 [36] is one of the largest benchmark datasets for 

person re-identification, and it contains 32,668 images of 1,501 

identities from 6 camera views. Each identity is captured by at 

most six cameras. There are 751 identities in the training set 

and 750 identities in the testing set. Fig. 9 shows some example 

images from this dataset.  

DukeMTMC-ReID [37] is a subset of the DukeMTMC [38] 

tracking dataset, which contains 36,411 images with 1,812 

identities captured from 8 different viewpoints. Specifically, 

there are 16,522 images with 702 identities for training, 17,661 

images with 1,110 identities in the gallery, and another 2,228 

images with 702 identities in the gallery for query. Fig. 10 

shows some example images from this dataset. 

MSMT17 [52] is the current largest public Re-ID dataset, 

which is collected with different weather conditions during 3 

time slots (morning, noon, afternoon). It contains 126,441 

images of 4,101 identities captured from 12 outdoor cameras 

and 3 indoor cameras. The MSMT17 is also significantly more 

challenging than Market1501 and DukeMTMC-ReID due to 

more complex scenes. We follow the same training-testing split 

of [52]. Fig. 11 shows some example images from this dataset. 

 

B. Implementation Details 

We conduct experiments based on Torchreid [53], a 

 
 
Fig. 11.  Example images from MSMT17 [52] dataset. 

 

Fig. 10.  Example images from DukeMTMC-ReID [37] dataset. 

 
 
Fig. 9.  Example images from Market1501 [36] dataset. 

 Algorithm 1. Hard Mining Center-Triplet Loss Training Algorithm 

Input: Training samples { 𝐼𝑖 }. Initialized networks parameters{ 𝜔 }. 

Initialized softmax layer parameters { 𝜗 } of softmax loss. 

Hyperparameter λ and learning rate 𝜇. The number of iteration t ← 

0. 

Output: The networks parameters {𝜔}. 

1: while 𝑡 ≤ 𝑇 do 

2:      𝑡 ← 𝑡 + 1; 

3:      Calculate fusion features of samples 𝑓𝑝𝑘  by forward propagation; 

4:      Calculate the distance 

𝑚𝑎𝑥
1≤𝑖≤𝐾

(𝐷(𝑐𝑝, 𝑓𝜔(𝑝𝑖))) ,   min
𝑙≠𝑝,1≤𝑙≤𝑃,

1≤𝑗≤𝐾

(𝐷(𝑐𝑝 , 𝑓𝜔(𝑙𝑗))) 

5:      Calculate the total loss 𝐿 = 𝐿𝑐𝑙𝑠 + 𝜆𝐿ℎ𝑐𝑡 

6:      Calculate the 
∂𝐿𝑐𝑙𝑠

∂ω
 , 

∂𝐿ℎ𝑐𝑡

∂ω
 by back propagation 

7:      Update the softmax layer parameters {𝜗} of softmax loss 

𝜗𝑡+1 =𝜗𝑡 - 𝜇𝑡 ∙
∂𝐿𝑐𝑙𝑠

∂𝜗𝑡
 

8:      Update the networks parameters 𝜔𝑡+1 =𝜔𝑡 - 𝜇𝑡 ∙
∂𝐿

∂𝜔𝑡
 

= 𝜔𝑡- 𝜇𝑡(
∂𝐿𝑐𝑙𝑠

∂ω
+ 𝜆 ∙

𝜕𝐿ℎ𝑐𝑡

𝜕𝜔
)   

9: end while 

 

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on February 21,2020 at 03:54:28 UTC from IEEE Xplore.  Restrictions apply. 



1520-9210 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2020.2972125, IEEE
Transactions on Multimedia

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

9 

mainstream library for deep-learning person re-identification in 

PyTorch. In the experiments, every 32 images are randomly 

selected to form a mini-batch for training, which contains 8 

identities, and each identity has 4 images. For feature extraction, 

we set the last stride in the Conv5 layer to 1 to get deep features 

with a larger spatial area. We also set the dropout ratio to 0.5 to 

avoid overfitting in the last fully connected layer. For 

optimization, the standard AMSGrad [39] algorithm is adopted 

for faster and more robust back propagation and loss 

convergence. The initial learning rate of softmax loss and the 

initial learning rate of HCTL are both set to 3e-4. 

 

C. Parameter influence 

In the training process, the model will be trained and 

optimized by the total loss, as defined by (7). Thus, the margin 

parameter m and the weight parameter λ may affect the final 

performance of Re-ID. Specifically, m can affect the relative 

distance between the center to its farthest positive sample and 

to its nearest negative sample, while λ controls the trade-off 

between HCTL and softmax loss. To study the impact of the 

two hyper parameters, we conducted experiments on the 

Market1501 dataset and evaluated the performances with 

rank-1 accuracies. 

To study the impact of weight parameter λ, we firstly fixed 

margin m as 0.5, and then set λ as 1e-5, 1e-4, 0.001, 0.01, and 0, 

respectively. The experimental results are presented in Fig. 12. 

If the model is only trained by softmax loss (λ = 0), the 

performance can achieve 92.0% rank-1 accuracy. But with 

HCTL, we can get the highest improvement of 1.8% in terms of 

rank-1 when λ is set to 1e-4. This is because once the model 

trained by softmax loss has converged, the appropriate weight 

of HCTL can further enforce the clustering of features of 

samples and attain a better performance. For weight λ, too large 

or too small values may lead to inferior results. When it is too 

small, the contribution of HCTL is weakened, while too large 

values may affect the convergence of softmax loss, thereby 

producing poorer results. 

To study the influence of m, we fixed λ as 1e-4 and then set m 

from 0.1 to 1. The experimental results are presented in Fig. 13. 

For margin m, we can also see that too large and too small 

values both lead to inferior performances. Too small values 

may weaken the effect of clustering with HCTL, while too large 

values may cause overfitting of the model. The best 

performance gains a rank-1 accuracy of 93.8% by setting m to 

0.5. 

The experimental results demonstrate that our model 

achieves the best performance on Market1501 when λ is 1e-4 

and m is 0.5. In addition, we also conduct the same experiments 

on the DukeMTMC-ReID and MSMT17 datasets to find the 

optimal parameters. Finally, we set m and λ as 0.5 and 1e-4 as 

the default setting for all the following experimental 

evaluations on Market1501 and MSMT17, and set m and λ as 

0.3 and 1e-4 on DukeMTMC-ReID. 

 

D. Experimental Results and Analysis 

1) Comparison with state-of-the-art methods 

We conduct experiments with other state-of-the-art methods, 

including LOMO+XQDA [40], BoW+Kissme [36], Spindle 

Net [4], SVDNet [41], TriNet [10], AlignedReID [11], 

HAP2S_E [24], MLFN [42], HA-CNN [14], PCB [43], etc. 

Then, we evaluate them with rank-1, 5, 10 accuracies and mAP 

to illustrate the superiority of our proposed model. The results 

on three datasets are shown in Table I, II, III and Fig. 14-16. 

Results analysis on Market1501 dataset. To evaluate the 

performance of our proposed model, we firstly compare our 

method with existing state-of-the-art methods on Market1501. 

As shown in Table I, our method (with the last stride set to 1) is 

superior to all state of-the-art methods and has the highest 

scores on rank-1 and mAP. Specifically, it achieves a 93.8% 

rank-1 accuracy and an 81.8% mAP, which outperforms the 

Deep-Person by 1.5% (93.8-92.3) in rank-1 and 2.2% 

(81.8-79.6) in mAP. 

Results analysis on DukeMTMC-ReID dataset. We also 

evaluated our method with other state-of-the-art methods on 

DukeMTMC-ReID dataset. Table II shows that our method 

again outperforms all compared state-of-the-arts methods with 

significant improvements on rank-1 and mAP, exceeding the 

PCB by 1.7% (83.3-81.6) in rank-1 and 1.8% (68.2-66.4) in 

mAP. Specifically, our method attains an 83.3% rank-1 

accuracy and a 68.2% mAP. 

Results analysis on MSMT17 dataset. We further evaluated 

our proposed method with other state-of-the-art methods on 

 
Fig. 13.  The influence of margin parameter m evaluated by a score of rank-1 

accuracy. 

  
Fig. 12.  The influence of weight parameter λ evaluated by a score of rank-1 
accuracy. 
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MSMT17, and the results are shown in Table III. The number 

of methods that report on this dataset is limited since it was only 

recently released. Our method is still superior to most state- 

of-the-art methods and attains the highest scores on rank-1 and 

mAP. Specifically, it achieves a 74.3% rank-1 accuracy and a 

43.6% mAP, which outperforms the PCB by 6.1% (74.3-68.2) 

in rank-1 and 2.5% (43.6-41.1) in mAP. 

As we can see, the experimental results on three large-scale 

benchmarks, including Market1501, DukeMTMC-ReID, and 

MSMT17, demonstrate that our method outperforms most 

existing state-of-the-art methods and sufficiently show the 

robustness and efficiency of our method for Re-ID. 

 

2) Further Ablation Analysis and Discussion 

We further evaluated the performance of each part of our 

center-triplet model on Market1501 and DukeMTMC-ReID: 

the fusion feature learning network (FFLN) and hard mining 

center-triplet loss (HCTL).  

Effect of the fusion feature learning network. We conducted 

experiments with different pooling operations on the standard 

 
Fig. 14.  The CMC curves and rank-1 accuracy on Market1501. 

TABLE I 
COMPARISON WITH STATE-OF-THE-ART METHODS ON MARKET1501 DATASET. 

1ST/2ND BEST IN RED/BLUE. 

Method mAP Rank-1 Rank-5 Rank-10 

LOMO+XQDA [40] 22.2 43.8 -- -- 

BoW+Kissme [36] 20.8 44.4 63.9 72.2 

Spindle Net [4] -- 76.9 91.5 94.6 

SVDNet [41] 62.1 82.3 -- -- 

OIM [44] 62.5 83.0 93.1 95.2 

PAN [6] 63.4 82.8 93.5 -- 

FAPL[18] 63.8 83.6 -- -- 

GAN [37] 66.1 84.0 -- -- 

APR [12] 64.7 84.3 93.2 95.2 

TriNet [10] 69.0 84.7 94.2 96.2 

MSML [23] 69.6 85.2 93.7 -- 

HAP2S_E [24] 69.8 84.2 -- -- 

DPFL [46] 73.1 88.9 -- -- 

AlignedReID [11] 75.9 88.8 95.6 97.4 

GLAD [15] 73.9 89.9 -- -- 

MLFN [42] 74.5 90.2 95.9 97.4 

ResNet50-mid [47] 76.1 90.2 96.4 97.9 

Mask Re-ID [48] 75.4 90.4 -- -- 

HA-CNN [14] 75.6 90.9 96.4 97.8 

PCB [43] 77.3 92.3 96.9 98.2 

Deep-Person [49] 79.6 92.3 -- -- 

Ours (last stride=2) 80.0 92.6 97.2 98.5 

Ours (last stride=1) 81.8 93.8 97.8 98.6 

 

TABLE II 

COMPARISON WITH STATE-OF-THE-ART METHODS ON DUKEMTMC-REID 

DATASET. 1ST/2ND BEST IN RED/BLUE. 

Method mAP Rank-1 Rank-5 Rank-10 

LOMO+XQDA [40] 17.0 30.8 -- -- 

BoW+Kissme [36] 12.2 25.1 -- -- 

GAN [37] 47.1 67.7 -- -- 

APR [12] 51.9 70.7 -- -- 

PAN [6] 51.5 71.6 83.9 -- 

FAPL[18] 53.9 72.9 -- -- 

OIM [44] 54.6 73.1 85.9 91.5 

TriNet [10] 57.7 74.5 86.4 89.5 

SVDNet [41] 56.8 76.7 -- -- 

HAP2S_E [24] 59.6 76.1 -- -- 

Mask Re-ID [48] 61.9 78.9 -- -- 

DPFL [46] 60.6 79.2 -- -- 

HA-CNN [14] 63.2 80.1 89.6 92.1 

Deep-Person [49] 64.8 80.9 -- -- 

MLFN [42] 63.2 81.1 90.3 92.6 

AlignedReID [11] 66.7 81.6 90.4 93.1 

ResNet50-mid [47] 64.0 81.6 90.0 93.0 

PCB [43] 66.4 81.6 91.1 93.3 

Ours (last stride=2) 67.9 82.9 91.3 93.6 

Ours (last stride=1) 68.2 83.3 91.7 93.8 

 

 
Fig. 15.  The CMC curves and rank-1 accuracy on DukeMTMC-ReID.  
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ResNet50 and evaluated them with rank-1, 5, 10 accuracies and 

mAP to illustrate the robustness of the FFLN, which learns 

fusion features by combining max pooling and average pooling. 

We also conducted additional comparative experiments to 

verify the effect of the last stride after the Conv5 layer and the 

dropout in the fusion layer. The results for two datasets are 

shown in Table IV, V and Fig. 17-18. Avg stands for the 

ResNet50 with average pooling operation, Max stands for the 

ResNet50 with max pooling operation, Avg+Max stands for the 

FFLN (combining two pooling operations), +S1 stands for 

setting the last stride to 1, +S2 stands for setting the last stride to 

2, and +Dropout stands for using dropout to avoid overfitting. 

All of them are optimized by softmax uniformly. 

What we need to note the results is that learned features with 

a higher spatial resolution that improve performance do not 

apply to all Re-ID models. This applies to our model, although 

the effect is not very obvious. Applying dropout can also lead to 

a small improvement. The main contribution of FFLN is the 

fusion strategy of max pooling and average pooling. The FFLN 

with dropout and the last stride set to 1 can produce higher 

scores in rank-1 accuracy and mAP. 

On Market1501, the model of ResNet50 with average 

pooling achieves an 82.0% rank-1 accuracy and a 63.6% mAP, 

which is similar to adopting a max pooling operation. By 

contrast, our FFLN (combine average pooling with a max 

pooling operation) achieves a 92.0% rank-1 accuracy and a 

78.1% mAP, exceeding it by 10.0% and 14.5%. Compared with 

an efficient Re-ID model, such as PCB and HA-CNN, the 

FFLN still attains the highest scores in mAP, rank-5, and 

rank-10 accuracy and attains the second best rank-1. 

On DukeMTMC-ReID, the rank-1 and mAP are further 

improved to 82.3% and 64.7% in the FFLN, outperforming the 

original ResNet50 with average pooling by 13.4% and 16.2%, 

respectively. Likewise, compared with an efficient Re-ID 

model, such as PCB and HA-CNN, the FFLN attains the 

highest scores in rank-1 accuracy and the second-best mAP. 

In order to further illustrate the superiority of the FFLN in 

robust feature learning, we output the visual retrieval results, as 

shown in Fig. 19. The first row shows the results for the method 

using ResNet50 with an average pooling operation. According 

TABLE III 

COMPARISON WITH STATE-OF-THE-ART METHODS ON MSMT17 DATASET. 
1ST/2ND BEST IN RED/BLUE. 

Method mAP Rank-1 Rank-5 Rank-10 

TriNet [10] 26.9 56.9 72.7 78.4 

HA-CNN [14] 25.5 48.8 65.7 72.2 

MLFN [42] 27.7 52.5 69.2 75.6 

GLAD[15] 34.0 61.4 76.8 81.6 

ResNet50-mid [47] 37.7 68.7 80.9 84.8 

PCB [43] 41.1 68.2 81.3 85.6 

Ours (last stride=2) 40.9 71.3 82.8 86.4 

Ours (last stride=1) 43.6 74.3 84.7 87.9 

 

TABLE IV 
COMPARISON WITH MODELS ON MAEKER1501 DATASET. 

 1ST/2ND BEST IN RED/BLUE. 

Model mAP Rank-1 Rank-5 Rank-10 

Avg+S2 63.6 82.0 92.8 95.2 

Max+S2 58.7 82.3 92.2 94.4 

Avg+S1 61.4 81.5 92.6 95.3 

Max+S1 55.3 80.0 90.9 94.1 

Avg+Max+S2 74.9 90.8 96.5 97.8 

Avg+Max+S2+ 

Dropout 
78.0 91.2 96.9 98.1 

Avg+Max+S1 75.1 91.4 97.0 98.0 

Avg+Max+S1+ 

Dropout 
78.1 92.0 97.3 98.2 

TriNet [10] 69.0 84.7 94.2 96.2 

MLFN [42] 74.5 90.2 95.9 97.4 

ResNet50-mid [47] 76.1 90.2 96.4 97.9 

HA-CNN [14] 75.6 90.9 96.4 97.8 

PCB [43] 77.3 92.3 96.9 98.2 

 

 
Fig. 16.  The CMC curves and rank-1 accuracy on MSMT17.  

 
Fig. 17.  Comparisons with different pooling operations on Market1501. 
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to the retrieval results, 3 false matches in the top 8 nearest 

images were all dark in contrast and brightness, which proves 

that average pooling takes low response features into 

consideration, thereby reducing the contrast in the feature map. 

Regarding max pooling, 2 false matches in the top 4 nearest 

images both show bright color characteristics and contrast, 

especially the first false match. It shows that max pooling is 

sensitive to high response features and ignores the low response 

values, discriminative features. Both of them have difficulties 

in learning robust feature representation. In contrast, the FFLN 

combines the advantages of max pooling and average pooling, 

which can learn high response values, bright features, and low 

response values, discriminative features simultaneously, 

thereby enhancing the contrast in the feature map. It can also be 

seen from the matching results that the top 8 nearest images in 

the third row are all correctly matched with distinctive features. 

In addition, we visualize the final output feature maps learned 

by different pooling operations, as shown in Fig. 20. We notice 

that the feature maps from the ResNet50 with average pooling 

and ResNet50 with max pooling both produce poor 

representations. By contrast, the FFLN can force the network to 

focus more on the person region. 

Compared with adopting a single deterministic pooling 

operation, the experimental results show the superiority of the 

FFLN in learning robust feature representation, which obtains 

deep fusion features by adjusting the weights of features 

learned by the two pooling operations. 

Effect of the hard mining center-triplet loss. We also conduct 

experiments with different loss functions on ResNet50 to 

illustrate the robustness of the proposed HCTL. The results on 

the two datasets are shown in Table VI, VII and Fig. 21-22. 

Classic Triplet stands for the classic triplet loss [19], 

TABLE V 

COMPARISON WITH MODELS ON DUKEMTMC-REID DATASET. 

1ST/2ND BEST IN RED/BLUE. 

Model mAP Rank-1 Rank-5 Rank-10 

Avg+S2 48.5 68.9 82.4 86.6 

Max+S2 47.6 69.6 82.1 86.4 

Avg+S1 46.9 66.6 80.2 85.7 

Max+S1 47.7 70.3 82.0 86.0 

Avg+Max+S2 64.2 81.7 90.4 93.2 

Avg+Max+S2+ 
Dropout 

64.4 82.2 90.8 93.2 

Avg+Max+S1 64.3 82.0 90.4 92.9 

Avg+Max+S1+ 

Dropout 
64.7 82.3 90.9 93.6 

TriNet [10] 57.7 74.5 86.4 89.5 

HA-CNN [14] 63.2 80.1 89.6 92.1 

MLFN [42] 63.2 81.1 90.3 92.6 

ResNet50-mid [47] 64.0 81.7 90.0 93.0 

PCB [43] 66.4 81.6 91.1 93.3 

 

 
Fig. 18.  Comparisons with different pooling operations on DukeMTMC-ReID. 

Query Top 8 nearest images

 
Fig. 19.  Visual retrieval results with different pooling operations. The green 

rectangle represents correct matches, and the red dash rectangle represents false 

matches. For the query sample, the first, second, and third rows show the 

results for the methods of ResNet50 with an average pooling operation, 
ResNet50 with a max pooling operation, and the FFLN, respectively. 

(i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii)

 

Fig. 20.  Visualization of the Conv5 feature maps learned by different pooling 

operations. The first, second, and third rows show the results for the methods of 
ResNet50 with an average pooling operation, ResNet50 with a max pooling 

operation, and the FFLN, respectively. From left to right, (i) Original images, 

(ii) Activation map, and (iii) Overlapped image. In the heat map, the response 

increases from blue to red. 
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Quadruplet stands for quadruplet loss [22], OIM stands for 

Online Instance Matching Loss [44], Cluster loss stands for 

cluster loss [45], Trihard stands for the trihard loss [10], and 

Softmax stands for softmax loss with LSR. We also combine 

ring loss [50], center loss [20], range loss [51], class-wise triplet 

loss (CWTL) [26], triplet-center loss (TCL) [27], and our hard 

mining center-triplet loss (HCTL) with Softmax. 

On Market1501, as clearly seen in Table VI, the HCTL gets a 

73.8% mAP and an 88.4% rank-1 accuracy, which outperforms 

all compared losses, exceeding the second-best TCL by 2.1% 

(88.4-86.3) in rank-1 and 4% (73.8-69.8) in mAP. Compared 

with softmax loss, adding HCTL can increase the accuracy by 

6.4% on rank-1 and by 10.2% on mAP. 

On DukeMTMC-ReID, the HCTL also attains the highest 

rank-1 accuracy and the second-best mAP. Although 

performance does not improve much compared with trihard 

loss, fewer hard triplets are mined for training with our HCTL. 

The significantly reduces the computing and mining 

requirements of hard training samples. Compared with softmax 

loss, adding HCTL can increase the rank-1 accuracy and mAP 

by 6.3% and 7.3%. 

Compared with similar loss functions overall, our loss is 

more efficient in training networks and optimizing the 

intra/inter-class distance and reducing the computing and 

mining requirements of hard training samples simultaneously. 

In summary, it can be seen that the FFLN contributes more 

than HCTL, but they are both important to the overall model. 

Once the FFLN trained by softmax loss has converged, the 

HCTL can further encourage the clustering of features of 

samples and achieve superior performance. 

A comparison of visual retrieval results on the two datasets 

between our method and the ResNet50 with softmax (baseline) 

is shown in Fig. 23-24. Both FFLN and HCTL have made great 

contributions to the center-triplet model. Finally, our method 

significantly improved the Re-ID in comparison to the baseline, 

which also outperforms most state-of-the-art methods. 

TABLE VI 

SCORES OF DIFFERENT LOSS FUNCTIONS FOR RE-ID ON MARKET1501 

DATASET. THE BEST SCORES ARE IN RED. 

Method mAP Rank-1 Rank-5 Rank-10 

Classic Triplet 54.8 75.9 89.6 -- 

Quadruplet 61.1 80.0 91.8 -- 

Softmax 63.6 82.0 92.8 95.2 

OIM 62.5 83.0 93.1 95.2 

Softmax+Ring loss 66.9 83.4 93.5 95.7 

Softmax+Center loss 66.4 84.1 94.2 96.3 

Softmax+Range loss 66.2 84.4 94.0 96.1 

Softmax+CWTL 68.0 85.2 93.6 96.0 

Trihard 69.0 84.7 94.2 96.2 

Cluster loss 71.5 86.1 95.0 -- 

Softmax+TCL 69.8 86.3 94.2 96.3 

Softmax+HCTL（Our） 73.8 88.4 95.5 97.3 

 

 
Fig. 21.  Comparisons with different loss functions on Market1501. 

TABLE VII 
SCORES OF DIFFERENT LOSS FUNCTIONS FOR RE-ID ON DUKEMTMC-REID 

DATASET. THE BEST SCORES ARE IN RED. 

Method mAP Rank-1 Rank-5 Rank-10 

Softmax 48.5 68.9 82.4 86.6 

Softmax+Center loss 50.0 70.0 83.3 87.6 

Softmax+Ring loss 51.3 70.7 83.5 87.0 

Softmax+CWTL 52.0 72.2 84.2 88.0 

Softmax+TCL 53.2 72.1 84.4 88.6 

Softmax+Range loss 54.1 73.3 85.5 89.0 

OIM loss 54.6 73.1 85.9 91.5 

Trihard loss 57.7 74.5 86.4 89.5 

Softmax+HCTL（Our） 55.8 75.2  87.0 90.4 

 

 
Fig. 22.  Comparisons with different loss functions on DukeMTMC-ReID. 
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V. CONCLUSION 

In this paper, we proposed a novel center-triplet model for 

person re-identification. Firstly, we designed a fusion feature 

learning network. It was shown to learn high response values, 

bright features, and low response values, discriminative 

features simultaneously and obtains more discriminative fusion 

features by adaptively learning the weights of the features using 

max pooling and average pooling. In addition, we designed a 

hard mining center-triplet loss, a novel improved triplet loss, 

which builds the most challenging triplets for computing loss. It 

is shown to effectively optimize the intra/inter-class distance 

and reduce the computing and mining requirements of training 

hard samples simultaneously, thereby enhancing feature 

representation learning. Finally, the results show the robustness 

and efficiency of the proposed method. The model achieves a 

93.8% rank-1 accuracy on Market1501, an 83.3% rank-1 

accuracy on DukeMTMC-ReID, and a 74.3% rank-1 accuracy 

on MSMT17, outperforming most state-of-the-art methods for 

person re-identification. In the future, we would like to verify 

the robustness of our method on more datasets. 
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