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Preface

Rough Set Theory (RST) is a prominent methodology within the umbrella of
Computational Intelligence and Granular Computing (GrC) to handle uncertainty in
inconsistent and ambiguous environments. RST has enjoyed widespread success in a
plethora of real-world application domains and remains at the forefront of numerous
theoretical studies to consolidate and augment its well-established properties.

The International Joint Conference on Rough Sets (IJCRS) is the flagship confer-
ence of the International Rough Set Society (IRSS). Held annually, the IJCRS con-
ference series aim at bringing academic researchers and industry practitioners together
to discuss and deliberate on fundamental issues around rough sets and unveil successful
applications of this vibrant theory in multiple domains. IJCRS provides an excellent
opportunity for researchers to present their ideas before the rough set community, or for
those who would like to learn about rough sets and find out whether this approach
could be useful for their problems.

IJCRS 2020 was originally planned to take place during June 29 – July 3, 2020, at
the Meliá Habana Hotel in Havana, Cuba. Due to the COVID-19 pandemic, however,
the conference was turned into a virtual forum (https://virtualijcrs2020.uclv.edu.cu/) in
order to facilitate the exchange among the conference participants while ensuring their
physical safety and well-being.

IJCRS 2020’s submission topics revolved around three major groups:

– Fundamental Rough Set Models and Methods: e.g. covering rough set models,
decision-theoretic rough set methods, dominance-based rough set methods, rough
clustering, rough computing, rough mereology, partial rough set models or
game-theoretic rough set methods

– Related Methods and Hybridization: e.g. artificial intelligence, machine learning,
pattern recognition, decision support systems, fuzzy sets and near sets, uncertain
and approximate reasoning, information granulation, formal concept analysis, Petri
nets or nature-inspired computation models

– Application Areas: e.g. medicine and health, bioinformatics, business intelligence,
smart cities, semantic web, computer vision and image processing, cybernetics and
robotics, knowledge discovery, etc.

This volume is a compilation of the IJCRS 2020 conference proceedings and
contains all papers accepted by the Program Committee (except short papers) after a
rigorous peer-review process.

IJCRS 2020 received 50 submissions from 119 authors in 18 countries.1 Every
submission was reviewed by at least two Program Committee members. On average,

1 While this number of submissions is lower than previous years, it is also very encouraging that over
100 authors chose to submit their work despite the lingering shadow of COVID-19 and the increasing
number of postponed/cancelled conferences because of this pandemic.

https://virtualijcrs2020.uclv.edu.cu/


each submission received 2.84 reviews. Finally, the Program Committee chairs selected
37 regular submissions based on their originality, significance, correctness, relevance,
and clarity of presentation to be included in the IJCRS 2020 proceedings. The Program
Committee chairs also accepted two tutorials to be part of the proceedings and two
short papers that are available at the virtual forum. We would like to thank all authors
for submitting their papers and the Program Committee members for their valuable
contribution to the conference through their anonymous, detailed review reports. We
also wish to congratulate those authors whose papers were selected for presentation
and/or publication in the proceedings.

IJCRS 2020’s success was possible thanks to the dedication and support of many
individuals and organizations. First and foremost, we want to thank IRSS for kindly
accepting Havana, Cuba, as the venue of the 2020 IJCRS edition, which signals the
increasing interest RST is amassing across Latin America and the Caribbean. We wish
to express our gratitude to our honorary chairs (Andrzej Skowron and Yiyu Yao), the
Steering Committee members (Tamás Mihálydeák, Victor Marek, and Sushmita Mitra),
and the 70 Program Committee members for their invaluable suggestions, support, and
excellent work throughout the organization process.

We are very grateful to our plenary speakers (Witold Pedrycz and Dominik Slezak),
tutorial speakers (Mani A. and Oliver Urs Lenz), and our special session organizers for
accepting our invitations to share their cutting-edge research work on rough sets and
granular computing.

Special thanks go to Lázaro Pérez Lugo (Universidad Central de Las Villas, Cuba)
whose relentless efforts building, testing, and deploying the virtual forum ensured the
success of this conference in the new COVID-19 circumstances.

Last but certainly not least, we acknowledge the excellent Springer support provided
by Aliaksandr Birukou and Anna Kramer. Their diligent work was greatly appreciated
as they navigated us in a very professional and smooth manner during the compilation
and editing of these proceedings.

Happy reading! We hope that this volume helps spark further interest in RST and
other related methodologies.

June 2020 Rafael Bello
Duoqian Miao
Rafael Falcon

Michinori Nakata
Alejandro Rosete

Davide Ciucci
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Rough Forgetting

Patrick Doherty1,2 and Andrzej Sza�las1,3(B)

1 Department of Computer and Information Science, Linköping University,
581 83 Linköping, Sweden

{patrick.doherty,andrzej.szalas}@liu.se
2 School of Intelligent Systems and Engineering, Jinan University (Zhuhai Campus),

Zhuhai, China
3 Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland

andrzej.szalas@mimuw.edu.pl

Abstract. Recent work in the area of Knowledge Representation and
Reasoning has focused on modification and optimization of knowl-
edge bases (KB) through the use of forgetting operators of the form
forget(KB , R̄), where R̄ is a set of relations in the language signature
used to specify the KB. The result of this operation is a new KB where
the relations in R̄ are removed from the KB in a principled manner
resulting in a more efficient representation of the KB for different pur-
poses. The forgetting operator is also reflected semantically in terms of
the relation between the original models of the KB and the models for
the revised KB after forgetting. In this paper, we first develop a rough
reasoning framework where our KB’s consist of rough formulas with a
semantics based on a generalization of Kleene algebras. Using intuitions
from the classical case, we then define a forgetting operator that can be
applied to rough KBs removing rough relations. A constructive basis for
generating a new KB as the result of applying the forgetting operator to
a rough KB is specified using second-order quantifier elimination tech-
niques. We show the application of this technique with some practical
examples.

1 Introduction and Motivations

In Artificial Intelligence, the field of Knowledge Representation and Reasoning
(KRR) deals with the use of logical languages to represent knowledge or beliefs
and the use of inference in some logic to derive additional knowledge or belief
implicit in a base theory represented as a set of logical formulas. The explicit base
theory is often called a Knowledge Base (KB). Consequences A of the KB are
derived through a consequence relation, KB |= A. A signature Σ (vocabulary) is

The first author has been supported by the ELLIIT Network Organization for
Information and Communication Technology, Sweden; the Swedish Foundation for
Strategic Research SSF (SymbiKBot Project); and a guest professor grant from
Jinan University (Zhuhai Campus). The second author has been supported by grant
2017/27/B/ST6/02018 of the National Science Centre Poland.

c© Springer Nature Switzerland AG 2020
R. Bello et al. (Eds.): IJCRS 2020, LNAI 12179, pp. 3–18, 2020.
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4 P. Doherty and A. Sza�las

associated with the logical language and is used for specifying the legal relations,
functions, constants, etc., used in the syntax of formulas.

In recent years, there has been much interest in the topic of forgetting oper-
ations in KRR [12]. Intuitions for such operators are based loosely on the fact
that humans often forget what they know or believe for reasons of efficiency
in reasoning. Mapping this loose intuition over to KRR results in some very
powerful and useful techniques for dealing with redundant information in KB’s,
optimizing query retrieval in relation to KB’s [10,17], progressing databases [18],
forgetting with description logics [6,31] and rule based languages [26,27], dealing
with missing information and dataset reduction [14], forgetting sets of literals in
first-order logic [28], in addition to other techniques. In general, one major type
of forgetting aims at removing information from a KB in a controlled manner
where the syntactic elimination has a principled semantic correlation character-
ized in model theory.

Given a KB and a signature Σ, a common type of forgetting, forget(KB , Σ′),
can be formulated where Σ′ � Σ and KB ′ is the result of forgetting the compo-
nents in Σ′ in KB . One interesting question is the relation between the models
and consequences of KB and the consequences of KB ′ after the forgetting oper-
ation is applied to KB . Initial intuitions for this type of forgetting can be traced
all the way back to Boole [2] and his use of variable elimination. Assume a
propositional language with signature Σ = {p, q, r}. Given a propositional for-
mula A and a signature Σ′ = {p}, the result of forgetting p in A, forget(A,Σ′),
is A+

p ∨ A−
p , where A+

p is the result of replacing all occurrences of p in A with
‘true’ and A−

p is the result of replacing all occurrences of p in A with ‘false’ and
simplifying the result.

In KRR application areas such as robotics, the knowledge or beliefs robots
have about different aspects of the world, is often incomplete and/or uncertain.
Consequently, one wants to find a concise way to model this. Rough set the-
ory [7,8,22,23] has been used to model different types of incompleteness using
indiscernibility and approximations. The general idea is to begin with a universe
of individuals and define an indiscernibility relation over these individuals. In the
classical case, this generates an equivalence relation over individuals. A rough
set is defined by specifying a lower and upper approximation, each consisting
of a number of equivalence classes generated by the indiscernibility relation. All
individuals in equivalence classes included in the lower approximation are in the
rough set, all equivalence classes in the upper approximation intersect with the
rough set, and the individuals in the remaining equivalence classes lie outside the
set. This brings to mind a division of individuals into a tripartite division remi-
niscent of three-valued logics. Later in the paper, this intuition will be formalized
more precisely. In the context of KRR, there has been interest in generalizations
of logical languages and inference to include rough logical languages and infer-
ence using rough theories [8]. This generalization will be used as a vehicle for
specifying rough forgetting operators applied to rough relations in such logics.

Another application area for rough sets and logics is with big data applica-
tions. According to [14],
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“most of the attribute values relating to the timing of big data [. . . ] are
missing due to noise and incompleteness. Furthermore, the number of miss-
ing links between data points in social networks is approximately 80% to
90% and the number of missing attribute values within patient reports
transcribed from doctor diagnoses are more than 90%.”

Rough sets are discussed in [14] as one of remedies to deal with missing data. In
this context, the combination of rough sets with the use of forgetting operations
might prove to be very useful. In cases where important information is missing, it
might be useful to forget the relation or find a relation’s explicit definition and –
using the definition – complete parts of the missing content. In fact, the second-
order quantifier elimination techniques which we describe in this paper and use
as a tool for forgetting, provide us with definitions of eliminated (forgotten)
relations as a side effect.

This paper is primarily about developing a first-order logical framework for
rough theories that can be used to construct rough KB’s, with a formal semantics
based on rough relational structures. Given such a logic, we then define a forget-
ting operator that can be applied to rough theories and we provide the semantics
for such an operator. The forgetting operator is based on second-order quantifier
elimination techniques developed for rough theories. In previous work, we have
shown how second-order quantifier elimination techniques can be automated for
well-behaved fragments of second-order logic. We expand on these results in the
context of rough theories.

The paper is structured as follows. In Sect. 2 we discuss the rough reasoning
framework used throughout the paper. In Sect. 3, we recall definitions for for-
getting used with classical logic and then generalize these and introduce rough
forgetting. Next, in Sect. 4, we provide second-order quantifier elimination the-
orems with proofs which can serve as foundations for algorithmic techniques
for rough forgetting. Section 5 provides a number of examples showing how the
proposed techniques work in practice. Finally, Sect. 6 concludes the paper.

2 Rough Reasoning Framework

Rough sets [21,22] have been defined in many ways (see, e.g., [4,5,7,8,16,23,
25,29,30] and numerous references there). Three- and many-valued approaches
have been intensively studied in the context of rough sets [3,4,15,16]. In the
current paper we will follow the presentation of [16].

Definition 1 (Approximation space). Let U be a set of objects and E be an
equivalence relation on U , Then A = 〈U , E〉 is called an approximation space.
By the lower approximation (s+) and upper approximation (s⊕) of a set s ⊆ U
we mean:

s+
def= {x ∈ U | ∀y

(
E(x, y) → y ∈ s

)
}; s⊕ def= {x ∈ U | ∃y

(
E(x, y)∧y ∈ s

)
}. (1)

A set s ⊆ U is definable in A iff s is a union of equivalence classes of E.
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In rough sets, E represents an indiscernibility relation. Approximations are
interpreted as follows, where s ⊆ U is a set:

– the lower approximation s+ represents objects certainly belonging to s;
– the upper approximation s⊕ represents objects possibly belonging to s.

Definition 2 (Rough sets). For an approximation space A, the ordered pair
〈sl, su〉, where sl ⊆ su and sl, su are definable sets, is called a rough set (wrt
A).1

Remark 1. In the literature, the equivalence relation used to define rough
approximations has been argued to be too strong for many application areas
[8,24,25]. In fact, seriality of E (i.e., the property that ∀x∃y(E(x, y)) has been
proposed as the weakest well-behaved requirement on E. This ensures that
the lower approximation is included in the upper approximation of a rough
set [11,29].

Note also that, according to [19, Section 19.3], every reflexive similarity rela-
tion can be refined to an equivalence relation in a natural way. So reflexivity can
be used as a basic requirement on indiscernibility relations.2

As shown in [16], there is a close correspondence between rough sets and
Kleene algebras defined below.

Definition 3 (Kleene algebra). An algebra K = 〈K,∪,∩,−,⊥,�〉 is called
a Kleene algebra if the following hold.

1. K is a De Morgan algebra, i.e., 〈K,∪,∩,⊥,�〉 is a distributive lattice with
the greatest element � and the least element ⊥, and for all s, t ∈ K,
(a) −(s ∩ t) = −s ∪ −t (De Morgan property),
(b) − − s = s (involution).

2. s ∩ −s ≤ t ∪ −t, for all s, t ∈ K (Kleene property).

Note that in Definition 3 we refer to “greatest” and “least” elements. As usual
in lattice theory, we mean the ordering:

s ≤ t
def≡ (s = s ∩ t), (equivalently: t = s ∪ t). (2)

For rough sets, a subclass of Kleene algebras, rough Kleene algebras, will
have the role of Boolean algebras for classical sets.

Definition 4 (Rough Kleene algebra). Let U be a set of objects. A Kleene
algebra K = 〈K,∪,∩,−,⊥,�〉 is called a rough Kleene algebra over U iff:

1 The set sl serves as the lower approximation and su – as the upper approximation
of a set.

2 Note that reflexivity implies seriality.
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– K consists of pairs of sets 〈sl, su〉 such that sl ⊆ su ⊆ U ;
– ⊥ def= 〈∅, ∅〉,� def= 〈U ,U〉;
– −〈sl, su〉 def= 〈−su,−sl〉.
By a generalized rough set we mean any element of K.

As the logical counterpart of rough Kleene algebras we will use the three
valued logic of Kleene, K3, with truth values T (true), F (false) and U (unknown),
ordered by:

F < U < T, (3)

with connectives ∨,∧,¬. The semantics of connectives is defined by:

τ1 ∨ τ2
def= max{τ1, τ2}; τ1 ∧ τ2

def= min{τ1, τ2}; (4)

¬F def= T; ¬U def= U; ¬T def= F, (5)

where τ1, τ2 ∈ {F,U,T} and max,min are the maximum and minimum wrt (3).
Let us now define the syntax of rough formulas used in this paper. In addition

to connectives ¬,∧,∨ and quantifiers ∀,∃ of Kleene logic K3, we add two con-
nectives: ∈ and ⊆. Their intended meaning is rough set membership and rough
set inclusion, respectively.

Definition 5 (Syntax of rough formulas). Let V be a set of first-order vari-
ables (representing domain elements), C be a set of constants and R be a set of
relation symbols. Then:

– Kleene formulas, KF, are defined by the grammar:

〈KF 〉 ::= 〈R〉 | ¬〈KF 〉 | 〈KF 〉 ∨ 〈KF 〉 | 〈KF 〉 ∧ 〈KF 〉 |
∃〈V 〉〈KF 〉 | ∀〈V 〉〈KF 〉;

– rough formulas, RF, are defined by the grammar, where C ∪ V denotes tuples
consisting of constants and/or variables:

〈RF 〉 ::= 〈KF 〉 | 〈C ∪ V 〉 ∈ 〈KF 〉 | 〈KF 〉 ⊆ 〈KF 〉 |
¬〈RF 〉 | 〈RF 〉 ∨ 〈RF 〉 | 〈RF 〉 ∧ 〈RF 〉 |
∃〈V 〉〈RF 〉 | ∀〈V 〉〈RF 〉.

An occurrence of a variable is called bound in a formula if it appears inside
the scope of a quantifier. It is called free when it is not bound.

Rough theories (rough knowledge bases) are defined below.

Definition 6 (Rough theories, rough knowledge bases). Finite sets of
rough formulas are called rough theories (or rough knowledge bases). A finite
set of formulas T is understood as a single formula being the conjunction of for-
mulas in T :

∧

A∈T

A.
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Remark 2. In the rest of the paper we will often use the traditional syntax
for relations. For example, rather than writing ∀x∃y

(
(x, y) ∈ r

)
, we will write

∀x∃y
(
r(x, y)

)
.

Definition 7 (Rough literals and facts). By a rough literal we mean an
expression of the form ±r(ē), where ± is the empty symbol or ¬, r is a relation
symbol and ē is a tuple of constants and/or variables. By a rough fact we mean
a rough literal not containing variables.

The following important property, justifying the use of K3 in the context of
rough forgetting, is an immediate consequence of Theorems 8, 11, 15, proved
in [16]. Below:

– AK is the class of Kleene algebras;
– RS is the class of rough Kleene algebras;
– A |=t,f B iff for every assignment w : RF −→ {F,U,T},

• w(A) = T implies w(B) = T, and
• w(B) = F implies w(A) = F.

Corollary 1. For any rough formulas A,B ∈ RF:

A |=AK B iff A |=t,f B iff A |=RS B, (6)

where |=AK and A |=RS are semantic consequence relations for AK and RS,
respectively.

To define the semantics of rough formulas, we first need a generalization of
relational structures to their rough version.

Definition 8 (Rough relational structures). Let U be a set of objects, K
be a rough Kleene algebra over U and n ≥ 1 be a natural number. By an n-
argument rough relation over U we mean any generalized rough set consisting
of tuples of the Cartesian product Un. By a rough relational structure we mean
〈U , r1, . . . , rk〉 where for 1 ≤ i ≤ k, ri is an ni-argument rough relation over U .
One-argument rough relations are called rough concepts and two-argument ones
are called rough roles.

The semantics of rough formulas is defined below, where A(x←a) denotes
the formula obtained from A by substituting all free occurrences of variable x in
A by constant a.

Definition 9 (Semantics of rough formulas). Let U be a set, K =
〈K,∪,∩,−,⊥,�〉 be a rough Kleene algebra over U and R = 〈U , r1, . . . , rk〉 be a
rough relational structure,
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1. The value of a rough formula, vsR : KF −→ K, is inductively defined by:
– for a relation symbol r, vsR(r) def= rR where rR is the relation r in R;3

– vsR(¬A) def= −vsR(A);
– vsR(A ∨ B) def= vsR(A) ∪ vsR(B);
– vsR(A ∧ B) def= vsR(A) ∩ vsR(B);
– vR

(
∃x(A(x))

) def=
⋃

a∈U
vsR

(
A(x←a)

)
;

– vR
(
∀x(A(x))

) def=
⋂

a∈U
vsR

(
A(x←a)

)
.

2. The truth value of a rough formula, vR : RF −→ {F,U,T}, is defined induc-
tively:
– for a Kleene formula A with k free variables, ā ∈ Uk, and vsR(A) =

〈rl, ru〉,

vR
(
ā ∈ A

) def=

⎧
⎨

⎩

T when a ∈ rl;
U when a ∈ ru \ rl;
F when a ∈ U \ ru.

– vR(A ⊆ B) def=
{

T when for all ā ∈ Uk, vR(ā ∈ A) ≤ vR(ā ∈ B);
F otherwise,

where A,B are Kleene formulas with k free variables, and ≤ is the reflex-
ive closure of (3);

– vR(¬A) def= ¬vR(A), for ◦ ∈ {∨,∧}, vR(A ◦ B) def= vR(A) ◦ vR(B),
where the semantics of ¬,∨,∧ on truth values is defined by (4)–(5);

– vR
(
∃x(A(x))

) def= max
a∈U

{
vR

(
A(x←a)

)}
, where max is the maximum

wrt (3);

– vR
(
∀x(A(x))

) def= min
a∈U

{
vR

(
A(x←a)

)}
, where min is the minimum

wrt (3).

We write R |= A to indicate that vR(A) = T. We say that formulas A and
B are equivalent, iff for every R, vR(A) = vR(B).

3 Forgetting and Rough Forgetting

In the rest of the paper, we assume that knowledge bases are given in the form
of finitely axiomatizable theories. As indicated in Definition 6, each theory con-
sisting of a finite set of axioms is understood as a single formula, being the
conjunction of the axioms.

3 To simplify notation, we use the same notation for relation symbols and correspond-
ing rough relations. Similarly, objects in U are identified with constants denoting
them.
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3.1 Forgetting

The following definition, theorem and example have been formulated in [18].

Definition 10 (Forgetting). Let r be a relation symbol and M1, M2 be rela-
tional structures. Then M1∼rM2 denotes the fact that M1 differs from M2 at
most in the interpretation of r.

Let T be a theory. A theory T ′ is a result of forgetting r in T iff for any
relational structure M′, M′ |= T ′ iff there is a relational structure M such that
M |= T and M∼r M′. By forget(T ; r) we denote the result of forgetting r in T .

In the rest of the paper T (r←X) denotes the formula resulting from T (r) by
replacing every occurrence of r in T by X.

Theorem 1. Let r be a relation symbol and X be a second-order variable with
the same number of arguments as r. Then forget(T ; r) ≡ ∃X

(
T (r←X)

)
.

Example 1. Let T ≡
(
(student(joe) ∨ student(john)) ∧ teacher(john)

)
. Note

that:
(
(student(joe) ∨ student(john)) ∧ teacher(john)

)(
student←X

))
=

(X(joe) ∨ X(john)) ∧ teacher(john). (7)

Using Theorem 1 and (7) we have:

forget(T ; student) = ∃X
(
(X(joe) ∨ X(john)) ∧ teacher(john)

)
. (8)

It can be easily shown that the formula ∃X
(
(X(joe)∨X(john))∧teacher(john)

)
,

thus forget(T ; student) too, is equivalent to teacher(john).

Theorem 1 shows that the problem of computing forget(T ; r) can be reduced
to second-order quantifier elimination. For this purpose, in the current paper we
will adapt the techniques of [1,20] to rough theories.4

3.2 Rough Forgetting

Rough forgetting is defined by analogy with Definition 10.

Definition 11 (Rough forgetting). Let r be a relation symbol and R1, R2 be
rough relational structures. Then R1≈r R2 denotes the fact that R1 differs from
R2 at most in the interpretation of r.

Let T be a rough theory. A theory T ′ is a result of rough forgetting r in T
iff for any rough relational structure R′, R′ |= T ′ iff there is a rough relational
structure R such that R |= T and R≈r R′. By rforget(T ; r) we denote the for-
mula being the result of rough forgetting of r in T .

4 For a broad discussion of related second-order quantifier elimination techniques
see [13].
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As in the case of classical forgetting, we have the following theorem analogous
to Theorem 1, where we use a second-order quantifier, whose semantics is defined
by:5

vR
(
∃X

(
T (X)

) def= max
s∈K

{vR
(
T (X←s)

)
}, (9)

where max,min are the maximum and minimum wrt (3).

Theorem 2. Let r be a rough relation symbol and X be a second-order vari-
able with the same number of arguments as r. Then for every rough relational
structure R:

vR
(
rforget(T ; r)

)
= vR

(
∃X

(
T (r←X)

))
.

Comparing to classical forgetting, in rough forgetting we deal with rough
relations rather than with the classical relations. Thus, ∃X in Theorem 2 is
a second-order quantification over rough sets rather than over the classical ones.

4 Eliminating Second-Order Quantifiers from Rough
Formulas

To formalize second-order quantifier elimination methods and related concepts,
we need a notation A(X←B[z̄]) defined as follows. Let A,B be rough formulas
such that A contains an n-argument second-order variable X and z̄ is a tuple of
n first-order variables with free occurrences in formula B. Then:

A(X←B[z̄])

denotes the result of substituting all occurrences of the second-order variable X
by B(z̄), where z̄ in B is respectively substituted by actual parameters of X
(possibly different in different occurrences of X). For example,

(
X(a) ∨ X(b)
︸ ︷︷ ︸

A(X)

)(
X← r(z, y)

︸ ︷︷ ︸
B(z,y)

[z]
)

is (r(a, y) ∨ r(b, y)).

The quantifier elimination techniques we develop are based on a monotonicity
property, defined as follows.

Definition 12 (Monotonicity). Let X be a second-order variable represent-
ing n-argument relations and let z̄ be a tuple consisting of n (first-order) vari-
ables. We say that a rough formula A(X) is monotone in X iff for every rough
relational structure R and rough formulas B,C not containing X and with z̄
being all variables with free occurrences, one of the following properties holds:

vR(B(z̄)) ≤ vR(C(z̄)) implies vR
(
A(X←B[z̄])

)
≤ vR

(
A(X←C[z̄])

)
; (10)

vR(B(z̄)) ≤ vR(C(z̄)) implies vR
(
A(X←C[z̄])

)
≤ vR

(
A(X←B[z̄])

)
. (11)

5 Recall that K is the universe of a rough Kleene algebra K, fixed earlier.
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Properties (10) and (11) are called up-monotonicity and down-monotonicity of
A, respectively.

The following theorem adapts Ackermann’s Lemma [1,9,13] to rough
theories.

Theorem 3. Let X be an n-argument second-order variable. Let z̄ be an n-
tuple of variables, A(z̄) be a rough formula containing no occurrences of X, with
variables z̄ occurring free, and let B(X) be a rough formula with X as a free
variable.

1. If B(X) is down-monotone in X then for every rough relational structure R,

vR
(
∃X

(
∀z̄(A(z̄) ⊆ X(z̄)) ∧ B(X)

))
= vR

(
B

(
X←A[z̄]

))
. (12)

2. If B(X) is up-monotone in X then for every rough relational structure R,

vR
(
∃X

(
∀z̄(X(z̄) ⊆ A(z̄)) ∧ B(X)

))
= vR

(
B

(
X←A[z̄]

))
. (13)

Proof. Let us prove (12).6 Let R be an arbitrary rough relational structure.
We have to prove three equivalences vR(lhs) = τ iff vR(rhs) = τ for τ ∈
{T,U,F}, where lhs and rhs are respectively the letfthand and the righthand
side of Equation (12):

1. (→) Assume that vR
(
∃X

(
∀z̄(A(z̄) ⊆ X(z̄)) ∧ B(X)

))
= T. In this case,

there is X such that vR
(
∀z̄(A(z̄) ⊆ X(z̄))

)
= T and vR

(
B(X)

)
= T. Thus,

by Definition 9, for every z̄, vR
(
A(z̄)

)
≤ vR

(
X(z̄)

)
. By down-monotonicity of

B(X) in X we conclude that vR
(
B

(
X←A[z̄]

))
= T.

(←) Assume that vR
(
B

(
X←A[z̄]

))
= T. To show that there is X satisfying

vR
(
∀z̄(A(z̄) ⊆ X(z̄)) ∧ B(X)

)
= T it suffices to set ∀z̄

(
X(z̄) def= A(z̄)

)
.

2. (→) Assume that vR
(
∃X

(
∀z̄(A(z̄) ⊆ X(z̄)) ∧ B(X)

))
= U. In this case,7

there is X such that vR
(
∀z̄(A(z̄) ⊆ X(z̄))

)
= T and B(X) = U. Thus, by

Definition 9, for every z̄, vR
(
A(z̄)

)
≤ vR

(
X(z̄)

)
. By down-monotonicity of

B(X) in X we conclude that vR
(
B

(
X←A[z̄]

))
≥ U. Suppose that:

vR
(
B

(
X←A[z̄]

))
= T. (14)

However, by 1.(←), (14) implies vR

(
∃X

(
∀z̄(A(z̄) ⊆ X(z̄)) ∧ B(X)

)
)

= T,

contradicting the assumption. Therefore, vR
(
B

(
X←A(z̄)[z̄]

))
= U.

(←) Here, like in the previous point, it suffices to set ∀z̄
(
X(z̄) def= A(z̄)

)
.

6 The proof of (13) is analogous, so we skip it here.
7 Note that ⊆ is two-valued, i.e., its truth value can only be T or F.
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3. (→) Assume that vR
(
∃X

(
∀z̄(A(z̄) ⊆ X(z̄)) ∧ B(X)

))
= F. By points 1.(←)

and 2.(←), the value vR
(
B

(
X←A[z̄])

))
can neither be T nor U (since, as

before, this would contradict the assumption). Therefore we can only con-
clude that vR

(
B

(
X←A[z̄])

))
= F.

4. (←) Here, like in the previous points, it suffices to set ∀z̄
(
X(z̄) def= A(z̄)

)
.

The following theorem adapts the fixpoint theorem proved in [20] to rough
theories, where LfpX

[
A(X)

]
and GfpX

[
A(X)

]
stand for the least and the

greatest fixpoint of A(X) wrt X. Note that we deal with complete lattices and
will always make sure that A(X) is up-monotone in X, such fixpoints exist by
Knaster and Tarski fixpoint theorem.

Theorem 4. Let X be an n-argument second-order variable. Let z̄ be an n-tuple
of variables, A(X, z̄) be a rough formula in which variables X and z̄ are free. Let
A(X, z̄) be up-monotone in X and let B(X) be a rough formula with X being a
free variable.

1. If B(X) is down-monotone in X then for every rough relational structure R,

vR
(
∃X

(
∀z̄(A(X, z̄) ⊆ X(z̄)) ∧ B(X)

))
=

vR
(
B

(
X←LfpX

[
A(X, z̄)[z̄]

]))
.

(15)

2. If B(X) is up-monotone in X then for every rough relational structure R,

vR
(
∃X

(
∀z̄(X(z̄) ⊆ A(X, z̄)) ∧ B(X)

))
=

vR
(
B

(
X←GfpX

[
A(X, z̄)[z̄]

]))
.

(16)

Proof. (Sketch) The proof is similar to the proof of Theorem3. In the case of (15)
it suffices to notice that the least X satisfying the lefthand side of the equality
is defined by the least fixpoint of A(X). In the case of (16) the suitable X is
defined by the greatest fixpoint of A(X).

Remark 3. Theorems 3 and 4 provide us with definitions of the least and the
greatest rough relations interpreting eliminated relation symbols:

– if the lefthand side of (12) is true then the least relation X satisfying the
formula ∀z̄(A(z̄) ⊆ X(z̄)) ∧ B(X) is defined by ∀z̄

(
X(z̄) def= A(z̄)

)
;

– if the lefthand side of (13) is true then the greatest relation X satisfying the
formula ∀z̄(X(z̄) ⊆ A(z̄)) ∧ B(X) is defined by ∀z̄

(
X(z̄) def= A(z̄)

)
;

– if the lefthand side of (15) is true then the least relation X satisfying the for-
mula ∀z̄(A(X, z̄) ⊆ X(z̄))∧B(X) is defined by ∀z̄

(
X(z̄) def= LfpX

[
A(X, z̄)

])
;
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– if the lefthand side of (16) is true then the greatest relation X satisfy-
ing the formula ∀z̄(A(X, z̄) ⊆ X(z̄)) ∧ B(X) is defined by ∀z̄

(
X(z̄) def=

GfpX
[
A(X, z̄)

])
.

These definitions can be used for computing lower and upper approximations of
the eliminated relations.

The following lemma shows monotonicity properties of connectives, useful in
second-order quantifier elimination. It directly follows from Definition 9.

Lemma 1.

1. z̄ ∈ X is up-monotone in X;
2. X ⊆ Y is down-monotone in X and up-monotone in Y ;
3. for ◦ ∈ {∨,∧}, X ◦ Y is up-monotone in X and in Y ;
4. ¬X is down-monotone in X;
5. for Q ∈ {∀,∃}, Qx(X(x)) is up-monotone in X.

5 Applications and Examples

5.1 The Scenario

Below we will use the following notation:

– x, y are variables denoting places and p1, . . . , pn are constants denoting places;
– ice(x) stands for “x being covered by ice”, rain(x) – for “rain in x”, freezing(x)

– for “temperature in x being close to 0oC”, safe(x) – for “x being safe” and
base(x) indicating that “there is a base in place x”;

– connected(x, y) stands for “places x, y being (directly) connected”,
slippery(x, y) – for “connection from x to y being slippery”, and
sconnected(x, y) – for “x, y being safely connected” (perhaps indirectly, via a
chain of connections connected()).

Let us consider a scenario formalized by the following theory T :

∀x∀y
((

ice(x) ∨ ice(y)
)

⊆ slippery(x, y)
)
∧ (17)

∀x∀y
(
(x = y) ∨ connected(y, x)) ⊆ connected(x, y)

)
∧ (18)

∀x∀y
((

(connected(x, y) ∧ ¬slippery(x, y))∨
∃z(sconnected(x, z) ∧ sconnected(z, y))

)
⊆ sconnected(x, y)

)
∧ (19)

∀x
(
base(x) ⊆ safe(x)

)
∧ (20)

∀x
(
safe(x) ⊆

(
base(x) ∨ ∃y(sconnected(x, y) ∧ base(y))

))
∧ (21)

∀x
(
(rain(x) ∧ freezing(x)) ⊆ ice(x)

)
. (22)

Note that the relations used in (17)–(22) are rough relations which can be spec-
ified as a part of the considered theory. For example, given that there are n
places, and:
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– connected()’s lower approximation is {〈p1, p14〉, . . . , 〈p20, pn〉} and its upper
approximation is the complement of {〈p7, p9〉, . . . , 〈p20, p30〉, . . .};

– rain()’s lower approximation is {p3, . . . , p48} and its upper approximation is
the complement of {p1, p2};

– ice()’s lower and upper approximation is {p1, . . . , p17};
– freezing()’s lower and upper approximation is {p1, . . . , pn},

one can add to the theory the following conjunction of rough facts:

connected(p1, p14) ∧ . . . ∧ connected(p20, pn)∧ (23)
¬connected(p7, p9) ∧ . . . ∧ ¬connected(p20, p30) ∧ . . . ∧

rain(p3) ∧ . . . ∧ rain(p48) ∧ ¬rain(p1) ∧ ¬rain(p2)∧ (24)
ice(p1) ∧ . . . ∧ ice(p17) ∧ ¬ice(p18) ∧ . . . ∧ ¬ice(pn)∧ (25)
freezing(p1) ∧ . . . ∧ freezing(pn). (26)

Remark 4. It is important to note that the conjunction of rough facts, as speci-
fied by (23)–(26), does not affect the applicability of the second-order quantifier
elimination techniques provided by Theorems 3 and 4.

5.2 Forgetting Rough Concepts

In the first example, let us forget ice() in the scenario theory above. That is, we
consider rforget(T ; ice()) and, according to Theorem 2, we eliminate ∃X from
formula:

∃X
(

∀x
(
(rain(x) ∧ freezing(x)) ⊆ X(x)

)

︸ ︷︷ ︸
corresponding to (22)

∧

∀x∀y
(
(X(x) ∨ X(y)) ⊆ slippery(x, y)

)

︸ ︷︷ ︸
corresponding to (17)

∧B
)
,

(27)

where B
def=

(
(18)∧(19)∧(20)∧(21)

)
. According to Lemma 1, the part of (27) cor-

responding to (17) is down-monotone in X thus, using equality (12) of Theorem 3,
we obtain the following formula equivalent to (27):

∀x∀y
((

(rain(x) ∧ freezing(x)) ∨ (rain(y) ∧ freezing(y))
)

⊆ slippery(x, y)
)

∧ B.

In the second example, let us forget base() in the scenario theory above. We
consider rforget(T ; base()) and apply Theorem2 to eliminate ∃X from:

∃X
(

∀x
(
X(x) ⊆ safe(x)

)

︸ ︷︷ ︸
corresponding to (20)

∧

∀x
(
safe(x) ⊆

(
X(x) ∨ ∃y(sconnected(x, y) ∧ X(y))

))

︸ ︷︷ ︸
corresponding to (21)

∧C
)
,

(28)
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where C
def=

(
(17)∧(18)∧(19)∧(22)

)
. According to Lemma 1, the part of (28) cor-

responding to (21) is up-monotone in X thus, using equality (13) of Theorem 3,
the equivalent of (28) is ∀x

(
safe(x) ⊆

(
safe(x)∨∃y(sconnected(x, y)∧safe(y))

))
.

Observe that the resulting formula is equivalent to T, so rforget(T ; base()) is
equivalent to C. Indeed, when base() is forgotten, the theory no longer provides
useful information about safe(), too.

5.3 Forgetting Many-Argument Relations

Forgetting rough relations with more than one argument is very similar to forget-
ting rough concepts. To illustrate the use of Theorem4, let us forget connected().
That is, consider rforget(T ; connected()) and, according to Theorem2, we elim-
inate ∃X from:

∃X
(

∀x∀y
(
(x = y ∨ X(y, x)) ⊆ X(x, y)

)

︸ ︷︷ ︸
corresponding to (18)

∧

∀x∀y
((

(X(x, y) ∧ ¬slippery(x, y)) ∨
︸ ︷︷ ︸

corresponding to (19), line 1

(29)

∃z(sconnected(x, z) ∧ sconnected(z, y))
)

⊆ sconnected(x, y)
)

︸ ︷︷ ︸
(19), line 2

∧D
)
,

where D
def=

(
(17) ∧ (20) ∧ (21) ∧ (22)

)
.

According to Lemma 1, the part of (29) corresponding to (19) is down-monotone
in X thus, using equality (15) of Theorem 4, we obtain the following equivalent
of (29):

∀x∀y
((

(LfpX(x, y)
[
x = y ∨ X(y, x)

]
(x, y) ∧ ¬slippery(x, y))∨

∃z(sconnected(x, z) ∧ sconnected(z, y))
)

⊆ sconnected(x, y)
)

∧ D.
(30)

Note that Lfp
[
. . .

]
in (30) is equivalent to x = y, so (30) can further be

simplified to:

∀x∀y
((

(x = y ∧ ¬slippery(x, y))∨
∃z(sconnected(x, z) ∧ sconnected(z, y))

)
⊆ sconnected(x, y)

)
∧ D.

6 Conclusions

In this paper, we provided basic foundations for the specification and application
of a forgetting operator for rough theories. To do this, we defined a logical lan-
guage for rough theories consisting of rough formulas and a semantics for such
formulas containing rough relations, in terms of rough Kleene algebras. Using
intuitions from work with forgetting operators in classical logic, we then specified
a rough forgetting operator in the context of rough relational theories. We then
showed how the constructive generation of the result of applying a forgetting
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operator to a rough theory could be achieved by using second-order quantifier
elimination techniques. These foundations open up opportunities for the use of
these rough logics for KRR applications and the study of additional types of
forgetting operators in this context, in particular of forgetting in rule languages
that use a Kleene logic-based semantics. Also, algorithmic techniques based on
insights using second-order quantifier elimination techniques, are worth investi-
gating as a basis for forgetting operators used with rough relational theories.
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Abstract. A number of low and high-level models of general rough
sets can be used to represent knowledge. Often binary relations between
attributes or collections thereof have deeper properties related to deci-
sions, inference or vision that can be expressed in ternary functional rela-
tionships (or groupoid operations) – this is investigated from a minimalist
perspective in this research by the present author. General approxima-
tion spaces and reflexive up-directed versions thereof are used by her as
the basic frameworks. Related semantic models are invented and an inter-
pretation is proposed in this research. Further granular operator spaces
and variants are shown to be representable as partial algebras through
the method. An analogous representation for all covering spaces does
not necessarily hold. Applications to education research contexts that
possibly presume a distributed cognition perspective are also outlined.

Keywords: General approximation spaces · Up-directedness · Rough
objects · Mereology · Groupoidal semantics · Parthood · Knowledge ·
AI · Higher granular operator spaces · Contamination problem ·
Education research

1 Introduction

In relational approach to general rough sets various granular, pointwise or
abstract approximations are defined, and rough objects of various kinds are
studied [1–6]. These approximations may be derived from information tables or
may be abstracted from data relating to human (or machine) reasoning. A gen-
eral approximation space is a pair of the form S = 〈S,R〉 with S being a set and
R being a binary relation (S and S will be used interchangeably throughout this
paper). Approximations of subsets of S may be generated from these and studied
at different levels of abstraction in theoretical approaches to rough sets. Because
approximations and related semantics are of interest here, the relational system
is much more than a general frame. Often it happens that S is interpreted as a
set of attributes and that any two elements of S may be associated with a third
element through a mechanism of reasoning, by preference, or via decision-making
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guided by an external mechanism. The purpose of this research is to study these
situations from a minimalist perspective. This approach also directly adds to the
concept of knowledge in classical rough sets [7] and in general rough sets [3,8–10]
and therefore the study is referred to as an extension of the same.

Mereology, the study of parts and wholes, has been studied from philosoph-
ical, logical, algebraic, topological and applied perspectives. In the literature on
mereology [9,11,12], it is argued that most ideas of binary part of relations in
human reasoning are at least antisymmetric and reflexive. A major reason for
not requiring transitivity of the parthood relation is because of the functional rea-
sons that lead to its failure (see [11]), and to accommodate apparent parthood
[12]. The study of mereology in the context of rough sets can be approached in
at least two essentially different ways. In the approach aimed at reducing con-
tamination by the present author [1,2,8,10], the primary motivation is to avoid
intrusion into the data by way of additional assumptions about the data relative
to the semantic domain in question. In numeric function based approaches [13],
the strategy is to base definitions of parthood on the degree of rough inclusion
or membership – this differs substantially from the former approach. Rough Y-
systems and granular operator spaces, introduced and studied extensively by the
present author [1,2,8,10,12], are essentially higher order abstract approaches in
general rough sets in which the primitives are ideas of approximations, part-
hood, and granularity. Part-of relations can also be the subject of considerations
mentioned in the first paragraph, and the relation R in a general approxima-
tion space can be a parthood. Specific versions of parthood spaces have been
investigated in a forthcoming joint work by the present author. Relative to that
work new results on parthood spaces are proved, up-directedness is studied in
classical approximation spaces, and the formalism on granular operator spaces
and variants are improved in this research. Applications to education research
contexts are also outlined.

1.1 Background

An information table I, is a tuple of the form

I = 〈S, A, {Va : a ∈ A}, {fa : a ∈ A}〉
with S, A and Va being sets of objects, attributes and values respectively. Infor-
mation tables generate various types of relational or relator spaces which in turn
relate to approximations of different types and form a substantial part of the
problems encountered in general rough sets.

In classical rough sets [7], equivalence relations of the form R are derived
by the condition x, y ∈ S and B ⊆ A, let (x, y) ∈ R if and only if (∀a ∈
B) ν(a, x) = ν(a, y). 〈S, R〉 is then an approximation space. On the power
set ℘(S), lower and upper approximations of a subset A ∈ ℘(S) operators,
(apart from the usual Boolean operations), are defined as per: Al =

⋃
[x]⊆A[x],

Au =
⋃

[x]∩A �=∅[x], with [x] being the equivalence class generated by x ∈ S. If
A,B ∈ ℘(S), then A is said to be roughly included in B (A � B) if and only if
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Al ⊆ Bl and Au ⊆ Bu. A is roughly equal to B (A ≈ B) if and only if A � B
and B � A (the classes of ≈ are rough objects).

The rough domain corresponds to rough objects of specific type, while the
classical and hybrid one correspond to all and mixed types of objects respectively
[2]. Boolean algebra with approximation operators forms a classical rough seman-
tics. This fails to deal with the behavior of rough objects alone. The scenario
remains true even when R in the approximation space is replaced by arbitrary
binary relations. In general, ℘(S) can be replaced by a set with a parthood
relation and some approximation operators defined on it as in [2]. The associ-
ated semantic domain is the classical one for general Rough sets. The domain
of discourse associated with roughly equivalent sets is a rough semantic domain.
Hybrid domains can also be generated and have been used in the literature [1].

The problem of reducing confusion among concepts from one semantic
domain in another is referred to as the contamination problem. Use of numeric
functions like rough membership and inclusion maps based on cardinalities of
subsets are also sources of contamination. The rationale can also be seen in the
definition of operations like 	 in pre-rough algebra (for example) that seek to
define interaction between rough objects but use classical concepts that do not
have any interpretation in the rough semantic domain. Details can be found in
[14]. In machine learning practice, whenever inherent shortcomings in algorith-
mic framework being used are the source of noise then the frameworks may be
said to be contaminated.

Key concepts used in the context of general rough sets (and also high granular
operator spaces [1,10]) are mentioned next.

– A crisp object is one that has been designated as crisp or is an approximation
of some other object.

– A vague object is one whose approximations do not coincide with itself or
that which has been designated as a vague object.

– An object that is explicitly available for computations in a rough semantic
domain (in a contamination avoidance perspective) is a discernible object.

– Many definitions and representations are associated with the idea of rough
objects. From the representation point of view these are usually functions
of definite or crisp or approximations of objects. Objects that are invariant
relative to an approximation process are said to be definite objects. In rough
perspectives of knowledge [7,8], algebraic combinations of definite objects (in
some sense) or granules are assumed to correspond to crisp concepts, and
knowledge to specific collections of crisp concepts. It should be mentioned
that non algebraic definitions are excluded in the present author’s axiomatic
approach [1,2,10].

Definition 1. A partial algebra (see [15]) P is a tuple of the form

〈P , f1, f2, . . . , fn, (r1, . . . , rn)〉
with P being a set, fi’s being partial function symbols of arity ri. The interpre-
tation of fi on the set P should be denoted by f

P
i , but the superscript will be
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dropped in this paper as the application contexts are simple enough. If predicate
symbols enter into the signature, then P is termed a partial algebraic system.

In this paragraph the terms are not interpreted. For two terms s, t, s
ω= t

shall mean, if both sides are defined then the two terms are equal (the quantifi-
cation is implicit). ω= is the same as the existence equality (also written as e=)

in the present paper. s
ω∗
= t shall mean if either side is defined, then the other

is and the two sides are equal (the quantification is implicit). ω∗
= is written as s=

in [18]). Note that the latter equality can be defined in terms of the former as

(s ω= s −→ s
ω= t)& (t ω= t −→ s

ω= t)

2 Relations and Groupoids

Under certain conditions, partial or total groupoid operations can correspond to
binary relations on a set.

Definition 2. In a general approximation space S = 〈S,R〉 consider the follow-
ing conditions:

(∀a, b)(∃c)Rac & Rbc (up-dir)
(∀a)Raa (reflexivity)

(∀a, b)(Rab&Rba −→ a = b) (anti-sym)

If S satisfies up-dir, then it shall said to be a up-directed approximation space.
If it satisfies the last two then it shall said to be a parthood space and a up-
directed parthood space when it satisfies all three.

The condition up-dir is equivalent to the set UR(a, b) = {x : Rax&Rbx}
being nonempty for every a, b ∈ S and is also referred to as directed in the
literature. It is avoided because it may cause confusion.

The problem of rewriting the semantic content of binary relations of different
kinds using total or partial operations has been of much interest in algebra (for
example [16,17]). Results on using partial operations for the purpose are of more
recent origin [18,19].

Definition 3. If R is a binary relation on S, then a type-1 partial groupoid
operation (1PGO) determined by R is defined as follows:

(∀a, b) a ◦ b =

⎧
⎨

⎩

b if Rab
c c ∈ UR(a, b)&¬Rab
undefined otherwise

If R is up-directed, then the operation is total. In this case, the collection of
groupoids satisfying the condition will be denoted by B(S) and an arbitrary ele-
ment of it will be denoted by B(S). If R is not up-directed, then the collection
of partial groupoids associated will be denoted by Bp(S). The term ‘a ◦ b’ will be
written as ‘ab’ for convenience.
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Theorem 1. The partial operation ◦ corresponds to a binary relation R if and
only if

(∀a, b)(∃z)(ab = b & az = bz = z → a(ab) = b(ab) = ab)
(∀a, b, c)(ab = c → c = b or (∃z)az = bz = z)

The following results have been proved for relational systems in [18,19].

Theorem 2. For a groupoid A, the following are equivalent

– A reflexive up-directed approximation space S corresponds to A
– A satisfies the equations

aa = a& a(ab) = b(ab) = ab

Definition 4. If A is a groupoid, then two general approximation spaces corre-
sponding to it are �(A) = 〈A,RA〉 and �∗(A) = 〈A,R∗

A〉 with

RA = {(a, b) : ab = b}
R∗

A =
⋃

{(a, ab), (b, ab)}

Theorem 3. – If A is a groupoid then �∗(A) is up-directed.
– If a groupoid A |= a(ab) = b(ab) = ab then �(A) = �∗(A).
– If S is an up-directed approximation space then �((B)(S)) = S.

Theorem 4. If S = 〈S,R〉 is a up-directed approximation space, then

– R is reflexive ⇔ B(S) |= aa = a.
– R is symmetric ⇔ B(S) |= (ab)a = a.
– R is transitive ⇔ B(S) |= a((ab)c) = (ab)c.
– If B(S) |= ab = ba then R is antisymmetric.
– If B(S) |= (ab)a = ab then R is antisymmetric.
– If B(S) |= (ab)c = a(bc) then R is transitive.

Morphisms between up-directed approximation spaces are preserved by cor-
responding groupoids in a nice way. This is an additional reason for investigating
the algebraic perspective.

3 Up-Directed General Approximation Spaces

In general, partial/quasi orders, and equivalences need not satisfy up-dir. When
they do satisfy the condition, then the corresponding general approximation
spaces will be referred to as up-directed general approximation spaces.

For any element a ∈ S, the neighborhood granule [a] and inverse neighbor-
hood [a]i associated with it in a general approximation space shall be given by
[a] = {x : Rxa} and [a]i = {x : Rax} respectively.
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Definition 5. For any subset A ⊆ S, the following approximations can be
defined:

Al =
⋃

{[a] : [a] ⊆ A} (lower)

Au =
⋃

{[a] : ∃z ∈ [a] ∩ A} (upper)
(1)

If inverse neighborhoods are used instead, then the corresponding approximations
will be denoted by li and ui respectively.

3.1 Classical Approximation Spaces

If an approximation space is up-directed, then it is essentially redundant with
respect to the relation. Proof of the following theorem is not hard and can be
found in a forthcoming paper due to the present author.

Theorem 5. Let S be an approximation space, then all of the following hold:

– If R is up-directed, then S2 = R.
– If R is not up-directed, then the groupoid operation of Definition 3 is partial

and it satisfies
(∀a, b, c)(ab = c −→ b = c)

– For each x ∈ S, [x] is closed under ◦ and so every equivalence class is a total
groupoid that satisfies:

(∀a, b, c) aa = a& (ab)a = a& a((ab)c) = (ab)c

Definition 6. On the power set ℘(S), the partial operation ◦ induces a total
operation as in Eq. 2.

(∀A,B ∈ ℘(S))A � B = {x : (∃a ∈ A)(∃b ∈ B) ab = x} (2)

Proposition 1. If S is an approximation space then
〈
℘(S),∪,∩,c , l, u, ◦,⊥,�

〉

is a Boolean algebra with operators enhanced by a groupoid operation that satisfies
all of the following (apart from the well known conditions):

(∀a, b) aa ∩ a = aa& ab ∩ b = ab (pre-refl)
(∀a, b, c) ((a ∪ b)c) ∩ ((ac) ∪ (bc)) = (ac) ∪ (bc) (pre-mo)

(∀a, b, c) (a ∪ b = b −→ (ac) ∪ (bc) = bc) (mo)

(∀a, b) (ab)l ∪ bl = bl (l-mo)
(∀a, b) (ab)u ∩ bu = (ab)u (u-mo)

Proof. – Note that by the definition of the partial groupoid operation, for any
two sets a, b ∈ ℘(S) ab must be a subset of b. So the pre-refl property holds.

– pre-mo is again a consequence of pre-refl.
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– If a is a subset of b, then ac must again be a subset of bc which in turn would
be a subset of c. This can be verified by a purely set-theoretic argument.

– ab must be a subset of b. So (ab)l must be subset of bl. It follows that their
union must be the latter.

Because classes are closed under the groupoid operation, it follows that

Theorem 6. On the set of definite elements δ(S) of an approximation space S,
the induced operations from the algebra in Proposition 1 again forms a Boolean
subalgebra with groupoid operations that satisfies reflexivity (∀a) aa = a.

It should be noted that up-directedness is not essential for a relation to be
represented by groupoid operations. The following construction that differs in
part from the above strategy can be used for partially ordered sets as well, and
has been used by the present author in [20] in the context of knowledge gen-
erated by approximation spaces. The method relates to earlier algebraic results
including [21,22]. The groupoidal perspective can be extended for quasi ordered
sets.

If S = 〈S,R〉 is an approximation space, then define (for any a, b ∈ S)

a � b =
{

a if Rab
b if ¬Rab

(3)

Relative to this operation, the following theorem (see [21]) holds:

Theorem 7. 〈S, �〉 is a groupoid that satisfies the following axioms (braces are
omitted under the assumption that the binding is to the left, e.g. ‘abc’ is the same
as ‘(ab)c’):

xx = x (E1)
x(az) = (xa)(xz) (E2)

xax = x (E3)
azxauz = auz ( E4)

u(azxa)z = uaz (E5)

3.2 Parthood Spaces

Definition 7. Let S be a parthood space, then let Slu = {x : x = al or x =
au & a ∈ S}. On Slu, the following operations can be defined (apart from l and
u by restriction):

a � b = (a ∩ b)l (Cap)
a � b = (a ∪ b)u (Cup)
⊥ = ∅ ; � = Su (iu34)

The resulting algebra Slu =
〈
Slu,�,�,∪, l, u,⊥,�〉

will be called the algebra
of approximations in a up-directed space (UA algebra). If R is a up-directed
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parthood relation or a reflexive up-directed relation respectively, then it shall
said to be a up-directed parthood algebra of approximations (AP algebra) or a
reflexive up-directed algebra of upper approximations (AR algebra) respectively.

Theorem 8. A AP algebra Slu satisfies all of the following (universal quanti-
fiers have been omitted):

a � a = a& (a � a) � a = a (idp3)
a � a = au (qidp4)

a � b = b � a& a � b = b � a (com12)
a � (b � a) = a (habs)

a � (b � c) = (a � bu) � cu (qas1)
(a � (b � c)) � ((a � b) � c) =

((a � a) � (b � b)) � (c � c � c) (qas0)

Proof. idp3 a � a = (a ∩ a)l = al = a and a � a = au and au ∩ a = a
qidp4 a � a = (a ∪ a)u = au.
com12 This follows from definition.
habs a � (b � a) = (a ∩ (b ∪ a)u)l = ((a ∩ au) ∪ (a ∩ bu))l which is equal to

(a ∪ (a ∩ bu))l = al = a
qas1 a� (b� c) = (a∪ (b∪ c)u)u = (au ∪ buu ∪ cuu) and this is (a∪ bu))u ∪ cuu =

(a � bu) � cu

qas0 This can be proved by writing all terms in terms of ∪. In fact (a � (b �
c)) � ((a � b) � c) = auuu ∪ buuu ∪ cuuu. The expression on the right can be
rewritten in terms of � by qidp4.

The above two theorems in conjunction with the properties of approximations
on the power set, suggest that it would be useful to enhance UA-, AP-, and AR-
algebras with partial operations for defining an abstract semantics.

Definition 8. A partial algebra of the form

S∗
lu =

〈
Slu,�,�,∪,�,κ , l, u,⊥,�〉

will be called the algebra of approximations in a up-directed space (UA partial
algebra) whenever Slu =

〈
Slu,�,�,∪, l, u,⊥,�〉

is a UA algebra and � and
κ are defined as follows (∩ and c being the intersection and complementation
operations on ℘(S)):

(∀a, b ∈ Slu) a � b =
{

a ∩ b if a ∩ b ∈ Slu

undefined otherwise (4)

(∀a ∈ Slu) aκ =
{

ac if ac ∈ Slu

undefined otherwise (5)

If R is an up-directed parthood relation or a reflexive up-directed relation
respectively, then it shall said to be a up-directed parthood partial algebra of
approximations (AP partial algebra) or a reflexive algebra of upper approxima-
tions (AR partial algebra) respectively.
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Theorem 9. If S is an up-directed approximation space, then its associ-
ated enhanced up-directed parthood partial algebra S∗

lu = 〈Slu,�,�,∪,�, ◦,κ ,
l, u,⊥,�〉 satisfies all of the following:

〈
Slu,�,�,∪, l, u,⊥,�〉

is a AP algebra (app1)
a � a = a& a � ⊥ = ⊥& a � � = a (app2)

a � b
ω= b � a& a � (b � c) ω= (a � b) � c (app3)

a � au = a = a � al & aκκ ω= a (app4)

a � (b ∪ c) ω= (a � b) ∪ (a � c) (app5.0)

a ∪ (b � c) ω= (a ∪ b) � (a ∪ c) (app5.1)

(a � b)κ ω= aκ ∪ bκ & (a ∪ b)κ ω= aκ � bκ (app6)

◦ is the partial groupoid operation induced from its power set.

Proof. The theorem follows from the previous theorems in this section.

If the parthood relation is both up-directed and also transitive, then it is
possible to have an induced groupoid operation on the set of definite elements
(δliui

(S) = {x : xl
i = xu

i &x ∈ ℘(S)}. If A,B ∈ δlu(S), then let A · B = {ab a ∈
A,& b ∈ B}. δlu(S) is closed under set union and intersection, and the pseudo-
complementation + is defined from [x]+i =

⋃{A : A ∈ δlu(S)&A∩[x]i=∅ for any
x ∈ S.

Theorem 10. If S is an up-directed parthood space in which R is transitive,
then

〈
δliui

(S), ·,∩,∪,+ , 0, 1
〉
is a Heyting algebra with an extra groupoid opera-

tion induced by the groupoid operation on S.

Proof. The proof that
〈
δliui

(Q),∩,∪,+ ,⊥,�
〉

is a Heyting algebra is analogous
to the proof in [23].

If a, b ∈ [x]i, for an inverse neighborhood granule, then there exists a c such
that Rac and Rbc, but by the definition of [x], c ∈ [x] follows. Therefore [x]i is
a subgroupoid of S for each x ∈ S.

Suppose A,B ∈ δliui
(S), then (as any element in these sets must be in some

granules) for any a ∈ [x]i ⊆ A and b ∈ [z]i ⊆ B, ab is in the order filter generated
by [x] ∪ [z]. So AB must be an element of δliui

(S). This essentially proves the
theorem.

3.3 Examples, Meaning and Interpretation

Abstract examples are easy to construct for the situations covered and many
are available in other papers [11,12,18] by the present author and others. So an
application strategy to student-centric learning (a constructive teaching method
in which students learn by explorative open-ended activities) is proposed. It
should be noted that education researchers adhere to various ideas of distributed
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cognition (that the environment has a key role in cognitive process that are
inherently personal [24]) and so the basic assumptions of formal concept analysis
may be limiting [25]. Suppose a student has access to a set K of concepts and
is likely to arrive at a another set of potentially vague concepts H. Teachers
typically play the role of facilitators, are not required to be the sole source of
knowledge, and would need to direct the activity to an improved set of concepts
H+. In the construction of these sets, groupoidal operations can play a crucial
role. Equations of the form ab = c can be read in terms of concepts – c can be a
better relevant concept for the activity in comparison to the a and b. Note that no
additional order structure on the set of concepts is presumed. This is important
also because concepts may not be structured as in lattice-theoretic perspective of
formal concept analysis or classical rough sets.

In classical rough sets, definite concepts correspond to approximations (def-
inite objects). From the present study, it can be seen that the induced total
groupoid operation on the set of definite objects is the part of a concept b that
can be read from another concept a. This interpretation is primarily due to
the relation R being symmetric and reflexive. When the approximation space is
up-directed, then it happens that every object is indiscernible from every other
object. So the property of up-directedness is not of much interest in the classical
context. The � operation concerns choice between two things and so is relevant
for pairwise comparisons [26].

In parthood and other up-directed general approximation spaces, a groupoid
operation typically corresponds to answering the question which attribute or
object is preferable to two given attributes or objects? Therefore collections of all
possible definable groupoid operations correspond to all answers. Ideas of vision
then must be about choices of subsets or subclasses among possible definable
operations. Formally,

Definition 9. A vision for an up-directed approximation space, S is a subset
V(S) of B(S).

4 Formalism of Higher Granular Operator Spaces

Granular operator spaces and variants [1,8,10,27] are abstract frameworks for
extending granularity and parthood in the context of general rough sets, and are
also variants of rough Y-systems studied by the present author [2]. In this section,
it will be shown that all types of granular operator spaces and variants can be
transformed into partial algebras that satisfy additional conditions. This is also
nontrivial because all covering approximation spaces cannot be transformed in
the same way.

Definition 10. A High General Granular Operator Space (GGS) S shall be a
partial algebraic system of the form S = 〈S, γ, l, u,P,≤,∨,∧,⊥,�〉 with S being
a set, γ being a unary predicate that determines G (by the condition γx if and
only if x ∈ G) an admissible granulation(defined below) for S and l, u being
operators : S �−→ S satisfying the following (S is replaced with S if clear from the
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context. ∨ and ∧ are idempotent partial operations and P is a binary predicate.
Further γx will be replaced by x ∈ G for convenience.):

(∀x)Pxx (PT1)
(∀x, b)(Pxb & Pbx −→ x = b) (PT2)

(∀a, b)a ∨ b
ω= b ∨ a ; (∀a, b)a ∧ b

ω= b ∧ a (G1)

(∀a, b)(a ∨ b) ∧ a
ω= a ; (∀a, b)(a ∧ b) ∨ a

ω= a (G2)

(∀a, b, c)(a ∧ b) ∨ c
ω= (a ∨ c) ∧ (b ∨ c) (G3)

(∀a, b, c)(a ∨ b) ∧ c
ω= (a ∧ c) ∨ (b ∧ c) (G4)

(∀a, b)(a ≤ b ↔ a ∨ b = b ↔ a ∧ b = a) (G5)

(∀a ∈ S)Pala & all = al & Pauauu (UL1)

(∀a, b ∈ S)(Pab −→ Palbl & Paubu) (UL2)

⊥l = ⊥ & ⊥u = ⊥ & P�l� & P�u� (UL3)
(∀a ∈ S)P⊥a & Pa� (TB)

Let P stand for proper parthood, defined via Pab if and only if Pab & ¬Pba).
A granulation is said to be admissible if there exists a term operation t formed
from the weak lattice operations such that the following three conditions hold:

(∀x∃x1, . . . xr ∈ G) t(x1, x2, . . . xr) = xl

and (∀x) (∃x1, . . . xr ∈ G) t(x1, x2, . . . xr) = xu, (Weak RA, WRA)

(∀a ∈ G)(∀x ∈ S) (Pax −→ Paxl), (Lower Stability, LS)

(∀x, a ∈ G)(∃z ∈ S)Pxz, & Paz & zl = zu = z, (Full Underlap, FU)

The conditions defining admissible granulations mean that every approximation
is somehow representable by granules in a algebraic way, that every granule coin-
cides with its lower approximation (granules are lower definite), and that all pairs
of distinct granules are part of definite objects (those that coincide with their own
lower and upper approximations). Special cases of the above are defined next.

Definition 11. – In a GGS, if the parthood is defined by Pab if and only if
a ≤ b then the GGS is said to be a high granular operator space GS.

– A higher granular operator space (HGOS) S is a GS in which the lattice
operations are total.

– In a higher granular operator space, if the lattice operations are set theoretic
union and intersection, then the HGOS will be said to be a set HGOS.

Theorem 11. In the context of Definition 10, the binary predicates P can be
replaced by partial two-place operations 1PGO � and γ is replaceable by a total
unary operation h defined as follows:

hx =
{

x if γx
⊥ if ¬γx

(6)
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Consequently S
+ = 〈S, h, l, u, �,∨,∧,⊥,�〉 is a partial algebra that is seman-

tically (and also in a category-theoretic sense) equivalent to the original GGS S.

Proof. Because of the restriction UL3 on ⊥ and the redundancy of ≤ (because
of G5), the result follows.

Definition 12. The partial algebra formed in the above theorem will be referred
to a high granular operator partial algebra (GGSp).

Problem 1. All covering approximation spaces considered in the rough set liter-
ature actually assume partial Boolean or partial lattice theoretical operations.
Some authors (especially in modal logic perspectives) [3,5,28] presume that all
Boolean operations are admissible – this view can be argued against. A natural
question is Are the modal logic semantics themselves only a possible interpreta-
tion of the actuality? All this suggests the problem of finding minimal operations
involved in the context.

Because all covering approximation spaces do not use granular approxima-
tions in the sense mentioned above, it follows that they do not form GGSo
always. In the next example, the applicability of the above to activity based
mathematics teaching is considered.

Example 1. In constructivist activity based learning, teachers almost always set
learning goals ahead of initiating activities. Therefore knowledge constructed in
such contexts are constrained by concept maps (typically directed) accessible
to the teacher in question [29–31]. As a consequence desired concept granules
(and explicit or implicit ontology) can be specified by teachers. But students and
teachers are likely to make use of a number of additional vague or exact concepts
in any specific activity. In addition, general ideas of parthood as specified in the
definition of GGS can be interpreted over the collection of vague and exact
concepts. It may even make sense to define additional groupoid operations apart
from the ones induced by the relations. [30,31] do not make room for vague
concepts and presume a transitive parthood that operates over the teacher’s
goals.

For example, in [32], the goal of the game activity is to understand and
apply Pythagoras theorem in few situations. The board game (see Fig. 1) involves
students throwing a pair of die, form the square root of the sum of the squares
of the values obtained and round off the result to a whole number and advance
that many squares on the board. The goal of the game (for students) is to reach
the finish block. It can be seen that concepts such as sample space, events, floor
and ceiling functions, and vague variants thereof, incorrect concepts of biased
dies are all part of the potential learning space. All these can be approximated
(irrespective of consequence) relative to the teacher’s specification of granules.
Moreover they may improperly specify the relation between concepts that are of
lesser interest to the lesson plan.

It is not hard to see that the generalized scenario described in the last two
paragraphs can be modeled by a GGSp.

An expanded version of the last example will appear separately.



Functional Extensions of Knowledge Representation in General Rough Sets 31

Fig. 1. Board game

5 Further Directions and Remarks

In this research methods of representing important ideas of decisions or prefer-
ences inherent in information tables (related to data including those relating to
human reasoning) have been invented and the semantics considered in two types
of rough sets. A representation theorem is proved for transitive parthood spaces.
Further the formalism of higher granular operator spaces and variants are shown
to be representable as partial algebras. Examples illustrating key aspects of the
research in education research contexts have also been constructed.
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Among the many directions of research motivated by this paper, the following
are more important: a finer algebraic classification of the derived groupoids and
partial groupoids, representation of derived partial algebras as quasi varieties,
detailed application to education research contexts (especially in the direction
indicated in Example 1), and in self-organizing systems.

Acknowledgement. The present author would like to thank the reviewers for useful
remarks that led to improvement of the presentation of this research.
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Cham (2018). https://doi.org/10.1007/978-3-030-01162-8 2

5. Pagliani, P.: Three lessons on the topological and algebraic hidden core of rough
set theory. In: Mani, A., Cattaneo, G., Düntsch, I. (eds.) Algebraic Methods in
General Rough Sets. TM, pp. 337–415. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-01162-8 4

6. Cattaneo, G., Ciucci, D.: Algebraic methods for orthopairs and induced rough
approximation spaces. In: Mani, A., Düntsch, I., Cattaneo, G. (eds.) Algebraic
Methods in General Rough Sets. Trends in Mathematics, pp. 553–640. Birkhäuser,
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Wang, G., Skowron, A., Yao, Y., Śl ↪ezak, D., Polkowski, L. (eds.) Thriving Rough
Sets. SCI, vol. 708, pp. 237–268. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-54966-8 12

9. Mani, A.: Algebraic semantics of proto-transitive rough sets. In: Peters, J.F.,
Skowron, A. (eds.) Transactions on Rough Sets XX. LNCS, vol. 10020, pp. 51–
108. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53611-7 3

10. Mani, A.: High Granular Operator Spaces and Less-Contaminated General Rough
Mereologies, pp. 1–77 (2019, forthcoming)

11. Seibt, J.: Transitivity. In Burkhardt, H., Seibt, J., Imaguire, G., Gerogiorgakis,S.
(eds.) Handbook of Mereology, pp. 570–579. Philosophia Verlag, Germany (2017)

12. Mani, A.: Dialectical rough sets, parthood and figures of opposition-I. In: Peters,
J.F., Skowron, A. (eds.) Transactions on Rough Sets XXI. LNCS, vol. 10810, pp.
96–141. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-58768-3 4

https://doi.org/10.1007/978-3-030-01162-8_3
https://doi.org/10.1007/978-3-030-01162-8_3
https://doi.org/10.1007/978-3-642-31903-7_4
https://doi.org/10.1007/978-1-4020-8622-9
https://doi.org/10.1007/978-3-030-01162-8_2
https://doi.org/10.1007/978-3-030-01162-8_4
https://doi.org/10.1007/978-3-030-01162-8_4
https://doi.org/10.1007/978-3-030-01162-8_7
https://doi.org/10.1007/978-3-319-54966-8_12
https://doi.org/10.1007/978-3-319-54966-8_12
https://doi.org/10.1007/978-3-662-53611-7_3
https://doi.org/10.1007/978-3-662-58768-3_4


Functional Extensions of Knowledge Representation in General Rough Sets 33

13. Polkowski, L.: Approximate Reasoning by Parts. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22279-5

14. Mani, A.: Contamination-free measures and algebraic operations. In: 2013 IEEE
International Conference on Fuzzy Systems (FUZZ), pp. 1–8. IEEE (2013)

15. Ljapin, E.S.: Partial Algebras and Their Applications. Academic, Kluwer (1996)
16. Poschel, R.: Graph algebras and graph varieties. Algebra Universalis 27, 559–577

(1990)
17. Chajda, I., Langer, H.: Directoids: An Algebraic Approach to Ordered Sets. Hel-

dermann, Lemgo (2011)
18. Chajda, I., Langer, H., Sevcik, P.: An algebraic approach to binary relations. Asian

Eur. J. Math. 8(2), 1–13 (2015)
19. Chajda, I., Langer, H.: Groupoids assigned to relational systems. Math. Bohemica

138, 15–23 (2013)
20. Mani, A.: Towards logics of some rough perspectives of knowledge. In: Suraj, Z.,

Skowron, A. (eds.) Intelligent Systems Reference Library dedicated to the memory
of Prof. Pawlak ISRL. Intelligent Systems Reference Library, vol. 43, pp. 419–444.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-30341-8 22

21. Jezek, J., Mcenzie, R.: Variety of equivalence algebras. Algebra Universalis 45,
211–219 (2001)

22. Freese, R., Jezek, J., Jipsen, J., Markovic, P., Maroti, M., Mckenzie, R.: The variety
generated by order algebras. Algebra Universalis 47, 103–138 (2002)

23. Kumar, A., Banerjee, M.: Algebras of definable and rough sets in quasi order-
based approximation spaces. Fundamenta Informaticae 141(1), 37–55 (2015)

24. Werner, K.: Enactment and construction of the cognitive niche: toward an ontology
of the mind-world connection. Synthese 197, 1313–1341 (2020). https://doi.org/
10.1007/s11229-018-1756-1

25. Wille, R.: FCA as mathematical theory of concepts and concept hierarchies. In:
Ganter, B., et al. (eds.) Formal Concept Analysis. LNAI, vol. 3626, pp. 1–33.
Springer (2005)
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Abstract. In the authors’ previous research, a possible usage of the
correlation clustering in rough set theory was investigated. Correlation
clustering is based on a tolerance relation and its output is a partition.
The system of granules can be derived from the partition and as a result,
a new approximation space appears. This space focuses on the similar-
ity (represented by a tolerance relation) itself and it is different from
the covering type approximation space relying on a tolerance relation.
In real-world applications, the number of objects is very high. So it can
be effective only if a portion of the data points is used. Previously we
provided a method that chooses the necessary number of objects that
represent the data set. These members are called representatives and it
can be useful to apply them in the approximation of an arbitrary set. A
new approximation pair can be defined based on the representatives. In
this paper, some very important properties are checked for this approx-
imation pair and the system of granules.

Keywords: Rough set theory · Correlation clustering · Set
approximation · Representatives · Granules

1 Introduction

Nowadays a huge amount of data is stored in databases. The stored data is
usually represented by objects with (maybe different) properties. Properties are
handled in two steps: attributes and the corresponding attribute values. Gen-
erally, a finite number of attributes and a finite number of the corresponding
attribute values are used. Usually, there are more objects than attribute values.
Therefore, more than one object may have the same attribute values (not con-
sidering the IDs), so they are indiscernible based on the available knowledge.
Naturally, indiscernible objects have to be treated in the same way. Pawlak’s
original system of rough sets shows the consequences of indiscernibility. In many
practical cases, not only indiscernible objects have to be treated in the same way,
but objects with the same attribute values of some (and not all) attributes. This
is one of the theoretical bases of the generalizations of Pawlak’s original theory.
Some objects have to be treated in the same way. In rough set theory the objects,
that are treated in the same way, belong to a base set. In our previous study, we
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examined whether the partition, generated by correlation clustering, can be con-
sidered as the system of base sets in an application. Correlation clustering is a
clustering method in data mining which creates a partition of the input data set
based on a tolerance relation (representing similarity). The clusters gained this
way contain similar objects. In our previous paper [11,12] we showed that it is
worth to generate the system of base sets from the partition. This way, the base
sets contain objects that are typically similar to each other and the generated
approximation space (similarity based rough sets) possesses several very useful
properties. Informally, in granular computing a granule contains objects which
have to be treated in the same way. Granules play—as the most fundamental
concept—a crucial role in granular computing. It means that granules (and not
objects belonging to them) are in the focus of investigations. The clusters gen-
erated by the correlation clustering can be considered as granules. In order to
use granules, one has to give their names. In order to preserve the connection
between a granule and its objects, the name of the granule can be an object
belonging to the granule. This object can represent the given granule. In a very
general case to choose representatives is not a trivial problem. In the case of a
system relying on an indiscernible relation any object of a granule can be its
name, can represent the corresponding granule. When similarity (represented
by a tolerance relation) is used to get granules, then the method of correla-
tion clustering gives a possibility to define representatives [5,10]. In [10] a new
approximation pair is proposed that is completely based on the representatives.
Professor Mihir Chakraborty proposed some very important properties of gran-
ules (presented at the International Workshop on Modern and Unconventional
Approaches to Reasoning and Computing in 2017). In this paper, we examined
these properties along with some other ones for our introduced granules. We
also show that the clusters gained from the correlation clustering satisfy all the
minimal properties of the granules. Therefore, the clusters can be really treated
as granules. The structure of the paper is the following: we begin by introducing
the theoretical background of rough set theory. In Sect. 3 correlation clustering
is defined. In Sect. 4 we present our previously introduced approximation space.
In Sect. 5 we show the definition of the approximation pairs that are based on
the representatives. After this, we show which of the defined properties hold for
the proposed approximation pair. Finally, we conclude the results.

2 Theoretical Background

From the granular point of view a Pawlakian approximation space [13–15] is
an ordered 5-tuple 〈U,G,D, l, u〉 generated by an equivalence relation R (which
represents indiscernibility), where:

– U �= ∅ is the universe of objects
– G is the set of granules for which the following properties hold:

• G �= ∅
• if G ∈ G then G ⊆ U and G �= ∅
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• G = {G | G ⊆ U, and x, y ∈ G if xRy}
– D is the set of definable sets which can be given by the following inductive

definition:
1. G ⊆ D;
2. ∅ ∈ D;
3. if D1,D2 ∈ D, then D1 ∪ D2 ∈ D.

– The functions l, u form a Pawlakian approximation pair 〈l, u〉 if the followings
are true for an arbitrary set S ⊆ U :
1. Dom(l) = Dom(u) = 2U

2. l(S) =
⋃{G | G ∈ G and G ⊆ S};

3. u(S) =
⋃{G | G ∈ G and G ∩ S �= ∅}.

3 Correlation Clustering

Cluster analysis is an unsupervised learning method in data mining. The goal is
to group the objects so that the objects in the same group are more similar to
each other than to those which are in other groups. In many cases, the similarity
is based on the attribute values of the objects. Although there are some cases
when the properties of objects can be difficult to be quantified, but something
about their similarity or dissimilarity can still be said. For example, let’s consider
the humans. We cannot describe someone’s looks using only a number, but we
can make simple statements on whether two people are similar or dissimilar.
These opinions are dependent on the person making the statements. Someone
can say that two people are similar while others treat them as dissimilar. If
we want to formulate the similarity and dissimilarity using mathematics, we
need a tolerance relation (i.e. a reflexive and symmetric relation). If this relation
holds for two objects, we can say that they are similar. If this relation does not
hold, then they are dissimilar. This relation is reflexive because every object is
similar to itself. It is also symmetric because if some object is similar to another
one, then the similarity is equivalent the other way round. However transitivity
does not necessarily hold. If we take a human and a mouse, then due to their
inner structure they are considered similar. This is the reason mice are used in
many drug experiments. A human and a mannequin are also similar, this time
according to their shape. This is why these dolls are used in display windows.
However, a mouse and a mannequin are dissimilar (except that both are similar
to the same object). Correlation clustering is a clustering technique based on a
tolerance relation [6,7,17].

The task is to find an R ⊆ U ×U equivalence relation which is closest to the
tolerance relation. A (partial) tolerance relation R [8,16] can be represented by
a matrix M . Let matrix M = (mij) be the matrix of the partial relation R of
similarity: mij = 1 if objects i and j are similar, mij = −1 if objects i and j are
dissimilar, and mij = 0 otherwise.

A relation is called partial if there exist two elements (i, j) such that mij = 0.
It means that if we have an arbitrary relation R ⊆ U × U we have two sets of
pairs. Let Rtrue be the set of those pairs of elements for which R holds and
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Rfalse be the one for which R does not hold. If R is partial, then Rtrue ∪Rfalse

is a proper subset of U × U . If R is total, then Rtrue ∪ Rfalse = U × U .
A partition of a set S is a function p : S → N. Objects x, y ∈ S are in the

same cluster at partitioning p, if p(x) = p(y). For a conflict one of the following
two cases holds:

– Two dissimilar objects end up in the same cluster
– Two similar objects end up in different clusters

The cost function is the number of these disagreements. The formal definition
can be seen in [11]. For a relation, the partition with the minimal cost function
value is called optimal. Solving a correlation clustering problem is equivalent to
minimising its cost function for the fixed relation. If the cost function’s value
is 0, the partition is called perfect. Given the R and R we call the value f the
distance of the two relations. With this definition, the partition generates an
equivalence relation. This relation can be considered to be the closest to the
tolerance relation.

It is easy to check that we cannot necessarily find a perfect partition for an
arbitrary similarity relation. Consider the simplest such case, given three objects
A, B and C, and A is similar to both B and C, but B and C are dissimilar. In
this situation, the following 5 partitions can be given:

{{A,B,C} , {{A,B} , {C}} , {{A,C} , {B}} , {{B,C} , {A}} , {{A} , {B} , {C}}} .

It is easy to see that in every of one them there is at least 1 conflict. The number
of partitions can be given by the Bell number [1], which grows exponentially. So
the optimal partition cannot be determined in reasonable time. In a practical
case a quasi optimal partition can be sufficient, so a search algorithm can be
used.

The main advantage of the correlation clustering is that the number of clus-
ters does not need to be specified in advance like in many clustering algorithms,
and this number is optimal based on the similarity. However, as the number of
partitions grows exponentially it is an NP-hard problem.

4 Similarity Based Granules

The system of granules is based on the background knowledge embedded in
an information system. The granules represent the background knowledge (or
its limit). In the Pawlakian systems, two objects are treated as indiscernible if
all of their known attribute values are the same. The indiscernibility property
can be represented by an equivalence relation. In practical applications not only
the indiscernible objects must be handled in the same way but also those that
are similar to each other based on some property. (Irrelevant differences for
the purpose of the given applications should not be taken into account.) Some
covering approximation spaces use tolerance relations, which represent similarity,
instead of equivalence relations, but the usage of these relations is very special.



Similarity Based Granules 39

It emphasizes the similarity to a given object and not the similarity of objects
‘in general’. This means that a granule contains objects which are similar to a
distinguished object. In these systems, each object generates a granule. With
correlation clustering, a quasi-optimal partition of the universe can be obtained
[2–4]. The members of a partition are called clusters. They contain objects that
are typically similar to each other and not just to a distinguished member. In
our previous research, we investigated if the partition can be understood as a
system of granules [9,11,12]. According to our results, it is worth to generate
a partition with correlation clustering. Singleton clusters represent very little
information (its member is only similar to itself). Without increasing the number
of conflicts its member cannot be considered similar to any objects. So, they
always require an individual decision. By deleting the singletons, a partial system
of granules can be defined. The formal definition of the proposed approximation
space (similarity based rough sets) can be seen in the following definition.

Definition 1. Similarity based rough set approximation space can be represented
by an ordered 6-tuple 〈U,G,D, l, u,S〉 based on a tolerance relation (representing
similarity) R. Let p be the partition gained from the correlation clustering (based
on R).

– the definition of U,D, l and u are the same as in the Pawlakian space.
– S denotes the set of the singleton members.
– G = {G | G ⊆ U \ S, and x, y ∈ G if p(x) = p(y)}
The introduced approximation space has some useful features:

– the similarity of objects relying on their properties (and not the similarity to
a distinguished object) plays an important role in the definition of granules;

– the system of granules consists of disjoint sets, so the lower and upper approxi-
mations are closed in the following sense: Let S be a set and x ∈ U . If x ∈ l(S),
then we can say, that every object y ∈ U which is in the same cluster as x is
in l(S). If x ∈ u(S), then we can say, that every object y ∈ U which is in the
same cluster as x is in u(S).

– the number of clusters is not predefined because the algorithm finds the opti-
mal number. This way, only the necessary number of granules appear (in
applications we have to use an acceptable number of granules);

– the size of the granules is not too small, nor too big.

The amount of daily produced data is unbelievable. There are around 2.5
quintillion bytes of data created each day at our current pace and it is only
accelerating with the growth of the Internet of Things (IoT). In data sciences, it
is extremely important that certain methods can be used for a large amount of
data. Due to the exploding volume and speed of data growth, the resource need
and execution time of the algorithms show an increasing trend. In data mining
to mitigate this problem, it is common to use samples. There are numerous
ways to choose a part of the input dataset which can be treated as a sample.
In every method, it is crucial that the chosen objects must represent the entire
population. In this case, representativeness means that the specific properties are
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as similar in the sample as in the entire set. Without this property, important
information might be disregarded. Imagine that a product is needed to be sold,
for example, a toy to a group of children. In almost every group of youngsters,
there is at least one child whose decision has the most influence on the group’s
life. In this case, one child is enough to be found and convinced to buy the
toy. The rest of the group will follow them. This child can be treated as the
representative of the group. It means that in the computations only this child
should be considered instead of the whole group. In a pawlakian system, any
object can be the representative of a certain granule. In the covering systems
(based on a tolerance relation) the representatives are obvious in each granule.
In the similarity based rough set approximation space, the situation is not that
simple. In each granule, we need to choose an object that is the most similar in
the set. Naturally, it can happen that the entire granule cannot be represented by
only one member. In [5] we proposed an algorithm that produces the necessary
number of representatives for each granule. The algorithm assigns a rank value to
each object. This value shows how much the given object represents the granule.

Definition 2. The object with the highest rank value is called primary repre-
sentative. If there is more than one object with the same rank, then the primary
representative is chosen randomly.

Generally speaking, we can say that a granule represents a property. A rep-
resented property can be characterized by attributes and the corresponding
attribute values. For example, the property ‘being red apple’ can be character-
ized by color and fruit type as attributes and by red and apple as corresponding
attribute values. If P is a property, then P can be an intension of a granule G.
The granule itself is a set of objects that possess the property described by its
intension. In our system, a granule contains objects that are typically similar
to each other. Every granule has a primary representative which represents the
entire granule the most. In an information system, every object has attributes
and attributes values. The list of these attribute values describes a certain
property.

Definition 3. The intension of a granule is the property described by its primary
representative.

5 Approximation Based on Representatives

In the classical sense, the lower approximation of a set S is the union of those
granules that are subsets of S. In order to get these granules, every object in each
granule must be considered. It can be a time-consuming task if the number of
points is high. The effectiveness of the representatives lies in situations when the
number of objects is very large. It can be practical to use the strength of repre-
sentatives in the approximation process. For each granule, let us consider only its
representatives. Let G ∈ G be a granule, and REP (G) be the set of its represen-
tatives such that REP (G) ⊆ G and REP (G) �= ∅ for all G ∈ G (and so ∅ /∈ G).
The approximation pair are defined as the following:
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Fig. 1. Approximation based on representatives

– lr(S) =
⋃{G | G ∈ G and REP (G) ⊆ S} (and so lr(S) ∈ D);

– ur(S) =
⋃{G | G ∈ G and REP (G) ∩ S �= ∅} (and so ur(S) ∈ D).

This way, the lower approximation of a set S becomes the union of those
granules for which every representative is a member of S. A granule belongs to
the upper approximation if at least one of its representatives is in the set S.
Naturally, the certainty of the lower approximation might be lost, but as the
number of points is increasing, it can be very useful.

In Fig. 1 a simple example is provided for the method. The granules are
denoted by solid-line rectangles, and the set we wish to approximate (S) is
denoted by a grey ellipse. For each granule, the black circles symbolise the rep-
resentatives.

The approximation of the set S is the following based on the representatives:

– lr(S) = G2 ∪ G6

– ur(S) = G1 ∪ G2 ∪ G3 ∪ G6

The approximation of the set S is the following based on the classical approx-
imation pair:

– l(S) = G2 ∪ G6

– u(S) = G1 ∪ G2 ∪ G3 ∪ G5 ∪ G6

The lower approximation is the same in both cases. The upper approximation
differs in one granule (G5). When there is a huge number of points and there are
several sets to be approximated, we recommend approximation using representa-
tives. In this case, the method can reduce the run-time of the approximation sig-
nificantly. Determining the approximation with the classical functions 32 objects
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needed to be considered. Using the proposed method, only 13 of them had to be
tested, so almost 60% of the original points were discarded. Of course, with 32
to 13 points is not a significant change, but in the case of millions of objects, it
can be very useful. Working with only the representatives, we can always save
time and resources because we can be sure that the number of representatives is
less than that of U . Proving this is very straightforward. Naturally, there cannot
be more representatives than objects in the universe. Their numbers cannot be
equal either because it could only happen if every object were a representative
which implies that every cluster were singleton. Using these system is pointless
because the system of granules is empty (every singleton cluster is discarded).

6 Properties of Granules

In this section, we examine the following properties (we call them as axioms) of
granules (by Prof. Mihir Chakraborty):

I ∀G ∈ G : G �= ∅
II ∀G ∈ G : ∃a ∈ U such that G may be associated with a. Notation: Ga

III if b ∈ Ga then a ∈ Gb

IV ∀G ∈ G : lr(G) = G
V ∀G ∈ G : ur(G) = G

VI ∀G ∈ G : lr(lr(G)) = lr(G)
VII ∀G ∈ G : ur(ur(G)) = ur(G)

VIII ∀G ∈ G : ur(lr(G)) = lr(G)
IX ∀G ∈ G : lr(ur(G)) = ur(G)
X lr(G) and ur(G) are duals

Theorem 1. In 〈U,G,D, l, u〉 (classical Pawlakian approximation space), all of
the aforementioned axioms hold.

Theorem 2. All the existing granules admit Axiom I, II and IV.

Theorem 3. In 〈U,G,D, lr, ur,S〉 (similarity based rough sets approximation
space based on the representatives) all of the aforementioned axioms hold except
for the duality property.

Proof (Axiom I). This axiom trivially holds because in the similarity based rough
sets approximation space every granule contains at least 2 objects.

Proof (Axiom II). The axiom holds as every granule has at least one repre-
sentative. We can associate the granule with one of the representatives of the
granule.

Proof (Axiom III). If representative b is in the granule of representative a, then
it could only happen if Ga = Gb. Let us suppose that Ga �= Gb. From Axiom II
we know that b ∈ Gb. So if representative b is in Ga, then Ga ∩ Gb = {b} which
means that Ga and Gb are not disjoint. This is a contradiction, therefore Ga and
Gb must be the same set.
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Proof (Axiom IV). lr(G) =
⋃{G′ | G′ ∈ G and ∀x ∈ REP (G′) : x ∈ G}. The

granules are pairwise disjoint, so there is no granule whose representatives is a
member of G (other than G itself). Naturally, every representative of G is the
member of G. Therefore, the set {G′ | G′ ∈ G and ∀x ∈ REP (G′) : x ∈ G}
contains only G from which lr(G) = G follows.

Proof (Axiom V). The proof of the fifth axiom is very similar to the proof of
the fourth axiom. ur(G) =

⋃{G′ | G′ ∈ G and ∃x ∈ REP (G′) : x ∈ G}. The
granules are pairwise disjoint, so there is no granule whose representatives is
a member of G (other than G itself). If ∀x ∈ REP (G) : x ∈ G is true, then
∃x ∈ REP (G) : x ∈ G will be also true. Therefore, the set {G′ | G′ ∈ G and ∀x ∈
REP (G′) : x ∈ G} contains only G from which ur(G) = G follows.

Proof (Axiom VI–IX). If Axiom 4 and 5 hold, then Axiom VI–IX follow.

Proof (Axiom X). The duality property holds if the following two equalities hold
for any granule G (� denotes the complement operator):

1. lr(G) = ur(G�)�

2. ur(G) = lr(G�)�

Let U = {a, b, c, d, e}, G = {G1, G2}, G1 = {a, b}, G2 = {c, d}, REP (G1) =
{a}, REP (G2) = {c}. In this example, lr(G1) = {a, b} and G�

1 = {c, d, e}. From
this ur(G�

1) = {c, d} follows. However, ur(G�
1)

� = {a, b, e} �= {a, b}. Therefore the
duality property does not hold.

6.1 Properties of Approximation Pairs

In the previous section, the axioms only focused on the granules. In this section,
we examine some additional properties of the proposed approximation pair. Here,
the properties to be checked are based on definable and arbitrary sets not only
granules. The most essential features of approximation pairs are specified as
follows.

Monotonicity
l and u are said to be monotone if S ⊆ S′ then l(S) ⊆ l(S′) and u(S) ⊆ u(S′)
Weak approximation property
∀S ∈ 2U : l(S) ⊆ u(S)
Strong approximation property
∀S ∈ 2U : l(S) ⊆ S ⊆ u(S)
Normality of l
l(∅) = ∅
Normality of u
u(∅) = ∅

Theorem 4. In 〈U,G,D, lr, ur,S〉 (similarity based rough sets approximation
space based on the representatives), the monotonicity, the weak approximation
property and the normality of lr and ur hold and the strong approximation prop-
erty does not hold.



44 D. Nagy et al.

Proof (Monotonicity). Let S and S′ be two arbitrary set such that S ⊂ S′ which
means that there is an object x which is a member of S′ but not a member of
S. The following cases can be true for x:

1. x ∈ S, then lr(S) = lr(S′) and ur(S) = ur(S′)
2. x is a non-representative, then lr(S) = lr(S′) and ur(S) = ur(S′)
3. x is a representative of a granule G, then the following cases can happen:

(a) if ¬∃y(y ∈ REP (G) ∧ x �= y ∧ y ∈ S), then lr(S) = lr(S′) and ur(S) ⊂
ur(S′)

(b) if ∃y(y ∈ REP (G) ∧x �= y∧y ∈ S), then lr(S) = lr(S′) and ur(S) = ur(S′)
(c) if ∀y(y ∈ REP (G) ∧ x �= y → y /∈ S), then lr(S) ⊂ lr(S′) and ur(S) ⊂

ur(S′)

In every case, we found that lr(S) ⊆ lr(S′) and ur(S) ⊆ ur(S′), therefore the
monotonicity holds.

Proof (Weak approximation property). Let S be an arbitrary set and let us
assume that there is a granule G such that G ⊆ lr(S) but G � ur(S). Due to
the definition of the lower approximation, we know that ∀x ∈ REP (G) : x ∈ S
is true, so ∃x ∈ REP (G) : x ∈ S is also true. This implies that G ⊆ ur(S). We
reached a contradiction, therefore the weak approximation property holds.

Proof (Strong approximation property). Let U = {a, b, c} be the universe, G =
{a, b, c} a granule, G = {G} be the system of granules, S = {a, b} be the set to
be approximated and REP (G) = {b} be the representatives of G. In this case
lr(S) = G = {a, b, c} which means that lr(S) � S. So the strong approximation
property does not hold.

Proof (Normality of lr and ur). The empty set does not have a representative.
Therefore the condition in the definition of the lower and upper approximation
is false for every granule. This implies that lr(∅) = ur(∅) = ∅.

Theorem 5. Let G ∈ G and D ∈ D. If a ∈ G and a ∈ D then G ⊆ D.

Proof. If a ∈ D then there exists a G′ ∈ G such that a ∈ G′ and G′ ⊆ D.
The members of G are pairwise disjoint, so it is true for all G1, G2 ∈ G that
G1 ∩G2 �= ∅ only if G1 = G2. Therefore G = G′ hence a ∈ G and a ∈ G′. Earlier
we have found that G′ ⊆ D and so G ⊆ D.

Theorem 6. lr(D) ⊆ D for all D ∈ D.

Proof. We indirectly suppose, that there exists a D ∈ D so that lr(D) �⊆ D.
Therefore there exists an a ∈ lr(D) so that a /∈ D. If a ∈ lr(D) then there exists
a G ∈ G where REP (G) ⊆ D such that a ∈ G. REP (G) �= ∅ so there exists a
b ∈ REP (G) and so b ∈ D. Because REP (G) ⊆ G it is also true that b ∈ G.
Based on Theorem 5, if b ∈ G and b ∈ D then G ⊆ D. Because of a ∈ G the
a ∈ D contradiction appears.
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Theorem 7. ur(D) ⊆ D for all D ∈ D.

Proof. We indirectly suppose, that there exists a D ∈ D so that ur(D) �⊆ D.
Therefore there exists an a ∈ ur(D) so that a /∈ D. If a ∈ ur(D) then there
exists a G ∈ G where REP (G) ∩ D �= ∅ such that a ∈ G. So there exists a
b ∈ REP (G) ∩ D so obviously b ∈ REP (G) and b ∈ D. Because REP (G) ⊆ G
it is also true that b ∈ G. Based on Theorem 5, if b ∈ G and b ∈ D then G ⊆ D.
Because of a ∈ G the a ∈ D contradiction appears.

Definition 4 (Weak approximation pair). An approximation pair 〈l, u〉 is a
weak approximation pair on U if:

– l and u are monotone (monotonicity)
– u(∅) = ∅ (normality of u)
– if D ∈ D, then l(D) = D (granularity of D)
– if ∀S ∈ 2U : l(S) ⊆ u(S) (weak approximation property)

Theorem 8. 〈lr, ur〉 is a weak approximation pair.

Proof. Previously we proved that lr and ur are monotone and the normality
of ur and the weak approximation property hold. We need to prove that the
granularity of D also holds. From Theorem 6 we know that lr(D) ⊆ D for any
definable set. We just need to prove that D ⊆ lr(D) for any definable set. Let’s
indirectly suppose that D � lr(D). It means that there is a granule G′ such that
G′ ⊆ D but G′

� lr(D). Therefore, there must be a representative member r of
G′ such that r /∈ D. By definition r ∈ G′. If G′ ⊆ D, then every member of G′

is a member of D. However r ∈ G′ but r /∈ D, therefore G′ cannot be a subset
of D. This contradicts our original assumption. So D ⊆ lr(D).

7 Conclusion

In [11,12] the authors introduced a partial approximation space relying on the
tolerance relation (representing similarity). The genuine novelty of this new
approximation space is the way in which the system of base sets is defined:
it is the result of correlation clustering, and so the similarity is taken into con-
sideration generally. In granular computing, a granule is a collection of objects
that are treated in the same way. In correlation clustering, a cluster contains
entities that are typically similar to each other. In this case, the objects that
are in the same cluster are treated in the same way. Therefore, we can treat the
clusters and so the base sets as granules. In data sciences, it is very common
to use only a subset of the original dataset instead of the entire collection. The
members of this subset can be called as representatives. A very important crite-
rion is that these objects must have the same properties as the whole data set.
In [5,10] we provided a possible way to choose the necessary number of repre-
sentatives of a set. We also introduced a new approximation pair which is based
on the representatives. In this paper, we examined some essential properties of
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granules (proposed by Prof. Mihir Chakraborty). We showed that the system of
granules generated by the correlation clustering satisfies all the minimal prop-
erties of the granules. Therefore, the clusters can be really treated as granules.
We also proved that the introduced approximation pair is a weak approximation
pair.
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9. Mihálydeák, T.: Logic on similarity based rough sets. In: Nguyen, H.S., Ha, Q.-T.,
Li, T., Przyby�la-Kasperek, M. (eds.) IJCRS 2018. LNCS (LNAI), vol. 11103, pp.
270–283. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99368-3 21

10. Nagy, D., Aszalós, L.: Approximation based on representatives. In: Mihálydeák, T.,
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Abstract. In this work we investigate how Rough Set Theory could be
employed to model uncertainty and information incompleteness about a
Reaction System. The approach that we propose is inspired by the idea
of an abstract scientific experiment: we define the notion of test, which
defines an approximation space on the states of a Reaction System, and
observation, to represent the interactive process of knowledge building
that is typical of complex systems. We then define appropriate notions
of reducts and study their characterization in terms of both computa-
tional complexity and relationships with standard definitions of reducts
in terms of Information Tables.

Keywords: Complex systems · Reaction Systems · Rough sets

1 Introduction

Complex systems, that are characterized by the mutual interaction of basic com-
ponents, represent currently one of the topics of major interest in many disci-
plines. This interest has been fostered both by the potential impact that these
systems have in the real world and also by the difficulty that they pose with
respect to the modeling and formalization point of view. Indeed, as interaction
represents one of the main features of complex systems, there has been increasing
attention towards developing mathematical and formal models that are explic-
itly based on the notion of interaction: some prominent examples are cellular
automata [5], membrane computing [14], formalisms to describe concurrent pro-
cesses [4,16], reaction systems [8]. This latter class of models has recently been
proposed as a simple and abstract formalization of biochemical processes involv-
ing substances and reactions, by which the states (i.e., collections of substances)
are transformed. While interesting from a computational or purely mathematical
point of view, one of the major limitations of this framework (and, more in gen-
eral, of abstract idealized models of complex systems), as recently acknowledged
in [6], relates to the fact that these models ignore the realistic aspects that are
intrinsic in complexity, in particular with respect to the fact that information
c© Springer Nature Switzerland AG 2020
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available about these systems is usually only partial, uncertain and incomplete
and acquired through interaction with the system.

Rough Set theory [15] has originally been proposed to explicitly deal with
this type of information: both with respect to the representation of uncertain
and potentially incomplete information [13] (through the notion of lower and
upper approximations) and also with respect to knowledge acquisition [3,10,22]
(through the notion of reducts and rule extraction). Indeed, the relationship
between these two mathematical frameworks have been investigated, under the
perspective of Interactive Granular Computing [19], in [6,18] where Rough Set
Theory is integrated with Reaction Systems in order to be able to account for
uncertainty and incomplete knowledge in the latter formalism.

In this work, we also discuss how to relate these two modeling frameworks,
though under a different perspective. Indeed, the main purpose of this article is
to investigate how Rough Set Theory can be used to study Reaction Systems,
both from the modeling point of view and from the uncertainty representation
and management one. More specifically, we will consider the case where states
of a Reaction System are not directly perceived as is, but only through the
observation of the results of some experiments or tests that have been performed
on those states, as would be the case in a realistic scientific experiment. As such,
the reaction system in intrinsically built on information that can be affected by
different forms of uncertainty. Notably, while we will focus on the specific case of
Reaction Systems, the methodology that we propose mainly considers the graph
of the dynamics that underlies the model and thus, at least in principle, should
be easily generalizable to any class of discrete dynamical systems.

The rest of this paper will be structured as follows: in Sect. 2 we recall the
necessary background concerning both Reactions Systems, Rough Sets and their
linking; while in Sect. 3 we present the mathematical framework that we propose.
Finally, in Sect. 4 we discuss the obtained results and possible future research
directions.

2 Mathematical Background

In this section, the basic notions on both reaction systems and rough sets are
given.

2.1 Introduction to Reaction Systems

Reaction Systems are a model of computation inspired by biochemical reactions
involving reactants, inhibitors and products from a finite background set.

Definition 1. A Reaction System is an ordered pair (S,A) such that S is a
finite set of substances or entities, and A is a set of reactions in S.

A reaction can be formally defined as follows.
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Definition 2. A reaction, in a reaction system (S,A), is a triplet a =
(Ra, Ia, Pa) where Ra ⊆ S is the set of reactants, Ia ⊆ S is the set of inhibitors,
and Pa ⊆ S is the set of products.

The result of applying reaction a to a set X ⊆ S, denoted by resa(X), is
conditional: if Ra is included in X and Ia is disjoint with X, then a is enabled
on X, otherwise a is not enabled on X. If a is enabled on X, then a transforms
the set of reactants into the product set. Thus, formally:

resa(X) =

{
Pa Ra ⊆ X and Ia ∩ X = ∅
∅ otherwise

(1)

For a reaction system (S,A), the result function of A is resA : 2S → 2S , and
for each T ⊆ S it is defined as:

resA(T ) =
⋃

a∈enA(T )

PT (2)

where enA(T ) is the set of reactions of A enabled in T .
Given a RS R = (S,A) the associated graph of the dynamics is the graph

G[R] = (V,E) where V = 2S and (v1, v2) ∈ E if resA(v1) = v2. An example of
a Reaction System is illustrated in Example 1.

Example 1. Let R = (S,A) be a Reaction System where:

– S = {A,B,C};
– A = {(∅, ABC,BC), (A,C,AB), (B,C,AB), (C,AB,AC), (AB, ∅, ABC)}.
The graph of the dynamics of R is shown in Fig. 1.

Fig. 1. Graph of the dynamics for the Reaction System described in Example 1.

We refer the reader to [7] for a recent overview and tutorial on Reaction
Systems.
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2.2 Introduction to Rough Sets

Rough sets are an approach to imperfect knowledge proposed by Zdzi�law Pawlak
to model uncertain and incomplete knowledge [15]. For recent overviews on
Rough Set Theory and applications we refer the reader to [1,23]. The basic
notion of Rough Set Theory is that of an information table.

Definition 3. An Information Table is an ordered pair IT = (U,Att) such that
U is a finite non-empty set of objects and Att is a finite non-empty set of
attributes, where each a ∈ Att is a function a : U �→ Va and Va is the set of
possible values of a.

Given an IT , we say that two objects u, u′ are indiscernible w.r.t. B ⊂ Att
if ∀b ∈ B, b(u) = b(u′). Indiscernibility defines an equivalence relation where the
equivalence class of an object u is denoted as [u]B .

Given an Information Table IT = (U,Att) and B ⊆ Att, we can define for
X ⊆ U its rough approximation (or, rough set) as B(X) = 〈lB(X), uB(X)〉,
where lB(X) =

⋃
[u]B⊆X [u]B is the lower approximation of X and uB(X) =⋃

[u]B∩X �=∅[u]B is the respective upper approximation. We denote with RB(U)
the set of rough sets on U determined by B ⊆ Att.

The lower approximation of a set consists of all the elements that surely
belong to that set, while the upper approximation of a set is made of all the
element that possibly belong to the set. The boundary region can be defined
as Bnd(X) = u(X) \ l(X) and can be understood as the collection of elements
whose belonging to the set is not certain.

Given an Information Table IT = (U,Att), a super-reduct [21] is a subset of
attributes R ⊆ Att such that ∀x, [x]R = [x]Att. A super-reduct R is a reduct if
no subset of R is also a super-reduct. We denote by RED(IT ) the set of reducts
of IT , the core of an IT is defined as Co(IT ) =

⋂
R∈RED(IT ) R.

Finally, we notice that sometimes the starting point for defining rough sets
is a so-called approximation space (U,R), with U a set of instances and R an
equivalence relation (or, equivalently, a partition of U). Thus, any Information
Table induces an approximation space, which is a more general notion. The lower
and upper approximations are, then, defined exactly as above.

2.3 Related Work on Linking Rough Sets and Reaction Systems

The importance of linking Rough Set Theory and Reaction Systems, with the
goal of augmenting the formalism of Reaction Systems with notions of partial
information and incompleteness, has been recognized in [6,18]. Intuitively, in
these studies, the basic concept is that of a situation that could be understood as
a state of the system under observation. Situations can only be perceived through
attributes (that could represent physical experiments or other properties) and for
the observed situations (which represents the objects in an Information Table)
we are able to precisely tell whether a given substance was present or not in
that situation. However, we can give a lower and an upper approximation of the
present substances.
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Formally, in this framework, the authors start from the substances s of a
Reaction System R = (S,A) and, for each such substance, they define a Deci-
sion Table DT (s) = (U,Atts, ds), that is an Information Table (U,Atts) plus
a decision ds : U �→ {0, 1}, where U is a set of physical situations, Atts are
attributes through which the physical situation is perceived and ds(u) = 1 iff
substance s is present in situation u. Then, the set of situations in which s is
present is represented by the decision class D(s) = {u|ds(u) = 1}. Since it can
happen that the attributes Atts do not carry enough information to take a clear
decision, the decision class can be approximated via the information given by
the attributes Atts using the standard Rough Set notions of lower and upper
approximations, thus defining, L(D(s)) and U(D(s)). Then, the authors define
how a state Ŝ could be represented by aggregation of the decision systems DT (s)
for s ∈ Ŝ.

The approach that we take in the following is similar in spirit, in that we also
take states as the basic notion of our framework and we assume that, in general,
these states are not completely recognizable but only perceived via tests that
affirm whether some substances are present or not in the current situation. A
fundamental difference, however, relates to the fact that the decision attribute in
the framework of [6,18] can be seen as an a-priori notion that is independent of
the attributes, in that it is already represented in the decision system. As we will
see in the following sections, in the approach that we propose the decision w.r.t.
a substance being present or not in a situation is only an a-posteriori notion that
is entirely defined by the values of the attributes or, as we will call them, tests.
Indeed, the result of the tests is the only information that we have about a state
and we are able to state that a given substance s is present in a given situation
only inasmuch the result of the tests is able to do so.

The notion of test that we will introduce resembles the notion of a sensor
in complex dynamical systems [11]: both represent available information about
the state of a complex system and, in both cases, one of the most interesting
problem is related to finding a minimal and sufficient set of tests (resp. sensors)
that are able to accurately describe the dynamics of the whole, partially unob-
servable system. The main differences between these two notions relate to the
fact that: sensors are defined in the context of classical (i.e. based on dynamical
systems theory), typically continuous, complex systems while the notion of test
that we will introduce is based on discrete dynamical systems; furthermore, the
underlying theory for minimal set of sensors are based on ideas from statisti-
cal mechanics, control theory and related disciplines, while the theory that we
develop for tests is based on Rough Sets and graph theory.

3 Methods

As argued in Sect. 1, one of the main features of real complex systems which
is lacking in the formalism of Reaction Systems is the ability to model partial
or uncertain information about the states of the system. Further, a Reaction
System is fully specified in terms of the reactions, while in reality the model
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is usually construed via gradual observation of the behavior of the system. In
this section we will formalize both concepts through application of Rough Set
Theory to Reaction Systems. We assume that the dynamics of the complex sys-
tem that we observe is fully described by an underlying Reaction System which,
however, may be unknown. The goal is then to understand, given a certain set
of experimental tests that we may perform, whether these tests are sufficient to
accurately describe the dynamics of the system. In order to do so, in Sect. 3.1 we
will formalize the notion of partial observability of a Reaction System through
the notion of Approximate Reaction System and tests. Further we will consider
the issue of dynamic acquisition of knowledge about a Reaction System, for-
malized via observations, that is states of partial knowledge about the graph
of the dynamics of a Reaction System. In Sect. 3.2 we will describe reducts for
Approximate Reaction Systems, their existence conditions and characterization.

3.1 Approximate Reaction Systems

Definition 4. An Approximate Reaction System (ARS) is a triple R =
(S,A, T ), where S is the set of substances, A is the set of reactions and T is
the set of tests. A test t ∈ T is a function t : S �→ {⊥,}, we denote with
supp(t) = {s ∈ S|t(s) = } the support of t. The result of test t on state

X ⊆ S is rt(X) =
∨
s∈X

t(s) =

{
 supp(t) ∩ X �= ∅
⊥ otherwise

(3)

Definition 5. We say that a test t identifies a substance s ∈ S if supp(t) = {s}.
As all tests t that identify a given substance s are isomorphic, we will denote
any such test as ts.

Intuitively, a test represents a piece of information about the state of a Reac-
tion System that tells an observer whether some given substances are present,
or not, in the state. In particular a test is given a disjunctive interpretation, it
is only able to tell us whether at least one (but not necessarily all) of the sub-
stances it tests for are present in the given state. The intuition for this definition
derives from the concept of a chemical test, that is a qualitative or quantitative
procedure designed to identify, quantify, or characterise a chemical compound
or chemical group: so, a test that identifies a substance represents a chemical
test that is able to precisely detect a single chemical compound (e.g. a test for
blood sugar), while a chemical test for recognizing chemical groups, e.g. acids,
can be represented by a general test. Then, an Approximate Reaction System
represents the uncertain and partial knowledge that we have on the behaviour
of a real underlying reaction system given that we are only able to observe its
states through the tests specified by T .

We observe that a set of tests T defines an indiscernibility partition of the
states:

X ∼T Y iff ∀t ∈ T, t(X) = t(Y ) (4)
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We denote by [X]T the equivalence class of state X ⊆ 2S determined by the
set of tests T . Thus, it follows that the set of test determines an approximation
space (2S ,∼T ). The rough approximations of the states are formally defined as
follows: let X ⊆ 2S be a state, then, its rough approximation determined by T
is given by r(X) = 〈l(X), u(X)〉 where

l(X) =
⋂

Y ∈[X]T

Y (5)

u(X) =
⋃

Y ∈[X]T

Y (6)

Given an ARS R = (S,A, T ), the associated graph of the dynamics is the
graph G[R] = (VT , ET ) where:

– VT = RT (2S);
– (v1 = 〈l(X), u(X)〉, v2 = 〈l(Y ), u(Y )〉) ∈ ET iff ∃l(X) ⊆ W ⊆ u(X), l(Y ) ⊆

Z ⊆ u(Y ) s.t. (W,Z) is an edge in the graph of the non-approximated reaction
system.

An example of an ARS and its associated graph of the dynamics is shown in
Example 2.

Example 2. Let R be a ARS R = (S,A, T ): where S and A are as detailed in
Example 1, while T = {t1, t2, t3} where supp(t1) = {B}, supp(t2) = {A,C} and
supp(t3) = {B,C}. Figure 2 illustrates the related graph of the dynamics.

Fig. 2. Graph of the dynamics for the ARS in Example 2.

We notice that this graph features a form of non-determinism as, for example,
there are multiple outgoing arcs from the node labeled 〈B,ABC〉. We notice,
furthermore, that the state where only substance B is distinct from the state
〈B,ABC〉 even though the lower approximation of the latter one is exactly B.

As illustrated in Example 2, one can observe that, in general, the incom-
pleteness and uncertainty determined by the fact that the result of tests is the
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only information available about the states, the resulting graph of the dynamics
could feature a form of non-determinism, while the graph of the dynamics of a
standard Reaction System is necessarily deterministic. This suggests that, hav-
ing fixed a set of tests, if we observe the evolution of a system and we derive that
the resulting graph of the dynamics is non-deterministic then, the employed test
are not sufficient to properly describe the system (at least, if we assume that the
underlying phenomenon could be modeled as a Reaction System).

While tests formalize the notion of partial observability in terms of the sub-
stances, they do not provide a formalization of the idea that, in general, knowl-
edge about a complex system is acquired iteratively by repeatedly observing
its evolution over time from an initial state. We formalize this other notion via
observations:

Definition 6. Given the graph G[R] = (VT , ET ) of an ARS R, we denote as
G[R]x = (Vx, Ex) the set of all maximal paths starting from x.

We say that an observation of an ARS is a collection O(R) =
{G[R]x1 , ..., G[R]xn

} for x1, ..., xn ∈ VT . We denote with VO(R), EO(RT ), respec-
tively, the set of nodes and edges in O(R).

Given an observation of an ARS we can define the respective Information
Table as:

Definition 7. An ARS Information Table I[O(R)] for an observation O(R) of
an ARS R = (S,A, T ) is an ordered pair (U, T ), where U =

⋃
G[R]x∈O(R) Vx.

Thus an ARS Information Table represents two different types of partial,
incomplete information about an underlying Reaction System: first, the incom-
pleteness of information w.r.t. the global dynamics of the Reaction System as
only the dynamics involving the states under observation is known; second,
the incompleteness of information w.r.t. the states, as these are only observed
through the set of tests that are performed.

We notice that the definition of identifies that we previously defined applies
only to single tests. In order to generalize this notion we would need to consider
set of tests. Intuitively a set of tests F identifies s if we know with certainty
that, given a state X, if ∃t ∈ F, t(X) =  then s ∈ X.

Formally,

Definition 8. A set of tests F ⊆ T identifies s ∈ S if

∀X ⊆ 2S ,∃t ∈ F s.t. s ∈ supp(t) and t(X) = ∧
∀s′ ∈ supp(t) \ {s},∃t′ �= t ∈ F s.t. s′ ∈ supp(t′) ∧ t′(X) = ⊥.

(7)

This notion allows to define an alternative formulation of lower and upper
approximations that is not explicitly based on the equivalence relation on the
states:

Definition 9. The lower and upper approximation defined by the relation T
identifies s are, respectively:

l′(X) = {s ∈ S|∀t ∈ T s.t. s ∈ supp(t), t(X) =  ∧ T identifies s} (8)
u′(X) = {s ∈ S|∀t ∈ T s.t. s ∈ supp(t), t(X) = } (9)
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Then, we can prove the following result, that states that the two alternative
formulations are equivalent:

Lemma 1. l(X) = l′(X) and u(X) = u′(X).

Proof. Consider first the upper approximation u(X): by Definition 6 a substance
s is in u(X) iff ∃Y ∈ [X]T .s ∈ Y . Thus, ∀t ∈ T.s ∈ supp(t), t(Y ) = ; but, by
definition of ∼T this also means that t(X) = . Since s was arbitrary we can
see that Definition 6 implies Definition 8. For the converse we can consider two
cases:

1. s ∈ X, then obviously Definition 6 holds;
2. s /∈ X but ∀t ∈ T s.t. s ∈ supp(t).t(X) = . Let Y = X ∪{s}, then evidently

Y ∈ [X]T but this means that Definition 6 follows.

As regards the lower approximation, we showed that the first part of the
Definition characterizes the substances that are in the upper approximation, then
we must show that the condition that T identifies s is necessary and sufficient
for saying that s is also in the lower approximation. Let us assume that T
identifies s, and t be the test that satisfies the condition for state X. Similarly
for each substance s′ let ts

′
be the test s.t. s′ ∈ supp(ts

′
) and ts

′
(X) = ⊥.

Then if supp(t) = {s} the implication obviously follows, so let us focus on the
case where {s} ⊂ supp(t). Consider the equivalence class [X]T , then evidently
∀Y ∈ [X]T , t(Y ) =  and ts

′
(Y ) = ⊥ which means that s′ /∈ Y and since this

holds ∀s′ �= s ∈ supp(t) is must hold that s ∈ Y , so Definition 5 follows.
For the converse, notice that if Definition 5 holds then if s ∈ l(X), then

∃t ∈ T.s ∈ supp(t) ∧ t(Y ) = , otherwise there would be a state Z = Y \ {s}
with both Z, Y ∈ [X]T . If {s} = supp(t) then Definition 8 follows. On the
contrary, consider s′ �= s ∈ supp(t) such that ∃t′ �= t with s′ ∈ supp(t′). If ∃Y
s.t. t′(Y ) = ⊥ then we are done. Otherwise we can notice that such a couple
t, t′ must exist otherwise it must exists Z, Y ∈ [X]T s.t. Z = (Y \ {s}) ∪ {s′}
but this is an absurd as we assumed that s ∈ l(X). Thus Definition 8 really is a
characterization of lower approximations.

In the following section we will define the concept of reduct for an ARS.

3.2 Reducts

Given an ARS = (S,A, T ), we may ask whether the given set of tests is sufficient
to describe the dynamics that we could observe, if we had been able to fully
observe the states of the Reaction System. More in general, one may assume
that the provided set of tests is all we can have (e.g., for a certain situation the
provided tests are the most precise and powerful that are known) to describe
the Reaction System: in this case we can ask whether all the tests available are
necessary or there exists some test that is redundant.

Both these two concepts correspond to the idea of a reduct in Rough Set
Theory.
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Definition 10. Given an ARS RT = (S,A, T ) and an observation O(RT ), for
a given F ⊆ T , we define RF = (S,A, F ). Then, we say that F is a:

– complete super-reduct if G[RF ] = G[(S,A)];
– relative super-reduct if G[RF ] = G[RT ];
– weak super-reduct if G[RF ]|O(RT ) = G[RT ]|O(RT )

where G[RF ]|O(RT ) is the restriction of G[RF ] to O(RT ). We say that F is a
complete (resp. relative, weak) reduct if it is a complete (resp. relative, weak)
super-reduct and it is minimal w.r.t. this property.

The following result characterizes (complete, relative, weak) reducts in terms
of Information Tables:

Proposition 1. Let RT = (S,A, T ) be an ARS and O(RT ) an observation.
Then F ⊆ T :

– is a weak reduct iff it is a reduct for I[O(RT )];
– is a relative reduct iff it is a reduct for I[RT ] = (2S , T );
– is a complete reduct iff it is a reduct for I∗[RT ] = (2S , T ∪ {ts|s ∈ S}), where

ts is a test that identifies s.

Proof. The case of weak reducts follows directly from Definition 10.
The condition for relative reducts is equivalent to saying that RT (2S) =

RF (2S), that is the set of rough sets of states are the same when considering the
full set of tests or the reduct F . We can notice that an equivalent condition for F
being a relative reduct would be being a reduct for the ARS information system
I[RT ] = ({[X]T : X ⊆ 2S}, T ) in which the equivalence classes determined by T
are made explicit.

On the other hand, the condition for complete reducts states that F must be
able to identify all the substances s ∈ S. ��
Corollary 1. The smallest complete reduct REDmin of an ARS where ∀s ∈ S
∃ts ∈ T has |REDmin| = |S|.

We notice that while the definition of (complete, relative, weak) reducts sug-
gests an algorithm for checking whether F ⊆ T is a reduct (e.g. by constructing
the discernibility matrix for the corresponding Information Table), the time com-
plexity of this algorithm is linear in the size of the ARS Information Table but,
in general, exponential in |S|. We can see from Corollary 1 that, at least for
complete reducts, a simple algorithm for finding reducts (and hence for testing
them) when we restrict to the case where ∀s ∈ S, ts ∈ T and that operates in
time linear in |T | can be given.

A different, but equivalent, characterization of reducts can be formulated in
terms of the identifies relation defined in Sect. 3.1.

Theorem 1. Let ARS = (S,A, T ) be an ARS and let ST = {s ∈
S|T identifies s}. Then F ⊆ T :
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– is a complete super-reduct iff S = SF ;
– is a relative super-reduct iff ST = SF .

Proof. This follows from the fact that if the condition holds then ∀X the lower
and upper approximations remain equal.

Notice that while Theorem 1 and Proposition 1 are equivalent characteri-
zations, the former result suggests an algorithm for testing reducts whose run-
time is O(|S|2|T |2). Algorithm 1 describes the algorithm for the case of complete
reducts, the case for relative reducts is equivalent. The consequence of this result
is that the problem of finding complete and relative reducts is in NP not only
when considering the graph of the dynamics as the size of the problem, but also
when considering the size of the Reaction System. As finding reducts in gen-
eral Information Tables is NP -complete [20], we conjecture that the problem of
finding (complete, relative) reducts lies in the same complexity class.

Algorithm 1. A polynomial-time algorithm for the verification of complete
reducts.

procedure Check-Complete-Reduct
Require: R = (S,A) Reaction System , F a reduct

check ← �
for all s ∈ S do

for all f ∈ F : s ∈ supp(f) do
temp ← �
for all s′ �= s ∈ supp(f) do

temp ← temp ∧ ∃f ′ �= f.s′ ∈ supp(f ′) ∧ s /∈ supp(f ′)
end for
if temp = � then

check ← �
Break

else
check ← ⊥

end if
end for

end for
Return check

end procedure

Notice that while a similar characterization could be given also for checking
weak reducts, in that case the complexity would still be polynomial w.r.t. the
number of states in the observation, hence, in the worst case, exponential in the
number of substances.

4 Conclusion

In this paper we considered the study of mathematical methods to model com-
plex systems, focusing on the formalism of Reaction Systems, in particular with
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respect to their ability to model incomplete and partial information. As these
characteristics are commonly represented through Rough Set Theory, and also
acknowledging a recent research direction towards the linking of Reaction Sys-
tems and Rough Sets, we developed a mathematical framework, based on core
Rough Set theoretic concept to study these issues. We introduced the notion of
partial observability of the states of a Reaction System, through the notion of
tests, and after observing that this induces an approximation space we applied
ideas from Rough Set Theory to define lower and upper approximations; reducts
that could be used to automatically model Reaction Systems based on (poten-
tially uncertain and incomplete) observations. In order to further the applica-
tions of Rough Set Theory to the study of complex systems, we think that the
following open problems may be of interest:

– We provided a characterization of complete and relative reducts based on tests
and their ability to identify the substances. This characterization suggests
that the problem of finding (complete, relative) reducts is in NP not only
w.r.t. the size of the graph of the dynamics (which is in general exponential
in the number of substances) but also w.r.t. the size of the Reaction System.
Similar characterizations for weak reducts would be interesting;

– We considered reducts as sets of tests that are able to represent, without
loss of information, the graph of the dynamics of the Reaction System (or
Approximate Reaction System). It is not hard, however, to observe that this
definition may be too restrictive: indeed, if one’s interest only concerns the
general dynamics of a system, then an approximated graph may be tolerable
as long as it has the same properties of the original graph (e.g., w.r.t. the
reachability of states). It would then be interesting to give a definition of
reducts that characterizes this property of invariance w.r.t. the satisfaction
of properties expressed in a given logic [2];

– While in this work we considered approximations and reducts, Rough Set The-
ory also encompasses methods for rule induction [9,17] in order to explain a
Decision Table via sets of rules. Applying these approaches in the context of
Approximate Reaction Systems and observations (and, more in general, com-
plex systems) could enable the interactive and iterative learning and updating
of Reaction System models [12] based on observed dynamics;

– Finally, while the present work applies to Reaction Systems, we argued that,
as the proposed methods mainly use the graph of the dynamics, these notions
could also be extended to other discrete complex systems formalisms: in order
to do so, appropriate definitions of tests should be considered.
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Abstract. In this paper, we consider the decision tables provided by
experts in the field. We construct an algorithm for executing a highly
parallel program represented by a fuzzy Petri net from a given decision
table. The constructed net allows objects to be identified in decision
tables to the extent that appropriate decisions can be made. Conditional
attribute values given by experts are propagated by the net at maximum
speed. This is done by properly organizing the net’s work. Our approach
is based on rough set theory and weighted generalized fuzzy Petri nets.

Keywords: Decision system · Information system · Rough set ·
Decision rule · Weighted generalized fuzzy Petri net

1 Introduction

Rough set theory, proposed by Pawlak in 1982 [18], is a mathematical tool for
dealing with unclear, imprecise, incoherent and uncertain knowledge. It has been
observed for many years that both research and applications of rough set theory
are attracting more and more attention of researchers. It can be successfully used
in many areas of application alone or in combination with other approaches.
Here, we use this theory to support modeling of decision-making systems using
weighted generalized fuzzy Petri nets.

In this paper, we assume that a decision table S representing experimental
knowledge is given [17]. It consists of a number of rows labeled by elements from
a set of objects U , which contain the results of measurements, observations,
reviews etc. represented by a value vector of conditional attributes (conditions)
from A together with a decision d corresponding to this vector. Values of con-
ditions are provided by experts in the field. In some applications the values of
conditional attributes can be interpreted as states of local processes in a com-
plex system and the decision value is related to the global state of that system
[13,16,24]. Sometimes it is necessary to transform a given experimental decision
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table by taking into account other relevant features (new conditional attributes)
instead of the original ones. This step is necessary when the decision algorithm
constructed directly from the original decision table yields an inadequate classi-
fication of unseen objects or when the complexity of decision algorithm synthesis
from the original decision table is too high. In this case some additional time
is necessary to compute the values of new features after the original values are
given. The input for our algorithm consists of a decision table (if necessary,
pre-processed as described above).

We shall construct a fuzzy Petri net allowing to make a decision as soon
as a sufficient number of conditional attribute values is known and conclusions
drawn from the knowledge encoded in S (cf. [22]). In the paper we formulate
this problem and present its solution.

First, we assume that knowledge encoded in S is represented by rules auto-
matically extracted from S. We consider acceptable rules in S, i.e. rules for which
the accuracy factor need not necessarily be equal to 1 [23]. We assume that the
knowledge encoded in S is complete in the sense that invisible objects have
attribute value vectors consistent with rules extracted from S. This assumption
may be too restrictive, because the rules for the classification of new objects
should be generated only from appropriate features (attributes). The rule is
active if the values of all attributes on its left side are given. Our algorithm
should propagate information from attributes to other attributes as soon as
possible. This is the reason for generating true decision rules corresponding to
relative reducts with respect to the decision in S [22]. The last step of our algo-
rithm is the implementation of the set of generated rules using fuzzy Petri nets.
Each step of a computation of the constructed fuzzy Petri net consists of two
phases. In the first phase, it is checked that all condition values are known, and
if so, in the second phase, new information about the values is sent through the
net at maximum speed. The whole computation process is carried out by proper
organization of the net’s work.

In the paper, we use fuzzy Petri nets [3,5,10,12,30] as a model of the tar-
get decision-making system. Net properties can be verified using tools for the
analysis of Petri nets (see e.g. [28]).

Over the past few decades, there has been a series of modifications to the
classic fuzzy Petri nets (FPNs) [12] to deal with complex decision-making sys-
tems. Chen [4] introduced weight factors into FPNs and proposed a weighted
FPN (WFPN) model. Ha et al. [7] extended his work by adding input and output
weight factors into WFPNs. Then the intuitionistic fuzzy sets were integrated
into FPNs, and an intuitionistic FPN was presented in [11,26]. Skowron and
Suraj [23] developed a parallel algorithm for real-time decision-making based
on rough set theory and classic Petri nets. Peters et al. [20] combined the the-
ory of FPNs, rough sets, and colored Petri nets to develop a rough fuzzy Petri
net model. Suraj and Fryc [27] introduced time factor to approximate Petri nets,
which plays a vital role in developing real-time decision-making systems. Bandy-
opadhyay et al. [1] proposed to link Petri nets and soft sets and introduced a soft
Petri net model. Suraj and Hassanien [29] combined the theory of FPN and sets
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of fuzzy intervals to avoid the problem of determining the exact membership or
truth value.

This paper establishes some relationships between rough set theory and fuzzy
Petri nets. Parameter values such as rule certainty coefficients, input and out-
put weights of arcs in the net model are calculated automatically from a given
decision table. The empirical example provided here shows the effectiveness of
the proposed model.

The rest of this paper is organized in the following way. Section 2 contains
some background knowledge regarding rough set theory. In Sect. 3, the weighted
generalized fuzzy Petri net formalism is given. Section 4 describes three struc-
tural forms of decision rules and a method for transformation of decision tables
into weighted generalized fuzzy Petri nets. An example illustrating the approach
presented in this paper is provided in Sect. 5. Finally, Sect. 6 suggests some direc-
tions for further research related to our approach.

2 Preliminaries of Rough Set Theory

In this section we recall basic notions of rough set theory. Among them are those
of information systems, indiscernibility relations, dependencies of attributes, rel-
ative reducts, significance of attributes and rules [14,15].

2.1 Information Systems and Decision Systems

An information system is a pair S = (U,A), where U is a non-empty finite set
of objects called the universe and A is a non-empty finite set of attributes such
that a : U → Va for every a ∈ A. The set Va is called the value set of a, and
V =

⋃
a∈A Va is said to be the domain of A.

Let S = (U,A) be an information system and let B ⊆ A and X ⊆ U . Then
there is associated an equivalence relation ind(B): ind(B) = {(u, u′) ∈ U × U :
for every a ∈ B a(u) = a(u′)}. ind(B) is called the B-indiscernibility relation.
If (u, u′) ∈ ind(B), then objects u and u′ are indiscernible from each other by
attributes from B. The equivalence classes of the B-indiscernibility relation are
denoted [u]B .

We can approximate X using only the information contained in B, construct-
ing the B-lower and B-upper approximations of X, denoted by BX and BX
respectively, where BX = {u : [u]B ⊆ X} and BX = {u : [u]B ∩ X �= ∅}. The
objects in BX can be with certainty classified as members of X on the basis of
knowledge in B, while the objects in BX can be only classified as possible mem-
bers of X on the basis of knowledge in B. The set X is rough if BX − BX �= ∅.

A decision system (a decision table) is any information system of the form S =
(U,A ∪ {d}), where d /∈ A is a distinguished attribute called decision attribute
(decision). The elements of A are called conditional attributes (conditions).

Let S = (U,A ∪ {d}) be a decision system. The cardinality of the image
d(U) = {k : d(u) = k for some u ∈ U} is called the rank of d and is denoted by
r(d). We assume that the set Vd of values of the decision d is equal to {1, ..., r(d)}.
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Let us observe that the decision d determines a partition {X1, ...,Xr(d)} of the
universe U , where Xk = {u ∈ U : d(u) = k} for 1 ≤ k ≤ r(d). The set Xi is
called the i-th decision class of S. If X1, ...,Xr(d) are the decision classes of S,
then the set BX1∪ ...∪BXr(d) is called the B-positive region of S and is denoted
by POSB(d).

Any decision system S = (U,A ∪ {d}) can be represented by a data table
with the number of rows equal to the cardinality of the universe U and the
number of columns equal to the cardinality of the set A ∪ {d}. On the position
corresponding to the row u and column a the value a(u) appears.

Example 1. A small decision system is shown in Table 1. We have a set of
objects (patients) U = {1, 2, 3, 4, 5, 6}, a set of conditional attributes (symptoms)
A = {H (Headache), M (Muscle-pain), T (Temperature)}. The decision attribute
is denoted by F (Flu). The possible values of attributes from A ∪ {F} are equal
to no, yes, normal, high, or very high and r(F) = 2. The decision F defines a
partition {X1,X2} of U , where X1 = {1, 2, 3, 6}, X2 = {4, 5}. Each row of the
table can be seen as information about specific patient.

Table 1. An example of a decision system

U/A ∪ {d} H M T F

1 no yes high yes

2 yes no high yes

3 yes yes very high yes

4 no yes normal no

5 yes no high no

6 no yes very high yes

2.2 Dependency of Attributes

An important issue in data analysis is discovering of dependencies between
attributes. Intuitively, a set of attributes C depends totally on a set of attributes
B, denoted by B ⇒ C, if there exists a functional dependency between values
of C and B.

Let S = (U,A) be an information system and let B,C ⊆ A.
We say that the set C depends on B in degree k (0 ≤ k ≤ 1), denoted by

B ⇒k C, if k = γ(B,C) = |POSB(C)|
|U | , where POSB(C) =

⋃
X∈U/C B(X) and

|X| denotes the cardinality of X �= ∅. The set POSB(C) is called a positive region
of the partition U/C with respect to B. In fact, it is the set of all elements of U
that can be uniquely classified to blocks of the partition U/C by means of B.

Let B,C ⊆ A, and B′ ⊆ B. A set B′ is a C-reduct of B (or B′ is a relative
reduct of B with respect to C), if B′ is a minimal subset of B and γ(B,C) =
γ(B′, C).
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Example 2. Consider once again the decision system presented in Table 1. For
example, for the dependency {H,M,T}⇒k{F} we get k = 2/3. However, for
the dependency {T}⇒k{F}, we get k = 1/2. The attribute T offers a worse
classification than the entire set of attributes H, M, T. It is worth to noting that
neither H nor M can be used to recognize flu, because for both dependencies
{H}⇒k{F} and {M}⇒k{F} we have k = 0. In Table 1 there are two relative
reducts with respect to {F}, R1 = {H, T} and R2 = {M, T} of the set of
conditions {H, M, T}.

2.3 Significance of Attributes

Significance of an attribute a in a decision system S = (U,A ∪ {d}) can be
evaluated by measuring the effect of removing of an attribute a ∈ A from the
attribute set A on the positive region defined by the table S.

Let B ⊆ A. Significance of an attribute a ∈ A is defined as follows:
σ(B, d, a) = γ(B, {d}) − γ(B − {a}, {d}) = |POSB({d})|−|POSB−{a}({d})|

|U | , and
is simply denoted by σ(a) when B and {d} are understood.

This numerical factor measures the difference between γ(B, {d}) and γ(B −
{a}, {d}), i.e. it says how the factor γ(B, {d}) changes when an attribute a is
removed.

Note that the following relationship is also met: 0 ≤ σ(B, d, a) ≤ 1.

Example 3. Using the above formula for the decision system from Example 1,
we obtain the following results for Table 1:

1. For the set of conditional attributes A: σ(H) = 0, σ(M) = 0, σ(T) = 1/2
2. For the relative reduct R1: σ(H) = 1/6, σ(T) = 2/3
3. For the relative reduct R2: σ(M) = 0, σ(T) = 3/4

2.4 Rules in Decision Systems

Rules express some of the relationships between values of the attributes described
in decision tables. In this subsection we recall the definition of rules as well as
other related concepts.

Let S = (U,A ∪ {d}) be a decision system, B ⊆ A ∪ {d}, and V =
⋃

a∈A

Va ∪ Vd.
Atomic formulae over B and V are expressions of the form a = v. They are

called descriptors over B and V , where a ∈ B and v ∈ Va. The set DESC(B, V )
of formulae over B and V is the least set containing all atomic formulae over B
and V and closed with respect to the propositional connectives OR (disjunction),
AND (conjunction) and NOT (negation).

Let τ ∈ DESC(B, V ). ‖τS‖ denotes the meaning of τ in the decision system
S which is the set of all objects in U with the property τ . These sets are defined
as follows:
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1. if τ is of the form a = v then ‖τS‖ = {u ∈ U : a(u) = v}
2. ‖(τ OR τ ′)S‖=‖τS‖∪‖τ ′

S‖; ‖(τ AND τ ′)S‖=‖τS‖∩‖τ ′
S‖; ‖NOT τS‖=U−‖τS‖.

The set DESC(A, Va), a ∈ A, is called the set of conditional formulae of S.
A decision rule r for S is any expression of the form IF τ THEN d = v,

where τ ∈ DESC(A, Va), v ∈ Vd and ‖τS‖ �= ∅. Formulae τ and d = v are called
the predecessor and the successor of the decision rule r. ‖τS‖ is the non-empty
set of objects matching the decision rule and ‖τS‖ ∩ ‖(d = v)S‖ is the set of
objects supporting the rule. With every decision rule r we can associate sev-
eral numerical factors. The accuracy factor of the decision rule r is the number
acc(r) = |‖τS‖∩‖(d=v)S‖|

|‖τS‖| , while the strength factor of the decision rule r is under-

stood as str(r) = |‖τS‖∩‖(d=v)S‖|
|U | . The decision rule r is true in S, if acc(r) = 1,

otherwise it is acceptable in S.
It is also easy to see that 0 ≤ str(r) ≤ acc(r) ≤ 1 for every the decision rule

r in S.

Example 4. Let us consider the decision system table S from Example 1 pre-
sented in Table 1. Using the method for generating decision rules in S [22], we
get the following rules, corresponding to the relative reduct R1 = {H, T} along
with the numerical factors defined above:

– r1: IF H=no AND T=very high THEN F=yes; str(r1) = 1/6, acc(r1) = 1
– r2: IF H=yes AND T=very high THEN F=yes; str(r2) = 1/6, acc(r2) = 1
– r3: IF H=no AND T=high THEN F=yes; str(r3) = 1/6, acc(r3) = 1
– r4: IF H=yes AND T=high THEN F=yes; str(r4) = 1/6, acc(r4) = 1/2
– r5: IF H=yes AND T=high THEN F=no; str(r5) = 1/6, acc(r5) = 1/2
– r6: IF H=no AND T=normal THEN F=no; str(r6) = 1/6, acc(r6) = 1

Note that the rules r1, r2, r3, r6 are true in Table 1, while the other rules are
acceptable in this table.

For a systematic overview of rule synthesis, see e.g. [9,15,21].

3 Weighted Generalized Fuzzy Petri Nets

Fuzzy Petri nets are a modification of classic Petri nets to deal with imprecise,
unclear or incomplete information in knowledge-based systems that are widely
used to model fuzzy production rules and rule-based reasoning.

In this section, we define weighted generalized fuzzy Petri nets (WGFP-net).
The new model is a modification of generalized fuzzy Petri nets, proposed in
[25]. The main difference between the current net model and the previous one
concerns the weights of arcs. Weights are now added to the input and output
arcs. They are any numbers from 0 to 1, automatically calculated from the data
table and interpreted in the concepts of rough set theory (see Sect. 4) (cf. [2,10]).
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In this paper WGFP-nets are used as a tool for computing a parallel program
from a given decision table. After modeling a decision table by a WGFP-net the
states are identified in the net to an extent allowing to take the appropriate
decisions.

We also assume that the reader knows the basic concepts of classic Petri nets
[6] and triangular norms [8].

Let [0, 1] denotes the set of real numbers between 0 and 1.
A weighted generalized fuzzy Petri net is a tuple N = (P, T, I,O,

M0, S, α, β, γ,Op, δ), where: (1) P = {p1, p2, . . . , pn} is a finite set of places;
(2) T = {t1, t2, . . . , tm} is a finite set of transitions; (3) I : P × T → [0, 1] is
the input function that maps directed arcs from places to output transitions of
those places. If a directed arc (p, t) exists between a place p and a transition t,
then I(p, t) > 0, otherwise 0. The values of I(p, t) for (p, t) ∈ P × T are called
input weights of transitions t and are denoted by iw; (4) O : T × P → [0, 1] is
the output function that maps directed arcs from transitions to output places
of those transitions. If a directed arc (t, p) exists between a transition t and a
place p, then O(t, p) > 0, otherwise 0. The values of O(t, p) for (t, p) ∈ T ×P are
called output weights of transitions t and are denoted by ow; (5) M0 : P → [0, 1]
is the initial marking; (6) S = {s1, s2, . . . , sn} is a finite set of statements; (7)
α : P → S is the statement binding function; (8) β : T → [0, 1] is the truth
degree function; (9) γ : T → [0, 1] is the threshold function; (10) Op is a union
of t-norms and s-norms called the set of operators, and the sets P , T , S, Op are
pairwise disjoint; (11) δ : T → Op × Op × Op is the operator binding function.

We also accept that if I(p, t) = 0 (O(p, t) = 0) then the directed arc from
input (output) place p to transition t does not exist in the net drawing. Similarly,
if M0(p) = 0 then the token does not exist in the place p. In addition, if I(p, t) = 1
(O(t, p) = 1), then the weight of the arc equal to 1 is also disregarded in the
net drawing. The numbers β(t) and γ(t) are placed in a net picture under the
transition t. The first number is interpreted as the truth degree of an implication
corresponding to a given transition t. The role of the second one is to limit the
possibility of transition firings, i.e., if the input operator In value for all values
corresponding to input places of the transition t is less than a threshold value γ(t)
then this transition cannot be fired (activated). The operator binding function δ
connects transitions with triples of operators (In,Out1, Out2). The first operator
in the triple is called the input operator, and two remaining ones are the output
operators. The input operator In concerns the way in which all input places are
connected with a given transition t (more precisely, statements corresponding to
those places). However, the output operators Out1 and Out2 concern the way in
which the next marking is computed after firing the transition t. In the case of
the input operator we assume that it can belong to one of two classes, i.e., t- or
s-norm, whereas the second one belongs to the class of t-norms and the third to
the class of s-norms.

Let N be a WGFP-net. A marking of N is a function M : P → [0, 1].
The dynamic behavior of the system is represented by the firing of the cor-

responding transition, and the evolution of the system is represented by a firing
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sequence of transitions. We assume that the networks built in the form presented
in this paper operate according to the firing rule consisting of the following three
steps:

1. A transition t ∈ T is enabled (or ready for firing) for marking M if the
number produced by input operator In for all input places of the transition t
by M multiplied by the relevant weights of arcs is positive and greater than,
or equal to the number being a value of threshold function γ corresponding to
the transition t. Formally, the following condition for γ(t) should be satisfied:
In(iwi1 · M(pi1), iwi2 · M(pi2), ..., iwik · M(pik)) ≥ γ(t) > 0, where In is an
input operator of the transition t, iwij is an input weight of t and M(pij) is
a marking of a place pij for j = 1, 2, ..., k.

2. A transition can fire only if it is enabled.
3. If M is a marking of N enabling transition t and M ′ is the marking derived

from M by firing transition t, then for each p ∈ P a procedure for computing
the next marking M

′
is as follows: (1) Tokens in all output places of t are

modified in the following way: at first the value of input operator In for all
input places of t is computed, next the value of output operator Out1 for the
value of In and for the value of truth degree function β(t) is determined, and
finally, a value corresponding to M

′
(p) for each p ∈ O(p) is obtained as a

result of output operator Out2 for the value of Out1 multiplied by the weight
ow and the current marking M(p). (2) Tokens in the remaining places of net
N are not changed.

Formally, for each p ∈ P

M ′(p) =

⎧
⎪⎨

⎪⎩

Out2(ow · Out1(In(iwi1 · M(pi1), iwi2 · M(pi2), ..., iwik · M(pik)), β(t)),

M(p)) if p ∈ O(t)

M(p) otherwise

We also assume that if several transitions are simultaneously enabled in the
same marking (i.e. transitions are concurrent) then they can be fired by an
application of the firing rule described above in one and the same step and the
resulting marking is computed according to this rule.

Fig. 1. A WGFP-net with the initial marking: (a) before firing t1, (b) after firing t1
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Example 5. Consider a WGFP-net in Fig. 1. For the net we have: the set of
places P = {p1, p2, p3}, the set of transitions T = {t1}, the input function I and
the output function O in the form: I(p1, t1) = iw1 = 2/5, I(p2, t1) = iw2 = 1/2,
I(p3, t1) = iw3 = 0, O(t1, p1) = ow1 = 0, O(t1, p2) = ow2 = 0, O(t1, p3) =
ow3 = 1, and the initial marking M0 = (1/2, 2/5, 0), the set of statements S =
{s1, s2, s3}, the statement binding function α : α(p1) = s1, α(p2) = s2, α(p3) =
s3, the truth degree function β : β(t1) = 1.0, the threshold function γ: γ(t1) =
0.1, the set of operators Op = {ZtN, GtN, ZsN}, the operator binding function
δ: δ(t1) = (ZtN, GtN, ZsN), where ZtN(a, b) = min(a, b) (minimum, Zadeh t-
Norm), GtN(a, b) = a · b (algebraic product, Goguen t-Norm), and ZsN(a, b) =
max(a, b) (maximum, Zadeh s-Norm). The transition t1 is enabled by the initial
marking M0, since ZtN(I(p1, t1) · M0(p1), I(p2, t1) · M0(p2)) = min(1/5, 1/5) =
1/5 ≥ 0.1 = γ(t1). Firing transition t1 by the marking M0 transforms M0 to
the resulting marking M ′ = (1/2, 2/5, 1/5), because ow3· GtN(1/5, β(t1)) = 1·
GtN(1/5, 1.0) = 1/5 and ZsN(1/5,M0(p3)) = max(1/5, 0) = 1/5. Note that in
this case the transition t1 is still enabled by M ′, but when it is fired at this
marking, the result marking is the same as M ′. We omit the detailed description
of the relevant calculations illustrating the transformation from the marking M ′

to M ′ after firing t1. They run similarly to these above.

4 Transformation of Decision Systems into WGFP-nets

Now we present a method for transforming decision rules representing a given
decision system into a WGFP-net.

We assume that a decision system is represented by decision rules of the form
IF τ THEN d = v.

Let S = (U,A ∪ {d}) be a decision system, and DESC(A, Va) be the set of
the set of conditional formulae of S.

In the paper, we consider three structural forms of decision rules with a list
of numerical factors enclosed in square brackets ‘[’ and ‘]’ characterizing these
rules (cf. [4,7,10]).

Type 1: A simple decision rule

r1 : IF a = v THEN d = v′

[b; σ(a), str(r1); acc(r1)]

where a = v and d = v′ denote descriptors such that a = v ∈ DESC(A, Va) and
v′ ∈ Vd, b is the truth degree value of a = v, σ(a) is significance of the attribute
a, while str(r1) and acc(r1) are the strength factor and the accuracy factor of
the rule r1, respectively.

A WGFP-net structure of the decision rule r1 is shown in Fig. 2, where iw
is the input weight of the transition r1 and interpreted as σ(a), while ow is the
output weight of r1 and interpreted as str(r1) (see Subsect. 2.3 and 2.4). A larger
value of iw or ow means a stronger corresponding connection. However, the value
β(r1) = c is interpreted as acc(r1). Similarly as before, the larger value of β the
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Fig. 2. A WGFP-net representation of the rule of type 1

more credible the rule is. The value of γ represents the threshold value. Larger
value b requires greater truth degree of the rule precedence, i.e., a = v. The
operator In and the operators Out1, Out2 represent the input operator and the
output operators, respectively. According to Fig. 3 the token value in an output
place p′ of a transition t corresponding to the decision rule r1 is calculated as
b′ = ow · Out1(b · iw, c), if b · iw ≥ d, where d = γ(r1) and γ(r1) is the threshold
value associated to the transition r1 and it is given by an expert in the field
during the simulation process of the network.

If the predecessor or the successor of a decision rule contains AND or OR
(propositional connectives), it is called a composite decision rule. Below, two
types of composite decision rules are presented together with their WGFP-net
representation (see Fig. 3 and Fig. 4).

Fig. 3. A WGFP-net representation of the rule of type 2

Type 2: A composite conjunctive decision rule in the predecessor of the rule

r2 : IF a1 = v1 AND a2 = v2 · · · AND ak = vk THEN d = v′

[b1, b2, . . . , bk; σ1(a), σ2(a), . . . , σk(a), str(r2); acc(r2)]

where a1 = v1, a2 = v2, . . ., ak = vk, d = v′ denotes descriptors, and b1, b2,
. . ., bk, b′ their truth degree values, respectively. The meaning of all numerical
factors characterizing this rule is similar to the meanings of the relevant factors
described for the rule of type 1. The token value b′ is calculated in the output
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place as follows (Fig. 3): b′ = Out1(In(b1 · iw1, b2 · iw2, . . . , bk · iwk), c)) · ow), if
In(b1 · iw1, b2 · iw2, . . . , bk · iwk) ≥ d, where d = γ(r2).

Type 3: A composite disjunctive decision rule in the successor of the rule

r3 : IF a′ = v′ THEN d = v1 OR d = v2 · · · OR d = vn

[b′; σ1(a′), σ2(a′), . . . , σn(a′), str1(r3), str2(r3), . . . , strn(r3); acc1(r3), acc2(r3), . . . , accn(r3)]

where a′ = v′, d = v1, d = v2, . . . , d = vn denotes descriptors, and b′ is the
truth degree value of a′ = v′. The token value for the type 3 is calculated in each
output place as follows (Fig. 4): bj = owj · Out1(b′ · iw, cj), if b′ · iw ≥ dj , where
dj = γj(r3), j = 1, . . . , n.

Fig. 4. A WGFP-net representation of the rule of type 3

Remarks:

1. It is easy to see that the rule of type 1 is a particular case of the rule of
type 2, as in the case of the rule of type 1, there is only one descriptor in
the predecessor. Type 3 can also be easily converted to type 1. Therefore,
without losing generality, we can only consider the rules of type 1 and 2.

2. As the rules of type 1 and 3 have only one descriptor in their predecessors,
we may omit the input operator In in Fig. 2 and 4. Nevertheless, for better
readability of these figures we leave the operator where it is. What’s more,
the rule of type 3 can be generalized in the case when in the predecessor of
the rule instead of one descriptor we have a conjunction of descriptors (as in
the rule of type 2). Then the net modeling of such a rule in relation to its
predecessor is similar to the one done for the rule of type 2.

3. We assume that the initial markings of output places are equal to 0 in all
net models corresponding to the considered rule types. Therefore, in the
descriptions of the token values in output places we do not regard the out-
put operator Out2. In the opposite case, i.e., for non-zero markings of output
places, we should take into account this output operator. Thus, in each for-
mula presented above the final token value a′ should be computed as follows:
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b′ = Out2(b′′,M(p′)), where b′′ denotes the token values computed for suit-
able rule types by means of formulas presented above, and M(p′) is a marking
of output place p′. Intuitively, a final token value corresponding to M ′(p′) for
each output place p′ of a transition representing a decision rule r is obtained
as a result of Out2 operation for the computed Out1 operation value and the
current marking M(p′).

Using the method described above, we can formulate a simple algorithm that
constructs a WGFP-net based on a given set of rules extracted from a decision
system S. This algorithm transforms the rule into a WGFP-net depending on
the form of the transformed rule.

Let S = (U,A ∪ {d}) be a decision system.

Algorithm 1: Construction of WGFP-net using a set of decision rules
in S
Input : A finite set R of decision rules in with a list of parameters
Output: A WGFP-net NS

F ← ∅; (* The empty set. *)
for each r ∈ R
if r is a rule of type 1 then

construct a subnet Nr as shown in Fig. 2;

if r is a rule of type 2 then
construct a subnet Nr as shown in Fig. 3;

if r is a rule of type 3 then
construct a subnet Nr as shown in Fig. 4;

F ← F ∪ {Nr};
integrate all subnets from a family F on joint places and create a result net NS ;
return NS ;

5 An Example

To illustrate our methodology, let’s reconsider the decision rules corresponding
to the relative reduct R1 from Example 4 along with a full list of parameters
needed to build a structure of WGFP net model:

– r1: IF H=no AND T=very high THEN F=yes [σ(H) = 1/6, σ(T) = 2/3,
str(r1) = 1/6; acc(r1) = 1]

– r2: IF H=yes AND T=very high THEN F=yes [σ(H) = 1/6, σ(T) = 2/3,
str(r2) = 1/6; acc(r2) = 1]

– r3: IF H=no AND T=high THEN F=yes [σ(H) = 1/6, σ(T) = 2/3, str(r3) =
1/6; acc(r3) = 1]

– r4: IF H=yes AND T=high THEN F=yes [σ(H) = 1/6,σ(T) = 2/3, str(r4) =
1/6; acc(r4) = 1/2]
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– r5: IF H=yes AND T=high THEN F=no [σ(H) = 1/6, σ(T) = 2/3, str(r5) =
1/6; acc(r5) = 1/2]

– r6: IF H=no AND T=normal THEN F=no [σ(H) = 1/6, σ(T) = 2/3,
str(r6) = 1/6; acc(r6) = 1]

Fig. 5. An example of the WGFP-net model for the diagnosis of flu diseases with the
initial marking

Using Algorithm 1 (Sect. 4) for constructing a WGFP-net on the base of
a given set of rules, we present the WGFP-net model corresponding to these
rules. This net model is shown in Fig. 5. Note that the places p2 and p4 include
the truth degree values 3/4 and 1/2 corresponding to the descriptors H=yes
and T=high, respectively. The remaining places on the net model are empty.
In this example, input weights iw attached to arcs belong to the interval [0,1]
and are shown in Fig. 5. Moreover, there are: the truth degree function β :
β(t1) = β(t2) = β(t3) = β(t6) = 1.0 and β(t4) = β(t5) = 0.5, the threshold
function γ: γ(ti) = 0.1 for i = 1, 2, ..., 6, the set of operators Op = {ZtN, GtN,
ZsN} and the operator binding function δ defined as follows: δ(ti) = (ZtN, GtN,
LsN) for all transitions in the net.
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Fig. 6. An example of the WGFP-net model for the diagnosis of flu diseases with the
final marking after firing the transitions t4, t5

Assessing the statements (descriptors) attached to places p2 and p4, we
observe that transitions t4 and t5 are enabled in the initial marking (see Fig. 5).
After firing these transitions in any order we obtain the same values for the deci-
sions F=yes, F=no equal to 1/48 (see Fig. 6). This means that an unambiguous
decision does not exist in this case. In the net model with parameters (and this
is the model presented in the paper) the problem of ambiguity of decisions is
easier to solve than in the model without parameters. In a situation like this,
the ambiguity of decisions could be relatively easily resolved if the weights of the
output arcs for t4 and t5 were different. This situation is possible with a different
interpretation of the weights of the input and/or output arcs in this net model.
We intend to address this problem in more detail in our future research work.

It is also visible in this figure that in the current marking the transitions
t4 and t5 are still enabled. Firing these two transitions in the current marking
does not change this marking, therefore the simulation of the net operation is
already completed. We omit the particular calculation in this case, because it
runs similarly as in Example 5 (Sect. 3).
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6 Conclusion

Trying to make fuzzy Petri nets more realistic with regard to the perception of
physical reality, in this paper we established the relationship between fuzzy Petri
nets and rough set theory. This link is of a methodological nature and shows the
possible application of rough set methodology to transform the WGFP-net into
a more realistic net model. In the proposed model, the weights of arcs and the
function β are interpreted using appropriate concepts from the rough set theory,
thanks to which their values are calculated from data tables. Decision rules are
also automatically generated from these tables, which are the basis for building
the net model of the decision algorithm. In addition, the considered net model
allows the use of any triangular norms to describe the behavior of the WGFP-
nets. The approach developed seems promising and one could try to apply it to
problems that can be solved in a similar way.

It is worth noting that the presented net model allows relatively quickly
identify the objects specified in a given decision table. However, the algorithm
described does not propagate information from attributes to other attributes as
soon as possible. If such an algorithm did this, we would achieve even faster
decision making in the net model. It is well known that this aspect is extremely
important in real-time systems. This is the reason to consider in the next study
the rules in minimal form, i.e. with a minimal number of descriptors on its left
hand side. Another interesting problem arises when we are unable to determine
the exact membership or value of truth, then we should focus our attention
on e.g. interval fuzzy sets [19] to indicate their scope instead of exact values.
Therefore, it seems useful to examine the WGFP-net in the context of interval
t-norms. This should make the model proposed here even more flexible, general
and practical. These are just some examples of problems that we would like to
examine using the approach presented in the paper.
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Abstract. In this paper, we present a new view on how the concept of
rough sets may be interpreted in terms of statistics and used for rea-
soning about numerical data. We show that under specific assumptions,
neighborhood based rough approximations may be seen as statistical
estimations of certain and possible events. We propose a way of choos-
ing the optimal neighborhood size inspired by statistical theory. We also
discuss possible directions for future research on the integration of rough
sets and statistics.
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1 Introduction

Zdzis�law Pawlak introduced rough sets in 1982 to deal with inconsistencies
within information tables [15]. His approach is applied to the representation
of classes of objects in an information table using two new sets called lower
and upper approximation. The lower approximation contains objects which cer-
tainly belong to the approximated class, while the objects which are possibly in
the approximated class are included in the upper approximation. Formulated in
another way, the approach identifies the objects which are certainly consistent
with the available knowledge and the objects which are possibly consistent with
it. The original method is designed to deal with categorical data or data with a
finite domain.

The extension of the model to numerical data faces some difficulties. One
possibility to deal with numerical data is to discretize the attributes in the
information table and make them categorical [7]. However, such an approach
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may lead to a loss of information, since discretization considers a set of values
as one single value. The other option are neighborhood based rough sets where
the equivalence class from Pawlak’s approach is replaced with the neighborhood
of an object in a high dimensional Euclidean space [9]. They are related to sim-
ilarity based rough sets [21], and are part of the more general family of covering
based rough sets [26]. The third approach are fuzzy rough sets which use fuzzy
generalizations of equivalence relations suitable for application to numerical data
[5]. In this paper, we use probability and statistics instead of fuzziness to model
uncertainty in data.

From the very beginning, it was acknowledged that Pawlak’s approach runs
into limitations when it comes to problems which are more probabilistic than
deterministic in nature [27]. In general, data consist of true values affected by
some noise. Therefore, the first step in data analysis is to remove that noise in
order to use the real values to solve the problem of interest. As a robust version of
rough sets, the Variable Precision Rough Set (VPRS) approach was proposed by
Ziarko [27]. It was also the first attempt to integrate the probabilistic approach
and rough sets. Other probabilistic versions of rough sets were presented later,
including decision theoretic rough sets [25] and parameterized rough sets [6].
Later on, Ziarko also introduced the assumption that the data are just a sample
from an unknown space [28] into rough sets. That is a widely used assumption in
statistics and machine learning: data are a realization of a random variable. With
this assumption, we seek for a deeper integration of rough sets and statistics. In
this paper, we propose a new view on the definition of rough sets, and provide a
new definition independent of the type of data. It leads to a natural extension of
the initial rough set approach to numerical data. We provide an example how to
calculate rough sets for numerical data, elaborate on some of issues we are facing
and present some ideas about how to direct the future research on integration
of rough sets and statistics.

The paper is organized as follows. In the next section we recall basic con-
cepts of rough set theory. In Sect. 3, statistical learning theory for Pawlak’s rough
sets is introduced. Section 4 presents rough approximations for numerical data.
Section 5 identifies and discusses some potential pitfalls and drawbacks identi-
fied in Sect. 4 together with ideas for improvement. Conclusions are provided in
Sect. 6.

2 Preliminaries

2.1 Rough Sets

An information table is a 4-tuple <U,Q∪{d},X ∪Y, f> where U = {u1, . . . , un}
is a finite set of objects or alternatives, Q = {q1, . . . , qm} is a finite set of
condition attributes, d is a decision attribute; X = ∪q∈QXq, where Xq is the
domain of attribute q ∈ Q while Y is the domain of d. The information function
f : U × Q ∪ {d} → X ∪ Y satisfies that ∀u ∈ U,∀q ∈ Q : f(u, q) ∈ Xq and that
f(u, d) ∈ Y . Denote by XQ =

∏
q∈Q Xq the joint domain of condition attributes,
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while f(u,Q) ∈ XQ represents the |Q|-tuple of values f(u, q) for q ∈ Q. If Xq is
finite, we say that q is categorical, while if Xq ⊆ R we say that q is numerical.

First we assume that all condition attributes are categorical. We define the
equivalence relation ≡ on objects u and v as u ≡ v ⇔ ∀q ∈ Q, f(u, q) = f(v, q).
This means that two objects are related (indiscernible) if they are equally eval-
uated on all attributes. Let [u]≡ denote the equivalence class of object u, and
A ⊆ U . We recall Pawlak’s lower and upper approximations on U :

apr≡(A) = {u ∈ U |[u]≡ ⊆ A}, apr≡(A) = {u ∈ U |[u]≡ ∩ A 
= ∅}.

In the lower approximation of A, we include objects u for which all identically
evaluated objects are also in A. Therefore, we may conclude that u for sure
belongs to A based on available knowledge, since all the instances with the same
values are also in A. We include object u in the upper approximation of A if
there is an instance in A identically evaluated as u. Hence, we may say that u
is possibly in A if some instances, identically evaluated as u, are in A. In this
way, we distinguish certain and possible knowledge. Below, we list the important
properties of inclusion and duality [15]:

– (inclusion) apr≡(A) ⊆ apr≡(A),
– (duality) apr≡(Ac) = (apr≡(A))c, apr≡(Ac) = (apr≡(A))c.

A question arises: how to apply a similar reasoning when we have numerical
data? If we apply the reasoning presented above, the equivalence classes will
mostly consist of only one object since it is almost impossible that two objects
with numerical characteristics will be identically evaluated on all attributes. This
means that all objects from A belong to the lower approximations of A, i.e., all
objects from A certainly belong to A. However, in this way we ignore the fact
that the noise present in data affects the certainty of objects belonging to a
set. The noise is related to imprecision of numerical attributes and, even if the
measurement of numerical attributes is precise, to human perception of these
precise values.

A way to handle this problem is the neighborhood based rough set app-
roach. Assume now that condition attributes are taking real values and let
d be Euclidean distance on XQ ⊆ R

m. Here, any distance metrics can be
used, but Euclidean distance corresponds with the later statistical approach
we will use. For object u ∈ U we define its ε-neighborhood nε(u) = {v ∈
U ; d(f(u,Q), f(v,Q)) < ε}. We define the approximations in the following
way [9]:

apr
ε
(A) = {u ∈ U ;nε(u) ⊆ A}, aprε(A) = {u ∈ U ;nε(u) ∩ A 
= ∅}.

Here, object u certainly belongs to A if its close neighborhood only contains
objects from A. Object u possibly belongs to A if its close neighborhood contains
at least one object from A. Equivalent properties of inclusion and duality also
hold in this case [9].

From the definition we may see that the approximations heavily depend on
the parameter ε. The question is, what is the optimal neighborhood size which
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will identify certain and possible knowledge. Later on we will see that statistical
techniques may be useful for this purpose.

2.2 Value-Based Definitions and Inconclusive Regions

Pawlak defines the approximations as sets of objects (SO). The main goal of
these definitions is to distinguish possible knowledge from certain knowledge
and for this we do not need to refer exactly to the set of objects. We can define
the approximations as sets of values (SV), i.e., the sets which will only contain
values from the domain of condition attributes. Let x ∈ XQ. Similarly as in [8]
we define sets [x] = {u ∈ U ; f(u,Q) = x}. The SV approximations are

aprSV≡ (A) = {x; [x] 
= ∅ ∧ [x] ⊆ A}, aprSV≡ (A) = {x; [x] ∩ A 
= ∅}.

We refer to this definition as SV definition while the original one will be called
SO definition. We note that the SV definition keeps the same knowledge as the
SO definition. The SO approximations can be obtained from the SV definition
by collecting all objects with condition values belonging to the SV approxima-
tions (lower or upper). The SV approximations can be obtained from the SO
definition as a set of unique condition values f(u,Q) of the objects from the
SO approximations. Therefore, in terms of Pawlak’s environment of categorical
data, SO and SV definitions are equivalent.

We notice that there are values from the domain which cannot be assigned
to any approximation. In particular, the condition |[x]| > 0 is necessary in the
definitions. Otherwise a value x for which |[x]| = 0 would belong to the lower
approximations of A and Ac at the same time, i.e., it would certainly belong
to two opposite classes. Of course, that is not possible and such values from
the domain are called inconclusive. We denote the set I ⊆ XQ of inconclusive
values by

I = {x;x ∈ XQ ∧ [x] = ∅}
The inclusion property is clearly preserved while duality still holds if the com-
plement operator on XQ excludes inconclusive values i.e., if it is defined as:
Sc = XQ − I − S for S ⊆ XQ.

On the other hand, for the SV extension in the neighborhood based approx-
imations, neighborhood may be defined for any value from the domain XQ. If
XQ ⊆ R

m and x ∈ XQ we define nε(x) = {u ∈ U ; d(x, f(u,Q)) < ε}. The SV
approximations are:

aprSV
ε

(A) = {x;nε(x) 
= ∅ ∧ nε(x) ⊆ A}

aprSVε (A) = {x;nε(x) ∩ A 
= ∅}.

An arbitrary value x ∈ XQ is in the lower approximation of A if its ε-
neighborhood contains only objects from A while it is in the upper approxi-
mation if it contains at least one object from A. Here again we consider the
inconclusive areas, i.e., values in which neighborhood there are no objects from
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U . As for the SV definitions for Pawlak’s rough sets, the inclusion property is
preserved while duality holds with exclusion of the inconclusive areas. The SO
and SV definitions are not equivalent in this case since SV is more general, and
SO can be obtained from it, but not vice versa. For example, there can exist
a value x ∈ XQ such that its neighborhood contains exactly one object u ∈ A
and no elements from Ac, and such that u is not in the SO lower approxima-
tion of A. The latter holds in particular if there exists some v ∈ Ac such that
d(f(u,Q), f(v,Q)) < ε. However, x belongs to the SV lower approximation, and
such x cannot be reconstructed from the SO lower approximation.

We will use the SV definition to derive a statistical extension of rough sets
to numerical data.

3 A Statistical View of Pawlak’s Rough Sets

One widely used assumption in statistics and machine learning (ML) is that data
are realizations of a joint random variable. Let objects be outcomes of the joint
random variable U = (X ,Y) where X is a random variable corresponding to the
condition attributes, while Y corresponds to the decision attribute. Since we are
dealing with classification problems, we know that Y is always discrete, while
X is discrete if we work with categorical data, or X takes values from R

m if we
have numerical data. Those random variables are unknown in practice, so using
data as their realizations, we explain the relations between X and Y.

The idea here is to redefine the approximations in terms of random variables
instead of data. The SV approximations were defined on the domain w.r.t. neigh-
borhood operators, while here the approximations are defined on the domain
w.r.t. a random variable. In terms of statistics these are the “true” approxima-
tions dependent on unknown random variables. The SV approximations on data
will play the role of estimators of such approximations.

Since Y is discrete, assume that its domain is the set {0, 1, . . . ,K} for
some K. Classification tasks in machine learning often refer to calculation of
the conditional probabilities of the particular classes. More formally, for class
k ∈ {0, 1, . . . ,K} we want to model the expression P (Y = k|X = x) as a
function of x for all x from the domain space (either a space of categories or
R

m). Assume now that the domain XQ of X is finite i.e., X is discrete. If cer-
tainty is modeled in a probabilistic environment, we say that an event is cer-
tain if its probability is 1 while an event is possible if its probability is greater
than 0. We want to know if value x ∈ XQ certainly belongs to class k, i.e., if
P (Y = k|X = x) = 1. In practice, we do not have exact knowledge about the
conditional distribution of Y on X , so we need to estimate it. We recall the set
of objects U = {ui = (xi, yi)|i = 1 . . . n} which is now a set of realizations of
random variable U , known as a sample. The empirical estimation of the above
mentioned conditional probability is

P̂ (Y = k|X = x) =
∑n

i=1 1{yi=k,xi=x}
1{xi=x}

=
|{ŷ = k}| ∩ |{x̂ = x}|

|{x̂ = x}| ,
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where 1A is the indicator function, |{ŷ = k}| is the number of objects yi equal
to k, while |{x̂ = x}| is the number of objects xi equal to x. To estimate the set
of values x for which P (Y = k|X = x) = 1, we use the estimated probability
instead of the true one. We have that:

|{ŷ = k}| ∩ |{x̂ = x}|
|{x̂ = x}| = 1 ⇔ |{ŷ = k}| ∩ |{x̂ = x}| = |{x̂ = x}| ∧ |{x̂ = x}| > 0

⇔ {x̂ = x} ⊆ {ŷ = k} ∧ |{x̂ = x}| > 0.

We obtain

{x ∈ XQ; P̂ (Y = k|X = 1)} = {x ∈ XQ; |{x̂ = x}| > 0 ∧ {x̂ = x} ⊆ {ŷ = k}}.

The right side of the latter equality is identical to the SV definition of Pawlak’s
rough sets, where [x] is replaced by {x̂ = x} while A is replaced with {ŷ = k}.
Here, it can be noticed that the SV lower approximation may be seen as an
estimation of the unknown lower approximation dependent on random variables.
A similar procedure may be used for the upper approximation. This leads to the
definition of the lower and upper approximations of the class k with respect to
random variable X :

aprRV
X (Y = k) = {x;P (Y = k|X = x) = 1}, (1)

aprRV
X (Y = k) = {x;P (Y = k|X = x) > 0}.

We call this the RV definition of rough sets. Such defined “true” approximations
do not require any assumptions on X (X being discrete or continuous) as long
as the conditional probability is defined. This version of the approximations pro-
vides a natural extension of rough sets to numerical data (and all other types of
data). In practice, approximation estimates for categorical and numerical data
are different since the probability estimation is different in the discrete and the
continuous case. We have already seen the estimation of the lower approximation
for categorical data. Later on it will be shown how to estimate the approxima-
tions in the numerical case. The RV rough set definitions can be taken out of
the context of classification and they can be extended to arbitrary events. Let A
be an event and X be a random variable. The lower and upper approximations
of A w.r.t. X are defined as:

aprRV
X (A) = {x;P (A|X = x) = 1}, aprRV

X (A) = {x;P (A|X = x) > 0}.

However, such general definition will not play an important role for our goal,
but it may find some other applications in data analysis.

4 Rough Approximations for Numerical Data

In the previous section we have seen how the approximations may be estimated in
practice when we deal with categorical data, and that such estimation coincides
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with Pawlak’s approach. Since the approximations do not depend on the type of
data, the question is how to estimate them for numerical data. To make things
simpler, we assume that classification is binary, i.e., K = 1, and we only have two
values for the variable Y, 0 and 1. Assume also that the domain of X is XQ ⊆ R

m

i.e., X is a continuous random variable. By fX we denote the probability density
function (PDF) of X , while by fY(k) = P (Y = k) we denote the PDF of the
binary random variable Y. The joint PDF of Y and X is denoted as fY,X . From
probability theory it holds that fY(0) + fY(1) = 1, fX (x) > 0 for x ∈ XQ and∫

XQ
fX (x)dx = 1. We calculate the approximations of class 1. Probability theory

tells us that:

P (Y = 1|X = x) =
fY,X (1, x)

fX (x)
= 1 − fX (x) − fY,X (1, x)

fX (x)
= 1 − fY,X (0, x)

fX (x)
.

For the lower approximation we have that

P (Y = 1|X = x) = 1 ⇔ 1 − fY,X (0, x)
fX (x)

= 1 ⇔ fY,X (0, x)
fX (x)

= 0 ⇔ fY,X (0, x) = 0.

The last equality can be divided by fY(0) and we get the condition fX|Y=0(x) =
0. Here fX|Y=0 stands for the conditional PDF of X on event {Y = 0}. For the
upper approximation we have:

P (Y = 1|X = x) > 0 ⇔ fY,X (1, x)
fX (x)

> 0 ⇔ fY,X (1, x) > 0.

The last equality can be divided by fY(1) and we get the condition fX|Y=1(x) > 0.
The conclusion we may derive from the calculations is that x certainly belongs

to class 1 if the conditional PDF of X on {Y = 0} evaluated in x is 0. We have
that x possibly belongs to class 1 if the conditional PDF of X on {Y = 0}
evaluated in x is greater than 0. These conditions depend on conditional PDFs
which are unknown in practice and have to be estimated. More precisely, we need
to estimate the so-called level sets, i.e., areas on which the PDF is smaller or
greater than some value [2]. In our case, the thresholds we consider for the PDFs
are when they are equal to 0 and greater than 0 (lower and upper approximation).

The estimation of level sets is an emerging field in statistics and ML [2,3,20].
Such estimations are essentially different from estimating the PDF itself since
we are searching for good estimators for a particular area of the PDF, not for
the whole PDF.

Below we present a naive approach of estimating level sets using the estima-
tion of the PDF. Density estimation is a well studied area of statistics [18,19,23].
The main methods are histogram density estimation, kernel density estimation
(KDE) and nearest neighbour density estimation. Histograms are known for per-
forming badly in high dimensions [18], while the nearest neighbour methods do
not assume that there are areas where the PDF is equal to 0 [14]. For these
reasons, KDE appears the most appropriate choice to calculate level sets. We
refer the reader to [19] for an overview of density estimation methods.
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4.1 Rough Sets and KDE

A kernel K : Rm × R
m → R is a positive and symmetric mapping for which

it holds that ∀t ∈ R
M ,

∫
Rm K(t, s)ds = 1 [24]. It may be seen as a measure of

similarity between points from R
m. The kernel density estimator is defined as:

f̂K(t) =
1
n

n∑

i=1

K(t, ti),

where {t1, t2, . . . , tn} is a given sample from the unknown PDF f . The motivation
behind this definition is that if x has more points in its proximity, then value
f̂K(x) will be larger, which indicates an area of higher density.

Similarity measures are usually based on distances between points since, intu-
itively, the closer points are, the more similar they are to each other. Therefore,
we use kernels based on Euclidean distance, called radial kernels [12]:

K(x, y) =
1
h

k

(‖x − y‖
h

)

.

The notation ‖·‖ stands for the standard norm on R
m, h is a positive real

parameter called bandwidth while k is a univariate positive function. Using radial
kernels, the PDF estimator becomes:

f̂k,h(x) =
1

nhm

n∑

i=1

k

(‖x − xi‖
h

)

. (2)

From before we have that the lower approximation can be formulated as:

aprRV
X (Y = 1) = {x; fX|Y=0(x) = 0}.

Therefore, using (2) we get the estimator of the lower approximation:

aprRV
X̂ (Y = 1) = {x; f̂k,h

X|Y=0(x) = 0}.

Although it is not possible that fX|Y=0(x) = 0 and fX|Y=1(x) = 0 at the
same time, it may happen that f̂k,h

X|Y=0(x) = 0 and f̂k,h
X|Y=1(x) = 0 for some

x. Such values we will denote as inconclusive and we will exclude them from the
approximations, as before. Following this, we redefine the estimation of the lower
approximation:

aprRV
X̂ (Y = 1) = {x; f̂k,h

X|Y=0(x) = 0 ∧ f̂k,h
X|Y=1(x) > 0}. (3)

Henceforth we will focus on the lower approximation. A very similar proce-
dure can be used to estimate the upper approximation.

We have to decide which area satisfies the condition from (3). To estimate
fX|Y=0 we use objects from class 0 and to estimate fX|Y=1 we use objects from
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class 1. Recall U = {(x1, y1), . . . , (xn, yn)} as the set of objects or the sample.
Set U is split into two subsets; objects which belong to class 0, and objects which
belong to class 1. We denote those sets U0 = {(x0

1, 0), (x0
2, 0), . . . , (x0

n0
, 0)} and

{U1 = (x1
1, 1), (x1

2, 1), . . . , (x1
n1

, 1)}. To estimate the conditional PDFs fX|Y=0

and fX|Y=1 we use the objects from U0 and U1 respectively. To estimate the
level set fX|Y=0(x) = 0 we have to find values of x for which f̂k,h

X|Y=0(x) = 0

and to estimate fX|Y=1(x) > 0 we are searching for x where f̂k,h
X|Y=1(x) > 0. It

follows that:

1
nh

n0∑

i=1

k

(‖x − x0
i ‖

h

)

= 0 ⇔ ∀i ∈ {1, . . . n0}; k

(‖x − x0
i ‖

h

)

= 0.

1
nh

n1∑

i=1

k

(‖x − x1
i ‖

h

)

> 0 ⇔ ∃i ∈ {1, . . . n1}; k

(‖x − x0
i ‖

h

)

> 0.

The derivation up to now is general and holds for all functions k and bandwidths
h. The question is, which kernel best suits the last condition. The most used ker-
nel in practice is the Gaussian kernel which is also radial: k(x) = 1√

(2π)m
e− 1

2x2
.

Its main drawback is that it is nowhere equal to 0. It is used under the assump-
tion that there are no impossible or certain events which is not the case here.
Therefore, a better choice would be a kernel with different assumptions. In par-
ticular, we require a kernel for which k is bigger than 0 on a bounded set i.e., a
kernel with bounded support (Fig. 1).

Fig. 1. Kernel examples in univariate case

The theory developed in [13] states that the smallest estimation error under
certain conditions is achieved for the Epanechikov kernel. The Epanechikov ker-
nel is radial with

k(x) = max
{

0,
m + 2
2cm

(1 − x2)
}

,

where cm is the volume of the m-dimensional unit ball. According to the def-
inition, its support is the unit hypersphere, which implies that it is bounded.
Another kernel with bounded support is the spherical uniform kernel, i.e., the
constant radial kernel for which
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k(x) =

{
1

cm
if x ∈ (0, 1)

0 otherwise.

Let he and hu be the bandwidths corresponding to the Epanechikov kernel
and spherical uniform kernel, respectively. For the Epanechikov kernel, we have
that:

k

(‖x − x0
i ‖

he

)

= 0 ⇔ m + 2
2cm

(

1 − ‖x − x0
i ‖2

h2
e

)

≤ 0 ⇔ ‖x − x0
i ‖ ≥ he,

k

(‖x − x1
i ‖

he

)

> 0 ⇔ m + 2
2cm

(

1 − ‖x − x1
i ‖2

h2
e

)

> 0 ⇔ ‖x − x1
i ‖ < he,

while for the spherical uniform kernel it holds that:

k

(‖x − x0
i ‖

hu

)

= 0 ⇔ ‖x − x0
i ‖ ≥ hu, k

(‖x − x1
i ‖

hu

)

> 0 ⇔ ‖x − x1
i ‖ < hu,

In both cases, value x certainly belongs to class 1 if in the neighborhood there
are no objects from the opposite class and there are some objects from the same
class. Hence, by using kernels with bounded support, we obtain simple conditions
for estimating the lower approximations.

4.2 Relationship to Neighborhood Based Rough Sets

We summarize the results obtained so far: we defined the lower approximation
of class {Y = 1} as : aprRV

X (Y = 1) = {x; fX|Y=0(x) = 0} for continuous random
variable X . We estimated the approximation by estimating the PDF from the
expression using kernel density estimators as:

aprRV
X̂ (Y = 1) = {x; f̂K

X|Y=0(x) = 0 ∧ f̂K
X|Y=1(x) > 0}.

We have shown that the estimators for certain radial kernels with bounded sup-
port lead to the expression:

aprRV
X̂ (Y = 1) = {x;∀i : ‖x − x0

i ‖ ≥ h ∧ ∃i : ‖x − x1
i ‖ < h},

for some h. Let us write the neighborhood definition replacing ε with h: nh(x) =
{xi ∈ U ; d(x, xi) < h}, where d is the Euclidean distance. Condition ∃i : ‖x −
x1

i ‖ < h means that there is at least one object from U1 in nh(x), i.e., nh(x) 
= ∅,
while ∀i : ‖x − x0

i ‖ ≥ h means that there are no objects from U0 in nh(x), i.e.,
nh(x) ⊆ U1. It follows that the approximation estimator can be written as:

aprRV
X̂ (Y = 1) = {x;nh(x) 
= ∅ ∧ nh(x) ⊆ U1}.

The latter expression is exactly the SV (set of values) definition of the neighbor-
hood based rough sets. We can conclude that the estimators of the RV approx-
imations coincide with the SV definition of the neighborhood based rough sets.
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The advantage of this representation of the neighborhood based rough sets is
that we have proper mathematical tools to calculate the neighborhood size in
order to get better results. We are now able to use statistical methods to obtain
a proper bandwidth which plays the role of the neighborhood size.

In the following subsection, we will outline a procedure to select the band-
widths in theory, that is: we provide some insights on how the bandwidths can
be calculated independently from data, using only the chosen kernel and the
original PDF.

4.3 Bandwidth Selection - An Example

This subsection relies on the work presented in [19]. Using the KDE theory, we
are able to construct the proper bandwidths for different kernels in order to
obtain the best possible estimator of PDFs (or at least close to the best). The
bandwidths are chosen to minimize the error of the PDF estimation. A widely
used error function is Mean Integrated Square Error (MISE):

MISE(f̂k,h) =
∫

XQ

E((f̂k,h(x) − f(x))2)dx

where E stands for the expected value. When n is significantly larger than the
number of attributes m, the MISE of radial kernels can be approximated as:

MISE(f̂k,h) ≈ C1h
4 +

C2

nhm
.

The latter expression is also called AMISE or Asymptotic MISE. By minimizing
the expression above, we get the optimal bandwidth:

hopt = C3n
− 1

m+4 .

Constants C1, C2 and C3 are dependent on the kernel and on the actual proba-
bility density function f . Assuming that our data are normally distributed (or
something close to normal with bounded support), we are able to calculate the
optimal bandwidths. Under normality assumption, the optimal bandwidths for
the Epanechikov and spherical uniform kernels are:

hopt
e = [8(d + 4)c−1

m (2
√

π)dn−1]
1

m+4 , hopt
u = [4(d + 2)c−1

m (2
√

π)dn−1]
1

m+4 .

From the AMISE expression, we may see that the rate of convergence is not
dependent on constant C3. Therefore, in order to avoid the assumptions and to
achieve better results one can try to tune constant C3 using data. Under hopt

for some kernel we also ensure that:

lim
n→∞ MISE(f̂k,hopt

) = 0.

That ensures that for a sufficiently large sample size n, the inconclusive areas
will become negligible. That is also intuitive since with more data we acquire
more knowledge which leaves less space for uncertainty.
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5 Discussion

We have presented a new way to calculate the neighborhood size in neighbor-
hood based rough sets. A question arises: does it provide satisfactory results in
practice?

It is well known that rough sets are widely used in attribute selection [4,10].
The attribute selection in rough sets focuses on preservation of certain knowl-
edge; we delete attributes as long as the lower approximations of all classes
remain unchanged.

We have run a series of experiments applying the attribute selection
using neighborhood based rough sets together with the calculated bandwidths.
Unfortunately, the results were not satisfactory. First, we simulated data
with normal distribution to fulfill the assumption from the previous subsec-
tion. We have noticed that for lower dimensions, both hopt

e -neighborhood and
hopt

u -neighborhood are too wide, meaning that they cover a large amount of data.
Consequently, the lower approximations obtained with them consist of a low per-
centage of data which is unrealistic. With higher dimensions, we observed the
opposite problem; the neighborhoods are too narrow which leads to the lower
approximation containing almost all data, which is also unrealistic. We can con-
clude that the naive approach of estimating PDF and searching for the optimal
bandwidth is not the best idea. The reason for the failure, even under the nor-
mality assumption, may lie in the fact that the optimal bandwidths are mainly
useful in the following cases.

– The number of objects in the sample is significantly larger than the number
of attributes since the bandwidth optimality is asymptotic.

– The MISE error is calculated using l2 norm (the integral of the squared dif-
ference). Our interest is to get the optimal bandwidth for the level set where
PDF is equal to 0. The l2 convergence does not guarantee that the estimator
also uniformly converges to the actual PDF [17]. Thus, we may have that
hopt is suitable for the higher density regions where the PDF is significantly
larger than 0 and that it may have poor performance for the regions where
the PDF is close to 0.

We have also applied the procedure on real data for which the normality assump-
tion does not hold. As soon as the assumption is not fulfilled, the results are get-
ting worse. For example, we considered binary classification in mammographic
data from UCI [1] for which n = 830 and m = 5. In all cases, the lower approxi-
mations contained less than 7 % of data, meaning that only 7 % of data can be
certainly classified. Keeping in mind that the classification accuracy we obtained
with SVM on this dataset is around 85%, 7 % of certainty is unrealistic.

To overcome the limitations of the theoretical bandwidth selection, we iden-
tify the following options for future integration of rough sets, KDE and statistics
in general.

– Data driven estimation. The calculation of bandwidths may be data
driven. There is also a statistical theory on how to calculate bandwidths
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based on data (again [19]). Data driven bandwidths will help us to overcome
any a priori assumptions on the distribution of data.

– Robust approaches. Having 0 probability regions is a strong assumption
which usually does not coincide with reality. Mostly, numerical data exhibit
rare events, which may occur in the training data and/or during the prediction
process. Having the assumption that data lie in a bounded region may be
misleading in many cases and it can produce bad results. The 0 probability
regions can be eliminated by applying robust approaches similar to Variable
Precision Rough Sets (VPRS).

– Direct level set estimation. The bandwidth calculation needs to be more
adjusted to the problem of the level set estimation, rather than to the PDF
estimation. After we identify the regions of interest, we have to set up the
optimization problem to get the best possible (or close to the best) bandwidth
for that particular case.

– Different estimators than KDE. We can try to use other estimators for
level sets, besides KDE. The nearest neighbor based estimator can give inter-
esting results [14].

– Integration with SVM. Do we have to use densities to estimate the approx-
imations defined in (1)? We showed that the estimation of the RV approxi-
mations (1) boils down to the estimation of level sets. We may explore the
relation between SVM and level set estimation as has been done in [11,16,22].
On the other hand, there is a direct correspondence between principles of
rough sets and SVM. The applications of rough sets in binary classification
divide the domain into three sets, two certain regions for each class and one
boundary region. SVM is doing something similar where it trains two margins
which divide the space similarly as the rough sets: one boundary region and
two regions for two classes. Thus, using the similarities between rough sets
and SVM, we can try to integrate them in order to achieve better results.

6 Conclusion

We presented a new view on the definition of rough sets for the case when data
are not necessarily categorical. From the statistical point of view, the calculation
of rough set approximations is basically the estimation of the unknown RV (ran-
dom value) approximations dependent on random variables that generate data.
Such estimation under certain conditions (i.e., using radial kernels with bounded
support) is equivalent to the definition of neighborhood based rough sets. We
also showed a simple way how to calculate the neighborhood size using statistics.
Moreover, we discussed several options for future research on the integration of
rough sets and statistics. Of course, for each of the proposals it should be studied
if it can be tailored to the main applications of rough sets: rule induction and
attribute selection.

Acknowledgements. This work was supported by the Odysseus program of the
Research Foundation-Flanders.
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6. Greco, S., Matarazzo, B., S�lowiński, R.: Rough membership and bayesian confirma-
tion measures for parameterized rough sets. In: Śl ↪ezak, D., Wang, G., Szczuka, M.,
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Abstract. The NIS-Apriori algorithm, which is extended from the Apri-
ori algorithm, was proposed for rule generation from non-deterministic
information systems and implemented in SQL. The realized system han-
dles the concept of certainty, possibility, and three-way decisions. This
paper newly focuses on such a characteristic of table data sets that there
is usually a fixed decision attribute. Therefore, it is enough for us to han-
dle itemsets with one decision attribute, and we can see that one frequent
itemset defines one implication. We make use of these characteristics and
reduce the unnecessary itemsets for improving the performance of exe-
cution. Some experiments by the implemented software tool in Python
clarify the improved performance.

Keywords: Rule generation · The Apriori algorithm · Frequent
itemset · Incomplete information · Three-way decisions

1 Introduction

We are following rough set based rule generation from table data sets [10,14,22]
and Apriori based rule generation from transaction data sets [1,2,9], and we
are investigating a new framework of rule generation from table data sets with
information incompleteness [17–21].

Table 1 is a standard table. We term such a table as a Deterministic Informa-
tion System (DIS). In DISs, several rough set based rule generation methods are
proposed [3,5,10,14,16,22,23]. Furthermore, missing values ‘?’ [6,7,11] (Table 2)
and a Non-deterministic Information System (NIS) [12,13,15] (Table 3) were also
c© Springer Nature Switzerland AG 2020
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Table 1. An exemplary DIS ψ.

Object P Q R S Dec

x1 3 1 2 2 a

x2 2 2 2 1 a

x3 1 2 2 1 b

x4 1 3 3 2 b

x5 3 2 3 1 c

Table 2. An exemplary NIS Φ with
missing value ‘?’, whose value is one of
1, 2, 3.

Object P Q R S Dec

x1 3 ? 2 2 a

x2 2 {2, 3} 2 ? a

x3 ? 2 2 {1, 2} b

x4 1 3 3 2 b

x5 3 2 3 ? c

Table 3. An exemplary NIS Φ. Each ‘?’
is replaced with a set {1, 2, 3} of possible
attribute values.

Object P Q R S Dec

x1 3 {1, 2, 3} 2 2 a

x2 2 {2, 3} 2 {1, 2, 3} a

x3 {1, 2, 3} 2 2 {1, 2} b

x4 1 3 3 2 b

x5 3 2 3 {1, 2, 3} c

investigated to cope with information incompleteness. In [12], question-answering
based on possible world semantics was investigated, and an axiom system was
given for query translation to one equivalent normal form [12].

In NIS, some attribute values are given as a set of possible attribute values
due to information incompleteness. In Tables 2, {2, 3} in x2 implies ‘either 2 or
3 is the actual value, but there is no information to decide it ’, and ‘?’ does there
is no information. We replace each ‘?’ with all possible attribute values and have
Table 3. Thus, we can handle ‘?’ in NIS (some discretization may be necessary for
continuous attribute values). Formerly in NISs, question-answering and informa-
tion retrieval were investigated, and we are coping with rule generation from NISs.

The Apriori algorithm [1] was proposed by Agrawal for handling transaction
data sets. We adjust this algorithm to DIS and NIS by using the characteristics
of table data sets. The highlight of this paper is the following.

(1) A brief survey of Apriori based rule generation and a rule generator,
(2) Some improvements of the Apriori based algorithm and a rule generator,
(3) Experiment by the improved rule generator in Python.

This paper is organized as follows: Sect. 2 surveys our framework on NISs and
the Apriori algorithm [1,2,9]. Section 3 connects table data sets to transaction
data sets and copes with the manipulation of candidates of rules. Then, more
effective manipulation is proposed in DISs and NISs. Section 4 describes a new
NIS-Apriori based system in Python and presents the improved results. Section 5
concludes this paper.
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2 Preliminary: An Overview of Rule Generation and
Examples

This section briefly reviews rule generation from DISs and NISs.

2.1 Rules and Rule Generation from DISs

In Table 1, we consider implications like [P, 3] ⇒ [Dec, a] from x1 and [R, 2] ∧
[S, 1] ⇒ [Dec, b] from x3. Generally, a rule is defined as an implication satisfying
some constraint. The following is one standard definition of rules [1,2,9,14,22].
We follow this definition and consider the following rule generation from DIS.

(A rule from DIS). A rule is an implication τ satisfying support(τ) ≥ α and
accuracy(τ) ≥ β (0 < α, β ≤ 1.0) for given threshold values α and β.
(Rule generation from DIS). If we fix α and β in DIS, the set of all rules is also
fixed, but we generally do not know them. Rule generation is to generate all
minimal rules (we term a rule with minimal condition part a minimal rule).

Here, support(τ) is an occurrence ratio of an implication τ for the total
objects and accuracy(τ) is a consistency ratio of τ for the condition part of τ .
For example, let us consider τ : [R, 2] ∧ [S, 1] ⇒ [Dec, b] from x3. Since τ occurs
one time for five objects, we have support(τ) = 1/5. Since [R, 2] ∧ [S, 1] occurs
two times, we have accuracy(τ) = 1/2. Fig. 1 shows all minimal rules (redundant
rules are not generated) from Table 1.

Fig. 1. The obtained all minimal rules (support(τ) ≥ 0.2, accuracy(τ) ≥ 0.9) from
Table 1. Our system ensures that there is no other rule except them. In the table
rule1, the first rule is τ : [P, 1] ⇒ [Dec, b]. Even though τ ′ : [P, 1] ∧ [Q, 2] ⇒ [Dec, b]
satisfies the constraint of rules, τ ′ is a redundant implication of τ and τ ′ is not minimal.
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2.2 Rules and Rule Generation from NISs

From now, we employ the symbols Φ and ψ for expressing NIS and DIS, respec-
tively. In NIS Φ, we replace a set of all possible values with an element of this
set, and then we have one DIS. We term such a DIS a derived DIS from NIS,
and let DD(Φ) denote a set of all derived DISs from NIS. Table 1 is a derived
DIS from Table 3. In NISs like Table 3, we consider the following two types of
rules,

(1) A rule which we certainly conclude from NIS (a certain rule),
(2) A rule which we may conclude from NIS (a possible rule).

These two types of rules seem to be natural for rule generation with information
incompleteness. Yao recalls three-valued logic in rough sets and proposes three-
way decisions [23,24]. These types of rules concerning missing values were also
investigated in [6,11], and we coped with the following two types of rules based
on possible world semantics [18,20]. The definition in [6,11] and the following
definition are semantically different [18].

(A certain rule from NIS). An implication τ is a certain rule, if τ is a rule in
each of derived DIS from NIS,
(A possible rule from NIS). An implication τ is a possible rule, if τ is a rule in
at least one derived DIS from NIS.
(Rule generation from NIS). If we fix α and β in NIS, the set of all certain rules
and the set of all possible rules are also fixed. Rule generation is to generate all
minimal certain rules and all minimal possible rules.

Two types of rules depend on all derived DISs from NIS, and the number
of them increases exponentially. For Table 3, the number is 324 (=22 × 34), and
the number is more than 10100 for the Mammographic data set [4]. Thus, the
realization of a system to handle two types of rules was seemed to be hard,
however, we gave one solution to this problem.

(Proved Property). For each implication τ , we developed some formulas to cal-
culate the following,

(1) minsupp(τ) = minψ∈DD(Φ){support(τ) in ψ},
(2) minacc(τ) = minψ∈DD(Φ){accuracy(τ) in ψ},
(3) maxsupp(τ) = maxψ∈DD(Φ){support(τ) in ψ},
(4) maxacc(τ) = maxψ∈DD(Φ){accuracy(τ) in ψ}.

This calculation employs the rough sets based concept and is independent of
the number of derived DISs [18,20,21]. By using these formulas, we proved a
method to examine ‘τ is a certain rule or not’ and ‘τ is a possible rule or not’.
This method is also independent of the number of all derived DISs [18,20,21].

We apply this property to the Apriori algorithm for realizing a rule generation
system. The Apriori algorithm effectively enumerates itemsets (candidates of
rules), and the support and accuracy values of every candidate are calculated
by the Proved Property. Figures 2 and 3 show the obtained minimal certain rules
and minimal possible rules from Table 3. As for the execution time, we discuss
it in Sect. 4.
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Fig. 2. The obtained all minimal certain rules (support(τ) ≥ 0.2, accuracy(τ) ≥ 0.9)
from Table 3. There is no rule except them.

Fig. 3. The obtained all minimal possible rules (support(τ) ≥ 0.2, accuracy(τ) ≥ 0.9)
from Table 3.There is no rule except them.

2.3 A Relation Between Rules in DISs and Rules in NISs

Let ψactual be a derived DIS with actual information from NIS Φ (we cannot
decide ψactual from Φ, but we suppose there is an actual ψactual for Φ), then we
can easily have the next inclusion relation.

{τ | τ is a certain rule in Φ} ⊆ {τ | τ is a rule in ψactual}
⊆ {τ | τ is a possible rule in Φ}
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Due to information incompleteness, we know lower and upper approximations
of a set of rules in ψactual. This property follows the concept of rough sets based
approximations.

2.4 The Apriori Algorithm for Transaction Data Sets

Let us consider Table 4, which shows four persons’ purchase of items. Such struc-
tured data is termed a transaction data set. In this data set, let us focus on
a set {ham, beer}. Such a set is generally termed an itemset. For this item-
set, we consider two implications τ1 : ham ⇒ beer and τ2 : beer ⇒ ham.
In τ1, support(τ1) = 3/4 and accuracy(τ1) = 3/3. In τ2, support(τ2) = 3/4 and
accuracy(τ2) = 3/4. For an itemset {ham, beer, corn}, we consider six implica-
tions, ham∧beer ⇒ corn, · · · , beer ⇒ corn∧ham. Like this, Agrawal proposed a
method to obtain rules from transaction data sets, which is known as the Apriori
algorithm [1,2,9]. This algorithm makes use of the following.

Table 4. An exemplary transaction data set

Transaction Items

1 bread, milk, ham, beer, corn

2 cheese, ham, beer

3 ham, beer, apple, potato, corn

4 cheese, cake, beer

(Monotonicity of support). For two itemsets P and Q, if P⊆ Q, support(Q) ≤
support(P ) holds.

By using this property, the Apriori algorithm enumerates all itemsets, which
satisfy support ≥ α. Each of such itemsets is termed a frequent itemset. Let
us consider the manipulation of itemsets in Table 4 under support ≥ 0.5. Since
there are four transactions, each itemset must occur more than two times. Let
CANi and FIi (i ≥ 0) denote a set of all candidates of itemsets and a set of all
frequent itemsets consisting of (i+1)-items, respectively. We have the following.

CAN0 = {{bread}(Occurrence=1), {milk}(1), {ham}(3), {beer}(4), {corn}(2),
{cheese}(2), {apple}(1), {potato}(1), {cake}(1)},

F I0 = {{ham}(3), {beer}(4), {corn}(2), {cheese}(2)},

CAN1 = {{ham, beer}, {ham, corn}, {ham, cheese}, {beer, corn},

{beer, cheese}, {corn, cheese}},

F I1 = {{ham, beer}(3), {ham, corn}(2), {beer, corn}(2), {beer, cheese}(2)},

CAN2 = {{ham, beer, corn}, {ham, beer, cheese}, {ham, corn, cheese},

{beer, corn, cheese}},

F I2 = {{ham, beer, corn}(2)}.
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Each element in CANi (i ≥ 1) is generated by the combination of two itemsets
in FIi−1 [1,2]. Then, every itemset satisfying the support condition becomes
the element of FIi. For example, for A : {ham, corn}, B : {beer, cheese} ∈
FI1, we add one element of B to A and have {ham, corn, beer}, {ham, corn,
cheese} ∈ CAN2. We also do the converse and have {beer, cheese, ham}, {beer,
cheese, corn} ∈ CAN2. Only one itemset {ham, corn, beer} satisfies the support
condition and becomes an element of FI2. Like this, FI1, FI2, · · · , FIn are
obtained at first, then the accuracy value of each implication defined by a fre-
quent itemset is evaluated. In the subsequent sections, we change the above
manipulation by using the characteristics of table data sets.

3 Some Improvements of the NIS-Apriori Based Rule
Generator

We describe the improvements in our framework based on Sect. 2.

3.1 From Transaction Data Sets to Table Data Sets

We translate Table 1 to Table 5 and identify each descriptor with an item. Then,
we can see that Table 5 is a transaction data set. Thus, we can apply the Apriori
algorithm to rule generation.

Table 5. A transaction data set for DIS ψ in Table 1.

Object Descriptors as items

x1 [P,3], [Q,1], [R,2], [S,2], [Dec,a]

x2 [P,2], [Q,2], [R,2], [S,1], [Dec,a]

x3 [P,1], [Q,2], [R,2], [S,1], [Dec,b]

x4 [P,1], [Q,3], [R,3], [S,2], [Dec,b]

x5 [P,3], [Q,2], [R,3], [S,1], [Dec,c]

We define the next sets IMP1, IMP2, · · · , IMPn.

IMP1 = {[A, valA] ⇒ [Dec, val]},
IMP2 = {[A, valA] ∧ [B, valB ] ⇒ [Dec, val]},
IMP3 = {[A, valA] ∧ [B, valB ] ∧ [C, valC ] ⇒ [Dec, val]},

Here, IMPi means a set of implications which consist of i-condition
attributes. A minimal rule is an implication τ ∈ ∪iIMPi, and we may examine
each τ ∈ ∪iIMPi. However, in the subsequent sections, we consider some effec-
tive manipulations to generate minimal rules in IMP1, IMP2, · · · , sequentially.
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Fig. 4. The manipulation I for itemsets.

3.2 The Manipulation I for Frequent Itemsets by the Characteristics
of Table Data Sets

Here, we make use of the characteristics of table data sets below.

(TA1). The decision attribute Dec is fixed. So, it is enough to consider each
itemset including one descriptor whose attribute is Dec. For example, we do not
handle any itemset like {[P, 3], [Q, 2]} nor {[P, 3], [Dec, a], [Dec, b]} in Table 5.
(TA2). An attribute is related to each descriptor. So, we handle itemsets with
different attributes. For example, we do not handle any itemset like {[P, 3], [P, 1],
[Q, 2], [Dec, b]} in Table 5.
(TA3). To consider implications, we handle CAN1, FI1 (⊆ IMP1), CAN2, FI2
(⊆ IMP2), · · · , which are defined in Sect. 2.4.

Based on the above characteristics, we can consider Fig. 4. In Fig. 4, itemsets
satisfying (TA1) and (TA2) are enumerated. Generally, in the Apriori algorithm,
the accuracy value is examined after obtaining all FIi, because the decision
attribute is not fixed. For each set in FIi, there are plural implications. How-
ever, in a table data set, one implication corresponds to a frequent itemset. We
employed this property and proposed the Apriori algorithm adjusted to table
data sets [20,21] in Fig. 5. We term this algorithm the DIS-Apriori algorithm.
Here, we calculate the accuracy value of every frequent itemset in each while
loop (the rectangle area circled by the dotted line in Fig. 4 and lines 5-7 in Fig. 5).
We can easily handle certain rules and possible rules in NISs by extending the
DIS-Apriori algorithm.
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ψ Dec α β
Rule(ψ)

Rule(ψ) ← {} i ← 1
FI1 {{[A, a], [Dec, v]}|support([A, a] ⇒ [Dec, v]) ≥ α} CAN1

|FIi| ≥ 1
Resti ← {} Rulei ← {}

τi,j ∈ FIi
accuracy(τi,j) ≥ β τi,j Rulei τi,j Resti

Rulei
i ← i + 1 FIi

Rule(ψ) ∪k<iRulek

Fig. 5. The Apriori algorithm adjusted to table data set DIS ψ. We can examine
the accuracy value in each while loop (the rectangle area circled by the dotted line in
Fig. 4). This examination is not done in the Apriori algorithm for transaction data sets.

Proposition 1. [20,21]

(1) We replace DIS ψ with NIS Φ, support and accuracy with minsupp and
minacc, respectively. Then, this algorithm generates all minimal certain
rules.

(2) We replace DIS ψ with NIS Φ, support and accuracy with maxsupp and
maxacc, respectively. Then, this algorithm generates all minimal possible
rules.

(3) We term the algorithm consisting of (1) and (2) the NIS-Apriori algorithm.

Both DIS-Apriori and NIS-Apriori algorithms are logically sound and complete
for rules. They generate rules without excess and deficiency.

Figures 1, 2 and 3 by the rule generator in SQL are based on the algorithm
in Fig. 5 and Proposition 1.

3.3 The Manipulation II for Frequent Itemsets by the
Characteristics of Table Data Sets

Now, we advance the manipulation I to the manipulation II. We focus on the
statement ‘create FIi’ in lines 2 and 10 in Fig. 5. In every while loop, we examine
each τ ∈ FIi ⊆ CANi ⊆ IMPi, so to reduce sets CANi and FIi will influence
the performance of execution. In Fig. 5, we at first need to remark the following.

(Rule generation). The purpose of rule generation is to generate each minimal
implication τ ∈ ∪iIMPi satisfying support(τ) ≥ α and accuracy(τ) ≥ β. We
obtain Rule1, Rest1 ⊆ IMP1 in the 1st while loop, Rule2, Rest2 ⊆ IMP2 in the
2nd while loop, and Rule3, Rest3 in the 3rd while loop, · · · .
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(Relation between sets in Fig. 5). We clarify the relation and the definition of
NOrulei below.

(1) Rulei = {τ ∈ IMPi | support(τ) ≥ α, accuracy(τ) ≥ β},
(2) Resti = {τ ∈ IMPi | support(τ) ≥ α, accuracy(τ) < β},
(3) FIi = {τ ∈ IMPi | support(τ) ≥ α},
(4) NOrulei = {τ ∈ IMPi | support(τ) < α},
(5) IMPi = FIi ∪ NOrulei = (Rulei ∪ Resti) ∪ NOrulei.

(A case of τ ∈ Rulei). If τ : ∧j [Aj , valj ] ⇒ [Dec, val] ∈ Rulei, we do not
deal with any redundant implication τ ′ : (∧j [Aj , valj ]) ∧ [B, b] ⇒ [Dec, val] ∈
IMPi+1, because τ ′ cannot be a minimal rule.
(A case of τ ∈ NOrulei). If τ : ∧j [Aj , valj ] ⇒ [Dec, val] ∈ NOrulei, any redun-
dant implication τ ′ : (∧j [Aj , valj ])∧[B, b] ⇒ [Dec, val] satisfies support(τ ′) < α.
So, τ ′ ∈ IMPi+1 cannot be a rule. Thus, we do not deal with any redundant
implication τ ′.
(A case of τ ∈ Resti). In the accuracy value, the monotonicity like support does
not hold (an example is in [20]). Thus, if τ : ∧j [Aj , valj ] ⇒ [Dec, val] ∈ Resti,
accuracy(τ ′) ≥ β may hold for a redundant implication τ ′ : (∧j [Aj , valj ]) ∧
[B, b] ⇒ [Dec, val] ∈ FIi+1.

Proposition 2. Let us suppose that we had Rulei and Resti (IMPi=Rulei ∪
Resti ∪ NOrulei) in the i-th while loop in Fig. 5. Every candidate of a minimal
rule in IMPi+1 is a redundant implication of τ ∈ Resti.

(Proof)
For every implication τ 	∈ FIi ⊆ IMPi, its redundant implication τ ′ satisfies
support(τ ′) ≤ support(τ) < α. Thus, τ ′ cannot be a minimal rule in IMPi+1.
Based on the Apriori algorithm, we need to combine two frequent itemsets in
FIi=Rulei ∪ Resti (an example of this combination is described in Sect. 2.4).
However, for the minimality condition of rules, we do not handle any redundant
implication of τ ∈ Rulei. Thus, we conclude that every candidate of a minimal
rule in IMPi+1 is a redundant implication of τ ∈ Resti.

Definition 1. We define a set RCANi (⊆ CANi), whose element is a candidate
of a minimal rule in IMPi w.r.t. rules ∪j=1,··· ,(i−1)Rulej and a set RFIi = {τ ∈
RCANi | support(τ) ≥ α} (⊆ FIi ⊆ IMPi).

In the Apriori algorithm, the concept of redundancy is not introduced, so
that some redundant rules may be generated. The sets CANi and FIi in Fig. 4
are generated from FIi−1 (=Rulei−1 ∪ Resti−1). However, we can generate
RCANi(⊆ CANi) and RFIi(⊆ FIi) from Resti−1. Furthermore, we previously
generated itemsets {[A, a], [B, b], [Dec, v1]}, {[A, a], [B, b], [Dec, v2]} ∈ RCAN2

from {[A, a], [Dec, v1]}, {[B, b], [Dec, v2]} ∈ Rest1, and we removed this combi-
nation, because there is no object satisfying both [Dec, v1] and [Dec, v2]. This
combination formerly generated meaningless itemsets. This revision is another
improvement in the manipulation of itemsets.
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Proposition 3. The set RCANi and RFIi are given as follows:

(i = 1)RCAN1 = CAN1 and RFI1 = FI1,

(i ≥ 2)RCANi = {τ : (∧j [Aj , valj ]) ∧ [B, b] ⇒ [Dec, val] |
∧j [Aj , valj ] ⇒ [Dec, val] ∈ Resti−1, [B, b] ⇒ [Dec, val] ∈ Rest1},

RFIi = {τ ∈ RCANi | support(τ) ≥ α}.

Fig. 6. New manipulation II of itemsets. We can handle RCANi ⊆ CANi and
RFIi ⊆ FIi for generating minimal rules. In the Apriori algorithm, CANi and FIi
are employed, so redundant rules may be generated. By using RCANi and RFIi, the
candidates of rules are reduced, and the performance of execution is improved.

(Proof)
(In case of i= 1) RCAN1 =CAN1 and RFI1 =FI1 hold, because redundant
rules occur after 2nd while loop.
(In case of i ≥ 2) We add one descriptor [B, b] to ∧j [Aj , valj ] ⇒ [Dec, val] ∈
Resti−1 and have a redundant implication τ : (∧j [Aj , valj ]) ∧ [B, b] ⇒
[Dec, val] ∈ IMPi due to Proposition 2.

(1) In order to handle the same decision, [B, b] must be the condition part of
τ ′ : [B, b] ⇒ [Dec, val] ∈ RFI1 =FI1. (If τ ′ 	∈ FI1, support(τ) < α holds
and τ cannot be a rule, because τ is a redundant implication of τ ′).

(2) FI1 =Rule1∪Rest1 holds. If τ ′ ∈ Rule1, τ cannot be a minimal rule, because
τ ′ is a minimal rule.

Based on the above discussion, we conclude τ ′ ∈ Rest1.

We propose the manipulation II in Fig. 6 due to the above propositions. In the
Apriori algorithm, CANi is generated by FIi−1, but we can remove redundant



106 Z. Jian et al.

implications of τ ∈ Rulei−1. Thus, we can handle RCANi, which is a subset of
CANi. If the number of elements in Rulei−1 is large, the number of elements in
RCANi will be much smaller than that of CANi.

Proposition 4. The DIS-Apriori algorithm with the manipulation II is sound
and complete for minimal rules in DIS, and the NIS-Apriori algorithm with
the manipulation II is also sound and complete for minimal certain rules and
minimal possible rules in NIS. They do not miss any rule defined in DIS ψ or
NIS Φ.

(Sketch of Proof). We have proved that the DIS-Apriori and NIS-Apriori algo-
rithms are sound and complete [20,21]. We newly introduced sets RCANi ⊆
CANi and RFIi ⊆ FIi by using the redundancy of rules, and we extended the
previous two algorithms to those with the manipulation II. The proposed algo-
rithm does not examine each τ ∈ ∪jIMPj, but examines each τ ∈ ∪jRCANj.
As a result, this algorithm generates the same rules defined by the procedure ‘to
examine each τ ∈ ∪jIMPj’.

4 An Improved Apriori Based Rule Generator and Some
Experiments

This section compares the NIS-Apriori algorithm and the NIS-Apriori algorithm
with the manipulation II. Of course, two algorithms generate the same rules due
to Propositions 1 and 4, and the latter algorithm makes use of the redundancy
concept. We newly implemented two systems in Python (Windows PC, CPU:
Intel i7-4600U, 2.7 z). Table 6 shows the results on the Car Evaluation data set
[4], and Table 7 does the results on the Phishing data set [4]. They are the cases
of DISs, and the characteristic of RCANi ⊆ CANi is effectively employed.

Now, we show two examples by the NIS-Apriori algorithm. The one is the
Congressional Voting data set [4], and the other is the Lithology data set [8].

Table 6. The Car Evaluation data set (Objects: 1728, condition attributes: 6).
A:|Rule1|, B:|CAN2| or |RCAN2|, C:|Rule2|, D:|CAN3| or |RCAN3|, E:|Rule3|,
F:|CAN4| or |RCAN4|, G:|Rule4|.

CASE Manipulation Time (sec) A B C D E F G

support ≥ 0.2 I 0.037 5 24 0 0 0 0 0

accuracy ≥ 0.7 II 0.027 5 2 0 0 0 0 0

support ≥ 0.1 I 0.096 8 366 0 27 0 0 0

accuracy ≥ 0.7 II 0.059 8 74 0 0 0 0 0

support ≥ 0.05 I 0.189 8 366 0 1694 0 0 0

accuracy ≥ 0.7 II 0.123 8 176 0 572 0 0 0

support ≥ 0.01 I 0.621 8 732 0 3388 1 6588 0

accuracy ≥ 0.7 II 0.329 8 349 0 1172 1 1840 0
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Table 7. The Phishing data set (Objects: 1353, condition attributes: 9). Here, A, B,
· · · , G are the same as Table 6.

CASE Manipulation Time (sec) A B C D E F G

support ≥ 0.2 I 0.139 3 148 2 276 0 15 0

accuracy ≥ 0.7 II 0.083 3 25 2 30 0 0 0

support ≥ 0.1 I 0.847 6 426 13 2380 1 5774 0

accuracy ≥ 0.7 II 0.291 6 167 13 552 1 1101 0

support ≥ 0.05 I 1.409 7 831 23 5355 9 12438 2

accuracy ≥ 0.7 II 0.647 7 285 23 1259 9 3508 2

support ≥ 0.01 I 2.532 7 831 30 5355 25 22113 11

accuracy ≥ 0.7 II 1.522 7 583 30 3118 25 10611 11

Table 8. The Congressional Voting data set (Objects: 435, condition attributes: 16).
There are 392 missing values, thus |DD(Φ)| = 2392 ≥ 10100 (the number of derived
DISs exceeds 10100). A certain rule is a rule in each of more than 10100 derived DISs.
A possible rule is a rule in at least one derived DISs. Here, A, B, · · · , G are the same
as Table 6.

CASE Manipulation Time (sec) A B C D E F G

support ≥ 0.2 accuracy ≥ 0.6 I (certain rule) 23.73 23 900 6 8120 0 50960 0

II (certain rule) 0.12 23 50 6 77 0 0 0

I (possible rule) 23.56 28 960 3 8120 0 50960 0

II (possible rule) 0.12 28 41 3 30 0 0 0

support ≥ 0.1 accuracy ≥ 0.6 I (certain rule) 26.35 23 960 6 8960 0 58240 0

II (certain rule) 0.81 23 132 6 448 0 1064 0

I (possible rule) 26.72 29 960 7 8960 2 58240 0

II (possible rule) 0.52 29 100 7 290 2 580 0

support ≥ 0.05 accuracy ≥ 0.6 I (certain rule) 26.59 23 960 6 8960 0 58240 0

II (certain rule) 1.79 23 220 6 949 0 2788 0

I (possible rule) 27.29 29 960 7 8960 2 58240 0

II (possible rule) 1.84 29 223 7 984 2 2967 0

support ≥ 0.01 accuracy ≥ 0.6 I (certain rule) 27.46 23 960 6 8960 0 58240 0

II (certain rule) 4.28 23 354 6 1981 0 7630 0

I (possible rule) 28.71 29 960 7 8960 2 58240 0

II (possible rule) 3.59 29 296 7 1599 2 6141 0

As we described in Proposition 1, the NIS-Apriori algorithm (certain rule gener-
ation) is the DIS-Apriori algorithm with criterion values minsupp and minacc.
Thus, the number of candidates of itemsets is also reduced by the manipula-
tion II. The experiments easily examine the advancement of the manipulation
II (Tables 8 and 9).
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Table 9. The Lithology data set (Objects: 1923, condition attributes: 10). There are
519 missing values, therefore there are more than 10100 (2519 � (210)50 > (103)50 >
10100) derived DISs. Here, A, B, · · · , G are the same as Table 6.

CASE Manipulation Time (sec) A B C D E F G

support ≥ 0.2 accuracy ≥ 0.5 I (certain rule) 0.18 11 54 0 120 0 210 0

II (certain rule) 0.06 11 0 0 0 0 0 0

I (possible rule) 0.2 11 54 0 156 0 210 0

II (possible rule) 0.07 11 0 0 0 0 0 0

support ≥ 0.1 accuracy ≥ 0.5 I (certain rule) 0.43 17 127 0 464 0 985 0

II (certain rule) 0.06 17 0 0 0 0 0 0

I (possible rule) 0.51 17 127 0 549 0 1521 0

II (possible rule) 0.06 17 0 0 0 0 0 0

support ≥ 0.05 accuracy ≥ 0.5 I (certain rule) 0.84 18 900 0 1228 0 3657 0

II (certain rule) 0.06 18 36 0 4 0 0 0

I (possible rule) 1.26 19 1122 0 4128 0 4535 0

II (possible rule) 0.08 19 76 0 97 0 0 0

support ≥ 0.01 accuracy ≥ 0.5 I (certain rule) 17.05 23 6055 7 44940 21 222420 14

II (certain rule) 4.18 23 1185 7 7772 21 36799 14

I (possible rule) 48.87 39 8806 27 116466 37 755202 34

II (possible rule) 6.45 39 1413 27 9804 37 48932 34

5 Concluding Remarks

We recently adjusted the Apriori algorithm to table data sets and proposed the
DIS-Apriori and NIS-Apriori algorithms. This paper makes use of the character-
istics of table data sets (one decision attribute Dec is fixed) and improved these
algorithms. If we do not handle table data sets, there was no necessity for con-
sidering Fig. 6. The framework of the manipulation II (Fig. 6) is an improvement
of Apriori based rule generation by using the characteristics of table data sets.
We can generate minimal rules by using RCANi ⊆ CANi and RFIi ⊆ FIi.
This reduction causes to reduce the candidates of itemsets. We newly imple-
mented the proposed algorithm in Python and examined the improvement of
the performance of execution by experiments.
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Abstract. Keyphrase extraction has been a popular research topic in the field of
natural language processing in recent years. But how to extract keyphrases
precisely and effectively is still a challenge. The mainstream methods are
supervised learning methods and graph-based methods. Generally, the effects of
supervised methods are better than unsupervised methods. However, there are
many problems in supervised methods such as the difficulty in obtaining training
data, the cost of labeling and the limitation of the classification function trained
by training data. In recent years, the development of the graph-based method has
made great progress and its performance of extraction is getting closer and
closer to the supervised method, so the graph-based method of keyphrase
extraction has got a wide concern from researchers. In this paper, we propose a
new model that applies the three-way decision theory to graph-based keyphrase
extraction model. In our model, we propose algorithms dividing the set of
candidate phrases into the positive domain, the boundary domain and the neg-
ative domain depending on graph-based attributes, and combining candidate
phrases in the positive domain and the boundary domain qualified by graph-
based attributes and non- graph-based attributes to get keyphrases. Experimental
results show that our model can effectively improve the extraction precision
compared with baseline methods.

Keywords: Keyphrase extraction � Three-way decision � Graph-based

1 Introduction

Keyphrase extraction has been a popular research topic in the natural language pro-
cessing research field. Especially with the current increasing requirements for appli-
cations of texts, keyphrase extraction has attracted widespread attention from
researchers. Although it has been greatly developed in recent years at home and abroad,
the extracted results are far from the ideal.

With the rapid growth of text applications, the analysis of text data has become an
important research area that has attracted much attention. Among them, how to extract
keyphrases that reflect the subjects of texts has always been a research hotspot in the
field of natural language processing, and its research results can be widely used in text
retrieval, text summarization, text classification and question answering systems.
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Especially with the rise of research on unstructured big data of texts in recent years, the
issue of keyphrase extraction has received in-depth research, and many researches have
appeared in the international top conferences of artificial intelligence and natural lan-
guage processing, such as the International Joint Conference on Artificial Intelligence
(IJCAI) [1], The Annual Meeting of the Association for the Advance of Artificial
Intelligence (AAAI) [2–4], International Computational Linguistics Association The
Annual Meeting of the Association for Computational Linguistics (ACL) [5], The
International Conference of World Wide Web (WWW) [6] and Conference on
Empirical Methods in Natural Language Processing (EMNLP) [7], etc.

Researchers generally believe that the extracted keyphrases [8] should meet the
following basic standards: (i) Keyphrases should be meaningful phrases. For example,
“keyphrase extraction” is a meaningful phrase, but “and” does not meet the standard.
(ii) Keyphrase extraction should meet the relevance standard that keyphrases must be
closely related to the subjects of texts, which is the most essential requirement for
keyphrase extraction. For example, the subtitle “Introduction” in this paper is not an
appropriate keyphrase obviously. (iii) Keyphrase extraction should correspond to the
coverage standard. Keyphrases should be able to cover various topics of the text and
the main aspects of each topic, not just focus on only one topic and ignore others.
(iv) Keyphrases extraction should meet the coherence standard. Several keyphrases of
the text should be semantically and logically related. For an instance, a piece of
academic paper that mainly introduces a graph-based keyphrase extraction model. The
set of keyphrases is {“keyphrase extraction”, “graph-based”}, which is more suitable
than {“keyphrase extraction”, “target detection”}. (v) Keyphrase extraction should
correspond the conciseness standard. The number of keyphrases is limited, and the set
of keyphrases should not contain any redundant phrase.

To meet any of the above standard, there is a huge challenge. Although there are
many methods to solve this scientific problem such as statistical-based methods,
supervised learning methods and graph-based methods, how to extract keyphrases
precisely and efficiently is still a challenge.

In this paper, we propose a new model that applies the three-way decision theory to
the graph-based keyphrase extraction model. In our model, we propose algorithms
dividing the set of candidate phrases into the positive domain, the boundary domain
and the negative domain depending on graph-based attributes, and combining candi-
date phrases in the positive domain and the boundary domain qualified by graph-based
attributes and non-graph-based attributes to get keyphrases. Experimental results show
that our model can effectively improve the extraction precision compared with baseline
methods.

In Sect. 2, we briefly introduce the three-way decision theory and some related
works in the field of keyphrase extraction. In Sect. 3, we describe the structure of our
model and algorithms we proposed. In Sect. 4, we report the experimental results and
analysis. Finally, we make a conclusion in Sect. 5.
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2 Related Work

2.1 Statistical-Based Methods

Using statistical-based methods to extract keyphrases of texts is relatively simple,
because it requires neither training data nor external knowledge. After the prepro-
cessing of texts, simple statistical rules can be used to form a set of candidate phrases.
The estimation of candidate phrases usually uses quantification of feature values. The
main statistical-based keyphrase extraction method is TF-IDF (Term Frequency-
Inverse Document Frequency) [9] and its improved methods. The advantage of the TF-
IDF algorithm is that it is simple and fast. However, the traditional TF-IDF algorithm
also has obvious shortcomings that it is not comprehensive enough to measure the
importance of phrases based on the frequency. Sometimes important phrases may not
appear frequently.

2.2 Graph-Based Methods

The graph-based keyphrase extraction method is the most effective and widely studied
unsupervised keyphrase extraction method, because the method considers the co-
occurrence relationship between phrases in the text. If there is a co-occurrence rela-
tionship between two phrases, it indicates that they are semantically related in the text.
On the other hand, the graph-based method can incorporate more other features, so it
has reached better effect of Extraction. The graph-based method has been widely
concerned by researchers, from the TextRank method proposed by Mihalcea [10] to the
PositionRank method proposed by Florescu [4]. In this paper, we propose a new model
that applies the three-way decision theory to graph-based keyphrase extraction method.

2.3 Three-Way Decision

As generally considered, there are only acceptance and rejection in making a decision,
which is a two-branch decision model, but it is often not the case in practical appli-
cation. Based on the rough set theory proposed by Pawlak [11], Yao’s three-way
decision theory [12] provided a third alternative. The idea of three-way decision is
based on three categories: acceptance, rejection and non-commitment. The goal is to
divide a domain into three disjoint parts. Positive rules acquired from positive domain
are used to accept something, negative rules acquired from negative domain are used to
deny something, and rules that fall on boundary domain need further observation,
which called delayed decision-making. Miao [13] has made some researches about
three-way decision theory with multi-granularity, and Zhang [14] has applied it to the
application of sentiment classification. The way of three-way decision describes the
thinking mode of human beings in solving practical decision-making problems.
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3 The Model with Three-Way Decision

3.1 Structure of the Model

We propose a graph-based keyphrase extraction model with three-way decision. As
Fig. 1 illustrated, we could obtain candidate phrases through the preprocessing of texts
from the raw, and then transform texts to text graphs with candidate phrases as nodes to
get their graph-based attributes and non-graph-based attributes. With the support of the
three-way decision theory, we divide the set of candidate phrases into the positive
domain, the boundary domain and the negative domain depending on their graph-based
attributes, and combine candidate phrases in the positive domain and the boundary
domain qualified by their graph-based attributes and non-graph-based attributes to get
keyphrases.

3.2 Preprocessing of Texts and Graph Construction

The step of preprocessing of texts from the raw plays an important role in the process
of extracting keyphrases due to its output affecting the result deeply. The generic
preprocessing way of graph-based keyphrases extraction: (i) Tokenizing: The process
of tokenizing is to split strings into phrases. (ii) Tagging [15]: The task of tagging is to
tag part-of-speech of phrases preparing for filtering. (iii) Filtering: Filter out phrases
that do not meet the part-of-speech requirements according to the result of tagging.
(iv) Stemming [16, 17]: Stemming phrases is in order to eliminate the effects of phrases
forms that can get the main part of phrases. The differences between the phrases before
stemming and after stemming are as follows (Table 1):

After preprocessing the raw, we construct the text graph to obtain graph-based
attributes of candidate phrases. The text graph G ¼ V;E;Wð Þ, V is the set of nodes
representing candidate phrases, E is the set of edges and W is the set of corresponding

Fig. 1. The structure of the model with three-way decision
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edge weights where weight wij for an edge eij indicates the frequency of two phrases vi
and vj co-occurring in consecutive sentences, adopting the context-aware graph con-
struction method from Duari [18] due to its simple construction method and well
performance. The higher value of wij is, the stronger relationships between vi and vj are.

3.3 Keyphrase Extraction with Three-Way Decision

In our opinion, the three-way decision is making a delayed decision on uncertainty, and
decides based on other information in the future. In this paper, we propose two
Algorithms, which applies the three-way decision theory to the graph-based keyphrase
extraction model (see Algorithm 1 and Algorithm 2). The main notations in this paper
are listed in Table 2.

Table 1. Examples for stemming results

Before stemming After stemming

Harmonic Harmon
Effective Effect
Axiomatized Axiom
Reality Real
Validated Valid

Table 2. The list of main notations

Variable Explanation

ci Candidate phrases
gai Graph-based attributes
ngai Non-graph-based attributes
ri Keyphrases extraction results
p The positive domain
b The boundary domain
n The negative domain
Ci The set of candidate phrases
Gi The set of graph-based attributes
NGi The set of non-graph-based attributes
R The set of keyphrases extraction results
Th The threshold of the three-way decision
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From Cohen’s [19] Trusses theory, for a weighted, undirected and simple graph
G ¼ V;E;Wð Þ, a k-truss subgraph of G is the maximal subgraph Gk ¼ Vk;EK ;Wkð Þ,
such that each edge eij 2 Ek belongs to at least k� 2ð Þ triangles. The truss level of an
edge eij is k if it lies in k-truss but not in kþ 1ð Þ-truss. Kaur [20] expanded the concept
of truss to nodes and defined truss level ki of node vi as follows.

ki ¼ maxvj2Ni lij
� � ð1Þ

where Ni is the set of neighbours of node vi and lij is the truss level of edge eij.
Based on the definition of the truss level of nodes, Duari [18] defined the semantic

strength vi of node vi and the semantic connectivity SCi of node vi as follows.

vi ¼
X

vj2Ni
wij � kj ð2Þ

SCi ¼ kk : vk 2 Nif gj j
maxtruss

ð3Þ

We take these attributes on the basis of the graph into account and define the graph-
based attributes gai of node vi as follows.

gai ¼ ki � vi � SCi ð4Þ

In this paper, we propose Algorithm 1 to classify the candidate phrases by graph-
based attributes and divide the set of candidate phrases C into the positive domain CP,
boundary domain Cb and negative domain Cn respectively.
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Position information is an important factor in identifying keyphrases except for
graph-based attributes. Florescu [4] proposed PositionRank and took the position of
candidate phrases into account to identify keyphrases, we regard it as non-graph-based
attributes ngai of node vi with the following definition.

ngai ¼
Xni

j

1
pj

ð5Þ

In this paper, we propose Algorithm 2 taking graph-based and non-graph-based
attributions of the candidate phrases into account in the boundary domain. Generally,
both of the candidate phrases in the positive domain and the boundary domain are
considered as the output of the Algorithm 2, where Th is the threshold of the three-way
decision and the value of k represents the count of keyphrases to extract.
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4 Experiments and Results

4.1 Benchmark Datasets and Baseline Methods

We evaluate the performance of the model with two widely used benchmark datasets,
which are Hulth2003 and Krapivin2009. Hulth2003 is a dataset including about 2,000
abstracts of academic articles. Krapivin2009 consists of over 2,000 scientific papers
from computer science domain published by ACM used for keyphrase extraction
specially. We use the uncontrolled list of keyphrases of Hulth2003 and gold-standard
keyphrases of Krapivin2009 for evaluation. We take Textrank [10], DegExt [21], k-
core retention [22] and PositionRank [4] as baseline methods and evaluate our model
against them.

4.2 Performance Results and Discussions

Duari [18] reported that values of k are 25 for Hulth2003 and 10 for Krapivin2009 that
yield the highest F1-measure with all algorithms mentioned above, which correlate
with the average number of labeled keyphrases in datasets, and we adopted the reported
values of k and the results of baseline methods. In the experiment, we separate a part of
data from data sets as validation sets to explore the most appropriate value of Th. The
results show the value of Th is 0.1 for Hulth2003 and 0.4 for Krapivin2009 yields the
best performance (see Table 3 and Table 4).

Table 3. The performance of Hulth2003 (k = 25)

Th Precision Recall F1

0.1 43.92 63.28 51.85
0.2 43.20 62.25 51.01
0.3 42.62 61.40 50.31
0.4 42.90 61.81 50.65

Table 4. The performance of Krapivin2009 (k = 10)

Th Precision Recall F1

0.1 27.57 29.69 28.60
0.2 39.07 42.07 40.52
0.3 41.78 44.99 43.32
0.4 42.08 45.31 43.64
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To verify the value of k yields the highest F1-measure mentioned above, we com-
pared the F1-measure where the value of k was 5, 10, 15, 20, 25 and 30. The result shows
that the F1-measure reaches the best when the value of k is 20 or 25 for Hulth2003 and 10
for Krapivin2009 (see Fig. 2). We find that the result of recall increases and the result of
precision decreases when the value of k increases, which meets the fact.

The performance evaluation of keyphrase extraction can be divided into micro-
statistical evaluation and macro-statistical evaluation. The micro one calculates the
performance for each text first and then takes the average value. In comparison, the
macro one statistics the result of extraction first and then calculates the performance at
one time. We compared our model with Textrank [10], DegExt [21], k-core retention
[22] and PositionRank [4] under the macro-statistical evaluation, where the value of k
was 25 for Hulth2003 and 10 for Krapivin2009. The result shows that our model gets
the best performance where the F1-measure reaches 51.85 for Hulth2003 and 43.64 for
Krapivin2009 (see Table 5 and Fig. 3).

Fig. 2. The performance of Hulth2003 (threshold = 0.1) and Krapivin2009 (threshold = 0.4)

Table 5. The comparing performance with baseline methods

Dataset DegExt TextRank K-core PositionRank Ours

Hulth2003 18.22 18.37 43.41 50.41 51.85
Krapivin2009 13.34 13.72 22.70 37.07 43.64

Fig. 3. The comparing performance with baseline methods
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5 Conclusion

In this paper, we propose a new model that applies the three-way decision theory to
graph-based keyphrase extraction model. In our model, we propose algorithms dividing
the set of candidate phrases into the positive domain, the boundary domain and the
negative domain depending on graph-based attributes, and combining candidate
phrases in the positive domain and the boundary domain qualified by graph-based
attributes and non-graph-based attributes to extract keyphrases. Experimental results
show that our model can effectively improve the extraction accuracy compared with
baseline methods. In future work, we will do more experiments to prove the perfor-
mance of keyphrase extraction.
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Abstract. Ranking and measuring attribute importance is one of the
key research topics in data mining and machine learning. Most of
the existing attribute importance research relying on data-oriented
approaches such as statistics and information theory perspectives. User
preference, which involves a user specifying his or her preferential atti-
tude towards a set of attributes, is another meaningful perspective. How-
ever, the research community has not paid much attention to this per-
spective. We adopt the three-way decision theory as a framework and
concentrate on analyzing attribute importance based on user preference
in this paper. In particular, we propose qualitative and quantitative anal-
ysis of attribute importance approaches that result a ranking list as well
as a set of numerical weights of an attribute set. We then categorize
attributes into different groups of importance using qualitative and quan-
titative analysis results. Finally, a unified model to analyze user-oriented
attribute importance is constructed.

Keywords: Three-way decision · Attribute importance · User
preference

1 Introduction

The main task of data mining is to derive valuable and representative patterns
or knowledge from a dataset. Usually, a dataset is represented as a set of objects
described by a set of attributes. In some clustering and classification problems,
we treat attributes with equal importance. However, in real-world situations,
different importance of attributes should be considered. There are various meth-
ods to analyze attribute importance from different perspectives, such as entropy
based methods [2,11], maximizing deviation methods [17], and rough set based
methods [18].

Generally speaking, analysis of attribute importance can be categorized into
two classes, data-oriented and user-oriented. For data-oriented methods, we care
more about the inner data structure by different attributes, which is also called
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internal information based analysis. In contrast, user-oriented methods empha-
size the preferential attitude of a user towards an attribute set, which is called
external information based analysis.

Attribute importance analysis based on data-oriented research is an objective
approach. Using statistics or information theory, data-oriented analysis focuses
on predictive ability or objects distribution of different attributes. One good
example is entropy based methods, whose basic idea is that attributes leading
to more entropy reduction would have a higher predictive ability, therefore, they
are considered to be relatively more important. Apart from the data-oriented
approach, user-oriented attribute importance analysis is subjective. It underlines
the user’s preferential judgment towards a set of attributes. Most current studies
only focus on the former one, and user-oriented analysis has not received its due
attention. In fact, researches from both perspectives are meaningful. This paper
concentrates on the user-oriented approach, as a part of integrated attribute
importance analysis, this is shown in Fig. 1.

Attribute importance
analysis

Data-oriented
methods:

internal information

User-oriented
methods:

external information

Entropy

Maximizing
deviation

......

Binary
relations

Eigenvector
method

Qualitative

Quantative

Fig. 1. A framework of attribute importance analysis

The primary purpose of this paper is to provide a general framework and
adopt concrete methods to analyze user-oriented attribute importance. The con-
tent of this paper is generally arranged into three parts, qualitative attribute
importance analysis using binary relations, quantitative attribute importance
analysis using the eigenvector method, and evaluation based analysis.
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2 Three-Way Decision in Processing User-Oriented
Attribute Importance

Three-way decision theory, which was proposed by Yao [20], aims at provid-
ing a unified framework for thinking, problem solving, and information process-
ing in three. It provides us with a practical framework for modeling real-world
problems. Three-way decision has been expanded in various fields and acquired
fruitful results, for example, three-way conflict analysis [9,22], three-way cluster-
ing [1,16,25,28], three-way recommender systems [5,26,27], three-way concept
analysis [14,21], three-way granular computing [19,20], three-way face recogni-
tion [10] etc.

To analyze user-oriented attribute importance, we utilize three-way decision
theory as our basic framework. Three models, namely, the Trisecting-Acting-
Outcome (TAO) model, the three-level computing model, and the evaluation
based model, are used to analyze attribute importance. We conduct qualitative
and quantitative analysis of the attribute importance as shown in Fig. 1.

In qualitative analysis, we aim at ranking a set of attributes. The ranking is
induced by considering the order relations of attribute pairs. We use TAO mode
in three-way decision to model the structure and analyze attribute importance.
We first compare and determine the relative importance of all attributes in pairs.
Then, we trisect all these pairs into three classes, preferred, indifferent, and less
preferred. Finally, by adopting a certain binary relation, we rank attributes in
order.

In quantitative analysis, we utilize the eigenvector method to derive
attributes’ weights. It is reported that a drawback of the eigenvector method
is when the number of objects is over 9, significant error could be introduced in
the calculation [15]. The three-level computing model is used to overcome this
problem by building a three-level structure. And then, weights calculation is
applied from top to bottom using the eigenvector method several times, so that
we can derive a large number of attributes’ weights without losing too much
accuracy.

The results of qualitative and quantitative analysis are a ranking list and
a set of numerical weights considering attributes’ importance. For the purpose
of understanding and representing these results in a more clear way, we further
categorize attributes into three groups with different importance levels, three-
way evaluation based model is used in this analysis.

3 Three-Way Qualitative User-Oriented Attribute
Importance Analysis

An important implication of binary relations is order relations, which is an
intuitive notion ranking element against one another. For example, (x, y) is an
ordered pair of two elements, we can determine order relations between x and y,
which could be x is larger than y, x is worse than y, or x is a part of y consider-
ing different situations. In decision theory, order relations are commonly used in
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representing user preference, we write an order relation as � or �. If x � y, we
say x is at least as good as y, if x � y, we say x is strictly better than y. In this
paper, to define user preference later on in a more straightforward way based on
the property of trichotomy, we only concentrate on the strict order relation �.

3.1 User Preference and the Property of Trichotomy

The theory of user preference, also named individual choice behavior, is widely
studied in different user-oriented researches, such as information retrieval [8,29],
economics [3], and social sciences [6]. The idea of user preference theory can
also be applied in qualitative attribute importance analysis and the property
of trichotomy plays an essential role. Order relations having this property are
suitable to model a user’s preferential attitude towards a set of attributes.

In our daily lives, human beings are good at making a relative comparison
between numbers, products, strategies, etc. In number theory, given two arbi-
trary real numbers n and m, it is easy for us to conclude that exactly one of
n < m, n = m, or n > m must hold, this is called the trichotomy property of
real numbers. Similarly, by comparing a pair of objects x and y under a specific
criterion, an individual can determine the ordering relation between x and y as
one of the followings, x is preferred than y, x is indifferent with y, or x is less
preferred than y. Obviously, an individual’s preferential attitude towards a pair
of objects is three. This idea can also be generalized into order relations.

If we use an order relation � to represent the meaning “preferred”, the indif-
ference relation ∼ is defined as an absence of �, which is defined as:

x ∼ y ⇐⇒ ¬(x � y) ∧ ¬(y � x). (1)

Give an ordered pair (x, y), if an order relation � expresses the first element
is preferred than the second element. Its converse relation, written as

←�, is called
a less preferred relation, which is defined as:

x
←� y ⇐⇒ (y � x). (2)

We usually write
←� as ≺ if it does not cause any ambiguity.

Definition 1. An order relation � on a set A is called trichotomous if ∀(x, y),
x, y ∈ A, exactly one of x � y, x ∼ y or x ≺ y holds.

From the perspective of a decision maker, the goal of user preference related
studies is to find optimal choice by analyzing the order relations among ele-
ments of a nonempty set, this primitive characteristic of a user is summarized
as preference relation. The process of user preference theory can be viewed as
to bring up rational axioms based on the decision maker’s preference first, then
analyzing a user’s choice behavior based on preference [3]. From the perspective
of mathematics, we model a preference relation using the property of trichotomy
and transitivity.
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Definition 2. A preference relation, denoted as �, is a special type of binary
relations on the set of elements A, that satisfies the following two rationality
properties. ∀x, y, z ∈ A,

Trichotomous : (x � y) ∨ (x ∼ y) ∨ (x ≺ y),
Transitive : x � y ∧ y � z =⇒ x � z. (3)

If we use an order relation � as a preference relation, user preference is
represented as:

x � y ⇐⇒ x is preferred than y

x ∼ y ⇐⇒ x is indifferent with y

x ≺ y ⇐⇒ x is less preferred than y (4)

For an attribute set At, we divide all attribute pairs into three classes. Based
on this trisection, attribute ranking can be induced. This process is shown in
Fig. 2:

At × At

{(x, y)|x � y} {(x, y)|x ∼ y} {(x, y)|x ≺ y}

Ranking

Fig. 2. The property of trichotomy

There are three kinds of order relations, namely linear orders, weak orders,
and semiorders, which all equip the property of trichotomy and transitivity. In
this paper, these three order relations are used in representing user preference
for attribute importance analysis.

3.2 Modeling User Preference as a Linear Order

Given an attribute set At, a linear order � enables us to arrange attributes in
the form At = {a1, a2, ..., an}, such that ai � aj if and only if i < j, for this
reason, a linear order is also called a chain.
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Definition 3. Given a set At, a binary relation � is a linear order on At, if it
satisfies for any x, y, z ∈ At:

Asymmetric : x � y =⇒ ¬(y � x),
Transitive : x � y ∧ y � z =⇒ x � z,

Weakly Complete : x �= y =⇒ (x � y) ∨ (y � x). (5)

The property of asymmetric excludes the situation of ai is better than aj , as
well as aj better than ai happen at the same time. The transitive property
ensures that reasonable inference can be applied. The property of weakly com-
plete ensures that all attributes are comparable with others.

Example 1. Given a set of attributes At = {a1, a2, a3, a4, a5}, a user’s prefer-
ence on At is defined by a linear order �. Suppose the ordering between attributes
is specified by a user as:

a1 � a5, a1 � a4, a1 � a2, a3 � a1, a3 � a2,

a3 � a4, a3 � a5, a5 � a4, a5 � a2, a4 � a2.

Then, attributes are ranked as:

a3 � a1 � a5 � a4 � a2.

3.3 Modeling User Preference as a Weak Order

Weak orders are widely used in representing user preference relations in different
fields [3,6,8,29]. Different from a linear order arranges elements in a chain, which
is pretty strong in modeling real-world problems, a weak order allows ties in the
ranking results. In other wolds, some attributes in a set could be considered as
indifferent.

Definition 4. A weak order � is a binary relation on set At, if it satisfies for
any x, y ∈ At:

Asymmetric : x � y =⇒ ¬(y � x),
Negative transitive : ¬(x � y) ∧ ¬(y � z) =⇒ ¬(x � z). (6)

Example 2. Given a set of attributes At = {a1, a2, a3, a4, a5}, a user’s prefer-
ence on At is defined by a weak order �. Suppose the ordering between attributes
is specified as:

a1 � a3, a1 � a4, a1 � a5, a2 � a3, a2 � a4, a2 � a5, a3 � a4, a3 � a5.

Because the user neither preferences a1 to a2, nor prefer a2 to a1, so a1 is
indifferent with a2, written a1 ∼ a2. Similarly, a4 ∼ a5. By considering the
above ordering, we can rank attributes like:

a1 ∼ a2 � a3 � a4 ∼ a5.
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3.4 Modeling User Preference as a Semiorder

Actually, an indifference relation does not necessarily be transitive. One good
example is after reading three books, a reader might believe book A and B
are equally good, so does book B and C, while he can tell that he prefers A
to C based on his intuition. In other words, from an individual’s preferential
attitude, he can not distinguish the preference between A and B, and he also
can not distinguish the preference between B and C, however, he can tell apart
his preference between A and C. Luce [12] introduced semiorders to model this
kind of problems.

Definition 5. A semiorder � on a set At is a binary relation which satisfies
for any x, x′, x′′, y, y′ ∈ At:

Asymmetric : x � y =⇒ ¬(y � x),
Ferrers : (x � x′) ∧ (y � y′) =⇒ (x � y′) ∨ (y � x′),
Semitransitive : (x � x′) ∧ (x′ � x′′) =⇒ (x � y) ∨ (y � x′′). (7)

Example 3. Given a set of attributes At = {a1, a2, a3, a4, a5}, a user’s prefer-
ence on At is defined by a semiorder �. Suppose the ordering between attributes
is specified as:

a1 � a2, a1 � a3, a1 � a4, a1 � a5, a2 � a4, a2 � a5, a3 � a5, a4 � a5.

The user neither prefers a2 to a3, nor prefer a3 to a2, so a2 ∼ a3, similarly we
can get a3 ∼ a4, however, the indifference is intransitive, because a2 � a4. So,
we can not rank all attributes in one order but several, like below:

a1 � a2 � a4 � a5,

a1 � a2 ∼ a3 � a5,

a1 � a3 ∼ a4 � a5.

4 Three-Way Quantitative User-Oriented Attribute
Importance Analysis

Mathematically, quantitative attribute importance analysis can be considered as
a process of mapping each attribute to a numerical value,

w : At −→ R, (8)

where At is a set of attributes, R is a real number set, and w is a mapping
function that calculates or assigns a numerical value to each attribute. For an
attribute a ∈ At,w(a) represents its weight from the perspective of a user.
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4.1 A Three-Level Structure

To calculate or assign numerical weights for each attribute, this paper pro-
posed two approaches. The first one is weights calculation using the eigenvector
method, this is described in Sect. 4.2. The second approach is weights assignment.
To be more specific, we derive an importance scale with numerical weights using
the eigenvector method first, and then each attribute will be compared with
this scale to get its weight, this approach is described in Sect. 4.3. Obviously,
the eigenvector method plays an important role in both approaches, while, it
has a drawback that not applicable in the situation when the number of objects
is more than 9, because significant errors would be introduced in the calcula-
tion [15]. To overcome this problem, we introduce the three-way decision theory.
More explicitly, the problem is arranged into a three-level structure, then, we
apply the eigenvector method for weights calculation from top to bottom. The
three-level structure enables us to control the number of objects in weights calcu-
lation is no more than 9, so that we can use the eigenvector method to calculate
weights without losing too much accuracy.

4.2 Three-Way Quantitative Attribute Weighting Method Based
on Eigenvector Method

The framework of the quantitative attribute weighting model is shown in Fig. 3.
Suppose we have an attribute set At, aij at the bottom level represents an
attribute. By grouping attributes into different clusters concerning semantic
meaning, we build a three-level structure.

At

A1 A2
...... An

a11 a12 ...... a21 a22 ...... an1 an2 ......

Fig. 3. The structure of the three-level attribute weighting method

Once we have this three-level structure, the calculation using the eigenvector
method is applied from top to bottom as the second step. We calculate clusters’
weights based on user preference, then, for each cluster, the weights of attributes
within this cluster are calculated based on this cluster’ weight.

Weights calculation using the eigenvector method is described as follows.
Suppose an attribute set At has been grouped it into n clusters, n ≤ 9 and the
number of attributes in each cluster is also no more than 9. To derive a weight
vector w = (w1, w2, · · · , wn) for clusters, we build a comparison matrix M as
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defined in Definition 6, where element mij represents the relative importance of
a cluster Ai compared with a cluster Aj .

Definition 6. A comparison matrix M is a square matrix of order n, whose
elements are mij, M is a positive reciprocal matrix if M is:

Positive : ∀i, j < n,mij > 0,

Reciprocal : ∀i, j < n,mij = 1/mji. (9)

A comparison matrix M is in the form like below, and in a perfect situation,
mij should exactly be the weights ratio of a cluster Ai compared with Aj .

M =

⎛
⎜⎜⎜⎝

m11 m12 · · · m1n

m21 m22 · · · m2n

...
...

. . .
...

mn1 mn2 · · · mnn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

w1/w1 w1/w2 · · · w1/wn

w2/w1 w2/w2 · · · w2/wn

...
...

. . .
...

wn/w1 wn/w2 · · · wn/wn

⎞
⎟⎟⎟⎠ (10)

In a real situation, the values of elements in a comparison matrix is given by a
user based on his or her preference. For the purpose of determining two clusters’
weight ratio w1/w2 precisely, we utilize the 9-points rating scale proposed by
Saaty [15], see Table 1.

Table 1. The Saaty’s 9-points rating scale [15]

Intensity of
importance

Definition Explanation

1 Equal importance Two activities contribute
equally to the objective

3 Weak importance of one over
another

Experience and judgment
slightly favor one activity over
another

5 Essential or strong importance Experience and judgment
strongly favor one activity over
another

7 Demonstrated importance An activity is strongly favored
and its dominance demonstrated
in practice

9 Absolute importance The evidence favoring one
activity over another is of the
highest possible order of
affirmation

2, 4, 6, 8 Intermediate values between the
two adjacent judgments

When compromise is needed
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In Table 1, we can learn that the value 1 means two clusters are equally
important. For an arbitrary cluster, it should be equally important with itself,
thus in a comparison matrix, the value mii of the main diagonal must be 1.
Besides, for two clusters a and b, if a is preferred than b, the weight ratio wa/wb

should be greater than 1, otherwise, it should be equal or less than 1.
Under ideal conditions, we can get the matrix equation as follows:

Mw =

⎛
⎜⎜⎜⎝

w1/w1 w1/w2 · · · w1/wn

w2/w1 w2/w2 · · · w2/wn

...
...

. . .
...

wn/w1 wn/w2 · · · wn/wn

⎞
⎟⎟⎟⎠ ×

⎛
⎜⎜⎜⎝

w1

w2

...
wn

⎞
⎟⎟⎟⎠ = nw, (11)

where M is multiplied on the left by the vector of weights w, and the result
of this multiplication is nw. The problem we are dealing with has been trans-
formed into solving Mw = nw, or (M − nI)w = 0. Ideally, M is consistent
if and only if its principle eigenvalue λmax = n [15]. However, elements in a
comparison matrix are personal judgments which are estimated by a user and
inconsistency is inevitable. Under this circumstance, perturbations in the matrix
imply perturbations in the eigenvalues. Now, we need to solve a new problem:

M ′w′ = λmaxw′, (12)

where M ′ = (m′
ij) is the perturbed matrix of M = (mij), w′ is the principal

eigenvector and λmax is the principal eigenvalue of M ′. What we want to learn
is how good the principal eigenvector w′ represents w. Consistency ratio C.R. is
used to determine whether an inconsistency is acceptable:

C.R. =
λmax − n

(n − 1) × R.I.
, (13)

where R.I. is an average random consistency index, see Table 2. These indexes are
derived from a sample of randomly generated reciprocal matrices using 9-point
rating scale [15].

Table 2. Average random consistency index (R.I.)

n 1 2 3 4 5 6 7 8 9 10

R.I 0 0 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49

If C.R. < 10%, eigenvector w can be used as weights of clusters, else, the
comparison matrix is need to be revised until C.R. < 10%.

Example 4. Suppose we have an attribute set At which has been categorized
into six clusters, that is At = {A1, A2, A3, A4, A5, A6}. A comparison matrix
has been built based on a user’s judgment, the process of weights calculation is
shown as follows (Table 3):
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Table 3. Weights calculation of six clusters

A1 A2 A3 A4 A5 A6 Weight

A1 1 3 1/2 4 2 1/3 0.140

A2 1/3 1 1/7 1 1/2 1/9 0.041

A3 2 7 1 9 5 1/2 0.290

A4 1/4 1 1/9 1 1/2 1/9 0.038

A5 1/2 2 1/5 2 1 1/6 0.071

A6 3 9 2 9 6 1 0.420

λmax = 6.048

C.I. = 0.010

C.R. = 0.762% < 10%

Since C.R. ≤ 10%, which satisfies consistency checking, the eigenvector of com-
parison matrix can be used as the weights of {A1, A2, A3, A4, A5, A6}, that is:

w = (0.140, 0.041, 0.290, 0.038, 0.071, 0.420).

Once we have clusters’ weights, we use them the as a basic and calculate the
weights of attributes in each cluster using the same idea. Then, we normalize
the weights of attributes by dividing by their cluster’ weights. Finally, we can
derive weights of all attributes.

4.3 A Quantitative Attribute Weighting Method Using an
Importance Scale

It is a straightforward way for a user to directly assign numerical values for
attributes as their weights based on his or her preferential attitude. However,
when the number of attribute is large, a fluctuated performance in judgment is
inevitable, and this causes low accuracy in the result. Considering this situation,
an importance scale is used to overcome this problem [15].

The process of attribute weighting method using an importance scale can be
described as the following three steps. First, from a user’s perspective, intensi-
ties of preferential degree of attributes are categorized into different levels, like:
significantly important, very important, moderately important, weakly impor-
tant, not important. Next, using the eigenvector method described in Sect. 4.2,
we can derive weights for each intensity degree. When the number of intensity
degrees is over 9, a three-level structure is a necessity. By doing this, we build an
importance scale to assist our judgment. Finally, attributes are compared with
this scale to determine their weights.

Example 5. Suppose we set five intensities of preferential degree, which are A :
significantly important, B : very important, C : moderately important, D :
weakly important, E : not important. A user builds a comparison matrix of these
intensities, and the weights calculation of intensities is described as (Table 4):
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Table 4. A pairwise comparison matrix of intensity levels

A B C D E Weight

A 1 2 3 5 9 0.450

B 1/2 1 2 4 6 0.277

C 1/3 1/2 1 2 3 0.147

D 1/5 1/4 1/2 1 2 0.081

E 1/9 1/6 1/3 1/2 1 0.046

λmax = 5.024

C.I. = 0.006

C.R. = 0.533%

Since consistency checking is satisfied, an importance scale is built using these
intensities’ weights. Then, we compare attributes with this scale one by one,
different weights will be assigned to different attributes from the perspective of a
user.

5 Three-Way Evaluation Based Attribute Importance
Analysis

Dividing the universe into three regions and applying different strategies sepa-
rately are the main idea of the three-way decision [23]. In qualitative or quanti-
tative attribute importance analysis, the result we get is a ranking list or a set
of numerical weights, they are meaningful but relatively impractical for a user
to make a decision. In this section, these results will be processed and catego-
rized into three pair-wise disjoint classes with different importance levels, which
are high importance, median importance, and low importance. In the rest of this
paper, We use H, M and L to represent these three classes. The reason we select
three as the number of classes is that human cognition and problem solving rely
on such a three-way division, which enables us turns complexity into simplicity
in many situations [24].

5.1 Trisecting an Attribute Set Based on Percentiles

One approach to trisect an attribute set is by using two percentiles. The first
step is to transform the result of qualitative or quantitative analysis into a linear
order �. For the result of the qualitative approach based on a linear order, this
procedure can be skipped. The second step is using a pair of percentiles to
determine the three regions.

There are several ways to transform the qualitative and quantitative results in
a linear order. The first one is topological sorting, whose basic idea is an element
will not appear in a ranking list until all elements preferred than this element
have been listed [7]. By using a topological sorting, we can get a ranking list in
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descending order. Another way is using an evaluation function to transform the
results of qualitative and quantitative analysis into a set of attributes’ evaluation
status values (ESVs). The ESV of attribute a can be defined as:

v(a) =
|{x ∈ At|a � x}|

|At| . (14)

Attributes will be ranked based on their ESVs in descending order, attributes
having a same ESV will be ranked in any order.

Now, we have a list of ESVs, which is in the form of v1, v2, ..., vn, where v1
is the largest value and vn is the smallest value. Using the ranking lists of the
above two methods, we then adopt two ESVs at αth and βth percentiles with
0 < β < α < 100 to calculate a pair of thresholds l and h as:

h = v�αn/100�,
l = v�βn/100�, (15)

where the ceiling function �x� gives the smallest integer that is not less than x,
and the floor function �x� gives the largest integer that not greater than x. The
floor and ceiling functions are necessary for the reason that αn/100 and βn/100
may not be integers [23].

Based on the descending ranking list and a pair of thresholds, three regions
H,M and L can be constructed. Attributes in H region have high importance,
attributes in M region are with median importance and attributes in L region
have low importance.

5.2 Trisecting an Attribute Set Based on a Statistical Method

Yao and Gao [23] discussed the process of constructing and interpreting three
regions from a statistical view. Mean and standard deviation are useful statistical
tools for analyzing numerical values, which are applicable to the results of quan-
titative user-oriented attribute importance analysis. Suppose w(a1), w(a2), ...,
w(an) are the weights of attributes in At, n is the cardinality of At, the mean
and standard deviation are calculated by:

μ =
1
n

n∑
i=1

w(ai), (16)

σ =

(
1
n

n∑
i=1

(w(ai) − μ)2
) 1

2

. (17)

We use two non-negative number k1 and k2 to represent the position of
thresholds away from the mean, then a pair of thresholds is determined as [23]:

h = μ + k1σ, k1 ≥ 0,

l = μ − k2σ, k2 ≥ 0. (18)
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Based on thresholds h and l, three regions of an attribute set can be con-
structed as:

H(k1,k2)(w) = {x ∈ At|w(x) ≥ h}
= {x ∈ At|w(x) ≥ μ + k1σ},

M(k1,k2)(w) = {x ∈ At|l < w(x) < h}
= {x ∈ At|μ − k2σ < w(x) < μ + k1σ},

L(k1,k2)(w) = {x ∈ At|w(x) ≤ l}
= {x ∈ At|w(x) ≤ μ − k2σ}. (19)

Attributes can be categorized into three regions H,M and L considering their
weights.

6 Conclusions

Attribute importance analysis includes two perspectives: data-oriented and user-
oriented. Using the three-way decision as a framework, we propose a unified
model for user-oriented attribute importance analysis which consists of three
parts, quantitative analysis, quantitative analysis, and evaluation based analysis.
In the qualitative analysis, by using binary relations and the TAO model, we
rank attributes considering their importance. In quantitative analysis, the three-
level computing model is adopted, numerical weights are assigned to attributes
using the eigenvector method. Finally, we trisect the results of qualitative and
quantitative analysis into three classes of different importance in advance.
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Abstract. In this work we introduce a framework, based on three-
way decision (TWD) and the trisecting-acting-outcome model, to handle
uncertainty in Machine Learning (ML). We distinguish between handling
uncertainty affecting the input of ML models, when TWD is used to iden-
tify and properly take into account the uncertain instances; and handling
the uncertainty lying in the output, where TWD is used to allow the ML
model to abstain. We then present a narrative review of the state of the
art of applications of TWD in regard to the different areas of concern
identified by the framework, and in so doing, we will highlight both the
points of strength of the three-way methodology, and the opportunities
for further research.

1 Introduction

Three-way decision (TWD) is a recent paradigm emerged from rough set theory
(RST) that is acquiring its own status and visibility [46]. This paradigm is based
on the simple idea of thinking in three “dimensions” (rather then in binary terms)
when considering how to represent computational objects. This idea leads to the
so-called trisecting-acting-outcome (TAO) model [82]: Trisecting addresses the
question of how to divide the universe under investigation in three partitions;
Acting explains how to deal with the three parts identified; and Outcome gives
methodological indications on how to evaluate the adopted strategy.

Based on the TAO model, we propose a framework to handle uncertainty
in Machine Learning: this model can be applied both to the input and the
output of the Learning algorithm. Obviously, these two latter aspects are strictly
related and they mutually affect each other in real applications. Schematically,
the framework looks as illustrated in Table 1.

With reference to the table, we distinguish between applications that handle
uncertainty in the input and those that handle uncertainty with respect to the
output. By uncertainty in the input we mean different forms of uncertainty that
are already explicitly present in the training datasets used by ML algorithms.
By uncertainty in the output we mean mechanisms adopted by the ML algo-
rithm in order to create more robust models or making the (inherent and partly
insuppressible) predictive uncertainty more explicit.
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Table 1. TAO model applied to Machine Learning

Trisecting Acting Outcome

Input The dataset contains
different forms of
uncertainty and it can
be split in
certain/uncertain
instances

The ML-algorithm
should take into
account the dataset
uncertainty and handle
it

Ad-hoc measures
should be introduced to
quantify the dataset
uncertainty, which
should also be
considered in the
algorithm evaluation

Output The output can contain
instances with no
decision (classification,
clustering, etc.)

The ML algorithm
abstains from giving
the result on uncertain
instances

New measures to
evaluate ML algorithms
with abstention should
be introduced

In the following Sections, we will explain in more detail the different parts of
the framework outlined in Table 1, and discuss the recent advances and current
research in the framework areas by means of a narrative review of the literature
indexed by the Google Scholar database. In particular, in Sect. 2, we describe the
different steps of the proposed model with respect to the handling of uncertainty
in the input, while in Sect. 3 we do the same for the handling of the uncertainty
in the output. In Sect. 4, we will then discuss the advantages of incorporating
TWD and the TAO model for uncertainty handling into Machine Learning, and
some relevant future directions.

2 Handling Uncertainty in the Input

Real-world datasets are far from being perfect: typically they are affected by
different forms of uncertainty (often missingness) that can be mainly related to
either the data acquisition process or the complexity (e.g, in terms of volatility)
of the phenomena under consideration or for both these factors.

These forms of uncertainty are usually distinguished in three common
variants:

1. Missing data: this is usually the most common type of uncertainty in the input
[6]. The dataset could contain missing values in its predictive features either
because the original value was not recorded (e.g. the data was collected in two
separate times, and the instrumentation to measure the feature was available
only at one time), was subsequently lost or considered irrelevant (e.g. a doctor
decided not to measure the BMI of a seemingly healthy person). This type of
uncertainty has been the most studied, typically under the data imputation
perspective, that is the task in which missing values are filled in before any
subsequent ML process. This can be done in various ways, with techniques
based on clustering [34,65], statistical or regression approaches [7], rough set
or fuzzy rough set methods [4,51,67];
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2. Weak supervision: in the case of supervised problems, the supervision (i.e.
the target or decision variable) is only given in an imprecise form or only
partially specified. This type of uncertainty has seen some increase in interest
in the recent years [105], with a growing literature focusing specifically on
superset learning [17,29]; this is a specific type of weak supervision in which
instances are associated with sets of possible but mutually exclusive labels that
are guaranteed to contain the true value of the decision label;

3. Multi-rater annotation: this form of uncertainty is getting more and more
impact due to the increasing use of crowdsourcing [5,23,69] for data annota-
tion purposes, but it is also inherent in many domains where it is common
(and in fact recommended) practice to involve multiple experts to increase
the reliability of the Ground Truth, which is a crucial requirement in many
situations where ML models are applied for sensitive or critical tasks (like
in medicine for diagnostic tasks). Involving multiple raters who annotate the
dataset independently of each others often results in multiple and conflicting
decision labels for a given instance [9], for a common phenomenon that has
been denoted with many expressions, like observer variability or inter-rater
reliability.

While superficially similar (e.g. weak supervision could be seen as a form of
missing data), the problems inherent to and the methods to handle these types
of uncertainty are such that they should be distinguished. In the case of miss-
ing data, the main problem is to build reliable models of knowledge despite the
incomplete information, and the completion of the dataset is but a means to an
end, often under assumptions that are difficult to attain (or verify). In the case
of weak supervision, on the other hand, the task of completion (which is usually
called disambiguation) is of fundamental importance and the goal is, usually,
to simultaneously build ML models and disambiguate the uncertain instances.
Finally, in the case of multi-rater annotations, while the task of disambiguation
is obviously present, there is also the problem of inferring the extent each sin-
gle rater can be trusted (i.e., how accurate they are) and how to meaningfully
aggregate the information they provide in order to build a consensus which is to
be used to build the ground truth by which to train the ML model.

2.1 Trisecting and Acting Steps

In all three uncertainty forms, the trisecting act is at the basis of the process
of uncertainty handling, as the uncertain instances (e.g., the instances missing
some feature values, or those for which the provided annotations are only weak)
must be necessarily recognised for any action to be considered: this also means
that the trisecting act usually amounts to simply dividing the certain instances
from the uncertain ones, and the bulk of the work is usually performed in the
acting step in order to decide how differently handle the two kinds of instances.
According to the three kinds of problems described at the beginning of the
section, we present the following solutions.
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Missing Data. Missing data is the type of uncertainty for which a TWD method-
ology to handle this kind of uncertainty is more mature, possibly because the
problem has been well studied in RST and other theories for the management
of uncertainty that are associated with TWD [21,22]. Most approaches in this
direction have been based on the notion of incomplete information table, which
is typically found in RST: Liu et al. [42] introduced a TWD model based on an
incomplete information table augmented with interval-valued loss functions; Luo
et al. [45] proposed a multi-step approach by which to distinguish different types
of missing data (e.g. “don’t know”, “don’t care”) and similarity relations; Luo
et al. [44] focused on how to update TWD in incomplete and multi-scale informa-
tion systems using decision-theoretic rough sets; Sakai et al. [57–59] described
an approach based on TWD to construct certain and possible rules using an
algorithm which combines the classical A-priori algorithm [3] and possible world
semantics [30]. Other approaches (not directly based on the incomplete infor-
mation table notion) have also been considered: Nowicki et al. [52] proposed
a TWD algorithm for classification with missing or interval-valued data based
on rough sets and SVM; Yang et al. [75] proposed a method for TWD based
on intuitionistic fuzzy sets that are construed based on a similarity relation of
instances with missing values.

While all the above approaches propose techniques based on TWD with
missing data for classification problems, there have also been proposals to deal
with this type of uncertainty in clustering, starting from the original approach
proposed by Yu [85,87], to deal with missing data in clustering using TWD:
Afridi et al. [2] described an approach which is based, as for the classification
case, on a simple trisecting step in which complete instances are used to produce
an initial clustering and then use an approach based on game-theoretic rough
sets to cluster the instances with missing values; Yang et al. [74] proposed a
method for three-way clustering with missing data based on clustering density.

Weak Supervision. With respect to the case of weak supervision, the application
of three-way based strategies is more recent and different techniques have been
proposed in the recent years. Most of the work in this sense has focused on the
specific case of semi-supervised learning, in which the uncertain instances have
no supervision, and active learning, in which the missing labels can be requested
to an external oracle (usually a human user) at some cost: Miao et al. [48]
proposed a method for semi-supervised learning based on TWD; Yu et al. [88]
proposed a three-way clustering approach for semi-supervised learning that uses
an active learning approach to obtain labels for instances that are considered
as uncertain after the initial clustering; Triff et al. [66] proposed an evolution-
ary semi-supervised algorithm based on rough sets and TWD and compare it
with other algorithms obtaining interesting results when only the certainly clas-
sified objects are considered; Dai et al. [18] introduced a co-training technique
for cost-sensitive semi-supervised learning based on sequential TWD and apply
it to different standard ML algorithms (k-NN, PCA, LDA) in order to obtain
a multi-view dataset; Campagner et al. [10,13] introduced a three-way Deci-
sion Tree model for semi-supervised learning and show that this model achieves
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good performance with respect to standard ML algorithms for semi-supervised
learning; Wang et al. [70,71] proposed a cost-sensitive three-way active learn-
ing algorithm based on the computation of label error statistics; Min et al. [49]
proposed a cost-sensitive active learning strategy based on k-nearest neighbours
and a tripartition of the instances in certain and uncertain ones.

In the case of more general weakly supervised learning, Campagner et al. [12]
proposed a collection of approaches based on TWD and standard ML algorithms
in order to take into account this type of uncertainty in the setting of classi-
fication. In particular, the authors considered an algorithm for Decision Tree
(and ensemble-based extensions, such as Random Forest) learning, in which the
trisecting and acting steps are dynamically and iteratively performed during the
Decision Tree induction process on the basis of TWD and generalized informa-
tion theory [33], and a generalized stochastic gradient descent algorithm based on
interval analysis and TWD, in order to take into account the fact that the uncer-
tain instances naturally determine interval-valued information with respect to
the loss function to be optimized. In both cases, promising results were reported,
showing that they outperform standard superset learning and semi-supervised
techniques. A different approach, which is based on treating weakly supervision
as a type of missing data, proposed by Sakai et al. [58], employs a three-way rule
extraction algorithm that could also be applied in the case of weakly supervised
data: this approach is of particular interest in that it suggests an integrated end-
to-end approach to simultaneously handle missing data and weakly supervised
data.

Multi-rater Annotation. With respect to the third type of uncertainty, that is
multi-rater annotation, in [12] we noted that the issue has largely been ignored
in the ML community. With respect to the application of TWD methodologies
to handle this type of uncertainty, there has been some recent works with respect
to aggregation methods and information fusion using TWD, mainly under the
perspective of group decision making [25,39,53,96] and the modelling of multi-
agent systems [76]. However, there has been so far a lack of studies concerning
the application of these TWD based techniques to ML problems. Some related
approaches have been explored under the perspective of multi-source information
tables in RST, in which the multi-rater, and possibly conflicting, information is
available not only for the decision variable but also for the predictor ones: Huang
et al. [28] proposed a three-way concept learning method for multi-source data;
Sang et al. [60] studied the application of decision-theoretic rough sets for TWD
in multi-source information systems; Sang et al. [61] proposed an alternative
approach which is not directly based on merging different information systems
but instead it employs multi-granulation double-quantitative decision-theoretic
rough set, which the authors show to be more fault tolerant with respect to
traditional approaches. Campagner et al. [8,15] proposed a novel aggregation
strategy, based on TWD, which can be applied to implement the trisecting
step to handle the multi-rater annotation uncertainty type. In this case, the
instances are categorized as certain or uncertain depending on the distribution
of labels given by the raters and a set of parameters that have a cost-theoretic
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interpretation. After the aggregation step, the problem is converted into a weakly
supervised one and a learning algorithm is proposed that is shown to be signifi-
cantly more effective than the traditional approach of simply assigning the most
frequent labels (among the multi-rater annotations) to the uncertain instances.

2.2 Outcome Step: Evaluating the Results

All of the articles considered for this review mainly deal with the trisecting
and acting step in the TAO model that we propose. The outcome step has
rarely been considered and is usually addressed as it would be for traditional
ML models: that is by simply considering the accuracy of the trained models,
sometimes even in naive ways [14]. According to the framework that we propose,
the main goal of employing TWD for ML is the handling of uncertainty. In
this light, attention should also be placed on how much the TWD approach
allows to reduce the initial uncertainty in the input data or at least to which
degree the TWD-based algorithm is able to obtain good performances despite
of the uncertainty. For example, with respect to the missing data problem, the
outcome step should also consider the amount of missing values that have been
correctly imputed (for imputation-based approaches), or the robustness of the
induced ML algorithm with respect to different values that could be present in
the missing features, for instance using interval-valued accuracy or information-
theoretic metrics [11,14], or by distinguishing which predictions made by the
algorithm are certain (i.e., robust with respect to the missing values or the weakly
supervised instance) or only possible. Similarly, with respect to the multi-rater
annotation uncertainty type, besides the accuracy of the proposed approaches
with respect to a known ground truth (when available), the outcome step should
also consider the robustness of the proposed approach when varying the degree
of conflicting information, and the level of noise of the raters who annotate the
datasets, as we considered in [15]. In this sense, we believe that more attention
should be put on the outcome step of the proposed framework, and further
research in this sense should be performed.

3 Handling Uncertainty in the Output

The application of TWD to handle uncertainty in the output of the ML is a
mature research area, and has possibly been considered since the original pro-
posal of TWD, both for classification [80,103] and for clustering [40]. In both
cases, the uncertainty in the output of the ML model refers to the inability of
the ML model to properly discriminate the instances and assign them a certain,
precisely known, label. This could be due to a variety of issues: the chosen data
representation (i.e., the selected features and/or their level of granularity) is
not informative enough; the inability to distinguish different instances that are
either identical or “too near” in the sample space, but are associated with differ-
ent decision labels; the selected model class is not powerful enough to properly
represent the concept to be learned. All these issues have been widely studied,
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both under the perspective of RST with the notion of indiscernibility [54,55],
and of more traditional ML approaches, with the notion of decision boundary.
The approach suggested by TWD in this setting consists in allowing the classifier
to abstain [81], even partially, that is excluding some of the possible alternative
classifications. In so doing, the focus is on the trisecting step, which involves
deciding on which instances the ML model (both for classification or clustering)
should be considered uncertain, and hence the model should abstain on.

3.1 Trisecting and Acting Steps for Classification

With respect to classification, the traditional model of TWD applies only to
binary classification cases, for which a third “uncertain” category is added, for
which extensions of the most traditional ML methods are available. In all of
the cases, the trisecting step is performed in a similar manner, on the basis of
the original decision-theoretic rules proposed by Yao [81]; these rules are often
embedded in different models, and the main variation relates to how the acting
step is implemented. This step has usually been based on Bayesian decision anal-
ysis under the decision-theoretic rough set paradigm [31,36,79,103,104]. How-
ever, also other approaches to implement the acting step have been proposed,
such as structured approximations in RST [27], or the combination of TWD
with more traditional ML techniques, for instance, Deep Learning [37,100,101],
optimization-based learning [41,43,95] or frequent pattern mining [38,50]: all
of these implementations of the TWD model for the handling of uncertainty
have been successfully applied to different fields, such as face recognition, spam
filtering or recommender systems.

A particularly interesting use, with respect to the acting outcome, consists
of integrating TWD in active learning methodologies: Chen et al. [16] proposed
a three-way rule-based decision algorithm that employs active learning to re-
classify the uncertain instances; Zhang et al. [94] proposed a random forest-
based recommender systems with the capability to ask for user supervision on
uncertain objects; Yao et al. [78] proposed a TWD model based on a game-
theoretic rough set for medical decision systems that distinguish certain rules
(for acceptance and rejection) from deferment rules which require intervention
from the user.

In recent years, different proposals have also been considered for the exten-
sion to the multi-class case, mainly under two major approaches. The first one is
based on sequential TWD [83], which essentially implements a hierarchical one-vs-
all learning scheme; Yang et al. [77] considered a Bayesian extension of multi-class
decision theoretic rough sets [102]; Savchenko [62,63] proposed sequential TWD
and granular computing for speed-up of image classification when the number of
classes is large; Zhang et al. [98] proposed a sequential TWD model based on the
use of autoencoders for granular feature extraction. The second approach, which
can be defined as natively multi-class, has been proposed by some authors (e.g., in
[11,12]): it employs a decision-theoretic procedure to convert every standard prob-
abilistic classifier into a multi-class TWD classifier. A similar approach, but based
on decision-theoretic rough sets, have also been developed by Jia et al. [32].
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While all the approaches mentioned above consider the combination of TWD
and ML models in a a posteriori strategy in which the trisecting step is performed
after, or as a consequence of, the standard ML training procedure, in [11,12] we
also considered how to directly embed TWD in the training algorithm of a wide
class of standard ML models, either by a direct modification of the learning
algorithm (for decision trees and related methods), or by adopting ad-hoc regu-
larized loss functions (for optimization-based procedures such as SVM or logistic
regression).

3.2 Trisecting and Acting Steps for Clustering

In regards clustering, various approaches have been proposed to implement the
TWD-based handling of the uncertainty in the output, hence to construct clus-
terings in which the assignment of some instances to clusters is uncertain, mainly
under the frameworks of rough clustering [40], interval-set clustering [84] and
three-way clustering [90]. In all of the above approaches, the trisecting step is
implemented as a modification of standard clustering assignment criteria, and
it allows instances to be considered as uncertain with respect to their assign-
ment to one or more clusters: Yu [90] proposed a three-way clustering algorithm
that also works with incomplete data; Wang et al. [73] proposed a three-way
clustering method based on mathematical morphology; Yu et al. [91] considered
a flexible tree-based incremental three-way clustering algorithm; Yu et al. [86]
proposed an optimized ensemble-based three-way clustering algorithm for large-
scale datasets; Afridi et al. [1] proposed a variance-based three-way clustering
algorithm; Zhang et al. [99] proposed a novel improvement on the original rough
k-means based on a weighted Guassian distance function; Li et al. [35] extended
standard rough k-means with an approach based on decision-theoretic rough
sets, Yu et al. [89] proposed an hybrid clustering/active learning based on TWD
for multi-view data; Zhang [97] proposed a three-way c-means algorithm; Wang
et al. [72] proposed a refinement three-way clustering algorithm based on the
re-clustering of ensemble of traditional hard clustering algorithms; Yu et al. [93]
proposed a density three-way clustering algorithm based on DBscan; Yu et al.
[92] proposed a three-way clustering algorithm optimized for high-dimensionality
datasets based on a modification of the k-medoids algorithm and the random
projection method; Hu et al. [26] proposed a sequential TWD model for consen-
sus clustering based on the notion of co-association matrix.

3.3 Outcome Step: Evaluating the Results

With respect to the outcome step, both clustering and classification techniques
based on TWD have been shown to significantly improve the performance in
comparison to traditional ML algorithms (see the referenced literature). Despite
this promising assessment, one should also consider that the evaluation of ML
algorithms using TWD to handle the uncertainty in output, at least in principle,
cannot be made on the same grounds of traditional ML models (i.e., only on the
basis of accuracy metrics). Indeed, since these models are allowed to abstain on
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uncertain instances, metrics for their evaluation should take into account the
trade-off between the accuracy on the classified/clustered instances but also the
coverage of the algorithm, that is on how many instances the model defers its
decision. As an example of this issue, suffice it to consider that a three-way
classifier that abstains on all the instances but one, which is correctly classi-
fied/clustered, has perfect accuracy but it is hardly a useful predictive model.
However, attention towards this trade-off has emerged only recently, where the
majority of the surveyed papers only focus on the accuracy of the models on
the classified/clustered instances: Peters [56] proposed a modified Davis-Bouldin
index for evaluation of three-way clustering; Depaolini et al. [19] proposed gener-
alizations of Rand, Jaccard and Fowlkes-Mallows indices; similarly, we proposed
a generalization of information-theoretic measures of clustering quality [14] and
generalization of accuracy metrics for classification [11]. Promisingly, the supe-
rior performance of TWD techniques for the handling of output uncertainty can
be observed also under these more robust, and conservative, metrics.

4 Discussion

In this article, we proposed a TAO model for the management of uncertainty in
Machine Learning that is based on TWD. After describing the proposed frame-
work, we have reviewed the current state of the art for the different areas of
concern identified by our framework, and discussed about the strengths, limita-
tions and areas requiring further investigation of the main works considered.

In what follows, we emphasise both what we believe are the main advantages
of adopting this methodology in ML and also delineate some topics that in our
opinion are particularly in need of further study.

4.1 Advantages of Three-Way ML

It is undeniable that in the recent years, the application of TWD and the TAO
model to ML applications has been growing and showing promising results. In
this Section, we will emphasise the advantages of TWD under the perspective of
uncertainty handling for ML. In this perspective, TWD and the TAO model look
promising as a means to provide a principled way to handle uncertainty in the
ML process in an end-to-end fashion, by directly using the information obtained
in the trisecting act (i.e., the splitting of instances into certain/uncertain ones),
in the subsequent acting and outcome steps, without the need to address and
“correct” the uncertainty in a separate pre-processing step. This is particularly
clear in our discussion about the handling of the uncertainty in the input : in this
case, the TAO model enables one to directly deal with different forms of data
uncertainty in a theoretically-sound, robust and non-invasive manner [20], while
also obtaining higher predictive accuracy than with traditional ML methodolo-
gies. The same holds true also with respect to the handling of uncertainty in the
output. In this case, the TAO model allows to obtain classifiers that are both
more accurate and robust, thanks to the possibility of abstention that allows
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more conservative decision boundaries. Abstention is a more informative strat-
egy also from a decision-support perspective, in that the model that is enhanced
with TWD can expose its predictive uncertainty by abstaining as a sign that
the situation needs more information, or the careful consideration of the human
decision maker.

4.2 Future Directions

Despite the increasing popularity of TWD to handle the uncertainty in ML
pipelines, and the relative maturity of the application of this methodology with
respect to the trisecting and acting steps of our framework (see Table 1), we
believe that some specific aspects merit further investigations. Then, as already
discussed in Sects. 2 and 3, the outcome step has not been sufficiently explored,
especially with respect to the handling of uncertainty in the input. As discussed
in Sect. 2.2, we believe that conceiving appropriate metrics to assess the robust-
ness of TWD methods represents a particularly promising strand of research,
which would also enable counterfactual -like reasoning [47] for ML models, a
topic that has recently been considered important in the light of eXplainable AI
[68]. For instance, this can be done by analyzing the robustness and performance
of the ML models with respect to specific counterfactual instantiations of the
instances affected by uncertainty that would most likely alter the learnt deci-
sion boundary. Similarly, while there have been more proposals for the outcome
step for the output part of our framework, we believe that further work should
be done towards the general adoption of these measures in the application of
TWD-based ML. Similarly, a second promising direction of research regards the
acting step for the management of the uncertainty in the output: as we previ-
ously discussed, active learning and human-in-the-loop [24] techniques to handle
the instances recognized as uncertain by the ML algorithms are of particular
interest. Similarly, it would be interesting to study the connection between the
TWD model to handle uncertainty in the output and the conformal prediction
paradigm [64], as both are based on the idea of providing set-valued predic-
tions on uncertain instances. A third research direction regards the fact that
the different steps have currently been studied mostly in isolation: so far, most
studies applying TWD in ML focused either on the input or the output part of
our framework. While some initial works with respect to a unified treatment of
both types of uncertainty have recently been considered [12], we believe that fur-
ther work toward such a uniform methodology would be particularly promising.
Finally, missing data is usually understood as a problem of completeness: this is
missing data at feature level, for instances at least partly observed. But there is
also a “missingness” at row level, that is a source of uncertainty (which makes
the data we have uncertain and less reliable) that regards instances that we
have not observed or whose characteristics are not well represented in the data
collected: more research is due to how TWD can tackle this important source of
bias, which is usually called sampling bias.
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Abstract. Community detection is of great significance to the study of
complex networks. Community detection algorithm based on three-way
decisions (TWD) forms a multi-layered community structure by hier-
archical clustering and then selects a suitable layer as the community
detection result. However, this layer usually contains overlapping com-
munities. Based on the idea of TWD, we define the overlapping part
in the communities as boundary region (BND), and the non-overlapping
part as positive region (POS) or negative region (NEG). How to correctly
divide the nodes in the BND into the POS or NEG is a challenge for
three-way decisions community detection. The general methods to deal
with boundary region are modularity increment and similarity calcula-
tion. But these methods only take advantage of the local features of the
network, without considering the information of the divided communities
and the similarity of the global structure. Therefore, in this paper, we
propose a method for three-way decisions community detection based on
weighted graph representation (WGR-TWD). The weighted graph rep-
resentation (WGR) can well transform the global structure into vector
representation and make the two nodes in the boundary region more
similar by using frequency of appearing in the same community as the
weight. Firstly, the multi-layered community structure is constructed
by hierarchical clustering. The target layer is selected according to the
extended modularity value of each layer. Secondly, all nodes are con-
verted into vectors by WGR. Finally, the nodes in the BND are divided
into the POS or NEG based on cosine similarity. Experiments on real-
world networks demonstrate that WGR-TWD is effective for community
detection in networks compared with the state-of-the-art algorithms.
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1 Introduction

Nowadays, there are all kinds of complex systems with specific functions in the
real world such as online social systems, medical systems and computer systems.
These systems can be abstracted into networks with complex internal struc-
tures, called complex networks. The research of complex networks has received
more and more attention due to the development of the Internet. Community
structure [6,23] is a common feature of complex networks, which means that a
network consists of several communities, the connections between communities
are sparse and the connections within a community are dense [10]. Mining the
community structure in the network is of great significance to understand the
network structure, analyze the network characteristics and predict the network
behavior. Thus, community detection has become one of the most important
issues in the study of complex networks.

In recent years, a great deal of research is devoted to community detec-
tion in networks. Most community detection methods are used to identify non-
overlapping communities (i.e., a node belongs to only one community). The
main approaches include graph partitioning and clustering [9,10,13], modular-
ity maximization [1,20], information theory [12,25] and non-negative matrix fac-
torization [16,27]. The Kernighan-Lin algorithm [13] is a heuristic graph parti-
tioning method that detects communities by optimizing the edges within and
between communities. GN algorithm [10] is a representative hierarchical cluster-
ing method, which can find communities by removing the links between commu-
nities. Blondel et al. proposed the Louvain algorithm [1], which is a well-known
optimization method based on modularity. It is used to handle large-scale net-
works due to low time complexity. Liu et al. [16] put forward a community detec-
tion method by using non-negative matrix factorization. Zhao et al. [33] intro-
duced the idea of granular computing into the community detection of network
and proposed a community detection method based on clustering granulation.

The existing non-overlapping community detection algorithms have made
great achievements, but these algorithms only use the traditional two-way deci-
sions [29,30] method (the acceptance or rejection decision) to deal with the
overlapping nodes between communities. Compared with the two-way decisions
method, the three-way decisions theory (TWD) [28] adds a non-commitment
decision. The main idea of TWD is to divide an entity set into three disjoint
regions, which are denoted as positive region (POS), negative region (NEG)
and boundary region (BND) respectively. The POS adopts the acceptance deci-
sion, the NEG adopts the rejection decision, and the BND adopts the non-
commitment decision (i.e., entities that cannot make a decision based on the
current information are placed in the BND). For entities in the BND, we can
further mine more information to realize their final partition. The introduc-
tion of non-commitment decision can effectively solve the decision-making errors
caused by insufficient information, which is more flexible and closer to the actual
situation.

How to deal with the boundary region has become a key issue for three-
way decisions community detection. At present, the commonly used methods to
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process the boundary region include modularity increment [20] and similarity
calculation [2,8]. But these methods only take advantage of the local features
of the network, without considering the information of the divided communities
and the similarity of the global structure. Therefore, how to tackle the boundary
region effectively is a challenge.

In this paper, we propose a three-way decisions community detection model
based on weighted graph representation (WGR-TWD). The graph representation
can well transform the global structure of the network into vector representation
and make the two nodes in the boundary region that appear in the same com-
munity more similar by using the weight. Firstly, the multi-layered community
structure is constructed by hierarchical clustering. The target layer is selected
according to the extended modularity value of each layer. Secondly, all nodes
are converted into vectors by weighted graph representation. Finally, nodes in
the boundary region are divided into positive or negative region based on cosine
similarity. Thus, non-overlapping community detection is realized.

The key contributions of this paper can be summarized as follows:

(1) We use weighted graph representation to obtain the global structure infor-
mation of the network to guide the processing of the boundary region, which
gets a better three-way decisions community detection method.

(2) Based on the knowledge of the communities in the target layer, we make the
two nodes connected by a direct edge in the boundary region more similar by
using frequency of appearing in the same community as the weight. Then
the walk sequences are constructed according to the weight of the edge.
Finally, the Skip-Gram model is used to obtain the vector representation of
nodes. Therefore, the weighted graph representation method is realized.

(3) We evaluate the effectiveness the proposed model WGR-TWD on real-world
networks compared with the baseline methods. The experimental results
show the superior performance of our model.

The rest of this paper is organized as follows. We introduce related work in
Sect. 2. We give the detailed description of our algorithm in Sect. 3. Experiments
on real-world networks are reported in Sect. 4. Finally, we conclude the paper in
Sect. 5.

2 Related Work

2.1 Community Detection of Hierarchical Clustering

Hierarchical clustering method has been widely used in community detection
due to the hierarchical nature of the network structure. This approach can be
divided into two forms: divisive method and agglomerative method. The divi-
sive method removes the link with the lowest similarity index repeatedly, while
the agglomerative method merges the pair of clusters with the highest similar-
ity index repeatedly. These two methods eventually form a dendrogram, and
communities are detected by cutting the tree.
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The research of community detection based on hierarchical clustering has
received widespread attention from scholars. Girvan and Newman proposed the
GN algorithm [10], which is a typical divisive method. Clauset et al. [5] proposed
a community detection algorithm based on data analysis, which is a representa-
tive agglomerative method. Fortunato et al. [9] presented an algorithm to find
community structures based on node information centrality. Chen et al. proposed
the LCV algorithm [4] which detects communities by finding local central nodes.
Zhang et al. [32] introduced a hierarchical community detection algorithm based
on partial matrix convergence using random walks.

Combining hierarchical clustering with granular computing, we introduce
an agglomerative method based on variable granularity to build a dendrogram.
Given an undirected and unweighted graph G = (V,E), where V is the set of
nodes, E denotes the set of edges. The set of neighbor nodes to a node vi is
denoted as N (vi) = {vj ∈ V | (vi, vj) ∈ E}, the set of initial granules is defined
as H1 =

{
C1

1 , C1
2 , ..., C1

p

}
. The formation process of the initial granules is as

follows. First, we calculate the local importance of each node in the network.
The local importance of a node vi is defined as follows:

I (vi) =
|Z|

|N (vi)| , (1)

where Z = {vj ∈ N (vi) | d (vj) ≤ d (vi)}, d (vi) is the degree of node vi, and |·|
denotes the number of elements in a set. Second, all important nodes are found
according to the local importance of nodes. The node vi is an important node
if I (vi) > 0. Finally, for any important node, an initial granule is composed of
all neighbor nodes of the important node and the important node itself. After
all the initial granules are obtained, the hierarchical clustering method based
on variable granularity is described. The clustering coefficient between the two
granules is defined as

f
(
Cm

i , Cm
j

)
=

∣
∣Cm

i ∩ Cm
j

∣
∣

min
{|Cm

i | , ∣∣Cm
j

∣
∣} , Cm

i , Cm
j ∈ Hm (2)

where
∣
∣Cm

i ∩ Cm
j

∣
∣ denotes the number of common nodes in granules Cm

i and
Cm

j , min
{|Cm

i | , ∣∣Cm
j

∣
∣} is the smaller number of nodes in granules Cm

i and
Cm

j , Hm is the granules set of the mth (m = 1, 2, ...) layer. The collection of
clustering thresholds is denoted as λ = {λm,m = 1, 2, ...}, where λm is the clus-
tering threshold of the mth layer. In order to automatically obtain the clustering
threshold of each layer, λm is defined as

λm = med
{
f

(
Cm

i , Cm
j

) |∀Cm
i , Cm

j ∈ Hm, Cm
i ∩ Cm

j �= ∅ ∧ i �= j
}

(3)

where med {} is a median function. The clustering process is as follows. Firstly,
for ∀Cm

i , Cm
j ∈ Hm, the clustering coefficient between them is calculated.

Then the clustering threshold λm of the current layer is calculated. And the
maximum clustering coefficient is found, which is denoted as f

(
Cm

α , Cm
β

)
.
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If f
(
Cm

α , Cm
β

)
� λm, the two granules Cm

α and Cm
β are merged to form a

new granule and the new granule is added to Hm+1. Otherwise, all the granules
in Hm are added to Hm+1 and Hm is set to empty. For each layer, repeat above
clustering process until all nodes in the network are in a granule. Therefore, a
dendrogram is built.

2.2 DeepWalk

Traditional network representation usually uses high-dimensional sparse vectors,
which takes more running time and computational space in statistical learning.
Network representation learning (NRL) is proposed to address the problem. NRL
aims to learn the low-dimensional potential representations of nodes in networks.
The learned representations can be used as features of the graph for various
graph-based tasks, such as classification, clustering, link prediction, community
detection, and visualization.

DeepWalk [24] is the first influential NRL model in recent years, which adopts
the approach of natural language processing by using the Skip-Gram model
[18,19] to learn the representation of nodes in the network. The goal of Skip-
Gram is to maximize the probability of co-occurrence among the words that
appear within a window. DeepWalk first generates a large number of random
walk sequences by sampling from the network. These walk sequences can be
analogized to the sentences of the article, and the nodes are analogized to the
words in the sentence. Then Skip-Gram can be applied to these walk sequences
to acquire network embedding. DeepWalk can express the connection of the
network well, and has high efficiency when the network is large.

3 The Proposed Algorithm

3.1 Weighted Graph Representation

To effectively deal with overlapping communities in the target layer, a weighted
graph representation approach is proposed. At first, a weighted graph is con-
structed according to the community structure of the target layer. The weights
of edges in an unweighted graph are defined as follows

Wij = 1.0 + σij/Nc (4)

where σij is the number of communities in which nodes vi and vj appear in
a community at the same time, Nc is the total number of communities in the
target layer. After that, an improved DeepWalk (IDW) model is used to acquire
the vector representation of all nodes in the graph. Unlike DeepWalk, the IDW
model constructs the walk sequences according to the weight of the edge. The
greater the weight, the higher the walk probability. Assume that the current
walk node is vi, if vj ∈ N (vi), then the walk probability from node vi to node
vj is

P (vi → vj) =
Wij∑

vk∈N(vi)

Wik
. (5)
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After obtaining all the walk sequences, the Skip-Gram model is used to learn the
vector representation of nodes from the walk sequences. The objective function
of IDM is as follows

min
R

∑

−ω�j�ω,j �=0

−logP (vi+j |R (vi)) (6)

where R (vi) is the vector representation of node vi, ω is the window size which
is maximum distance between the current and predicted node within a walk
sequence. Thus, the vector representation of all nodes in the network is obtained.

3.2 The WGR-TWD Algorithm

We will present the proposed WGR-TWD algorithm in this section. Figure 1
shows the overall framework of the proposed algorithm. Our algorithm consists of
two parts: the construction of multi-layered community structure and boundary
region processing.

The first part, we employ the hierarchical clustering method based on vari-
able granularity to construct a multi-layered community structure according to
Sect. 2.1. Some overlapping communities exist in the multi-layered community
structure because of clustering mechanism, so we use the extended modularity
(EQ) [26] to measure the partition quality of each layer. It is defined as follows

EQ =
1

2m

∑

i

∑

u∈Ci,v∈Ci

1
OuOv

(
Auv − dudv

2m

)
(7)

Fig. 1. The framework of the proposed method.
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where m is the number of edges in the network, Ci represents a community,
Ou is the number of communities that node u belongs to, Auv is the element
of adjacent matrix, and du is the degree of node u. A larger EQ value means
better performance for overlapping community division. Thus, we select the layer
corresponding to the largest EQ value as the target layer.

Algorithm 1. WGR-TWD
Input: An undirected and unweighted graph G = (V,E).
Output: Non-overlapping community structure POS(G), NEG(G).

1: construct the muti-layered community structure: H =
{
H1, H2, ..., Hm

}

2: calculate EQ for each layer in H
3: Ht ← find the layer corresponding to the maximum EQ
4: divide three regions according to Ht: POS(G), NEG(G), BND(G)
5: get a weighted graph G′ = (V,E,W ) according to Equation (4)
6: walks ← generate the walk sequences by W
7: learn node representation from walks by using Skip-Gram model
8: for ∀v ∈ BND (G) do
9: s (v, POS) ← calculate the similarity between node v and POS(G)

10: s (v,NEG) ← calculate the similarity between node v and NEG(G)
11: if s (v, POS) > s (v,NEG) then
12: POS (G) ← POS (G) + {v}
13: else if s (v, POS) < s (v,NEG) then
14: NEG (G) ← NEG (G) + {v}
15: end if
16: end for
17: return POS(G), NEG(G)

The second part introduces the method of dealing with overlapping commu-
nities in the target layer. Since there are overlapping communities in the tar-
get layer, we need to further divide the target layer to achieve non-overlapping
community detection. Therefore, the three-way decisions theory (TWD) is intro-
duced to handle overlapping communities. Based on the idea of TWD, we define
the overlapping part in the communities as boundary region (BND), and the
non-overlapping part as positive region (POS) or negative region (NEG). And
our goal is to process nodes in the BND. First of all, we adopt the weighted
graph representation method to learn the vector representation of all nodes in
the network. After that, the nodes in the BND are divided into the POS or NEG
by using cosine similarity. Suppose the vector of node u is u = (x1, x2, ..., xn),
node v is v = (y1, y2, ..., yn), then the cosine similarity is defined as

S (u, v) =

n∑

i=1

xiyi

√
n∑

i=1

(xi)
2 ·

√
n∑

i=1

(yi)
2

. (8)
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For arbitrary node vi in the BND, find out all communities containing node vi

in the target layer, calculate the average value of cosine similarity between node
vi and non-overlapping nodes in each community as the similarity between node
vi and this community, then join node vi into the community corresponding
to the maximum similarity and update the community structure of the target
layer. Repeat the above operation until all nodes in the BND are processed. The
WGR-TWD algorithm is described in Algorithm 1.

4 Experiments

4.1 Datasets

We test the performance of our method on eight real-world datasets in which
each dataset is described as follows, and the main information of those datasets
are shown in Table 1.

Zachary’s karate club [31]. This is a social network of friendships between 34
members of a karate club at a US university in the 1970s.

Dolphin social network [17]. It is an undirected social network of frequent
associations between 62 dolphins in a community living off Doubtful Sound,
New Zealand.

Books about US politics [22]. A network of books about US politics published
around the time of the 2004 presidential election and sold by the online bookseller
Amazon.com. Edges between books represent frequent co-purchasing of books
by the same buyers.

American college football [10]. A network of American football games
between Division IA colleges in 2000.

Email communication network [21]. It is a complex network which indicates
the email communications of a university. The network was composed by Alexan-
dre Arenas.

Facebook [15]. The network was collected from survey participants using
Facebook app.

Geom [11]. The authors collaboration network in computational geometry.
Collaboration [14]. The network is from the e-print arXiv and covers scientific

collaborations between authors papers submitted to High Energy Physics Theory
category.

4.2 Baseline Methods

In this paper, two representative algorithms are chosen to compare with the
proposed WGR-TWD, as shown below:

– Modularity increment (MI) [3]. A hierarchical clustering method based on
variable granularity, and the overlapping nodes between communities are
divided according to modularity optimization.

– DeepWalk [24]. It is a network representation learning method. This approach
is used to handle the overlapping communities in the target layer.
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Table 1. Information of datasets.

Network Nodes Edges Real clusters

Karate 34 78 2

Dolphin 62 159 2

Polbooks 105 441 3

Football 115 613 12

Email 1133 5451 Unknown

Facebook 4039 88234 Unknown

Geom 7343 11898 Unknown

Collaboration 9877 25998 Unknown

4.3 Evaluation Metrics

We employ two widely used criteria to evaluate the performance of community
detection algorithms.

The first index is modularity (Q) [5], which is often used when the real
community structure is not known. Q is defined as follows

Q =
1

2m

∑

i,j

[
Aij − didj

2m

]
δ (ci, cj) (9)

where m is the number of edges in the network, A is the adjacent matrix, di is
the degree of node i, ci represents the community to which node i belongs, and
δ (ci, cj) = 1 when ci = cj , else δ (ci, cj) = 0. The higher the modularity value,
the better the result of community detection.

Another index is normalized mutual information (NMI) [7], which is defined
as follows

NMI =
−2

∑CA

i=1

∑CB

j=1 Cij log
Cijn

Ci.C.j
∑CA

i=1 Ci.log
Ci.

n +
∑CB

j=1 C.j log
C.j

n

(10)

where CA (CB) denotes the number of communities in partition A (B), Cij is
the number of nodes shared by community i in partition A and by community
j in partition B, Ci. (C.j) represents the sum of elements of matrix C in row
i (column j), and n is the number of nodes in the network. A higher value of
NMI indicates the detected community structure is closer to the real community
structure.

4.4 Experimental Results

In the networks with known real partition (the first four small networks), we
use two indicators (Q and NMI) to evaluate our algorithm. Table 2 presents
the community detection results of the proposed algorithm and the baseline
algorithms on networks with known real partition. We can see that our method
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Table 2. Experimental results on networks with known real partition (under EQ
criterion).

Network Index MI DeepWalk WGR-TWD

Karate Q 0.360 0.360 0.371

NMI 0.837 0.837 1.000

Dolphin Q 0.385 0.379 0.385

NMI 0.814 0.889 0.830

Polbooks Q 0.439 0.442 0.441

NMI 0.469 0.448 0.453

Football Q 0.480 0.545 0.558

NMI 0.626 0.726 0.732

Table 3. Experimental results on networks with known real partition (under Q
criterion).

Network Index MI DeepWalk WGR-TWD

Karate Q 0.391 0.391 0.401

NMI 0.606 0.620 0.700

Dolphin Q 0.510 0.520 0.523

NMI 0.619 0.613 0.618

Polbooks Q 0.514 0.492 0.509

NMI 0.501 0.463 0.489

Football Q 0.582 0.596 0.596

NMI 0.904 0.899 0.911

obtains best results on the Karate and Football datasets. On the Dolphin dataset,
the Q value of our method is better and the NMI value is second to the DeepWalk
method. On the Polbooks dataset, our method performs not well because the
connections between nodes are sparse which is difficult to mine the structural
information of the network.

To further verify the effectiveness of the proposed algorithm, the MI method
is used to deal with each layer in the multi-layered community structure. And
we select the layer corresponding to the maximum Q value as the target layer.
The experimental results are shown in Table 3. Compared with Table 2, Table 3
can obtain higher Q value. Combined with Tables 2 and 3, our method can get
better community detection results compared with the baseline methods.

We also conducted experiments on four large networks. On these networks,
the real partition is unknown. Therefore, we only use modularity to evaluate
the performance of different methods. Table 4 shows the community detection
results of the proposed method and baseline methods. On the first three net-
works, we can see that our method obtains better results compared with the
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Table 4. Modularity values on networks with unknown real partition.

Network MI DeepWalk WGR-TWD

Email 0.537 0.538 0.542

Facebook 0.771 0.770 0.772

Geom 0.702 0.710 0.711

Collaboration 0.723 0.718 0.720

two baseline methods. On the Collaboration dataset, the MI method achieves
the best performance which is a little bit higher than our method. The main
reason is that the Collaboration network is very sparse which leads to poor vec-
tor representation of the nodes. In conclusion, the proposed method effectively
addresses the problem of non-overlapping community detection in networks.

5 Conclusion

In this paper, we propose a method for three-way decisions community detec-
tion based on weighted graph representation. The target layer in multi-layered
community structure is selected according to the extended modularity value of
each layer. For the overlapping communities in the target layer, the weighted
graph representation can well transform the global structure into vector repre-
sentation and make the two nodes in the boundary region more similar by using
frequency of appearing in the same community as the weight. Finally, the nodes
in the boundary region are divided according to cosine similarity. Experiments
on real-world networks demonstrate that the proposed method is effective for
community detection in networks.

Acknowledgments. This work is supported by the National Natural Science Foun-
dation of China (Grants Numbers 61876001) and the Major Program of the National
Social Science Foundation of China (Grant No. 18ZDA032).

References

1. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008
(2008)

2. Chen, J., et al.: Three-way dicision community detection algorithm based on local
group information. In: Polkowski, L., et al. (eds.) IJCRS 2017. LNCS (LNAI), vol.
10314, pp. 171–182. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
60840-2 12

3. Chen, J., Li, Y., Yang, X., Zhao, S., Zhang, Y.: VGHC: a variable granularity
hierarchical clustering for community detection. Granular Comput. 4, 1–10 (2019)

4. Chen, Q., Wu, T.T.: A method for local community detection by finding maximal-
degree nodes. In: 2010 International Conference on Machine Learning and Cyber-
netics, vol. 1, pp. 8–13. IEEE (2010)

https://doi.org/10.1007/978-3-319-60840-2_12
https://doi.org/10.1007/978-3-319-60840-2_12


164 J. Chen et al.

5. Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very large
networks. Phys. Rev. E 70(6), 066111 (2004)

6. Cui, Y., Wang, X., Eustace, J.: Detecting community structure via the maximal
sub-graphs and belonging degrees in complex networks. Phys. A 416, 198–207
(2014)

7. Danon, L., Diaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure
identification. J. Stat. Mech: Theory Exp. 2005(09), P09008 (2005)

8. Fang, L., Zhang, Y., Chen, J., Wang, Q., Liu, F., Wang, G.: Three-way decision
based on non-overlapping community division. CAAI Trans. Intell. Syst. 12(3),
293–300 (2017)

9. Fortunato, S., Latora, V., Marchiori, M.: Method to find community structures
based on information centrality. Phys. Rev. E 70(5), 056104 (2004)

10. Girvan, M., Newman, M.E.: Community structure in social and biological networks.
Proc. Nat. Acad. Sci. 99(12), 7821–7826 (2002)

11. Gong, M., Cai, Q., Chen, X., Ma, L.: Complex network clustering by multiobjective
discrete particle swarm optimization based on decomposition. IEEE Trans. Evol.
Comput. 18(1), 82–97 (2013)

12. Hajek, B., Wu, Y., Xu, J.: Information limits for recovering a hidden community.
In: 2016 IEEE International Symposium on Information Theory (ISIT), pp. 1894–
1898. IEEE (2016)

13. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs.
Bell Syst. Tech. J. 49(2), 291–307 (1970)

14. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and
shrinking diameters. ACM Trans. Knowl. Discov. Data (TKDD) 1(1), 2 (2007)

15. Leskovec, J., Mcauley, J.J.: Learning to discover social circles in ego networks. In:
Advances in Neural Information Processing Systems, pp. 539–547 (2012)

16. Liu, X., Wang, W., He, D., Jiao, P., Jin, D., Cannistraci, C.V.: Semi-supervised
community detection based on non-negative matrix factorization with node popu-
larity. Inf. Sci. 381, 304–321 (2017)

17. Lusseau, D.: The emergent properties of a dolphin social network. Proc. R. Soc.
Lond. Ser. B: Biol. Sci. 270(Suppl. 2), S186–S188 (2003)

18. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

19. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

20. Newman, M.E.: Fast algorithm for detecting community structure in networks.
Phys. Rev. E 69(6), 066133 (2004)

21. Newman, M.E.: Finding community structure in networks using the eigenvectors
of matrices. Phys. Rev. E 74(3), 036104 (2006)

22. Newman, M.E.: Modularity and community structure in networks. Proc. Nat.
Acad. Sci. 103(23), 8577–8582 (2006)

23. Newman, M.E., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E 69(2), 026113 (2004)

24. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 701–710 (2014)

25. Rosvall, M., Bergstrom, C.T.: An information-theoretic framework for resolving
community structure in complex networks. Proc. Natl. Acad. Sci. 104(18), 7327–
7331 (2007)

http://arxiv.org/abs/1301.3781


Three-Way Decisions Community Detection Model Based on WGR 165

26. Shen, H., Cheng, X., Cai, K., Hu, M.B.: Detect overlapping and hierarchical com-
munity structure in networks. Phys. A 388(8), 1706–1712 (2009)

27. Wu, W., Kwong, S., Zhou, Y., Jia, Y., Gao, W.: Nonnegative matrix factorization
with mixed hypergraph regularization for community detection. Inf. Sci. 435, 263–
281 (2018)

28. Yao, Y.: Three-way decision: an interpretation of rules in rough set theory. In:
Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds.) RSKT 2009.
LNCS (LNAI), vol. 5589, pp. 642–649. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-02962-2 81

29. Yao, Y.: Three-way decisions with probabilistic rough sets. Inf. Sci. 180(3), 341–
353 (2010)

30. Yao, Y.: Two semantic issues in a probabilistic rough set model. Fundam. Inform.
108(3–4), 249–265 (2011)

31. Zachary, W.W.: An information flow model for conflict and fission in small groups.
J. Anthropol. Res. 33(4), 452–473 (1977)

32. Zhang, W., Kong, F., Yang, L., Chen, Y., Zhang, M.: Hierarchical community
detection based on partial matrix convergence using random walks. Tsinghua Sci.
Technol. 23(1), 35–46 (2018)

33. Zhao, S., Wang, K., Chen, J., Zhang, Y.: Community detection algorithm based
on clustering granulation. J. Comput. Appl. 34(10), 2812–2815 (2014)

https://doi.org/10.1007/978-3-642-02962-2_81
https://doi.org/10.1007/978-3-642-02962-2_81


Attribute Reduction



Quick Maximum Distribution Reduction
in Inconsistent Decision Tables

Baizhen Li1, Wei Chen2(B), Zhihua Wei1, Hongyun Zhang1, Nan Zhang3,
and Lijun Sun1

1 Tongji University, Shanghai 201804, China
2 Shanghai Institute of Criminal Science and Technology, Shanghai 200003, China

weichen 82@163.com
3 Yantai University, Yantai 264005, Shandong, China

Abstract. Attribute reduction is a key issue in rough set theory, and
this paper focuses on the maximum distribution reduction for complete
inconsistent decision tables. It is quite inconvenient to judge the max-
imum distribution reduct directly according to its definition and the
existing heuristic based judgment methods are inefficient due to the lack
of acceleration mechanisms that mainstream heuristic judgment methods
have. In this paper, we firstly point out the defect of judgment method
proposed by Li et al. [15]. After analyzing the root cause of the defect,
we proposed two novel heuristic attribute reduction algorithms for max-
imum distribution reduction. The experiments show that proposed algo-
rithms are more efficient.

Keywords: Rough sets · Attribute reduction · Maximum distribution
reduction · Heuristic algorithm

1 Introduction

Rough set theory, introduced by Z. Pawlak [1] in 1982, is an efficient tool to
imprecise, incomplete and uncertain information processing [2–5]. Currently,
rough set theory has been successfully applied to many practical problems,
including machine learning [6,7], pattern recognition [8,9], data mining [10],
decision support systems [11], etc.

Attribute reduction, the process of obtaining a minimal set of attributes that
can preserve the same ability of classification as the entire attribute set, is one
of the core concepts in rough set theory [12]. Maximum distribution reduction,
proposed as a compromise between the capability of generalized decision preser-
vation reduction and the complexity of distribution preservation reduction [13]
by Zhang et al. [14] in 2003, guarantees the decision value with maximum prob-
ability of object in inconsistent decision tables unchanged. Subsequently, Pei
et al. proposed a theorem for maximum distribution reduct judgment in 2005.
Next, Li et al. [15] paid attention to the computational efficiency of reduction
definition and designed a new definition of maximum distribution reduction to
c© Springer Nature Switzerland AG 2020
R. Bello et al. (Eds.): IJCRS 2020, LNAI 12179, pp. 169–182, 2020.
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speed up attribute reduction. Taking into consideration the general reduction on
inconsistent decision tables, Ge et al. [16] proposed new definition of maximum
distribution reduction.

Heuristic approaches is one of import method in attribute reduction. The
heuristic approach is composed of two parts: the attribute reduction heuristic and
the search strategy [17]. The attribute reduction heuristic is the fitness function
of a heuristic approach. Existing definitions of heuristics are mainly based on
three aspects: dependency degree [18], entropy [19–21], and consistency [22,23].
The search strategy is the control structure of the heuristic approach. Speaking
loosely, the search strategy mainly includes three kinds of methods: the deletion
method, the addition method, and the addition-deletion method [24].

Existing methods for the judgment of maximum distribution were weak asso-
ciation with mainstream heuristics. As a result, the efficiency of heuristic max-
imum distribution reduction algorithm was limited due to lack of the support
of acceleration policies that mainstream heuristics have. This paper focuses on
the quick reduction algorithms for maximum distribution reduction. At first, we
analyze the defect of the quick maximum distribution reduction algorithm (Q-
MDRA) proposed in [15] and explore the root cause of its defect. Next, based
on the existing mainstream heuristic function, we develop three heuristic max-
imum distribution reduction algorithms. Finally, we conduct some experiments
to evaluate the effectiveness and efficiency of proposed algorithms.

The rest of this paper is organized as follows. In Sect. 2, we review some basic
notions related to maximum distribution reduction and three classic heuristic
functions. In Sect. 3, we show the defect of Q-MDRA with a calculation example
of maximum distribution reduction. After exploring the root cause of its defect,
we present three novel algorithms for maximum distribution reduction. In Sect. 4,
we evaluate the efficiency of proposed algorithms through algorithm complexity
analysis and comparison experiments.

2 Preliminary

In this section, we review some basic notions related to maximum distribution
reduction and three classic heuristic functions.

The research object of the rough set theory is called the information system.
The information system IS can be expressed as four tuple, i.e. < U,A, V, f >,
where U stands for the universe of discourse, a non-empty finite set of objects.
A is the set of attributes, V =

⋃
a∈A Va is the set of all attribute values, and

f : U × A → V is an information function that maps an object in U to exactly
one value in Va. For ∀x ∈ U,∀a ∈ A, we have f(x, a) ∈ Va. Specifically in the
classification problem, the information table contains two kinds of attributes,
which can be characterized by a decision table DT = (U,C ∪ D,V, f) with
C ∩ D = ∅, where an element of C is called a condition attribute, C is called
a condition attribute set, an element D is called a decision attribute, and D is
called a decision attribute set.
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For the condition attribute set B ⊆ C, the indiscernibility relation and
discernibility relation of B is respectively defined by IND(B) = {< x, y >∈
U × U |∀a ∈ B, f(x, a) = f(y, a)} and DIS(B) = {< x, y >∈ U × U |∃a ∈
B, f(x, a) 
= f(y, a)}. For an object x ∈ U , the equivalence class of x, denoted
by [x]B , is defined by [x]B = {y ∈ U | < x, y >∈ IND(B)}. The family
of all equivalence classes of IND(B), i.e., the partition determined by B, is
denoted by U/IND(B) or simply U/B. Obviously, IND(B) is reflexive, sym-
metric and transitive. Meanwhile, DIS(C) is irreflexive, symmetric, but not tran-
sitive. Something else needed to be reminded of is that DIS(C) ∪ IND(C) =
U × U,DIS(C) ∩ IND(C) = ∅.

One the basis of above notions, the concept of maximum distribution reduc-
tion was proposed by Zhang et al. [14] in 2003.

Definition 1. Let DT = (U,C ∪ D,V, f) be a decision table, B ⊆ C is a maxi-
mum distribution reduct of C if and only if B satisfies

∀x ∈ U, γB(x) = γC(x);
∀B′ ⊂ B,∃x ∈ U, γB′(x) 
= γC(x),

where γC(x) = {Pi : Pi ∈ U/D ∧ |Pi ∩ [x]C | = maxPj∈U/D(|Pj ∩ [x]C |)}.
It is said that B is a maximum distribution consistent attribute set if B

satisfies condition (1) mentioned above only. There are two methods of max-
imum distribution reduction: the discernibility matrix based methods and the
heuristic methods. For that the discernibility matrix based methods are low-
efficiency, heuristic methods are the more reasonable choice for processing the
larger scale data. The heuristic attribute reduction algorithms comprises two
parts: the heuristic function and the control strategy. We take the addition strat-
egy based heuristic algorithms as the research object of paper. For the heuristic
functions, we take three classic heuristic functions, i.e., the dependency degree,
the condition entropy, and the consistency as the alternatives for the construc-
tion of improved algorithms.

Definition 2. Given a decision table DT = (U,C ∪ D,V, f) and B ⊆ C, U/B =
{X1, X2, · · · , Xm}, U/D = {Y1, Y2, · · · , Yn}, three classic heuristic functions
(dependency degree, the consistency and conditional entropy) are defined by:

(1) ΓB(D) = |POSB(D)|
|U | ;

(2) δB(D) = |{Dj | |[x]B∩Dj |
|[x]B | =

|U/D|
max
k=1

{ |[x]B∩Dk|
|[x]B | }}|/|U |;

(3) H(D|B) = −∑m
i=1 P (Xi)

∑n
j=1 P (Yj |Xi) log P (Yj |Xi), where P (Yj |Xi) =

|Xi ∩ Yj |/|Xi|, where H(B) = −∑m
i=1 P (Xi) log P (Xi), P (Xi) = |Xi|/|U |.

3 Novel Heuristic Maximum Distribution Reduction
Algorithms

In this section, we present two defects in Q-MDRA firstly. After analyzing its
cause, we construct two quick heuristic maximum distribution reduction algo-
rithms based on classic heuristic functions.
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At first, we want to review the quick maximum distribution reduction algo-
rithm (Q-MDRA) proposed by Li et al. Here. Based upon Definition 1, Li et al.
[15] proposed following theorem for the judgment of the maximum distribution
reduct.

Theorem 1. Let DT = (U,C ∪ D,V, f) be a decision table and B ⊆ C, B is a
maximum distribution reduct of C if and only if B satisfies

∀x ∈ U, γMd
B (D) = γMd

C (D);

∀B′ ⊂ B, γMd
B′ (D) 
= γMd

C (D),

where γMd
B′ (D) =

∑
X∈U/B

|X∩Pi:argmaxPi∈U/D|X∩Pi||
|U | .

This theorem is expressed by the Theorem 6.11 of Ref. [15]. γMD
B (D) = γMD

C (D)
maintains unchanged the scale of the maximum decision classes instead of the
maximum decision classes for all of the objects in decision tables. That is to say,
B may be not a maximum distribution reduct of C in some special conditions. We
present the detail information in Sect. 3.1. Based on the variant of dependency
degree heuristic function in Theorem 1, Algorithm 1 was constructed by the way
of the addition strategy. Something needed to be reminded of in Algorithm 1 is
that we denote the assignment operation as “:=” and use the “=” to represent
that two items are on equal term.

Algorithm 1. Quick Maximum Distribution Reduction Algorithm (Q-MDRA)
Require: Decision table DT = (U,C ∪ D,V, f)
Ensure: A maximum distribution reduct of DT
1: red := φ
2: while True do
3: T := red
4: for a ∈ C − red do
5: if γMd

red∪{a}(D) > γMd
T (D) then

6: T := red ∪ {a}
7: end if
8: end for
9: if red = T then

10: break
11: else
12: red := T
13: end if
14: end while
15: return red
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3.1 The Defects of Q-MDRA

Here, in the way of calculation example, we show the detail information about
that Q-MDRA may not perform well as our expectation. Assume that there is a
decision table given as Table 1, we are assigned to get the maximum distribution
reduct of Table 1.

Table 1. A decision table

U a1 a2 a3 d

x1 0 0 0 0
x2 1 0 0 1
x3 1 1 0 0
x4 1 1 0 1
x5 1 1 1 0
x6 1 1 1 1
x7 1 1 1 1

For Table 1, we know that U = {x1, x2, · · · , x7}, C = {a1, a2, a3}, D =
{d}, and obviously we have U/C = {X1, X2, X3, X4} = {{x1}, {x2}, {x3,
x4}, {x5, x6, x7}} and U/D = {P1, P2} = {{x1, x3, x5}, {x2, x4, x6, x7}}.
According to Definition 1, we know that γC(x1) = {P1}, γC(x2) = {P2}; for
x ∈ X3, γC(x) = {P1, P2}; for x ∈ X4, we have γC(x) = {P2}.

The process of Q-MDRA for obtaining maximum distribution reduct of
Table 1 is shown as follows.

Step 1. red := ∅.

Step 2. T := red, γMd
T (D) = |P2|/|U | = 4/7; γMd

T∪{a1}(D) = (|P1∩X1|+|{x2, x3,

· · · , x7} ∩ P2|)/|U | = 5/7;T := T ∪ {a1}; γMd
T∪{a2}(D) = 4/7; γMd

T∪{a3}(D) = 4/7.
Because of T 
= red, we operate the assignment of red := T = {a1}.

Step 3. T := red, γMd
T (D) = |P2|/|U | = 5/7; γMd

T∪{a2}(D) = 5/7; γMd
T∪{a3}(D) =

5/7. Because T is equal to red, program is over.
Using Q-MDRA we get a collection of attributes {a1}. According to Theo-

rem 1, {a1} is a maximum distribution reduct of Table 1 for that {a1} satisfies
γMd

{a1}(D) = γMd
{C}(D) = 5/7 and γMd

φ (D) 
= 5/7. But checking it with original
Definition 1, we know that {a1} is not a maximum distribution reduct for Table 1
because γ{a1}(x3) = {P2} 
= γC(x3) = {P1, P2}. Consequently, Theorem 1 is
incorrect.

Here we analyze the root of the defect of Theorem 1. Given a decision table
DT = (U,C ∪ D,V, f), U/C = {X1, X2, · · · , Xn}, U/D = {P1, P2, · · · , Pm}.
Let mxcf(Xi) = maxPj∈U/D(|Pj ∩Xi|), we have γMd

C (D) =
∑

Xi∈U/C
mxcf(Xi)

|U | .
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Assume that x1 ∈ X1, x2 ∈ X2, γC(x1) 
= γC(x2), |γC(x1)| > 1, |γC(x2)| >
1, |γC(x1) ∩ γC(x1)| ≥ 1 and B ⊆ C, U/B = {X1 ∪ X2, X3, · · · , Xn}, it is
obvious that mxcf(X1) + mxcf(X2) = mxcf(X1 ∪ X2) and γMd

C D = γMd
B (D).

But for x ∈ X1 ∪ X2, γB(x) = γC(x1) ∩ γC(x2), it is not equal to γC(x1) or
γC(x2). The measure γMd

C (D), used in Theorem 1, is not sensitive to the change
of the maximum decision classes of objects that have two or more than two
maximum decision classes.

On the other side, an attribute set red outputted by Q-MDRA does not always
satisfy γMd

red (D) = γMd
C (D). The reason is that ∀a ∈ C − red, γMd

red∪{a}(D) =
γMd

red (D) does not guarantee γMd
red (D) = γMd

C (D). That is to say, ∀a ∈ C −
red, γMd

red∪{a}(D) = γMd
red (D) is not conflicted with ∃B ⊆ C − red, γMd

red∪B(D) >

γMd
red (D).

3.2 Novel Maximum Distribution Reduction Algorithms

To solve the problems identified in Q-MDRA, the concept of indiscernibility
relation and discernibility relation of maximum distribution with respect to the
specific attribute set are defined. Firstly. Next, the maximum distribution reduct
is defined using the indiscernibility relation of maximum distribution. Finally,
we construct heuristic maximum distribution reduction algorithms with classic
heuristic functions.

Definition 3. Given a decision table DT = (U,C ∪ D,V, f), the indiscernibility
relation of maximum distribution of U with respect to B ⊆ C is defined as
INDmd(B) = {< x, y > |x, y ∈ U, γB(x) = γB(y)}, and the discernibility
relation of maximum distribution of U with respect to B stands for DISmd(B) =
{< x, y > |x, y ∈ U, γB(x) 
= γB(y)}.
Obviously, INDmd(C) is reflexive, symmetric and transitive; DISmd(C) is
irreflexive, symmetric, but not transitive. It is worth noting that INDmd(C) ∪
DISmd(C) = U × U, INDmd(C) ∩ DISmd(C) = ∅.

Theorem 2. Given DT = (U,C,D, V, f), B is a maximum distribution con-
sistent attribute set of C if and only if B satisfies IND(C) ⊆ IND(B) ⊆
INDmd(C), DISmd(C) ⊆ DIS(B) ⊆ DIS(C).

Proof. It is apparent that DIS(B) ⊆ DIS(C) , IND(C) ⊆ IND(B), and
based on IND(B) ∩ DIS(B) = φ, IND(B) ∪ DIS(B) = U × U, INDmd(C) ∩
DISmd(C) = φ, INDmd(C) ∪ DISmd(C) = U × U , we know that DIS(C) ⊆
DIS(B) ⊆ DISmd(C) is equal to IND(C) ⊆ IND(B) ⊆ INDmd(C). Thus
what all we need is to prove that DISmd(C) ⊆ DIS(B) is true.

– Sufficiency(⇒): Assume that if B is a maximum distribution consistent
attribute set then DISmd(C) � DIS(B). DISmd(C) � DIS(B) means
∃ < x, y >∈ DISmd(C), < x, y >/∈ DIS(B). Then we know γC(x) 
= γC(y)
and γB(x) = γB(y). It is conflicted with our assumption. So if B is a maxi-
mum distribution consistent attribute set, then DISmd(C) ⊆ DIS(B).
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– Neccessity(⇐): Assume that if B satisfies DISmd(C) ⊆ DIS(B) then
∃x ∈ U, γB(x) 
= γC(x). According to the assumption, we know ∃y ∈
[x]B−[x]C , γC(y) 
= γC(x). That is to say, < x, y >∈ DISmd(C), < x, y > /∈
DIS(B). It is conflicted with DISmd(C) ⊆ DIS(B). Consequently we know
if B satisfies DISmd(C) ⊆ DIS(B) then ∀x ∈ U, γB(x) = γC(x).

As mentioned above, Theorem 2 is true. ��
Above theorem is good for understanding but it is not friendly in computing.
So we represent maximum distribution reduction in the way of classic heuris-
tic functions. According to Definition 2, we can present the definition of the
maximum distribution reduct by conditional entropy.

Theorem 3. Given a decision table DT = (U,C,D, V, f), Let TGran stands
for U/INDmd(C), B ⊆ C is a maximum distribution reduct if and only if B
satisfies

(1) H(TGran|B) = 0;
(2) ∀B′ ⊂ B, B′ doesn’t satisfy condition (1).

Proof. On the basis of Theorem 2, we can prove this theorem by explaining the
equivalence relation between H(TGran|B) = 0 and DISmd(C) ⊆ DIS(B).

– Sufficiency(⇒): According to the definition of H(Q|P ), it is easy to know
that H(TGran|B) = 0 ⇔ ∀Y ∈ TGran, ∃{X : X ∈ U/B ∧ X ∩
Y 
= φ},

⋃
Xi∈X Xi = Y . Therefore, we conclude that DISmd(C) ⊆

DIS(B), INDmd(C) ⊇ IND(B). As a result, H(TGran|B) = 0 ⇒ B is a
maximum distribution consistent attribute set.

– Neccessity(⇐): Assume that B is a maximum distribution consistent attribute
set, and B satisfies H(TGran|B) 
= 0. According to the definition of condi-
tional etropy, we know H(TGran|B) 
= 0 means ∃Y ∈ TGran, X ∈ U/B
satisfies X ∩ Y 
= φ ∧ X 
⊂ Y . That is to say, ∃p ∈ X − X ∩ Y, q ∈
X ∩ Y, γC(p) 
= γC(q), γB(p) = γB(q). This concludes a conflict with B is a
maximum distribution reduct. That is to say, if B is a maximum distribution
consistent attribute set, then H(TGran|B) = 0.

As a result, Theorem 3 is true. ��
According to Definition 2, we can use dependency degree for the presentation of
the maximum distribution reduct.

Theorem 4. Given a decision table DT = (U,C,D, V, f), Let TGran stands
for U/INDmd(C), B ⊆ C is a maximum distribution reduct if and only if B
satisfies (1) ΓB(TGran) = 1; (2) ∀B′ ⊂ B, B′ doesn’t satisfy condition (1).

Proof. According to Theorem 2 and Theorem 3, the conclusion is clearly
established.
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For that ΓC(D) = 1 ⇔ δC(D) = 1, we have ΓB(TGran) = 1 ⇔ δB(TGran) =
1. As a result, there is no need to construct a theorem for maximum distribution
reduction with δB(TGran). Based on upon theorems, the significance functions
for maximum distribution reduction can be defined as follows.

(1) Sigouter
1 (a,B, TGran) = H(TGran|B) − H(TGran|B ∪ {a}), a 
∈ B;

Sigouter
2 (a,B, TGran) = ΓB(TGran) − ΓB∪{a}(TGran), a 
∈ B.

(2) Siginner
1 (a,B, TGran) = H(TGran|B − {a}) − H(TGran|B), a ∈ B;

Siginner
2 (a,B, TGran) = ΓB(TGran) − ΓB−{a}(TGran), a ∈ B.

For convenience of algorithm description, we denote Sigj
i (a,B, TGran,

U ′), i ∈ {1, 2}, j ∈ {inner, outer} as the significance value computed in U ′.
Using Theorem 3 and Theorem 4, we can construct Algorithms 2 and 3 for
maximum distribution reduction. Algorithms 2 and 3, indeed, are the variant of
the discernibility matrix based reduction algorithms. The difference of two algo-
rithms to the discernibility matrix based algorithms is the focus paid toward the
indiscernibility relation instead of the discernibility relation. It can be proved
by extending the relation of IND(B) ∪ DIS(B) = U × U to the reduction
algorithms. As a result, in intuition, the correctness of two algorithms can be
transmitted from the discernibility matrix based algorithm for obtaining maxi-
mum distribution reducts.

Algorithm 2. Maximum Distribution Reduction Algorithm Using Condition
Entropy (MDRAUCE)
Require: Decision table DT = (U,C ∪ D,V, f)
Ensure: A maximum distribution reduct of DT
1: red := ∅;
2: TGran := U/INDmd(C);
3: U ′ := U ;
4: while Ur 
= ∅ do
5: Calculate amax : amax = argmaxa∈C−redSigouter

1 (a, red, TGran,Ur);
6: red := red ∪ {amax};
7: U ′ := U ′ − POSred(TGran);
8: TGran := TGran − POSred(TGran);
9: end while

10: return red

4 Correctness Analysis and Experiments Results

The objective of this section is to present the correctnes and the efficiency of
the attribute reduction algorithms proposed in this paper, i.e. MDRAUCE and
MDRAUDD. To show the correctness of two algorithms, we calculate the max-
imum distribution reduct of Table 1 using MDRAUCE and MDRAUDD, and
check outputs of two algorithms with the definition of maximum distribution
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Algorithm 3. Maximum Distribution Reduction Algorithm Using Dependency
Degree (MDRAUDD)
Require: Decision table DT = (U,C ∪ D,V, f)
Ensure: A maximum distribution reduct of DT
1: red := ∅;
2: TGran := U/INDmd(C);
3: U ′ := U ;
4: while U ′ 
= ∅ do
5: Calculate amax : amax = argmaxa∈C−redSigouter

2 (a, red, TGran,U ′);
6: red := red ∪ {amax};
7: U ′ := U ′ − POSred(TGran);
8: TGran := TGran − POSred(TGran);
9: end while

10: return red

reduction for validation. On the other side, we employed 12 UCI data sets to
verify the performance of time consumption of MDRAUCE, MDRAUDD, and
existing maximum distribution reduction algorithms.

4.1 The Validation of Correctness

In this part, we show the correctness of two algorithms proposed in Sect. 3
through presenting the process of calculating the maximum distribution reduct
for Table 1 using Algorithm 2 and Algorithm 3. After that, we check the outputs
of two algorithms according to the maximum distribution definition.

The process of MDRAUCE for finding the maximum distribution reduct of
Table 1 is presented here. In the following description of calculation process,
“item1=item2” denotes that the relationship of two are on equal item, and “:=”
stands for the assignment operation.

Step 1. red := ∅, TGran = U/INDmd(C) = {{x1}, {x2, x5, x6, x7}, {x3,
x4}}, U ′ = {x1, x2, · · · , x7}.

Step 2. Sigouter
1 (a1, red, TGran,U ′) = HU ′

(TGran|red) − HU ′
(TGran|red ∪

{a1}) = 1.38 − 0.79 = 0.59, Sigouter
md (a2, red, TGran,U ′) = HU ′

(TGran|red) −
HU ′

(TGran|red ∪ {a2}) = 1.38 − 0.98 = 0.40, Sigouter
md (a3, red, TGran,U ′) =

HU ′
(TGran|red) − HU ′

(TGran|red ∪ {a3}) = 1.38 − 0.86 = 0.52. So amax =
a1, red := red ∪ {a1} = {a1}. We have POSred(TGran) = {x1}. U ′ and
TGran are updated as follows, U ′ := U ′ − POSred(TGran) = {x2, x3, · · · , x7},
TGran = TGran − POSred(TGran) = {{x2, x5, x6, x7}, {x3, x4}}.

Step 3. Sigred
1 (a2, red, TGran,U ′) = HU ′

(TGran|red) − HU ′
(TGran|red ∪

{a2}) = 0.92 − 0.81 = 0.11, Sigouter
md (a3, red, TGran,U ′) = HU ′

(TGran|red) −
HU ′

(TGran|red∪{a3}) = 0.92−0.46 = 0.46. So amax = a3, red := red∪{a3} =
{a1, a3}. We have POSred(TGran) = {x5, x6, x7}. U ′ and TGran are updated
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as follows, U ′ := U ′ − POSred(TGran) = {x2, x3, x4}, TGran = TGran −
POSred(TGran) = {{x2}, {x3, x4}}.

Step 4. Sigouter
md (a2, red, TGran,U ′) = HU ′

(TGran|red) − HU ′
(TGran|red ∪

{a2}) = 0.92 − 0 = 0.92. So amax = a2, red := red ∪ {a2} = {a1, a3, a2}. We
have POSred(TGran) = {x2, x3, x4}. U ′ and TGran are updated as follows,
U ′ := U ′ − POSred(TGran) = ∅, TGran = TGran − POSred(TGran) = ∅.

Step 5. Because U ′ = ∅, program is over. Algorithm outputs red = {a1, a3, a2}
as the result.

The process of MDRAUDD for obtaining the maximum distribution reduct
of Table 1 is presented as follows.

Step 1. red := ∅, TGran = U/INDmd(C) = {{x1}, {x2, x5, x6, x7}, {x3,
x4}}, U ′ = {x1, x2, · · · , x7}.

Step 2. Sigouter
1 (a1, red, TGran,U ′) = ΓU ′

red∪{a1}(TGran) − ΓU ′
red(TGran) =

1
7 − 0 = 1

7 , Sigouter
1 (a2, red, TGran,U ′) = ΓU ′

red∪{a2}(TGran) − ΓU ′
red(TGran) =

0 − 0 = 0, Sigouter
1 (a3, red, TGran,U ′) = ΓU ′

red∪{a3}(TGran) − ΓU ′
red(TGran) =

3
7 − 0 = 3

7 . So amax = a3, red := red ∪ {a3} = {a3}. We have
POSred(TGran) = {x5, x6, x7}. U ′ and TGran are updated as follows, U ′ :=
U ′ −POSred(TGran) = {x1, x2, x3, x4}, TGran = TGran−POSred(TGran) =
{{x1}, {x2}, {x3, x4}}.

Step 3. Sigouter
1 (a1, red, TGran,U ′) = ΓU ′

red∪{a1}(TGran)−ΓU ′
red(TGran) = 1

4 −
0 = 1

4 , Sigouter
1 (a2, red, TGran,U ′) = ΓU ′

red∪{a2}(TGran) − ΓU ′
red(TGran) = 2

4 −
0 = 0.5. So amax = a2, red := red∪{a2} = {a3, a2}. We have POSred(TGran) =
{x3, x4}. U ′ and TGran are updated as follows, U ′ := U ′ − POSred(TGran) =
{x1, x2}, TGran = TGran − POSred(TGran) = {{x1}, {x2}}.

Step 4. Sigouter
1 (a1, red, TGran,U ′) = ΓU ′

red∪{a1}(TGran) − ΓU ′
red(TGran) =

1 − 0 = 1. So amax = a1, red := red ∪ {a12} = {a3, a2, a1}. We have
POSred(TGran) = {x1, x2}. U ′ and TGran are updated as follows, U ′ :=
U ′ − POSred(TGran) = ∅, TGran = TGran − POSred(TGran) = ∅.

Step 5. Because U ′ = ∅, program is over. Algorithm outputs red = {a3, a2, a1}
as the result.

According to Definition 1, we know γred(x1) = {P1} and γred(x2) = {P2};
for x ∈ {x3, x4}, we have γred(x) = {P1, P2}; for x ∈ {x5, x6, x7}, we know
γred(x) = {P2}. Meanwhile, we know γC(x1) = {P1} and γC(x2) = {P2}; for
x ∈ {x3, x4}γC(x) = {P1, P2}; for x ∈ {x5, x6, x7}, we have γC(x) = {P2}. It
is obvious that for ∀x ∈ U, γred(x) = γC(x). Finally we know that MDRAUCE
and MDRAUDD are correct.



Quick Maximum Distribution Reduction in Inconsistent Decision Tables 179

4.2 The Efficiency of Proposed Algorithms

In this part, we employed 12 data sets to verify the performance of time con-
sumption of MDRAUDD, MDRAUDD, Q-MDRA [15] and QGARA-FS [16]. We
carried out all the attribute reduction algorithms in experiments on a personal
computer with Windows 10, Intel(R) Core(TM) CPU i5-8265U 1.60GHZ and
8GB RAM memory. The software used was Visual Studio Code 1.3.8, and the
programming language was python 3.7.

The data sets used in experiments are all downloaded from UCI repository
of machine learning data sets [25] whose basic information is outlined in Table 2.
For the sake that reduction algorithms can address only symbolic data, data sets
containing continuous attributes were preprocessed by CAIM [26] discretization
algorithm. For each data sets, the positive region dependency degree, i.e. γC(D),
is listed in the last column of Table 2. As we know, the data set is consistent if
γC(D) = 1; otherwise, it is inconsistent. As shown in Table 2, Wpbc, Wine, and
Sonar are consistent. Taking into consideration the value of γC(D), we take Sat,
Segment, Wdbc, and Wave as consistent data sets whose value of γC(D) satisfies
0.981 ≤ γC(D) ≤ 1. The other 5 data sets (Vehicle, Ion, Glass, Heart, and Pid)
are inconsistent.

Table 2. Description of data sets

ID Data sets Cases Attributes Classes γC(D)

1 Wpdc 198 34 2 1
2 Wine 178 13 3 1
3 Sat 6435 86 6 0.993
4 Segment 2310 19 7 0.991
5 Wdbc 569 30 2 0.989
6 Waveform 5000 21 3 0.981
7 Vehicle 846 18 4 0.946
8 Ions 351 34 2 0.940
9 Glass 214 9 7 0.937
10 Heart 270 6 2 0.935
11 Sonar 208 60 2 1
12 Pid 768 8 2 0.519

Table 3 indicate the computational time of MDRAUCE, MDRADD, Q-
MDRA, and QGARA-FS for obtaining maximum distribution reduct on 12 data
sets. We can see that MDRADD was the fastest of four attribute reduction
algorithms for that it was the best on 11 data sets, and MDRAUCE was faster
than QGARA-FS. MDRAUCE performed better than Q-MDRA in obtaining the
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Table 3. Time consumption of maximum distribution reduction algorithms

Data sets Time consumption(s)
MDRAUCE MDRADD Q-MDRA QGARA-FS

Wpdc 0.253 0.208 0.447 1.110
Wine 0.051 0.051 0.045 0.166
Sat 5.395 3.220 59.683 16.604
Segment 1.027 0.546 1.743 1.213
Wdbc 0.591 0.452 0.915 2.411
Waveform 3.607 1.634 11.820 2.551
Vehicle 0.463 0.304 1.587 0.633
Ions 0.612 0.300 0.572 1.582
Glass 0.034 0.034 0.064 0.092
Heart 0.087 0.040 0.121 0.105
Sonar 0.649 0.411 0.621 1.832
Pid 0.101 0.081 0.100 0.137
Average 1.073 0.607 6.477 2.370

reduct of 9 data sets. Q-MDRA performed better than MDRAUCE, MDRAUCE
on small data sets,i.e. Wine data set. However, in processing the large scale data,
Q-MDRA consumed more time than MDRAUCE, MDRADD. From results of
experiments on both consistent and inconsistent decision tables, the computa-
tional times of four algorithms in obtaining the maximum distribution reduct
followed this order: MDRADD ≥ MDRAUCE, Q-MDRA > QGARA-FS. For
most of the cases in experiments, the computational time of MDRAUDD can
reduce half of the computation time of QGARA-FS and Q-MDRA, such as data
sets Wpdc, Glass, Heart, etc. In the same condition. from the row of average
time consumption in obtaining reduct of 12 data sets, we know that MDRAUCE
and MDRADD are more efficient and steady in time consumption of maximum
distribution reduction than existing maximum distribution reduction algorithms.

5 Conclusion

In this paper, we focus on the maximum distribution reduction for complete
inconsistent decision tables. The problems in Li’s algorithm for obtaining the
maximum distribution reduct were pointed out, and based on classic heuris-
tic functions, we designed two novel heuristic algorithms, i.e. MDRAUCE and
MDRADD, to efficiently finding a maximum distribution reduct. Because the
scale of data processed becomes larger and larger, the efficiency of attribute
reduction algorithms is still our focus of future researches.
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Abstract. In this paper, we present a new closure operator defined on the set
of attributes of an information system that satisfies the conditions for defining a
matroid. We establish some basic relationships between equivalence classes and
approximation operators where different sets of attributes are used. It is shown
that the reducts of an information system can be obtained from dependent sets of
a matroid. Finally, we show that the closure operator can be defined at least in
three different ways.

Keywords: Attribute reduction · Closure operators · Matroids · Rough sets ·
Approximation operators

1 Introduction

The main concept of rough set theory, proposed by Z. Pawlak, is the indiscernibility
between objects given by an equivalence relation in a non-empty set U , called Uni-
verse. This theory has been used for the study of information systems and it has been
successfully applied in artificial intelligence fields such as machine learning, pattern
recognition, decision analysis, process control, knowledge discovery in databases, and
expert systems.

Matroids were introduced in 1935 by Whitney and have been used as a general-
ization of the concept of independence in different mathematical theories like linear
spaces, graph theory, field theory, and fuzzy sets [5,11]. In relation to rough sets, many
papers have shown interesting connections with matroids [6–10,14–17]. Zhu et al., pre-
sented the concept of rough matroids based on a relation [21,22] and rough matroids
based on coverings [19]. An interesting generalization of rough matroids for a general
approximation operator was proposed in [12].

The problem of attribute reduction is a problem of high computational complex-
ity and turns out to be fundamental in the construction of machine learning models.
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This problem has attracted the attention of many researchers and has been addressed
from the perspective of different theories. Some relationships of attribute reduction with
matroids and rough sets, can be found in [4,17,18,20]. However, in most publications
related to matroids and the attribute reduction problem, matroidal structures have been
defined in terms of the set of objects and not the set of attributes. This paper proposes a
matroidal structure defined in terms of an attribute set whose maximal independent ele-
ments, matching reducts. Therefore the idea of independence in a set given by a matroid
can also be applied to the set of attributes A, in order to address the problem of attribute
reduction in a better way.

The paper is organized as follows: Sect. 2 presents preliminary concepts regard-
ing rough set theory, lower and upper approximations, closure operators and matroids.
Section 3 establishes some basic relationships between equivalence classes and approxi-
mation operators where different sets of attributes are used. Section 4 presents three def-
initions of closure operators and the necessary conditions for them to define a matroidal
structure. Finally, Sect. 5 presents the main conclusions of the paper and describes
future work.

2 Preliminaries

2.1 Rough Sets

Rough set theory involves a data table composed of a finite set U of objects described
by a finite set A of attributes. The basic notions of rough set theory are: indiscernibility
relation on U , lower and upper approximation operators, dependence among attributes,
and decision rules derived from lower approximations [3].

The pair (U, A) is called an information system. A simple example can be seen
in Table 1. In this case U = {1,2,3,4,5,6} and A = {a1,a2,a3,a4}. From each subset
of attributes P ⊆ A, it is possible to define a binary relation EP: xEPy if and only if
fa(x) = fa(y) for all a ∈ P. In this case, fa(x) is the value of an object x for the attribute
a ∈ A. According to the same table, we have that fa1(2) = B, while fa2(1) =G. Clearly
this is an equivalence relation, i.e., a reflexive, symmetric and transitive relation.

If X ⊆U , the operators:

apr(X) = {x ∈U : [x]P ⊆ X} (1)

apr(X) = {x ∈U : [x]P ∩X �= /0} (2)

are called the lower and upper approximations of X . [x]P represents the equivalence
class of x for the set of attributes P, and IP =U/EP represents the equivalence classes,
defined from the equivalence relation EP. Each subset of attributes P ⊆ A defines a
partition of U . In particular, for P= {a}, the partition is represented as Pa.

The pair (apr,apr) is a dual pair of approximation operators, that is, for X ⊆ U ,
apr(∼ X) =∼ apr(X), where ∼ X represents the complement of X , i.e., ∼ X =U \X .

Example 1. In Table 1 we have an information system with six objects and four condi-
tion attributes {a1,a2,a3,a4}.
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Table 1. An information system.

Object Attributes

a1 a2 a3 a4

1 G G B M

2 B B B G

3 M G A M

4 M B B G

5 M B B M

6 G B A B

For P= {a1,a2} and Q= {a1,a2,a3}, we have that [x]P = [x]Q for all x ∈U , there-
fore apr

P
(X) = apr

Q
(X) for all X ⊆U .

Also, it is easy to see that:

– Pa1 = {{1,6},{2},{3,4,5}}
– Pa2 = {{1,3},{2,4,5,6}}
– Pa3 = {{3,6},{1,2,4,5}}
– Pa4 = {{1,3,5},{2,4},{6}}

2.2 Reducts in Rough Set Theory

Attribute reduction in rough set theory involves the removal of attributes that have no
significance to the classification problem. An attribute reduct set (or simply reduct) is a
subset P of the set of attributes A such that the quality of classification is the same [13].

According to the definition of superfluous attribute given in [3] we can say that if
[x]P = [x]P∪{a} for all x ∈U , then a is called a superfluous attribute of P; otherwise, a is
called indispensable in P. The set P is independent if all of its attributes are indispens-
able. The subset Q of P is a reduct of P (denoted as Red(P)) if Q is independent and
[x]Q = [x]P for all x ∈U .

2.3 Matroids

Matroids are related to the notion of linear independence. They can be introduced from
an elementary point of view as a collection of sets of linearly independent vectors. Let

us suppose that v1 =

⎡
⎣

1
1
2

⎤
⎦, v2 =

⎡
⎣

0
0

−1

⎤
⎦, v3 =

⎡
⎣

2
2
0

⎤
⎦ and v4 =

⎡
⎣

1
2
0

⎤
⎦ are vectors in R3. It

is easy to see that S = {v1,v2,v3,v4} is a set of linearly dependent vectors, because the
matrix A with columns vi has free variables.

A=

⎡
⎣

1 0 2 1
1 0 2 2
2 −1 0 0

⎤
⎦ (3)
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However, there are several subsets of S whose vectors are linearly independent. For
example, S1 = {v1,v2} and S2 = {v1,v2,v4}. A collection of sets with linearly indepen-
dent vectors determines a structure that we will call a matroid.

Additionally, we know that any subset of linearly independent vectors is also lin-
early independent. In this case, a collection of independent sets is:

I = { /0,{v1},{v2},{v4},{v1,v2},{v1,v4},{v2,v4},{v1,v2,v4}}.
There are different definitions of a matroid. In this case, we consider the following

definition in terms of independence.

Definition 1. Let U be a finite set. A matroid onU is an ordered pair M= (U,I), where
I is a collection of subsets of U with the following properties:

1. /0 ∈ I.
2. If I ∈ I and I′ ⊆ I then I′ ∈ I.
3. If I1, I2 ∈ I and |I1| < |I2|, then there exists x ∈ I2 − I1 such that I1 ∪{x} ∈ I. Here |I|

denotes the cardinality of the set I.

If I ∈ I, then I is called a independent set. If a subset ofU is not an independent set,
then it is called a dependent set. By property 3, every two maximal independent sets in
a matroid have the same cardinal number.

Rank Function. The rank function of a matroid M= (U,I) is a function r :P(U)→ N

defined as:
r(X) = max{|Y | : Y ⊆ X ,Y ∈ I} (4)

This function satisfies:

1. r( /0) = 0
2. 0 ≤ r(X) ≤ |X |.
3. If Y ⊆ X , then r(Y ) ≤ r(X)
4. r(X ∪Y )+ r(X ∩Y ) ≤ r(X)+ r(Y )

2.4 Closure Operators

The notion of closure operator usually is applied to ordered sets and topological spaces.
Some relations between closure operators with upper approximation and matroids are
presented in [1,6].

We present some concepts about ordered structures, according to Blyth [2].

Definition 2. A map c : P(U) → P(U) is a closure operator on U if it is such that,
for all A,B ⊆U:

P1. A ⊆ c(A), (extensive).
P2. A ⊆ B implies c(A) ⊆ c(B), (order preserving).
P3. c(A) = c[c(A)], (idempotent).
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If M = (U,I) is a matroid and r its rank function, then

cM(A) = {x ∈ E : r(A) = r(A∪{x})} (5)

is a closure operator. Also, the operator cM satisfies the following property:

P4. For any x,y ∈U and any A ⊆U , it follows from y ∈ c(A∪{x}) and y /∈ c(A) that
x ∈ c(A∪{y}).
Any closure operator which satisfies property P4 defines a matroidal structure

according to the following proposition.

Proposition 1. [11] If c is a closure operator on a finite set U that satisfied property
P4, and

I = {I ⊆U : x /∈ c(I− x) for all x ∈ I}
then (U,I) is a matroid.

3 Relationships on Attribute Sets

The following propositions establish useful relationships between equivalence classes
and approximation operators for different sets of attributes.

Proposition 2. If P,Q ⊆ A and P ⊆ Q, then [x]P ⊇ [x]Q, for all x ∈U.

Proof. If w ∈ [x]Q then fa(x) = fa(w) for all a ∈ Q, in particular for all a ∈ P, since
P ⊆ Q. Therefore fa(x) = fa(w) for all a ∈ P, and so w ∈ [x]P.

Proposition 3. If P,Q ⊆ A and P ⊆ Q, then apr
P
(X) ⊆ apr

Q
(X), for all X ⊆U.

Proof. If w ∈ apr
P
(X), then [w]P ⊆ X. From Proposition 2, we have that [w]Q ⊆ [w]P.

Therefore [w]Q ⊆ X and so, w ∈ apr
Q
(X).

Proposition 4. If P ⊆ A is a set of attributes, [x]P∪{a} = [x]P ∩ [x]a, for all x ∈U.

Proof. We have that w ∈ [x]P∪{a} if and only if fb(x) = fb(w) for all b ∈ P∪{a}, i.e., if
and only if for all a ∈ P and for b = a, if and only if w ∈ [x]P and w ∈ [x]a, if and only
if w ∈ [x]P ∩ [x]a.

Using the order relation above it is possible to establish the following:
For all P,Q ⊆ A and X ⊆U we have:

apr
P∩Q(X) ≤ apr

P
(X) ∩ apr

Q
(X) ≤ apr

P
(X) ∪ apr

Q
(X) ≤ apr

P∪Q(X) (6)

Example 2. In Table 2 we have the equivalence classes of each element x ∈ U , using
some sets of attributes. For the particular cases of P = {ai}, we have the partitions
given in Example 1.

The sets of attributes Q1 = {a1,a2,a4}, Q2 = {a1,a3,a4}, and A = {a1,a2,a3,a4}
have the same equivalence class for each x ∈U . It is easy to see that lower and upper
approximations of eachX ⊆U are also the same. In this case,Q1 andQ2 are reducts ofA.
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Table 2. Equivalence classes [x]P for different sets of attributes P.

Object {a1} {a1,a2} {a1,a3} {a1,a4} {a1,a2,a3} {a1,a2,a4} {a1,a3,a4} A

1 {1,6} {1} {1} {1} {1} {1} {1} {1}
2 {2} {2} {2} {2} {2} {2} {2} {2}
3 {3,4,5} {3} {3} {3,5} {3} {3} {3} {3}
4 {3,4,5} {4,5} {4,5} {4} {4,5} {4} {4} {4}
5 {3,4,5} {4,5} {4,5} {3,5} {4,5} {5} {5} {5}
6 {1,6} {6} {6} {6} {6} {6} {6} {6}

4 Closure Operators on Attribute Sets

Let (U, A) be a decision system, whereU is a finite set and A is a finite set of attributes.
For each P ⊆ A, we can define at least three closure operators, as follows.

Definition 3. For each P ⊆ A subset of attributes, we define:

c1(P) = {a ∈ A : apr
P∪{a}(X) = apr

P
(X) for all X ⊆U} (7)

Proposition 5. The operator c1 is a closure on A.

Proof. We will show the three properties:

1. P ⊆ c1(P). If a ∈ P, then P ∪ {a} = P and apr
P∪a(X) = apr

P
(X).

2. If P ⊆ Q, then c1(P) ⊆ c1(Q). If a ∈ c1(P), we have that apr
P∪{a}(X) = apr

P
(X)

for all X ⊆ U. We will show that a ∈ c(Q), i.e., apr
Q∪{a}(X) = apr

Q
(X). If w ∈

apr
Q∪{a}(X), then [w]Q∪{a} ⊆ [w]P∪{a} = [w]P. Therefore, aprQ∪{a}(X)⊆ apr

Q
(X).

According to Proposition 2, apr
Q
(X) ⊆ apr

Q∪{a}(X). So, aprQ∪{a}(X) = apr
Q
(X)

and a ∈ c2(P).
3. c1(c1(P)) = c1(P). From properties 1 and 2 we have that c1(P) ⊆ c1(c1(P)). For

the other relation let a be such that a ∈ c1(c1(P)). We have that aprc1(P)∪{a}(X) =
apr

c1(P)
(X) for all X ⊆ U. We need to show that apr

P∪{a}(X) = apr
P
(X). The

relation apr
c1(P)

(X) ⊆ apr
c1(c1(P))

(X) always holds. For X ∈ Pa, we have that

apr
c1(P)

(X) = X. Therefore apr
c1(c1(P))

(X) = X, so ∈ c1(P), (see Definition 5).

There are at least other two definitions for the closure operator.

Definition 4. For each P ⊆ A subset of attributes, we define:

c2(P) = {a ∈ A : [x]P = [x]P∪{a} for all x ∈U} (8)

The following proposition establishes the equivalence between c1 and c2 operators.

Proposition 6. c2 = c1.

Proof. We will see that c1(P) ⊆ c2(P) and c2(P) ⊆ c1(P), for all P ⊆ A.
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1. c2 ≤ c1. If a ∈ c2(P), then [x]P = [x]P∪{a} for all x ∈U. w ∈ apr
P
(X) iff [w]P ⊆ X iff

[w]P∪{a} ⊆ X iff w ∈ apr
P∪{a}(X). So apr

P
(X) = apr

P∪{a}(X) for all X ⊆U, and

a ∈ c1(P).
2. c1 ≤ c2. Suppose that a ∈ c1(P), and a /∈ c2(P). For some a ∈ A, P ⊆ A. Since

a /∈ c2(P), there exists x ∈U such that [x]P �= [x]P∪{a}. Hence, there exists y ∈U for
which y ∈ [x]P but y /∈ [x]P∪{a}. Suppose X = [x]P∪{a}, then apr

P∪{a}(X) = X and

since a ∈ c1(P), aprP(X) = X. Since x ∈ X, therefore [x]P ⊆ X. But this means that
y ∈ X = [x]P∪{a}(X) = X, a contradiction. So c1 ≤ c2.

Proposition 7. Operator c2 satisfies property P4. This is: for any a,b ∈ A and any P ⊆
A, if b ∈ c2(P ∪ {a}) and b /∈ c2(P), then a ∈ c2(P ∪ {b}).
Proof. The expression b ∈ c2(P ∪ {a}) means that [x]P∪{a} = [x]P∪{a,b} for all x ∈U,
and we have to show that [x]P∪{b} = [x]P∪{a,b} for all x ∈U. From a preliminary propo-
sition, we have that [x]P∪{b} ⊇ [x]P∪{a,b}. Suppose that y ∈ [x]P∪{b} = [x]P ∩ [x]b and
y /∈ [x]P∪{a,b}. Then y /∈ [x]P∪{a} = [x]P ∩ [x]a. Thus, y /∈ [x]a nor y /∈ [x]P∪{a,b}. There-
fore, y /∈ [x]P∪{b}. A contradiction. �

From Propositions 6 and 7, follows this corollary.

Corollary 1. Operator c1 satisfies property P4.

Definition 5. For each P ⊆ A subset of attributes, we define:

c3(P) = {a ∈ A : apr
P
(X) = X for all X ∈ Pa} (9)

Proposition 8. c3 = c2.

Proof. We will see that c2(P) ⊆ c3(P), and c3(P) ⊆ c2(P) for all P ⊆ A.

1. c2 ≤ c3. Let X be such that X ∈ Pa. X = [w]a for some w ∈U. Since [x]P = [x]P∪{a},
we have that [x]P ⊆ [x]a = X, so w ∈ apr

P
(X). Therefore, a ∈ c3(P).

2. c3 ≤ c2. Suppose a ∈ c3(P) for some a ∈ A, P ⊆ A. Take x ∈U, then [x]P∪{a} ⊆ [x]P.
Since [x]a ∈ Pa, apr([x]a) = [x]a, so [x]P ⊆ [x]a. To see that [x]P ⊆ [x]P∪{a}, let y ∈
[x]P. Then (∀b ∈ P)(b(x) = b(y)), and we also have that a(x) = a(y). Therefore,
y ∈ [x]P∪{a}. So [x]P ⊆ [x]P∪{a} and a ∈ c2(P).

From Propositions 1 and 6, follows this corollary.

Corollary 2. The operator c3 is a closure on A.

Example 3. The values of the closure operator c1 for some sets of attributes in Exam-
ple 1, are the following:

– c1({a1}) = {a1}
– c1({a2}) = {a2}
– c1({a3}) = {a3}
– c1({a4}) = {a4}
– c1({a1,a2}) = {a1,a2,a3}
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– c1({a2,a4}) = {a2,a4}
– c1({a3,a4}) = {a1,a2,a3,a4}
– c1({a1,a2,a4}) = {a1,a2,a3,a4}

According to Propositions 1 and 7, operator c1 defines a matroidal structure, given
by:

I = {P ⊆ A : a /∈ c1(P−a), for all a ∈ A} (10)

Figure 1 shows the matroidal structure obtained from the closure operator on the
dataset in Example 1. The connecting lines represent the inclusion relation.

a1{ } a2{ } a3{ } a4{ }

a1, a4{ } a2, a3{ } a2, a4{ }

Fig. 1. Matroidal structure of the closure operator.

According to Eq. 10, the set P = {a2,a4} belongs to I, because for all ai ∈ A, we
have that ai /∈ c1(P−ai). On the other hand, the set P= {a3,a4} does not belong to I,
because for a1 ∈ A, we have that a1 ∈ c1(P−a1) = c1(P) = {a1,a2,a3,a4}.

As we can see, the maximal independent sets {a1,a4}, {a2,a3} and {a2,a4} have
the same number of elements.

If P is different to c1(P), i.e. if P � c1(P), then P is a dependent set, as is shown in
the following proposition.

Proposition 9. If P � c1(P), then P is a dependent set

Proof. If P � c1(P), then there exists a ∈ c1(P) such that a /∈ P. Since a /∈ P, we have
P−a= P, therefore a ∈ c1(P) = c1(P−a), so P /∈ I.

Figure 2 shows the structure obtained from the dependent set related with the
matroidal structure.

In this collection of dependent sets we can find all the possible reducts. For example,
P1 = {a1,a2} and P2 = {a1,a3} produce the same partition as Q = {a1,a2,a3}, i.e.,
IP1 = IQ and IP2 = IQ. Also, we have that P1 = {a1,a3,a4} and P4 = {a2,a3,a4} produce
the same partition as A. In this case, P1 = {a1,a3,a4} and P2 = {a1,a2,a4} are reducts
of A.
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a1, a2{ } a1, a3{ } a3, a4{ }

a1, a3, a4{ }

a1, a2, a3{ , a4}

a1, a2, a4{ }a1, a2, a3{ } a2, a3, a4{ }

Fig. 2. Dependent sets of the matroidal structure.

5 Conclusions

This paper introduces a new methodology to address the problem of attribute reduction
of an information system in Rough Set Theory. Specifically, a closure operator is intro-
duced into the set of attributes that satisfies the conditions for defining a matroid. It is
shown that the dependent sets of the matroid contain the reducts. Two definitions of the
closure operator are additionally presented and it is proved that they coincide with the
proposed operator.

The novelty of the proposal to define new structures on the set of attributes undoubt-
edly opens the possibility of analyzing the problem of attribute reduction from a new
perspective. As future work, it is planned to extend the definition to the different gen-
eralizations of Rough Set Theory, in particular relation-based rough sets and covering-
based rough sets.
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Abstract. This paper points some mistakes of three algorithms of updating the
reduct in fuzzy β-covering via matrix approaches while adding and deleting some
objects of the universe, and gives corrections of these mistakes. Moreover, we
study the reduct of a fuzzy β-covering while adding and deleting objects further.

Keywords: Covering-based rough sets · Fuzzy sets · Matrix · Reduct

1 Introduction

Recently, fuzzy covering approximation spaces [1–3] were generalized to fuzzy β-
covering approximation spaces by Ma [4] by replacing 1 with a parameter β, where
1 is a condition in fuzzy covering approximation spaces. Inspired by Ma’s work, many
researches were done. For example, some fuzzy covering-based rough set models were
constructed by Yang and Hu [5–7], D’eer et al. [8,9] studied fuzzy neighborhood oper-
ators, and Huang et al. [10] presented a matrix approach for computing the reduct of a
fuzzy β-covering.

The research idea of Ref. [10] is very good, but we find that Algorithms 1, 2 and
3 are incorrect after checking the paper carefully. Moreover, the result of a fuzzy β-
covering can be studied further while adding and deleting objects. Hence, a further
study about Ref. [10] can be done in this paper. Firstly, we explain the mistakes about
Algorithms 1, 2 and 3 in Huang et al. (2020) [10]. Then, we give corresponding cor-
rections of them. Finally, we present some new definitions and properties for updating
the reduct while adding and deleting objects of a universe. The concepts about a fuzzy
β-covering approximation space after adding and deleting objects are presented, respec-
tively. Some new properties about the fuzzy β-covering approximation space and the
new fuzzy β-covering approximation space after adding and deleting objects are given.

The rest of this paper is organized as follows. Section 2 reviews some fundamental
definitions about fuzzy covering-based rough sets. In Sect. 3, we show some mistakes
in [7]. Moreover, we give corresponding corrections of them. In Sect. 4, we present
some new definitions and properties for updating the reduct while adding and deleting
objects. This paper is concluded and further work is indicated in Sect. 5.

c© Springer Nature Switzerland AG 2020
R. Bello et al. (Eds.): IJCRS 2020, LNAI 12179, pp. 193–203, 2020.
https://doi.org/10.1007/978-3-030-52705-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52705-1_14&domain=pdf
https://doi.org/10.1007/978-3-030-52705-1_14


194 L. Mao et al.

2 Basic Definitions

This section recalls some fundamental definitions related to fuzzy covering-based rough
sets. Supposing U is a nonempty and finite set called universe.

For any family γi ∈ [0, 1], i ∈ I , I ⊆ N
+ (N+ is the set of all positive integers),

we write ∨i∈Iγi for the supremum of {γi : i ∈ I}, and ∧i∈Iγi for the infimum of
{γi : i ∈ I}. Some basic operations on F (U) are shown as follows [11]: A,B ∈ F (U),

(1) A ⊆ B iff A(x) ≤ B(x) for all x ∈ U ;

(2) A = B iff A ⊆ B and B ⊆ A;

(3) A ∪ B = {〈x,A(x) ∨ B(x)〉 : x ∈ U};

(4) A ∩ B = {〈x,A(x) ∧ B(x)〉 : x ∈ U};

(5) A′ = {〈x, 1 − A(x) : x ∈ U}.
Ma [4] presented the notion of fuzzy β-covering approximation space.

Definition 1. ([4]) Let U be an arbitrary universal set and F (U) be the fuzzy power
set of U . For each β ∈ (0, 1], if (

⋃m
i=1 Ci)(x) ≥ β for each x ∈ U , then we call

Ĉ = {C1, C2, ..., Cm} a fuzzy β-covering of U with Ci ∈ F (U) (i = 1, 2, ...,m). We
also call (U, Ĉ) a fuzzy β-covering approximation space.

The concept of reducible elements is important for us to deal with some problems
in fuzzy covering-based rough sets [5]. Let Ĉ be a fuzzy β-covering of U and C ∈ Ĉ.
If C can be expressed as a union of some elements in Ĉ − {C}, then C is called a
reducible element in Ĉ; otherwise C is called an irreducible element in Ĉ.

As shown in [5], if all reducible elements are deleted from a fuzzy β-covering Ĉ,
then the remainder is still a fuzzy β-covering and this new fuzzy β-covering does not
have any reducible element. We call this new fuzzy β-covering the reduct of the original
fuzzy β-covering Ĉ. The following definition presents its concept.

Definition 2. ([5]) Let (U, Ĉ) be a fuzzy β-covering approximation space. Then the
family of all irreducible elements of Ĉ is called the reduct of Ĉ, denoted as Γ(Ĉ).

To calculate the result of a fuzzy β-covering by matrix, Huang et al. gave the fol-
lowing definition.

Definition 3. ([10]) Let (U, Ĉ) be a fuzzy β-covering approximation space. The con-
taining relation character matrix on U is denoted by QU = (qUij)m×m, where

qUij =
{

1, Ci ⊆ Cj ∧ i �= j;
0, otherwise;

i, j ∈ {1, 2, · · · ,m}
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3 Some Corrections on the Reduct of a Fuzzy β-covering

In [10], we find that Algorithms 1, 2 and 3 have mistakes after checking the paper
carefully. Then we give corresponding corrections of the paper in this section.

Fig. 1. Algorithm 1 (In [10])

By Algorithm 1 (In [10]), we know that Γ(Ĉ) = ∅ for any fuzzy β-covering, which
is incorrect. To explain the incorrect results in Algorithm 1, we show the Algorithm 1
(In [10]) in Fig. 1:

In Algorithm 1 (In [10]), U = {x1, x2, · · · , xn}. By Step 2, C(xi) ← 0. Hence,

• Step 1: “i = 1, 2, · · · ,m” should be changed as “i = 1, 2, · · · , n”.

According to Definition 3 (Definition 5 in [10]) and Step 12, we find Step 11 of Algo-
rithm 1 (In [10]) is incorrect. By Steps 11 and 12, if Ck ⊆ Cl then qUkl ← 1. But
according to Definition 3 (Definition 5 in [10]), if Ck ⊆ Cl and k �= l then qUkl ← 1.
Hence,

• Step 11: “if Ck ⊆ Cl then” should be changed as “if Ck ⊆ Cl and k �= l then”.

From Steps 11 to 12 of Algorithm 1 (In [10]), it is to find all Ck ∈ Ĉ − {Cl} which
satisfy Ck ⊆ Cl for any Cl ∈ Ĉ. From Steps 13 to 16 of Algorithm 1 (In [10]), if⋃

Ck∈ ̂C−{Cl} = Cl then Cl is a reducible element in Ĉ. Hence, Steps 8 and 10 should
be swaped places. That is to say,

– Step 8: “for k = 1, 2, · · · ,m do” should be changed as “for l = 1, 2, · · · ,m do”.
– Step 10: “for l = 1, 2, · · · ,m do” should be changed as “for k = 1, 2, · · · ,m do”.
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The result of Algorithm 2 (In [10]) will be Ĝ all the time, which is incorrect. To
explain the incorrect results in Algorithm 2, we show the Algorithm 2 (In [10]):

By Algorithm 2, we find:

– Step 15: “T ← T ∪ Ck;” should be changed as “T ← T ∪ Gk”.

From Steps 14 to 17 of Algorithm 2 (In [10]), if
⋃

Gk∈ ̂G−{Gl} = Gl then Gl is a

reducible element in Ĝ. Hence, Steps 11 and 13 should be swaped places. That is to say,

– Step 11: “for k = 1, 2, · · · ,m do” should be changed as “for l = 1, 2, · · · ,m do”.
– Step 13: “for l = 1, 2, · · · ,m do” should be changed as “for k = 1, 2, · · · ,m do”.

The result of Algorithm 3 (In [10]) will be Ĝ all the time, which is incorrect. To
explain the incorrect results in Algorithm 3, we show the Algorithm 3 (In [10]):

By Algorithm 3, we find:

– Step 15: “T ← T ∪ Ck;” should be changed as “T ← T ∪ Gk”.

From Steps 14 to 17 of Algorithm 3 (In [10]), if
⋃

Gk∈ ̂G−{Gl} = Gl then Gl is a

reducible element in Ĝ. Hence, Steps 11 and 13 should be swaped places. That is to say,

– Step 11: “for k = 1, 2, · · · ,m do” should be changed as “for l = 1, 2, · · · ,m do”.
– Step 13: “for l = 1, 2, · · · ,m do” should be changed as “for k = 1, 2, · · · ,m do”.

4 New Properties of Reducts of Fuzzy β-Coverings While Adding
and Deleting Some Objects

This section presents some new properties of reducts in fuzzy β-coverings while adding
and deleting some objects, respectively. In this section, t denotes an integer which is
more than 1.

Firstly, we give some new properties on reducts of fuzzy β-coverings while adding
some objects of a universe. The concept of increasing fuzzy β-covering approximation
space is presented in the following definition.

Definition 4. Let (U, Ĉ) be a fuzzy β-covering approximation space of U , where U =
{x1, x2, · · · , xn} and Ĉ = {C1, C2, · · · , Cm}. We call (U+, Ĉ+) an increasing
fuzzy β-covering approximation space from (U, Ĉ), where U+ = {x1, x2, · · · , xn,

xn+1, · · · , xn+t}, Ĉ+ = {C+
1 , C+

2 , · · · , C+
m}, and for any 1 ≤ j ≤ m,

{
C+

j (xi) = Cj(xi), 1 ≤ i ≤ n;
(
⋃m

j=1 C+
j )(xi) ≥ β, n + 1 ≤ i ≤ n + t.

The following proposition shows that an increasing fuzzy β-covering approxima-
tion space from a fuzzy β-covering approximation space is also a fuzzy β-covering
approximation space.
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Fig. 2. Algorithm 2 (In [10])

Proposition 1. Let (U, Ĉ) be a fuzzy β-covering approximation space of U , where
U = {x1, x2, · · · , xn} and Ĉ = {C1, C2, · · · , Cm}. Then (U+, Ĉ+) is also a fuzzy
β-covering approximation space of U+.

Proof. By Definition 4, (
⋃m

j=1 C+
j )(xi) = (

⋃m
j=1 Cj)(xi) ≥ β for any i ∈ {1, 2, · · · ,

n}, and (
⋃m

j=1 C+
j )(xi) ≥ β for each i ∈ {n+1, · · · , n+ t}. Hence, (U+, Ĉ+) is also

a fuzzy β-covering approximation space of U+ by Definition 1.

Example 1. Let U = {x1, x2, x3, x4, x5} and Ĉ = {C1, C2, C3, C4}, where
C1 = 0.7

x1
+ 0.8

x2
+ 0.6

x3
+ 0.6

x4
+ 0.7

x5
,

C2 = 0.3
x1

+ 0.8
x2

+ 0.3
x3

+ 0.5
x4

+ 0.6
x5

,

C3 = 0.7
x1

+ 0.6
x2

+ 0.6
x3

+ 0.6
x4

+ 0.7
x5

,

C4 = 0.4
x1

+ 0.6
x2

+ 0.3
x3

+ 0.2
x4

+ 0.5
x5

.

According to Definition 1, we know Ĉ is a fuzzy β-covering of U (0 < β ≤ 0.6).
Suppose β = 0.5. Let U+ = {x1, x2, x3, x4, x5, x6} and Ĉ

+
= {C+

1 , C+
2 , C+

3 , C+
4 },

where
C+

1 = 0.7
x1

+ 0.8
x2

+ 0.6
x3

+ 0.6
x4

+ 0.7
x5

+ 0.6
x6

,

C+
2 = 0.3

x1
+ 0.8

x2
+ 0.3

x3
+ 0.5

x4
+ 0.6

x5
+ 0.5

x6
,

C+
3 = 0.7

x1
+ 0.6

x2
+ 0.6

x3
+ 0.6

x4
+ 0.7

x5
+ 0.5

x6
,

C+
4 = 0.4

x1
+ 0.6

x2
+ 0.3

x3
+ 0.2

x4
+ 0.5

x5
+ 0.7

x6
.
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Fig. 3. Algorithm 3 (In [10])

According to Definitions 1 and 4, we know Ĉ+ is a fuzzy 0.5-covering of U .

We give a relationship about the relation character matrices between a fuzzy β-
covering approximation space and it’s increasing fuzzy β-covering approximation space
in the following proposition.

Proposition 2. Let (U, Ĉ) and (U+, Ĉ+) be two fuzzy β-covering approximation
spaces, where U = {x1, x2, · · · , xn} and Ĉ = {C1, C2, · · · , Cm}. If qUij = 0, then
qU

+

ij = 0 for any i, j ∈ {1, 2, · · · ,m}.
Proof. For any i, j ∈ {1, 2, · · · ,m}, we have the following two conditions:

For i = j: if i = j, then qUij = 0 and qU
+

ij = 0;

For i �= j: by Definition 3, if qUij = 0, then there exists k ∈ {1, 2, · · · , n} such that
Ci(xk) > Cj(xk). Hence, there exists k ∈ {1, 2, · · · , n} such that C+

i (xk) > C+
j (xk)

according to Definition 4. Therefore,C+
i is not contained inC+

j . That is to say, qU
+

ij = 0.
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Example 2. (Continued from Example 1)

QU = (qUij)4×4 =

⎛

⎜
⎜
⎝

C1 C2 C3 C4

C1 0 0 0 0
C2 1 0 0 0
C3 1 0 0 0
C4 1 0 1 0

⎞

⎟
⎟
⎠,

QU+
= (qU

+

ij )4×4 =

⎛

⎜
⎜
⎝

C+
1 C+

2 C+
3 C+

4

C+
1 0 0 0 0

C+
2 1 0 0 0

C+
3 1 0 0 0

C+
4 0 0 0 0

⎞

⎟
⎟
⎠.

Hence, if qUij = 0, then qU
+

ij = 0 for any i, j ∈ {1, 2, · · · , 4}.
We give a relationship about reducible elements between a fuzzy β-covering

approximation space and it’s increasing fuzzy β-covering approximation space in the
following proposition.

Proposition 3. Let (U, Ĉ) and (U+, Ĉ+) be two fuzzy β-covering approximation
spaces, whereU = {x1, x2, · · · , xn} and Ĉ = {C1, C2, · · · , Cm}. IfC+

i is a reducible
element in Ĉ+, then Ci is a reducible element in Ĉ for any i ∈ {1, 2, · · · ,m}.
Proof. It is immediate by Definition 4 and the concept of reducible element.

The converse of Proposition 3 is not true, i.e., “If Ci is a reducible element in Ĉ,
thenC+

i is a reducible element in Ĉ+ for any i ∈ {1, 2, · · · ,m}.” is not true. Example 1
can explain this. In Example 1, since C1 = C2

⋃
C3, C1 is a reducible element in Ĉ.

However, C+
1 is not a reducible element in Ĉ+. Based on Proposition 3, we give the

following corollary.

Corollary 1. Let (U, Ĉ) and (U+, Ĉ+) be two fuzzy β-covering approximation spaces,
where U = {x1, x2, · · · , xn} and Ĉ = {C1, C2, · · · , Cm}. If Ci is a irreducible ele-
ment in Ĉ, then C+

i is a irreducible element in Ĉ+ for any i ∈ {1, 2, · · · ,m}.
Proof. By Proposition 3, it is immediate.

Example 3. (Continued from Example 1) C2, C3 and C4 are irreducible elements in
Ĉ. C+

2 , C+
3 and C+

4 are irreducible elements in Ĉ+.

The converse of Corollary 1 is not true, i.e., “If C+
i is a irreducible element in Ĉ+,

then Ci is a irreducible element in Ĉ for any i ∈ {1, 2, · · · ,m}.” is not true. Example 1
can explain this. In Example 1, C+

1 is a irreducible element in Ĉ+. But C1 is not a
irreducible element in Ĉ. Inspired by Corollary 1, we give the following theorem.

Theorem 1. Let (U, Ĉ) and (U+, Ĉ+) be two fuzzy β-covering approximation spaces.
Then |Γ(Ĉ)| ≤ |Γ(Ĉ+)|.
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Proof. By Definition 2, Γ(Ĉ) and Γ(Ĉ+) are families of all irreducible elements of Ĉ

and Ĉ+, respectively. Hence, it is immediate by Corollary 1.

Note that |Γ(Ĉ)| and |Γ(Ĉ+)| denote the cardinality of Γ(Ĉ) and Γ(Ĉ+), respec-
tively.

Example 4. (Continued from Example 1) Γ(Ĉ) = {C2, C3, C4}, Γ(Ĉ+) = {C+
1 , C+

2 ,

C+
3 , C+

4 }. Hence, |Γ(Ĉ)| = 3 and |Γ(Ĉ+)| = 4. That is to say, |Γ(Ĉ)| ≤ |Γ(Ĉ+)|.
Then, we give some new properties on reducts of fuzzy β-coverings while deleting

some objects of a universe. The concept of declining fuzzy β-covering approximation
space is presented in the following definition.

Definition 5. Let (U, Ĉ) be a fuzzy β-covering approximation space of U , where U =
{x1, x2, · · · , xn} and Ĉ = {C1, C2, · · · , Cm}. We call (U−, Ĉ−) a declining fuzzy β-
covering approximation space from (U, Ĉ), where U+ = {x1, x2, · · · , xn−t}, Ĉ− =
{C−

1 , C−
2 , · · · , C−

m} and C−
j (xi) = Cj(xi) for any 1 ≤ i ≤ n − t, 1 ≤ j ≤ m.

The following proposition shows that a declining fuzzy β-covering approximation
space from a fuzzy β-covering approximation space is also a fuzzy β-covering approx-
imation space.

Proposition 4. Let (U, Ĉ) be a fuzzy β-covering approximation space of U , where
U = {x1, x2, · · · , xn} and Ĉ = {C1, C2, · · · , Cm}. Then (U−, Ĉ−) is also a fuzzy
β-covering approximation space of U−.

Proof. By Definition 5, (
⋃m

j=1 C−
j )(xi) = (

⋃m
j=1 Cj)(xi) ≥ β for any i ∈ {1, 2, · · · ,

n − t}. Hence, (U−, Ĉ−) is also a fuzzy β-covering approximation space of U− by
Definition 1.

Example 5. Let U = {x1, x2, x3, x4, x5} and Ĉ = {C1, C2, C3, C4}, where
C1 = 0.7

x1
+ 0.8

x2
+ 0.6

x3
+ 0.6

x4
+ 0.7

x5
,

C2 = 0.3
x1

+ 0.8
x2

+ 0.3
x3

+ 0.8
x4

+ 0.6
x5

,

C3 = 0.7
x1

+ 0.6
x2

+ 0.6
x3

+ 0.6
x4

+ 0.7
x5

,

C4 = 0.4
x1

+ 0.6
x2

+ 0.3
x3

+ 0.2
x4

+ 0.5
x5

.

According to Definition 1, we know Ĉ is a fuzzy β-covering of U (0 < β ≤ 0.6).
Suppose β = 0.5. Let U− = {x1, x2, x3} and Ĉ

−
= {C−

1 , C−
2 , C−

3 , C−
4 }, where

C−
1 = 0.7

x1
+ 0.8

x2
+ 0.6

x3
,

C−
2 = 0.3

x1
+ 0.8

x2
+ 0.3

x3
,

C−
3 = 0.7

x1
+ 0.6

x2
+ 0.6

x3
,

C−
4 = 0.4

x1
+ 0.6

x2
+ 0.3

x3
.

According to Definitions 1 and 5, we know Ĉ− is a fuzzy 0.5-covering of U .
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We give a relationship about the relation character matrices between a fuzzy β-
covering approximation space and it’s declining fuzzy β-covering approximation space
in the following proposition.

Proposition 5. Let (U, Ĉ) and (U−, Ĉ−) be two fuzzy β-covering approximation
spaces, where U = {x1, x2, · · · , xn} and Ĉ = {C1, C2, · · · , Cm}. If qU

−
ij = 0, then

qUij = 0 for any i, j ∈ {1, 2, · · · ,m}.
Proof. For any i, j ∈ {1, 2, · · · ,m}, we have the following two conditions:

For i = j: if i = j, then qUij = 0 and qU
−

ij = 0;

For i �= j: by Definition 3, if qU
−

ij = 0, then there exists k ∈ {1, 2, · · · , n − t}
such that Ci(xk) > Cj(xk). Hence, there exists k ∈ {1, 2, · · · , n − t} such that
Ci(xk) > Cj(xk) according to Definition 5, i.e., there exists k ∈ {1, 2, · · · , n} such
that Ci(xk) > Cj(xk). Therefore, Ci is not contained in Cj . That is to say, qUij = 0.

Example 6. (Continued from Example 5)

QU = (qUij)4×4 =

⎛

⎜
⎜
⎝

C1 C2 C3 C4

C1 0 0 0 0
C2 0 0 0 0
C3 1 0 0 0
C4 1 0 1 0

⎞

⎟
⎟
⎠,

QU−
= (qU

−
ij )4×4 =

⎛

⎜
⎜
⎝

C−
1 C−

2 C−
3 C−

4

C−
1 0 0 0 0

C−
2 1 0 0 0

C−
3 1 0 0 0

C−
4 1 0 1 0

⎞

⎟
⎟
⎠.

Hence, if qU
−

ij = 0, then qUij = 0 for any i, j ∈ {1, 2, · · · , 4}.
Huang et al. [10] gave a relationship about reducible elements between a fuzzy β-

covering approximation space and it’s declining fuzzy β-covering approximation space
in the following proposition.

Lemma 1. ([10]) Let (U, Ĉ) and (U−, Ĉ−) be two fuzzy β-covering approximation
spaces, where U = {x1, x2, · · · , xn} and Ĉ = {C1, C2, · · · , Cm}. If Ci is a reducible
element in Ĉ, then C−

i is a reducible element in Ĉ− for any i ∈ {1, 2, · · · ,m}.
The converse of Lemma 1 is not true, i.e., “If C−

i is a reducible element in Ĉ, then
Ci is a reducible element in Ĉ for any i ∈ {1, 2, · · · ,m}.” is not true. Example 5 can
explain this. In Example 5, since C−

1 = C−
2

⋃
C−

3 , C−
1 is a reducible element in Ĉ−.

But C1 is not a reducible element in Ĉ. Based on Lemma 1, we give the following
corollary.

Corollary 2. Let (U, Ĉ) and (U−, Ĉ−) be two fuzzy β-covering approximation spaces,
where U = {x1, x2, · · · , xn} and Ĉ = {C1, C2, · · · , Cm}. If C−

i is a irreducible
element in Ĉ−, then Ci is a irreducible element in Ĉ for any i ∈ {1, 2, · · · ,m}.
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Proof. By Lemma 1, it is immediate.

Example 7. (Continued from Example 5) C−
2 , C−

3 and C−
4 are irreducible elements in

Ĉ−. C2, C3 and C4 are irreducible elements in Ĉ.

Based on Corollary 2, we give the following theorem.

Theorem 2. Let (U, Ĉ) and (U−, Ĉ−) be two fuzzy β-covering approximation spaces.
Then |Γ(Ĉ)| ≥ |Γ(Ĉ−)|.

Proof. By Definition 2, Γ(Ĉ) and Γ(Ĉ−) are families of all irreducible elements of Ĉ

and Ĉ−, respectively. Hence, it is immediate by Corollary 2.

Example 8. (Continued from Example 5) Γ(Ĉ) = {C1, C2, C3, C4}, Γ(Ĉ−) = {C−
2 ,

C−
3 , C−

4 }. Hence, |Γ(Ĉ)| = 4 and |Γ(Ĉ−)| = 3. That is to say, |Γ(Ĉ)| ≥ |Γ(Ĉ−)|.

5 Conclusions

In this paper, we explain the mistakes about Algorithms 1, 2 and 3 in Huang et al.
(2020) [10]. Moreover, we present some new definitions and properties for updating the
reduct while adding and deleting objects of a universe. It is helpful for others to investi-
gate the work further. In future, updating the reduct while adding and deleting objects at
the same time will be done. Neutrosophic sets and related algebraic structures [12–15]
will be connected with the research content of this paper in further research.

Acknowledgments. This work is supported by the Natural Science Foundation of Education
Department of Shaanxi Province, China, under Grant No. 19JK0506, the National Natural Sci-
ence Foundation of China under Grant No. 61976130.
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Abstract. We investigate decision bireducts which extend the notion of
a decision reduct developed in the theory of rough sets. For a decision
table A = (U,A∪{d}), a decision bireduct is a pair (X,B), where B ⊆ A
is a subset of attributes which allows to distinguish between all pairs of
objects in X ⊆ U labeled with different values of decision attribute d, and
where B and X cannot be made, respectively, smaller and bigger without
losing this property. We refer to our earlier studies on deriving bireducts
(X,B) from decision tables and utilizing them to construct families of
rule-based classifiers, where X ⊆ U is equal to total support of decision
rules built using attributes in B ⊆ A. We introduce the notion of a correct
ensemble of decision bireducts (X1, B1), ..., (Xm, Bm), where each u ∈ U
must be validly classified by more than 50% of the corresponding models.
We show that the problem of finding a correct ensemble of bireducts with
the lowest cardinalities of subsets Bi ⊆ A is NP-hard.

Keywords: Decision bireducts · Classifier ensembles · Rule-based
classifiers · Decision model simplification · NP-hardness

1 Introduction

There are a number of approaches based on ensembles of classifiers – or decision
models, more generally – in the areas of knowledge discovery and data classifi-
cation [1,4]. One can name several reasons to use ensembles. First, we can count
on stability and robustness of the collective. Moreover, it is expected that each
of classifiers – a part of a bigger ensemble – can be simpler than a single, not
ensemble-based decision model that would yield a similar level of accuracy. On
the other hand, if we look at all ensemble parts as a whole, they often lose some-
thing out of their interpretability. It may be hard to set up their cooperation.
Finally, a lot of computing power is needed to derive them from the data.

Several optimization tendencies repeat in case of numerous methods for learn-
ing classifier ensembles. For instance, it is widely assumed that components of
c© Springer Nature Switzerland AG 2020
R. Bello et al. (Eds.): IJCRS 2020, LNAI 12179, pp. 204–212, 2020.
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the ensemble should not misclassify too often the same training cases. Each sin-
gle classifier is expected to make mistakes (in other words, each single part can
be relatively weak with respect to its classification power) but for each training
case, a (possibly weighted) majority of models in the ensemble should be cor-
rect. To address this aspect while building classifier ensembles, popular machine
learning meta-algorithms such as boosting or bagging can be used.

One more aspect – besides tending to simplicity (and to some extent weak-
ness) and complementarity (avoiding repeatable mistakes) in the ensemble –
corresponds to diversification of attributes (features) that are used as inputs to
learn particular models. For example, in case of rough-set-inspired approaches
to knowledge discovery, it refers to computation of diverse decision reducts, i.e.,
irreducible (the smaller – the better) subsets of attributes that are sufficient to
determine decision labels. If we want to put this idea together with diversifica-
tion of cases which are classified correctly/wrongly by particular models, we can
rely on ensembles of so-called decision bireducts [7,8], whereby irreducibility of
a subset of attributes is combined with non-extendability of a subset of objects
(cases), for which those attributes let us form valid classification rules.

Rough-set-based approaches are also a good reference while considering for-
mal optimization problems behind construction of decision models. Indeed, start-
ing from fundamental works on NP-hardness of the problem of finding minimal
(in terms of the number of attributes) decision reduct, a lot of attention is paid
in the rough set literature to develop mathematical and algorithmic methods for
operating with the simplest yet sufficiently accurate (and thus the most power-
ful) classifiers [2,3]. However, even in the realm of rough sets, there are no studies
on formulation of optimization problems related to classifier ensembles. In other
words, optimization goals and their complexity characteristics are investigated
only at the level of single models, rather than the whole ensembles.

Accordingly, in this paper we propose how to define the optimization problem
related to searching for the simplest possible ensembles of decision models that
meet specific accuracy constraints. We realize that there are plenty of ways of
stating such constraints, with respect to various aspects of an ensemble as a whole
or its single components. Similarly, there may be many ways of understanding
the simplicity of an ensemble. Nevertheless, we believe that the introduced for-
mulation – based on collections of decision bireducts that include the minimal
amounts of attributes (the optimization goal) and in the same time, sufficiently
cover all considered objects using the corresponding decision rules (the accuracy
constraint) – can be a good starting point for further investigations.

The paper is organized as follows: Sect. 2 recalls decision bireducts (X,B),
whereby – for the training data set (referred as so-called decision table) A =
(U,A ∪ {d}) – B ⊆ A is a subset of attributes which allows to distinguish
between all pairs of objects in X ⊆ U labeled with different values of deci-
sion attribute d, and where B and X cannot be reduced and extended, respec-
tively. Section 3 introduces correct ensembles of bireducts (X1, B1), ..., (Xm, Bm),
m > 0, whereby there is inequality |{i = 1, ...,m : u ∈ Xi}| > m/2 for
each u ∈ U . Section 4 presents our idea of expressing simplicity (which is the
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optimization goal) of correct ensembles in terms of cardinalities of subsets
B1, ..., Bm. Section 5 shows our main theoretical result, i.e., NP-hardness of find-
ing the simplest correct ensembles of decision bireducts. Section 6 concludes the
paper.

2 Decision Bireducts

We use tabular data representation by means of decision tables [3] – pairs
A = (U,A∪ {d}) of finite sets U and A∪ {d}, where U is the universe of objects
and A ∪ {d} is the set consisting of attributes such that every a ∈ A ∪ {d} is
associated with function a : U → Va, where Va is called the value set of a. The
distinguished attribute d /∈ A is called the decision. Elements of A are called
conditional attributes. Values vd ∈ Vd correspond to decision classes.

Definition 1. Let A = (U,A ∪ {d}) and B ⊆ A, X ⊆ U be given. We say that
B determines d within X, further denoted as B �X d, if and only if B discerns
all pairs ui, uj ∈ X such that d(ui) �= d(uj). Further, we say that the pair (X,B)
is a decision bireduct, if and only if the following holds:

1. There is B �X d,
2. There is no proper subset B′ � B such that B′ �X d,
3. There is no proper superset X ′ � X such that B �X′ d.

We will say that objects in X are covered by B �X d.

Every decision bireduct (X,B) may be understood as a pair consisting of an irre-
ducible subset of attributes that can be evaluated by means of an non-extendable
subset of objects for which it provides good classification. It was shown in [8]
that X is actually the set-theoretic sum of objects supporting deterministic rules
using the values of attributes in B to describe the values of d.

Figure 1 displays some bireducts derived for decision table A with objects U =
{u1, ..., u6} and conditional attributes A = {a1, a2, a3}. For instance, consider
the pair B = {a1, a2} and X = {u2, ..., u6}. It corresponds to rules “if a1 = 0
and a2 = 0 then d = 0” (supported by u2), “if a1 = 0 and a2 = 1 then d = 0”
(supported by u3), “if a1 = 1 and a2 = 0 then d = 1” (supported by u4 and u5)
and “if a1 = 1 and a2 = 1 then d = 0” (supported by u6). Neither a1 nor a2
would be sufficient by itself to cover X with shorter rules. Moreover, u1 cannot
be added to X because it is inconsistent with the first rule.

The first algorithms aimed at deriving decision bireducts from the data were
proposed in [7]. They were based on random generation of mixed orderings
of attributes and objects. Such orderings were utilized to encode sequences of
attempts to remove attributes from B (starting with B = A) and add objects to
X (starting with X = ∅) in order to obtain pairs (X,B) such that B �X d, with
possibly minimal B and maximal X. By using an appropriate process of gen-
eration of families of diverse orderings, one could derive collections of bireducts
with quite different subsets of attributes and objects involved.
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Probably the most efficient known technique for deriving decision bireducts
consists of four phases: 1) Choose randomly a subset C ⊆ A; 2) For each block of
objects (so-called indiscernibility class) with the same values on C, add randomly
one of its elements to Y ⊆ U ; 3) For table A = (Y,C ∪ {d}), run one of classical
methods for finding standard decision reducts [2]; 4) For a decision reduct B ⊆ C,
construct superset X ⊇ Y by adding to Y all objects that are consistent with
decision rules generated from table A = (Y,B ∪ {d}).

Fig. 1. Examples of decision bireducts for table A = ({u1, ..., u6}, {a1, a2, a3} ∪ {d}).
Bireducts in the middle layer form a correct ensemble (each object is validly classified
by at least two bireducts out of three). For each “middle” bireduct treated as a new
decision table, its corresponding correct ensemble is provided in the lowest layer.

3 Bireduct Ensembles

The notion of a decision bireduct allows us to operate with subsets of condi-
tional attributes treated as classification descriptions, and with the associated
subsets of objects for which those descriptions are valid. This gives us an elegant
way to investigate complementarity of bireducts interpreted as classifiers in the
ensemble. For instance, the following formulation expresses the idea of majority
voting between ensemble components which – if properly tuned on the training
data – gives us a chance of efficient performance over new cases too.

Definition 2. Let A = (U,A∪ {d}) and the ensemble of decision bireducts B =
(X1, B1), ..., (Xm, Bm) be given. We say that B is correct, if and only if there is
inequality |{i = 1, ...,m : u ∈ Xi}| > m/2 for each u ∈ U .
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The above inequality means that more than 50% of decision rules triggered for
u ∈ U point at the valid decision d(u). Figure 1 illustrates a kind of hierarchy of
correct bireduct ensembles for m = 3. Alternatively, one can work with a “flat”
collection of decision bireducts that are supposed to vote correctly on each of
objects, even if some single bireducts are wrong for some single cases.

Figure 1 implicitly suggests a top-down way of constructing correct ensem-
bles, whereby each of m bireducts is derived in the same time, with an option
of further decompositions on even smaller pieces. Such algorithms have been
already considered in [5] for another type of (bi)reducts, i.e., so-called generalized
decision reducts. On the other hand, one can proceed with the aforementioned
ordering-based methods [7], whereby – somewhat reflecting the mechanisms of
bagging and boosting – each next ordering may take into account which objects
were covered least frequently by decision bireducts derived up to now.

4 Ensemble Simplicity

The rough literature provides a great number of theoretical works on compu-
tational complexity of optimization problems focused on deriving the simplest
possible decision models from the data [2]. Let us refer to a recent comparative
study reflecting both decision bireducts and so-called approximate reducts with
this respect [8]. By “the simplest” one can mean (bi)reducts involving the mini-
mal amounts of attributes, generating minimal amounts of decision rules, having
the minimal information entropy, etc. However, all those formulations refer to
single (bi)reducts which correspond to single classifiers.

In other words, as it was emphasized in [3], simplicity is a crucial aspect of
decision models, in relation to paradigms such as Occam’s Razor or the Min-
imum Description Length Principle. However, there is no clear guidance how
to understand simplicity of ensembles. Thus, if we want to define optimization
problems for ensembles, we need to know how to aggregate “complexities” of par-
ticular ensemble components (e.g.: the number of attributes in a single decision
bireduct, the number of leaves in a single decision tree, etc.).

Intuitively, in case of ensembles of decision bireducts, the corresponding opti-
mization problem should be stated by means of finding the smallest subsets
B1, ..., Bm that satisfy – together with their counterparts X1, ...,Xm – the con-
straints of Definition 2. The question remains what we should mean by “the
smallest” in case of a collection of subsets. In [6], for the analogous task related
to the already-mentioned generalized decision reducts, it was proposed to look at
it from the perspective of the maximum cardinality out of all involved subsets.
For the purpose of bireducts it can be phrased as follows:

Definition 3. Let decision table A = (U,A∪ {d}) and two correct ensembles of
decision bireducts B = {(X1, B1), ..., (Xm, Bm)} and C = {(Y1, C1), ..., (Yn, Cn)},
m,n ≥ 0, be given. We say that B is simpler than C, denoted as B ≺ C, if and
only if the following procedure yields it:
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1. Sort sequences of cardinalities of attribute subsets in a descending order.
2. Add a sentinel item with the value −1 at the end of each of sequences.
3. Find the first position for which the sorted sequences differ from each other.
4. If the value in the above-found position is lower for B than for C, then B ≺ C.

The above procedure – illustrated additionally by Fig. 2 – induces a linear order
over ensembles of bireducts for a given A. We therefore propose to search through
a space of all correct ensembles B = {(X1, B1), ..., (Xm, Bm)}, paying special
attention to cardinalities of their largest components along a kind of cardinality-
based lexicographic order. This is because the largest subsets of attributes cor-
respond to the largest collections of the longest rules, i.e., they affect complexity
of the model more significantly than other subsets.

Fig. 2. Illustration of the procedure in Definition 3.

5 Main Result

Let us formalize the optimization goal that we drafted in the previous section:
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Definition 4. By the Simplest Correct Decision Bireduct Ensemble Problem
(SCDBEP) we mean the task of finding – for each input decision table A –
the correct ensemble of decision bireducts B such that there is no other correct
ensemble for A that would be simpler than B according to Definition 3.

Theorem 1. SCDBEP is NP-hard.

Before we present the proof, let us refer to Fig. 3. The proof is based on
polynomial reduction of the problem of finding the smallest dominating sets in
undirected graphs to SCDBEP. It requires encoding of each input graph G to its
corresponding decision table AG. This encoding is analogous to those that were
utilized for other (bi)redect-related optimization problems [2,8].

Fig. 3. Illustration for the proof of Theorem 1.

Figure 3 can also serve as one more illustration of creation of correct ensem-
bles of decision bireducts. It displays how to interpret those bireducts as
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rule-based classifiers. In particular, as it could be already noticed earlier in Fig. 1,
some bireducts can correspond to empty sets of attributes. We can interpret them
as “dummy” classifiers which point always at the same decision class. They may
help to tune the majority voting mechanism in the ensemble.

Proof. As already stated, we intend to show NP-hardness of SCDBEP by polyno-
mial reduction of the minimum dominating set problem. Let us consider an undi-
rected graph G = (V,E) and create decision table AG = (UG ∪{u∗}, AG ∪{dG}),
where av ∈ AG corresponding to v ∈ V takes 1 on uv′ ∈ UG corresponding
to v′ ∈ V , i.e., av(uv′) = 1, if and only if v = v′ or (v, v′) ∈ E, and where
av(u∗) = 0. Let us also put dG(uv′) = 0 and dG(u∗) = 1 (see Fig. 3).

Clearly, any B ⊆ V is a dominating set in G, if and only if it corresponds to a
decision bireduct (UG, BG). It is obvious that a single-element bireduct ensemble
{(UG, BG)} is correct according to Definition 2. However, we can always construct
a simpler (or equally simple if BG is a singleton) correct ensemble.

Assuming that BG = {av1 , av2 , ..., avn
}, let us define new subsets of attributes

as BG,1 = {av1}, ..., BG,n = {avn
}, BG,n+1 = ∅, ..., BG,2n−1 = ∅ and new subsets

of objects as XG,1 = {u∗} ∪ {u ∈ UG|av1(u) = 1}, ..., XG,n = {u∗} ∪ {u ∈
UG|avn

(u) = 1}, XG,n+1 = UG, ..., XG,2n−1 = UG. Then, the proposed simpler
ensemble would be equal to {(XG,1, BG,1), ..., (XG,2n−1, BG,2n−1)} and it would
be still correct according to Definition 2 (see Fig. 3 again).

The consequence of the above is that the simplest correct ensemble of decision
bireducts corresponds to the smallest dominating set in the graph G. ��

6 Conclusions

We investigated ensembles of so-called decision bireducts, which can be inter-
preted as rule-based classifiers. We introduced the notion of a correct ensemble,
which means that every object (training case) must be validly recognized using
the corresponding rules by more than majority of classifiers. We discussed how
to specify a kind of simplicity criterion for such ensembles and we formulated an
example of optimization problem related to extracting possibly simplest correct
ensembles of decision bireducts from the input data. The main mathematical
result of our paper is the NP-hardness of the considered problem.

In future, given such a sound theoretical framework, more attention should
be paid to further extensions of our previous algorithmic approaches [7,8] to
deriving and applying decision bireducts for the real-life data. Moreover, some
alternative formulations of optimization problems should be discussed as well,
possibly referring to ensembles of other types of classifiers.
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Abstract. We introduce a new rough-set-inspired binary feature selec-
tion framework, whereby it is preferred to choose attributes which let
us distinguish between objects (cases, rows, examples) having different
decision values according to the following mechanism: for objects u1 and
u2 with decision values dec(u1) = 0 and dec(u2) = 1, it is preferred to
select attributes a such that a(u1) = 0 and a(u2) = 1, with the secondary
option – if the first one is impossible – to select a such that a(u1) = 1
and a(u2) = 0. We discuss the background for this approach, originally
inspired by the needs of the genetic data analysis. We show how to derive
the sets of such attributes – called positive-correlation-promoting reducts
(PCP reducts in short) – using standard calculations over appropriately
modified rough-set-based discernibility matrices. The proposed frame-
work is implemented within the RoughSets R package which is widely
used for the data exploration and knowledge discovery purposes.

Keywords: Rough sets · Feature selection · Discernibility · Rule
induction · Positive-correlation-promoting reducts · RoughSets R
package

1 Introduction

Rough set approaches are successfully utilized in the areas of machine learning
and knowledge discovery, particularly for feature selection and classifiers sim-
plification, as well as for deriving easily interpretable decision models from the
data [1,9]. There are a number of generalizations and hybridizations of rough set
methods available in the form of software toolkits, including dominance-based
rough set algorithms [3], fuzzy-rough set algorithms [10], and others. There is
plenty of research connecting rough sets with other knowledge representation
methodologies such as e.g. formal concept analysis [4], as well as application-
oriented studies such as e.g. extensions of standard rough set techniques aimed
at handling high-dimensional data sets [7]. Finally, it is worth noting that rough
set approaches can be combined in a natural way with various symbolic machine
learning methods, in particular those designed for rule induction [5,12].
c© Springer Nature Switzerland AG 2020
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Fig. 1. Example of a binary decision table with 10 objects, 10 attributes V 1, ..., V 10,
as well as decision dec, displayed using the RoughSets R package [10].

In this study, we are interested in inducing rules which follow a specific
pattern of selecting conditions pointing at particular decisions. Using an example
of decision table in Fig. 1, we seek for rules describing the case dec = 1 with
conditions V i = 1 (e.g. V 2 = 1∧V 6 = 1 ⇒ dec = 1 supported by rows 8 and 10)
and dec = 0 with conditions V i = 0 (e.g. V 8 = 0∧V 9 = 0 ⇒ dec = 0 supported
by row 2). Only if there is no other choice, we would allow additional descriptors
of the form V i = 0 for dec = 1 and V i = 1 for dec = 0 (e.g. it is impossible to
construct a rule covering row 7 without using conditions V i = 0).

We propose a new approach to feature selection, aimed at finding attributes
which are suitable for constructing such rules. In order to do this, we modify
the rough-set-based notion of a reduct [9]. For the binary data, our positive-
correlation-promoting (PCP) reducts will prefer to contain attributes V i such
that – for objects u1 and u2 with decisions dec(u1) = 0 and dec(u2) = 1 –
there is V i(u1) = 0 and V i(u2) = 1, or else – but only if the former option
does not hold for any attribute – there is V i(u1) = 1 and V i(u2) = 0. (On the
contrary, both those options of discernibility – i.e. V i(u1) = 0, V i(u2) = 1 versus
V i(u1) = 1, V i(u2) = 0 – have the same importance for standard reducts.)

Going further, in Sect. 2 we recall the RoughSets R package [10], whereby we
implement our new approach. In Sect. 3 we present the background for PCP
reducts. In Sect. 4 we show that they are derivable using a modification of
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Fig. 2. Example continued: [Top] An excerpt from the standard discernibility matrix
computed for decision table in Fig. 1 using the RoughSets R package; [Bottom] Full
standard discernibility matrix for the considered decision table.

rough-set-based discernibility matrices. In Sect. 5 we discuss future relevant
extensions of the package. In Sect. 6 we conclude the paper.

2 About the RoughSets R Package

The RoughSets package is available in CRAN (http://cran.r-project.org/web/
packages/RoughSets/index.html). Its newest version can be found also in GitHub
(https://github.com/janusza/RoughSets). It provides implementations of classi-
cal rough-set-based methods and their fuzzy-related extensions for data modeling
and analysis. In particular, it includes tools for feature selection and attribute
reduction, as well as rule induction and rule-based classification.

Figures 2 and 3 illustrate two out of the most fundamental functionalities of
the package – calculation of a discernibility matrix from the input decision table,
and calculation of all decision reducts from the input discernibility matrix. Let
us recall that decision tables stand for standard representation of the labeled
tabular data in the rough set framework. Discernibility matrices assign the pairs
of objects (rows) having different decision values with attributes which are able
to distinguish between them. Decision reducts are irreducible attribute subsets
which distinguish between all such pairs (for decision table in Fig. 1, one needs to
distinguish rows 1, 2, 3, 4, 5 from 6, 7, 8, 9, 10), i.e., those which have non-empty
intersection with every cell of the corresponding matrix.

http://cran.r-project.org/web/packages/RoughSets/index.html
http://cran.r-project.org/web/packages/RoughSets/index.html
https://github.com/janusza/RoughSets
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Fig. 3. Example continued: Standard reducts for decision table displayed in Fig. 1,
calculated using the all-reducts function in the RoughSets R package.

The considered package contains also other, more modern methods of decision
reduct calculation. Some of them work on far more efficient data structures than
discernibility matrices. Some of them search heuristically for single reducts or
small groups of reducts instead of all of them. Nevertheless, referring to functions
in Figs. 2 and 3 is a good starting point for further investigations.

3 Inspiration for PCP Reducts

The idea of operating with rules exemplified in Sect. 1 comes from our earlier
studies on the data produced in the cancer genome atlas project (https://en.
wiki\discretionary-pedia.org/wiki/The_Cancer_Genome_Atlas) [11] and other
gene-related data sets [7]. Let us consider the copy number variation pipeline
(https://en.wikipedia.org/wiki/Copy-number_variation) [6] which uses the
Affymetrix SNP 6.0 array data [2] to identify the repeating genomic regions
and to infer the copy number of those repeats. Imagine that attributes in Fig. 1
represent some of the protein coding genes and rows represent patient samples.
For each patient, a gene can be characterized by 0 (no change) or 1 (change in
the copy number for that gene). Assume that dec takes value 1 for patients with
short survival time. Then, we would like to describe decision class dec = 1 by
genes for which a change in the copy number was registered i.e. using conditions
V i = 1.

https://en.wikidiscretionary {-}{}{}pedia.org/wiki/The_Cancer_Genome_Atlas
https://en.wikidiscretionary {-}{}{}pedia.org/wiki/The_Cancer_Genome_Atlas
https://en.wikipedia.org/wiki/Copy-number_variation
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Fig. 4. Example continued: [Top] An excerpt from the PCP discernibility matrix com-
puted for decision table in Fig. 1 using the new functionality of the RoughSets R pack-
age; [Bottom] Full PCP discernibility matrix for the considered table.

If we were interested only in such rules, then they could be modeled using
formal concept analysis [4]. However, we also need rules describing dec = 0 by
V i = 0. In such a case, one might suggest that it is worth using the dominance-
based rough set framework [3]. However, it is not so strict that we should use
only conditions V i = 1 for dec = 1 and V i = 0 for dec = 0. Such conditions
are preferred and should be promoted by the rule generation process. However,
if it is impossible to form rules using only such conditions, then the other ones
(V i = 0 for dec = 1 and V i = 1 for dec = 0) are allowed too.

4 Discernibility Characteristics of PCP Reducts

Discussion in the previous section leads us toward the following:

Definition 1. Let a binary decision table A = (U,A∪ {d}) be given. (In Fig. 1:
U = {u1, ..., u10}, A = {V 1, ..., V 10}, d = dec.) Consider object u ∈ U and
subset B ⊆ A. We say that rule

∧
a∈B a = a(u) ⇒ d = d(u) is a positive-

correlation-promoting (PCP) rule, if and only if it holds irreducibly in A and
there is ∀a∈B a(u) = d(u) or else, one cannot replace conditions a = a(u) such
that a(u) �= d(u) with any conditions b = b(u), b(u) = d(u), b /∈ B.

Definition 2. Subset B ⊆ A is a positive-correlation-promoting (PCP) reduct,
if and only if each u ∈ U can be covered by a PCP rule

∧
a∈Bu a = a(u) ⇒ d =

d(u), Bu ⊆ B, and there is no proper B′ � B with this property.
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Fig. 5. Example continued: The all-reducts function in the RoughSets R package, now
executed on the PCP discernibility matrix for decision table in Fig. 1.

The following characteristics can be shown in straightforward way:

Proposition 1. For binary A = (U,A ∪ {d}), for every u1, u2 ∈ U such that
d(u1) �= d(u2), define M+(u1, u2) = {a ∈ A : a(u1) = d(u1) ∧ a(u2) = d(u2)}
and M−(u1, u2) = {a ∈ A : a(u1) �= d(u1) ∧ a(u2) �= d(u2)}. Consider the PCP
discernibility matrix which labels the pairs of objects as follows:

M(u1, u2) =
{
M+(u1, u2) if M+(u1, u2) �= ∅
M−(u1, u2) otherwise (1)

Then, a given B ⊆ A is a PCP reduct, if and only if it is an irreducible subset
such that B ∩ M(u1, u2) �= ∅ for every u1, u2 ∈ U , d(u1) �= d(u2).

5 Heuristic Search of PCP Reducts and Rules

Definition 2 reflects the requirements of the feature selection process if the ulti-
mate goal is to induce the rules of the form discussed in previous sections and
considered earlier in [11]. Moreover, Proposition 1 provides us with an easy way
to derive PCP reducts. Namely, it is enough to modify classical discernibility
matrices and then apply the same techniques as those outlined in [8].



On Positive-Correlation-Promoting Reducts 219

Fig. 6. Decision rules derived using the LEM2 [5] algorithm’s version available in the
RoughSets R package [10]. The rules are derived for two examples of standard reducts
and one example of a PCP reduct (the last one). This means that only attributes con-
tained in the given reduct are considered as input to LEM2. Although PCP reducts are
designed to promote attributes which let us construct rules including more descriptors
of the form V i = 1 pointing at decision dec = 1, as well as more descriptors of the form
V i = 0 pointing at dec = 0, this information is lost during the phase of rule shorten-
ing. This is because – in its current implementation – this phase does not distinguish
between positively (M+) and negatively (M−) correlated discernibility cases.
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This fact allowed us to extend the RoughSets package [10], as visible in
Figs. 4 and 5. When comparing the PCP matrix (Fig. 4) with its classical coun-
terpart (Fig. 2), one can see that the attribute sets are now smaller. (The only
unchanged cells are M(u3, u6) and M(u5, u7) – this is because M+ = ∅ in both
cases.) Consequently, PCP reducts are bigger than standard ones. In particu-
lar, PCP reducts can include both attributes V 1 and V 2 which are mutually
interchangeable [7], so they would never co-occur in a standard reduct.

Still, there is a lot left to be done in the area of heuristic extraction of PCP
reducts. One might expect that the corresponding algorithms should seek for
PCP reducts which yield rules with maximum number of descriptors V i = 1
for dec = 1 (and V i = 0 for dec = 0). Unfortunately, classical methods cannot
distinguish between the cases M+ �= ∅ and M+ = ∅ in equation (1), so their
heuristic optimization functions do not work properly. The same happens with
standard rule induction methods [5,10] as further outlined in Fig. 6.

6 Further Research Directions

The newly introduced PCP reducts require further study in many aspects.
Besides the aforementioned need of better heuristic search methods, we shall
design algorithms working on more efficient data structures than PCP matrices.
Herein, we will attempt to adapt some of modern data structures which are used
to derive classical reducts and rules in rough-set-based toolkits [3,5].

Another future direction may refer to PCP reducts for non-binary data sets.
In this paper, the nature of promoting positive correlations was expressed in
terms of selecting these attributes which share – if possible – the same value
differences as observed for the decision column. An analogous idea could be
considered e.g. for numerical data sets, whereby one may think about appropriate
modifications of fuzzy-rough discernibility characteristics [4,10].
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Abstract. Pooling layers help reduce redundancy and the number of
parameters before building a multilayered neural network that performs
the remaining processing operations. Usually, pooling operators in deep
learning models use an explicit topological organization, which is not
always possible to obtain on multi-label data. In a previous paper, we
proposed a pooling architecture based on association to deal with this
issue. The association was defined by means of Pearson’s correlation.
However, features must exhibit a certain degree of correlation with each
other, which might not hold in all situations. In this paper, we propose
a new method that replaces the correlation measure with another one
that computes the entropy in the information granules that are generated
from two features or labels. Numerical simulations have shown that our
proposal is superior in those datasets with low correlation. This means
that it induces a significant reduction in the number of parameters of
neural networks, without affecting their accuracy.

Keywords: Granular computing · Rough sets · Association-based
pooling · Deep learning · Multi-label classification

1 Introduction

Multi-Label Classification (MLC) is a type of classification where each of the
objects in the data has associated a vector of outputs, instead of being associated
with a single value [8,20]. Formally speaking, suppose X = Rd denotes the d-
dimensional instance space, and L = {l1, l2, . . . , lk} denotes the label space with
k being the possible class labels. The task of multi-label learning is to estimate
a function h : X −→ 2L from the multi-label training set {(xi, Li) | 1 ≤ i ≤ n}.
For each multi-label example (xi, Li), xi ∈ X is a d-dimensional feature vector
(xi1, xi2, . . . , xid) and Li ⊆ L is the set of labels associated with xi. For any
unseen instance x ∈ X, the multi-label classifier h(· ) predicts h(x) ⊆ L as the
c© Springer Nature Switzerland AG 2020
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set of proper labels for x. This particular case of classification requires addi-
tional efforts in extracting relevant features describing both input and decision
domains, since the boundaries regions of decisions usually overlap with each
other. This often causes the decision space to be quite complex.

Deep learning [6,10] is a promising avenue of research into the automated
extraction of complex data representations at high levels of abstraction. Such
algorithms develop a layered, hierarchical architecture of learning and repre-
senting data, where higher-level (more abstract) features are defined in terms of
lower-level (less abstract) features. For example, pooling layers [6,11,12] provide
an approach to down sampling feature maps by summarizing the presence of fea-
tures in patches of the feature map. Two common pooling methods are average
pooling and max pooling, which compute the average presence of a feature and
the most activated presence of a feature, respectively.

In the case of MLC, this must be done for both features and labels. Several
authors [5,15,17,21] have proposed MLC solutions inspired on deep learning
techniques. All these solutions are associated with application domains in which
the data have a topological organization (i.e. recognizing faces, coloring black and
white images or classifying objects in photographs). In [1] the authors introduced
the association-based pooling that exploits the correlation among neurons instead
of exploiting the topological information as typically occurs when using standard
pooling operators. Despite of the relatively good results reported by this model,
the function used to quantify the association between problem variables does not
seem to be suitable for datasets having poor correlation among their features or
labels. An alternative to deal with this issue consists in replacing the correlation
measure with a more flexible association estimator.

In this paper, we compute the entropy of the granules that are generated from
two problem features or labels. Several methods based on Granular Computing
use granules as basic elements of analysis [7,18], so that from two similar gran-
ulations of the universe of discourse, similar results must be achieved. One way
to measure this similarity between the granulations is to measure the entropy in
the data that they generate [19]. The rationale of our proposal suggests that two
features (or labels) can be associated if the generated granulations from them
have equal entropy. Therefore, the proposal consists in obtaining a universe gran-
ulation, where each feature (or label) defines an indiscernibility relation. In this
method, the information granules are the set of indiscernible objects with respect
to the feature (or label) under consideration.

The rest of the paper is organized as follows. Section 2 presents the theoretical
background related to our proposal. Section 3 introduces the new measure to
quantify the association between features and labels, and Sect. 4 is dedicated to
evaluating its performance in the model on synthetic datasets. Finally, in Sect. 5
we provide relevant concluding remarks.

2 Theoretical Background

In this section, we briefly describe the bidirectional neural network to be modi-
fied, and the granulation approach used in our proposal.
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2.1 Bidirectional Deep Neural Network

Recently, in [1] the authors introduced a new bidirectional network architecture
that is composed of stacked association-based pooling layers to extract high-level
features and labels in MLC problems. This approach, unlike the classic use of
pooling, does not pool pixels but problem features or labels.

The first pooling layer is composed of neurons denoting the problem features
and labels (i.e. low-level features and labels), whereas in deeper pooling layers the
neurons denote high-level features and labels extracting during the construction
process. Each pooling layer uses a function that detects pairs of highly associated
neurons, while performing an aggregation operation to derive the pooled neurons.
Such neurons are obtained from neurons belonging to the previous layer such that
they fulfil a certain association threshold. Figure 1 shows an example where two
pooling layers are running for both features (left figure) and labels (right figure).
In this example, five high-level neurons were formed from the association of the
feature pairs (f1, f2) and (f3, f4), and the label pairs (l1, l2) and (l3, l4). The f5
feature is not associated with any other feature, so it is transferred directly to
the t+1 pooling layer. In this pooling architecture, ⊕ and � are the aggregation
operators used to conform the pooled neurons.
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Fig. 1. Bidirectional association-based pooling.
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This model uses Pearson’s correlation to estimate the association degree
between two neurons. Overall, the authors computed the correlation matrix
among features and labels, and derive the degree of association of the pooled
neurons from the degree of association between each pair of neurons in the pre-
vious layer. The pooling process is repeated over aggregated features and labels
until a maximum number of pooling layers is reached.

Once the high-level features and labels have been extracted from the dataset,
they are connected together with one or several hidden processing layers. Finally,
a decoding process [9] is performed to connect the high-level labels to the orig-
inal ones by means of one or more hidden processing layers. Figure 2 depicts
the network architecture resulting five high-level neurons that emerge from the
association-based pooling layers. These hidden layers are equipped with either
ReLU, sigmoid or hyperbolic tangent transfer functions, therefore conferring the
neural system with prediction capabilities.
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Fig. 2. Neural network architecture using association-based pooling.

It is worth reiterating that this model is aimed at pooling features and labels
in traditional MLC problems where neither features nor labels have a topological
organization. For example, when using numerical descriptors to encode a protein,
it might happen that two distant positions in the sequence are actually close two
each other in the tri-dimensional space.



Feature and Label Association Based on Granulation Entropy 229

2.2 Universe Granulation

The underlying notion for granulation in classic rough sets [2,13,14] relies
on equivalence relations or partitions. Let U be a finite and non-empty uni-
verse, and A is a finite non-empty set of features that describe each object.
Given a subset of attributes B ⊆ A, an indiscernibility relation is defined as
IND = {(x, y) ∈ U × U |∀b ∈ B, x(b) = y(b)}. This relation is reflexive, sym-
metric and transitive. The equivalence class [x]IND consists of all elements
equivalent to x according to relation IND. The family of equivalence classes
U/IND = {[x]IND |x ∈ U} is a partition of the universe.

The indiscernibility relation seems to be excessively restrictive. In presence
of numerical attributes, two inseparable objects (according to some similarity
relation R [16]) will be gathered together in the same set of non-identical (but
reasonably similar) objects. The definition of R may admit that a small difference
between features values is considered as unsignificant. This relation delimits
whether two objects x and y are inseparable or not, and defines a similarity
class where R̄(x) = {y ∈ U |yRx}. Equation (1) shows the similarity relation,
assuming that 0 ≤ ϕ(x, y) ≤ 1 is a similarity function,

R : yRx ⇔ ϕ(x, y) ≥ ξ. (1)

This weaker binary relation states that objects x and y are deemed insep-
arable as long as their similarity degree ϕ(x, y) exceeds a similarity threshold
0 ≤ ξ ≤ 1. It is worth mentioning that the similarity relation R does not induce
a partition of U into a set of equivalence classes but rather a covering [3] of U
into multiple similarity classes R̄(x).

3 Feature Association Using the Granulation Entropy

The granular approach in [19] uses the Shannon entropy to characterize parti-
tions of a universe. Two granulations with the same (or similar) entropy value
could be considered equivalent. Similarly, the degree of association between two
features (or labels) could be determined using the entropy of the granulations
they generate. Our method verifies if the coverings (or partitions) generated by
two features (or labels) induce similar entropy values.

Let us assume that the problem feature f1 generates the covering Cf1 =
{GF1, GF2, . . . , GFs} that contains s granules, i.e. the family of similarity
classes when only the f1 feature is considered. Thus, we define ϕ(x, y) =
1 − |x(f1) − y(f1)| as a similarity function used in Eq. (1), where x(f1) and
y(f1) are the values of the feature f1 in objects x and y. In addition, the l1 label
generates the partition Pl1 = {GL1, GL2, . . . , GLt} with t granules, i.e. the fam-
ily of equivalence classes where all objects have exactly the same value on the l1
label. Since the domain of the label is {0, 1}, this partition will only contain two
equivalence classes. Equations (2) and (3) define the probability distributions
for the partitions Cf1 and Pl1, respectively,

DCf1 =
{ |GF1|

|U | ,
|GF2|
|U | , . . . ,

|GFs|
|U |

}
(2)
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DPl1 =
{ |GL1|

|U | ,
|GL2|
|U | , . . . ,

|GLt|
|U |

}
(3)

where |·| denotes the cardinality of a set. The Shannon entropy function of the
probability distributions is defined by Eqs. (4) and (5),

H(Cf1) = −
s∑

i=1

( |GFi|
|U |

)
log

( |GFi|
|U |

)
(4)

H(Pl1) = −
t∑

j=1

( |GLj |
|U |

)
log

( |GLj |
|U |

)
. (5)

The similarities of the granulations generated by two features f1 and f2, or
two labels l1 and l2 can be defined according to the measures GSE1(f1, f2) and
GSE2(l1, l2) defined in the Eqs. (6) and (7) respectively,

GSE1(f1, f2) =
(1 + E1)
(1 + E2)

(6)

GSE2(l1, l2) =
(1 + N1)
(1 + N2)

(7)

where E1 = min {H(Cf1),H(Cf2)}, E2 = max {H(Cf1),H(Cf2)}, N1 =
min {H(Pl1),H(Pl2)}, and N2 = max {H(Pl1),H(Pl2)}.

In this way, two features can be associated if GSE1(f1, f2) ≥ α1, where α1 is
the association threshold regulating the aggregation of features. In the same way,
two labels will be associated if GSE2(l1, l2) ≥ α2, where α2 is the association
threshold regulating the aggregation of labels.

In our approach, we estimate the association degree between pairs of pooled
neurons from the values of the association matrix calculated for the original
features and labels of the problem. Then, the association between two pooled
neurons would be performed as the average of the values determined by GSE1

and GSE2 for each pair of features (or labels) in these neurons.
Equations (8) and (9) define the association between f

(v)
1 and f

(v)
2 (i.e. neu-

rons in the v-th pool of features), and between l
(w)
1 and l

(w)
2 (i.e. neurons in the

w-th pool of labels), respectively,

SP1(f
(v)
1 , f

(v)
2 ) =

1
k1

k1∑
i=1

GSE1(p
f
i ) (8)

SP2(l
(w)
1 , l

(w)
2 ) =

1
k2

k2∑
j=1

GSE2(plj) (9)

where k1, k2 are the number of pairs of features and labels that can be formed
from the aggregation of f

(v)
1 and f

(v)
2 , and l

(w)
1 and l

(w)
2 , respectively. Similarly,

pfi and plj denote the ith and jth pairs of features and labels. In this way, we

say that two pooled neurons f
(v)
1 and f

(v)
2 , or l

(w)
1 and l

(w)
2 can be associated in

the current layer if SP1 ≥ α1, or SP2 ≥ α2, respectively.
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4 Simulations

In this section, we evaluate the ability of our proposal to estimate the association
between problem variables (low-level features and labels), and between pooled
neurons (high-level features and labels).

To perform the simulations, we use 10 multi-label datasets taken from the
RUMDR repository [4]. In these problems (see Table 1), the number of instances
ranges from 207 to 10,491, the number of features goes from 72 to 635, and the
number of labels from 6 to 400. Also, the average maximal correlation of Pearson
according to both features and labels is reported.

Table 1. Characterization of datasets used for simulations.

Dataset Name Instances Features Labels Correlation-F Correlation-L

D1 Emotions 593 72 6 0.62 0.39

D2 Scene 2,407 294 6 0.74 0.22

D3 Yeast 2,417 103 14 0.49 0.57

D4 Stackex-chemistry 6,961 540 175 0.18 0.13

D5 Stackex-chess 1,675 585 227 0.27 0.24

D6 Stackex-cooking 10,491 577 400 0.14 0.14

D7 Stackex-cs 9,270 635 274 0.18 0.18

D8 GnegativePseAAC 1,392 440 8 0.29 0.22

D9 GpositivePseAAC 519 440 4 0.33 0.34

D10 VirusPseAAC 207 440 6 0.40 0.22

The simulations aim at comparing our approach with the correlation-based
method proposed in [1]. In order to make fair comparisons, we will use the same
network architecture proposed by the authors. Similarly, as far as the pooling
process is concerned, we set the maximum number of pooling layers to 5 for the
features and 3 for the labels. The association thresholds α1 and α2 will range
from 0.0 to 0.8. The operators used to aggregate two neurons (i.e. ⊕ and �) are
the average in the feature pooling process, and maximum in the label pooling.
In addition, the value of the similarity threshold parameter used in Eq. (1) is
fixed to 0.85, although other values are also possible.

In all experiments conducted in this section, we use 80% of the dataset to
build the model and 20% for testing purposes, while the reported results are
averaged over 10 trials to draw consistent conclusions.

4.1 Results and Discussion

Table 2 displays the results of our measure in the model proposed by [1]. These
tables report the number of high-level features, the reduction percentage those
high-level features represent (%Red-Features), the number of high-level labels,
the reduction percentage in the number of labels (%Red-Labels), the accuracy
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obtained when using only the high-level features and labels, and the accuracy
loss with respect the model using all features and labels (i.e. neural network
model without performing the pooling operations).

Table 2. Results achieved by the GSE1 and GSE2 measures.

Dataset HL-Features %Red-Features HL-Labels %Red-Labels Accuracy Loss

D1 3 95.83% 3 50% 0.515 −0.308

D2 10 96.60% 3 50% 0.771 −0.144

D3 4 96.12% 4 71.43% 0.765 −0.036

D4 17 96.85% 22 87.43% 0.988 0

D5 19 96.75% 29 87.22% 0.99 0

D6 19 96.71% 50 87.5% 0.995 0

D7 20 96.85% 35 87.23% 0.991 0

D8 14 96.82% 4 50% 0.864 −0.054

D9 14 96.82% 4 0% 0.646 −0.22

D10 14 96.82% 3 50% 0.736 −0.058

(a) accuracy (b) high-level features

(c) high-level labels

Fig. 3. Average statistics over G1 using the GSE1 and GSE2 measures.
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Our proposal (i.e. to compute the association between variables from GSE1

and GSE2) obtains a percentage of reduction in the features over 95%, and in
the labels over 50% in most cases. On the other hand, the loss of accuracy is
significant in those datasets that present a high correlation (e.g., D1,D2,D9),
which means that this measure is not suitable in this datasets. It is remarkable
the accuracy loss for D1, which is also the dataset with the lowest number of
features in our study. However, the proposal reports a very small loss in those
datasets having a lower correlation (e.g., D4,D6,D7).

Figures 3 and 4 show the comparison of our proposal against the one using
Pearson’s correlation (baseline). In these figures, we report the differences in
accuracy between our method versus the baseline (Z1), the differences in the
number of high-level features (Z2), and the number of high-level labels (Z3),
when using different α1 and α2 values. Figure 3 summarizes the results for a
first group of datasets G1 = {D1,D2,D3,D8,D9,D10}, while Fig. 4 shows the
result of the second group G2 = {D4,D5,D6,D7}. The first group contains
datasets having high correlation between their features and a middle correlation
between their labels. Meanwhile, the second group consists of datasets having
low correlation between their features and their labels.

For both groups, our proposal obtains a higher reduction rates when it
comes to the number of high-level features and labels describing the problem.

(a) accuracy (b) high-level features

(c) high-level labels

Fig. 4. Average statistics over G2 using the GSE1 and GSE2 measures.
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This difference is more significant when using high values for the association
thresholds. In terms of accuracy, although the differences are not significant,
the greatest differences are obtained in the G1 datasets, and that is, when high
thresholds of association are used, while for the G2 datasets the opposite occurs.
Our proposal achieves better results in datasets that have low correlation (i.e,
those in G2), which confirms the hypothesis of our research.

It is worth mentioning that this model does not aim at increasing the predic-
tion rates but to reduce of features and labels associated with the MLC problem.
However, our results cry for the implementation of a convolutional operator to
also increase networks’ discriminatory power.

5 Concluding Remarks

In this paper, we have presented a method to quantify the association between
problem variables (features and labels). This measure detects pairs of features (or
labels) that are highly associable, and that will be used to perform an aggregation
operation resulting in high-level features and labels. Unlike the pooling approach
proposed in [1], our proposal does not require that either the features or labels
have a certain degree of correlation with each other. Numerical results have
shown that our proposal is able to significantly reduce the number of parameters
in deep neural networks. When compared with the correlation-based variant, our
model reported higher reduction values in datasets having low correlation values
among their features and labels. As a result, we obtained simpler models without
significantly affecting networks’ discriminatory power.
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Abstract. Network representation learning aims to learn the low dimen-
sional vector of the nodes in a network while maintaining the inherent
properties of the original information. Existing algorithms focus on the
single coarse-grained topology of nodes or text information alone, which
cannot describe complex information networks. However, node struc-
ture and attribution are interdependent, indecomposable. Therefore, it
is essential to learn the representation of node based on both the topo-
logical structure and node additional attributes. In this paper, we pro-
pose a multi-granularity complex network representation learning model
(MNRL), which integrates topological structure and additional informa-
tion at the same time, and presents these fused information learning into
the same granularity semantic space that through fine-to-coarse to refine
the complex network. Experiments show that our method can not only
capture indecomposable multi-granularity information, but also retain
various potential similarities of both topology and node attributes. It
has achieved effective results in the downstream work of node classifica-
tion and the link prediction on real-world datasets.

Keywords: Multi-granularity · Network representation learning ·
Information fuses

1 Introduction

Complex network is the description of the relationship between entities and the
carrier of various information in the real world, which has become an indis-
pensable form of existence, such as medical systems, judicial networks, social
networks, financial networks. Mining Knowledge in networks has drown contin-
uous attention in both academia and industry. How to accurately analyze and
make decisions on these problems and tasks from different information networks
is a vital research. e.g. in the field of sociology, a large number of interactive
social platforms such as Weibo, WeChat, Facebook, and Twitter, create a lot
of social networks including relationships between users and a sharp increase in
interactive review text information. Studies have shown that these large, sparse
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new social networks at different levels of cognition will present the same small-
world nature and community structure as the real world. Then, based on these
interactive information networks for data analysis [1], such as the prediction of
criminal associations and sensitive groups, we can directly apply it to the real
world.

Network representation learning is an effective analysis method for the recog-
nition and representation of complex networks at different granularity levels,
while preserving the inherent properties, mapping high-dimensional and sparse
data to a low-dimensional, dense vector space. Then apply vector-based machine
learning techniques to handle tasks in different fields [2,3]. For example, link
prediction [4], community discovery [5], node classification [6], recommendation
system [7], etc.

In recent years, various advanced network representation learning meth-
ods based on topological structure have been proposed, such as Deepwalk [8],
Node2vec [9], Line [10], which has become a classical algorithm for representation
learning of complex networks, solves the problem of retaining the local topolog-
ical structure. A series of deep learning-based network representation methods
were then proposed to further solve the problems of global topological struc-
ture preservation and high-order nonlinearity of data, and increased efficiency.
e.g., SDNE [13], GCN [14] and DANE [12]. However, the existing researches has
focused on coarser levels of granularity, that is, a single topological structure,
without comprehensive consideration of various granular information such as
behaviors, attributes, and features. It is not interpretable, which makes many
decision-making systems unusable.

In addition, the structure of the entity itself and its attributes or behav-
ioral characteristics in a network are indecomposable [18]. Therefore, analyzing
a single granularity of information alone will lose a lot of potential information.
For example, in a job-related crime relationship network is show in Fig. 1, the
anti-reconnaissance of criminal suspects leads to a sparse network than com-
mon social networks. The undiscovered edge does not really mean two nodes
are not related like P2 and P3 or (P1 and P2), but in case detection, addi-
tional information of the suspect needs to be considered. The two without an
explicit relationship were involved in the same criminal activity at a certain
place (L1), they may have some potential connection. The suspect P4 and P7
are related by the attribute A4, the topology without attribute cannot recognize
why the relation between them is generated. So these location attributes and
activity information are inherently indecomposable and interdependence with
the suspect, making the two nodes recognize at a finer granularity based on the
additional information and relationship structure that the low-dimensional rep-
resentation vectors learned have certain similarities. We can directly predict the
hidden relationship between the two suspects based on these potential similari-
ties. Therefore, it is necessary to consider the network topology and additional
information of nodes.

The cognitive learning mode of information network is exactly in line with
the multi-granularity thinking mechanism of human intelligence problem solving,
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Fig. 1. The example of job-related crime relationship network

data is taken as knowledge expressed in the lowest granularity level of a multiple
granularity space, while knowledge as the abstraction of data in coarse granu-
larity levels [15]. Multi-granularity cognitive computing fuses data at different
granularity levels to acquire knowledge [16]. Similarly, network representation
learning can represent data into lower-dimensional granularity levels and pre-
serve underlying properties and knowledge. To summarize, Complex network
representation learning faces the following challenges:

Information Complementarity: The node topology and attributes are essen-
tially two different types of granular information, and the integration of these
granular information to enrich the semantic information of the network is a new
perspective. But how to deal with the complementarity of its multiple levels and
represent it in the same space is an arduous task.

Similarity Preservation: In complex networks, the similarity between entities
depends not only on the topology structure, but also on the attribute information
attached to the nodes. They are indecomposable and highly non-linear, so how
to represent potential proximity is still worth studying.

In order to address the above challenges, this paper proposes a multi-
granularity complex network learning representation method (MNRL) based on
the idea of multi-granularity cognitive computing.

2 Related Works

Network representation learning can be traced back to the traditional graph
embedding, which is regarded as a process of data from high-dimensional to low-
dimensional. The main methods include principal component analysis (PCA) [19]
and multidimensional scaling (MDS) [21]. All these methods can be understood
as using an n × k matrix to represent the original n × m matrix, where k �
m. Later, some researchers proposed IsoMap and LLE to maintain the overall
structure of the nonlinear manifold [20]. In general, these methods have shown
good performance on small networks. However, the time complexity is extremely
high, which makes them unable to work on large-scale networks. Another popular
class of dimensionality reduction techniques uses the spectral characteristics (e.g.
feature vectors) of a matrix that can be derived from a graph to embed the nodes.
Laplacian Eigenmaps [22] obtain low-dimensional vector representations of each
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node in the feature vector representation graph associated with its k smallest
non-trivial feature values.

Recently, DeepWalk was inspired by Word2vec [24], a certain node was
selected as the starting point, and the sequence of the nodes was obtained by
random walk. Then the obtained sequence was regarded as a sentence and input
to the Word2vec model to learn the low-dimensional representation vector. Deep-
Walk can obtain the local context information of the nodes in the graph through
random walks, so the learned representation vector reflects the local structure
of the point in the network [8]. The more neighboring points that two nodes
share in the network, the shorter the distance between the corresponding two
vectors. Node2vec uses biased random walks to make a choose between breadth-
first (BFS) and depth-first (DFS) graph search, resulting in a higher quality and
more informative node representation than DeepWalk, which is more widely used
in network representation learning. LINE [10] proposes first-order and second-
order approximations for network representation learning from a new perspec-
tive. HARP [25] obtains a vector representation of the original network through
graph coarsening aggregation and node hierarchy propagation. Recently, Graph
convolutional network (GCN) [14] significantly improves the performance of net-
work topological structure analysis, which aggregates each node and its neighbors
in the network through a convolutional layer, and outputs the weighted average
of the aggregation results instead of the original node’s representation. Through
the continuous stacking of convolutional layers, nodes can aggregate high-order
neighbor information well. However, when the convolutional layers are super-
imposed to a certain number, the new features learned will be over-smoothed,
which will damage the network representation performance. Multi-GS [23] com-
bines the concept of multi-granularity cognitive computing, divides the network
structure according to people’s cognitive habits, and then uses GCN to convolve
different particle layers to obtain low-dimensional feature vector representations.
SDNE [13] directly inputs the network adjacency matrix to the autoencoder [26]
to solve the problem of preserving highly nonlinear first-order and second-order
similarity.

The above network representation learning methods use only network struc-
ture information to learn low-dimensional node vectors. But nodes and edges in
real-world networks are often associated with additional information, and these
features are called attributes. For example, in social networking sites such as
Weibo, text content posted by users (nodes) is available. Therefore, the node
representation in the network also needs to learn from the rich content of node
attributes and edge attributes. TADW studies the case where nodes are associ-
ated with text features. The author of TADW first proved that DeepWalk essen-
tially decomposes the transition probability matrix into two low-dimensional
matrices. Inspired by this result, TADW low-dimensionally represents the text
feature matrix and node features through a matrix decomposition process [27].
CENE treats text content as a special type of node and uses node-node struc-
ture and node-content association for node representation [28]. More recently,
DANE [12] and CAN [34] uses deep learning methods [11] to preserve poten-
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tially non-linear node topology and node attribute information. These two kinds
of information provide different views for each node, but their heterogeneity is
not considered. ANRL optimizes the network structure and attribute information
separately, and uses the Skip-Gram model to skillfully handle the heterogene-
ity of the two different types of information [29]. Nevertheless, the consistent
and complementary information in the topology and attributes is lost and the
sensitivity to noise is increased, resulting in a lower robustness.

To process different types of information, Wang put forward the concepts of
“from coarse to fine cognition” and “fine to coarse” fusion learning in the study
of multi-granularity cognitive machine learning [30]. People usually do cognition
at a coarser level first, for example, when we meet a person, we first recognize
who the person is from the face, then refine the features to see the freckles on the
face. While computers obtain semantic information that humans understand by
fusing fine-grained data to coarse-grained levels. Refining the granularity of com-
plex networks and the integration between different granular layers is still an area
worthy of deepening research [17,31]. Inspired by this, divides complex networks
into different levels of granularity: Single node and attribute data are microstruc-
tures, meso-structures are role similarity and community similarity, global net-
work characteristics are extremely macro-structured. The larger the granularity,
the wider the range of data covered, the smaller the granularity, the narrower
the data covered. Our model learns the semantic information that humans can
understand at above mentioned levels from the finest-grained attribute informa-
tion and topological structure, finally saves it into low-dimensional vectors.

3 Multi-granular Network Representation Learning

3.1 Problem Definition

Let G = (V,E,A) be a complex network, where V represents the set of n nodes
and E represents the set of edges, and A represents the set of attributes. In detail,
A ∈ �n×m is a matrix that encodes all node additional attributes information,
and ai ∈ A describes the attributes associated with node vi, where vi ∈ V .
eij = (vi, vj) ∈ E represents an edge between vi and vj . We formally define the
multi-granularity network representation learning as follows:

Definition 1. Given a complex network G = (V,E,A), we represent each node
vi and attribute ai as a low-dimensional vector yi by learning a functionfG :
V → �d, where d � |V | and yi not only retains the topology of the nodes but
also the node attribute information.

Definition 2. Given network G = (V,E,A). Semantic similarity indicates
that two nodes have similar attributes and neighbor structure, and the low-
dimensional vector obtained by the network representation learning maintains
the same similarity with the original network. E.g., if vi ∼ vj through the map-
ping function fG to get the low-dimensional vectors yi = fG (vi), yj = fG (vj),
yi and yj are still similar, yi ∼ yj .
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Definition 3. Complex networks are composed of node and attribute gran-
ules (elementary granules), which can no longer be decomposed. Learning these
grains to get different levels of semantic information includes topological struc-
ture (micro), role acquaintance (meso) and global structure (macro). The com-
plete low-dimensional representation of a complex network is the aggregation of
these granular layers of information.

3.2 Multi-granularity Representation Model

In order to solve the problems mentioned above, inspired by multi-granularity
cognitive computing, we propose a multi-granularity network representation
learning method (MNRL), which refines the complex network representation
learning from the topology level to the node’s attribute characteristics and var-
ious attachments. The model not only fuses finer granular information but also
preserves the node topology, which enriches the semantic information of the rela-
tional network to solve the problem of the indecomposable and interdependence
of information. The algorithm framework is shown in Fig. 2.

Fig. 2. The architecture of the proposed MNRL model.

Firstly, the topology and additional information are fused through the func-
tion H, then the variational encoder is used to learn network representation from
fine to coarse. The output of the embedded layer are low-dimensional vectors,
which combines the attribute information and the network topology.
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Multi-granularity Information Fusion. To better characterize multiple
granularity complex networks and solve the problem of nodes with potential
associations that cannot be processed through the relationship structure alone,
we refine the granularity to additional attributes, and designed an information
fusion method, which are defined as follows:

xi = H (vi)

H (vi) = ai +
∑

vj∈N(vi)

d (vj)
d (vi)

wijaj
(1)

Where N (vi) is the neighbors of node vi in the network, ai is the attributes asso-
ciated with node vi. wij > 0 for weighted networks and wij = 1 for unweighted
networks. d(vj) is the degree of node vj . xi contains potential information of
multiple granularity information, both the neighbor attribute information and
the node itself.

Information Complementarity Capture. To capture complementarity of
different granularity hierarchies and avoid the effects of various noises, our model
in Fig. 1 is a variational auto-encoder, which is a powerful unsupervised deep
model for feature learning. It has been widely used for multi-granularity cognitive
computing applications. In multi-granularity complex networks, auto-encoders
fuse different granularity data to a unified granularity space from fine to coarse.
The variational auto-encoder contains three layers, namely, the input layer, the
hidden layer, and the output layer, which are defined as follows:

y1
i = σ

(
w(1)xi + b(1)

)

yk
i = σ

(
w(k)yk−1

i + b(k)
)

, k = 2, . . . ,K − 2

yμ = w(K−1)yk
i + b(K−1), yσ = w(K−1)yk

i + b(K−1)

yK
i = σ (yμ + E ∗ yσ)

(2)

Here, K is the number of layers for the encoder and decoder. σ (·) represents
the possible activation functions such as ReLU, sigmod or tanh. wk and bk are
the transformation matrix and bias vector in the k-th layer, respectively. yK

i

is the unified vector representation that learning from model, which obeys the
distribution function E, reducing the influence of noise. E ∼ (0, 1) is the standard
normal distribution in this paper. In order to make the learned representation
as similar as possible to the given distribution,it need to minimize the following
loss function:

LKL = y2
μ + y2

σ − log
(
y2

σ

) − 1 (3)

To reduce potential information loss of original network, our goal is to minimize
the following auto-encoder loss function:

LRE =
n∑

i

‖x̂i − xi‖22 (4)
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where x̂i is the reconstruction output of decoder and xi incorporates prior knowl-
edge into the model.

Semantic Similarity Preservation. To formulate the homogeneous network
structure information, skip-gram model has been widely adopted in recent works
and in the field of heterogeneous network research, Skip-grams suitable for dif-
ferent types of nodes processing have also been proposed [32]. In our model, the
context of a node is the low-dimensional potential information. Given the node
vi and the associated reconstruction information yi, we randomly walk c ∈ C by
maximizing the loss function:

LHS = arg max
n∑

i=1

∑

c∈C

∑

j≤|B|,j �=0

logp (vi+j |yi) (5)

Where B is the size of the generation window and the conditional probability
p (vi+j |yi) is defined as the Softmax function:

p (vi+j |yi) =
ev

′T
i+jyi

∑n
k=1 ev

′T
k yi

(6)

In the above formula, v
′
i is the node context representation of node vi, and

yi is the result produced by the auto-encoder. Directly optimizing Eq. (6) is
computationally expensive, which requires the summation over the entire set of
nodes when computing the conditional probability of p (vi+j |yi). We adopt the
negative sampling approach proposed in Metapath2vec++ that samples multiple
negative samples according to some noisy distributions:

log σ
(
v

′T
i+jyi

)
+

S∑

t=1

Ev∼Pn(v)

[
log σ

(
−v

′T
n yi

)]
(7)

Where σ(·) = 1/(1 + exp(·)) is the sigmoid function and S is the number of

negative samples. We set Pn (v) ∝ d
3
4
v as suggested in Wode2vec, where dv is

the degree of node vi [24,32]. Through the above methods, the node’s attribute
information and the heterogeneity of the node’s global structure are processed
and the potential semantic similarity kept in a unified granularity space.

MNRL Model Joint Optimization. Multi-granularity complex network rep-
resentation learning through the fusion of multiple kinds of granularity informa-
tion, learning the basic granules through an autoencoder, and representing differ-
ent levels of granularity in a unified low-dimensional vector solves the potential
semantic similarity between nodes without direct edges. The model simultane-
ously optimizes the objective function of each module to make the final result
robust and effective. The function is shown below:

L = αLRE + βLKL + ψLV AE + γ (−LHS) (8)
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In detail, LRE is the auto-encoder loss function of Eq. (4), LKL has been stated
in formula (3), and LHS is the loss function of the skip-gram model in Eq. (5).
α, β, ψ, γ are the hyper parameters to balance each module. LV AE is the param-
eter optimization function, the formula is as follows:

LV AE =
1
2

K∑

k=1

(
∥∥wk

∥∥2

F
+

∥∥bk
∥∥2

F
+

∥∥ŵk
∥∥2

F
+

∥∥∥b̂k
∥∥∥
2

F
) (9)

Where wk, ŵk are weight matrices for encoder and decoder respectively in the k-
th layer, and bk, b̂k are bias matrix. The complete objective function is expressed
as follows:

L = α

n∑

i

‖x̂i − xi‖22

+ β
(
y2

μ + y2
σ − log

(
y2

σ

) − 1
)

+ γ

n∑

i=1

∑

c∈C

∑

j≤|B|,j �=0

logp (vi+j |yi)

+
ψ

2

K∑

k=1

(
∥∥wk

∥∥2

F
+

∥∥bk
∥∥2

F
+

∥∥ŵk
∥∥2

F
+

∥∥∥b̂k
∥∥∥
2

F
)

(10)

MNRL preserves multiple types of granular information include node attributes,
local network structure and global network structure information in a unified
framework. The model solves the problems of highly nonlinearity and com-
plementarity of various granularity information, and retained the underlying
semantics of topology and additional information at the same time. Finally, we
optimize the object function L in Eq. (10) through stochastic gradient descent.
To ensure the robustness and validity of the results, we iteratively optimize all
components at the same time until the model converges. The learning algorithm
is summarized in Algorithm 1.

Algorithm1. The Model of MNRL

Input: Graph G = (V, E, A), Window size B, times of walk P, walk length U, hyper-
parameter α, β, ψ, γ, embedding size d.

Output: Node representations yk ∈ �d.
1: Generate node context starting P times with random walks with
length U at each node.
2: Multiple granularity information fusion for each node by function H (·)
3: Initialize all parameters
4: While not converged do
5: Sample a mini-batch of nodes with its context
6: Compute the gradient of ∇L
7: Update auto-encoder and skip-gram module parameters
8: End while
9: Save representations Y = yK



Multi-granularity Complex Network Representation Learning 245

4 Experiment

4.1 Datasets and Baselines

Datasets: In our experiments, we employ four benchmark datasets: Facebook1,
Cora, Citeseer and PubMed2. These datasets contain edge relations and various
attribute information, which can verify that the social relations of nodes and
individual attributes have strong dependence and indecomposability, and jointly
determine the properties of entities in the social environment. The first three
datasets are paper citation networks, and these datasets are consist of bibliog-
raphy publication data. The edge represents that each paper may cite or be
cited by other papers. The publications are classified into one of the following
six classes: Agents, AI, DB, IR, ML, HCI in Citeseer and one of the three classes
(i.e., “Diabetes Mellitus Experimental”, “Diabetes Mellitus Type 1”, “Diabetes
Mellitus Type 2”) in Pubmed. The Cora dataset consists of Machine Learn-
ing papers which are classified into seven classes. Facebook dataset is a typical
social network. Nodes represent users and edges represent friendship relations.
We summarize the statistics of these benchmark datasets in Table 1.

Table 1. Statistics of the datasets. ‘-’ indicates unknown labels.

Dataset Nodes Edges Attributes Labels

Citeseer 3312 4660 3703 6

PubMed 19717 44338 500 3

Cora 2708 5278 1433 7

Facebook 4039 88234 1238 -

Baselines: To evaluate the performance of our proposed MNRL, we compare
it with 9 baseline methods, which can be divided into two groups. The former
category of baselines leverage network structure information only and ignore the
node attributes contains DeepWalk, Node2Vec, GraRep [33], LINE and SDNE.
The other methods try to preserve node attribute and network structure prox-
imity, which are competitive competitors. We consider TADW, GAE, VGAE,
DANE as our compared algorithms. For all baselines, we used the implemen-
tation released by the original authors. The parameters for baselines are tuned
to be optimal. For DeepWalk and Node2Vec, we set the window size as 10, the
walk length as 80, the number of walks as 10. For GraRep, the maximum transi-
tion step is set to 5. For LINE, we concatenate the first-order and second-order
result together as the final embedding result. For the rest baseline methods,
their parameters are set following the original papers. At last, the dimension
of the node representation is set as 128. For MNRL, the number of layers and
dimensions for each dataset are shown in Table 2.
1 https://snap.stanford.edu/data.
2 https://linqs.soe.ucsc.edu/data.

https://snap.stanford.edu/data
https://linqs.soe.ucsc.edu/data
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Table 2. Detailed network layer structure information.

Dataset Number of neurons in each layer

Citeseer 3703-1500-500-128-500-1500-3703

Pubmed 500-200-128-200-500

Cora 1433-500-128-500-1433

FaceBook 1238-500-128-500-1238

4.2 Node Classification

To show the performance of our proposed MNRL, we conduct node classifica-
tion on the learned node representations. Specifically, we employ SVM as the
classifier. To make a comprehensive evaluation, we randomly select 10%, 30%,
50% nodes as the training set and the rest as the testing set respectively. With
these randomly chosen training sets, we use five-fold cross validation to train the
classifier and then evaluate the classifier on the testing sets. To measure the clas-
sification result, we employ Micro-F1 (Mi-F1) and Macro-F1 (Ma-F1) as metrics.
The classification results are shown in Table 3, 4, 5 respectively. From these four
tables, we can find that our proposed MNRL achieves significant improvement
compared with plain network embedding approaches, and beats other attributed
network embedding approaches in most situations.

Table 3. Node classification result of Citeseer

Method 10% 30% 50%

Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

DeepWalk 0.5138 0.4711 0.5658 0.5301 0.5961 0.5415

Node2Vec 0.5302 0.4786 0.6233 0.5745 0.6317 0.5929

GraRep 0.4796 0.4613 0.5477 0.5098 0.5662 0.5026

LINE 0.5178 0.4825 0.5679 0.5249 0.6167 0.5733

SDNE 0.5013 0.4896 0.5691 0.5283 0.5877 0.5447

TADW 0.5939 0.5218 0.6361 0.5707 0.6631 0.5660

GAE 0.5912 0.5441 0.6439 0.5802 0.6451 0.5767

VGAE 0.6201 0.5638 0.6413 0.5789 0.6311 0.5799

DANE 0.6217 0.5740 0.6889 0.6495 0.7332 0.6832

MRNL 0.6833 0.6365 0.7176 0.6451 0.7301 0.6905

Experimental results show that the representation results of each comparison
algorithm perform well in node classification in downstream tasks. In general, a
model that considers node attribute information and node structure information
performs better than structure alone.
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Table 4. Node classification result of Cora

Method 10% 30% 50%

Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

DeepWalk 0.7567 0.7359 0.7947 0.7892 0.8234 0.8091

Node2Vec 0.7489 0.7311 0.8168 0.8103 0.8264 0.8135

GraRep 0.7456 0.7387 0.7991 0.7732 0.8011 0.7849

LINE 0.7212 0.7055 0.8193 0.8140 0.8429 0.8163

TADW 0.7400 0.7189 0.8127 0.7832 0.8413 0.8091

GAE 0.7713 0.7540 0.7985 0.7817 0.8101 0.7996

VGAE 0.7890 0.7667 0.8096 0.8001 0.8137 0.7996

DANE 0.7789 0.7703 0.8023 0.7905 0.8314 0.8299

MRNL 0.8047 0.7736 0.8169 0.7974 0.8450 0.8225

Table 5. Node classification result of PubMed

Method 10% 30% 50%

Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

DeepWalk 0.7831 0.7698 0.8067 0.7891 0.8107 0.8012

Node2Vec 0.7984 0.7749 0.8146 0.7907 0.8103 0.7859

GraRep 0.8015 0.7771 0.8052 0.7861 0.8125 0.7958

LINE 0.8067 0.7889 0.8169 0.8012 0.8222 0.8011

TADW 0.8355 0.8304 0.8561 0.8413 0.8719 0.8636

GAE 0.8247 0.8191 0.8278 0.8201 0.8266 0.8217

VGAE 0.8346 0.8202 0.8331 0.8276 0.8355 0.8303

DANE 0.8501 0.8483 0.8538 0.8496 0.8645 0.8643

MRNL 0.8532 0.8411 0.8597 0.8501 0.8677 0.8605

From these three tables, we can find that our proposed MNRL achieves
significant improvement compared with single granularity network embedding
approaches. For joint representation, our model performs more effectively than
most similar types of algorithms, especially in the case of sparse data, because
our model input is the fusion information of multiple nodes with extra infor-
mation. When comparing DANE, our experiments did not improve significantly
but it achieved the expected results. DANE uses two auto-encoders to learn and
express the network structure and attribute information separately, since the
increase of parameters makes the optimal selection in the learning process, the
performance will be better with the increase of training data, but the demand for
computing resources will also increase and the interpretability of the algorithm
is weak. While MNRL uses a variational auto-encoder to learn the structure and
attribute information at the same time, the interdependence of information is
preserved, which handles heterogeneous information well and reduces the impact
of noise.
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4.3 Link Prediction

In this subsection, we evaluate the ability of node representations in reconstruct-
ing the network structure via link prediction, aiming at predicting if there exists
an edge between two nodes, is a typical task in networks analysis. Following
other model works do, to evaluate the performance of our model, we randomly
holds out 50% existing links as positive instances and sample an equal number
of non-existing links. Then, we use the residual network to train the embedding
models. Specifically, we rank both positive and negative instances according to
the cosine similarity function. To judge the ranking quality, we employ the AUC
to evaluate the ranking list and a higher value indicates a better performance.
We perform link prediction task on Cora datasets and the results is shown in
Fig. 3.

Fig. 3. Link prediction task on Cora and Facebook datasets

Compared with traditional algorithms that representation learning from a
single granular structure information, the algorithms that both on structure and
attribute information is more effective. TADW performs well, but the method
based on matrix factorization has the disadvantage of high complexity in large
networks. GAE and VGAE perform better in this experiment and are suitable
for large networks. MNRL refines the input and retains potential semantic infor-
mation. Link prediction relies on additional information, so it performs better
than other algorithms in this experiment.

5 Conclusion

In this paper, we propose a multi-granularity complex network representation
learning model (MNRL), which integrates topology structure and additional
information, and presents these fused information learning into the same granu-
larity semantic space that through fine-to-coarse to refine the complex network.
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The effectiveness has been verified by extensive experiments, shows that the
relation of nodes and additional attributes are indecomposable and complemen-
tarity, which together jointly determine the properties of entities in the network.
In practice, it will have a good application prospect in large information network.
Although the model saves a lot of calculation cost and well represents complex
networks of various granularity, it needs to set different parameters in differ-
ent application scenarios, which is troublesome and needs to be optimized in
the future. The multi-granularity complex network representation learning also
needs to consider the dynamic network and adapt to the changes of network
nodes, so as to realize the real-time information network analysis.

Acknowledgments. This work is supported by the National Key Research and Devel-
opment Program of China under Grant 2017YFC0804002, the National Natural Science
Foundation of China (No. 61936001, No. 61772096).

References

1. Marsden, P.V., Lin, N. (eds.): Social Structure and Network Analysis, pp. 201–218.
Sage, Beverly Hills (1982)

2. Zhang, D., Yin, J., Zhu, X., Zhang, C.: Network representation learning: a survey.
IEEE Trans. Big Data. 6(1), 3–28 (2020)

3. Fischer, A., Botero, J.F., Beck, M.T., De Meer, H., Hesselbach, X.: Virtual network
embedding: a survey. IEEE Commun. Surv. Tutor. 15(4), 1888–1906 (2013)

4. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks.
J. Am. Soc. Inform. Sci. Technol. 58(7), 1019–1031 (2007)

5. Wang, F., Li, T., Wang, X., Zhu, S., Ding, C.: Community discovery using non-
negative matrix factorization. Data Min. Knowl. Disc. 22(3), 493–521 (2011)

6. Bhagat, S., Cormode, G., Muthukrishnan, S.: Node classification in social networks.
In: Aggarwal, C. (ed.) Social Network Data Analytics, pp. 115–148. Springer,
Boston (2011). https://doi.org/10.1007/978-1-4419-8462-3 5

7. Resnick, P., Varian, H.R.: Recommender systems. Commun. ACM 40(3), 56–58
(1997)

8. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 701–710 (2014)

9. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 855–864 (2016)

10. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale infor-
mation network embedding. In: Proceedings of the 24th International Conference
on World Wide Web, pp. 1067–1077 (2015)

11. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

12. Gao, H., Huang, H.: Deep attributed network embedding. In: IJCAI 2018, pp.
3364–3370 (2018)

13. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 1225–1234 (2016)

https://doi.org/10.1007/978-1-4419-8462-3_5


250 P. Li et al.

14. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

15. Wang, G.: DGCC: data-driven granular cognitive computing. Granular Comput.
2(4), 343–355 (2017). https://doi.org/10.1007/s41066-017-0048-3

16. Bargiela, A., Pedrycz, W.: Granular computing. In: Handbook on Computational
Intelligence: Volume 1: Fuzzy Logic, Systems, Artificial Neural Networks, and
Learning Systems, pp. 43–66 (2016)

17. Lin, T.Y., Yao, Y.Y., Zadeh, L.A. (eds.) Data Mining, Rough Sets and Granular
Computing, vol. 95. Physica (2013)

18. Tu, K., Cui, P., Wang, X., Wang, F., Zhu, W.: Structural deep embedding for hyper-
networks. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

19. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometr.
Intell. Lab. Syst. 2(1–3), 37–52 (1987)

20. Balasubramanian, M., Schwartz, E.L.: The isomap algorithm and topological sta-
bility. Science 295(5552), 7 (2002)

21. Cox, T.F., Cox, M.A.: Multidimensional Scaling. Chapman and Hall/CRC, Boca
Raton (2000)

22. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data
representation. Neural Comput. 15(6), 1373–1396 (2003)

23. Zhang, L., Qian, F., Zhao, S., et al.: Network representation learning based on
multi-granularity structure. CAAI Trans. Intell. Syst. 14(6), 1233–1242 (2019).
https://doi.org/10.11992/tis.201905045

24. Goldberg, Y., Levy, O.: word2vec explained: deriving Mikolov et al’.s negative-
sampling word-embedding method. arXiv preprint arXiv:1402.3722 (2014)

25. Chen, H., Perozzi, B., Hu, Y., Skiena, S.: Harp: hierarchical representation learning
for networks. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

26. Ng, A.: Sparse autoencoder. In: CS294A Lecture notes, vol. 72, pp. 1–19 (2011)
27. Yang, C., Liu, Z., Zhao, D., Sun, M., Chang, E.: Network representation learning

with rich text information. In: Twenty-Fourth International Joint Conference on
Artificial Intelligence (2015)

28. Sun, X., Guo, J., Ding, X., Liu, T.: A general framework for content-enhanced
network representation learning. arXiv preprint arXiv:1610.02906 (2016)

29. Zhang, Z., et al.: ANRL: attributed network representation learning via deep neural
networks. In: IJCAI, vol. 18, pp. 3155–3161 (2018)

30. Wang, G., Xu, J.: Granular computing with multiple granular layers for brain big
data processing. Brain Inform. 1(4), 1–10 (2014). https://doi.org/10.1007/s40708-
014-0001-z

31. Chang, L.Y., Wang, G.Y., Wu, Y.: An approach for attribute reduction and rule
generation based on rough set theory. J. Softw. 10(11), 1206–1211 (1999)

32. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: scalable representation learning
for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 135–144 (2017)

33. Cao, S., Lu, W., Xu, Q.: GraRep: learning graph representations with global struc-
tural information. In: Proceedings of the 24th ACM International on Conference
on Information and Knowledge Management, pp. 891–900 (2015)

34. Meng, Z., Liang, S., Bao, H., Zhang, X.: Co-embedding attributed networks. In:
Proceedings of the Twelfth ACM International Conference on Web Search and
Data Mining, pp. 393–401 (2019)

http://arxiv.org/abs/1609.02907
https://doi.org/10.1007/s41066-017-0048-3
https://doi.org/10.11992/tis.201905045
http://arxiv.org/abs/1402.3722
http://arxiv.org/abs/1610.02906
https://doi.org/10.1007/s40708-014-0001-z
https://doi.org/10.1007/s40708-014-0001-z


Towards Student Centric Rough Concept
Inventories

A. Mani1,2(B)

1 HBCSE, Tata Institute of Fundamental Research, Mumbai 400088, India
a.mani.cms@gmail.com, mani@hbcse.tifr.res.in
2 Indian Statistical Institute, Kolkata 700108, India

https://www.logicamani.in

Abstract. In the context of education research, a concept inventory is
an instrument (that consists of a number of multiple-choice questions)
designed to test the understanding of concepts (and possibly the reasons
for failure to understand) by learners. Subject to a few caveats they are
known to be somewhat effective in non student centric learning environ-
ments. In this research the issue of adapting the subject/concept-specific
instruments to make room for diverse response patterns (including vague
ones) is explored in some detail by the present author. It is shown that
higher granular operator spaces (or partial algebras) with additional tem-
poral and key operators are well suited for handling them. An improved
version of concept inventory called rough concept inventory that can han-
dle vague subjective responses is also proposed in this research.

Keywords: Concept inventory · Student centric learning · Rough
objects · Mereology · High granular operator partial algebras ·
Contamination problem · Education research · Force CI · Function CI

1 Introduction

A test that focuses on evaluating a student’s competence in a specific skill is a
criterion-referenced test. Usually a person’s test scores are intended to suggest
a general statement about their capabilities and behavior. Concept inventories
(CIs) are criterion-referenced test designed to test a student’s functional under-
standing of concepts. However they are mostly used by education researchers to
assess the effectiveness of pedagogical methods.

The standard way to construct concept inventories is as follows:

• select a number of key concepts in a subject or topic;
• formulate multiple choice questions (MCQs) that aim to test key aspects of

applications of the chosen concepts;
• each question is required to have at least one correct answer and a number of

incorrect answers (distractors) based on student misconceptions or alternative
conceptions. Individual steps may require plenty of additional work as can be
seen in [1] also because the stakeholders views may not be clear in the first
place.

c© Springer Nature Switzerland AG 2020
R. Bello et al. (Eds.): IJCRS 2020, LNAI 12179, pp. 251–266, 2020.
https://doi.org/10.1007/978-3-030-52705-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52705-1_19&domain=pdf
http://orcid.org/0000-0002-0880-1035
https://doi.org/10.1007/978-3-030-52705-1_19


252 A. Mani

They have been used in studying the effectiveness of a number of pedagogi-
cal methods that target concept maturity. These involve pre and post tests that
concern assessing students or participants before and after the implementation
of the pedagogical procedure (see for example [2]). Like most other practices in
education research, a number of concerns have been raised about the methodol-
ogy and its supposed effectiveness in measuring all that it claims to measure (see
Section 3 for some details). It is accepted that descriptive explanations by stu-
dents for their choice of answers can significantly boost the quality of assessment
offered by the concept inventory. Usually these are evaluated by instructors or
researchers and the scores from MCQs are accordingly modified.

Apart from the sheer volume of responses generated in specific studies involv-
ing the use of concept inventories, in some learning environments it is often the
case that instructors themselves may not be sufficiently competent in handling
concepts [1]. Therefore automated methods are relevant for evaluation of CIs and
for extending their use to provide relevant feedback to learners and instructors.

In student-centered learning students are put at the center of the learning
process, and are encouraged to learn through active methods. Arguably, stu-
dents become more responsible for their learning in such environments. In tra-
ditional teacher-centered classrooms, teachers have the role of instructors and
are intended to function as the only source of knowledge. By contrast, teach-
ers are typically intended to perform the role of facilitators in student-centered
learning contexts. A number of best practices for teaching in such contexts [3]
have evolved over time. These methodologies are naturally at odds with concept
inventories.

Granular operator spaces and variants [4–7] are abstract frameworks for
extending granularity and parthood in the context of general rough sets, and
are also variants of rough Y-systems studied by the present author [8]. It has
been recently shown by her that all types of granular operator spaces and vari-
ants can be transformed into partial algebras that satisfy additional conditions.

General rough sets are used in knowledge representation in a number of con-
texts [5,6,9–16]. But the problem of knowledge representation in the present con-
text is more complicated. Because the concepts associated with concept invento-
ries have some ontology associated, it is not a good idea to directly reduce them
to information table format. Reduction of additional information from descrip-
tive responses may be reasonable in supervised perspective, but it is far more
easier to reduce them to higher granular operator perspectives or abstract opera-
tor perspectives. Learning contexts (especially constructive learning) adopt per-
spectives that are most compatible with axiomatic granular perspective because
of the hierarchies imposed on any body of knowledge. For example, it is usu-
ally imposed that multiplication of natural numbers should be taught only after
addition has been taught (and therefore this corresponds to an instance of con-
text dependency). It can be shown that in most constructive teaching contexts,
teachers stick to an approximately fixed hierarchy of concept dependence and
that student centric activities are pursued (if at all) within a relatively looser
variant of the same.
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In this research, aspects of concept inventories are explained, a rough variant
is introduced and it is shown that higher granular operator spaces with additional
temporal operators are optimal for representing related knowledge. The paper is
organized as follows: in the next section necessary background and recent results
on partial groupoids are mentioned, essential aspects of concept inventories are
explained and variants are proposed in the third section, higher granular operator
spaces are explained and enhanced versions introduced in the next section, rough
concept inventories are proposed in the fifth, and an example is explored in the
sixth section.

2 Background, Recent Results

An information table I, is a tuple of the form

I = 〈S, A, {Va : a ∈ A}, {fa : a ∈ A}〉

with S, A and Va being sets of objects, attributes and values respectively. Infor-
mation tables generate various types of relational or relator spaces which in turn
relate to approximations of different types and form a substantial part of the
problems encountered in general rough sets.

The rough domain corresponds to rough objects of specific type, while the
classical and hybrid one correspond to all and mixed types of objects respec-
tively [8]. Boolean algebra with approximation operators forms a classical rough
semantics [9]. This fails to deal with the behavior of rough objects alone. The
scenario remains true even when R in the approximation space is replaced by
arbitrary binary relations. In general, ℘(S) can be replaced by a set with a
parthood relation and some approximation operators defined on it as in [8].
The associated semantic domain is the classical one for general Rough sets. The
domain of discourse associated with roughly equivalent sets is a rough seman-
tic domain. Hybrid domains can also be generated and have been used in the
literature [6].

The problem of reducing confusion among concepts from one semantic
domain in another is referred to as the contamination problem. Use of numeric
functions like rough membership and inclusion maps based on cardinalities of
subsets are also sources of contamination. The rationale can also be seen in the
definition of operations like � in pre-rough algebra (for example) that seek to
define interaction between rough objects but use classical concepts that do not
have any interpretation in the rough semantic domain. Details can be found in
[17]. In machine learning practice, whenever inherent shortcomings in algorith-
mic framework being used are the source of noise then the frameworks may be
said to be contaminated.

Key concepts used in the context of general rough sets (and also high granular
operator spaces [4,6]) are mentioned next.

• A crisp object is one that has been designated as crisp or is an approximation
of some other object.
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• A vague object is one whose approximations do not coincide with itself or
that which has been designated as a vague object.

• An object that is explicitly available for computations in a rough semantic
domain (in a contamination avoidance perspective) is a discernible object.

• Many definitions and representations are associated with the idea of rough
objects. From the representation point of view these are usually functions
of definite or crisp or approximations of objects. Objects that are invariant
relative to an approximation process are said to be definite objects. In rough
perspectives of knowledge [5,9], algebraic combinations of definite objects (in
some sense) or granules are assumed to correspond to crisp concepts, and
knowledge to specific collections of crisp concepts. It should be mentioned
that non algebraic definitions are excluded in the present author’s axiomatic
approach [4,6,8].

Definition 1. A partial algebra (see [18])P is a tuple of the form

〈P , f1, f2, . . . , fn, (r1, . . . , rn)〉
with P being a set, fi’s being partial function symbols of arity ri. The interpre-
tation of fi on the set P should be denoted by f

P
i , but the superscript will be

dropped in this paper as the application contexts are simple enough. If predicate
symbols enter into the signature, then P is termed a partial algebraic system.

In this paragraph the terms are not interpreted. For two terms s, t, s
ω= t

shall mean, if both sides are defined then the two terms are equal (the quantifi-
cation is implicit). ω= is the same as the existence equality (also written as e=) in

the present paper. s
ω∗
= t shall mean if either side is defined, then the other is

and the two sides are equal (the quantification is implicit). Note that the latter
equality can be defined in terms of the former as

(s ω= s −→ s
ω= t) & (t ω= t −→ s

ω= t)

In relational approach to general rough sets various granular, pointwise or
abstract approximations are defined, and rough objects of various kinds are
studied [6,8,12,19–21]. These approximations may be derived from information
tables or may be abstracted from data relating to human (or machine) reasoning.
A general approximation space is a pair of the form S = 〈S,R〉 with S being a
set and R being a binary relation (S and S will be used interchangeably through-
out this paper). Approximations of subsets of S may be generated from these
and studied at different levels of abstraction in theoretical approaches to rough
sets. In relational approaches to rough sets a number of types of knowledge are
representable starting from those by classical rough sets [9] to general rough sets
as in [4,11,12,22]. However those based on relational approaches are not always
applicable in evaluation and representation of academic data.

Mereology, the study of parts and wholes, has been studied from philosoph-
ical, logical, algebraic, topological and applied perspectives. In the literature on
mereology [11,23,24], it is argued that most ideas of binary part of relations
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in human reasoning are at least antisymmetric and reflexive. A major reason
for not requiring transitivity of the parthood relation is because of the functional
reasons that lead to its failure (see [23]), and to accommodate apparent parthood
[24]. The study of mereology in the context of rough sets can be approached
in at least two essentially different ways. In the approach aimed at reducing
contamination by the present author [4–6,8], the primary motivation is to avoid
intrusion into the data by way of additional assumptions about the data and
to capture rough reasoning at the level. In numeric function based approaches
[25], the strategy is to base definitions of parthood on the degree of rough inclu-
sion or membership – this differs substantially from the former approach. Rough
Y-systems and granular operator spaces, introduced and studied extensively by
the present author [4–6,8,24], are essentially higher order abstract approaches in
general rough sets in which the primitives are ideas of approximations, parthood,
and granularity.

2.1 Relations and Groupoids

Under certain conditions, partial or total groupoid operations can correspond to
binary relations on a set. This subsection is repeated from a forthcoming paper
for Sect. 4.

Definition 2. In a general approximation space S = 〈S,R〉 consider the follow-
ing conditions:

(∀a, b)(∃c)Rac & Rbc (up-dir)

(∀a)Raa (reflexivity)

(∀a, b)(Rab & Rba −→ a = b) (anti-sym)

If S satisfies up-dir, then it shall said to be a up-directed approximation space. If
it satisfies the last two then it shall said to be a parthood space and a up-directed
parthood space when it satisfies all three.

The condition up-dir is equivalent to the set UR(a, b) = {x : Rax & Rbx}
being nonempty for every a, b ∈ S and is also referred to as directed in the
literature. It is avoided because it may cause confusion.

Definition 3. If R is a binary relation on S, then a type-1 partial groupoid
operation (1PGO) determined by R is defined as follows:

(∀a, b) a ◦ b =

⎧
⎪⎨

⎪⎩

b if Rab

c c ∈ UR(a, b) & ¬Rab

undefined otherwise

If R is up-directed, then the operation is total. In this case, the collection of
groupoids satisfying the condition will be denoted by B(S) and an arbitrary ele-
ment of it will be denoted by B(S). The term ’a ◦ b’ will be written as ’ab’ for
convenience.
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Theorem 1. The partial operation ◦ corresponds to a binary relation R if and
only if

(∀a, b)(∃z)(ab 
= b & az = bz = z → a(ab) = b(ab) = ab)
(∀a, b, c)(ab = c → c = b or (∃z)az = bz = z)

The following results have been proved for relational systems in [26,27].

Theorem 2. For a groupoid A, the following are equivalent

• A reflexive up-directed approximation space S corresponds to A
• A satisfies the equations

aa = a & a(ab) = b(ab) = ab

Definition 4. If A is a groupoid, then two general approximation spaces corre-
sponding to it are �(A) = 〈A,RA〉 and �∗(A) = 〈A,R∗

A〉 with

RA = {(a, b) : ab = b}
R∗

A =
⋃

{(a, ab), (b, ab)}

Theorem 3. • If A is a groupoid then �∗(A) is up-directed.
• If a groupoid A |= a(ab) = b(ab) = ab then �(A) = �∗(A).
• If S is an up-directed approximation space then �((B)(S)) = S.

Theorem 4. If S = 〈S,R〉 is a up-directed approximation space, then

• R is reflexive ⇔ B(S) |= aa = a.
• R is symmetric ⇔ B(S) |= (ab)a = a.
• R is transitive ⇔ B(S) |= a((ab)c) = (ab)c.
• If B(S) |= ab = ba then R is antisymmetric.
• If B(S) |= (ab)a = ab then R is antisymmetric.
• If B(S) |= (ab)c = a(bc) then R is transitive.

Morphisms between up-directed approximation spaces are preserved by cor-
responding groupoids in a nice way. This is an additional reason for investigating
the algebraic perspective.

3 Ontology Matters

Concept inventories are expected to fulfill a number of requirements for assess-
ment of the effect on learning. In particular, they are expected to

• be designed for measuring understanding as opposed to declarative knowl-
edge,

• measure what they claim to measure (that is they should be valid),
• be standardized for use over diverse educational institutions at the level, and
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• be longitudinal (that is they should be amenable for reuse at different points
of time for evaluation with relatively less interference).

The well known force concept inventory (FCI)[28] and mechanics diagnostic
test (MDT) are among the earliest concept inventories developed. They are
used in the context of assessment of teaching procedures in physics and have
played a significant role in influencing the development of concept inventories in
other subjects. A number of concept inventories for specific subjects or topics in
mathematics such as the calculus concept inventory [29] and function CI [30] are
known. Some have claimed that FCI is a test of mastery of certain contexts and
content relating to force and not a test of the force concept itself [31]. Others
have tried to show that conceptual understanding is actually addressed in FCI
[32]. Though people differ on their opinions about the thing that is actually
being measured by FCI [33], FCI is known to measure something useful, and has
been widely used.

The literature on concept inventories is large, but ontologies are not com-
monly used in their analysis or evaluation (though in principle much seems to
be possible). Computer-based assessment software do use conceptual models such
as labeled conceptual graphs and formal concept analysis. But related exercises
require careful formalism to avoid misunderstanding and automatic evaluation
is known to miss conceptual problems [34,35]. In the present author’s view this
is also because they try to avoid (rather than confront) vagueness inherent to
the available knowledge.

Most authors agree (see [2]) that notions of misconceptions or alternative
conceptions have a important role in determining measurements of conceptual
understanding. In the present author’s view alternative conceptions and appar-
ent or real misconceptions have a dialectical relationship with conceptual under-
standing as a whole. This is corroborated by studies that show that students
may or may not consistently apply their understanding of concepts (that they
seem to have understood). The idea of consistency is a very relative notion
that is typically associated with rigid goals in the teaching perspective. It is
also very difficult to explore misconceptions with formal concept analysis and
concept maps because of simply misreading the intended interpretation of stu-
dents. Identification of student misconceptions depends on choice of domains
and related specification of distractors that can actually relate to alternative
conceptions. Studies [36] suggest that often they are not properly included in
concept inventories.

The biggest deficiency of concept inventories that use questions in the MCQ
format alone is its incompatibility with student centric approaches to evalua-
tion of understanding. The MCQ in CIs (unlike those used in ordinary MCQs)
are formulated after estimating possibilities on range and modalities of student
responses. Further they are evaluated to ensure test reliability and validity. It
is known that evaluators may not know the exact reasons for students choice
of an incorrect answer and that understanding may not correlate with correct
response [2,33]. A number of proposals have been put forward to address these
deficiencies. The most popular have been ones that require students to add
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explanations for their choice (see for example [1]. MCQ scores obtained by stu-
dents are adjusted based on the teacher’s evaluations of the explanations. This
immediately suggests the problem of improving the methodology towards mini-
mizing biased evaluation by teachers or evaluators.

Competence levels (relating to a concept inventory) are typically constructed
through abstract specification. For example in the function CI proposed in [30],
six levels of understanding are identified. This can be enhanced to the following:

1. the ability to distinguish between functions and equations;
2. the ability to recognize and relate different representations of functions and

use them interchangeably;
3. the ability to classify relationships as functions or not functions;
4. the ability to have a working familiarity with properties of functions such as

1 − 1, many-one, increasing, decreasing, linearity;
5. the ability to have a working familiarity with properties of sets of functions

such as composition and inverses;
6. the ability to use functions in context, modeling and interpreting;
7. the ability to use functions to preserve relationships across models;
8. the ability to engage with co-variational reasoning;
9. the ability to engage with algebraic reasoning.

Needless to say, the problem of representing data of this form is well beyond
the capabilities of relational approach to rough sets. From an general rough set
perspective, representing such ideas within the context of collection of relevant
concepts subject to the granularities of constructivist ideas of knowledge and
human learning are of much interest. While it is not hard to see that a number
of abstract granular approximations are involved, it is necessary to identify and
classify granules, represent the fine structure of concepts and the process of
transformation of concepts by the pedagogical practice.

Not all concepts are constructed equal. Some are more relevant target con-
cepts and can be regarded as key concepts. As can be seen in the list of abstract
conceptual states (that may be read as key concepts) relating to the function
concept, key concepts need not be simple from a representation point of view.

4 High Granular Operator Partial Algebras

Granular operator spaces and variants [4–7] are abstract frameworks for extend-
ing granularity and parthood in the context of general rough sets, and are also
variants of rough Y-systems studied by the present author [8]. They are well
suited for handling approximations of unclear aetiology (relative to construction
from information systems) but subject to certain minimal conditions on granu-
larity. In [37], it is shown by the present author that all types of granular operator
spaces and variants can be transformed into partial algebras that satisfy addi-
tional conditions. Part of this is repeated for convenience in this section. It is
also nontrivial because all covering approximation spaces cannot be transformed
in the same way.
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Definition 5. A High General Granular Operator Space (GGS) S shall be a
partial algebraic system of the form S = 〈S, γ, l, u,P,≤,∨,∧,⊥,�〉 with S being
a set, γ being a unary predicate that determines G (by the condition γx if and
only if x ∈ G) an admissible granulation(defined below) for S and l, u being
operators : S �−→ S satisfying the following (S is replaced with S if clear from the
context. ∨ and ∧ are idempotent partial operations and P is a binary predicate.
Further γx will be replaced by x ∈ G for convenience.):

(∀x)Pxx (PT1)

(∀x, b)(Pxb & Pbx −→ x = b) (PT2)

(∀a, b)a ∨ b
ω= b ∨ a ; (∀a, b)a ∧ b

ω= b ∧ a (G1)

(∀a, b)(a ∨ b) ∧ a
ω= a ; (∀a, b)(a ∧ b) ∨ a

ω= a (G2)

(∀a, b, c)(a ∧ b) ∨ c
ω= (a ∨ c) ∧ (b ∨ c) (G3)

(∀a, b, c)(a ∨ b) ∧ c
ω= (a ∧ c) ∨ (b ∧ c) (G4)

(∀a, b)(a ≤ b ↔ a ∨ b = b ↔ a ∧ b = a) (G5)

(∀a ∈ S)Pala & all = al & Pauauu (UL1)

(∀a, b ∈ S)(Pab −→ Palbl & Paubu) (UL2)

⊥l = ⊥ & ⊥u = ⊥ & P�l� & P�u� (UL3)

(∀a ∈ S)P⊥a & Pa� (TB)

Let P stand for proper parthood, defined via Pab if and only if Pab & ¬Pba).
A granulation is said to be admissible if there exists a term operation t formed
from the weak lattice operations such that the following three conditions hold:

(∀x∃x1, . . . xr ∈ G) t(x1, x2, . . . xr) = xl

and (∀x) (∃x1, . . . xr ∈ G) t(x1, x2, . . . xr) = xu, (Weak RA, WRA)

(∀a ∈ G)(∀x ∈ S) (Pax −→ Paxl), (Lower Stability, LS)

(∀x, a ∈ G)(∃z ∈ S)Pxz, &Paz & zl = zu = z, (Full Underlap, FU)
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The conditions defining admissible granulations mean that every approximation
is somehow representable by granules in a algebraic way, that every granule coin-
cides with its lower approximation (granules are lower definite), and that all pairs
of distinct granules are part of definite objects (those that coincide with their own
lower and upper approximations). Special cases of the above are defined next.

Definition 6. • In a GGS, if the parthood is defined by Pab if and only if a ≤ b
then the GGS is said to be a high granular operator space GS.

• A higher granular operator space (HGOS) S is a GS in which the lattice
operations are total.

• In a higher granular operator space, if the lattice operations are set theoretic
union and intersection, then the HGOS will be said to be a set HGOS.

Theorem 5. In the context of Definition 5, the binary predicates P can be
replaced by partial two-place operations 1PGO � and γ is replaceable by a total
unary operation h defined as follows:

hx =

{
x if γx

⊥ if ¬γx
(1)

Consequently S
+ = 〈S, h, l, u, �,∨,∧,⊥,�〉 is a partial algebra that is seman-

tically (and also in a category-theoretic sense) equivalent to the original GGS S.

Proof. Because of the restriction UL3 on ⊥ and the redundancy of ≤ (because
of G5), the result follows.

Definition 7. The partial algebra formed in the above theorem will be referred
to a high granular operator partial algebra (GGSo).

Problem 1. All covering approximation spaces considered in the rough set liter-
ature actually assume partial Boolean or partial lattice theoretical operations.
Some authors (especially in modal logic perspectives) [12,20,38] presume that all
Boolean operations are admissible – this view can be argued against. A natural
question is Are the modal logic semantics themselves only a possible interpreta-
tion of the actuality? All this suggests the problem of finding minimal operations
involved in the context.

Because all covering approximation spaces do not use granular approxima-
tions in the sense mentioned above, it follows that they do not form GGSo
always.

5 Rough Concept Inventory and Its Model

A rough concept inventory is intended to be a concept inventory that can
effectively handle vagueness inherent in relatively student centric perspectives
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through methodological improvements, and representations of approximate eval-
uations. Relatively, because the central process of concept inventories is not com-
patible beyond a point with student-centric approaches.

While it would be best if the methodology and the final analysis are all inte-
grated together, it may be useful in practice to separate the two. The method-
ological aspect would be as follows:

1. select a number of key concepts in a subject or topic;
2. situate them relative to the concepts and granular concepts described in the

model in the subsection below (or alternatively situate the concepts relative
to a concept map in terms was constructed from and is a part of, and basic
well-understood concepts);

3. formulate multiple choice questions that aim to test key aspects of applica-
tions of the chosen concepts;

4. each question is required to have at least one correct answer and a number of
incorrect answers (distractors) based on student misconceptions or alternative
conceptions;

5. require explanation from students for their choice;
6. evaluate explanations relative to model in terms of concept approximations

(or alternatively evaluate explanations relative to concepts that are definitely
understood and those that are possibly understood).

In the latter case, the methodology would follow the alternatives suggested
in the second and the sixth step. The end result in this approach would also
include a temporal extension of GGSo described below.

5.1 Temporal Extension of GGSo

A temporal extension of GGSo is introduced next to model rough concept inven-
tories from a minimalist perspective. Essentially this is an extension of a GGSo
with two unary temporal operations for specifying before and after states under
few constraints and an additional operation for indicating key concepts. If desired
a GGS can also be extended in the same way for simplicity. This is intended to
be used for the purpose of constructing a single model for the entire procedure
of administering the inventory first, applying the pedagogical practice and then
applying the concept inventory in the final stage.

Definition 8. In the context of Theorem 5, the partial algebra

S
∗ = 〈S, h, l, u, B,A,�,∨,∧,⊥,�〉

formed by adjoining three unary operations k, A and B to the GGSo S+ will
be said to be a basic temporal high granular operator partial algebra (TGGSo)
provided the following properties are satisfied:
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(∀x)AAx = Ax (idempotence-1)

(∀x)BBx = Bx (idempotence-2)

(∀x)ABx = Ax (supercedence-1)

(∀x)BAx = Bx (supercedence-2)

(∀a, b) (a ∧ b = a −→ ka ∧ kb = ka) (key-1)

Compared with common usage of these temporal operators (see [39]) this
may appear to be very minimalist. But the application context dictates that it
would be a good idea to avoid imposing any connections with l, u, h, and �.
Additional approximation operators may also be needed in practice. An element
x that satisfies kx = x will be said to be a key concept.

The most direct interpretation of the different components of the model (or
its equivalent formed from a GGS instead) from a practical perspective are as
follows:

1. S can be read as the collection of relevant concepts tagged by real or dummy
student/instructor names (including those that are not apparently part of the
concept inventory);

2. h can be read as a partial function that helps in identifying granules in S (the
relatively definite concepts from which other definite concepts are made up
of in a simple way). The simple ways must be related to the definitions of
other operations;

3. � corresponds to parthood and a perspective of aggregation.
4. a ∨ b = b can be read as b was constructed from a.
5. a ∨ b can be read as that which is constructed out of an aggregation of a

and b.

The easiest simple way can be by way of aggregation. When multiple approx-
imations are used then the number of ways can be increased. Note that the model
is not tied down to a single idea of concept evolution and has scope for handling
the structures generated by the entire sample because of the very definition of S.

6 Example Application

A real application requires datasets that include explicit student responses, and
because of ethics concerns it is necessary to form synthetic versions of the same.
Due to limited time, aspects of the proposed model are considered in relation to
secondary information derived from a typical concept inventory (the temporal
aspect is not used in the study).
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In [1], the development and analysis of a concept inventory on rotational kine-
matics is considered. The questions and answers can be found in the appendix of
the paper. The authors restrict themselves to questions probing angular veloc-
ity of a rigid body, trajectory of an arbitrary particle on a rotating rigid body,
angular and linear velocities of particles on a rigid body, angular acceleration of
a rigid body, validity of the equation τ = Iα, dependence of angular velocity
on the origin, relation between angular acceleration and tangential acceleration,
relation between angular acceleration and centripetal acceleration, and finally
components of linear acceleration. Thus the concept inventory is focused on a
very specific set of key concepts (other key concepts may be latent). Apparently
the questions have been optimized for testing the conception of a specific set
of students through a number of steps. The authors mention that responses to
questions were verified in the light of the explanations offered (if any).

The authors have this to say on the concept maps associated with angular
velocity and angular acceleration:

Consider the operational definition of the angular velocity of a rigid body
as an illustrative example. Identifying the angle Δθ in ω = Δθ

Δt would
require the selection of an arbitrary particle on the body, not necessarily
the center of mass, drawing a perpendicular line from the particle to the
axis, noting the angle traced by this line as the rigid body rotates, etc. As
another example, consider the case of α (angular acceleration), which may
be nonzero even if the instantaneous angular velocity is zero. Operationally
this would entail, among other things, identifying the angular velocities at
two different instances and subtracting them. We noted similar intricacies
that helped us probe pitfalls in student thinking.

This suggests that the authors have specific ideas of how the concepts being
tested must evolve. While, this can be read as an idea of standard suggested
conception, it is necessary to look into possible alternative conceptions that may
be in the explanations offered by the students. In the methodology adopted,
these aspects are to be discovered through pilot studies.

A specific question in the inventory is the following: A ceiling fan is rotating
around a fixed axis. Consider the following statements for the particles not on the
axis at a given instant.

Statement I: Every particle on the fan has the same linear velocity.
Statement II: Every particle on the fan has the same angular velocity.
The correct statement(s) is (are)

1. statement I only
2. statement II only
3. both statements I and II
4. neither statement I nor II.

The correct answer is the second option. Explanations offered by a student
for this choice and others should be approximated by the evaluator. In the app-
roach of [1], they are simply used for verifying the correctness of the response.
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Statistical analysis is also used for evaluating the conceptual maturity of the set
of participants studied.

In the approach suggested in the present paper, the entire dataset can be
recoded as a TGGSo (with possibly multiple lower and upper approximation
operators) and studied with minimum intrusion. Example granules can be The
angular velocity is computed by ω = Δθ

Δt , and angular velocities are computed
relative to an axis. Erroneous responses can also be seen as part of the data
because objects are all labeled by student/instructor or evaluator names. Last
but not in the least explanations can be read as approximation of correct or
incorrect concepts and used to help in constructing a vivid characterization of
the data set.

For using descriptive statistical methods on the relatively enlarged dataset,
it would still be possible to permit additional categories based on the names of
sub-concepts introduced or qualifiers on concept names. This would also lead to
a descriptive statement on learning as opposed to grades or marks. Thus it leads
to less contamination of the essence by numeric simplifications.

Remarks

In this research rough concept inventories are introduced, and their relation to
existing approaches are discussed by present author. This is motivated by the
need to make concept inventories more student centric, reduce contamination,
and address a number of other known deficiencies. In particular, this can be
a step towards answering the deeper question: what does a concept inventory
actually measure?.
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Abstract. Recommendation algorithms based on collaborative filtering
show products which people might like and play an important role in per-
sonalized service. Nevertheless, the most of them just adopt explicit infor-
mation feedback and achieve low recommendation accuracy. In recent
years, deep learning methods utilize non-linear network framework to
receive feature representation of massive data, which can obtain implicit
information feedback. Therefore, many algorithms are designed based on
deep learning to improve recommendation effects. Even so, the results are
unsatisfactory. The reason is that they never consider explicit informa-
tion feedback. In this paper, we propose a Hybrid Granular Algorithm
for Rating Recommendation (HGAR), which is based on granulation
computing. The core idea is to explore the multi-granularity of interac-
tion information for both explicit and implicit feedback to predict the
users ratings. Thus, we used Singular Value Decomposition model to get
explicit information and implicit information can be received by multi-
layer perception of deep learning. In addition, we fused the two part infor-
mation when the two models are jointly trained. Therefore, HGAR can
explore the multi-granularity of interaction information which learned
explicit interaction information and mined implicit information in dif-
ferent information granular level. Experiment results show that HGAR
significantly improved recommendation accuracy compared with differ-
ent recommendation models including collaborative filtering and deep
learning methods.

Keywords: Information granular · Information feedback · Rating
recommendation

1 Introduction

As a tool to help users find useful information quickly, the recommendation algo-
rithm solves information overload and implements personalized recommendation,
so it has many application scenarios and commercial values. However, with the
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rapidly growth of the amount of data, methods based on collaborative filtering
encountered some problems. For example, users’ preferences cannot be easily
obtained, so it is impossible to achieve good recommendation accuracy. Many
researchers try to find useful information to improve recommendation accuracy
in big data. This kind of demand promotes the application and development of
particle computing theory. As shown in Fig. 1, the interactive information can be
divided into explicit information feedback and implicit information feedback in
the user-item bipartite graph. Explicit information includes ratings, purchases,
friends, follow-ups, and other information that actually happens. While implicit
information feedback is the relationships and information hidden behind the
actual data, such as browsing, clicking, adding to the shopping cart, etc. In
general, explicit information can more directly reflect user preferences. How-
ever, explicit information is difficult to obtain and data volume is small. The
amount of implicit feedback information is large, easy to obtain, but also can
tap into the user’s more interests. According to information granulation, we can
think of information as consisting of explicit information and implicit informa-
tion. Therefore, from the perspective of information granulation, by effectively
mining the explicit information granule and implicit information granule, the
recommendation effect can be better improved.

Fig. 1. An example of our proposed recommender system based on explicit and implicit
information feedback

Since the information can split different granularity, we can use the idea of
granulation to solve the problems in the recommendation system. For example,
item-based and user-based recommendation algorithms actually granulate the
user set or the item set in the form of targeted user’s nearest neighbor. The
granulation method is introduced in three-way decision, which uses the explicit
information feedback to reflect the information granular. At present, many schol-
ars try to solve the recommendation problem with three-way decision. Huang
et al. [1] presented a three-way decision method for recommendation which con-
siders the variable cost as a function of project popularity. Zhang et al. [2]
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proposed a regression-based three-way recommender system that aims to min-
imize the average cost by adjusting the thresholds for different behaviors. Xu
et al. [3] designed a model that adds a set of items that may be recommended
to users. Zhang et al. [4] created a framework that integrates three-way decision
and random forests to build recommender systems. Qian et al. [5] proposed a
three-way decision collaborative recommendation algorithm based on user repu-
tation by giving each user a corresponding reputation coefficient. These methods
make rating prediction, but the accuracy is not good. Therefore, only relying on
explicit information feedback is not a good solution.

Due to the powerful capacity of mining implicit information, deep learn-
ing techniques have gained much success in many domains. Therefore, much
effort has been made to introduce deep learning techniques to rating recom-
mendations. Cheng et al. [6] jointly trained wide linear models and deep neural
networks to combine the benefits of memorization and generalization for recom-
mender systems. Guo et al. [7] combines Factorization Machine (FM) with Deep
Neural Networks (DNN) to improve the model ability of learning feature inter-
actions. Covington et al. [8] proposed deep neural network to learn both user
and item’s embedding, which is generated from their corresponding features sep-
arately. However, the above method of deep learning uses implicit information
feedback and does not consider explicit information feedback. Therefore, the
recommended results could not receive superior accuracy.

To address the challenges we mentioned, in this paper, we propose a hybrid
granular algorithm for rating recommendation (HGAR), by combining the
advantages of explicit and implicit information feedback to achieve the effect
of combinatorial optimization. Explicit information feedback is obtained by user
ratings while implicit information is trained by deep learning framework. We can
further get new granular by fusing these two information granularity. For a large
number of data, HGAR reduced irrelevant information of data and extracted the
most accurate user preferences to acquire better recommendation effect. Experi-
ments demonstrate that our model outperforms the compared methods for rating
recommendation.

The following sections of this paper are organized as follows: Sect. 2 intro-
duces the problem formulations for quotient space attribute sets; Sect. 3 describes
hybrid granular algorithm for rating recommendation in detail; Sect. 4 presents
the experimental results and analysis; Sect. 5 is the conclusion of the full paper.

2 Problem Formulation

According to the idea of granulation, we turn the interactive information granu-
lation into explicit information feedback and implicit information feedback. The
granular computing theory abstracts the problems into triples to describe them,
and then solving them from different granular. Then discussing the represen-
tation of different domain attribute in different granularity, and exploring the
interdependence and transformation of these representations. In this paper, we
define information granular notations of data.
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Let {x1, x2, x3, ..., xn} denotes interactive information attribute, n is referred
to as the number of attributes. For a recommendation system, X contains explicit
information and implicit information based on previous discussions. So we can
formulate the equation X = X1+X2, X1 is explicit information granule and X2 is
implicit information granule. Thus, we define xi ∈ Xj as interactive information
attribute is classified into explicit and implicit, in which i ∈ {1, 2, 3, ..., n}, j ∈
{1, 2}. And Y denotes the domain of the rating values. The domain of ratings is
made on a 5-star scale (whole-star ratings only). Besides f : X → Y is a property
function, and if f is a single value, then f can be used to define the partition.
Generally speaking, we can easily figure out the structure of Y . For example, if
Y is a set of real numbers or Euclidean space, we can define the corresponding
classification in Y by using the information feedback of X (i.e. taking different
information granularity for rating).

The method is as follows: define Xj = {xi|f (xi) ∈ Y } , i ∈ {1, 2, 3, ..., n}, j ∈
{1, 2}. So {Xj} is a partition of X. Specifically, the notion of explicit information
granule can be defined as: X1 = fexplicit (xi), and the corresponding method is
described by the information particle as Y = f (X1). Similarly, the notion of
implicit information granule is X2 = fimplicit (xi). And Y = f (X2) is the method
described by explicit information particles. To sum up, the final output Y is
defined as: Y = f (x1)+f (x2), the framework is shown in Fig. 2. In the following
sections, we will introduce the detail operation of this algorithm framework.

Fig. 2. The basic framework of HGAR

3 Hybrid Granular Algorithm for Rating
Recommendation

In this section, we use Singular Value Decomposition (SVD) to represent the
explicit information granule and Multi-layer Perceptron (MLP) to represent
the implicit information granule. We first present how SVD and MLP worked
separately and explain how they serve as a rating recommendation framework.
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Figure 5 depicts the architecture of the proposed hybrid granular model. Then,
we fuse these modules to predict ratings through the HGAR model which has
been trained.

Embedding Layer. We adopt an embedding layer to present user and item.
The user-id and the item-id are input information that needs to be preprocessed
before entering the model. This is done by mapping the input information to a
dense vector. In this way, we can obtain uemb as a set of feature vector from user,
and iemb as a set of feature vector from item. The processing of the embedded
layer is represented as follows:

uemb = embedding lookup(userid) (1)

iemb = embedding lookup(itemid) (2)

Where embedding lookup represents the embedding operation, userid and
itemid are the input of embedding layer, uemb and iemb are the output vectors.

Fig. 3. The architectures of SVD layer for explicit information feedback

3.1 SVD Layer

In this layer, we take advantage of explicit feedback from user and item to
implement rating prediction. The model of SVD layer is shown in Fig. 3. SVD is
a matrix factorization method. The high dimensional user-item rating matrix is
converted into two low dimensional user factor matrices and item factor matrices.
In order to obtain feedback information to obtain the user’s rating of the item.
The formula is shown in:

X1 = fexplicit (uemb, iemb) (3)

where fexplicit is · operation.
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The rating consists of four components: global average, user bias, item bias
and user-item interaction. The following equation shows the calculation process:

r̂ui = μ + bi + bu + X1 (4)

Where the rating r̂ui is the output of the SVD layer, μ denotes the overall
average rating, bi and bu respectively indicate the observed deviations of user u
and item i. Obviously, SVD directly adopts explicit information feedback (rating
information) to adjust model prediction errors and to get better recommendation
accuracy.

Fig. 4. The architectures of deep component for implicit information feedback

3.2 Deep Component

Contact Layer. Before mining the implicit information, we have preprocessed
the embedding vector. After that, we need to adopt a contact layer to concatenate
uemb and iemb into one vector. Mapping the two vectors to a vector space and
reducing data dimension. The formulation is shown by:

α = uemb ⊕ iemb (5)

where ⊕ represents the concat operation, α is the output of contact layer.

Hidden Layer. The MLP model is designed to learn implicit information from
hidden layer, as shown in Fig. 4. It consists of an input layer, an output layer
and a number of hidden layers. In the process of model training, the embedded
vector is randomly initialized firstly, and then the value of the embedded vector
is trained to minimize the loss function. These low-dimensional dense embed-
ding vectors are fed into the hidden layer of the neural network in the forward
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channel. MLP can enhance the expressiveness of the model through multiple hid-
den layers, but it also increases the complexity of the model. High-dimensional
features can be converted into a low-dimensional but dense valuable features
by multi-layer. According to the definition of implicit information particles, the
hidden layer denotes as:

X2 = fimplicit

(

W (l+1)αl + bl
)

(6)

αl+1 = f (X2) (7)

Where fimplicit denotes non-linear activation, l is the number of layer, W l, bl,
αl are the l-th weight, the l-th bias, the l-th input. f shows the linear activation
function.

Fig. 5. The model of hybrid granular algorithm for rating recommendation

3.3 Joint Training of HGAR Model

Pooling Layer. Through the previous operation, we obtained the explicit rating
and the implicit rating respectively. Now, we need to convert ratings with sum
pooling to descend to 1-dimension. The operation is defined as follows:

m =
n

∑

i

ei,∀i = 2, 3, ..., n (8)

where ei represents the i-dimension vector of input, and m is the 1-dimension
output.
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Output Layer. Finally, we combine both explicit and implicit rating into a
single vector representation to predict the final rating. The output after fusion
is formulated as:

̂Ru,i = f
(

mSV D
ui ,mMLP

ui

)

(9)

Where ̂Ru,i denotes the user rating for a specific item, mSV D
ui is the pooling

result of the SVD model, mMLP
ui is the pooling result of the deep component.

4 Experimental Analysis

In this section, we present our experimental setup and empirical evaluation. We
aim to answer the following questions in our experiments:

Q1: How does HGAR perform in terms of efficiency and effectiveness, compared
to other state-of-the-art methods based on explicit feedback?
Q2: How does HGAR perform as compared to the state-of-the-art deep learning
methods based on implicit feedback?
Q3: How do Singular Value Decomposition (SVD) and Multi-layer Perceptron
(MLP) affect the performance of HGAR?

4.1 Data Description

We perform experiments on two well-known and widely used datasets in rec-
ommendation: Movielens-100k and Movielens-1M. In Movielens-100k dataset,
it contains nearly 100,000 rating records of 943 users on 1,682 movies. As
Movielens-1M dataset contains UserIDs which ranged between 1 and 6040 and
MovieIDs which ranged between 1 and 3952. Ratings are made on a 5-star scale
(whole-star ratings only). Each user has at least 20 ratings. We divide the dataset
into training and test set as 8:2, and we use 5-fold cross-validation to get the
average results. The basic statistical information of two datasets are illustrated
by Table 1.

Table 1. Statistics of the MovieLens datasets

MovieLens 100k MovieLens 1M

Users 943 6,040

Items 1,682 3,952

Ratings 100,000 1,000,209

Ratings of per user 106.4 165.6

Rating of per item 59.5 253.1

Rating Sparsity 93.7% 95.8%
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4.2 Evaluation Metrics

We use Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) to
evaluate the prediction performance of all algorithms.

MAE =

∑

(u,i)∈N

∣

∣

∣Ru,i − ̂Ru,i

∣

∣

∣

|N | (10)

RMSE =

√

√

√

√

∑

(u,i)∈N

(

Ru,i − ̂Ru,i

)2

|N | (11)

where N denotes the whole number of ratings, Ru,i denotes the rating user u
gives to item i, and ̂Ru,i denotes the rating user u gives to item i as prediction.
The smaller values of MAE and RMSE indicate the better performance.

4.3 Baselines

We compared our method with the following baseline methods, including the
state-of-the-art recommendation methods and the proposed model with its two
parts (SVD and MLP). Below we provide the names of algorithms as well as its
brief introduction that will used in the following experiments.

• SVD: A classical SVD algorithm based on user and item bias.
• MLP: A traditional neural network to solve the nonlinear problem that is

trained by error backpropagation.
• PMF [9]: Probabilistic matrix factorization model, which is a widely used

matrix factorization model.
• BPMF [10]: Bayesian probabilistic matrix factorization for recommendation.
• RLMC [11]: A new robust local matrix completion algorithm that charac-

terize the bias and variance of the estimator in a finite sample setting.
• RegSVD [12]: A rating prediction algorithm based on SVD.
• PRMF [13]: A novel recommendation method that can automatically learn

the dependencies between users to improve recommendation accuracy.
• TWDA [5]: A three-way decision methods to process the boundary region

and divided all ratings in boundary region into positive region or negative
region reasonably.

• PRA [14]: Probabilistic rating auto-encoder that uses autoencoder to gener-
ate latent user feature profiles.

• CDAE [15]: A novel method called collaborative denoising auto-encoder for
top-N recommendation that utilizes the idea of denoising auto-encoders.

• SRimp [16]: Exploiting users implicit social relationships for recommendation.
• SVD++ [17]: Merging the latent factor model and neighborhood model for

recommendation.
• Wide and Deep [6]: Jointly trained wide linear models and deep neural

networks to combine the benefits of memorization and generalization for rec-
ommender systems.
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• Hybird IC-CRBMF [18]: An improved item category aware conditional
restricted Boltzmann machine frame model for recommendation by integrat-
ing item category information as the conditional layer.

• HACF [19]: A fundamentally new architecture of hierarchical autoencoder
where each layer reconstructs and provides complimentary information.

• HGAR: Our proposed method combines SVD and MLP to obtain explicit
and implicit information simultaneously, which further improves recommen-
dation accuracy.

4.4 Comparison of Performance with Other State-of-the-art
Methods Based on Explicit Feedback (Q1)

The Table 2 represents all MAE results of two data sets based on explicit infor-
mation feedback. From the results, we can see clearly that: Results for MAE,
HGAR outperforms all other methods based on explicit information feedback.
To be specific, HGAR is equal to TWDA on Movielens-100k, but HGAR shows
an improvement of 2% compared to TWDA on Movielens-1M. This shows that
our model is better at large data sets. The results reveal that other methods only
based on explicit feedback cannot obtain higher precision. Thus, our method of
hybrid granular which combines explicit and implicit features has better perfor-
mance on MAE.

Table 2. Experimental performance MAE metrics of HGAR compared to explicit
feedback baselines on the MovieLens datasets.

MovieLens 100k MovieLens 1M

PMF 0.782 0.690

BPMF 0.881 0.680

RLMC 0.760 0.736

RegSVD 0.733 0.698

PRMF 0.721 0.673

TWDA 0.717 0.670

HGAR 0.717 0.668

4.5 Comparison of Performance with Other State-of-the-art
Methods Based on Implicit Feedback (Q2)

Table 3 shows the performance of HGAR compared with other algorithms for
implicit feedback. The benchmark algorithms, for example, SP, SVD++, Wide
and Deep, they all take advantage of implicit information feedback for rating
recommendation. We compared HGAR with them and obtained better experi-
mental results. In particular, the result of HACF on Movielens-100k is the same
as ours, but on the 1M dataset, our result is better. Similarly, on Movielens-1M,
SVD++ is equal to us, but in the 100k dataset, we show an advantage.
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Table 3. Experimental performance MAE metrics of HGAR compared to implicit
feedback baselines on the MovieLens datasets.

MovieLens 100k MovieLens 1M

PRA 0.759 0.714

CDAE 0.735 0.691

SRimp 0.729 0.674

SVD++ 0.726 0.668

Wide and Deep 0.723 0.671

Hybird IC-CRBMF 0.719 0.681

HACF 0.717 0.681

HGAR 0.717 0.668

Given all above analysis, our approach makes a good result on two public real-
world datasets, which could explain that the granulation of explicit and implicit
information plays an important role and brings a significant improvement.

4.6 The Impact of SVD and MLP (Q3)

SVD and MLP are two parts of our model, thus we experiment these two separate
algorithms to make sure whether combination is better. From Table 4, we can
see that HGAR makes significant improvements compared to the MLP, what-
ever MAE or RMSE on Movielens-100k or 1M. Meanwhile, as shown in Table 4
compared to SVD, the MAE value of HGAR is better with 0.1% in Movielens-
1M and poorer with 0.5% in Movielens-100k. In addition, the RMSE and MAE
values of HGAR show good results in Movielens 1M. Thus, we find that SVD
only gets explicit feedback as well as MLP merely obtained implicit feedback.
They all perform badly because merely from a single attribute perspective is not
as good as from the idea of multi-granularity decomposition to recommend.

Table 4. Experimental performance of SVD and MLP on the MovieLens datasets.

Dataset Movielens 100k Movielens 1M

MAE RMSE MAE RMSE

SVD 0.718 0.916 0.673 0.861

MLP 0.741 0.947 0.716 0.910

HGAR 0.717 0.921 0.668 0.856

5 Conclusion

In this paper, we proposed Hybrid Granular Algorithm for Rating Recommen-
dation. Considering the large amount of data in the recommendation system, we
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put the problem on the space of different granularity for analysis and research.
To make full use of information granularity, we study the attributes of interactive
information and conclude that it can be divided into explicit information and
implicit information. In this way, the fine-grained and precise user preferences
can be captured. Results on two public datasets show that the proposed model
produces comparative performance compared to state-of-the-art methods based
on explicit or implicit information feedback.
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Abstract. One important topic of concept analysis is to learn an inten-
sion of a concept through a given extension. In the case where an exact
intension cannot be formulated due to limited information, rough set the-
ory introduces approximations to roughly learn the intension. Pawlak
originally proposes a qualitative formulation of approximations which
allows no error in the learned intension. Various quantitative formula-
tions have been studied as generalizations, most of which use proba-
bilistic measures. In contrast, non-probabilistic formulations have not
been fully investigated. On the other hand, three-way approximations
and structured approximations have been proposed to emphasize the
semantics of approximations for the purpose of learning and interpreting
intension. To combine the benefits of these two directions of generaliza-
tions, this paper investigates quantitative structured three-way approx-
imations based on both probabilistic and non-probabilistic measures in
the context of both complete and incomplete information.

Keywords: Concept analysis · Three-way · Rough set · Incomplete
information · Subsethood measure

1 Introduction

Concept analysis is one common application of rough set theory [18,19]. A con-
cept can be formally represented by a pair of intension and extension [3] where
the intension describes the definition and the extension lists all instances. Con-
cept analysis is usually based on a dataset represented in a tabular form with
rows as objects and columns as attributes [7,20,21,24,31,32]. The attributes
are used to describe the properties of objects as well as to formulate intensions.
While learning extension from a given intension is not difficult, the opposite task
may be complicated. In particular, we may not be able to find an exact intension
of a given extension due to insufficient, incomplete, or limited information.

To solve the above issue, rough set theory introduces the concept of
approximations to roughly approximate the true intension. As illustrated by
Fig. 1(a) [12], the set of all objects in a given table, represented by the biggest
c© Springer Nature Switzerland AG 2020
R. Bello et al. (Eds.): IJCRS 2020, LNAI 12179, pp. 283–297, 2020.
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rectangle, is divided into pieces called definable sets. Each definable set can be
precisely described by an intension and is used to approximate a given extension.
Pawlak [18,19] proposes a pair of lower and upper approximations, where the
lower approximation corresponds to the positive region in Fig. 1(a) and the upper
approximation corresponds to the union of the positive and boundary regions. A
set of classification rules is derived from an approximation by using the intension
of a definable set as the premise of one rule. All such rules together approximate
the true intension and can be used to classify instances of the concept. By inter-
preting classification rules through associated actions, Yao [26] further considers
the negative region, which leads to a three-way approximation consisting of the
positive, boundary, and negative regions. Semantically, the positive and negative
regions are associated with actions of accepting and rejecting instances of the
concept, respectively. The boundary region is associated with a non-commitment
action, which reflects the limitation of our knowledge.

Fig. 1. Illustrations of rough set approximations [12]

There are at least two directions in which the above approximations can
be improved. The first direction is to allow a certain rate of misclassification
in order to enlarge the positive and negative regions and shrink the boundary
region. Instead of the qualitative set-inclusion used in Fig. 1(a), a considera-
tion of quantitative measures results in various quantitative rough set models.
Most related research uses probabilistic measures [9,23,29,33] and a few con-
siders non-probabilistic [10,28]. Yao and Deng [28] propose a general framework
of formulating both probabilistic and non-probabilistic approximations based
on subsethood measures whose properties are further studied in [11]. A few
related works regarding concept-based non-probabilistic classifiers are investi-
gated in [17], which may inspire the research on non-probabilistic quantitative
rough set models.

The second direction is to build explanation-oriented approximations that
emphasize on explaining and understanding the semantics. Most formulations of
approximations focus on which objects should be included without due atten-
tion to their descriptions which are necessary to formulate rules. The lower and
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upper approximations proposed by Pawlak in [18,19] and the three-way approx-
imations proposed by Yao in [26] are defined as sets of objects, which are better
illustrated by Fig. 1(b). A lack of internal structure leads to certain difficulties in
deriving and interpreting classification rules. In contrast, a structured approxi-
mation [2,12] is defined as a set of definable sets instead of a set of objects. With
clearer semantics, structured approximations can be conveniently and meaning-
fully applied to learn concepts with incomplete information, where most existing
rough set models face a common challenge of interpreting their approximations
in order to formulate classification rules [12,15].

This paper studies quantitative structured approximations as improvements
in both directions. More specifically, we investigate quantitative structured
approximations based on both probabilistic and non-probabilistic measures with
both complete and incomplete information. This work focuses on exploring
meaningful approaches to building explanation-oriented quantitative structured
approximations. Accordingly, we present conceptual formulations of approxima-
tions that emphasize on the semantics, rather than computational formulations
that emphasize efficient computations in practice. Further discussions on con-
ceptual and computational formulations can be found in [4,12,16,25].

In the remainder of this paper, Sect. 2 reviews qualitative structured approx-
imations with both complete (Sect. 2.1) and incomplete (Sect. 2.2) information.
Section 3 explores the generalizations into quantitative structured approxima-
tions, including both complete (Sect. 3.1) and incomplete (Sects. 3.2 and 3.3)
information. Conclusion and future work are discussed in Sect. 4.

2 Concept Analysis Using Qualitative Structured
Three-Way Approximations

This section reviews the main results of qualitative structured approximations
proposed in [12] with both complete and incomplete information.

2.1 Learning Intension with Complete Information

An information table is formally used in rough sets to represent a given dataset.
In the case of complete information, a complete information table is formulated
as the following tuple:

T = (OB,AT, {Va | a ∈ AT}, {Ia : OB → Va | a ∈ AT}), (1)

where OB is a finite nonempty set of objects, AT is a finite nonempty set of
attributes, Va is the domain of an attribute a, and Ia is an information func-
tion which maps each object to a unique value in Va. This unique value reflects
the complete information or our complete knowledge. Logic formulas regarding
attributes and their values are used as formal descriptions of objects. By arguing
that a consideration of logic conjunction is sufficient for the rule-learning pur-
pose, Hu and Yao [12] use a conjunctive description language DLc consisting of
formulas defined as follows:
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(1) Atomic formulas: (a = v) ∈ DLc, where a ∈ AT and v ∈ Va;
(2) Composite formulas: if p, q ∈ DLc, and p and q do not share any attribute,

then p ∧ q ∈ DLc.

The satisfiability of a formula by an object, denoted by |=, is defined as:

(1) o |= (a = v) ⇐⇒ Ia(o) = v,

(2) o |= (p ∧ q) ⇐⇒ o |= p ∧ o |= q, (2)

where o ∈ OB, a ∈ AT , v ∈ Va, and p, q, p ∧ q ∈ DLc. Accordingly, a formula is
associated with a set of objects exhibiting its meaning.

Definition 1. For a formula p ∈ DLc, the set of objects:

m(p) = {o ∈ OB | o |= p}, (3)

is called the meaning set of p.

On the other hand, objects in m(p) can be uniformly described by p and thus,
is considered to be definable. By using a formula as intension and its meaning
set as extension, one can form a definable concept.

Definition 2. A set of objects O ⊆ OB is a conjunctively definable set if there
exists a formula p ∈ DLc such that O = m(p). The pair (p,m(p)) is a conjunc-
tively definable concept.

DEF(T ) is widely used to represent the family of definable sets in recent works [4,
22,25]. Accordingly, we use CDEF(T ) to represent the family of conjunctively
definable concepts which is used to construct structured approximations.

Definition 3. For a set of objects X ⊆ OB, its structured positive and negative
regions [12] are defined as:

SPOS(X) = {(p,m(p)) ∈ CDEF(T ) | m(p) �= ∅,m(p) ⊆ X},

SNEG(X) = {(p,m(p)) ∈ CDEF(T ) | m(p) �= ∅,m(p) ⊆ Xc}, (4)

where Xc is the complement of X.

The boundary region is commonly defined through the positive and negative
regions. With respect to Definition 3, the structured boundary region of X can
be defined as:

SBND(X) = {(p,m(p)) ∈ CDEF(T ) | ¬(m(p) ⊆ X) ∧ ¬(m(p) ⊆ Xc)}. (5)

From the view of learning intension, we are not interested in the boundary
region since it doesn’t lead to classification rules for recognizing either positive
or negative instances of the concept.

Most research in the literature applies unstructured approximations [18,19]
which can be expressed as [12]:

POS(X) =
⋃

{m(p) | (p,m(p)) ∈ SPOS(X)},

NEG(X) =
⋃

{m(p) | (p,m(p)) ∈ SNEG(X)}. (6)
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As argued and illustrated in [12], the structured approximations benefit rule
learning with clear semantics obtained through preserving the internal structure
as well as introducing intensions which are left-hand-sides of rules.

2.2 Learning Intension with Incomplete Information

Although an object actually takes exactly one value on an attribute, due to our
limited or incomplete information, we may not be able to know this actual value.
In such a case, an incomplete information table is used, which can be formally
represented as the following tuple:

T̃ = (OB,AT, {Va | a ∈ AT}, {Ĩa : OB → 2Va − {∅} | a ∈ AT}), (7)

where OB, AT , and Va have the same meanings as in a complete table, and Ĩa

maps each object to a nonempty subset of Va. Every value in Ĩa(x) may be the
actual value of an object x ∈ OB on an attribute a ∈ AT , but exactly one value
is indeed the actual one which we do not know due to incomplete information.

Lipski [14] equivalently interprets an incomplete table as a family of complete
tables. A complete table (OB,AT, {Va | a ∈ AT}, {Ia : OB → Va | a ∈ AT}) is
called a completion of T̃ if:

∀x ∈ OB ∀ a ∈ AT (Ia(x) ∈ Ĩa(x)). (8)

One gets a completion of T̃ by picking up exactly one value for each object on
each attribute. Since each value in Ĩa(x) represents one possibility of the actual
value, a completion is a possibility of the actual table and called a possible world.
Accordingly, Lipski’s interpretation is called the possible-world semantics of an
incomplete table. The family of all completions of T̃ is denoted as COMP(T̃ ).

The meaning set of a formula p in a completion T , denoted by m(p|T ), is
a possibility of its actual meaning set. The collection of p’s meaning sets in all
completions covers all possibilities of p’s actual meaning set and can be used to
interpret p.

Definition 4. The meaning set of a formula p ∈ DLc in an incomplete table T̃
is defined as:

m̃(p) = {m(p|T ) | T ∈ COMP(T̃ )}, (9)

It is verified that m̃(p) is actually an interval set defined as [12]:

m̃(p) = [m∗(p),m∗(p)] = {S ⊆ OB | m∗(p) ⊆ S ⊆ m∗(p)}. (10)

The sets m∗(p) and m∗(p) are the lower and upper bounds of m̃(p), respectively.
The interval set [m∗(p),m∗(p)] contains all sets in-between these two bounds
(inclusive). Moreover, the two bounds can be computed as:

m∗(p) =
⋂

T∈COMP(˜T)

m(p|T ) = {x ∈ OB | ∀T ∈ COMP(T̃ ), x ∈ m(p|T )},

m∗(p) =
⋃

T∈COMP(˜T)

m(p|T ) = {x ∈ OB | ∃T ∈ COMP(T̃ ), x ∈ m(p|T )}. (11)
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The lower bound m∗(p) contains objects satisfying p in every possible world,
that is, they must satisfy p in the actual table and be included in p’s actual
meaning set. Similarly, the upper bound m∗(p) contains objects satisfying p in
at least one possible world, that is, they possibly satisfy p in the actual table and
may be included in p’s actual meaning set. By means of m̃(p), the definability
can be generalized with respect to an incomplete table.

Definition 5. An interval set O on OB is conjunctively definable if there exists
a conjunctive formula p ∈ DLc such that O = m̃(p). The pair (p, m̃(p)) is a
conjunctively definable interval concept.

The family of conjunctively definable interval concepts CDEFI(T̃ ) is used to
construct the structured approximations in an incomplete table.

Definition 6. Given a set of objects X ⊆ OB in an incomplete table T̃ , two
pairs of structured regions are constructed as [12]:

(1) SPOS∗(X) = {(p, m̃(p)) ∈ CDEFI(T̃ ) | ∀S ∈ m̃(p), S �= ∅, S ⊆ X},

SNEG∗(X) = {(p, m̃(p)) ∈ CDEFI(T̃ ) | ∀S ∈ m̃(p), S �= ∅, S ⊆ Xc};

(2) SPOS∗(X) = {(p, m̃(p)) ∈ CDEFI(T̃ ) | ∃S ∈ m̃(p), S �= ∅, S ⊆ X},

SNEG∗(X) = {(p, m̃(p)) ∈ CDEFI(T̃ ) | ∃S ∈ m̃(p), S �= ∅, S ⊆ Xc}. (12)

SPOS∗(X) and SNEG∗(X) are called lower structured regions, and SPOS∗(X)
and SNEG∗(X) are upper structured regions.

A lower structured region requires an exhaustivity of the set-inclusion rela-
tionship between a set in m̃(p) and X (or Xc), and an upper structured region
requires an existence of such a relationship. The two lower structured regions
give the lower bounds of the actual structured positive and negative regions,
respectively, and the upper structured regions give the upper bounds [12].

3 Concept Analysis Using Quantitative Structured
Three-Way Approximations

In this section, we generalize the qualitative structured regions into quantita-
tive structured regions, in both complete and incomplete tables, based on two
types of quantitative measures, namely, probabilities and subsethood measures.
The generalization with respect to a complete table is straightforward based on
existing research on quantitative unstructured approximations. In contrast, the
generalization with respect to an incomplete table needs further investigation.

3.1 Probabilistic and Non-probabilistic Structured Approximations
in a Complete Table

A probabilistic rough set model [27] replaces the qualitative set-inclusion with
quantitative probabilities in defining unstructured approximations. By the same
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idea, if an object described by p ∈ DLc has a high probability of being a positive
instance of X, then the concept (p,m(p)) is included in the structured positive
region. This leads to the following probabilistic structured regions.

Definition 7. For a set of objects X ⊆ OB, its probabilistic structured positive
and negative regions are defined as:

SPOSpr
(α,·)(X) = {(p,m(p)) ∈ CDEF(T ) | Pr(X|m(p)) ≥ α},

SNEGpr
(·,γ)(X) = {(p,m(p)) ∈ CDEF(T ) | Pr(Xc|m(p)) ≥ γ}, (13)

where 0 ≤ α, γ ≤ 1 are two thresholds, a dot represents a non-relevant threshold,
and the probabilities are computed as:

Pr(X|m(p)) =
|X ∩ m(p)|

|m(p)| , P r(Xc|m(p)) =
|Xc ∩ m(p)|

|m(p)| . (14)

The qualitative structured regions can be viewed as a special case of the
probabilistic structured regions with α = γ = 1.

Fig. 2. Relationships between X and sets in SPOSpr
(α,·)(X) and SNEGpr

(·,γ)(X)

As shown in Fig. 2(a), (p,m(p)) is included in SPOSpr
(α,·)(X) if the intersection

between m(p) and X occupies a large portion of m(p). Accordingly, p is used to
classify positive instances of X with an error rate:

IAE((p,m(p))) =
|Xc ∩ m(p)|

|m(p)| = 1 − |X ∩ m(p)|
|m(p)| ≤ 1 − α, (15)

which is called the rate of incorrect acceptance error (IAE) [5]. Similarly, a con-
cept (q,m(q)) ∈ SNEGpr

(·,γ)(X) is associated with the following rate of incorrect
rejection error (IRE):

IRE((q,m(q))) =
|X ∩ m(q)|

|m(q)| = 1 − |Xc ∩ m(q)|
|m(q)| ≤ 1 − γ. (16)

At the expenses of IAE and IRE, we are able to approximate a larger part of X
compared with the qualitative regions.
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Most existing research on quantitative rough sets is based on the probabilistic
(unstructured) approximations, such as decision-theoretic rough sets [29], game-
theoretic rough sets [10], information-theoretic rough sets [6], naive Bayesian
rough sets [30], confirmation-theoretic rough sets [9], and Bayesian rough
sets [23]. Variable precision rough sets [33] can be viewed as both probabilis-
tic and non-probabilistic in the sense that approximations are defined in terms
of precisions which are estimated through probabilities.

In contrast, there is limited research [8,13,28] on non-probabilistic rough set
models, which mainly uses subsethood measures and similarity measures instead
of probabilities. Subsethood measure is a quantitative generalization of the qual-
itative set-inclusion. Given a universe OB, a normalized subsethood measure is
defined as a mapping sh : 2OB × 2OB → [0, 1] where 2OB is the power set of
OB. For two sets A,B ⊆ OB, sh(A � B) represents the degree to which A is a
subset of B. Yao and Deng [28] formulate quantitative unstructured approx-
imations through subsethood measures, which unifies both probabilistic and
non-probabilistic models. Following their formulation, we present the following
quantitative structured regions based on subsethood measures.

Definition 8. Suppose sh : 2OB × 2OB → [0, 1] is a normalized subsethood mea-
sure. For a given set of objects X ⊆ OB, its quantitative structured positive and
negative regions can be defined as:

SPOSsh
(α,·)(X) = {(p,m(p)) ∈ CDEF(T ) | m(p) �= ∅, sh(m(p) � X) ≥ α},

SNEGsh
(·,γ)(X) = {(p,m(p)) ∈ CDEF(T ) | m(p) �= ∅, sh(m(p) � Xc) ≥ γ}. (17)

By using a subsethood measure sh(A � B) = |A∩B|
|A| , we have:

sh(m(p) � X) =
|m(p) ∩ X|

|m(p)| = Pr(X|m(p)), (18)

and similarly, sh(m(p) � Xc) = Pr(Xc|m(p)). Thus, the two probabilistic
regions in Definition 7 are special cases of the above two regions defined through
subsethood measures. One may also consider many other meaningful cardinality-
based subsethood measures [1] to formulate non-probabilistic approximations.
For example, by using a measure shRc

5
[11]:

shRc
5
(A � B) =

{
|Ac|

|(A∩B)c| , ¬(A = B = OB),
1, A = B = OB.

(19)

we can formulate a pair of non-probabilistic structured regions of X ⊆ OB as:

SPOS
shRc

5
(α,·) (X) = {(p,m(p)) ∈ CDEF(T ) | m(p) �= ∅,

|m(p)c|
|(m(p) ∩ X)c| ≥ α},

SNEG
shRc

5
(·,γ) (X) = {(p,m(p)) ∈ CDEF(T ) | m(p) �= ∅,

|m(p)c|
|(m(p) ∩ Xc)c| ≥ γ}. (20)
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3.2 Probabilistic Structured Approximations in an Incomplete
Table

One may also consider both probabilities and subsethood measures in defining
quantitative regions in an incomplete table. In this subsection, we present two
ways to define probabilistic structured regions. An intuitive way is to simply
replace the set-inclusion in Definition 6 with probabilities, which leads to the
following definition.

Definition 9. Given a set of objects X ⊆ OB in an incomplete table T̃ , one can
construct the following probabilistic lower and upper structured regions:

(1) SPOSpr
∗(α,·)(X) = {(p, m̃(p)) | ∀S ∈ m̃(p), P r(X|S) ≥ α},

SNEGpr
∗(·,γ)(X) = {(p, m̃(p)) | ∀S ∈ m̃(p), P r(Xc|S) ≥ γ};

(2) SPOS∗pr
(α,·)(X) = {(p, m̃(p)) | ∃S ∈ m̃(p), P r(X|S) ≥ α},

SNEG∗pr
(·,γ)(X) = {(p, m̃(p)) | ∃S ∈ m̃(p), P r(Xc|S) ≥ γ}, (21)

where the probabilities are computed as:

Pr(X|S) =
|X ∩ S|

|S| , P r(Xc|S) =
|Xc ∩ S|

|S| . (22)

The condition (p, m̃(p)) ∈ CDEFI(T̃ ) is omitted in Definition 9 and the following
definitions where this doesn’t cause misunderstanding. Since m̃(p) is a collection
of p’s meaning sets in all completions, the above regions can be equivalently
expressed through the family COMP(T̃ ).

Proposition 1. Given a set of objects X ⊆ OB, one may construct the proba-
bilistic lower and upper structured regions of X as follows:

(1) SPOSpr
∗(α,·)(X) = {(p, m̃(p)) | ∀T ∈ COMP(T̃ ), P r(X|m(p|T )) ≥ α},

SNEGpr
∗(·,γ)(X) = {(p, m̃(p)) | ∀T ∈ COMP(T̃ ), P r(Xc|m(p|T )) ≥ γ};

(2) SPOS∗pr
(α,·)(X) = {(p, m̃(p)) | ∃T ∈ COMP(T̃ ), P r(X|m(p|T )) ≥ α},

SNEG∗pr
(·,γ)(X) = {(p, m̃(p)) | ∃T ∈ COMP(T̃ ), P r(Xc|m(p|T )) ≥ γ}. (23)

The possible-world semantics also connects the above probabilistic regions
in an incomplete table to those in a complete table (i.e., Definition 7). The
condition Pr(X|m(p|T )) ≥ α implies that the concept (p,m(p|T )) is included in
SPOSpr

(α,·)(X|T ). Accordingly, we get the following theorem.

Theorem 1. Given a set of objects X ⊆ OB, we have:

(1) (p, m̃(p)) ∈ SPOSpr
∗(α,·)(X) ⇔ ∀T ∈ COMP( ˜T ), (p,m(p|T )) ∈ SPOSpr

(α,·)(X|T ),
(p, m̃(p)) ∈ SNEGpr

∗(·,γ)(X) ⇔ ∀T ∈ COMP( ˜T ), (p,m(p|T )) ∈ SNEGpr
(·,γ)(X|T );

(2) (p, m̃(p)) ∈ SPOS∗pr
(α,·)(X) ⇔ ∃T ∈ COMP( ˜T ), (p,m(p|T )) ∈ SPOSpr

(α,·)(X|T ),
(p, m̃(p)) ∈ SNEG∗pr

(·,γ)(X) ⇔ ∃T ∈ COMP( ˜T ), (p,m(p|T )) ∈ SNEGpr
(·,γ)(X|T ).

(24)
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Definition 9 and Proposition 1 provide two mathematically equivalent but
semantically different formulations. Definition 9 is a straightforward general-
ization of the qualitative regions. Proposition 1 provides an equivalent version
through the family COMP(T̃ ), which offers a clearer semantics. This clear seman-
tics enables us to explore the relationships stated in Theorem 1.

Instead of considering Pr(X|S) for every set S ∈ m̃(p), we may generalize
Pr(X|S) into a probability Pr(X|m̃(p)) regarding a set X and an interval set
m̃(p) which has not been well studied. Different interpretations of Pr(X|m̃(p))
may lead to different formulas. In our work, we interpret Pr(X|m̃(p)) as the
probability of a set in m̃(p) being included in X. Accordingly, we define the
following probabilistic structured regions.

Definition 10. Given a set of objects X ⊆ OB, one may define the following
pair of probabilistic structured positive and negative regions:

˜SPOS
pr

(α,·)(X) = {(p, m̃(p)) ∈ CDEFI(T̃ ) | Pr(X|m̃(p)) ≥ α},

˜SNEG
pr

(·,γ)(X) = {(p, m̃(p)) ∈ CDEFI(T̃ ) | Pr(Xc|m̃(p)) ≥ γ}, (25)

where the probabilities are computed as:

Pr(X|m̃(p)) =
|{S ∈ m̃(p)|∅ �= S ⊆ X}|

|m̃(p)| ,

P r(Xc|m̃(p)) =
|{S ∈ m̃(p)|∅ �= S ⊆ Xc}|

|m̃(p)| . (26)

Since each set in m̃(p) represents a possibility of p’s actual meaning set, a
high probability Pr(X|m̃(p)) means that, in a large portion of all possible worlds
COMP(T̃ ), the meaning set of p is included in X, or equivalently, p appears in
the qualitative structured positive region of X. Thus, it is with high probability
that p appears in the actual qualitative structured positive region of X.

Proposition 2. Given a set of objects X ⊆ OB, we have:

(p, m̃(p)) ∈ ˜SPOS
pr

(α,·)(X) =⇒ Pr
(
(p,m(p|T0)) ∈ SPOS(X|T0)

) ≥ α,

(p, m̃(p)) ∈ ˜SNEG
pr

(·,γ)(X) =⇒ Pr
(
(p,m(p|T0)) ∈ SNEG(X|T0)

) ≥ γ, (27)

where T0 ∈ COMP(T̃ ) is the actual table.

The two probabilities Pr(X|m̃(p)) and Pr(Xc|m̃(p)) can be efficiently com-
puted through the two bounds of m̃(p). For Pr(X|m̃(p)), if m∗(p) �⊆ X, then no
set in m̃(p) is included X, that is, Pr(X|m̃(p)) = 0. Otherwise, we have:

Pr(X|m̃(p)) =
|{S ⊆ OB | m∗(p) ⊆ S ⊆ m∗(p) ∧ S ⊆ X}|

|{S ⊆ OB | m∗(p) ⊆ S ⊆ m∗(p)}|

=
|{S ⊆ OB | m∗(p) ⊆ S ⊆ m∗(p) ∩ X}|

|{S ⊆ OB | m∗(p) ⊆ S ⊆ m∗(p)}| =
2|m∗(p)∩X−m∗(p)|

2|m∗(p)−m∗(p)|

=
2|m∗(p)∩X|−|m∗(p)|

2|m∗(p)|−|m∗(p)| = 2|m∗(p)∩X|−|m∗(p)|. (28)
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The probability Pr(Xc|m̃(p)) can be similarly computed and the following com-
putational formulation of the structured regions can be accordingly obtained.

Theorem 2. Given a set of objects X ⊆ OB, one may construct a pair of
probabilistic structured regions of X as:

˜SPOS
pr

(α,·)(X) = {(p, m̃(p)) ∈ CDEFI(T̃ ) | μ · 2|m∗(p)∩X|−|m∗(p)| ≥ α},

˜SNEG
pr

(·,γ)(X) = {(p, m̃(p)) ∈ CDEFI(T̃ ) | μc · 2|m∗(p)∩Xc|−|m∗(p)| ≥ γ}, (29)

where μ and μc are two numbers defined as:

μ =
{

1, if m∗(p) ⊆ X,
0, otherwise. μc =

{
1, if m∗(p) ⊆ Xc,
0, otherwise. (30)

While Definition 10 provides a conceptual understanding of the structured
regions which requires an exhaustive scan of m̃(p) to compute the probabilities,
Theorem 2 gives an equivalent computational formulation where the probabilities
can be efficiently computed through the two bounds of m̃(p).

Example 1. We illustrate the above probabilistic structured regions in Defini-
tions 9 and 10 with an incomplete table given by Table 1 [12]. The family
CDEFI(T̃ ) is given by Table 2.

Table 1. An incomplete table ˜T [12]

a1 a2 a3

o1 {1} {5} {6}
o2 {2} {4} {6}
o3 {1} {3} {6}
o4 {1} {3,4} {7}
o5 {1,2} {5} {6}
o6 {1} {4} {6}
o7 {1,2} {4} {6}

Given a set of objects X = {o2, o5, o6, o7} (Xc = {o1, o3, o4}) and thresholds
α = γ = 0.7, the two pairs of lower and upper regions defined in Definition 9
are:

SPOSpr
∗(α,·)(X) = {IC2, IC4, IC12, IC16, IC20, IC26, IC32}

SNEGpr
∗(·,γ)(X) = {IC3, IC7, IC8, IC15, IC18, IC24}

SPOS∗pr
(α,·)(X) = {IC2, IC4, IC9, IC12, IC13, IC16, IC20, IC26, IC32, IC34}

SNEG∗pr
(·,γ)(X) = {IC1, IC3, IC7, IC8, IC10, IC15, IC18, IC19, IC21, IC24, IC25,

IC27, IC28} . (31)
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Table 2. The family CDEFI( ˜T ) for Table 1

Label Intension Extension Label Intension Extension

IC1 a1 = 1 [{o1, o3, o4, o6},

{o1, o3, o4, o5, o6, o7}]
IC19 a2 = 3 ∧ a3 = 7 [∅, {o4}]

IC2 a1 = 2 [{o2}, {o2, o5, o7}] IC20 a2 = 4 ∧ a3 = 6 [{o2, o6, o7}, {o2, o6, o7}]
IC3 a2 = 3 [{o3}, {o3, o4}] IC21 a2 = 4 ∧ a3 = 7 [∅, {o4}]
IC4 a2 = 4 [{o2, o6, o7},

{o2, o4, o6, o7}]
IC22 a2 = 5 ∧ a3 = 6 [{o1, o5}, {o1, o5}]

IC5 a2 = 5 [{o1, o5}, {o1, o5}] IC23 a2 = 5 ∧ a3 = 7 [∅, ∅]
IC6 a3 = 6 [{o1, o2, o3, o5, o6, o7},

{o1, o2, o3, o5, o6, o7}]
IC24 a1 = 1 ∧ a2 = 3 ∧ a3 = 6 [{o3}, {o3}]

IC7 a3 = 7 [{o4}, {o4}] IC25 a1 = 1 ∧ a2 = 3 ∧ a3 = 7 [∅, {o4}]
IC8 a1 = 1 ∧ a2 = 3 [{o3}, {o3, o4}] IC26 a1 = 1 ∧ a2 = 4 ∧ a3 = 6 [{o6}, {o6, o7}]
IC9 a1 = 1 ∧ a2 = 4 [{o6}, {o4, o6, o7}] IC27 a1 = 1 ∧ a2 = 4 ∧ a3 = 7 [∅, {o4}]
IC10 a1 = 1 ∧ a2 = 5 [{o1}, {o1, o5}] IC28 a1 = 1 ∧ a2 = 5 ∧ a3 = 6 [{o1}, {o1, o5}]
IC11 a1 = 2 ∧ a2 = 3 [∅, ∅] IC29 a1 = 1 ∧ a2 = 5 ∧ a3 = 7 [∅, ∅]
IC12 a1 = 2 ∧ a2 = 4 [{o2}, {o2, o7}] IC30 a1 = 2 ∧ a2 = 3 ∧ a3 = 6 [∅, ∅]
IC13 a1 = 2 ∧ a2 = 5 [∅, {o5}] IC31 a1 = 2 ∧ a2 = 3 ∧ a3 = 7 [∅, ∅]
IC14 a1 = 1 ∧ a3 = 6 [{o1, o3, o6},

{o1, o3, o5, o6, o7}]
IC32 a1 = 2 ∧ a2 = 4 ∧ a3 = 6 [{o2}, {o2, o7}]

IC15 a1 = 1 ∧ a3 = 7 [{o4}, {o4}] IC33 a1 = 2 ∧ a2 = 4 ∧ a3 = 7 [∅, ∅]
IC16 a1 = 2 ∧ a3 = 6 [{o2}, {o2, o5, o7}] IC34 a1 = 2 ∧ a2 = 5 ∧ a3 = 6 [∅, {o5}]
IC17 a1 = 2 ∧ a3 = 7 [∅, ∅] IC35 a1 = 2 ∧ a2 = 5 ∧ a3 = 7 [∅, ∅]
IC18 a2 = 3 ∧ a3 = 6 [{o3}, {o3}]

With the same set X and the same thresholds, the pair of regions defined in
Definition 10 are:

˜SPOS
pr

(α,·)(X) = {IC2, IC12, IC16, IC20, IC26, IC32}
˜SNEG

pr

(·,γ)(X) = {IC3, IC7, IC8, IC15, IC18, IC24}. (32)

3.3 Non-probabilistic Structured Approximations in an Incomplete
Table Based on Subsethood Measures

We present a more general formulation of quantitative structured regions by
using a subsethood measure instead of the probabilities in Definition 9.

Definition 11. Suppose sh : 2OB × 2OB → [0, 1] is a normalized subsethood
measure. Given a set X ⊆ OB, one can define the following structured regions:

(1) SPOSsh
∗(α,·)(X) = {(p, m̃(p)) | ∀S ∈ m̃(p), S �= ∅, sh(S � X) ≥ α},

SNEGsh
∗(·,γ)(X) = {(p, m̃(p)) | ∀S ∈ m̃(p), S �= ∅, sh(S � Xc) ≥ γ};

(2) SPOS∗sh
(α,·)(X) = {(p, m̃(p)) | ∃S ∈ m̃(p), S �= ∅, sh(S � X) ≥ α},

SNEG∗sh
(·,γ)(X) = {(p, m̃(p)) | ∃S ∈ m̃(p), S �= ∅, sh(S � Xc) ≥ γ}. (33)

By using a subsethood measure sh(A � B) = |A∩B|
|A| , the probabilistic regions

in Definition 9 become special cases of the above regions. Non-probabilistic struc-
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tured regions can be constructed by applying non-probabilistic subsethood mea-
sures such as shRc

5
given in Eq. (19). Since each set S ∈ m̃(p) is a meaning set

of p in a completion, one can equivalently express the above regions through the
family COMP(T̃ ), for example:

SPOSsh
∗(α,·)(X) = {(p, m̃(p)) | ∀ T ∈ COMP(˜T ), m(p|T ) �= ∅, sh(m(p|T ) � X) ≥ α}. (34)

Similar as in Theorem 1, one may also establish relationships between the above
subsethood-based regions and those in the completions, for example:

(p, m̃(p)) ∈ SPOSsh
∗(α,·)(X) ⇐⇒ ∀ T ∈ COMP( ˜T ), (p, m(p|T )) ∈ SPOSsh

(α,·)(X|T ). (35)

Alternatively, one may generalize subsethood measures for two sets into those
for an interval set and a set to construct quantitative regions. Such subsethood
measures evaluate the degree to which an interval set is included in a set.

Definition 12. Suppose Sh : I(OB) × 2OB → [0, 1] is a normalized subsethood
measure where I(OB) is the family of interval sets on OB. Given a set of objects
X ⊆ OB, one may define the following pair of structured regions:

˜SPOS
Sh

(α,·)(X) = {(p, m̃(p)) ∈ CDEFI(T̃ ) | Sh(m̃(p) � X) ≥ α},

˜SNEG
Sh

(·,γ)(X) = {(p, m̃(p)) ∈ CDEFI(T̃ ) | Sh(m̃(p) � Xc) ≥ γ}. (36)

This definition depends on the specific definition of Sh which has not been well
studied. One may define Sh(A � B) through sh(A � B) where A ∈ A, such as
taking the average:

Sh(A � B) =

∑
A∈A

sh(A � B)

|A| . (37)

One may also define Sh through the qualitative set-inclusion such as using the
proportion of subsets of B in A:

Sh(A � B) =
|{A ∈ A | ∅ �= A ⊆ B}|

|A| . (38)

With the latter, the probabilistic regions in Definition 10 become special cases
of the above regions in Definition 12. One may also construct non-probabilistic
quantitative regions through Definition 12 by applying a subsethood measure
Sh that cannot be explained through probabilities.

4 Conclusion and Future Work

To combine the advantages of both quantitative and structured approximations,
this paper investigates quantitative formulations of structured approximations
in both complete and incomplete tables. We consider both probabilistic for-
mulations which are widely studied in the literature regarding unstructured
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approximations and non-probabilistic formulations which have not received due
attention.

Our work brings up several interesting topics to work on. A first topic is the
interpretation and determination of thresholds in various quantitative regions.
While there are lots of existing related studies with respect to the probabilistic
unstructured approximations in a complete table, the thresholds in subsethood-
based quantitative regions and those regions in incomplete tables need further
investigation. Solutions to this topic will help construct efficient computational
formulations of approximations, which is a second topic for future work. A third
topic is to investigate the relationships between this work and other concept
analysis approaches such as lattice theory, formal concept analysis, and pattern
structures. A fourth topic is the generalization of subsethood measures sh(A �
B) regarding two sets into those regarding interval sets, including Sh(A � B),
sH(A � B), and SH(A � B) where A,B are interval sets and A,B are sets. The
research on this topic will shed new light on defining meaningful quantitative
approximations in an incomplete table.

Acknowledgement. The author thanks reviewers for their valuable comments and
suggestions.
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Abstract. In this work, we consider a special kind of equivalence rela-
tions, which are called local congruences. Specifically, local congruences
are equivalence relations defined on lattices, whose equivalence classes
are convex sublattices of the original lattices. In the present paper, we
introduce an initial study about how the set of equivalence classes pro-
vided by a local congruence can be ordered.

Keywords: Congruence · Local congruence · Concept lattice ·
Ordering relation

1 Introduction

The notion of local congruence arose in an attempt to weaken the conditions
imposed in the definition of a congruence relation on a lattice, with the goal
of taking advantage of different properties of these relations with respect to
attribute reduction in formal concept analysis [11,17,21].

Formal concept analysis (FCA) is a theory of data analysis that organizes the
information collected in a considered dataset, by means of the algebraic structure
of a complete lattice. Moreover, this theory also offers diverse mechanisms for
obtaining, handling and relating (by attribute implications) information from
datasets. One of the most interesting mechanisms is attribute reduction. Its main
goal is the selection of the main attributes of the given dataset and detecting
the unnecessary ones to preserve the estructure of the complete lattice.

In [4,5], the authors remarked that when a reduction of the set of attributes
in the dataset is carried out, an equivalence relation is induced. This induced
equivalence relation satisfies that the generated equivalence classes have the
structure of a join-semilattice. Inspired by this fact, the original idea given in [1]
was to complement these studies by proposing the use of equivalence relations
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containing the induced equivalence relation and satisfying that the generated
equivalence classes be convex sublattices of the original lattice.

For example, congruence relations [6,10,12,13] hold the previously exposed
requirements. In addition, congruence relations have already been applied to the
framework of FCA [11,15,18–20]. Nevertheless, in [2] was proved that congru-
ence relations are not suitable to complement the reductions in FCA, since the
constraints imposed by this kind of equivalence relation entail a great loss of
information. This reason is the main justification to weaken the notion of con-
gruence relation, appearing the definition of local congruence. These new equiv-
alence relations are also defined on lattices and only require that the equivalence
classes be convex sublattices of the original lattice. The use of local congruences
considerably reduces the problem of the loss of information.

However, the appearance of local congruences uncovers new open problems
that require answers. One of these open problems is to provide an ordering
relation on the set of equivalence classes, that is, on the quotient set associated
with the local congruence. This is the main issue addressed in this paper. First
of all, we will show that the usually considered ordering relations on the set of
equivalence class of a congruence relation, cannot be used for local congruences.
Then, we will define a new binary relation on lattices which turns out to be
a pre-order when it is used to establish a hierarchy on the equivalence classes
provided by a local congruence. Finally, we will also state under what conditions
this pre-order is a partial order.

The paper is organized as follows: Sect. 2 recalls some preliminary notions
used throughout of the paper. Section 3 presents the study of the hierarchy
among the equivalence classes provided by local congruences. The paper fin-
ishes with some conclusions and prospects for future works, which are included
in Sect. 4.

2 Preliminaries

In this section, we recall basic notions used in this paper. The first notion is
related to a special kind of equivalence relation on lattices, which are called
congruence relations.

Definition 1 ([10]). Given a lattice (L,�), we say that an equivalence relation
θ on L is a congruence if, for all a0, a1, b0, b1 ∈ L,

(a0, b0) ∈ θ, (a1, b1) ∈ θ imply that (a0 ∨ a1, b0 ∨ b1) ∈ θ, (a0 ∧ a1, b0 ∧ b1) ∈ θ.

where ∧ and ∨ are the infimum and the supremum operators.

Now, we recall the notion of quotient lattice from a congruence, based on the
operations of the original lattice.

Definition 2 ([10]). Given an equivalence relation θ on a lattice (L,�), the
operators infimum and supremum, ∨θ and ∧θ, can be defined on the set of equiv-
alence classes L/θ = {[a]θ | a ∈ L} for all a, b ∈ L, as follows:

[a]θ ∨θ [b]θ = [a ∨ b]θ and [a]θ ∧θ [b]θ = [a ∧ b]θ.
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∨θ and ∧θ are well defined on L/θ if and only if θ is a congruence.

When θ is a congruence on L, the tuple (L/θ,∨θ,∧θ) is called quotient lattice
of L modulo θ.

Now, let us suppose that {a, b, c, d} is a subset of a given lattice (L,�). Then,
the pairs a, b and c, d are said to be opposite sides of the quadrilateral (a, b; c, d)
if a < b, c < d and either:

(a ∨ d = b and a ∧ d = c) or (b ∨ c = d and b ∧ c = a).

In addition, we say that the equivalence classes provided by an equivalence rela-
tion are quadrilateral-closed if whenever given two opposite sides of a quadrilat-
eral (a, b; c, d), such that a, b ∈ [x]θ, with x ∈ L then there exists y ∈ L such that
c, d ∈ [y]θ. This notion leads us to the following result which is a characterization
of the congruence notion in terms of their equivalence classes and plays a key
role in the definition of local congruences as we will show later (more detailed
information on the characterization and the notions involved in this result can
be found in [10]).

Theorem 1 ([10]). Let (L,�) be a lattice and θ an equivalence relation on L.
Then, θ is a congruence if and only if

(i) each equivalence class of θ is a sublattice of L,
(ii) each equivalence class of θ is convex,
(iii) the equivalence classes of θ are quadrilateral-closed.

With the goal of obtaining a less-constraining equivalence relations than
congruences, but preserving some interesting properties satisfied by this kind
of equivalence relations, the notion of local congruence arose [2] in the frame-
work of attribute reduction in FCA [7–9,11,16], focused on providing an optimal
reduction on FCA from the application of Rough Set techniques [4,5,14]. This
notion is recalled in the following definition and mainly consist in the elimination
of a restriction (last item) in the previous theorem.

Definition 3. Given a lattice (L,�), we say that an equivalence relation δ on
L is a local congruence if the following properties hold:

(i) each equivalence class of δ is a sublattice of L,
(ii) each equivalence class of δ is convex.

Next section studies how we can define an ordering relation between the
equivalence classes obtained from a local congruence.

3 Ordering Classes of Local Congruences

In this section, we are interested in studying ordering relations for local congru-
ences. This fact is fundamental for establishing a proper hierarchy among the
classes of concepts obtained after the reduction in FCA [3–5].
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The set of equivalence classes of a congruence on a lattice L can be ordered
by a partial order �θ which is defined, for all a, b ∈ L, by means of the operators
∨θ and ∧θ presented in Definition 2, as follows:

[a]θ �θ [b]θ if [a]θ = [a]θ ∧θ [b]θ or [b]θ = [a]θ ∨θ [b]θ (1)

This ordering relation cannot be used for local congruences since local con-
gruences are not compatible with either supremum or infimum, that is, the oper-
ators ∨θ and ∧θ could not be well defined when the considered relation is a local
congruence due to they do not satisfy the quadrilateral-closed property unlike
congruences. In the next example, we illustrate this fact.

Example 1. Let us consider the lattice (L,�) shown in the left side of Fig. 1,
and the local congruence δ, highlighted by means of a Venn diagram, given in
the right side of Fig. 1.

⊥

a1 b1

a2 b2

�

⊥

a1 b1

a2 b2

�

Fig. 1. Lattice (left) and local congruence (right) of Example 1.

It is easy to see that the considered local congruence δ provides four different
equivalence classes which are listed below:

[�]δ = {�}
[a1]δ = [a2]δ = {a1, a2}
[b1]δ = [b2]δ = {b1, b2}

[⊥]δ = {⊥}
We can observe that a1,⊥ and b1, b2 are opposite sides, but a1 and ⊥ are

not in the same equivalence class, which means that the equivalence classes of
δ are not quadrilateral-closed. As a consequence, the infimum and supremum
operators described in Expression (1) are not well defined. For example, we have
that

[a2]δ ∧δ [b1]δ = [a2 ∧ b1]δ = [⊥]δ
[a2]δ ∧δ [b1]δ = [a2 ∧ b2]δ = [a1]δ
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and clearly [⊥]δ �= [a1]δ. Therefore, the ordering �δ cannot be defined on local
congruences. 	


A property of the ordering relation, shown in Expression (1), was shown
in [10], which provides another possibility of defining an ordering on the set of
local congruences.

Proposition 1 ([10]). Let θ be a congruence on a lattice (L,�) and let [a]θ and
[b]θ be equivalence classes of L/θ. Then, the binary relation ≤ defined on L/θ
as: [a]θ ≤ [b]θ, if there exist a′ ∈ [a]θ and b′ ∈ [b]θ, for all a′ � b′, is an ordering
relation.

Clearly, the relation ≤ is the associated ordering relation with the algebraic
lattice (L/θ,∨θ,∧θ). Consequently, we cannot use either this alternative defini-
tion in the equivalence classes of a local congruence. In the following example, we
show a case where the application of this ordering relation for a local congruence
does not satisfies the transitivity property.

Example 2. We will consider the lattice (L,�) and the local congruence δ both
given in Fig. 2. As we can observe, the local congruence provides five different
equivalence classes:

[�]δ = {�}
[a1]δ = [a2]δ = {a1, a2}
[b1]δ = [b2]δ = {b1, b2}
[c1]δ = [c2]δ = {c1, c2}

[⊥]δ = {⊥}

⊥

a1 b1 c1

a2 b2 c2

�

⊥

a1 b1 c1

a2 b2 c2

�

Fig. 2. Lattice (left) and local congruence (right) of Example 2.

If we try to order the equivalence classes of δ using the ordering relation
described in Proposition 1, we obtain that [a1]δ ≤ [b1]δ, since a1 � b2, and
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[b1]δ ≤ [c1]δ because b1 � c2. Nevertheless, we can see that [a1]δ is not lesser
than [c1]δ because neither a1 nor a2 are lesser than c1 or c2 in L. Therefore, the
ordering relation defined in Proposition 1 is not transitive for local congruences
in general and thus, it is not a partial order for local congruences. 	


As we have seen in the previous example, the ordering relation defined in
Proposition 1 cannot be used either to order the equivalence classes obtained
from local congruences. However, the underlying idea of the ordering relation of
Proposition 1 can be considered to define a more suitable ordering relation for
being applied on local congruences. In order to achieve this goal, we formalize
some notions presented in [6], which are related to the ordering of elements in the
quotient set provided from equivalence relations defined on posets. The following
notion is related to the way in which two elements of the original lattice can be
connected via the local congruence.

Definition 4. Let (L,�) be a lattice and a local congruence δ on L.

(i) A sequence of elements of L, (p0, p1, . . . , pn) with n ≥ 1, is called a δ-
sequence, denoted as (p0, pn)δ, if for each i ∈ {1, . . . , n} either (pi−1, pi) ∈ δ
or pi−1 � pi holds.

(ii) If a δ-sequence (p0, pn)δ satisfies that p0 = pn, then it is called a δ-cycle. In
addition, if the δ-cycle satisfies that [p0]δ = [p1]δ = · · · = [pn]δ, then we say
that the δ-cycle is closed.

With the notions of Definition 4, we present a new binary relation on local
congruences in the following definition.

Definition 5. Given a lattice (L,�) and a local congruence δ on L, we define
a binary relation �δ on L/δ as follows:

[x]δ �δ [y]δ if there exists a δ-sequence (x′, y′)δ

for some x′ ∈ [x]δ and y′ ∈ [y]δ.

Now, we go back to Example 2 in order to illustrate this relation.

Example 3. Returning to Example 2, we want to establish a hierarchy among
the equivalence classes depicted in Fig. 2 by means of the relation given in
Definition 5. By considering this definition, it is clear that [a1]δ �δ [b1]δ and
[b1]δ �δ [c1]δ. In addition, we can observe that, in this case, we also have that
[a1]δ �δ [c1]δ since there exists a δ-sequence that connects one element of the
class [a1]δ with another element of the class [c1]δ, this δ-sequence is shown below:

(a1, c2)δ = (a1, b2, b1, c2), since a1 � b2, (b2, b1) ∈ δ and b1 � c2

Therefore, the relationship among the elements in the quotient set L/δ given
by �δ are shown in Fig. 3. 	
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[⊥]δ

[a1]δ = [a2]δ

[b1]δ = [b2]δ

[c1]δ = [c2]δ

[�]δ

Fig. 3. Hasse diagram of the relation among the elements in L/δ of Example 3.

Observe that the binary relation �δ given in Definition 5 is a pre-order. Evi-
dently, by definition, �δ is reflexive and transitive. Now, we present an example
in which the previously defined relation �δ does not hold the antisymmetry
property and, consequently, it cannot be used to establish an ordering among
the equivalent classes obtained from a local congruence.

Example 4. Let us consider the lattice (L,�) and the local congruence δ given
in Fig. 4. The equivalence classes provided by δ are:

[�]δ = {�}
[a1]δ = [a2]δ = [a3]δ = [a4]δ = {a1, a2, a3, a4}

[b1]δ = [b2]δ = {b1, b2}
[c1]δ = [c2]δ = {c1, c2}

[⊥]δ = {⊥}

.

⊥

a1 b1

c1

a2

b2 c2

�

a3

a4

Fig. 4. Lattice and local congruence of Example 4.
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If we try to establish a hierarchy among the equivalence classes using the
binary relation given in Definition 5, we obtain that [c1]δ �δ [a1]δ since there
exists another δ-sequence that connects c1 with a2:

(c1, a2)δ = (c1, a2) since c1 � a2

In addition, we also have that [a1]δ �δ [c1]δ, because there exists a δ-sequence
that connects the elements a3 and c2:

(a3, c2)δ = (a3, b2, b1, c2) since a3 � b2, (b2, b1) ∈ δ and b1 � c2

Therefore, we have that [a1]δ �δ [c1]δ and [c1]δ �δ [a1]δ, but these classes are
not equal. Thus, the antisymmetry property does not hold and, as a consequence,
the obtained equivalent classes from the considered local congruence cannot be
ordered by means of the considered binary relation. 	


As we have seen in the previous example, the preorder �δ is not a partial
order since the antisymmetry property is not satisfied for any local congruence,
in general. Therefore, it is important to study sufficient conditions to ensure
that (L/δ,�δ) is a poset. The following result states a condition under which
the binary relation of Definition 5 is a partial order on local congruences.

Theorem 2. Given a lattice (L,�) and a local congruence δ on L, the preorder
�δ given in Definition 5 is a partial order if and only if either no δ-cycle exists
or every δ-cycle of elements in L is closed.

Since no δ-cycle of elements in L exists with respect to the local congruences
in Examples 1 and 2, we can ensure that the obtained quotient sets, together
with the binary relation �δ, are posets in both examples. The following example
shows a local congruence on the lattice L given in Example 4, such as (L/δ,�δ)
is a poset.

Example 5. On the lattice (L,�) of Example 4, the quotient set L/δ1 given by
local congruence δ1 depicted in the right side of Fig. 5, together with the binary
relation defined in Definition 5, is a poset.

⊥

a1 b1

c1

a2

b2 c2

�

a3

a4

Fig. 5. Local congruence δ1 (right) of Example 5 on the lattice of Example 4 (left).
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We can ensure that because no δ1-cycle exists. The right side of Fig. 6 shows
an equivalence relation that contains the δ-cycle of Example 4 in one equivalence
class. Therefore, the least local congruence, called δ2, is the one that groups
all the elements in a single class and, as a consequence, the δ-cycle is closed.
Therefore, by Theorem 2, the pair (L/δ2,�δ2) it is also a poset. 	


⊥

a1 b1

c1

a2

b2 c2

�

a3

a4

Fig. 6. Equivalence relation (right) of Example 5 on the lattice of Example 4 (left).

4 Conclusions and Future Work

In this paper, we have introduced an initial study about different ways of estab-
lish a hierarchy among the equivalence classes provided by local congruences. We
have analyzed the results of applying the usually considered ordering relations
on the quotient set of congruences, obtaining that these ordering relations are
not suitable to be used on local congruences. Based on the underlying philos-
ophy of one characterization of the ordering relation used for congruences, we
have defined a new binary relation on the equivalence classes obtained from a
local congruences. We have also proven that this binary relation is a preorder.
Moreover, we have stated a sufficient condition on the lattice in which the local
congruence is defined, in order to guarantee that this preorder is actually a par-
tial order. All the ideas presented throughout this study have been illustrated
by means of diverse examples.

As future work, we are interested in continuing this study and defining
another binary relation, which will be a partial order on the equivalence classes
of any local congruence. Furthermore, we will apply this type of equivalence rela-
tions in practical problems, such as in tasks related to the reduction of concept
lattices in the framework of formal concept analysis.
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13. Grätzer, G.: Universal Algebra, 2nd edn. Springer, New York (2008)
14. Jiang, Z., Liu, K., Yang, X., Yu, H., Fujita, H., Qian, Y.: Accelerator for supervised

neighborhood based attribute reduction. Int. J. Approx. Reason. 119, 122–150
(2020)

15. Li, J.-Y., Wang, X., Wu, W.-Z., Xu, Y.-H.: Attribute reduction in inconsistent for-
mal decision contexts based on congruence relations. Int. J. Mach. Learn. Cybernet.
8(1), 81–94 (2016). https://doi.org/10.1007/s13042-016-0586-z

16. Medina, J.: Relating attribute reduction in formal, object-oriented and property-
oriented concept lattices. Comput. Math. Appl. 64(6), 1992–2002 (2012)

17. Medina, J., Ojeda-Aciego, M., Ruiz-Calviño, J.: Formal concept analysis via multi-
adjoint concept lattices. Fuzzy Sets Syst. 160(2), 130–144 (2009)

18. Viaud, J., Bertet, K., Demko, C., Missaoui, R.: The reverse doubling construction.
In: 2015 7th International Joint Conference on Knowledge Discovery, Knowledge
Engineering and Knowledge Management (IC3K), vol. 1, pp. 350–357, November
2015

19. Viaud, J.-F., Bertet, K., Demko, C., Missaoui, R.: Subdirect decomposition of con-
texts into subdirectly irreducible factors. In: International Conference on Formal
Concept Analysis ICFCA2015, Nerja, Spain, June 2015

20. Viaud, J.-F., Bertet, K., Missaoui, R., Demko, C.: Using congruence relations to
extract knowledge from concept lattices. Discrete Appl. Math. 249, 135–150 (2018)

21. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of con-
cepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht (1982).
https://doi.org/10.1007/978-94-009-7798-3 15

https://doi.org/10.1007/978-3-030-16024-1_24
https://doi.org/10.1007/978-3-030-16024-1_24
https://doi.org/10.1007/b139095
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1007/s13042-016-0586-z
https://doi.org/10.1007/978-94-009-7798-3_15


Object Oriented Protoconcepts and
Logics for Double and Pure Double

Boolean Algebras

Prosenjit Howlader and Mohua Banerjee(B)

Department of Mathematics and Statistics, Indian Institute of Technology,
Kanpur 208016, India

{prosen,mohua}@iitk.ac.in

Abstract. The notion of a protoconcept in the framework of Yao’s
object oriented concepts is proposed. Approximations by object oriented
concepts are defined and these ‘object oriented protoconcepts’ are char-
acterized using them. It is shown that the object oriented protoconcepts
form a double Boolean algebra, and any double Boolean algebra is quasi-
embedded in an algebra of protoconcepts. A logic DBL for the class of
double Boolean algebras is proposed along with an extension PDBL for
the class of pure double Boolean algebras. Utilizing the representation
result for (pure) double Boolean algebras, it is established that DBL
(PDBL) is sound and complete with respect to a semantics based on
object oriented protoconcepts (semiconcepts).

1 Introduction

Formal concept analysis (FCA) [5] has seen wide applications since its inception.
In order to study a conceptual knowledge system [10], Wille introduced the
negation of a concept, leading to the notions of semiconcepts and protoconcepts.
Algebraic studies of these notions led to the definition of double Boolean algebras
and pure double Boolean algebras [11]. These structures have been investigated
by many authors [1,7–9].

Over the years, there has been a lot of work on different kinds of intersections
of the theories of rough sets and FCA. Two seminal works in this regard are by
Düntsch and Gediga, who introduced property oriented concepts [4], and by Yao,
who proposed object oriented concepts [14]. Algebraic studies of these concepts
have been conducted by many [6,12,15]. Our interest lies in introducing negation
in the study of these concepts, in the line of the study by Wille as mentioned
above. In [6], object oriented semiconcepts were introduced. In this work, we
define object oriented protoconcepts (Sect. 4), and characterize them through
a notion of approximation by object oriented concepts. The algebraic structure
formed by object oriented protoconcepts is studied giving a representation result
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for double Boolean algebras. In Sect. 5, we propose a sequent calculus DBL,
which is shown to be sound and complete with respect to the class of double
Boolean algebras. DBL is extended to PDBL to give a logic for the class of pure
double Boolean algebras. Utilizing the representation results for the algebras, it is
next shown (Sect. 6) that these logics are also sound and complete for semantics
based on object oriented protoconcepts and semiconcepts respectively.

Preliminaries required for the work are presented in the next section.
Section 3 revisits the notions of concepts and semiconcepts related to rough set
theory, illustrated through a running example. Section 7 concludes the paper.

2 FCA and Double Boolean Algebras

Definition 1 [5]. A context is a triple K := (G,M,R),where G is the set of
objects, M is the set of properties, and R ⊆ G × M .

For a context K := (G,M,R), its complement is the context K
c :=

(G,M,−R) where −R := (G × M) \ R.
For any A ⊆ G,B ⊆ M , the following sets are defined:
A′ := {m ∈ M : ∀g ∈ G(g ∈ A=⇒gRm)}, and
B′ := {g ∈ G : ∀m ∈ M(m ∈ B=⇒gRm)}.
Then (A,B) is a concept of K, provided A′ = B and B′ = A.
An order relation ≤ is defined on the set of all concepts as follows. For

concepts (A1, B1) and (A2, B2), (A1, B1) ≤ (A2, B2) if and only if A1 ⊆ A2

(equivalently B2 ⊆ B1).

Notation 1. We denote the class of all contexts by K.
For a relation R ⊆ G × M , R−1 is the converse of R, that is R−1 ⊆ M × G

and yR−1x if and only if xRy. For any x ∈ G, y ∈ M , R(x) := {y ∈ M : xRy},
and R−1(y) := {x ∈ G : xRy}.

The complement of a subset X of G (or M) will be denoted simply by Xc.
The set of all concepts of the context K is denoted by B(K). For a concept

(A,B), A := ext((A,B)) is its extent, while B := int((A,B)) is its intent.

Attempting to introduce the negation of a formal concept, it was noticed that
there is a problem of closure if set-complement is used to define it. So the notion
of concept was generalized to that of a semiconcept, and also to a protoconcept
[11].

Definition 2. Let K := (G,M,R) be a context and A ⊆ G,B ⊆ M . The pair
(A,B) is a semiconcept of K if and only if A′ = B or B′ = A, while it is a
protoconcept of K if and only if A′′ = B′ (equivalently A′ = B′′).

Notation 2. The set of all semiconcepts is denoted by H(K) and the set of all
protoconcepts is denoted by P(K).

Observation 1. For a context K := (G,M,R), H(K) ⊆ P(K).
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The following operations are defined in P(K). Let (A1, B1), (A2, B2), (A,B) be
any protoconcepts.

(A1, B1) � (A2, B2) := (A1 ∩ A2, (A1 ∩ A2)
′
),

(A1, B1) 	 (A2, B2) := ((B1 ∩ B2)
′
, B1 ∩ B2),

¬(A,B) := (A′, Ac′
), �(A,B) := (Bc′

, Bc), 
 := (G,φ), and ⊥ := (φ,M).

Notation 3. P(K) forms a abstract algebra of type (2, 2, 1, 1, 0, 0) with respect
to the above operations and is called the protoconcept algebra of a context K. It
is denoted by P(K) := (P(K),	,�,¬, �,
,⊥).

H(K) is closed under the above operations, forming a subalgebra of the pro-
toconcept algebra. This algebra is called the semiconcept algebra of a context K,
and is denoted by H(K) := (H(K),	,�,¬, �,
,⊥).

On abstraction of properties of the protoconcept algebra of a context, Wille
defined the double Boolean algebra [11]. The semiconcept algebra leads to the
notion of a pure double Boolean algebra.

Definition 3 [11]. A double Boolean algebra (dBa) is an abstract algebra D :=
(D,	,�,¬, �,
,⊥) which satisfies the following properties, for any x, y, z ∈ D.

(1a) (x � x) � y = x � y
(2a) x � y = y � x
(3a) x � (y � z) = (x � y) � z
(4a) ¬(x � x) = ¬x
(5a) x � (x 	 y) = x � x
(6a) x � (y ∨ z) = (x � y) ∨ (x � z)
(7a) x � (x ∨ y) = x � x
(8a) ¬¬(x � y) = x � y
(9a) x � ¬x = ⊥

(10a) ¬⊥ = 
 � 

(11a) ¬
 = ⊥

(1b) (x 	 x) 	 y = x 	 y
(2b) x 	 y = y 	 x
(3b) x 	 (y 	 z) = (x 	 y) 	 z
(4b) �(x 	 x) =�x
(5b) x 	 (x � y) = x 	 x
(6b) x 	 (y ∧ z) = (x 	 y) ∧ (x 	 z)
(7b) x 	 (x ∧ y) = x 	 x
(8b) ��(x 	 y) = x 	 y
(9b) x	�x = 


(10b) �
 = ⊥ 	 ⊥
(11b) �⊥ = 


12 (x � x) 	 (x � x) = (x 	 x) � (x 	 x),

where x ∨ y := ¬(¬x � ¬y) and x ∧ y :=�(�x	�y).
On D, a quasi-order � is given by x � y⇐⇒x � y = x � x and x 	 y = y 	 y,

for any x, y ∈ D.
A dBa D is called pure, if for all x ∈ D either x � x = x or x 	 x = x.

Theorem 1 [11]. P(K) forms a dBa and H(K) forms a pure dBa.

Notation 4. For any dBa D := (D,	,�,¬, �,
,⊥), D� := {x ∈ D | x � x =
x}, D� := {x ∈ D | x 	 x = x}. For x ∈ D, x� := x � x and x� := x 	 x.

Let D := (D,	,�,¬, �,
,⊥) be a dBa. Then we have
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Proposition 1 [8].

(i) D� := (D�,�,∨,¬,⊥,¬⊥) is a Boolean algebra, whose order relation is
the restriction of � to D� and is denoted by ��.

(ii) D� := (D�,	,∧, �,
, �
) is a Boolean algebra, whose order relation is
the restriction of � to D� and is denoted by ��.

(iii) x � y if and only if x � x � y � y and x 	 x � y 	 y for x, y ∈ D, that is
x� �� y� and x� � y�, for any x, y ∈ D.

The following proposition giving further properties of dBas is useful. Part
(a) is proved in [7]; we prove (b) below.

Proposition 2.

(a) [7] For any x, y, a ∈ D:
1. x � ⊥ = ⊥ and x 	 ⊥ = x 	 x, that is ⊥ � x.
2. x 	 
 = 
 and x � 
 = x � x, that is x � 
.
3. x = y implies that x � y and y � x.
4. x � y and y � x if and only if x � x = y � y and x 	 x = y 	 y.
5. x � y � x, y � x 	 y, x � y � y, x � x 	 y.
6. x � y implies x � a � y � a and x 	 a � y 	 a.
(b) For any x, y ∈ D:
1. ¬x = (¬x)� ∈ D� and �x = (�x)� ∈ D�.
2. x � y if and only if ¬y � ¬x and �y ��x.

Proof. (b) 1. Let x ∈ D. By axiom (1a), x � x ∈ D�. Using axiom (4a) and
Proposition 1(i) we have ¬x = ¬(x � x) ∈ D�. The other is proved dually.

2. Let x, y ∈ D. Proposition 1(iii) gives x � y if and only if x� �� y� and x� ��
y�, which is if and only if ¬y� �� ¬x� and �y� ���x� by Proposition 1(i)–
(ii). The latter is if and only if ¬y �� ¬x and �y ���x (using axioms (4a) and
(4b)), which is if and only if ¬y � ¬x and �y ��x, by Proposition 1(i)–(ii)
and (b)(1) of this Proposition. �

Definition 4. Let D and M be two dBas. A map h : M → D is called a
homomorphism if h preserves the operations in the algebras.

h is called quasi-injective, when x � y if and only if h(x) � h(y), for all
x, y ∈ M . A quasi-injective and surjective homomorphism is called a quasi-
isomorphism and a bijective homomorphism is called an isomorphism.

In a dBa D := (D,	,�,¬, �,
,⊥) a subset F of D is called a filter, if it is
an upset and closed under �. Dually, a subset I of D is called an ideal if it is a
downset and closed under 	.

F0(⊆ D) is called a base for the filter F if F = {y ∈ D : x � y for some x ∈
F0}. Base for an ideal is dually defined.

Notation 5. Let D := (D,	,�,¬, �,
,⊥) be a dBa.
Fp(D) := {F ⊆ D|F is a filter of D and F ∩ D� is a prime filter in D�},

and Ip(D) := {I ⊆ D|I is an ideal of D and I ∩ D� is a prime ideal in D�}.
For any x ∈ D, Fx := {F ∈ Fp(D) | x ∈ F} and Ix := {I ∈ Ip(D) | x ∈ I}.
Define the context K(D) := (Fp(D), Ip(D),Δ), where for any F ∈

Fp(D), I ∈ Ip(D), FΔI if and only if F ∩ I �= ∅.
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Lemma 1 [11]. Let F be a filter of a dBa D.

1. F ∩ D� and F ∩ D� are filters of the Boolean algebras D�, D� respectively.
2. Each filter F0 of the Boolean algebra D� is the base of some filter F of D

such that F0 = F ∩ D�. Moreover if F0 is a prime filter of D�, F ∈ Fp(D).

A similar result can be proved for ideals in a dBa.

Lemma 2. (Fx)c = F¬x and (Ix)c = I�x, for any x ∈ D.

Theorem 2 [11]. The map h : D → P(K(D)) defined by h(x) := (Fx, Ix) for
all x ∈ D, is a quasi-injective homomorphism.

Theorem 3 [1]. If D := (D,	,�,¬, �,
,⊥) is a pure dBa, the map h : D →
H(K(D)) defined by h(x) := (Fx, Ix) for all x ∈ D, is an injective homomor-
phism.

3 Concepts and Semiconcepts Based on Rough Set
Theory

In [4], Düntsch and Gediga pointed out limitations of FCA as a tool for qualitive
data analysis. They gave the example of a context K := (G,M,Γ ), where G is
a set of problems and M is a set of skills, and the relation Γ ⊆ G × M may be
interpreted in two different ways:

I. Skill s is necessary to solve q and Γ (q) is minimally sufficient to solve q.
II. It is possible to solve problem q with skill s.

In this section, we work with an instance of such a context given below.

Example 1 Let G := {q1, q2, q3, q4, q5, q6} be a set of problems and consider a set
of skills S := {s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11}. The context K := (G,M,Γ )
is represented by the table below. A cross in the i−j-th cell of the table indicates
that the relation qiΓsj holds.

Table 1. Context

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

q1 × × × × ×
q2 × × × × ×
q3 × × × × ×
q4 × × ×
q5 × × × ×
q6 ×
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Case I: Let qiΓsj be interpreted as: skill sj is necessary to solve qi, and
Γ (qi) is minimally sufficient to solve qi. Let a student be asked to solve a set of
problems A := {q1, q2} in a test to check his skills (from the set S). In FCA,
A′ = {s3} gives the collection of the skills necessary to solve all the problems of A.
However, different problems in A may require different sets of skills to solve them.
For instance, q1 requires s1 while q2 does not. So {s1, s2, s3, s4, s5, s6, s7, s8, s10}
would more adequately represent the skills necessary to solve A.

Case II: Let us interpret qiΓsj as: it is possible to solve qi with skill sj .
Considering the problem set A := {q1, q2}, again A′ = {s3} does not give all the
possible skills that could be used to solve the problems in A – for instance, it is
possible to solve them with the skills s1 and s2.

Now the question is, how do we assign a skill set to the problem set A?
Düntsch and Gediga address this question in [4], using modal style operators
and introduce property oriented concepts. Let K := (G,M,R) be a context,
A ⊆ G and B ⊆ M .

B♦
R := {x ∈ G|R(x) ∩ B �= ∅} and B�

R := {x ∈ G|R(x) ⊆ B}

A♦
R−1 := {y ∈ M |R−1(y) ∩ A �= ∅} and A�

R−1 := {y ∈ M |R−1(y) ⊆ A}
If there is no confusion about the relation involved, we shall omit the subscript
and denote B♦

R by B♦, B�
R by B�, and similarly for the case of A.

Definition 5 [3]. A closure operator on a set X is an operator C on the power
set P(X) of X such that for all A,B ∈ P(X),

C1 A ⊆ C(A),
C2 A ⊆ B implies C(A) ⊆ C(B),
C3 C(C(A)) = C(A).

A ∈ P(X) is called closed if and only if C(A) = A.
An interior operator I on the set X is defined dually, and A ∈ P(X) is called

open if and only if I(A) = A.

Some properties of the operators �,♦ are as follows.

Theorem 4 [14]. Let A,A1, A2 ⊆ G and B,B1, B2 ⊆ M .

1. A1 ⊆ A2 implies that A�
1 ⊆ A�

2 and A♦
1 ⊆ A♦

2 .
2. B1 ⊆ B2 implies that B�

1 ⊆ B�
2 and B♦

1 ⊆ B♦
2 .

3. A�
R = Ac′

−R;B�
R = Bc′

−R and A♦
R = A′c

−R;B♦
R = B′c

−R.
4. A�♦� = A� and B�♦� = B�.
5. A♦�♦ = A♦ and B♦�♦ = B♦.
6. �♦ is interior operator on G and ♦� is closure operator on M .

Let K := (G,M,R) be a context, A ⊆ G,B ⊆ M .
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Definition 6 [4]. (A,B) is a property oriented concept of K if it satisfies the
conditions A♦ = B and B� = A.

Refer to Example 1, Case I. For any A ⊆ G, A♦ can be interpreted as the set
of all skills m that are necessary to solve problems in A (Γ−1(m) ∩ A �= ∅).
For any B ⊆ M , B� can be interpreted as the set of problems x such that
B contains all skills sufficient to solve x (Γ (x) ⊆ B). So the intent B of a
property oriented concept (A,B) of the context given in Example 1, repre-
sents the set of skills that are necessary and sufficient to solve problems in
the extent A. For instance, {s1, s2, s3, s4, s5, s6, s7, s8, s10} gives all the skills
that are necessary and sufficient to solve the problems in {q1, q2, q4}; hence
({q1, q2, q4}, {s1, s2, s3, s4, s5, s6, s7, s8, s10}) is a property-oriented concept.

Definition 7 [13]. (A,B) is an object oriented concept of the context K if it
satisfies the condition A� = B and B♦ = A.

An order relation ≤ can be defined on the set of such pairs. For any object
oriented concepts (A1, B1), (A2, B2), (A1, B1) ≤ (A2, B2) if and only if A1 ⊆
A2 (equivalently, B1 ⊆ B2).

Refer to Example 1, Case II. For A ⊆ G, A� can be interpreted as the set of
skills s such that A contains all the problems that are possible to solve with s
(Γ−1(s) ⊆ A). For B ⊆ M , B♦ is the set of problems that are possible to solve
with some skill in B (Γ (x) ∩ B �= ∅). So the extent A of an object oriented
concept (A,B) in this context is the set of problems which are possible to solve
with skills in B, while the intent B is the set of skills by which only problems in
A can be solved. ({q3, q5}, {s9}) then forms an object-oriented concept.

A comparative study of Wille’s concepts, property and object oriented con-
cepts and concept lattices is done extensively by Yao in [13].

We next turn to object-oriented semiconcepts, introduced in [6] to bring in
the notion of negation.

Definition 8 [6]. (A,B) is an object oriented semiconcept of K if A� = B or
B♦ = A.

Notation 6. The set of all object oriented concepts is denoted by RO-L(K),
the set of all object oriented semiconcepts is denoted by S(K).

The following are observed in [6].

Observation 2.

1. (A,B) ∈ S(K) if and only if either (A,B) = (A,A�) or (A,B) = (B♦, B).
2. RO − L(K) ⊆ S(K).
3. (A,B) is a semiconcept of K if and only if (Ac, B) is an object oriented

semiconcept of the context K
c.
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The following operations are defined in S(K). Let (A1, B1), (A2, B2), (A,B) be
any object oriented semiconcepts.

(A1, B1) � (A2, B2) := ((B1 ∩ B2)♦, B1 ∩ B2),
(A1, B1) 	 (A2, B2) := (A1 ∪ A2, (A1 ∪ A2)�),
¬(A,B) := (Ac, Ac�), �(A,B) := (Bc♦, Bc),
 := (G,M), and ⊥ := (φ, φ).

Refer again to Example 1, Case II. It is clear that it is possible to solve the prob-
lems q1, q2, q4 with skills other than s9. We are able to express this observation
in the framework of object oriented semiconcepts. Note that a := ({q3, q5}, {s9})
is an object oriented semiconcept of the context. The extent of a gives exactly
the problems that are possible to solve with skill s9. The negation of a, �a, is
the object oriented semiconcept ({q1, q2, q3, q4, q5, q6}, {s9}c) whose extent gives
all the problems that are possible to solve with skills other than s9, and includes
q1, q2, q4.

In this work, for the sake of simplicity in expressions of results, we consider
operations on object oriented semiconcepts that are dual to the ones mentioned
above. In other words, for (A,B), (C,D) ∈ S(K), we consider

(A,B) � (C,D) := (A ∪ C, (A ∪ C)�),
(A,B) 	 (C,D) := ((B ∩ D)♦, B ∩ D),
�(A,B) := (Bc♦, Bc), ¬(A,B) := (Ac, Ac�), 
 := (∅, ∅), ⊥ := (G,M).

From the results established in [6], we obtain

Theorem 5.

1. S(K) := (S(K),	,�,¬, �,
,⊥) is a pure dBa.
2. H(K) is isomorphic to S(Kc).

The map in (2) of the above theorem is due to Observation 2(3). From Lemma 2,
Theorem 5(2) and Theorem 3 we have the following.

Theorem 6. For a pure dBa D the map h : D → S(Kc(D)) defined by h(x) :=
(F¬x, Ix) for all x ∈ D, is an injective dBa homomorphism.

4 Object Oriented Protoconcepts

We now define and give some properties of object oriented protoconcepts. As
before, K := (G,M,R) is a context, A ⊆ G,B ⊆ M .

Definition 9. (A,B) is an object oriented protoconcept of K if A�♦ = B♦.

Notation 7. The set of all object oriented protoconcepts is denoted by R(K).

Proposition 3.

1. A�♦ = B♦ if and only if A� = B♦�.
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2. S(K) ⊆ R(K).

Proof. (1) Let A�♦ = B♦. Then A�♦� = B♦�. Now from 4 of Theorem 4 we
know that A�♦� = A�. Therefore A� = B♦�. Let A� = B♦� then A�♦ =
B♦�♦. Now from 5 of the Theorem 4 we know that B♦�♦ = B♦. Therefore
A�♦ = B♦.

(2) Let (A,B) ∈ S(K) then either A� = B or B♦ = A. Now if A� = B then we
gate A�♦ = B♦ and hence (A,B) ∈ R(K). Now if B♦ = A then A� = B♦�.
Therefore (A,B) ∈ R(K) by (1) of this Proposition. Hence S(K) ⊆ R(K). �

Recall Example 1 and Case II. Consider A1 := {q1, q2, q4, q6} and B1 := {s3}.
Then A�♦

1 = B♦
1 , so that (A1, B1) is an object oriented protoconcept of the

context. Now observe that B♦
1 = {q1, q2, q4} and so B♦

1 �= A1; A�
1 = {s3, s7, s10},

so A�
1 �= B1. This means (A1, B1) ∈ R(K) but (A1, B1) /∈ S(K), indicating that

the converse of (2) in Proposition 3 is not true.
We next characterize the object oriented protoconcepts of K (Theorem 7

below) using a notion of ‘approximation’ by object oriented concepts. Based on
the facts that �♦ is an interior operator on G and ♦� is a closure operator on
M , the discussion in [15] of ‘definable’ object sets gives the definition below.

Definition 10.

1. A is said to be definable in P(G) if and only if A�♦ = A.
2. B is said to be definable in P(M) if and only if B♦� = B.

It is then easy to see the following.

Proposition 4. A is definable if and only if it is the extent of some object
oriented concept of K, and B is definable if and only if it is the intent of some
object-oriented concept of K.

Proof. From Definition 7 it follows that for any object oriented concept (A,B),
A,B are definable. To see the converse assertions, for definable A and B, consider
respectively the object oriented concepts (A,A�) and (B♦, B). �

So an object oriented concept (A,B) of the context K can be thought of as a
pair of definable sets such that one can be determined by the other as A = B♦

and A� = B. However, for pairs (E,F ) ∈ P(G) × P(M) which are not object
oriented concepts, it may be worthwhile to determine the largest definable set C
contained in E and determined by F as C = F♦, and also the smallest definable
set D containing F and determined by E as E� = D. Such a pair (C,D) would
be an object oriented concept, and unique in the above respect. For instance,
referring to Example 1, Case II: for a set E of problems and set F of skills, C
would be the largest definable set of problems inside E that are possible to be
solved with the skills in F (C = F♦). We call the pair (C,D) an approximation
of the pair (E,F ).

Definition 11. An object oriented concept (C,D) is called an approximation
of (A,B) if and only if C is the largest definable set in P(G) contained in A,
and D is the smallest definable set in P(M) containing B.
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Observation 3. If (A,B) has an approximation, it is unique.

Theorem 7. (A,B) is an object oriented protoconcept of K if and only if it has
an approximation.

Proof. Let (A,B) be an object oriented protoconcept of K. Then A�♦ = B♦,
which is equivalent to A� = B♦�. Now we set C := A�♦ and D := A� = B♦�.
Then the pair (C,D) = (A�♦, A�) is an object oriented concept. Since �♦ is an
interior operator on G, C ⊆ A; since ♦� is a closure operator on M , B ⊆ D. As
C is the extent of the object oriented concept (C,D), C is definable in P(G) by
Proposition 4. Now let E be a definable set in P(G) such that E ⊆ A. By 1 of
Theorem 4 we have E = E�♦ ⊆ A�♦ = C, making C the largest definable set
contained in A. Similarly we get that D is the smallest definable set containing
B. So (C,D) is an approximation of (A,B).

For the converse, let us assume that (X,Y ) is an approximation of (A,B).
Then (X,Y ) is an object oriented concept and X ⊆ A and B ⊆ Y . Using 1 and
2 of Theorem 4 we have X = X�♦ ⊆ A�♦ and B♦� ⊆ Y ♦� = Y . By 4 and
6 of Theorem 4, A�♦�♦ = A�♦ ⊆ A, making A�♦ a definable set contained in
A. Since X is the largest definable set contained in A, A�♦ ⊆ X. Dually we
can show that Y ⊆ B♦�. So X = A�♦ and Y = B♦�. As (X,Y ) is an object
oriented concept then X� = Y and X = Y ♦. So A� = A�♦� = B♦� and hence
(A,B) is a object oriented protoconcept of K. �

In Example 1, Case II: as shown earlier, the pair ({q1, q2, q4, q6}, {s3}) is an object
oriented protoconcept but not an object oriented concept. This pair has the
object oriented concept ({q1, q2, q4}, {s3, s7, s10}) as its unique approximation.

Proposition 5. (A,B) is an object oriented protoconcept of K if and only if
(Ac, B) is a protoconcept of Kc.

Proof. A�♦
R = B♦

R if and only if Ac′′c
−R = B′c

−R by 3 of Theorem 4, and Ac′′c
−R = B′c

−R

if and only if Ac′′
−R = B′

−R. �

Recall the operations 	,�,¬, �,
,⊥ defined in Sect. 3 that made the set
S(K) of object oriented semiconcepts a pure dBa (Theorem 5). The set R(K) of
object oriented protoconcepts turns out to be closed with respect to the same
operations. In fact,

Theorem 8. (i) R(K) := (R(K),	,�,¬, �,
,⊥) is a dBa and (ii) R(K) is iso-
morphic to (P(Kc),	,�,¬, �,
,⊥).

Proof. (i) The proof is a routine check.
(ii) h : R(K) → P(Kc) defined as h((A,B)) := (Ac, B) for any (A,B) in R(K), is

an isomorphism between the two dBas. h is well defined and onto by Propo-
sition 5. Injectivity of h follows trivially. Verifying that h is a homomorphism
is a routine check. �

The dBa R(K) is called the algebra of object oriented protoconcepts.
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Observation 4. Using the definition of the quasi-order in a dBa, one sees that
for any (A,B), (C,D) ∈ R(K), (A,B) � (C,D) if and only if C ⊆ A and D ⊆ B.

Using Theorems 2 and 8 and Lemma 2, we get a representation result for dBas.

Theorem 9. For a dBa D, the map h : D → R(Kc(D)) defined by h(x) :=
(F¬x, Ix) for any x ∈ D, is a quasi-injective dBa homomorphism.

5 Logics for dBas and Pure dBas

We now give a sequent calculus DBL for the class of dBas, and extend it to
PDBL to get a sequent calculus for pure dBas. The language of DBL consists
of propositional constants ⊥,
, a set VAR of propositional variables, and logical
connectives 	,�,¬, �. The set F of all formulae of DBL is given by the scheme:

⊥ | 
 | p | α 	 β | α � β | ¬α | �α,

where p ∈ VAR. ∨ and ∧ are definable connectives: α ∨ β := ¬(¬α � ¬β) and
α ∧ β :=�(�α	�β), for α, β ∈ F.

A sequent in DBL with formulae α, β ∈ F is denoted in the usual manner as
α � β. α �� β will be used as abbreviation for (α � β and β � α).
The axioms of DBL are given by the following schemes.

1a ⊥ � α
2a α � β � α
3a α � β � β
4a α � β � (α � β) � (α � β)
5a α � α � α � (α 	 β)
6a ¬(α � α) � ¬α
7a α � ¬α � ⊥
8a ¬⊥ �� 
 � 

9a α � α � α � (α ∨ β)

10a α � (β ∨ γ) �� (α � β) ∨ (α � γ)
11a ¬¬(α � β) �� (α � β)
12a ¬
 � ⊥

1b α � 

2b α � α 	 β
3b β � α 	 β
4b (α 	 β) 	 (α 	 β) � α 	 β
5b α 	 (α � β) � α 	 α
6b �α ��(α 	 α)
7b 
 � α	�α
8b �
 �� ⊥ 	 ⊥
9b α 	 (α ∧ β) � α 	 α

10b α 	 (β ∧ γ) �� (α 	 β) ∧ (α 	 γ)
11b ��(α 	 β) �� (α 	 β)
12b 
 ��⊥

13 α � α
14 (α 	 α) � (α 	 α) � (α � α) 	 (α � α)
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Rules of inference:

α � β

α � γ � β � γ
(R1)

α � β

α 	 γ � β 	 γ
(R2)

α � β

¬β � ¬α
(R3)

α � β, β � γ

α � γ
(R4)

α � β

γ � α � γ � β
(R1′)

α � β

γ 	 α � γ 	 β
(R2)′

α � β

�β ��α
(R5)

α � β �� α � α α 	 β �� β 	 β

α � β
(R6)

Provability of sequents in DBL is defined in the standard way.

Proposition 6. The following rules are derivable in DBL.

α � β α � γ

α � α � β � γ
(R7)

β � α γ � α

β 	 γ � α 	 α
(R8)

Proof. (R7) is derived using (R1), (R1′) and (R4), while for (R8) one uses
(R2), (R2′) and (R4). �

Theorem 10. The following sequents are provable in DBL.
(1a) (α � β) �� (β � α). (1b) α 	 β �� β 	 α.
(2a) α � (β � γ) �� (α � β) � γ. (2b) α 	 (β 	 γ) �� (α 	 β) 	 γ.
(3a) (α � α) � β �� (α � β). (3b) (α 	 α) 	 β �� α 	 β.
(4a) ¬α � ¬(α � α). (4b) �(α 	 α) ��α.
(5a) α � (α 	 β) � (α � α). (5b) α 	 α � α 	 (α � β).
(6a) α � (α ∨ β) � α � α. (6b) α 	 α � α 	 (α ∧ β).
(7a) ⊥ � α � ¬α. (7b) α	�α � 
.
(8a) ⊥ � ¬
 (8b) �⊥ � 
.
(9) (α � α) 	 (α � α) � (α 	 α) � (α 	 α).

Proof. The proofs are straightforward. For instance, (4a) follows from axiom
(2a) and (R3). The proofs of (ib) are dual to those of (ia) for i = 1, 2, 3, 4, 5, 6.
(7a), (8a) follow from axiom (1a), and 7b, 8b follow from axiom (1b). Proposi-
tion 6 is also used in some of the proofs. �

PDBL is the logic obtained from DBL by adding the following axiom:
15. for any α ∈ F, either α � α � α or α 	 α � α.

Due to axioms (2a) and (2b), we get

Proposition 7. In PDBL, for any α ∈ F, either α �� α � α or α �� α 	 α.

Now we define the notion of validity for DBL (PDBL) with respect to the class
of dBas (pure dBas).

Definition 12. Let D be a (pure) dBa. A valuation v : F → D in D is a map
such that for all α, β ∈ F we have the following.
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1. v(α 	 β) := v(α) 	 v(β).
2. v(�α) :=�v(α).
3. v(
) := 
.

4. v(α � β) := v(α) � v(β).
5. v(¬α) := ¬v(α) .
6. v(⊥) := ⊥.

Definition 13. A sequent α � β is said to be satisfied by a valuation v in a
(pure) dBa D if and only if v(α) � v(β). A sequent α � β is true in D if and
only if for all valuations v in D, v satisfies α � β. A sequent α � β is valid in the
class of all (pure) dBas if and only if it is true in every (pure) dBa.

Theorem 11 (Soundness). If α � β is provable in DBL (PDBL) then it is
valid in the class of all dBas (pure dBas).

Proof. The proof that all the axioms of DBL are valid in the class of all dBas
and that the rules of inference preserve validity, is straightforward. Proposition 2
giving properties of dBas, is utilized. The result applies to PDBL and pure dBas,
as axiom (15) reflects the defining axiom of pure dBas (Definition 3). �

The completeness theorem is established in the standard way, using the
Lindenbaum-Tarski algebras of the logics DBL and PDBL. We sketch the route
taken by the proof. For α, β ∈ F, a relation ≡� is defined on F by: α ≡� β if
and only if α �� β. ≡� is shown to be a congruence relation on F with respect
to 	, �, ¬, �. The quotient set F/ ≡� induced by the relation ≡� and oper-
ations induced by the logical connectives, give the Lindenbaum-Tarski algebra
L(F) := (F/ ≡�,	,�,¬, �, [
], [⊥]). The axioms in DBL (PDBL) show that
L(F) of the respective logic is a dBa (pure dBa). One can then establish

Proposition 8. The following statements are equivalent.

1. α � β is provable in DBL.
2. [α] � [β] in L(F) of DBL.

The result can be extended to the case of PDBL. Using these and the canonical
map v : F → F/ ≡� defined as v(γ) := [γ] for any γ ∈ F, one obtains

Theorem 12 (Completeness). If a sequent α � β is valid in the class of all
dBas (pure dBas) then it is provable in DBL (PDBL).

6 Object Oriented Protoconcept and Semiconcept
Semantics for the Logics

In this section, we define object oriented protoconcept semantics for DBL and
object oriented semiconcept semantics for PDBL, and show that the logics are
sound and complete with respect to these semantics.

Definition 14. A model for DBL is a pair M := (K, v), where K is a context
and v is a map from the set F of DBL-formulae to the set R(K) of all object
oriented protoconcepts of K satisfying the following conditions:
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1. v(α 	 β) := v(α) 	 v(β).
2. v(�α) :=�v(α).
3. v(
) := 
.

4. v(α � β) := v(α) � v(β).
5. v(¬α) := ¬v(α) .
6. v(⊥) := ⊥.

M := (K, v) is a model for PDBL if v is a map from F to the set S(K) of
all object oriented semiconcepts of K. The properties satisfied by v remain the
same as above.

Notation 8. For the class K of all contexts, we define R(K) := {R(K) | K ∈ K}
and S(K) := {S(K) | K ∈ K}.

Definition 15. A sequent α � β is said to be satisfied in a model M for DBL if
and only if v(α) � v(β) in R(K). A sequent α � β is true in R(K) of a context K
if and only if every model M based on the context K satisfies the sequent α � β.
A sequent α � β is valid in R(K) if and only if it is true in every R(K) of R(K).

Replacing R(K) and R(K) by S(K) and S(K) respectively in the above, we
get the definitions for the case of PDBL.

Theorem 13 (Soundness). For any α and β in F,

(a) If α � β is provable in DBL then it is valid in R(K),
(b) If α � β is provable in PDBL then it is valid in S(K).

Proof. (a) As for any context K ∈ K the set R(K) of object oriented protocon-
cepts of K forms a dBa, and for any model M := (K, v), v is a valuation
according to Definition 12, Theorem 11 gives us the result.

(b) Replace R(K) by S(K) and dBa by pure dBa in the argument of (a). �

Theorem 14 (Completeness). For any α and β in F,

(a) If a sequent α � β is valid in R(K) then it is provable in DBL,
(b) If a sequent α � β is valid in S(K) then it is provable in PDBL.

Proof. (a) If possible, suppose α � β is not provable in DBL. Then by Proposi-
tion 8, [α] �� [β] in L(F). Therefore by Proposition 1 we have either [α] � [α] ���
[β]� [β] or [α]	 [α] ��� [β]	 [β]. Now we consider the Lindenbaum-Tarski algebra
L(F) of DBL and the context K

c(L(F)) := (Fp(L(F)), Ip(L(F)),−Δ). By the
representation Theorem 9, there will then exist a quasi-injective homomorphism
h : L(F) → R(Kc(L(F))) such that h(x) := (F¬x, Ix) for all x ∈ L(F). Define the
valuation i : F → L(F) by i(γ) := [γ], for any γ ∈ F. Therefore composition of
the two maps v := h ◦ i gives a valuation from F to R(Kc(L(F))). So we have a
model M := (Kc(L(F)), v).

Now if [α]� [α] ��� [β]� [β], there exists a prime filter F0 in L(F)� (a Boolean
algebra, by Proposition 1) such that [α] � [α] ∈ F0 and [β] � [β] /∈ F0. Therefore
by Lemma 1 there exists a filter F in L(F) such that F ∩ L(F)� = F0 and as
F0 is prime, F ∈ Fp(L(F)). As [α] � [α] ∈ F0, [α] � [α] ∈ F and [β] � [β] /∈
F as [β] � [β] /∈ F0. So [α] ∈ F as [α] � [α] � [α], and [β] /∈ F otherwise
[β] � [β] ∈ F . This gives F /∈ F¬[α] and F ∈ F¬[β], whence F¬[β] �⊆ F¬[α]. So
v(α) = (F¬[α], I[α]) �� (F¬[β], I[β]) = v(β) by Proposition 4.
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In case [α]	[α] ��� [β]	[β], we can dually show that there exists I ∈ Ip(L(F))
such that [α] /∈ I and [β] ∈ I giving I[β] �⊆ I[α].

So α � β is not true in R(Kc(L(F))), which is not possible as α � β is valid
in R(K). Hence we get a contradiction.

A similar argument using the result for PDBL corresponding to Proposi-
tion 8 and the representation Theorem 6, gives (b). �

7 Conclusion

This work proposes the notion of object oriented protoconcepts, and charac-
terizes them in terms of approximations by object oriented concepts. A repre-
sentation result is obtained, showing that any double Boolean algebra is quasi-
embeddable in an algebra of object oriented protoconcepts. A logic DBL for
the class of object oriented protoconcepts is defined and extended to a logic
PDBL for the class of pure double Boolean algebras. Using the representation
results for double and pure double Boolean algebras, the logics are shown to be
sound and complete with respect to the class of object oriented protoconcepts
and semiconcepts over the class of all contexts respectively. As further work, one
can investigate representation results for the algebras that yield isomorphisms.
On the side of the logics, other semantics could be explored – for instance, a
Kripke-style semantics that may be in the line of work done in [2].
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Abstract. Formal concept analysis and rough set theory are two of the
most important mathematical tools for the treatment of information col-
lected on relational systems. In particular, the idea of reducing the size
of a database is widely studied in both theories separately. There are
some papers that studied the reduction of a formal context by means
of reducts from rough set. In this paper, we are focused in the reduc-
tion obtained in an information system considering the FCA reduction
mechanism.

Keywords: Reduct · Formal concept analysis · Rough set · Size
reduction

1 Introduction

Databases have been used in order to collect and store information in many
fields of the everyday life as medicine, industry, criminology and more. The
importance of databases has led to the development of mathematical tools for
their study and management. Two powerful and useful mathematical tools are
Formal Concept Analysis (FCA) [11] and Rough Set Theory (RST) [14]. More-
over, these two frameworks can be connected, among other ways, through the
way in which databases are represented. Relational systems are composed by a
set of attributes, a set of objects and a relationship between them.

One of the most important goal in both theories is the reduction of the
size of databases. In order to do that, the notion of reduct arose. As a general
definition, a reduct is a minimal subset of attributes keeping the original infor-
mation. In a FCA framework, a reduct is a subset of attributes with which an
isomorphic lattice to the original one is constructed [6,9,10]. In the case of RST,
the minimal subset of attributes keeping the indiscernibility objects is called a
reduct [8,16,17]. There are some papers connecting the reduction mechanisms in
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both theories. A new reduction mechanism in FCA by means of reducts of RST
is proposed in [2]. In the aforementioned paper, the results and properties are
developed in a classical environment. Additionally, this study was extended in
paper [3] to a fuzzy environment. Furthermore, a comparative study with other
mechanism is presented. In these papers, the process starts in a context, an asso-
ciated information system is constructed and the reductions in such information
system are computed. Then, the lattice of reduced context with the calculated
reducts is built. Therefore, these reduction mechanism provides a reduction in
FCA considering the reducts of RST.

On the other hand, a reduction mechanism in an information system consid-
ering the FCA philosophy is studied in [1]. In this paper, we will define a fuzzy
formal context and frame associated with an information system and the fuzzy
environment for reduction in the associated context will be applied. Moreover,
different properties will be studies in order to improve the FCA classification
theorems in the RST framework.

Since this paper is focused on extend the study presented in [1], we recall
the notions and results needed in Sect. 2. After that, the main contributions
are presented in Sect. 3. Finally, in Sect. 4, we summarize the results in the
conclusions and we present our future work.

2 Preliminaries

RST and FCA are the two mathematical tools considered in this paper in order to
reduce the size of a relational database. Also, the relation between the reduction
procedure in these frameworks is studied. Due to this fact, the notions and results
needed from these two environments will be recalled in this section.

2.1 Rough Set Theory

Rough Set Theory was developed in order to treat and manage incomplete infor-
mation. In this framework, information systems and decision systems are used
to present the data [14,15]. These systems are composed by a set of objects,
a set of attributes and a relation between them. In the particular case of the
decision system, an specific attribute is considered to make an action over the
objects. Since information systems are the only one considered in this paper, its
definition is recalled:

Definition 1. An information system (U,A) is a tuple, where the set of objects
U = {x1, x2, . . . , xn} and the set of attributes A = {a1, a2, . . . , am} are finite
and non-empty sets. Each a ∈ A corresponds to a mapping ā : U → Va, where
Va is the value set of the attribute a over U .

Moreover, for every subset D of A, the D-indiscernibility relation, Ind(D),
is defined by the following equivalence relation:

Ind(D) = {(xi, xj) ∈ U × U | for all a ∈ D, ā(xi) = ā(xj)}
where each equivalence class is written as [x]D = {xi ∈ U | (x, xi) ∈ Ind(D)}.
Ind(D) produces a partition on U denoted as U/Ind(D) = {[x]D | x ∈ U}.
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The following definition presents a useful tool for selecting the attributes
which discern two objects [15], the discernibility matrix.

Definition 2. Given an information system (U,A), its discernibility matrix is
a matrix with order |U | × |U |, denoted by MA, in which the element MA(x, y)
for each pair of objects (x, y) is defined by:

MA(x, y) = {a ∈ A | ā(x) �= ā(y)}

Moreover, in order to generalize this notions to a fuzzy environment, a fuzzy
indiscernibility relationship can be considered to compare the objects instead
of a classical one. This indiscernibility relation can be defined over any poset
P , that is, R : U × U → P , as it was introduced in [8]. Due to the study if
this paper is focused on the properties of the fuzzy FCA reduction to RST, the
interval [0, 1] will be considered as the poset used to define the indiscernibility
relation.

From this point forward, we are going to consider the definition of the infor-
mation system presented in Definition 1 together with the fuzzy indiscernibility
relation R : U × U → [0, 1] defined as:

R(xi, xj) = @(Ra1(xi, xj), . . . , Ran
(xi, xj))

for every pair of objects xi, xj ∈ U , where @: [0, 1]n → [0, 1] is an aggregation
operator and Rak

: U × U → [0, 1] is a tolerance relation with respect to the
attribute ak, for all k ∈ {1, . . . , n}.

2.2 Multi-adjoint Formal Concept Analysis

The considered operators in order to define the concept-forming operators are the
adjoint triples, which are generalizations of a triangular norm and its residuated
implication [12].

Definition 3. Let (P1,≤1), (P2,≤2), (P3,≤3) be posets and &: P1 × P2 → P3,
↙ : P3 ×P2 → P1, ↖ : P3 ×P1 → P2 be mappings, then (&,↙,↖) is an adjoint
triple with respect to P1, P2, P3 if the following double equivalence holds:

x ≤1 z ↙ y iff x& y ≤3 z iff y ≤2 z ↖ x (1)

for all x ∈ P1, y ∈ P2 and z ∈ P3. This double equivalence is called adjoint
property.

Next, we will present the boundaries properties verified by operators of an
adjoint triple.

Proposition 1. Given an adjoint triple (&,↙,↖) with respect to the posets
(P1,≤1,⊥1,	1), (P2,≤2,⊥2,	2) and (P3,≤3,⊥3,	3), the following boundary
conditions are hold:
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1. ⊥1 & y = ⊥3 y x&⊥2 = ⊥3, for all x ∈ P1, y ∈ P2.
2. z ↖ ⊥1 = 	2 y z ↙ ⊥2 = 	1, for all z ∈ P3.
3. 	3 ↖ x = 	2 y 	3 ↙ y = 	1, for all x ∈ P1, y ∈ P2.

The following result presents a relation between boundary conditions which
was proved in [4].

Proposition 2. Let us consider an adjoint triple (&,↙,↖) with respect to the
posets (P1,≤1,⊥1,	1), (P2,≤2,⊥2,	2) and (P3,≤3,⊥3,	3). If P1 = P3, we
have that the following equivalence is provided:

z ↖ 	2 = z, for all z ∈ P3 if and only if x&	2 = x, for all x ∈ P1

In the concept lattice settings, we need to consider that (P1,≤1) and (P2,≤2)
are complete lattices [13]. In the following, we are going to recall the notion of
multi-adjoint frame.

Definition 4. A multi-adjoint frame L is a tuple:

(L1, L2, P,
1,
2,≤,&1,↙1,↖1, . . . ,&n,↙n,↖n)

where (L1,
1) and (L2,
2) are complete lattices, (P,≤) is a poset and, for
all i = 1, . . . , n, (&i,↙i,↖i) is an adjoint triple with respect to L1, L2, P .
Multi-adjoint frames are denoted as (L1, L2, P,&1, . . . ,&n).

Given a frame, a multi-adjoint context is a tuple consisting of sets of objects,
attributes and a fuzzy relation among them; in addition, the multi-adjoint app-
roach also includes a function which assigns an adjoint triple to each pair of
objects and attributes.

Definition 5. Let (L1, L2, P,&1, . . . ,&n) be a multi-adjoint frame, a context is
a tuple (A,B,R, σ) such that A and B are non-empty sets (usually interpreted
as attributes and objects, respectively), R is a P -fuzzy relation R : A × B → P
and σ : A×B → {1, . . . , n} is a mapping which associates any element in A×B
with some particular adjoint triple in the frame.

Given a multi-adjoint frame and a context for that frame, the concept-
forming operators are denoted as ↑σ : LB

2 −→ LA
1 and ↓σ

: LA
1 −→ LB

2 , LB
2 and

LA
1 denote the set of fuzzy subsets g : B → L2 and f : A → L1, respectively, and

are defined, for all g ∈ LB
2 , f ∈ LA

1 and a ∈ A, b ∈ B, as:

g↑σ (a) = inf{R(a, b) ↙σ(a,b) g(b) | b ∈ B} (2)
f↓σ

(b) = inf{R(a, b) ↖σ(a,b) f(a) | a ∈ A} (3)

These two arrows form a Galois connection [13]. Hence, the notion of concept is
defined as usual: a multi-adjoint concept is a pair 〈g, f〉 satisfying that g ∈ LB

2 ,
f ∈ LA

1 and that g↑σ = f and f↓σ

= g; with (↑σ , ↓σ

) being the Galois connection
defined above.

Given g ∈ LB
2 (resp. f ∈ LA

1 ), we will call the concept 〈g↑σ↓σ

, g↑σ 〉 (resp.
〈f↓σ

, f↓σ↑σ 〉) the concept generated by g (resp. f).
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Definition 6. The multi-adjoint concept lattice associated with a multi-adjoint
frame (L1, L2, P,&1, . . . ,&n) and a context (A,B,R, σ) is the set

M(A,B,R, σ) = {〈g, f〉 | g ∈ LB
2 , f ∈ LA

1 and g↑σ = f, f↓σ

= g}
in which the ordering is defined by 〈g1, f1〉 
 〈g2, f2〉 if and only if g1 
2 g2
(equivalently f2 
1 f1).

The ordering just defined above provides M with the structure of a complete
lattice [13]. From now on, in order to simplify the notation, we will write ↑ and
↓ instead of ↑σ and ↓σ

, respectively.
A theory for attribute reduction in multi-adjoint concept lattices will be

introduced. From now on, a multi-adjoint frame (L1, L2, P,&1, . . . ,&n) and a
context (A,B,R, σ) will be fixed.

The following definition presents the most natural extension of a consistent
set in the multi-adjoint framework, keeping the definitions considered in Rough
Set Theory [14].

Definition 7. A set of attributes Y ⊆ A is called a consistent set of (A,B,R, σ)
if M(Y,B,RY , σY ×B) ∼=E M(A,B,R, σ). This is equivalent to say that, for all
〈g, f〉 ∈ M(A,B,R, σ), there exists a concept 〈g′, f ′〉 ∈ M(Y,B,RY , σY ×B) such
that g = g′.

Moreover, if M(Y \ {a}, B,RY \{a}, σY \{a}×B) �∼=E M(A,B,R, σ), for all
a ∈ Y , then Y is called a reduct of (A,B,R, σ).

The core of (A,B,R, σ) is the intersection of all the reducts of (A,B,R, σ).

The main idea in attribute reduction in formal concept analysis is to classify
the attributes from the irreducible elements in the concept lattice. Therefore,
the definition of irreducible element of a lattice must be introduced.

Definition 8. Given a lattice (L,
), such that ∧,∨ are the meet and the join
operators. An element x ∈ L verifying that

1. If L has a top element 	, then x �= 	.
2. If x = y ∧ z, then x = y or x = z, for all y, z ∈ L.

is called meet-irreducible (∧-irreducible) element of L. Condition (2) is equiva-
lent to

2′. If x < y and x < z, then x < y ∧ z, for all y, z ∈ L.

Hence, if x is ∧-irreducible, then it cannot be represented as the infimum of
strictly greatest elements.

A join-irreducible (∨-irreducible) element of L is defined dually.

A characterization of the meet-irreducible elements of a multi-adjoint concept
lattice is introduced in this section. A similar result can be given to the join-
irreducible elements.

Hence, we will consider a multi-adjoint concept lattice (M,
) associated
with a multi-adjoint frame (L1, L2, P,&1, . . . ,&n), a context (A,B,R, σ), where
L1, L2, P , A and B are finite and the following specific family of fuzzy subsets
of LA

1 :
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Definition 9. For each a ∈ A, the fuzzy subsets of attributes φa,x ∈ LA
1 defined,

for all x ∈ L1, as

φa,x(a′) =
{

x if a′ = a
0 if a′ �= a

will be called fuzzy-attributes. The set of all fuzzy-attributes will be denoted as
Φ = {φa,x | a ∈ A, x ∈ L1}.

Note that these mappings are generalizations of the crisp attributes and they
were also assumed in the proof of representation theorem of several fuzzy concept
lattices.

Once the technical results are introduced, the characterization of the ∧-
irreducible elements of multi-adjoint concept lattices can be proven. This the-
orem shows that the ∧-irreducible elements are concepts generated by fuzzy-
attributes and no more concepts can be ∧-irreducible elements.

Theorem 1 [5]. The set of ∧-irreducible elements of M, MF (A,B,R, σ), is:{
〈φ↓

a,x, φ↓↑
a,x〉 | φ↓

a,x �=
∧

{φ↓
ai,xi

| φai,xi
∈ Φ, φ↓

a,x ≺2 φ↓
ai,xi

} and φ↓
a,x �= g�

}

where 	 is the maximum element in L2 and g� : B → L2 is the fuzzy subset
defined as g�(b) = 	, for all b ∈ B.

The following definition presents a notion needed to classify the attributes of
a context by means of the attributes used to generate a concept.

Definition 10. Given a multi-adjoint frame (L1, L2, P,&1, . . . ,&n), a context
(A,B,R, σ) associated with the concept lattice (M,
) and a concept C of (M,
),
the set of attributes generating C is defined as the set:

Atg(C) = {a ∈ A | there exists x ∈ L1 such that 〈φ↓
a,x, φ↓↑

a,x〉 = C}
As in this paper we are using the philosophy of fuzzy FCA in order to reduce

the set of attributes, we will need some results that characterize the attributes
from the meet-irreducible elements of the multi-adjoint concept lattice. The
results presented are an adaptation of the attribute classification theorems intro-
duced in [5], by using the Definition 10. This improvement in results simplifies
the notation and facilitates its application. The following result characterizes the
absolutely necessary attributes, by means of Definition 10.

Theorem 2 [7]. Given an attribute a ∈ A, then a ∈ Cf if and only if there
exists a meet-irreducible concept C of (M,
) satisfying that a ∈ Atg(C) and
card(Atg(C)) = 1.

Finally, the next proposition shows the characterization of the absolutely
unnecessary attributes considering the attributes generating a concept. To this
group belong those attributes that are neither absolutely necessary nor relatively
necessary.

Theorem 3 [7]. Given an attribute a ∈ A, then a ∈ If if and only if, for any
C ∈ MF(A), a /∈ Atg(C), or if a ∈ Atg(C) then

(
A \ Atg(C)

) ∪ {a} is not a
consistent set.
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3 Main Properties of Fuzzy Attribute Reduction
in Information Systems with FCA Philosophy

This section will recall some notions and results presented in [1] and will study
some properties of the attribute reduction of an information system provided by
the FCA mechanism. First of all, we define a formal context from an information
system, due to the fact that we are starting in a rough set framework.

Definition 11. Given an information system (U,A) and the indiscernibility
relation R : U × U → L defined on (U,A), the associated fuzzy context is the
context (U,U,R).

Usually, L is the unit interval, although it can be, for example, a non-linear
lattice or a granularity of the unit interval, such as [0, 1] = {0, 1/100, . . . , 99/100, 1}.
Additionally, we need to fixe an associated framework (L1, L2, P,&1, . . . ,&n). In
this case, the lattices L1 and L2 should be equal since they will represent the
truth values associated with the elements of the same set. Moreover, we will need
the adjoint conjunctors &i, for all i ∈ {1, . . . , n}, satisfy the boundary condition
with the top element:

	1 & x = x (4)

Although this condition may seem very strict, there are really many adjoint
triples that satisfy it, like t-norms (e.g., Gödel, �Lukasiewicz and product) and
other more general operators such as x& y = x2 · y.

Furthermore, since Proposition 2 will be used later, we also need that L1 = P .
As a consequence, the sets L1, L2, P must be equal and depending on the truth
values set considered in the indiscernibility relation R. In this paper, we will
consider linear lattices.

The following example shows how to obtain an associated fuzzy context from
a given information system. This example will be used in order to illustrate the
properties presented in this paper.

Example 1. In this example, we will consider the information system (U,A) pre-
sented in [1], composed of the set of objects U = {x1, x2, x3, x4, x5}, the set
of attributes A = {a1, a2, a3, a4} and the following table showing the relation
between attributes and objects, by a truth value in [0, 1]100:

x1 x2 x3 x4 x5

a1 0.34 0.21 0.52 0.84 0.83
a2 0.13 0.09 0.36 0.16 0.15
a3 0.31 0.71 0.93 0.69 0.69
a4 0.75 0.5 1 1 1

In order to build the discernibility matrix needed to define the relation in the
context, we will consider the following fuzzy tolerance relation between objects
for any attribute ai ∈ A:

Rai
(x, y) = 1 − |āi(x) − āi(y)|
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Then, we will take into account the aggregation operator @(l1, l2.l3, l4) =
1
6 (l1 + l2 + 2(l3 + l4)) to compute the values of the discernibility relation, which
compares every couple of objects x, y ∈ U as follows:

RA(x, y) = @(Ra1(x, y), Ra2(x, y), Ra3(x, y), Ra4(x, y)) (5)

Therefore, the following discernibility matrix is obtained:
⎛
⎜⎜⎜⎜⎝

1 0.8 0.6 0.7 0.7
0.8 1 0.7 0.7 0.7
0.6 0.7 1 0.8 0.8
0.7 0.7 0.8 1 1
0.7 0.7 0.8 1 1

⎞
⎟⎟⎟⎟⎠

Now, we are able to built the associated fuzzy context (U,U,R), where R is
the indiscernibility relation described in the discernibility matrix, and we con-
sider the frame ([0, 1]10, [0, 1]10, [0, 1]10,&G) where &G is the Gödel conjunctor.

In order to stress the usefulness of the proposed attribute reduction mecha-
nism in RST, based on FCA, diverse interesting properties will be studied next,
relating elements of FCA and RST. The first result presents the value taken
by the intent over the attribute generating the fuzzy-attribute over a general
context.

Proposition 3. Let (A,B,R, σ) be a multi-adjoint context, a multi-adjoint
frame (L1, L2, P,&1, . . . ,&n), an attribute a ∈ A and a truth value β ∈ L1.
If the inequality β ≤ R(a, b) holds, for all b ∈ B, then

φ↓↑
a,β(a) = inf{R(a, b) | b ∈ B}

Proof. Taking into account the definitions of concept-forming operators pre-
sented in Expressions (2) and (3), we have for an attribute a ∈ A and a truth
value β ∈ L1 that:

φ↓↑
a,β(a) = inf{R(a, b) ↙ (R(a, b) ↖ β) | b ∈ B}

(∗)
= inf{R(a, b) ↙ 1 | b ∈ B}
(∗∗)
= inf{R(a, b) | b ∈ B}

In order to justify Equality (∗) in the above chain of equalities, we know that
β ≤ R(a, b), and considering the boundary condition presented in Eq. (4), we
have that β & 1 ≤ R(a, b). Then, taking into consideration the adjoint property
described in Expression (1), we obtain that 1 ≤ R(a, b) ↖ β, that is, R(a, b) ↖
β = 1.

On the other hand, we have Equality (∗∗) thanks to Proposition 2 and bound-
ary condition (4). Hence, we obtain that

φ↓↑
a,β(a) = inf{R(a, b) | b ∈ B} ��
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The following example illustrates this idea using the context presented in
Example 1.

Example 2. Let us consider the formal context and the multi-adjoint frame pre-
sented in Example 1. Let us consider the attribute x2 ∈ U and the truth value
β = 0.5. We have that 0.5 ≤ R(x2, xi), for all i ∈ {1, 2, 3, 4, 5}, we will calculate
φ↓↑

x2,0.5(x2). By definition of concept-forming operator presented in Expression 3,
we have that:

φ↓
x2,0.5(x2) = inf{R(xi, x2) ↖ φx2,0.5(xi) | xi ∈ U}

= inf{0.8 ↖ 0, 1 ↖ 0.5, 0.7 ↖ 0, 0.7 ↖ 0, 0.7 ↖ 0}
= inf{1, 1, 1, 1, 1} = 1

Applying the same calculations for all the objects, we obtain that φ↓
x2,0.5 =

{1/x1, 1/x2, 1/x3, 1/x4, 1/x5}. Considering now, the definition of the other
concept-forming operator represented in Expression 2, we have that:

φ↓↑
x2,0.5(x2) = inf{R(xi, x2) ↙ φ↓

x2,0.5(xi) | xi ∈ U}
= inf{0.8 ↙ 1, 1 ↙ 1, 0.7 ↙ 1, 0.7 ↙ 1, 0.7 ↙ 1}
= inf{0.8, 1, 0.7, 0.7, 0.7}
= inf{R(x1, x2), R(x2, x2), R(x3, x2), R(x4, x2), R(x5, x2)} ��

The following result highlights the important role the relationship R have for
computing intents of formal concepts.

Proposition 4. Given a multi-adjoint context (A,B,R, σ), a multi-adjoint
framework (L1, L2, P,&1, . . . ,&n), an attribute a ∈ A and two truth values
β, β′ ∈ L1, if β, β′ ≤ R(a, b), for all b ∈ B, then

φ↓↑
a,β = φ↓↑

a,β′

Proof. Given an attribute a′ ∈ A, if we consider the truth values β, β′ ≤ R(a, b),
we have that

φ↓↑
a,β(a′) = inf{R(a′, b) ↙ (R(a, b) ↖ β) | b ∈ B}

= inf{R(a′, b) ↙ 1 | b ∈ B}
= inf{R(a′, b) | b ∈ B}

due to β ≤ R(a, b). Analogously, taking into account the truth value β′, we have
that

φ↓↑
a,β′(a′) = inf{R(a′, b) | b ∈ B}

Therefore, for all a′ ∈ A, we have that

φ↓↑
a,β(a′) = inf{R(a′, b) | b ∈ B} = φ↓↑

a,β′(a′)

Hence, we obtain that φ↓↑
a,β = φ↓↑

a,β′ . ��
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From now on, we will consider the associated context from an information
system (U,A), obtained as Definition 11 describes. Notice that, as R is built
with the indiscernibility relation, the relation R verifies the reflexive property.

Proposition 5. Let us consider an information system (U,A), its associated
fuzzy context (U,U,R), its associated frame (L,L,L,&) and an object x1 ∈ U ,
we have that

φ↓↑
x1,β(x) ≤ R(x, x1)

for all truth value β ∈ L1 and object x ∈ U .

Proof. By definitions of the concept-forming operator presented in Expres-
sions (2) and (3), given x, x1 ∈ U , we have that

φ↓↑
x1,β(x) = inf{R(x, x2) ↙ (

R(x1, x2) ↖ β
) | x2 ∈ U}

If x2 = x1, we obtain by Proposition 2 and boundary condition (4) that:

φ↓↑
x1,β(x) ≤ R(x, x1) ↙ (

R(x1, x1) ↖ β
)

= R(x, x1) ↙ (
1 ↖ β

)
= R(x, x1) ↙ 1
= R(x, x1)

which proves the result. ��
Next, the following proposition characterizes the value taken by the relation

over two objects which generate the same intent of a concept.

Proposition 6. Let (U,A) be an information system, (U,U,R) its associated
fuzzy context, its associated frame (L,L,L,&), two objects xi, xj ∈ U and two
truth values β, β′ ∈ L. If the equality φ↓↑

xi,β
= φ↓↑

xj ,β′ holds, then

β, β′ ≤ R(xi, xj)

Proof. By Proposition 5 and the hypothesis, evaluating over the object xj , we
have that

β′ ≤ φ↓↑
xj ,β′(xj) = φ↓↑

xi,β
(xj) ≤ R(xj , xi)

Analogously, considering now the object xi, we obtain that

β ≤ φ↓↑
xi,β

(xi) = φ↓↑
xj ,β′(xi) ≤ R(xi, xj)

Therefore, the result holds by the symmetry of R. ��
The following consequence from the proposition above and Proposition 3

shows interesting lower and upper bounds associated with intents generated by
different objects.
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Corollary 1. Given an information system (U,A), its associated fuzzy context
(U,U,R), its associated frame (L,L,L,&), two objects xi, xj ∈ U and two truth
values β, β′ ∈ L, verifying that φ↓↑

xi,β
= φ↓↑

xj ,β′ , then, the following chain of
inequalities holds

inf{R(xi, x) | x ∈ U} ≤ φ↓↑
xi,β

(xi) ≤ R(xi, xj)

The upper truth value threshold can be determined to every object.

Proposition 7. Let us consider an information system (U,A), its associated
fuzzy context (U,U,R), its associated frame (L,L,L,&), two objects xi, xj ∈ U

and two truth values β, β′ ∈ L. If the equality φ↓↑
xi,β

= φ↓↑
xj ,β′ holds, then we have

that
φ↓↑

xi,β
(x) ≤ R(x, xi) ∧ R(x, xj) ≤ R(xi, xj)

for all object x ∈ U .

Proof. Follows from Proposition 5, the equality φ↓↑
xi,β1

(x) = φ↓↑
xj ,β2

(x), for all
x ∈ U , and the transitivity property of R.

As a consequence, the following corollary arises.

Corollary 2. Let (U,A) be an information system, (U,U,R) its associated fuzzy
context, its associated frame (L,L,L,&), two objects xi, xj ∈ U and two truth
values β, β′ ∈ L. If the equality φ↓↑

xi,β
= φ↓↑

xj ,β′ holds, then

φ↓↑
xi,R(xi,xj)

(xi) = R(xi, xj)

By Proposition 6 we have that if xi, xj ∈ Atg(C), then the values β, β′ ∈ L,
such that φ↓↑

xi,β
= φ↓↑

xj ,β′ must be less or equal to R(xi, xj). Therefore, since

[xi]α = {x ∈ U | α ≤ R(xi, x)} (6)

we cannot establish a relationship between α-block and the classification of
attributes, as it was given in [1]. We can provide the following improvement
of the FCA attribute classification on the RST framework.

Corollary 3. Let (U,A) be an information system, (U,U,R) its associated fuzzy
context, an object xi ∈ U . If φ↓↑

xi,R(xi,x)
(xi) �= R(xi, x), for all x ∈ U , then

xi ∈ Cf or xi ∈ If .

This consequence notably reduce the number of computations in order to
know whether an object is absolutely necessary. Another reduction for checking
whether an object is a core element is the following.

Corollary 4. Let (U,A) be an information system, xi ∈ U , and (U,U,R) its
associated fuzzy context. If there exists β �≤ sup{R(xi, x) | x ∈ U}, such as,
φ↓↑

xi,β
is the intent of a meet-irreducible, that is, φ↓↑

xi,β
= Ext(C), with C ∈

MF (U,U,R), then xi ∈ Cf .

Therefore, in order to apply Theorem 2 we need to begin from the values
β �≤ sup{R(xi, x) | x ∈ U}. This computation does not provide extra calculations
but already required ones, and offers a sufficient condition to ensure whether
xi ∈ Cf . More improvements will be detailed in the future.
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4 Conclusions and Future Work

In this paper, we have deepened in the study of the properties that the mecha-
nism of reduction of an information system possesses considering the philosophy
of FCA presented in [1]. We have proved different boundary properties, where
the fuzzy relation (indiscernibility relation when RST is considered) plays an
important role. For example, relevant boundary results have been proven in the
particular case of two different objects generate the same formal concept, such
as the upper bound is given by the relationship between both objects. As a con-
sequence of these properties, we have provided several improvements over the
attribute classification theorems [5].

As future work, more enhancements in the classification theorems over the
objects will be studied, in order to provide a size reduction in an information
system using the reduction mechanism of FCA. Also, we will study other ways
to connect the reduction mechanism in FCA and RST, as the consideration of
the bireducts of RST to reduce the size of a relational database of FCA.
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Abstract. This paper presents a theoretical research about the relationship
between weak negations and adjoint negations. Adjoint negations are a gener-
alization of residuated negations built from the implications of an adjoint triple.
Specifically, this work shows how to build adjoint triples on the unit interval such
that their adjoint negations coincide with a given weak negation. Moreover, the
algebraic structure formed by these adjoint triples is also investigated.

Keywords: Aggregation operator · Adjoint triple · Adjoint negation ·Weak
negation

1 Introduction

Non-monotonic operators play an important role in different applications [7,9,29,31,
38]. The need to use these operators in real applications has promoted the study and
development of novel operators capable of addressing new challenges [3,4,8,14,18,38,
39]. Weak negations were introduced in [23,24,26,43] and they are one of the most
versatile negation operators. For that reason, a generalization of weak negations was
given in [14]. Specifically, it was proven that weak negations can be defined from the
implications of adjoint triples.

Adjoint triples were introduced in [11–13] as a flexible tool to generalize the opera-
tors usually considered in residuated frameworks. One of the main advantages provided
by these operators is the capability of being applied in non-associative or commuta-
tive settings. This fact has given rise to make more flexible frameworks such as logic
programming [9,34–36], formal concept analysis [15,33], rough set theory [17], fuzzy
relation equations [10,20,21] and fuzzy mathematical morphology [1,2,30].

In this paper, we will continue studying the relationship between weak negations
and adjoint negations. Given a weak negation on the unit interval, we will show that
different adjoint triples can be defined on the unit interval satisfying that its correspond-
ing adjoint negations coincide with the weak negation. In addition, we will establish
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two different procedures to define these adjoint triples. We will also define an ordering
relation on adjoint triples generating a given weak negation and we will prove that the
set composed of these adjoint triples has the structure of a complete join-semilattice
with maximum element.

The paper is organized as follows: Sect. 2 recalls the basic definitions and properties
associated with adjoint triples, adjoint negations and weak negations. Given a weak
negation, in Sect. 3, we propose two different mechanisms to define adjoint triples on
[0, 1] whose adjoint negations are equal to the considered weak negation. Furthermore,
we analyze the algebraic structure formed by these adjoint triples. The contribution is
accompanied by examples in order to illustrate some of the developed technical results.
Some conclusions and prospects for future work are presented in Sect. 4.

2 Preliminaries

Adjoint triples provide an interesting generalization of the well-known adjoint prop-
erty satisfied by a t-norm and its residuated implication, since they preserve the main
properties usually assumed in residuated frameworks, dismissing for example the com-
mutativity and the associativity [19].

Definition 1. Let (P1,≤1), (P2,≤2), (P3,≤3) be posets and &: P1 × P2 → P3,↙ : P3 ×
P2 → P1, ↖ : P3 × P1 → P2 be mappings. We say that (&,↙,↖) is an adjoint triple
with respect to P1, P2, P3 if the following double equivalence is satisfied:

x ≤1 z↙ y iff x& y ≤3 z iff y ≤2 z↖ x (1)

for all x ∈ P1, y ∈ P2 and z ∈ P3. The previous double equivalence is called adjoint
property.

Interesting properties related to the monotonicity of the operators &, ↙, ↖, the
boundary conditions and the preservation of the infimum and/or supremum, among
others, can be deduced from the adjoint property. The following propositions show
alternative ways to verify that the operators &,↙ and↖ form an adjoint triple, when
they are defined on complete lattices.

Proposition 1 [13].Given the complete lattices (L1,�1), (L2,�2), (L3,�3), an arbitrary
operator &: L1 × L2 → L3 and the mappings ↙ : L3 × L2 → L1, ↖ : L3 × L1 → L2,
defined as z ↙ y = sup{x ∈ L1 | x& y �3 z} and z ↖ x = sup{y ∈ L2 | x& y �3

z}, respectively, for all x ∈ L1, y ∈ L2 and z ∈ L3, the the following statements are
equivalent:

1. (&,↙,↖) is an adjoint triple with respect to L1, L2, L3.

2.

⎛
⎜⎜⎜⎜⎜⎜⎝

∨

xi∈X
xi

⎞
⎟⎟⎟⎟⎟⎟⎠& y =

∨

xi∈X
(xi & y), for any X ⊆ L1 and y ∈ L2.

x&

⎛
⎜⎜⎜⎜⎜⎜⎝

∨

yi∈Y
yi

⎞
⎟⎟⎟⎟⎟⎟⎠ =
∨

yi∈Y
(x& yi), for any Y ⊆ L2 and x ∈ L1.
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3. z ↙ y = max{x ∈ L1 | x& y �3 z} and z ↖ x = max{y ∈ L2 | x& y �3 z} for
all x ∈ L1, y ∈ L2 and z ∈ L3, where & is an order-preserving operator in both
arguments.

Proposition 2 [13]. Given three complete lattices (L1,�1), (L2,�2), (L3,�3), the arbi-
trary operators↙ : L3×L2 → L1,↖ : L3×L1 → L2 and the mapping &: L1×L2 → L3

defined as x& y = inf{z ∈ L3 | x �1 z ↙ y} = inf{z ∈ L3 | y �2 z ↖ x}, for all x ∈ L1

and y ∈ L2, the following statements are equivalent:

1. (&,↙,↖) is an adjoint triple with respect to L1, L2, L3.

2.

⎛
⎜⎜⎜⎜⎜⎜⎝

∧

zi∈Z
zi

⎞
⎟⎟⎟⎟⎟⎟⎠↙ y=

∧

zi∈Z
(zi ↙ y), for all Z ⊆ L3 and y ∈ L2.

⎛
⎜⎜⎜⎜⎜⎜⎝

∧

zi∈Z
zi

⎞
⎟⎟⎟⎟⎟⎟⎠↖ x=

∧

zi∈Z
(zi ↖ x), for all Z ⊆ L3 and x ∈ L1.

3. x& y = min{z ∈ L3 | x �1 z ↙ y} = min{z ∈ L3 | y �2 z ↖ x}, for all x ∈ L1 and
y ∈ L2, where↙ and↖ are order-preserving operators in the first argument.

A detailed study of adjoint triples can be found in [11,13]. These operators were also
considered to generalize residuated negations [6,25,40]. Specifically in [14], adjoint
negations were defined from the implications of an adjoint triple. The formal definition
of adjoint negations is given below.

Definition 2. Let (P1,≤1) and (P2,≤2) be two posets, (P3,≤3,⊥3) be a lower bounded
poset and (&,↙,↖) an adjoint triple with respect to P1, P2 and P3. The mappings
nn : P1 → P2 and ns : P2 → P1 defined, for all x ∈ P1, y ∈ P2 as:

nn(x) = ⊥3 ↖ x ns(y) = ⊥3 ↙ y

are called adjoint negations with respect to P1 and P2. The operators ns and nn satis-
fying that x = ns(nn(x)) and y = nn(ns(y)), for all x ∈ P1 and y ∈ P2, are called strong
adjoint negations.

Now, we will show the notion of weak negation which is one of the most general
negation operators given in the literature [23,24,26,43].

Definition 3. Given a mapping n : [0, 1] → [0, 1] is said to be a weak negation if the
following conditions hold, for all x, y ∈ [0, 1]:

1. n(1) = 0;
2. if x ≤ y then n(y) ≤ n(x);
3. x ≤ n(n(x)).

We say that n is a strong negation if the equality x = n(n(x)) holds, for all x ∈ [0, 1].

Once the notion of weak negation has been introduced, we can recall the relationship
between adjoint negations and weak negations. The following result, which was proven
in [14], shows that adjoint negations are more general than weak negations.
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Theorem 1 [14]. If the mapping n : [0, 1]→ [0, 1] is a weak negation, then there exists
an adjoint triple (&,↙,↖) with respect to the poset ([0, 1],≤) satisfying n = ns = nn.

Notice that, the previous theorem shows that weak negations can be obtained from
the implication operators of an adjoint triple. However, we cannot guarantee the unicity
of the adjoint triple which allows us to ensure that each weak negation is actually an
adjoint negation. This fact and the notions introduced in the current section will be
illustrated in the following example.

Example 1. The most usual adjoint triples with respect to ([0, 1],≤) are those defined
from the Gödel, product and Łukasiewicz t-norms together with their residuated impli-
cations. Due to these t-norms are commutative, we have that ↙G=↖G, ↙P=↖P and
↙L=↖L. As a consequence, the adjoint negations defined from these implications ver-
ify that nsG = nnG , nsP = nnP and nsL = nsL . In order to simplify the notation, we will
use nG, nP and nL to refer to the adjoint negations obtained from the Gödel, product and
Łukasiewicz implications, respectively. The mentioned adjoint triples are given below:

&G(x, y) = min{x, y} z↙G y =

⎧
⎪⎪⎨
⎪⎪⎩

1 if y ≤ z

z otherwise

&P(x, y) = x · y z↙P y = min{1, z/y}

&L(x, y) = max{0, x + y − 1} z↙L y = min{1, 1 − y + z}

Taking into account the of definition these operators, we obtain that the adjoint
negations associated with the Gödel and product residuated implications are defined
as:

nG(x) = nP(x) =

⎧
⎪⎪⎨
⎪⎪⎩

1 if x = 0

0 otherwise

for all x ∈ [0, 1]. From now on, this negation operator will be called product negation.
In addition, the adjoint negation obtained from the Łukasiewicz residuated implication
is defined as follows:

nL(x) = 1 − x

for all x ∈ [0, 1], and it is commonly known in the literature as the standard negation.
It is easy to see that the product negation is a weak negation whereas the standard

negation is a strong negation. Obviously, we can ensure that the Gödel and product
adjoint triples (&G,↙G,↖G) and (&P,↙P,↖P) verify Theorem 1, for the weak nega-
tion nP. Hence, we can conclude that there exist at least two different adjoint triples
whose adjoint negations coincide with the weak negation nP.

Next section studies how to define adjoint triples such that their adjoint negations
are equal to a given weak negation. Furthermore, the algebraic structure formed by these
adjoint triples is analyzed.
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3 Adjoint Triples Generating a Weak Negation

This section presents two different procedures to define adjoint triples whose adjoint
negations coincide with a given weak negation. Besides, an ordering relation is defined
on the whole set of adjoint triples generating a given weak negation. From this ordering
relation, the algebraic structure composed of the aforementioned set of adjoint triples is
obtained.

3.1 Adjoint Triples Associated with Weak Negations from Adjoint Triples

The first procedure to define adjoint triples generating a given weak negation n is pre-
sented in the following proposition. This procedure is based on the use of an adjoint
triple (&,↙,↖) with respect to ([0, 1],≤) verifying the inequalities 0 ↙ y ≤ n(y) and
0 ↖ x ≤ n(x), for all x, y ∈ [0, 1]. From now on, given a weak negation n, the set of all
adjoint triples with respect to ([0, 1],≤) such that their adjoint negations coincide with
the weak negation n, we will denoted as Tn.

Theorem 2. Let n be a weak negation and (&,↙,↖) be an adjoint triple with respect
to ([0, 1],≤) such that 0 ↙ y ≤ n(y) and 0 ↖ x ≤ n(x), for all x, y ∈ [0, 1]. The
mappings &n,�n,�n : [0, 1] × [0, 1]→ [0, 1] defined, for all x, y, z ∈ [0, 1], as:

x&n y =

⎧
⎪⎪⎨
⎪⎪⎩

x& y if x � n(y)

0 if x ≤ n(y)

z�n y = max{z↙ y, n(y)} z�n x = max{z↖ x, n(x)}

form an adjoint triple with respect to ([0, 1],≤) belonging to Tn, that is, they satisfy that
n = nsn = nnn , where nsn and nnn are the adjoint negations defined from the implications
�n and�n, respectively.

Notice that, the previous result follows the idea presented in [5] for the construction
of left continuous t-norms from a given weak negation. Specifically, Theorem 2 extends
Lemma 1 introduced in [5] to the framework of adjoint triples.

Example 2. We will consider different adjoint triples with respect to ([0, 1],≤) generat-
ing the weak negation nP. We have considered this negation operator due to its simplic-
ity and that it is not a strong negation. The first adjoint triple that we use in this example
was already considered in previous works [11,32]. This adjoint triple (&,↙,↖) with
respect to ([0, 1],≤) is defined as follows:

x& y = x2 · y

z↙ y =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if y = 0

min

{√
z
y
, 1

}

otherwise
z↖ x =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 if x = 0

min
{ z
x2
, 1
}

otherwise
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for all x, y, z ∈ [0, 1]. It is easy to check that the following inequalities 0 ↙ y ≤ nP(y)
and 0 ↖ x ≤ nP(x) are satisfied, for all x, y ∈ [0, 1]. Indeed, the inequalities are equali-
ties in this case. Hence, by using Theorem 2, we can define the following operators:

x&1
nP
y =

⎧
⎪⎪⎨
⎪⎪⎩

x& y if x � nP(y)

0 if x ≤ nP(y)
=

⎧
⎪⎪⎨
⎪⎪⎩

x2 · y if x � nP(y)

0 if x ≤ nP(y)
= x2 · y

z�nP1 y = max{z↙ y, nP(y)} =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if y = 0

min

{√
z
y
, 1

}

otherwise

z�nP1 x = max{z↖ x, nP(x)} =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 if x = 0

min
{ z
x2
, 1
}

otherwise

Clearly, the adjoint triple (&1
nP
,�nP1 ,�nP1 ) defined as in Theorem 2 coincides with

(&,↙,↖). Notice that, the adjoint triple (&1
nP
,�nP1 ,�nP1 ) belongs to TnP since the

following chains of equalities hold, for all x, y ∈ [0, 1]:

nsnP1
(y) = 0�nP1 y =

⎧
⎪⎪⎨
⎪⎪⎩

1 if y = 0

0 otherwise
= nP(y)

nnnP1
(x) = 0�nP1 x =

⎧
⎪⎪⎨
⎪⎪⎩

1 if x = 0

0 otherwise
= nP(x)

The implications associated with the Gödel adjoint triple (&G,↙G,↖G) also verify
the hypothesis required in Theorem 2, that is, the inequalities 0 ↙G y = nG(y) ≤ nP(y)
and 0 ↖G x = nG(x) ≤ nP(x) trivially hold, for all x, y ∈ [0, 1]. Consequently, applying
Theorem 2, we can define the following operators:

x&2
nP
y =

⎧
⎪⎪⎨
⎪⎪⎩

x&G y if x � nP(y)

0 if x ≤ nP(y)
=

⎧
⎪⎪⎨
⎪⎪⎩

min{x, y} if x � nP(y)

0 if x ≤ nP(y)
= min{x, y}

z�nP2 y = max{z↙G y, nP(y)} =
⎧
⎪⎪⎨
⎪⎪⎩

1 if y ≤ z

z otherwise

Therefore, we also have that (&2
nP
,�nP2 ,�nP2 ) defined as in Theorem 2 coincides

with (&G,↙G,↖G). Indeed, this fact will arise to every adjoint triple satisfying the
hypotheses in Theorem 2, due to the restrictive definition of the negation operator nP.
As previously, the following chain of equalities is satisfied, for all y ∈ [0, 1]:

nsnP2
(y) = 0�nP2 y = nP(y) = 0�nP2 y = nnnP2

(y)

Thus, (&2
nP
,�nP2 ,�nP2 ) ∈ TnP , that is, it is an adjoint triple generating the weak

negation nP. Obviously, the product adjoint triple (&P,↙P,↖P) also belongs to TnP .
Notice that, the Łukasiewicz adjoint triple (&L,↙L,↖L) cannot be considered to build
an adjoint triple whose adjoint negations coincide with the weak negation nP. This fact
is due to that the hypothesis required in Theorem 2 are not satisfied. For example, if we
consider y = 0.2 and z = 0, we have that:

0↙L 0.2 = min{1, 1 − 0.2 + 0} = 0.8 � 0 = nP(0.2)
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3.2 Adjoint Triples Associated with Weak Negations from Sup-Homomorphisms

The following result establishes the second procedure to define adjoint triples generat-
ing a given weak negation. This second mechanism weakens the required conditions in
the first procedure and considers more general operators than adjoint triples. In particu-
lar, the proposed mechanism is based on the use of mappings preserving the supremum
of non-empty sets, which are called supremum-homomorphisms on lattice theory.

Theorem 3. Let n be a weak negation, f , g, h : [0, 1] × [0, 1] → [0, 1] three mappings
such that f preserves the supremum of non-empty sets in both arguments, g is defined
as g(z, y) = sup{x ∈ [0, 1] | f (x, y) ≤ z} satisfying that g(0, y) ≤ n(y) and h is defined as
h(z, x) = sup{y ∈ [0, 1] | f (x, y) ≤ z} satisfying that h(0, x) ≤ n(x), for all x, y, z ∈ [0, 1].
The triple (&n,�n,�n) composed of the following operators:

x &n y =

⎧
⎪⎪⎨
⎪⎪⎩

f (x, y) if x � n(y)

0 if x ≤ n(y)

z �n y = max{g(z, y), n(y)} z �n x = max{h(z, x), n(x)}

is an adjoint triple with respect to ([0, 1],≤) of Tn.

As a consequence of this result, general operators can be considered to define adjoint
triples in Tn, such as uninorms [13,22,27,41,42,44]. This fact notably increases the
number of operators that can be considered for obtaining triples in Tn, which has a
direct consequence in the flexibility for using these operators in real cases.

Example 3. In this example we will consider the uninorm f : [0, 1] × [0, 1] → [0, 1],
defined for all x, y ∈ [0, 1] as follows.

f (x, y) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

min{x, y} if x ≤ 1
2

and y ≤ 1
2

max{x, y} otherwise

It is easy to check that f preserves the supremum of non-empty sets in both argu-
ments. Moreover, from f , we can define two mappings g, h : [0, 1] × [0, 1] → [0, 1] as
g(z, y) = sup{x ∈ [0, 1] | f (x, y) ≤ z} and h(z, x) = sup{y ∈ [0, 1] | f (x, y) ≤ z}, for
all x, y, z ∈ [0, 1]. Notice that, f is a commutative mapping and therefore g = h. The
analytic expression of the mapping g is displayed below:

g(z, y) = sup{x ∈ [0, 1] | f (x, y) ≤ z} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

if y ≤ z ≤ 1
2

z if y ≤ z and z >
1
2

0 otherwise

Clearly, the inequality g(0, y) ≤ nP(y) holds for all y ∈ [0, 1], and consequently
h(0, x) ≤ nP(x), for all x ∈ [0, 1]. Under the hypothesis of Theorem 3, we can define
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an adjoint triple (&3
nP
,�nP3 ,�nP3 ) from the mappings f , g and h such that it belongs to

TnP . Specifically, the analytical expression of the conjunctor &3
nP

is:

x &3
nP

y =

⎧
⎪⎪⎨
⎪⎪⎩

f (x, y) if x � nP(y)

0 if x ≤ nP(y)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if x = 0 or y = 0

min{x, y} if x, y ∈
(

0,
1
2

]

max{x, y} otherwise

In this case, &3
nP

does not coincided with f . As the conjunctor &3
nP

is commutative,
we have that�nP3=�nP3 . For all y, z ∈ [0, 1], the implication�nP3 is defined as:

z �nP3 y = max{g(z, y), nP(y)} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if y = 0

z if 0 < y ≤ z and z >
1
2

1
2

if 0 < y ≤ z ≤ 1
2

0 otherwise

As we mentioned above, (&3
nP
,�nP3 ,�nP3 ) ∈ TnP since the following chain of

equalities is verified, for all y ∈ [0, 1]:

nsnP3
(y) = 0�nP3 y = nP(y) = 0�nP3 y = nnnP3

(y)

It is important to emphasize that f does not preserve the supremum of non-empty
sets in both arguments. For instance, when X = ∅ and y = 1, we have that:

f

⎛
⎜⎜⎜⎜⎜⎜⎝

∨

xi∈X
xi, y

⎞
⎟⎟⎟⎟⎟⎟⎠ = f (0, 1) = 1 � 0 =

∨

xi∈X
f (xi, 1) =

∨

xi∈X
f (xi, y)

As a consequence, f cannot be the conjunctor of an adjoint triple. This fact allows
us to ensure that the mechanism given in Theorem 3 provides adjoint triples built from
more general operators.

3.3 Algebraic Structure of Tn

The following theorem includes a point-wise ordering relation defined on the conjunc-
tors of adjoint triples generating a given weak negation. This ordering relation provides
the set of adjoint triples, whose adjoint negations coincide with such a weak negation,
with the structure of a complete join-semilattice.

Theorem 4. Given a weak negation n, we have that the pair (Tn,�) forms a complete
join-semilattice, where � is the ordering relation defined as:

(&
j
n,�

n j ,�n j ) � (&k
n,�

nk ,�nk ) iff x&
j
n y ≤ x&k

n y
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for all x, y ∈ [0, 1] and (&
j
n,�n j ,�n j ), (&

k
n,�

nk ,�nk ) ∈ Tn. The greatest element inTn
is the adjoint triple (&

g
n,�ng ,�ng ) such that�ng =�ng , which is defined as follows:

x&
g
n y =

⎧
⎪⎪⎨
⎪⎪⎩

1 if x � n(y)

0 if x ≤ n(y)
z �ng y =

⎧
⎪⎪⎨
⎪⎪⎩

n(y) if z � 1

1 if z = 1

for all x, y, z ∈ [0, 1].

If there exist two different adjoint triples (&
j
n,�n j ,�n j ), (&

k
n,�

nk ,�nk ) ∈ Tn such

that (&
j
n,�n j ,�n j ) � (&k

n,�
nk ,�nk ) and (&k

n,�
nk ,�nk ) � (&

j
n,�n j ,�n j ), then we

will say that these adjoint triples are incomparable. In this case, we will write that
(&

j
n,�n j ,�n j )||(&k

n,�
nk ,�nk ).

Finally, we clarify the previous result by means of the following example. This
example will be used to illustrate that the set (Tn,�) has not the structure of a complete
lattice, since the infimum of the elements in Tn could not necessarily belong to Tn.

Example 4. Given the weak negation nP, we will establish a hierarchy among the pro-
posed adjoint triples inTnP . According to the ordering relation introduced in Theorem 4,
we obtain that:

(&1
nP
,�nP1 ,�nP1 ) � (&P,↙P,↖P) � (&2

nP
,�nP2 ,�nP2 ) � (&3

nP
,�nP3 ,�nP3 )

Although we can find other adjoint triples belonging to TnP greater than the previous
ones, by Theorem 4, we can ensure that the greatest adjoint triple in TnP is the triple
(&g,↙g,↖g) such that↙g =↖g, which is defined, for all x, y, z ∈ [0, 1], as follows:

x&g y =

⎧
⎪⎪⎨
⎪⎪⎩

1 if x � nP(y)

0 if x ≤ nP(y)
z↙g y =

⎧
⎪⎪⎨
⎪⎪⎩

nP(y) if z � 1

1 if z = 1

Finally, we will show that there exist incomparable adjoint triples in TnP and, there-
fore, the complete join-semilattice (TnP ,�) is not linear. Given a ∈ (0, 1), we can define
the operators &a,↙a,↖a on the unit interval such that↙a =↖a as follows:

x&a y =

⎧
⎪⎪⎨
⎪⎪⎩

a if x � nP(y)

0 if x ≤ nP(y)
z↙a y =

⎧
⎪⎪⎨
⎪⎪⎩

nP(y) if a � z

1 if a ≤ z

In particular, these triples are incomparable with the adjoint triples previously defined
(&P,↙P,↖P), (&2

nP
,�nP2 ,�nP2 ) and (&3

nP
,�nP3 ,�nP3 ). Considering a = 0.45, then the

adjoint triple (&0.45,↙0.45,↖0.45) verifies that:

0.8 &0.45 0.6 = 0.45 ≤ 0.48 = 0.8 &P 0.6
0.5 &P 0.6 = 0.3 ≤ 0.45 = 0.5 &0.45 0.6

}

then (&P,↙P,↖P)||(&0.45,↙0.45,↖0.45)

0.5 &0.45 0.6 = 0.45 ≤ 0.5 = 0.5 &2
nP

0.6
0.7 &2

nP
0.4 = 0.4 ≤ 0.45 = 0.7 &0.45 0.4

}

then (&2
nP
,�nP2 ,�nP2 )||(&0.45,↙0.45,↖0.45)

0.7 &0.45 0.4 = 0.45 ≤ 0.7 = 0.7 &3
nP

0.4
0.5 &3

nP
0.3 = 0.3 ≤ 0.45 = 0.5 &0.45 0.3

}

then (&3
nP
,�nP3 ,�nP3 )||(&0.45,↙0.45,↖0.45)
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Thus, when the weak negation nP is considered, a proper non linear complete join-
semilattice arises. Moreover, (TnP ,�) is not a complete lattice since the infimum of
the subset

{
(&a,↙a,↖a) | a ∈ (0, 1]

} ⊆ TnP is the adjoint triple whose conjunctor is
constantly zero, which is not an adjoint conjunctor of an adjoint triple in TnP .

4 Conclusions and Future Work

We have extended the studied carried out in [14], providing different procedures to
determine adjoint triples on the unit interval, whose adjoint negations are actually a
previously fixed weak negation. We have also defined an ordering on which the set of
these adjoint triples forms a complete join-semilattice. In addition, we have charac-
terized the maximum element of the mentioned complete join-semilattice. In order to
clarify the developed theory in this paper, we have included some illustrative examples.

As a future work, we will apply the developed theoretical results to different frame-
works such as formal concept analysis, fuzzy relation equations and rough set theory.
For example, these results will be fundamental for studying families of adjoint triples
for defining preferences on objects or/and attributes in relational datasets [16,28,37].
This fact will allow us to address real problems related to image processing and digital
forensic analysis.
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35. Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Similarity-based unification: a multi-adjoint app-
roach. Fuzzy Sets Syst. 146, 43–62 (2004)

36. Moreno, G., Penabad, J., Vázquez, C.: Beyond multi-adjoint logic programming. Int. J. Com-
put. Math. 92(9), 1956–1975 (2015)

37. Pan, W., She, K., Wei, P.: Multi-granulation fuzzy preference relation rough set for ordinal
decision system. Fuzzy Sets Syst. 312, 87–108 (2017). Theme: Fuzzy Rough Sets

38. Pradera, A., Beliakov, G., Bustince, H., Baets, B.D.: A review of the relationships between
implication, negation and aggregation functions from the point of view of material implica-
tion. Inf. Sci. 329, 357–380 (2016)

39. Pradera, A., Massanet, S., Ruiz-Aguilera, D., Torrens, J.: The non-contradiction principle
related to natural negations of fuzzy implication functions. Fuzzy Sets Syst. 359, 3–21 (2019)

40. San-Min, W.: Logics for residuated pseudo-uninorms and their residua. Fuzzy Sets Syst. 218,
24–31 (2013)

41. Su, Y., Liu, H.-W., Pedrycz, W.: The distributivity equations of semi-uninorms. Int. J. Uncer-
tain. Fuzziness Knowl.-Based Syst. 27(02), 329–349 (2019)

42. Su, Y., Riera, J., Ruiz-Aguilera, D., Torrens, J.: The modularity condition for uninorms revis-
ited. Fuzzy Sets Syst. 357, 27–46 (2019). Theme: Aggregation Functions

43. Trillas, E.: Sobre negaciones en la teorı́a de conjuntos difusos. Stochastica III, 47–60 (1979)
44. Zong, W., Su, Y., Liu, H.-W., Baets, B.D.: On the construction of uninorms by paving. Int. J.

Approx. Reason. 118, 96–111 (2020)

https://doi.org/10.1007/3-540-45402-0_26
https://doi.org/10.1007/3-540-45402-0_26


Representative Set of Objects in Rough
Sets Based on Galois Connections

Nicolás Madrid1 and Elóısa Ramı́rez-Poussa2(B)
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Abstract. This paper introduces a novel definition, called representa-
tive set of objects of a decision class, in the framework of decision systems
based on rough sets. The idea behind such a notion is to consider sub-
sets of objects that characterize the different classes given by a decision
system. Besides the formal definition of representative set of objects of a
decision class, we present different mathematical properties of such sets
and a relationship with classification tasks based on rough sets.

Keywords: Rough Set Theory · Attribute reduction · Object
reduction reduct · Decision systems

1 Introduction

Rough Set Theory (RST) is a mathematical theory that have shown its suit-
ability for practical tasks [11,24]. The search to increase its range of application
has given rise to different generalizations of this theory [6,7,10,28] as well as the
relationships with other theories [4,18,25].

There exist different procedures to define the basic operators of rough sets,
i.e., the lower and upper approximation, as those based on element operators,
granular classes or subsystems [26]. In this work, we consider the approximation
operators given by interior and closure operators obtained from the composition
of operators in an isotone Galois connection [3,8], which has been built from a
slight modification of the operators in [27]. This idea has been already considered
in other works, as [14,17,20,21], and has two important advantages:
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– the use of the operators introduced in [27] could lead us to the following
situation: the lower approximation of a set may not be contained in the set
and its upper approximation may not contain the set. The consideration of
interior and closure operators avoids such a situation.

– the approximation operators obtained from the interior and closure operator
are more accurate that those in [27] (see [17]).

In this paper we focus on the reduction of objects for a classification task.
This kind of reduction has been seldom considered by the research community,
which has mainly focused on attribute reduction [2,5,12,18]. Some examples of
the study of object reductions are [15], which analyses the reduction of objects
oriented to keep the original attribute reducts and [1,13,16,22,23] that reducts
objects and attributes in parallel. The present paper is oriented in a different
way than the existing approaches dealing with object reduction. We show that
when the indiscernibility relation is not an equivalence relation, the objects in
the different classes of a classification task can be characterized by only few
objects in the class; we call that objects representative of the decision class. In
such a way, the representative objects of the decision classes can be used as
clusters in classification tasks. In this paper, we provide the formal definition of
the set of representative objects of a decision class and analyze its mathematical
properties.

The paper is organized as follows: Sect. 2 introduces the definitions of the
approximation operators based on isotone Galois connections considered in this
work, together with some results needed to understand this work. In Sect. 3,
we present the formal definition of the set of representative objects of a decision
class and analyze its mathematical properties. Section 4 provides the conclusions
and presents some prospect for future work.

2 Preliminaries

In this section we recall some basic notions in order to make the contribution as
self-contained as possible.

The first notion we have to recall is the notion of approximation space.

Definition 1. An approximation space is a pair (U,R), where U is a set (called
universe) and R is a binary relation over U .

In this work, we consider approximation spaces whose relation R can be
an arbitrary relation. This fact leads us to distinguish between left and right
relationships, and to generalize the standard definition of R-foreset.

Definition 2. Let (U,R) be an approximation space, the sets defined as:

xR = {y ∈ U |(x, y)∈R} and Ry = {x ∈ U |(x, y)∈R}

are the R-right-foreset of x ∈ U and the R-left-foreset of y ∈ U , respectively.
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From the previous generalization, four different approximation operators
arises.

Definition 3. Let (U,R) be an approximation space and A ⊆ U . We define the
following operators:

– R↓r A = {x ∈ U | xR ⊆ A}
– R↑r A = {x ∈ U | xR ∩ A �= ∅}
– R↓� A = {y ∈ U | Ry ⊆ A}
– R↑� A = {y ∈ U | Ry ∩ A �= ∅}.

It is important to highlight that the approximation operators R↓� and R↑�

coincide with those presented in [27]. Additionally, the equalities R↓r = R↓� =
R ↓ and R ↑r = R ↑� = R ↑ are satisfied, when the relation is symmetric. For
such a reason, hereafter, if R is symmetric, we will write R↓ and R↑ instead of
R↓r, R↓� and R↑r, R↑�, respectively.

On the other hand, the pairs (R↑r, R↓�) and (R↑�, R↓r) are isotone Galois
connections [8,9], whose definition is recalled below.

Definition 4. Let (P,≤P ) and (Q,≤Q) be posets. A pair (ϕ,ψ) of mappings
ϕ : P → Q, ψ : Q → P is called isotone Galois connection between P and Q if
the following equivalence is satisfied, for all p ∈ P and q ∈ Q:

ϕ(p) ≤Q q if and only if p ≤P ψ(q).

This notion is also called adjunction. The mapping ϕ is called lower (or left)
adjoint of ψ and the mapping ψ upper (or right) adjoint of ϕ.

At this point, it is important to point out that in the case of considering
arbitrary relations, the operators R↓r and R↓� may be unsuitable to represent
lower approximations, since the inequalities R↓r (A) ⊆ A or R↓� (A) ⊆ A may
not hold for some set A ⊆ U . Similarly, R ↑r and R ↑� may be unsuitable to
represent upper approximations, since A ⊆ R↑r (A) or A ⊆ R↑� (A) could not
be satisfied for some set A ⊆ U . However, the compositions R↑r (R↓� (A)) and
R↑� (R↓r (A)) are always contained in A, whereas A is always contained in the
composition R↓� (R↑r (A)) and R↓r (R↑� (A)).

Certainly, the inequalities R ↓r (A) ⊆ A, R ↓� (A) ⊆ A, A ⊆ R ↑r (A) and
A ⊆ R ↑� (A) are satisfied for reflexive relations. But even in that case, the
composition of these operators provide better approximations than considering
simply R↓r, R↓�, R↑r and R↑�. That is, if R is reflexive, we have

R↓� (A) ⊆ R↑r (R↓� (A)) ⊆ A ⊆ R↓� (R↑r (A)) ⊆ R↑r (A).

and
R↓r (A) ⊆ R↑� (R↓r (A)) ⊆ A ⊆ R↓r (R↑� (A)) ⊆ R↑� (A).

for all A ⊆ U .
In such a way, the notion of rough set is defined for arbitrary relations by

using the following definition.
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Definition 5. Let (U,R) be an approximation space and A ⊆ U . The lower
approximations of A are defined as:

R↑r (R↓� (A)) and R↑� (R↓r (A))

and the upper approximations of A are defined as:

R↓� (R↑r (A)) and R↓r (R↑� (A)).

A set A ⊆ U is called a generalized rough set if it is different from the two lower
approximations and from the two upper approximations.

The following theorem summarizes some basic properties of such compositions.

Theorem 1. Let (U,R) be an approximation space and A,B ⊆ U , then:

– If A ⊆ B then R↑r (R↓� (A)) ⊆ R↑r (R↓� (B))
– If A ⊆ B then R↑� (R↓r (A)) ⊆ R↑� (R↓r (B))
– If A ⊆ B then R↓� (R↑r (A)) ⊆ R↓� (R↑r (B))
– If A ⊆ B then R↓r (R↑� (A)) ⊆ R↓r (R↑� (B))
– R↑r (R↓� (A)) ⊆ A ⊆ R↓r (R↑� (A))
– R↑r (R↓� (A)) ⊆ A ⊆ R↓� (R↑r (A))
– R↑� (R↓r (A)) ⊆ A ⊆ R↓� (R↑r (A))
– R↑� (R↓r (A)) ⊆ A ⊆ R↓r (R↑� (A))
– R↑r (R↓� (R↑r (R↓� (A)))) = R↑r (R↓� (A))
– R↑� (R↓r (R↑� (R↓r (A)))) = R↑� (R↓r (A))
– R↓� (R↑r (R↓� (R↑r (A)))) = R↓� (R↑r (A))
– R↓r (R↑� (R↓r (R↑� (A)))) = R↓r (R↑� (A)).

In [19] is stated that the approximation operators in Definition 5 coincide
with those of [27] when the relation is a preorder.

Theorem 2 [19, Theorem 1]. Let (U,R) be an approximation space. The fol-
lowing items are equivalent:

– R↑� (R↓r (A)) = R↓r (A), for all A ⊆ U .
– R↑r (R↓� (A)) = R↓� (A), for all A ⊆ U .
– R is a preorder (i.e. R is reflexive and transitive).

In our approach, we intend to use more general relations than equivalence
relations and different from preorder relations. Below, we recall a non-transitive
indiscernibility relation that will be considered in this work. But first, we need
to recall the notion of information system.

Definition 6. An information system (U,A) is a tuple, such that U = {x1, x2,
. . . , xn} and A = {a1, a2, . . . , am} are finite, non-empty sets of objects and
attributes, respectively. Each a ∈ A is associated with a mapping ā : U → Va,
where Va is the value set of a over U .

If Va = {0, 1} for each a ∈ A, we say that (U,A) is a Boolean information
system.
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Now, we introduce the notion of s-indiscernibility relation.

Definition 7. Given an information system (U,A), s ∈ N and B ⊆ A, the
s-indiscernibility relation with respect to B, Rs

B, is defined as follows.

Two objects x, y ∈ U belongs to Rs
B if and only if there are at most s attributes

{a1, . . . , as} ⊆ B such that ak(x) �= ak(y) for all k ∈ {1, . . . , s}.
If (x, y) ∈ Rs

B, we say that x and y are s-indiscernible in B. When B = A,
we simply say that x and y are s-indiscernible and the relation is denoted as Rs.

In this paper, we focus on the study of a special kind of information system
called decision system.

Definition 8. A decision system (U,A ∪ {d}) is a kind of information system
in which d �∈ A is called the decision attribute.

In this framework, the notions of positive region and the degree of dependency
are generalized as follows.

Definition 9. Let (U,A ∪ {d}) be a decision system, B ⊆ A and (U,RB) a
derived approximation space. The RB-left positive and RB-right positive regions
with respect to RB, denoted as POS�

RB
and POSr

RB
respectively, are defined as:

POS�
RB

=
⋃

x∈U

RB ↑r

(
RB ↓� [x]d

)

POSr
RB

=
⋃

x∈U

RB ↑� (RB ↓r [x]d)

and the degree of dependency of d over RB, γ∗
RB

, as:

γ∗
RB

=
max

{
Card(POS�

RB
),Card(POSr

RB
)
}

Card(U)

where [x]d represents the equivalence class of the object x ∈ U with respect to the
indiscernibility relation Indd given by

Indd = {(x, y) ∈ U× U | d̄(x) = d̄(y)}

Remark 1. The degree of dependency γ∗
RB

= 1 plays a remarkable role in deci-
sion systems since in such a case, a perfect classification can be performed tak-
ing into account the information provided by the approximation space (U,RB).
Additionally, note that if γ∗

RB
= 1, we have

max
{
Card(POS�

RB
),Card(POSr

RB
)
}

= Card(U).

In other words, POS�
RB

= U or POSr
RB

= U . Moreover, by Theorem 1 we have
that RB ↑r

(
RB ↓� [x]d

) ⊆ [x]d and RB ↑� (RB ↓r [x]d) ⊆ [x]d, as a result, if
POS�

RB
= U we have that RB ↑r

(
RB ↓� [x]d

)
= [x]d, for all x ∈ U , and when

POSr
RB

= U then RB ↑� (RB ↓r [x]d) = [x]d, for all x ∈ U .
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3 Representative Set of Objects of a Decision Class

In this section, we introduce a novel class of objects, called representative. The
underlying idea in such a definition is to determine a subset of objects that
characterizes a certain decision class.

Definition 10. Given a decision system (U,A ∪ {d}) and x ∈ U , we say that a
subset of objects X ⊆ U is:

– a left-representative set of the decision class [x]d if R↑� (X) = [x]d.
– a right-representative set of the decision class [x]d if R↑r (X) = [x]d.

We will denote as ROS�([x]d) and ROSr([x]d) to the set of left-representative
sets and right-representative sets of the decision class [x]d, respectively.

Notice that when the relation R is symmetric, the left-representative sets
coincide with the right-representative sets. In such a case, we call that sets
representative sets of a decision class [x]d, and denote the set formed by them
as ROS([x]d).

Note also that if X is a representative set of a decision class [x]d for certain
x ∈ U , then every element in the class of [x]d is related at least with one element
in X and moreover, all the elements in X are related only to elements of [x]d.
In other words, we can characterize the elements in the class [x]d by checking
which objects in U are related (or not) to elements in X.

The following example illustrates the previous definition.

Example 1. Consider a decision system (U,A ∪ {d}) composed of the set of
objects U = {x1, x2, x3, x4, x5, x6}, the set of attributes A = {a1, a2, a3, a4, a5}
related between them as the following table shows:

a1 a2 a3 a4 a5 d

x1 x x x x
x2 x x x
x3 x x x x x
x4 x x x x
x5 x x x x
x6 x x x x
x7 x x x

Note that, in this case, the obtained decision classes are:

[x1]d = {x1, x3, x6}
[x2]d = {x2, x4, x5}

We consider B = A and the s-indiscernibility relation with s = 1, that is,
R1

A. The results obtained from the considered s-indiscernibility relation is shown
in the table below.
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R1
A x1 x2 x3 x4 x5 x6 x7

x1 x x
x2 x x x x
x3 x x x
x4 x x x x
x5 x x x
x6 x x x
x7 x x x x

According to the previous table, we obtain that:

R ↑ ({x3}) = {x1, x3, x6} = [x1]d
R ↑ ({x2}) = {x2, x4, x5} = [x2]d

Therefore, we can assert that the set {x3} is a representative set of the
decision class [x1]d and the set {x2} is a representative set of the decision class
[x2]d. But {x3} is not the only representative set of the decision class [x1]d,
we can also find a set, composed of more than one object, that represents the
same decision class as, for example, the set {x1, x3}; it is easy to check that
R ↑ ({x1, x3}) = [x1]d. However, it is important to note that the set {x1} is
not a representative set of it decision class [x1]d because x6 /∈ R ↑ ({x1}). In
addition, the set {x3, x6} is not a representative set of the decision class [x1]d
either, since x4 ∈ R ↑ ({x3, x6}) and x4 /∈ [x1]d. ��

In the previous example, we have shown that adding or removing objects
from a given representative set of a decision class may change such a feature.
Therefore, it looks interesting to study the structure of the set composed of all
representative sets of a certain decision class.

In order to present the first result related to the structure of the representa-
tive sets, we need to introduce the following definition.

Definition 11. Given an approximation space (U,R), we say that

– x ∈ U is a left-isolated object of the relation R if there is no element y ∈ U
satisfying that (x, y) ∈ R. The set composed of all the left-isolated objects is
denoted as Is�(R)

– y ∈ U is a right-isolated object of the relation R if there is no element x ∈ U
satisfying that (x, y) ∈ R. The set composed of all the right-isolated objects is
denoted as Isr(R).

– x ∈ U is a isolated object of the relation R if it is left-isolated and right-
isolated. The set composed of all the isolated objects is denoted as Is(R).

The first result shows that the set of left-representative (right-representative)
sets of two different decision classes are disjoint except for isolated objects.
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Proposition 1. Let (U,A ∪ {d}) be a decision system, R a discernibility relation
and X,Y ⊆ U two left-representative (right-representative) sets of two different
decision classes, then the set X

⋂
Y is contained in the set of left-isolated (right-

isolated) objects of the relation R.

Proof. Let x, y ∈ U such that [x]d �= [y]d. Then, necessarily [x]d
⋂

[y]d = ∅. Let
X and Y be left-representative sets of the classes [x]d and [y]d, respectively, and
let us prove that X

⋂
Y ⊆ Is�(R). We consider x ∈ X

⋂
Y , then we have that

R ↑� (x) ⊆ R ↑� (X
⋂

Y ). In addition, since (R ↑�, R ↓r) is a Galois connection,
we have that

R↑� (x) ⊆ R↑�

(
X

⋂
Y

)
⊆ R↑� (X)

⋂
R↑� (Y ) = [x]d

⋂
[y]d = ∅.

Therefore, we have that R↑� (x) = ∅. Then, according to Definition 3, there is
not y ∈ U such that (x, y) ∈ R, that is, x is a left-isolated object of the relation
R. Hence, we have that X

⋂
Y ⊆ Is�(R).

The proof with right-representative sets is developed in an analogous way. ��
The following result shows that the set of representative sets of a certain

decision class has the structure of a join-semilattice with respect to the standard
ordering between subsets.

Proposition 2. Let (U,A ∪ {d}) be a decision system and let X,Y ⊆ U such
that X is a left-representative (right-representative) set of a decision class [x]d,
with x ∈ U , and R ↑� (Y ) ⊆ [x]d (respectively R ↑r (Y ) ⊆ [x]d). Then X

⋃
Y is

also a left-representative (right-representative) set of [x]d.

Proof. Let X,Y ⊆ U such that X is a left-representative set of a decision class
[x]d, with x ∈ U , and R↑� (Y ) ⊆ [x]d. Since (R↑�, R↓r) is a Galois connection,
we have that

R↑�

(
X

⋃
Y

)
= R↑� (X)

⋃
R↑� (Y ) = [x]d

⋃
R↑� (Y ) = [x]d.

In other words, X
⋃

Y is a left-representative set of [x]d.
The proof follows similarly for the right-representative sets. ��
The following consequence of the previous proposition shows that the con-

struction of left-representative sets and right-representative sets can be done by
singletons.

Corollary 1. Let (U,A ∪ {d}) be a decision system and let X,Y ⊆ U such that
X and X

⋃
Y are left-representative (right-representative) sets of a decision class

[x]d, with x ∈ U . Then X
⋃{y} is also a left-representative (right-representative)

set of [x]d, for all y ∈ Y .

The following result shows that the set of representative sets of a certain
decision class has the structure of join-semilattice with respect to the standard
ordering between subsets.
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Corollary 2. Let (U,A ∪ {d}) be a decision system and let X,Y ⊆ U be two
left-representative (right-representative) sets of the same decision class [x]d, with
x ∈ U . Then X

⋃
Y is also a left-representative (right-representative) set of [x]d.

Example 2. In Example 1, we have two representative sets for the class [x1]d:

ROS([x1]d) =
{{x3}, {x1, x3}

}
.

On the other hand, we have six representative sets for the class [x2]d, namely:

ROS([x2]d) =
{{x2}, {x7}, {x2, x7}, {x2, x5}, {x7, x5}, {x2, x5, x7}

}
.

Note that ROS([x1]d) and ROS([x2]d) are disjoint, because there is not iso-
lated elements in the considered discernibility relation, as Proposition 1 asserts.

On the other hand, according to Proposition 2, it is easy to check the join
of arbitrary representative sets is also a representative for the respective class.
Specifically, we can observe that the representative sets for the class [x1]d has
a lattice structure, but the set of representative sets for the class [x2]d only has
the structure of a join-semilattice. That fact can be seen, for example, in the
intersection of the sets {x2, x5} and {x7, x5} which is the singleton {x5} that is
not a representative set of the class [x2]d. ��

Let us analyze now the minimal and maximal representative sets of decision
classes.

Definition 12. Let (U,A ∪ {d}) be a decision system and X ⊆ U a representa-
tive set of a decision class [x]d, with x ∈ U . We say that:

– X is a minimal left-representative (right-representative) set of the decision
class [x]d if X \ {x′} is not a left-representative (right-representative) set of
[x]d, for all x′ ∈ X.

– X is a maximal left-representative (right-representative) set of the decision
class [x]d if there is no object x′ ∈ U \ X such that X

⋃{x′} is a left-
representative (right-representative) set of [x]d.

Thanks to the join-semilattice structure of the set of representative sets of
a decision class (Proposition 2), we can directly infer that the maximal repre-
sentative set of a decision class is unique; i.e., it is a maximum, as the following
corollary states.

Corollary 3. Let (U,A ∪ {d}) be a decision system and x ∈ U . If there exists
a left-representative (right-representative) set of a decision class [x]d then, there
is a unique maximal left-representative (right-representative) set of that decision
class.

The unicity stated by the previous result does not hold for minimal repre-
sentative sets; i.e., it may exists several minimal representative sets of a decision
class. The following example shows that fact.
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Example 3. Coming back to Example 2, according to Definition 12, we have that
the sets {x3} is the only minimal representative set of the decision class [x1]d.
However, there are two minimal representative sets of the decision class [x2]d,
namely {x2} and {x7}.

On the other hand, it can be proved easily that {x1, x3} and {x2, x5, x7} are
the two maximal representative sets of [x1]d and [x2]d, respectively. ��

The following result determines the maximal left-representative set of a deci-
sion class, if it exists.

Theorem 3. Let (U,A∪{d}) be a decision system, B ⊆ A, (U,RB) an approx-
imation space and x ∈ U . Then:

– If there exists a right-representative set of the decision class [x]d, then the set
R ↓� ([x]d) is the maximum right-representative set of the decision class [x]d.

– If there exists a left-representative set of the decision class [x]d, then the set
R ↓r ([x]d) is the maximum left-representative set of the decision class [x]d.

Proof. Let x ∈ U such that there exists a right-representative set of its decision
class. By Corollary 3, we have that there exists the maximum right-representative
set of the decision class [x]d, denoted by X ⊆ U . By Theorem 1, we have that
RB ↑r

(
RB ↓� [x]d

) ⊆ [x]d. Then, since X is a right-representative set of the deci-
sion class [x]d, by Proposition 2, we have that X ∪ RB ↓� [x]d is a representative
set of the decision class [x]d as well. As a result, by the maximality of the set
X, we have that RB ↓� [x]d ⊆ X.

Let us prove now that X ⊆ RB ↓� [x]d. Consider y ∈ X, since X is a
right-representative set of [x]d and by the monotonicity of R ↑r, we have that
R↑r ({y}) ⊆ [x]d. Therefore, by definition of R↑r, if we consider z ∈ U satisfying
that zR ∩ {y} �= ∅, then z ∈ [x]d. As a consequence, for all z ∈ U such that
(z, y) ∈ R we have that z ∈ [x]d, which is equivalent to say that Ry ⊆ [x]d and
then, y ∈ RB ↓� [x]d. In other words X ⊆ RB ↓� [x]d.

Finally, we can assert that RB ↓� [x]d is the maximal right-representative set
of [x]d.

The proof for the maximal left-representative set of [x]d follows analogously. ��
In the last result we relate the representative sets of a decision class to the

degree of dependency γ∗
RB

. Specifically, we show that γ∗
RB

= 1 is equivalent to
assert the existence of left-representative sets for each decision class or right-
representative sets for each decision class.

Theorem 4. Let (U,A ∪ {d}) be a decision system, B ⊆ A and (U,RB) an
approximation space. RB satisfies that γ∗

RB
= 1 if and only if

– there exists at least one left-representative set for each decision class,
– or there exists at least one right-representative set for each decision class.
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Proof. Let us assume that RB satisfies that γ∗
RB

= 1. Then, RB ↑r

(
RB ↓� [x]d

)
=

[x]d, for all x ∈ U or RB ↑� (RB ↓r [x]d) = [x]d for all x ∈ U (see Remark 1).
Therefore, we have that RB ↓� [x]d is a right-representative set of [x]d, for all
x ∈ U , or RB ↓r [x]d is a left-representative set of [x]d, for all x ∈ U .

Now, let us prove the converse. Without loss of generality, let us assume that
there exists at least one left-representative set for each decision class. Then, by
Theorem 3, we have that R ↓r ([x]d) is the maximal left-representative set of the
class [x]d, that is, RB ↑� (RB ↓r [x]d) = [x]d for all x ∈ U . As a consequence:

POSr
RB

=
⋃

x∈U

RB ↑� (RB ↓r [x]d) =
⋃

x∈U

[x]d = U

and therefore, γ∗
RB

= 1. ��

4 Conclusions and Future Work

In this paper we have provided the formal definition of the notion of repre-
sentative set of objects of a decision class. Moreover, we have presented some
mathematical properties of such kind of sets and shown its connection with a
classification task based on rough sets.

There are different future lines based on the notion of representative set of
objects. Firstly, the obtention of more mathematical properties about the objects
forming representative sets is interesting for several purposes; for example, for its
construction or for determining minimal representative sets. Secondly, analyzing
the relationship between reducts of attributes and the set of representative sets
of objects has our attention as well. Last but not least, the construction of
a classification procedure based on representative sets of objects seems to be
appropriated when the dataset is involved with uncertainty; for example when
we need to classify an object that is discernible with all the objects in the training
dataset.
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Abstract. Linguistic data summarization techniques help to discover complex
relationships between variables and to present the information in natural lan-
guage. There are some investigations associated to algorithms to build linguistic
summaries. But the literature does no report investigations concerned with
combination linguistic data summarization techniques and outliers’ mining
applied to planning of software project. In particular, outliers’ mining is a
datamining technique, useful in errors and fraud detection. In this work authors
present new algorithms to build linguistic data summaries from outliers in
software project planning context. Besides, authors compare different outliers’
detection algorithms in software project planning context. The main motivation
of this work is to detect planning errors in projects, to avoid high cost and time
delays. Authors consider that the combination of outliers’ mining and linguistic
data summarization support project managers to decision-making process in the
software project planning. Finally, authors present the interpretation of obtained
summaries and comment about its impact.

Keywords: Linguistic data summarization � Outliers mining � Project
management � Software project planning

1 Introduction

During the planning of software project, managers continuously have to take decisions
to avoid delays and the elevation of project’s cost. There are standards and authors that
reflect best practices in project management. Some of them stand out: The Capability
Maturity Model Integration (CMMI) [1], the guide of Project Management Body of
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Knowledge (PMBOK) [2], the ISO 21500 [3], Pressman [4] and Wilson Padua [5].
Despite the existence of these guides, there are still numerous difficulties that are
reflected in successful, failed and renegotiated projects. The indexes of successful,
failed and renegotiated projects have moved slightly around 29%, 19% and 52%
respectively.

The main causes in project failings include planning errors, errors in human
resources management and low control and monitoring level [6, 7]. In organizations
that develop software projects, planning errors often appear, such as:

• Errors in the cost estimate.
• Errors in the estimation of resources.
• Errors in the estimation of the duration of activities.

Errors manual detection in software project planning constitutes a high time con-
suming work [8], which affects the projects correct operation. Automatic or semiau-
tomatic detection of errors helps to reduce the cost during projects execution, projects
planning and the total cost at the project end.

Planning errors can be identified as derived data from the projects plans. In this
sense, it is identified in this investigation early detection of software project planning
errors and linguistic data summarization techniques with using outlier mining, will help
project managers to correct difficulties. In general, different authors have given their
outliers definition [9, 10] among which Hawkins’ definition stands out. Hawkins
defines in page 2 of [11] that “Outlier is an observation that deviates greatly from the
rest of the observations, appearing as a suspicious observation that could have been
generated by mechanisms different from the rest of the data” [12].

Nevertheless, it should be perceived that there are not enough publications about
outliers’ mining in software project planning. In addition, errors presentation and
negative impact factors in projects in natural language leads project managers to a
better situations understanding and making quick decisions [13].

The objective of this work is to present different algorithms for detect errors in
software project planning and construction of linguistic summaries that represent the
errors’ behavior in this discipline. The work is organized in sections as follows: Second
section presents a brief analysis of outliers mining and linguistic data summarization art
state. In third section, authors present linguistic data summarization algorithms based
on outliers’ mining in software project planning processes. The four section aims at the
results obtained by the application of proposed algorithms in software project planning
environments. Last section presents the conclusions.

2 Algorithm for Discovering Fails in Software Projects
Planning Based on Linguistic Summaries

2.1 Brief Analysis of Linguistic Summaries and Outlier Mining

Most of the authors classify the outliers in three categories: punctual outlier’s values,
collective outliers or contextual outliers [9, 14]. On the other hand, authors classify the
outlier detection algorithms following different criteria. In this work, the authors
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consider the approach proposed by Aggarwal [9], who establishes the following cat-
egories for outliers’ detection: supervised, unsupervised and semi-supervised methods.

Unsupervised methods include: statistical techniques, techniques based on prox-
imity and spatial data analysis [15]. Methods based on statistical techniques are based
on: descriptive statistics [16], linear regression [17] and in the principal components’
analysis [18]. These methods are not efficient when increasing the data set or dimen-
sionality. Proximity-based methods include: distance-based on methods [19], clusters
[20] and density-based methods [19].

Distance-based methods usually establish a ranking where the first elements in
ranking represent data with high probability of being outliers [21]. In distance-based
methods the distance function has a high relevance; for example, different authors refer
that Mahalanobis-distance reports better results than Euclidean distance. But data
sceneries are different in each case. Authors should test with different methods to
discover the best technique. Density-based methods focus on identifying regions of
space as a function of their data density, and they are very useful for their interpre-
tation. Among the best known methods of this approach are: local anomalous data
factor (LOF) method [22] and local integral correlation method (LOCI). Finally,
clustering methods are further subdivided into hierarchical methods, partition-based
methods, grid-based methods and constraint-based methods [17]. In this context, the
question “what is the best method: cluster algorithm or proximity-based method?” does
not have a unique answer. Researchers should analyze data nature in most of the
situations and apply empirical tests in every one of the sceneries in order to recognize
the algorithms with best results.

On the other hand, supervised methods in outliers mining represent traditional
approach based on objects classification by having objects previously classified. In this
sense different approaches are presented such as: decision trees, vector support tech-
niques [23], rule-based systems [24], neural networks [25] and the use of meta-
heuristics [26]. However, these methods usually do not report the best results in
outlier’s detection because the outliers’ mining usually represent a problem with
unbalanced classes or with completely unknown classes. For this reason, supervised
methods are frequently combined with unsupervised techniques.

In this paper, summaries are generated from outliers. The authors of this work
discuss different linguistic data summarization techniques. In [13] defined summary as
“using few words to give the most important information about something”.

Kacprzyk and Zadrożny are recognized authors in Linguistic data summarization
techniques. They define a set of six protoforms that describe linguistic summaries
structure and the queries for their search [27]. In this paper, the authors group six
protoforms into two basic structures [27, 28] in order to build the linguistic summaries.
The elements contained in summary are described in Table 1. Examples:
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First: summaries without filters Qy’s are S, representing relationships such as:

T Most employees have low payð Þ ¼ 0:7

Second: summaries with filters QRy´s are S, describes relationships such as:

T Most young employees have low payð Þ ¼ 0:7

There are different approaches to generate linguistic summaries; the simplest
protoforms can be obtained by combining fuzzy logic with descriptive statistics or by
combining fuzzy logic with sql database query language [29]. But in this work, authors
concentrate on summaries generation that represent more complex protoforms and
associated to outlier’s detection. In this context, basic techniques are not appropriated.
More complex protoforms can be built by using mining of fuzzy association rules,
Kacprzyk [30] or by using genetic algorithms [31]. These strategies focus on linguistic
summaries that represent most of the objects in database. Nevertheless, in this paper
authors are in focus of outliers, rare elements and hard difficult detecting elements by
using association rules or meta heuristics. For this reason, authors propose a new
algorithm in next section.

2.2 A New Algorithm for Generating Summaries from Outliers
in Software Project Planning

In this section, an algorithm is proposed for the construction of linguistic summaries
from outliers. The following is a hybrid algorithm that combines clustering techniques
with distance-based methods to detect outliers and to build linguistic summaries from
the outliers detected.

Table 1. Elements contained in summary.

Elements Meaning

Q Represents quantifiers such as: most, some, a few, etc.
R Represents filters for example: “high planned material resources”
y Represent the object of study for example “outlier projects”
S Represents summarizer such as: “very high”
T Represents measures to evaluate the linguistic summaries quality
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C: seeded center sets;  
Distance (d,S): distance function from d to the set of 
points S.

P: percentile used for the determination of the outliers 
(the 0.92 percentile was taken).   

Q: linguistic variable that describes the quantifiers 
of the summaries.   

Threshold: threshold (ε) is used for the calculation of 
the T and for quantifying the default value as 0.3 

ParT-S_norm: Aggregation operators, T-norm pair and S-
norm.   

begin
1. O = {};  
2. clusters = Cluster(D, centers=C)
3. centers = clusters.centers  
4. For each clusteri in clusters, make  

4.1 B0 = Calculate_threshold(clustersi)
4.2 O = clusters.out_centers_Bo

End of the cycle  
5. O = Ranking_outlier(O, P)
6. Of = Transforms elements in O, into linguistic values 

by using the SetFuzzyVar variables  
7. R = {} //initializing rule base  
8. For each Ofi in Of

8.1 If does not exist rule in R that cover Ofi 
(see Definition 1) then  
8.2 Rk = Build rule from Ofi
8.3 R = R  {Rk} 

End of the cycle 
9. S = Build a summary from each rule in R  
10. Sf = Complete summaries S with quantifiers Q  
11. Calculate truth grade T for each summary in Sf
12. Refine summaries Sf using active learning techniques  
13. Return Sf sorted, considering T values calculated 

End

Algorithm’s name: Outlier_Hybrid_LDS.
Notation  
O: outliers set.   
B0: threshold based on the b0 compact assembly concept.   
Ranking_outlier(S): returns elements from S set, sorted 
in descending order according to distance.   

R: set of linguistic summaries obtained.    
SetFuzzyVar: set of linguistic variables, one for each 
attribute that describes data behavior.   

Inputs:
D: data set associated to software project planning.  
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Definition 1: An object X is cover by a rule G = (P, C) with P antecedents and
C consequent if and only if for each attribute of xi 2 X, 9 (Pk 2 P or Ct 2 C): xi � Pk or
xi � Ct (operator � means equivalents).

This algorithm could be applied with different clustering methods. Selection of
appropriate clustering algorithm depends on data nature. For example, for numerical
data could be used kmeans cluster algorithm; although, the use of kmeans themselves
create clusters forming hyper spheres. In each cluster the objects furthest from the
center can represent potential outliers.

These objects are detected by using distance methods. In this sense, algorithm can
be implemented by using different distance methods, with different threshold values
too. In step 10, outlier’s data are transformed into linguistic values by using the
SetFuzzyVar variables defined for each variable and the maximum membership prin-
ciple. The algorithm continues creating fuzzy rules from detected outliers, and for each
fuzzy rule, it creates a candidate linguistic summary. After that, each candidate lin-
guistic summary is completed with quantifiers calculated.

3 Application, Results and Discussion

This algorithm was applied to help projects’ managers in software project planning,
and to understand projects evolution and projects’ human resources behavior. Authors
was compared different combinations of algorithms in multiple project management
databases. The algorithms are compared by analyzing their performance with the fol-
lowing databases: “mul_plan”, “mul_rate”, “mul_mix”, “alone_rate” and “col_mix”
from “170905_gp_eval_proy_fuzzy” Research Database Repository of Project Man-
agement Research Group [32]. Each database contains 8430 records with 19 attributes.
Different attributes are modified to convert them in outliers. The modification is applied
following a supervised way. Later, during test, authors calculate the quality of each
algorithm setting in outlier, see Table 2.

Table 2. Description of the databases used in the experimentation.

Database Meaning Percent of outliers

alone_rate rate_rrhh 5% of the modified
mul_plan serv_plan_quantity, rrhh_plan_quantity,

eqp_plan_quantity, inf_plan_quantity,
mat_plan_quantity

5% of the modified

mul_rate rate_equipment, rate_rrhh, rate_service,
rate_material

5% of the modified

mul_mix rate_rrhh, rrhh_plan_quantity,
rate_material, mat_plan_quantity,
rrhh_plan_quantity, rrhh_real_quantity

5% of the modified

col_mix rate_rrhh, rrhh_plan_quantity,
rate_material

95% of the records in each project
transformed to be collective
outlier
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For each of these databases, 20 partitions are built using cross validation techniques.
The algorithms are then compared using non-parametric test of Wilcoxon for two
samples related to 95% confidence interval. The following algorithms were used in
comparisons: Angle algorithm [33] based on the spatial data analysis approach, cross-
clustering algorithm [34] based on partial clustering with automatic estimation of
clusters number and outliers’ identification, Kmodr algorithm [35] and Out-
lier_Hybrid_LDS based on kmeans (with k = 5), Distance_Mahalanobis [36] and
Distance_Euclidean [9]. Table 3 resumes the comparisons result among the algorithms.

In the comparison, the algorithms groups are organized according to results quality,
such as “group a” > “group b” > “group c” > “group d”. The algorithms in the same
group have no significant differences between them. In most of these databases, Out-
lier_Hybrid_LDS algorithm obtained good results except in the collective anomalous
database (col_mix), where Distance_Mahalanobis algorithm is slightly superior. The
worst result was Distance_Euclidean_9_0.92. Regarding efficiency, the best results are
found with distance-based methods.

Outlier_Hybrid_LDS detected 450 outliers, representing 95.27% of real outlier’s
total number. This algorithm generates 44 rules that were unified by considering logical
relations and finally 11 linguistic summaries were generated. All summaries were
evaluated by using active learning techniques, by project management specialists. The
following 5 summaries were identified as the most relevant for project management
decisions:

1. Around 50% “outlier projects” have a “very high human resources’ plan”. T (0.76,
0.44, 0.69, 0.22, 1, 0.62).

2. Around 30% “outlier projects” have “Very high rate of human resources”. T (0.5,
0.86, 0.55, 0.06, 1, 0.59).

3. Around 30% “outlier projects” have “Very high material resources’ plan”. T (0.53,
0.26, 0.27, 0.15, 1, 0.44).

4. Some “outlier projects” with “High material resources plan” have “High rate
equipment resource”. T (0.78, 0.16, 0.79, 0.33, 1, 0.61).

5. Around 30% “outlier projects” with “High human resources’ plan” have “Very high
human resources real plan”. T (0.95, 0.49, 0.44, 0.23, 1, 0.62).

T vector means the evaluation of summaries by considering the traditional T values
defined by Zadeh [37]. In order to get more legible linguistic summaries, algorithm
introduces English language words such as “with” and “have” to connect filters and
summarizers.

First linguistic summary means, around 50% of “outlier projects” have over-
planned the human resources required. The second summary represents that human
resources cost of around 30% “outlier projects” are over-planned. The third and fourth
summaries represent that some “outlier projects” have over-planned the material
resources, and some of them, have over-planned equipment cost rate. From the fifth
summary it is interpreted that, in some cases, the number of human resources was
planned below the actual number of human resources used. All these summaries help
projects managers, correct errors in project management and scheduling.

372 I. Pérez Pupo et al.



4 Conclusions

From the results of this investigation, we can reach the following conclusions:

• In used databases, the most detected outliers deal with overestimation of human
resources in project tasks.

• Around 30% of outlier projects incur higher costs for using more resources than
planned.

• Around 30% “outlier projects” over-planned material resources and some of them
contains over-planned equipment’s cost-rate.

• Summaries detected from outliers help to project managers to fix errors on project
scheduling and to detect project’s over-cost.

• In used database the best outlier detection algorithm was the combination of
“Kmeans” method with Mahalanobis distance.

• Mahalanobis distance method reports better results than the Euclidean distance in
the context of this investigation.

• The experimentation demonstrated that is possible the errors’ detection in software
project planning from combination of techniques, such as outliers mining and lin-
guistic data summarization.
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Abstract. We propose a simple SQL-based decision tree induction algorithm
which makes its heuristic choices how to split the data basing on the results of
automatically generated analytical queries. We run this algorithm using standard
SQL and the approximate SQL engine which works on granulated data sum-
maries.We compare the accuracy of trees obtained in these twomodes on the real-
world dataset provided to participants of the Suspicious Network Event Recogni-
tion competition organized at IEEE BigData 2019. We investigate whether trees
induced using approximate SQL queries – although execution of such queries is
incomparably faster – may yield poorer accuracy than in the standard scenario.
Next, we investigate features – inputs to the decision tree induction algorithm –
derived using SQL from a bigger associated data table which was provided in the
aforementioned competition too. As before, we run standard and approximate
SQL, although again, that latter mode needs to be checked with respect to the
accuracy of trees learnt over the data with approximately extracted features.

Keywords: SQL-based decision tree induction · SQL-based feature
engineering · Approximate SQL engines · Granulated data summarization · Big
data analytics · Cybersecurity analytics

1 Introduction

Every typical KDD process consists of several stages, such as data preparation, attribute
construction and selection, decision model induction and more [8,21]. Given the grow-
ing sizes of data required to be mined, there are a number of approaches attempting
to utilize higher-level interfaces to data storage and data processing systems instead
of operating directly on raw data sources. With this respect, employment of relational
database systems and SQL is one of intensively examined opportunities [13,22].

In our research, we often refer to KDD methods based on standard SQL queries
supported by most of database vendors. We rewrite some of algorithms which are well-
known in the KDD domain to illustrate how basic SQL procedures can replace lower-
level computations. This way KDD solutions can gain important data management and
computational scalability features of modern database systems. Moreover, users who
are familiar with SQL can easily introduce changes into previous implementations, at
the level which is specific to declarative rather than imperative languages.
c© Springer Nature Switzerland AG 2020
R. Bello et al. (Eds.): IJCRS 2020, LNAI 12179, pp. 376–384, 2020.
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In this paper, for the purpose of illustrating the role that database systems can play
in KDD, we introduce a very simple new version of SQL-based decision tree induction
algorithm. This particular algorithm is dedicated to datasets with numeric attributes and
binary decisions. It makes its heuristic “attribute greater/lower than value” split choices
by basing on the results of automatically generated aggregate queries. Such approach
is surely not novel [7,10]. Still, our contribution is twofold. First, we run our algorithm
using one of approximate SQL engines available in the market [17], in order to verify
whether decision trees constructed using approximate queries may yield poorer accu-
racy than while basing on classical exact SQL. Second, given the multi-table character-
istics of the considered real-world dataset [5], we investigate whether newly engineered
attributes – added to the main training table by executing analytical SQL statements
over another available data table – could be derived using approximate queries instead
of exact ones, with no harm to the efficiency of further learning mechanisms.

Both above aspects reflect the same challenge, although they refer to different KDD
stages – attribute engineering (exemplified by SQL-based usage of one-to-many relation
between data tables) and decision model construction (exemplified by our decision tree
induction algorithm). The question is whether approximate SQL – which can be orders
of magnitude faster than exact SQL over big datasets – is able to drive KDD processes
accurately enough, so acceleration is achieved without losing too much quality. Indeed,
one could suspect that the quality of the aforementioned splits made during decision tree
construction is potentially worse if their heuristic evaluation relies on not-fully-precise
calculations over the training data. Analogously, one may be afraid of using impre-
cisely derived values of newly created attributes as the input to any machine learning
algorithm, no matter whether that algorithm itself is based on exact or approximate
computations. Our goal is to illustrate to what extent such worries are justified.

The rest of the paper is structured as follows. Section 2 refers to some related works.
Section 3 describes the dataset used in our studies. Section 4 outlines the proposed deci-
sion tree induction algorithm. Section 5 reports our experimental results in four modes:
running our algorithm using classical or approximate SQL, over the data derived using
classical or approximate SQL. Section 6 concludes our work.

2 Related Work

Let us begin with the literature on SQL-based machine learning/data mining. We have
already cited papers [13,22] (related to SVM and k-NN methods) and [7,10] (related to
decision tree induction). For further research in this field we refer to [3,11,14,15] (fea-
ture selection, data clustering, association rules and more details about decision trees).
An interesting additional aspect of applying SQL in KDD corresponds to relational –
single-table or multi-table – feature/attribute engineering [6,20].

We refer also to approximate query engines which become popular because of big
data analytics challenges [9,12]. We work with the first-ever engine based entirely on
the concept of data summarization [16,17], which was successfully deployed in indus-
try1. This engine, whereby query execution operations are designed as transformations
of granulated data summaries, can be used as if it was standard PostgreSQL. It delivers

1 securityondemand.com/solutions/superscale-analytics-threat-detection/.

http://securityondemand.com/solutions/superscale-analytics-threat-detection/
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Table 1. SQL-based features. ‘x’ identifies a record for which a new feature value is calculated.

accurate results even for highly selective queries involving combinations of numeric and
alphanumeric columns, such as those in Table 1. We will apply it for both SQL-based
decision tree induction and the above-mentioned attribute engineering.

As we run our experiments on the data disclosed in an online machine learning
competition, let us emphasize the importance of such events for development of both
academic and commercial research. The most widely recognized platform in this area
is Kaggle2, although there are also others, such as KnowledgePit3. The reader can find
more details about machine learning competitions held on KnowledgePit in [4,5].

3 The Data from the IEEE BigData 2019 Competition

We conduct experiments on the dataset made available at one of machine learning com-
petitions held at IEEE BigData 2019. This competition was organized jointly by Secu-
rity On-Demand (SOD)4 and QED Software5, at aforementioned KnowledgePit6.

The data was provided by SOD in three tables. The first one contains nearly 60,000
records corresponding to so-called threatwatch alerts investigated by the security team
at SOD in Q4 of 2018 and Q1 of 2019. Alerts are described by 61 columns and represent
information that is available to security analysts during their decision-making processes.
For each record, it is indicated whether the given alert was considered as serious by an
analyst and therefore, whether the given SOD’s client was notified about it.

The second table includes so-called localized alerts registered by SOD. For each
record in the first table, there is a series of associated localized alerts. This table con-
tains about 8,700,000 records described by a mixture of 20 numeric and symbolic fea-
tures. It provides more detailed information about the network traffic and devices related

2 www.kaggle.com.
3 www.knowledgepit.ml.
4 www.securityondemand.com.
5 www.qed.pl.
6 www.knowledgepit.ml/suspicious-network-event-recognition/.

www.kaggle.com
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to threatwatch alerts evaluated by security analysts. In particular, the severity of each
localized alert is automatically assessed by expert-made heuristics designed by SOD.

The third table is an extract from raw network event logs that are continually cap-
tured by SOD using so-called collectors. This table is considerably larger than the
previous ones. Its fragment disclosed to competition participants consisted of nearly
9,000,000,000 anonymized records described by 26 features. More information about
this data source can be found in [16]. For more information about the discussed machine
learning competition and its results we refer to [5].

In this paper, we concentrate on the two first tables. During the competition, partic-
ipants did their best to utilize localized alerts to extract new attributes describing threat-
watch alerts. The task was to learn – basing on the historical data labeled by SOD’s
analysts – how to distinguish between threatwatch alerts requiring and not requiring
client notifications. Thus, aggregations derived for threatwatch alerts from their associ-
ated collections of localized alerts could be helpful.

For our experiments, we selected 8 numeric features from the first table and 17 new
features generated from the second one. Our selection was based on SOD’s expertise
and on some of successful competition solutions. Given one-to-many relation between
tables, all new features were derived using SELECT COUNT or COUNT DISTINCT
queries, so they can be treated as numeric too. As a result, we obtain a dataset with
nearly 60,000 records, 25 numeric columns, and the binary decision attribute (which
can be referred also as the target variable) corresponding to client notifications.

The 8 original features are: parentcategory, overallseverity, correlatedcount, isip-
trusted, untrustscore, trustscore, flowscore, enforcementscore. The 17 derived features
are listed in Table 1 together with SQL statements executed to compute them. The
meanings of columns in considered data tables are quite typical for the area of cyberse-
curity [1,19], although SOD’s way of calculating their values is unique.

4 Naïve SQL-Based Decision Tree Induction

The aim of the algorithm introduced below is to establish a framework for investigat-
ing the quality-related differences between decision models derived using classical and
approximate SQL statements. The algorithm itself is extremely simplified and we refer
the reader to other aforementioned publications for more sophisticated ideas how to
take advantage of relational database systems in decision tree induction [7,10,15,21].
We actually wanted to keep it so simple to concentrate mainly on the classical ver-
sus approximate SQL comparison. In future, analogous comparisons can be studied for
other SQL-based machine learning implementations as well.

The algorithm works with standard tabular data input, i.e., each attribute corre-
sponds to a separate column. The decision attribute (target variable) is declared as the
binary column DECISION. Conditional attributes (dependent variables) are assumed
to be numeric, although there is also an interesting interpretation of our algorithm for
binary columns. We denote attributes-columns as a1,...,an, where n is the number of
conditional attributes in the training set. The algorithm can be triggered with parameter
K > 0 which stands for the maximum depth of decision tree induced from the data.
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Let us recall that the considered approximate engine can be queried as if it was
a typical instance of PostgreSQL, where the only difference is that results of analyti-
cal SELECT statements are not guaranteed to be fully precise (and on the other hand,
one obtains those results incomparably faster than in the case of any standard engine
because of the ability to work entirely on granulated data summaries) [16,17]. There-
fore, we scripted our algorithm in standard PL/pgSQL. Moreover, it is straightforward
to run it in the same way on the considered approximate engine and on classical Post-
greSQL.

The algorithm is constructing a tree in a typical greedy way, whereby the heuristic
binary split evaluation function is triggered recursively for every current leaf unless it
satisfies one of three stop conditions illustrated in Fig. 1. At the beginning the following
statement is executed:

SELECT DECISION, COUNT(*), AVG(a1)...AVG(an) FROM DATA GROUP BY DECISION;

Then, ai with the highest difference between its average values on records dropping
into decision classes 0 and 1 is selected. Precisely, using notation in Fig. 1, we choose
ai with the maximum ratio | AVG0(ai) − AVG1(ai) | / ( |AVG0(ai)| + |AVG1(ai)| ), where
denominator is used to compare more fairly between attributes with varying scales.
New nodes are created with the cut ( AVG0(ai) + AVG1(ai) ) / 2, i.e., records satisfying
conditions ai < ( AVG0(ai) + AVG1(ai) ) / 2 and ai ≥ ( AVG0(ai) + AVG1(ai) ) / 2 are
assigned to left and right nodes, respectively. The procedure is repeated with each of
these nodes independently, whereby the only difference is that the previously chosen ai

Fig. 1. High-level illustration of our naïve decision tree induction algorithm, with the maximum
tree depth fixed as K = 3. The node statuses: Green – ready for further splits; Red – the maximum
depth reached; Blue – deterministic leaf pointing at a single decision, no further splits needed;
Black – available attributes do not provide sufficient discrimination between decisions, no further
splits make sense. Left-side green/red statuses reflect whether particular numeric attributes have
been already used in the given tree path (our naïve implementation does not allow to reuse an
attribute in a path). Quantities AVG0(ai) and AVG1(ai) refer to SELECT ... GROUP BY ... results
– they denote the average value of the i-th attribute in the given node, for decisions 0 and 1,
respectively. The COUNT(*) component is used to derive decision class distributions. (Color
figure online)
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does not occur on the SELECT list any longer while the WHERE part is extended by
the above-specified inequality conditions over column ai.

Surely, removing once chosen ai from SELECT lists in subsequent phases of split-
ting nodes is a simplification. Another simplification corresponds to one of the stop
criteria – the black one in Fig. 1. The fact that quantities AVG0(ai) and AVG1(ai) are
the same does not always mean that it is impossible to set up a useful condition on ai,
although indeed attributes yielding larger differences between AVG0 and AVG1 can be
regarded as more informative. Nevertheless, the whole algorithm is quite efficient, as it
executes only a single SQL query per node. The blue stop criterion in Fig. 1 is particu-
larly elegant, as a single-tuple output of the considered SELECT statement means that
the corresponding node drops fully into one of decision classes.

Let us also note that the attribute choice criterion driven by the above queries
neglects probabilities of decision classes in particular tree nodes. Indeed, quantities
AVG0(ai) and AVG1(ai) are simply compared to each other, no matter howmany records
were taken into account while deriving them. It may happen that AVG0(ai) is the aver-
age value of attribute ai calculated on, e.g., 100 records with DECISION = 0 while
there is only one record satisfying condition DECISION = 1. Then, the “greater/lower
than value” split on ai is fixed as a completely non-weighted mean of AVG0(ai) and
AVG1(ai). This kind of Bayesian approach to decision tree induction was first pro-
posed in [2] (whereby yet another SQL-based data mining methodology was employed)
and further formalized with respect to arbitrary feature-based data partitions in [18]
(whereby a decision tree induces a special case of data partition).

5 Experimental Results

As mentioned in Sect. 1, we report experiments conducted in four (two times two) fol-
lowing modes: running our naïve decision tree induction algorithm using two variants of
SQL, i.e., classical PostgreSQL versus approximate engine [16,17], and over two ver-
sions of the considered dataset, whereby features displayed in Table 1 were computed
using – again – classical or approximate SELECT statements.

More precisely, in its both versions, the dataset discussed in the end of Sect. 3 has
nearly 60,000 records (corresponding to the same set of threatwatch alerts investigated
by SOD’s analysts), 25 numeric attributes and the same binary decision. The only differ-
ence between these two versions is the way of creating 17 new features from the asso-
ciated data table that stores localized alerts. That table was actually loaded both into
PostgreSQL and the considered approximate query engine, which internally replaced
its 8,700,000 records with far lower number of multidimensional data summaries.

Experimental results are summarized in Table 2. The difference between two above
data versions is indicated by the column new columns. Both those datasets were loaded
into both PostgreSQL and our approximate engine, in order to run two considered vari-
ants of decision tree induction – indicated by column tree induction. For example, com-
bination approximate-exact means that a tree was learnt using classical SQL but on the
dataset with 17 features calculated using approximate SQL.
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Outcomes for three different maximum tree depth levels K are presented. The num-
ber of leaves grows when longer root-to-leaf paths are allowed, although it can be
noticed that the algorithm introduced in Sect. 4 tends to produce more compact trees
when working with approximate SQL (for both approximate and exact versions of new
features). The last two columns of Table 2 report additionally average intensities of
occurrence of original and derived attributes in tree paths.

Table 2. Characteristics of decision trees induced using different settings of our procedure.

New columns Tree induction K level R score # of nodes Derived Original

Exact Exact 5 0.251 45 0.195 0.102

Exact Approximate 5 0.324 63 0.063 0.492

Approximate Exact 5 0.181 59 0.162 0.266

Approximate Approximate 5 0.288 63 0.080 0.469

Exact Exact 10 0.408 473 0.259 0.153

Exact Approximate 10 0.394 875 0.190 0.586

Approximate Exact 10 0.369 771 0.276 0.324

Approximate Approximate 10 0.332 805 0.195 0.553

Exact Exact 15 0.559 2573 0.271 0.165

Exact Approximate 15 0.454 3339 0.210 0.595

Approximate Exact 15 0.421 2793 0.295 0.334

Approximate Approximate 15 0.349 2599 0.210 0.561

It is also important to evaluate the quality of induced trees. Herein, we follow
the aforementioned approach which was developed in [2,18] to assess data partitions
(induced by subsets of attributes or collections of root-to-leaf tree paths) with respect to
the level of information that they provide about decisions. The considered methodology
is based on the following relative information gain measure R(tree) =

∑
leaves maxj

# of records in leaf with DECISION = j
# of records in dataset with DECISION = j − 1 (1)

Measure R has values ranging from 0 to 1, whereby equality R(tree) = 1 holds, if and
only if all tree leaves are deterministic (i.e. they support single decision classes). More-
over, R is monotonic – splitting any leaf onto two new leaves cannot decrease its value
– and it is generally perceived as a good indicator in the case of analyzing highly imbal-
anced datasets, such as the one disclosed in the considered machine learning competi-
tion at the IEEE BigData 2019 conference.

6 Conclusions

We introduced a naïve SQL-based decision tree induction algorithm, with the aim to
compare classical PostgreSQL and the approximate query engine working on gran-
ulated data summaries with respect to the quality of trees derived from the data.
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Our experiments focused on real-world dataset made publicly available in frame of
the Suspicious Network Event Recognition competition held at the IEEE BigData 2019
conference. In particular, we studied two out of three data tables disclosed in the com-
petition and additionally, we utilized the considered approximate engine to investigate
opportunities of approximate-SQL-driven feature engineering.

In future, besides improvements of the above-mentioned algorithm, we intend to
extend our decision-tree-related research onto the third data source associated with the
discussed machine learning competition. Given its huge volume, this data source needs
approximate analytical methods to the highest extent. Let us also point out that the
experimental framework developed in this paper can serve as a useful environment for
testing enhancements of our approximate engine and other analogous solutions.
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1 Introduction

Linguistic data summarization was first introduced by Yager in 1982’s [1] and it has
been applied in real scenarios such as: autonomy of things, medicine and others real
scenarios. Different investigations associated to this technique have been developed in
the last two decades following three main work lines:

• Conceptualization of linguistic summaries and its structure.
• Indicators to evaluate the quality of linguistic summaries.
• Algorithms to generate linguistic summaries from data.

About the structure, the summaries are classified considering different “protoforms”
[2, 3]:

• Classic protoforms, to summarize attributes [1, 4].
• Time series protoforms [5].
• Events representation protoforms [6].

But the most used are protoforms with the following syntax:

• Overviews whose structure is Qy’s are S, which describe relationships such as the
following:
T(Most employees have low pay) = 0.7.

• Summaries structured as QRy´s are S, describing relationships such as:
T(Most young employees have low pay) = 0.7.

Kacprzyk and Zadrożny classified in [7] six protoforms that described the structure
of summaries and the queries for their search, see Table 1.

About the indicators to measure the quality of the summary, several authors have
been proposed different T indicators. For example, in [1] Yager proposed six indicators,
called as T values T1, T2, T3, T4, T5, T6, as follows:

Table 1. Classification of protoforms of LDS [7].

Type Protoform Given Sought

0 QRy’s are S All Validity T
1 Qy’s are S S Q
2 QRy’s are S S and R Q
3 Qy’s are S Q and structure of S Linguistic values in S
4 QRy’s are S Q, R and structure of S Linguistic values in S
5 QRy’s are S Nothing S, R and Q
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• Degree of truth (T1): called the measure of validity of the summary, provides an
indication of how compatible the linguistic summary is with the database.

• Degree of imprecision (T2): is important validity criterion, measure of both
uncertainty and vagueness concepts. This indicator depends on the form of the
summary, not on the database.

• The degree of coverage (T3): measures how many objects in database are supported
for linguistic summary.

• Degree of appropriateness (T4): This degree describes how characteristic is the
summary for the particular database. It degree permits to distinguish between trivial
summaries, having full validity (truth), and really important summaries. The sum-
mary found reflects an interesting, not fully excepted relation in our data [8].

• The length of an overview (T5) measure of the length or summaries, how many
elements conform the summary.

• An indicator for resume the quality evaluation of a particular linguistic overview
(T6), is defined as the weighted average of the previous 5° of validity.

There are other measures, for example in [5] Kacprzyk and Wilbik proposed a set
of indicators specifically for time series scenarios. In [9], the authors proposed a set of
indicators to extend the Yager’s indicators based on degree of indeterminacy infor-
mation in summaries. About the algorithms to generate summaries there are different
trends too, such as:

• Linguistic summaries generated form sql queries [10].
• Generation of summaries by using association rules [11, 12].
• Generation of summaries through meta-heuristics [13].
• Generation of summaries by using clustering techniques [6].
• Other approaches that combine previous works [14–17].

But most of algorithms, to generate summaries reported in bibliography, not use
appropriately, the information associated to the attributes relationships. In order to
improve the summaries’ generation methods, authors of this work proposed a new
algorithm for linguistic data summarization based on hybridization of rough sets and
fuzzy sets.

This work is organized in the following sections. The second section presents a
brief analysis of rough sets concepts and its adoption in the algorithm proposed. The
third section presents the results of algorithm in a human resource problem. Finally, the
conclusions of the work are presented.

2 A New Algorithm for Linguistic Data Summarization

In linguistic summaries generation is very important to discover the attributes rela-
tionships. The linguistic summaries consist on filters and summarizers, in general these
components can be represented from an information system S = (U, A [ D), where
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filters belong to set A while summarizers belong to decision attributes D. In this sense,
the authors of this paper propose the application of rough sets theory to discover the
attributes relationships. The authors adopted some concepts of rough sets theory in the
new algorithm, in the next paragraphs we explain main concepts of this theory.

The rough sets theory was proposed in 1986 by Pawlak for application in data
inconsistency. Usually, rough sets are used in two alternatives: to discreet data [18]
based on equivalence relationships or to extended indiscernibility relationships [19,
20]. Different extensions of rough sets applications were reported in [18, 21, 22].

Given an information system S = (U, A [ D), let X � U a set of objects and B � A,
a selected set of attributes, from the information contain in B, X can be approximate like
following:

• The lower approximation of X with respect to B is:

B� Xð Þ ¼ fx 2 U : B xð Þ�Xg ð1Þ

• The upper approximation of X respect to B is:

B� Xð Þ ¼ fx 2 U : B xð Þ \X ¼ Ug ð2Þ

• The boundary region we can define as:

BNB Xð Þ ¼ B � Xð Þ � B � Xð Þ ð3Þ

• The negative region of decision d with respect to B is:

NEGB Xð Þ ¼ U�B � Xð Þ ð4Þ

• Indiscernibility relation: defines an equivalence relation INDB [23, 24], and this
relation is denoted by:

IND Bð ÞB ¼ f x; yð Þ 2 U � U : a xð Þ ¼ a yð Þ for every a 2 Bg ð5Þ

• The positive region of decision d with respect to B is:

POSB dð Þ ¼ [ fB� Xð Þ : X 2 U=IND dð Þ; d 2 Dg ð6Þ

Other useful concept useful is k grade dependency, that we explain in next
paragraph.
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Definition 1: Intuitively, a set of decision attributes D, depends totally on a set of
B attributes, denoted by B ) D, if all the values of the D attributes are univocally
determined by the values of the attribute in B. In other words, D depends totally on B, if
there is a functional dependency between the values of D and B [23]. D depends on
B in a k grade where k 2 [0,1], and denoted by B )k D, see Eq. (7). If k = 1 then
D depends totally on B, while if k < 1 then D depends partially on B.

k ¼ POSB Dð Þj j
Uj j ð7Þ

Where:

POSB Dð Þ ¼
[

X2U
D

B� Xð Þ ð8Þ

2.1 LDS_RoughSet Algorithm

In this section we propose an algorithm for the construction of linguistic summaries of
data, generating them from hybridization of rough sets and association rules. The
authors established a linguistic variable associated to quantifiers for the construction of
the summaries, see Fig. 1:

Fig. 1. Linguistic variable associated to quantifiers.
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The proposed algorithm and its parameters are presented below.

Inputs:
Information system S = (U, A ∪ D)
U: dataset for analysis. 
A, D: attributes in the information system. 
Fuzzifiers
for each attribute ai ∈ A ∪ D.

αk: alpha cut k to limit the low
dependency. 

Q: linguistic variable that represent
of the summaries.

Begin
1. Transform S = (U, A ∪ D)

considering fuzzifiers set and
principles.

2. A_ItemSet = attributes_to_sets(A∪D)
3. D_ItemSet = A_ItemSet
4. Stackset.push(A_ItemSet) 
5. CS = {}
6. while not Stackset.empty
6.1. A_ItemSet = Stackset.pop
6.2. for each B ⊆ A_ItemSet
6.3. for each X ⊆ D_ItemSet: B ∩ X = ∅
6.4. ( ) ( )

D
UX

BPOS
∈

= *
,

U
DPOS

k B= , B ⇒k D, k ≥

6.5. for each Ot(B,X)∈ POSB(D)
6.6. if (there is total dependency

B⇒k=1X in Ot(B,X)) 
6.7. CS = CS ∪ Ot(B,X)
6.8. else
6.9. Stackset.push({B ∪ X}) 
6.10. end

end
end

end
end while

7. LSUM = BuildSummaries(CS, Q) 
8. Calculate T values for each summary s ∈ LSUM
9. Reorder LSUM considering T values

XBD
)(
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In step 2, each element a 2 A [ D it is transformed in a set {a} and insert into
set, example: .

In step 4, a stack called Stackset is used for working with item sets to build the
summaries.

In step 5, CS variable is a set to storage the candidate summaries.
In step 6.4 the positive region POSB(D) is calculated according to Definition 1 and

Eqs. (7), (8). The k � ak condition, help to find summaries between partial depen-
dency attributes, but considering the sets of attributes that have minimum relationship
level. Later, in 6.6 step, Ot 2 U, Ot(B,X) represents the values of attributes a 2 B [ X
in Ot object; if there is total dependency in Ot context, then Ot(B, X) attributes values
will be used as candidates summaries.

Afterward, in 6.9 step the algorithm searches other attributes combination to
generate summaries with more filters. But no superset attributes of any low dependency
attributes set, should be considered for summary generation. In order to prune the
attributes combination, just must be consider the Ot objects that Ot 2 POSB(D).

Finally, the summaries are sorted according to T values and then, submitted for
evaluation of an experts group in this thematic area. The active learning method is used
to identify and validate the best summaries from semantic point of view. This step is
important in the final selection of summaries for decision-making.

3 Results

In order to validate the algorithm, authors applied qualitative and quantitative methods
as follow in this section. Authors consider project management scenarios because
projects are practically organized in all areas of society with a high social and economic
impact [26, 27]. The demonstration of linguistic summaries applicability in project
management help to show the high applicability of these algorithm in wide areas of
human activity.

The qualitative evaluation of the algorithm was based on discovering of relation-
ships between personality traits and human performance in software projects, see
Sect. 3.1. Particularly in software projects, human resources are the main resource
because these projects depend in large extent on professional skills, creativity and
motivation of their resources.

The quantitative evaluation of the algorithm was based on the comparison of
LDS_RoughSet algorithm with an algorithm to generate linguistic summaries based on
association rules (LDS_AssociationRules), see Sect. 3.2.

3.1 Qualitative Evaluation Based on Real Case Study Application

In this section authors present the application of algorithm to discovering of relation-
ships between personality traits and human performance in software projects. The
principal motivations were:
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• In order to achieve an adequate selection and conformation of teams, it is important
to elaborate a personality profile according to the daily situations of the personnel.
Personality is composed of several cognitive characteristics and behavioral trends
that determine the similarities and differences in thoughts, feelings and behaviors of
individuals [11].

• There are several tests that are used extensively and for multiple purposes. Most of
these tests were standardized in correspondence with different populations and,
there is some consensus on the application and interpretation of results that they
provide.

• In order to acquire human resources for software project, authors consider the
combination of: sociological, technical and quality of life test, is very important.

• In general, it is considered that, the characterization of these resources with respect
to learning styles and personality traits, is essential for the formation of balanced
teams, for the increase of efficiency and effectiveness in the development of pro-
jects. But most research only focuses on explaining the importance of psychological
characteristics´ analysis, but does not establish mechanisms to identify relationships
between personality traits and job performance in projects.

The experiment was applied to a population with 62 professionals for whom
information on job performance is available in different roles and projects over a period
of 3 years. Each person in the experiment population complete four questionnaires to
known about its personality traits [28]:

• Instrument: Questionnaire on Leadership Styles.
• Instrument: Questionnaire on leadership styles using word computation.
• Instrument: Personality Inventory 16 PF Form C [29].
• Instrument: BFQ, Big Five Questionnaire [30].

The information obtained for each test was extended with the performance eval-
uations of the respondents and authors conform four datasets [31]. Finally, the algo-
rithm was applied to each dataset and the following linguistic summaries were
obtained:

Results in analysis of dataset “An Instrument Questionnaire on Leadership Styles”:

1. The specialists with high performance in programmer role are characterized by
being passive and task oriented. In addition, they can perform tasks in architect role.

2. The project members with high performance in a third role as implementer are
characterized as passive people in normal conditions and can perform tasks in
programmer role.

3. The specialists with an average performance in a second role as analyst are people-
oriented under normal conditions and can perform tasks in programmer role.

Results in analysis of dataset “B Instrument: Questionnaire on leadership styles
using word computation”:
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1. Programmers with high performance are characterized by being passive and people-
oriented under both normal and stressful conditions. Under normal conditions, they
have a technical mix, so they consider themselves to be exact, precise, calm and
logical people, they complete important tasks following proven methods and do not
like to take risks.

2. The specialists who work in second role as architects, with high performance, are
characterized by being passive in stressful conditions, and can perform tasks in
programmer role.

3. The specialists who work in second role as analysts, with average performance,
under normal conditions are passive and people-oriented. Under stress conditions
they are also passive. They can perform tasks as programmers.

4. The specialists who work in a third role as implanter, with a medium performance,
are people-oriented under normal conditions and tasks-oriented under stress
conditions.

5. The specialists who work in quality with high performance are people-oriented
under normal conditions and tasks-oriented under stressed conditions.

Results in analysis of dataset “C Instrument: Personality Inventory 16 PF Form C”.

1. The specialists with high performance in programmer role work in group and
strengthen their ego. In a group, they consider themselves suspicious, complicate
themselves and they act with premeditation. In addition, they have a lot of strength
in their ego, so they are characterized by being emotionally stable, calm, mature,
realistic, balanced and able to maintain solid group morale.

2. The specialists who work in quality with high performance, agreed as group on
normal values in animation, sensitivity, abstraction and socialization.

3. High implanter: They point to cunning, are considered cunning, calculating,
insightful, subtle and lucid people. His approach is intellectual and unsentimental.

4. The specialists with an average performance in a second role as analysts, agreed as
group on normal values in animation, apprehension or security and socialization.

5. The specialists with high performance in a second role as architect, agreed as group
on normal values in perfectionism and attention to standards.

Results in analysis of dataset “D Instrument: BFQ, Big Five Questionnaire”:

1. The specialists with high performance in programmer role, are characterized by
being moderately meticulous, precise, responsible, orderly and able to master their
emotions. They are also unsympathetic and tolerant.

2. The specialists with high performance in quality tasks are characterized by being
moderately creative, informed and open to cultural interests. Also they are quite
responsible, orderly, cooperative and affectionate.

3. Professionals with a high degree of implanting competence are considered
responsible and orderly people and can take on programmer role.

4. The specialists with high performance in a second role as architects are charac-
terized by being moderately responsible, orderly and diligent. With little peace and
quiet and patience. In addition, they are very inactive and can perform tasks in
programmer role.
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5. The specialists with high performance in a second role as analysts are characterized
by being moderately creative, knowledgeable, understanding and tolerant. In
addition, they have some positive bias in their responses, so they tend to deny their
personal shortcomings or they are particularly naive.

6. Specialists with average performance in a second role as analysts are characterized
by being moderately creative, informed, meticulous, precise, open to new ideas and
values different from their own. Also, they are unsympathetic, tolerant and
affectionate.

From the analysis of the summaries obtained, it is identified that the runs carried out
on the different databases yielded the following common results:

1. The specialists with high performance in programmer role, agreed as group on
normal values in animation, security, self-sufficiency and extroversion. In addition,
they are passive people under normal conditions.

2. The specialists with average performance in a second role as analysts, agreed as
group on normal values in animation, safety, extroversion and attention to
standards.

These results were presented to the respondents, and they were asked to evaluate
them without specifying the test that generated them. It was concluded that the majority
of respondents considered the Big Five test to be the most appropriate for their personal
characteristics. On the other hand, the Management Styles Test, that use computer with
words techniques for the evaluation, gave better results than the variant using discrete
variables. This research results were used in processes of acquisition and formation of
software development teams in the organization where this research was applied.

In this investigation, it was possible to identify the characteristics associated to
personality traits, as well their relationship with high performance in a given role; that
is why we can predict, with some certainty, from the results of a personality analysis
test, in which position a new employee will have better results. However, we
emphasize that these results must be combined with professional skills for the correct
assignment of roles.

3.2 Quantitative Evaluation from Comparison with Other Algorithm

In this section authors compare LDS_RoughSet algorithm and LDS_AssociationRules
algorithm based on association rules techniques. Authors apply the two algorithms to
database “200226_gp_eval_proyfinal” from “Repository of Project Management
Research” [31]. This database contains 202 records and 8 attributes: 4 nominal attri-
butes and 4 numeric attributes. Each record represents an organization with information
about province location, economical affectation types and amount of economical
affectation in several moneys.

For comparison, authors propose the following metrics: number of summaries
obtained, execution time and a set of statistical metrics for each T value. For each
T value (T1, T2, T3, T4 T5) of linguistic summaries authors calculate: mean, standard
deviation, minimum and maximum values.
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Table 2 shows that the algorithm proposed obtains better results than the algorithm
based on association rules regards the following metrics: summaries’ amount, T1, T3,
T4 and T5. But the algorithm based on association rule is better in execution time;
because rough sets theory is high time-consuming. There are not significant differences
between algorithms regards T2 indicator.

The analysis of T indicators revel that in future works traditional T indicators could
be extended by considering other elements like indeterminacy and falsity.

4 Conclusions

The proposed procedure allows the identification of relationships between personality
traits and the performance evaluation index in the roles assigned in software projects.
This method has been tested in software projects, but its conception allows its appli-
cation in several scenarios.

In the application of personality instruments, participants reported Big Five ques-
tionnaire as suitable instrument for their characteristics.

In the experiment it was found that specialists with high performance in pro-
grammer role, is characterized by being moderately meticulous, accurate, responsible,
orderly and able to master their emotions. However, they are not very tolerant and
project managers need to be aware of these characteristics in order to facilitate com-
munication within the project and avoid interpersonal conflicts.

The research results allow the identification of personal characteristics of profes-
sionals that facilitate the communication with them of managers and avoid conflicts in
work teams.

It is also identified that personality traits suitable for analyst role are creative,
informed, meticulous, precise, open to new things, ideas and values different from their
own and these characteristics help their work performance and exchange with clients.

Considering quantitative analysis, the proposed algorithm obtains better results than
the algorithm based on association rules in the most of the indicators. In particular,
LDS_RoughSet algorithm was superior regards indicators: summaries’ amount, T1, T3,
T4 and T5. While, the algorithm based on association rules was the best considering
execution time, because of rough sets theory is high time-consuming. There are not
significant differences between algorithms regards T2 indicator.

Table 2. Linguistic summaries evaluation using T indicators.

Algorithm T1 T2 T3 T4 T5

LDS_RoughSets Min 0.968 0.027 0.833 0.005 0.25
Max 0.99 0.067 1 0.97 0.5

Execution time 2.6987 ms
Summaries amount 46

StdDev 0.0058 0.011 0.029 0.31 0.062
Mean 0.987 0.031 0.99 0.72 0.48

LDS_AssociationRules Min 0.775 0.027 0.338 0 0.063
Max 0.99 0.257 1 0.88 0.5

Execution time 2.2607 ms
Summaries amount 76

StdDev 0.053 0.068 0.14 0.31 0.147
Mean 0.96 0.057 0.94 0.56 0.409
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Abstract. Rough set theory has many interesting applications in cir-
cumstances characterized by vagueness. In this paper, the applications
of rough set theory in community detection analysis are discussed based
on the Rough Net definition. We will focus the application of Rough Net
on community detection validity in both monoplex and multiplex net-
works. Also, the topological evolution estimation between adjacent layers
in dynamic networks is discussed and a new community interaction visu-
alization approach combining both complex network representation and
Rough Net definition is adopted to interpret the community structure.
We provide some examples that illustrate how the Rough Net definition
can be used to analyze the properties of the community structure in
real-world networks, including dynamic networks.

Keywords: Extended rough set theory · Community detection
analysis · Monoplex complex networks · Multiplex complex networks

1 Introduction

Complex networks have proved to be a useful tool to model a variety of complex
systems in different domains including sociology, biology, ethology and computer
science. Most studies until recently have focused on analyzing simple static net-
works, named monoplex networks [7,17,18]. However, most of real-world com-
plex networks are dynamics. For that reason, multiplex networks have been
recently proposed as a mean to capture this high level complexity in real-world
complex systems over time [19]. In both monoplex and multiplex networks the
key feature of the analysis is the community structure detection [11,19].

Community detection (CD) analysis consists of identifying dense subgraphs
whose nodes are densely connected within itself, but sparsely connected with
the rest of the network [9]. CD in monoplex networks is a very similar task to
classical clustering, with one main difference though. When considering complex
c© Springer Nature Switzerland AG 2020
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networks, the objects of interest are nodes, and the information used to perform
the partition is the network topology. In other words, instead of considering some
individual information (attributes) like for clustering analysis, CD algorithms
take advantage of the relational one (links). However, the result is the same in
both: a partition of objects (nodes), which is called community structure [9].

Several CD methods have been proposed for monoplex networks [7,8,12,16–
18]. Also, different approaches have been recently emerged to cope with this prob-
lem in the context of multiplex networks [10,11] with the purpose of obtaining a
unique community structure involving all interactions throughout the layers. We
can classify latter existing approaches into two broad classes: (I) by transforming
into a problem of CD in simple networks [6,9] or (II) by extending existing algo-
rithms to deal directly with multiplex networks [3,10]. However, the high-level
complexity in real-world networks in terms of the number of nodes, links and
layers, and the unknown reference of classification in real domain convert the
evaluation of CD in a very difficult task. To solve this problem, several quality
measures (internal and external) have emerged [2,13]. Due to the performance
may be judged differently depending on which measure is used, several mea-
sures should be used to be more confident in results. Although, the modularity
is the most widely used, it suffers the resolution limit problem [9]. Another goal
of the CD analysis is the understanding of the structure evolution in dynamic
networks, which is a special type of multiplex that requires not only discovering
the structure but also offering interpretability about the structure changes.

Rough Set Theory (RST), introduced by Pawlak [15], has often proved to be
an excellent tool for analyzing the quality of information, which means incon-
sistency or ambiguity that follows from information granulation in a knowledge
system [14]. To apply the advantages of RST in some fields of CD analysis,
the goal of our research is to define the new Rough Net concept. Rough Net
is defined starting from a community structure discovered by CD algorithms
applied to monoplex or multiplex networks. This concept allows us obtaining
the upper and lower approximations of each community, as well as, their accu-
racy and quality. In this paper, we will focus the application of the Rough Net
concept on CD validity and topological evolution estimation in dynamic net-
works. Also, this concept supports visualizing the interactions of the detected
communities.

This paper is organized as follows. Section 2 presents the general concepts
about the extended RST and its measures for evaluating decision systems. We
propose the definition of Rough Net in Sect. 3. Section 4 explains the applications
of Rough Net in the community detection analysis in complex networks. Besides,
a new approach for visualizing the interactions between communities based on
Rough Net is provided in Sect. 4. In Sect. 5, we illustrate how the Rough Net
definition can be used to analyze the properties of the community structure in
real-world networks, including dynamic networks. Finally, Sect. 6 concludes the
paper and discusses future research.
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2 Extended Rough Set Theory

The rough sets philosophy is based on the assumption that with every object
of the universe U there is associated a certain amount of knowledge expressed
through some attributes A used for object description. Objects having the same
description are indiscernible with respect to the available information. The indis-
cernibility relation R induces a partition of the universe into blocks of indis-
cernible objects resulting in information granulation, that can be used to build
knowledge. The extended RST considers that objects which are not indiscernible
but similar can be grouped in the same class [14]. The aim is to construct a sim-
ilarity relation R′ from the relation R by relaxing the original indiscernibility
conditions. This relaxation can be performed in many ways, thus giving many
possible definitions for similarity. Due to that R′ is not imposed to be symmetric
and transitive, an object may belong to different similarity classes simultane-
ously. It means that R′ induces a covering on U instead of a partition. However,
any similarity relation is reflexive. The rough approximation of a set X ⊆ U ,
using the similarity relation R′, has been introduced as a pair of sets called R′-
lower (R′∗) and R′-upper (R′∗) approximations of X. A general definition of
these approximations which can handle any reflexive R′ are defined respectively
by Eqs. (1) and (2).

R′∗(X) = {x ∈ X : R′(x) ⊆ X} (1)

R′∗(X) =
⋃

x∈X

R′(x) (2)

α(X) =
|R′∗(X)|
|R′∗(X)| (3)

The extended RST offers some measures to analyze decision systems, such
as the accuracy and quality of approximation and quality of classification mea-
sures. The accuracy of approximation of a rough set X, where |X| denotes the
cardinality of X �= ∅, offers a numerical characterization of X. Equation (3)
formalizes this measure such that 0 ≤ α(X) ≤ 1. If α(X) = 1, X is crisp (exact)
with respect to the set of attributes, if α(X) < 1, X is rough (vague) with
respect to the set of attributes. The quality of approximation formalized in Eq.
(4) expresses the percentage of objects which can be correctly classified into the
class X. Note that 0 ≤ α(X) ≤ γ(X) ≤ 1, and γ(X) ≤ 0 if α(X) ≤ 0, while
γ(X) ≤ 1 if α(X) ≤ 1 [14]. Quality of classification expresses the proportion
of objects which can be correctly classified in the system; Equation (5) formal-
izes this coefficient where C1, · · · , Cm correspond to the decision classes of the
decision system DS. Notice that if the quality of classification value is equal to
1, then DS is consistent, otherwise is inconsistent [14]. Equation (6) shows the
accuracy of classification, which measures the average the accuracy per classes
with different importance levels. Its weighted version is formalized in Eq (7) [4].

γ(X) =
|R′∗(X)|

|X| (4)
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γ(DS) =
∑m

i=1 |R′∗(Ci)|
|U | (5)

α(DS) =
∑m

i=1 α(Ci)
m

(6)

αw(DS) =
∑m

i=1(α(Ci) · |Ci|)∑m
i=1 |Ci| (7)

3 Rough Net Definition

Monoplex (simple) networks can be represented as graphs G = (V,E) where V
represents the vertices (nodes) and E represents the edges (interactions) between
these nodes in the network. Multiplex networks have multiple layers, where each
one is a monoplex network. Formally, a multiplex network can be defined as a
triplet < V,E,L > where E =

⋃
Ei such that Ei corresponds to the interactions

on layer i-th and L is the number of layers. This extension of graph model is
powerful enough though to allow modeling different types of networks includ-
ing dynamic and attributed networks [9]. CD algorithms exploit the topological
structure for discovering a collection of dense subgraphs (communities). Sev-
eral multiplex CD approaches emphasize on how to obtain a unique community
structure throughout all layers, by considering as similar nodes that ones with
the same behavior in most of the layers [3,10]. In the context of dynamic net-
works, the goal is to detect the conformation by layers for characterizing the
evolutionary or stationary properties of the CD structures. Due to the quality
of the community structure may be judged differently depending on which mea-
sure is used, to be more confident in results several measures should be used
[9]. In this section, we recall some basic notions related to the definition of the
extension of RST in complex networks. Also, we will focus on the introduction
of the Rough Net concept by extrapolating these notions to the analysis of the
consistency of the detected communities in complex networks. This concept sup-
ports to validate, visualize, interpret and understand the communities and also
their evolution. Besides, it has a potential application in labeling and refining
the detected communities. As was mentioned, it is necessary to start from the
definition of the decision system, the similarity relation, and the basic concepts
of lower and upper approximations.

Definition 1. (Rough Net): Given a complex network G, where V represents
the nodes. Let s : V ×V → R′ be a function that measures the similarity between
nodes of V . The Rough Net comprises the combination of the topological structure
and the CD results as a decision system DS = (V,A ∪ d), where A is a finite
set of topological (i.e., the adjacency tensor of G) or non-topological features
which may additionally be available if the network is attributed and d /∈ A is the
decision attribute resulting from the detected communities.

We use a similarity relation R′ in our definition of Rough Net, because two nodes
of V can be similar but not equal. The similarity class of the node x is denoted
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by R′(x), as shown in Eq. (8). The R′-lower and R′-upper approximations for
each similarity class are computed by Eqs. (1) and (2) respectively. There is
a variety of distances and similarities for comparing nodes [1], such as Salton,
Hub Depressed Index (HDI), Hub Promoted Index (HPI), similarities based on
the topological structure, and Dice and Cosine coefficients which capture the
attribute relations. In this paper, we use the Jaccard similarity for computing
the similarities based on the topological structure because it has the attraction
of simplicity and normalization. The Jaccard similarity, which also allows us to
emphasize the network topology necessary to apply RST in complex networks, is
defined in Eq. (9), where Γ (X) denotes the neighborhood of the node x including
it.

R′(x) = {y ∈ V : yR′x, iff s(x, y) ≥ ξ} (8)

s(x, y) =
|Γ (x) ∩ Γ (y)|
|Γ (x) ∪ Γ (y)| (9)

3.1 Decision System for Applying RST on monoplex Networks

An adjacency tensor for a monoplex (i.e., single layer) network can be reduced
to an adjacency matrix. The topological relation between nodes comprises an
|V | × |V | adjacency matrix M , in which each entry Mi,j indicates the relation-
ships between nodes i and j weighted or not. The weight can be obtained as a
result of the application of both a flattening process in a multi-relational net-
work or a network construction schema when we want to apply network-based
learning methods to vector-based datasets. If we apply some CD algorithm to
this adjacency matrix, then we can consider the combination of the topological
structure and the CD results as a decision system DSmonoplex = (V,A ∪ d),
where A is a finite set of topological or non-topological features and d /∈ A is the
decision attribute resulting from the detected communities over the network.

3.2 Decision System for Applying RST on multiplex Networks

Multiplex are powerful enough though to allow modeling different types of net-
works including multi-relational, attributed and dynamic networks [11]. Note
that multiplex networks explicitly incorporate multiple channels of connectivity
in which entities can have a different set of neighbors in each layer. In a dynamic
network each layer corresponds to the network state at a given time-stamp (or
each layer represents a snapshot). Like a time-series analysis, if attributes are
captured in each time, a complex network can be represented as a dynamic
network [19].

An adjacency tensor for a dynamic network with dimension L, which cor-
responds to the number of layers, represents a collection of adjacency matrices.
The topological interaction between nodes within each layer k-th of a multiplex
network comprises an |V | × |V | adjacency matrix Mk, in which each entry
Mk

ij indicates the relationships between nodes i and j in the k-th layer. If we
apply a CD algorithm to the whole multiplex network topology by considering
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multiplex CD approaches [10,19] in order to compute the unique final commu-
nity structure, then we can consider the application of RST concepts over the
multiplex network as the aggregation of the application of the RST concepts
over each layer k-th. Consequently, the decision system for the k-th layer is the
combination of the topological structure Mk and the CD results, formalized as
DSlayerk = (V,Ak ∪ d), where Ak is a finite set of topological or non-topological
features in the k-th layer and d /∈ A is the decision attribute resulting from
the detected communities in the multiplex topology (i.e., each node and their
counterpart in each layer represent a unique node that belongs to a specific
community). Besides, it is possible to transform a multiplex into a monoplex
network by a flattening process. The main flatten approaches are the binary
flatten, the weighted flatten and another based on deep learning [10]. Taking
into account these variants, we can consider the combination of the topological
structure of the transformed network and the CD results as a decision system
DSmonoplex = (V,A ∪ d), where A =

⋃
k∈L Ak is a finite set of topological or

non-topological features that characterize the networks and d /∈ A is the deci-
sion attribute resulting from the detected communities. The multiple instance or
ensemble similarity measures are powerful for computing the similarity between
nodes taking into account the similarity per layers (contexts).

4 The Application of Rough Net in the Community
Detection Analysis

In this section, we describe the application of Rough Net in important tasks of
the CD analysis: the validation and visualization of detected communities and
their interactions, and the evolutionary estimation in dynamic networks.

4.1 Community Detection Validity

A community can be defined as a subgraph whose nodes are densely connected
within itself, but sparsely connected with the rest of the network, though other
patterns are possible. The existence of communities implies that nodes interact
more strongly with the other members of their community than they do with
nodes of the other communities. Consequently, there is a preferential linking
pattern between nodes of the same community (being modularity [13] one of the
most used internal measures [9]). This is the reason why link densities end up
being higher within communities than between them. Although the modularity
is the most widely quality measure used in complex networks, it suffers the res-
olution limit problem [9] and, therefore, it is unable to judge in a correct way
community structure of the networks with small communities or where communi-
ties may be very heterogeneous in size, especially if the network is large. Several
methods and measures have been proposed to detect and evaluate communi-
ties in both monoplex and multiplex networks [2,3,13]. As well as modularity,
Normalized Mutual Information (NMI), Adjusted Rand (AR), Rand, Variation
of Information (VI) measures [2] are widely used, but the latter ones need an
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Algorithm 1. Community Detection Validity
Input: A Monoplex or multiplex network G (attributed or not), detected communi-
ties, a threshold ξ and a similarity s (topological or non-topological features)
Output: Values of quality, accuracy and weighted accuracy of classification measures

1: if G is a monoplex network then
2: DS[1] ← DSmonoplex (see Section 3.1)
3: C[1] ← communities(G, d)
4: else if G is a multiplex network then
5: for k in L do
6: DS[k] ← DSlayerk (see Section 3.2)
7: C[k] ← communities(layer(G, k), d)
8: end for
9: end if
10: for k in (1 : size(DS)) do
11: Obtain the similarity class R′

k(x) based on Equation (8)
12: for X in C[k] do
13: Calculate R′

k∗(X) and R′∗
k (X) approximations (see equations (1)–(2))

14: Calculate α(X) and γ(X) approximation measures (see equations (3)–(4))
15: end for
16: Calculate γ(DSk), α(DSk) and αw(DSk) in DSk (see equations (4)–(7))
17: γG(DS)+ = γ(DSk), αG(DS)+ = α(DSk) and αwG(DS)+ = αw(DSk)
18: end for
19: γG(DS) = γG(DS)/L, αG(DS) = αG(DS)/L and αwG(DS) = αwG(DS)/L

external reference classification to produce a result. However, it is very difficult
to evaluate a community result because the major of complex networks occur in
real world situations since reference classifications are usually not available. We
propose to use quality, accuracy and weighted accuracy of classification mea-
sures described in Sect. 2 to validate community results, taking into account the
application of accuracy and quality of approximation measures to validate each
community structure. Aiming at providing more insights about the validation,
we provide a general procedure based on Rough Net. Notice that R′

k(x) is com-
puted by considering the attributes or topological features of networks in the
k-th layer, by using Eq. (8). Algorithm 1 allows us to measure the quality of the
community structure using Rough Net, by considering the quality and precision
of each community. Rough Net allows judging the quality of the CD by mea-
suring the vagueness of each community. For that reason, if boundary regions
are smaller, then we will obtain better results of quality, accuracy and weighted
accuracy of classification measures.

4.2 The Evolutionary Estimation in Dynamic Networks

A huge of real-world complex networks are dynamic in nature and change over
time. The change can be usually observed in the birth or death of interactions
within the network over time. In a dynamic network is expected that nodes of the
same community have a higher probability to form links with their partners than
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Algorithm 2. Evolution Analysis
Input: Two-consecutive layers CL of G, a threshold ξ and a similarity s
Output: The evolutionary estimations

1: dk−1 ← CD(layer(G, k − 1))
2: dk ← CD(layer(G, k)), dk−0 ← dk

3: DSk−1 ← (V, Ak−1 ∪ dk) (see Section 3.2)
4: DSk ← (V, Ak ∪ dk−1), DSk−0 ← DSk (see Section 3.2)
5: for i in (0 : 1) do
6: for X in dk−i do
7: Obtain the similarity class R′

k−i(x) based on Equation (8)
8: Calculate R′

k−i ∗ (X) and R′∗
k−i(X) approximations (see equations (1)–(2))

9: Calculate αk−i(X) and γk−i(X) measures (see equations (3)–(4))
10: end for
11: γi = γ(DSk−i), αi = α(DSk−i) and αwi = αw(DSk−i) in DSk−i

12: end for
13: γCL = (γ0 + γ1)/2, αTC = (α0 + α1)/2 and αwCL = (αw0 + αw1)/2

with other nodes [19]. For that reason, the key feature of the community detec-
tion analysis in dynamic networks is the evolution of communities over time.
Several methods have been proposed to detect these communities over time for
specific time-stamp windows [3,10]. Often more than one community structure is
required to judge if the network topology has suffered transformation over time
for specific window size. To the best of our knowledge, there is no measure able
which captures this aspect. For that reason, in this paper, we propose measures
based on the average of quality, accuracy and weighted accuracy of classification
for estimating in a real number the change level during a specific window time-
stamp. We need to consider two-consecutive layers for computing the quality,
accuracy and weighted accuracy of classification measures in the evolutionary
estimation (see Algorithm 2). For that reason, we need to apply twice the Rough
Net concept for each pair of layers. The former Rough Net application is based
on the decision system DS = (V,Ak ∪ dk−1), where Ak is a set of topological
attributes in the layer k and dk−1 /∈ Ak is the result of the community detec-
tion algorithm in the layer k − 1 (decision attribute). The latter Rough Net
application is based on the decision system DS = (V,Ak−1 ∪ dk), where Ak−1

is a set of topological attributes in the layer k − 1 and dk /∈ Ak−1 is the result
of the community detection algorithm in the layer k (decision attribute). The
measures can be applied over a window size K by considering the aggregation
of the quality classification between all pairs of consecutive (adjacency) layers.
Values nearer to 0 express the topology is evolving over time.

4.3 Discovering Interactions Between Communities

In many applications more than a unique real value that expresses the quality
of the community conformation is required for the understanding of the interac-
tions throughout the networks. Besides, real-world complex networks usually are
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Algorithm 3. Visualization for Community Structure Analysis
Input: A complex network G, detected communities, a threshold ξ and a similarity s
Output: Community network representation

1: Create an empty network G′(V ′, E′)
2: for x in V do
3: Obtain the similarity class R′(x) based on Equation (8)
4: end for
5: for X in communities(G, d) do
6: Calculate R′

∗(X) and R′∗(X) approximations (see equations (1)–(2))
7: Calculate α(X) and γ(X) approximation measures (see equations (3)–(4))
8: Add a new node X where the size corresponds to quality or accuracy
9: end for
10: for X, Y in communities(G), X �= Y do
11: Calculate the similarity sBN between communities X-th and Y -th
12: Add a new edge (I, Y, wXY ) where the weighted wij = sBN (X, Y )
13: end for

composed by many nodes, edges, and communities, making difficult to interpret
the obtained results. Thus, we propose a new approach for visualizing the inter-
actions between communities taking into account the quality of the community
structure by using the combination of the Rough Net definition and the complex
network representation. Our proposal, formalized in Algorithm 3, allows us to
represent the quality of the community structure in an interpretable way.

The similarity measure used for weighted the interactions between commu-
nities in the network representation is formalized in Eq. (10). The sBN (X,Y )
captures the proportion of nodes members of the community X, which cannot
be unambiguously classified into this community but belong to the community
Y and vice-versa. The above idea is computed based on the boundary region
BN of both communities X and Y . The Rough Net approach allows us to eval-
uate the interaction between the communities and its visualization facilitates
interpretability. In turn, it helps experts redistribute communities and change
granularity based on the application domain requirements.

sBN (X,Y ) =
|BN(X)∩Y |

|BN(X)| + |BN(Y )∩X|
|BN(Y )|

2
(10)

5 Illustrative Examples

For illustrating the performance of the Rough Net definition in the community
detection analysis, we apply it to three networks, two known to have monoplex
topology and the third multiplex one. To be more confident in results, we should
use several measures for judging the performance of a CD algorithm [2,5].Thus,
we compare our approach to validate detected communities (i.e., accuracy and
quality of classification) with the most popular internal and external measures
used for community detection validity: modularity, AR, NMI, Rand, VI [2]. Mod-
ularity [13] quantifies when the division is a good one, in the sense of having many
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within-community edges. It takes its largest value (1) in the trivial case where
all nodes belong to a single community. A value near to 1 indicates strong com-
munity structure in the network. All other mentioned measures need external
references for operating. All measures except VI, express the best result though
values near to 1. For that reason, we use the notation VIC for denoting the
complement of VI measure (i.e., V IC = 1 − V I).

5.1 Zachary Network

Zachary is the much-discussed network1 of friendships between 34 members of a
karate-club at a US university. Figure 1 shows the community structures reported
by the application of the standard CD algorithms Label Propagation (LP), Mul-
tilevel Louvain (LV), Fast Greedy Optimization (FGO), Leading Eigenvector
(EV), Infomap (IM) and Walktrap (WT) to the Zachary network. Each commu-
nity has been identified with a different colour. These algorithms detect com-
munities, which mostly not correspond perfectly to the reference communities,
except the LP algorithm which identically matches. For that reason, we can
affirm that the LP algorithm reported the best division. However, in Fig. 2 we
can observe that the modularity values not distinguish the LP as the best con-
formation of nodes into communities, while the proposed accuracy and quality

(a) LP (b) FGO (c) LV

(d) WT (e) EV (f) IM

Fig. 1. Communities detected by different algorithms in the Zachary network.

1 http://networkrepository.com/ucidata-zachary.php.

http://networkrepository.com/ucidata-zachary.php


Rough Net Approach for Community Detection Analysis 411

0.
37 0.
38 0.
42

0.
35 0.
39 0.
4

0.
54

0.
25 0.
27

0.
17

0.
13

0.
470.
49

0.
28

0.
18

0.
07

0.
08

0.
37

0

0.1

0.2

0.3

0.4

0.5

0.6

LP FGO LV WT EV IM

Modularity ϒ(ξ=0.25) α(ξ=0.25)

Fig. 2. Performance of the internal measures on the Zachary CD evaluation.
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Fig. 3. Performance of the proposed measures on the Zachary CD evaluation.

of classification measures based on the Rough Net definition, assign the higher
value to the LP conformation regardless of the used threshold. On the other
hand, our measures grant the lowest quality results for the community structure
obtained by the EV algorithm as expected. Notice that FGO and EV assign
the orange node with high centrality in the orange community structure in a
wrong manner. We can notice that most neighbors of this node are in another
community. Indeed, the FGO and WT are the following lowest results reported
by our measures. Figure 3 shows the performance reported by the application
of the standard community detection algorithms before mentioned by using the
proposed quality measures and the external ones. All measures exhibit the same
monotony behaviors with independence of the selected similarity threshold ξ.
Our measures have the advantage that are internal and behave similarly to
external measures.

5.2 Jazz Network

The Jazz network2 represents the collaboration between jazz musicians, where
each node represents a jazz musician and interactions denote that two musicians

2 http://konect.cc/networks/arenas-jazz/.

http://konect.cc/networks/arenas-jazz/
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are playing together in a band. Six CD algorithms were applied to this network
with the objective of subsequently exploring the behavior of validity measures.
Figure 4 displays that LP obtains a partition in which the number of interactions
shared between nodes of different communities is smaller than the number of
interactions shared between the communities obtained by the FGO algorithm.
However, this behavior is not reflected in the estimation of the modularity values,
while it manages to be captured by the proposed quality measures, as shown
in Fig. 5. Besides, the number of interactions shared between the communities
detected by the algorithms LV, FGO, and EV is much greater than the number
of interactions shared between the communities detected by the algorithms LP,
WT, and IM. Therefore, this behavior was expected to be captured through the
Rough Net definition. Figure 5 shows that the results reported by our measures
coincide with the expected results. On the one hand, we can observe that our
quality measures exhibit a better performance than the modularity measure in
this example. Our measures also capture the presence of outliers, this is the
reason why the community structure reported by the WT algorithm is higher
than the obtained by the LP algorithm.

(a) LP (b) FGO (c) LV

(d) WT (e) EV (f) IM

Fig. 4. Communities detected by different algorithms in the Jazz network.
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5.3 CElegans Network

Caenorhabditis elegans connectome (CElegans) is a multiplex network3 that
consists of layers corresponding to different synaptic junctions: electric (Elec-
trJ), chemical monadic (MonoSyn), and polyadic (PolySyn). Figure 6 shows the
mapping of the community structure in each network layer, which has been
obtained by the application of the MuxLod CD algorithm [10]. Notice that a
strong community structure result must correspond to a structure of densely con-
nected subgraphs in each network layer. This reflexion property is not evident for
these communities in the CElegans network. For that reason, both the modular-
ity and the proposed quality community detection measures obtain low results
(Modularity = 0.07, α(ξ = 0.25) = 0.24 and γ(ξ = 0.25) = 0.14). Figure 7
shows the interactions between the communities in each layer by considering
the MuxLod community structure and the algorithm described in Sect. 4.3. The
community networks show high interconnections and as expected, the results of
the quality measures are low. Figure 7 shows that the topologies of the PolySyn
and ElectrJ layers do not match exactly. In this sense, let us suppose without
loss of generalization, that we want to estimate if there has been a change in

(a) ElectrJ (b) PolySyn (c) MonoSyn

Fig. 6. Application of the MuxLod CD to the CElegans network.

3 http://deim.urv.cat/∼alexandre.arenas/data/welcome.htm.

http://deim.urv.cat/~alexandre.arenas/data/welcome.htm
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(a) ElectrJ (b) PolySyn (c) MonoSyn

Fig. 7. Visualization of community quality based on the MuxLod CD to the CElegans
network.
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the topology considering these layers as consecutive. To estimate these results,
we apply the algorithm described in Sect. 4.2. Figure 8 shows the modularity,
accuracy and quality of classification obtained values, which reflect that the
community structure between layers does not completely match, so it can be
concluded that the topology has evolved (changed).

6 Conclusions and Future Work

In this paper, we have described new quality measures for exploratory analysis
of community structure in both monoplex and multiplex networks based on
the Rough Net definition. The applications of Rough Net in community detec-
tion analysis demonstrate the potential of the proposed measures for judging
the community detection quality. Rough Net allows us to asses the detected
communities without requiring the referenced structure. Besides, the proposed
evolutionary estimation and the new approach for discovering the interactions
between communities allows to the experts a deep understanding of complex real
systems mainly based on the visualization of interactions. For the future work,
we propose to extend the applications of Rough Net to the estimation of the
community structure in the next time-stamp based on the refinement between
adjacent layers in dynamic networks.



Rough Net Approach for Community Detection Analysis 415

References

1. Ahajjam, S., El Haddad, M., Badir, H.: A new scalable leader-community detection
approach for community detection in social networks. Soc. Netw. 54, 41–49 (2018)
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Abstract. The detection of overlapping communities in Social Net-
works has been successfully applied in several contexts. Taking into
account the high computational complexity of this problem as well as
the drawbacks of single-objective approaches, community detection has
been recently addressed as Multi-objective Optimization Evolutionary
Algorithms (MOEAs). One of the challenges is to attain a final solution
from the set of non-dominated solutions obtained by the MOEAs. In
this paper, an algorithm to build a covering of the network based on the
principles of the Rough Clustering is proposed. The experiments in a
synthetic networks showed that our proposal is promising and effective
for overlapping community detection in social networks.

Keywords: Social network analysis · Community detection ·
Multi-objective Optimization · Rough clustering

1 Introduction

The Analysis of Social Networks has received a lot of attention due to its wide
range of applications in several contexts [1]. Specifically, in Social Network Anal-
ysis, the Community Detection Problem (CDP) plays an important role [5]. Com-
munity detection in social networks aims to organize the nodes of the network
in groups or communities such that nodes belonging to the same community are
densely interconnected but sparsely connected with the remaining nodes in the
network [2]. Even though most of the community detection algorithms assume
c© Springer Nature Switzerland AG 2020
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that communities are disjoint, according to Palla et al. in [6], most real-world
networks have overlapping community structure, that is, a node can belong to
more than one community.

On the other hand, since the community detection problem has an NP-hard
nature, most reported approaches use heuristics to search for a set of nodes that
optimises an objective function which captures the intuition of community, these
single-objective optimization approaches face two main difficulties: a) the opti-
mization of only one function confines the solution to a particular community
structure, and b) returning one single partition may not be suitable when the net-
work has many potential structures. To overcome the aforementioned problems,
many community detection algorithms model the problem as a Multi-objective
Optimization Problem, and specifically, they use Multi-objective Optimization
Evolutionary Algorithms (MOEAs) to solve them.

Once the set of non-dominated solutions is obtained by the MOEAs, one
of the main challenges is to accomplish a final solution. Most of the proposed
algorithms [5,7–9] use the internal criteria (e.g., Modularity Index [10]) or the
external criteria (e.g., Normalized Mutual Information (NMI) [3]) to select the
final solution. The drawbacks of these approaches are that the internal criteria
does not often correspond to the objective function used by MOEAs and the
external criteria uses the ground truth of the network, which it is not always
known. Also, the selected final solutions obtained by both approaches do not use
the knowledge of the overlapping communities (Pareto set) obtained by MOEAs.

Rough Set Theory (RST) may be used to evaluate significance of attributes,
to deal with inconsistent data, and to describe dependencies among attributes,
to mention just some uses in machine learning and data mining [22].

The main advantage of Rough Set Theory in data analysis is that it does
not need any preliminary or additional information about data [17]. RST allows
to approximate a rough concept by a pair of exact concepts, called the lower
and upper approximations. The lower approximation is the set of objects defi-
nitely belonging to a vague concept, whereas the upper approximation is the set
of objects possibly belonging to the mentioned vague concept [17]. The upper
and lower approximations can be used in a broader context such as clustering,
denoted as Rough Clustering [13].

In our proposal, we focus on describing the relationship between the elements
of the network (vertices) only taking into consideration their belonging to the
communities of the Pareto Set. Then, we use Rough Clustering to obtain a final
covering of the network, that describes the communities with their lower and
upper approximations. The lower approximation is the set of vertices belonging
to the community without uncertainty, whereas the upper approximation is the
set of vertices possibly belonging to this community, therefore located at the
boundary of it. Hence, the selected final solution uses the knowledge of the
overlapping communities (Pareto set) obtained by MOEAs.

In this paper, we propose an Overlapping Community Detection Algorithm
using Multi-objective approach and Rough Clustering, denoted as MOOCD-
RC. Our algorithm allows selecting the final solution based on the subjective
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information as the number of vertices located in the cores or boundaries of the
communities. As a consequence, it helps decision-makers (DM) incorporate their
domain knowledge into the community detection process. Our main contribu-
tions are as follows:

1. We define an indiscernibility relationship between vertices of the network by
taking the number of communities in the Pareto Set where they match.

2. We use the Rough Clustering foundation to build and describe the final cov-
ering of the network through the lower and upper approximations of the
communities.

This paper is arranged as follows. Section 2 briefly introduces the necessary
notions of multi-objective community detection problem and Rough Cluster-
ing. In Sect. 3, we introduce our proposal. Section 4 presents the experimental
evaluation of our proposal and compared against other related state-of-the-art
algorithms over synthetic networks. Finally, Sect. 5 gives the conclusions and
some ideas about future work.

2 Background

This section introduces the necessary background knowledge for understanding
the proposed method. First, the definition of multi-objective community detec-
tion problem and multi-objective algorithms of the related work are presented.
Next, we will give the basics about Rough Set Theory and Rough Clustering.

2.1 Multi-objective Community Detection Problem

Let G = (V,E) be a given network, where V is the set of vertices and E is the
set of edges among the vertices. A multi-objective community detection problem
aims to search for a partition P ∗ of G such that:

F (P ∗) = minP∈Ω (f1(P ), f2(P ), . . . , fr(P )) , (1)

where P is a partition of G, Ω is the set of feasible partitions, r is the number of
objective functions, fi is the ith objective function and min(·) is the minimum
value obtained by a partition P taking into account all the objective functions.
With the introduction of the multiple objective functions, there is usually no
absolute optimal solution, thus, the goal is to find a set of Pareto optimal solu-
tions [2]. A commonly used way to solve a multi-objective community detection
problem is by using MOEAs [9].

The first algorithm using MOEAs for detecting overlapping communities is
named Multiobjective Evolutionary Algorithm to solve CDP (MEA CDP) [5].
MEA CDP uses an undirected representation of the solution and the classical
Nondominated Sorting Genetic Algorithm II (NSGA-II) with the reverse oper-
ator to search for the solutions optimising the average community fitness, the
average community separation and the overlapping degree among communities.
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On the other hand, the Improved Multiobjective Evolutionary Algorithm to solve
CDP (iMEA CDP) [7] uses the same representation and optimization framework
of MEA CDP but it proposes to employ the PMX crossover operator and the
simple mutation operator as evolutionary operators. iMEA CDPs employs the
Modularity function [10] and a combination of the average community separation
and overlapping degree as its objective functions.

The Overlapping Community Detection Algorithm based on MOEA (MOEA-
OCD) [9] uses the classical NSGA-II optimization framework and a represen-
tation based on adjacents among edges of the network. On the other hand,
MOEA-OCD uses the negative fitness sum and the unfitness sum as objective
functions. Unlike previously mentioned algorithms, in MOEA-OCD algorithm, a
local expansion strategy is introduced into the initialization process to improve
the quality of initial solutions.

Another algorithm is the Maximal Clique based on MOEA (MCMOEA) [8]
which first detects the set of maximal cliques of the network and then it builds
the maximal-clique graph. Starting from this transformation, MCMOEA uses a
representation based on labels and the Multiobjective Evolutionary Algorithm
based on Decomposition (MOEA/D) in order to detect the communities opti-
mising the Radio Cut (RC) and Kernel K-Means (KKM) objective functions
[11].

In [16] the authors combine Granular Computing and a multi-objective opti-
mization approach for discovering overlapping communities in social networks.
This algorithm, denoted as MOGR-OV, starts by building a set of seeds that
is afterwards processed for building overlapping communities, using three intro-
duced steps, named expansion, improving and merging.

Most of the exiting works focus on developing MOEAs to detect overlapping
communities but not addresses the problem of selecting a final solution from the
set of the obtained non-dominated solutions.

2.2 Foundations of Rough Clustering

The main components in the Rough Set Theory are an information system and
an indiscernibility relation [17]. The classical RST was originally proposed using
on a particular type of indiscernibility relations called equivalence relations (i.e.,
those that are symmetric, reflexive and transitive). Yao et al. [19] described
various generalizations of rough sets by relaxing the assumptions of an underlying
equivalence relation.

RST takes a pair of precise concepts to study the vagueness of a concept,
named the lower and upper approximations. The lower approximation composes
of all objects which surely belong to the concept, whereas the upper approxi-
mation contains all objects which perhaps belong to the concept. The boundary
region of the vague concept is the difference between the upper and the lower
approximations [18].

Lingras et al. [15] define another generalization of the approximate sets, see-
ing them as interval sets. The authors propose the rough k-means algorithm,
where the concept of k-means is extended by viewing each cluster as an interval
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or rough set. The core idea is to separate discernible from indiscernible objects
and to assign objects to lower A(X) and upper A(X) approximations of a set
X. This proposal allows overlaps between clusters [20]. The upper and lower
approximation concepts require to follow some of the basic rough set properties
such as [14]:

1. An object v can be part of at most one lower approximation. This implies
that any two lower approximations do not overlap.

2. An object v that is member of a lower approximation of a set is also part of
its upper approximation. This implies that a lower approximation of a set is
a subset of its corresponding upper approximation.

3. If an object v is not part of any lower approximation it belongs to two or
more upper approximations. This implies that an object cannot only belong
to a single boundary region.

The way to incorporate rough sets into k-means clustering requires adapting
the calculation of the centroids and deciding whether an object is assigned to a
lower or upper approximation of a cluster. In the first moment, the centroids of
clusters are calculated including the effects of lower as well as upper approxima-
tions. Next, an object is assigned to the lower approximation of a cluster when
the distance (similarity) between the object and the particular cluster center is
smaller than the distances to the remaining other cluster centers [14].

3 Proposal

The proposed algorithm obtains a final covering through two steps. It starts
building sets of indiscernible (similar) objects that form basic granules of knowl-
edge on the network G = (V,E), where V represents the set of nodes and E
represents the set of edges which connect nodes. Thus, a partition of the set V
is obtained allowing us to define an equivalence relation in V . From our point
of view, two vertices should be related if they share many communities at the
Pareto Set. Next, through the Rough Clustering foundations, specifically the
rough k-means algorithm ideas [15], we build the final covering of the network
by viewing each community as a rough set, which allows us to obtain overlapping
communities.

3.1 First Step: Build the Granules of Indiscernible Objects

In this step, we build a set of granules which represents a partition of V . First of
all, we describe a series of useful concepts that we are applying in our proposal.

Definition 1 (Thresholded similarity graph). Let V = {v1, v2, . . . , vn} be
the set of vertices of the network G = (V,E), β a user-defined parameter and
S(vi, vj) a symmetric similarity function between vertices vi and vj, a thresholded
similarity graph is an undirected graph Gβ = (V,Eβ) where (vi, vj) ∈ Eβ if and
only if S(vi, vj) ≥ β.
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Definition 2 (Subgraph). Let G1 = (V1, E1) and G2 = (V2, E2) be two
graphs. G1 = (V1, E1) is a subgraph of G2 = (V2, E2), denoted as G1 ⊆ G2,
if and only if V1 ⊆ V2 and E1 ⊆ E2.

Definition 3 (Induced subgraph). Let V
′ ⊆ V be a set of vertices, the

subgraph of G induced by V
′
is G

′
= (V

′
, E

′
), such that E

′
= {(vi, vj) ∈ E |

vi, vj ∈ V
′}.

Definition 4 (β-Connected component). Let Gβ = (V,Eβ) be a thresholded
similarity graph and G

′
= (V

′
, E

′
) a subgraph of Gβ. The subgraph G

′
is a β-

connected component in Gβ if and only if satisfies the following conditions:

1. ∀u, v ∈ V
′
, u �= v, exists v1, v2, . . . , vq ∈ V

′
, such that ∀i = 1 . . . q, (vi, vi+1) ∈

E
′
and also v1 = u and vq = v or v1 = v and vq = u.

2. do not exist another subgraph of Gβ , G1 = (V1, E1) with G1 �= G
′
, that pleases

the condition 1 and also G
′ ⊆ G1.

Let S
ps

(vi, vj) be the similarity function between vi and vj . S
ps

(vi, vj)
employs the solutions in the Pareto Set, denoted as PS. Let CVi be a solution
of PS and Gvi

the set of communities where vi belongs. Let mc(vi, vj) be the
number of matching clusters between vi and vj in CVi. The function S

ps
(vi, vj)

is defined as follows:

S
ps

(vi, vj) =

∑

CVi∈PS
match(vi, vj)

ps
(2)

where ps is the number of solutions in PS and match(vi, vj) = mc(vi,vj)
|Gvi

|·|Gvj
| .

We build the thresholded similarity graph Gβ = (V,Eβ) based on Eq. 2 and
the user-defined parameter β (β ∈ [0, 1]). Let G

′
r = {G

′
r1

, G
′
r2

, . . . , G
′
rq

} be the
β-connected component set. By definition, the connected component set in a
graph constitutes a partition of the set of vertices.

We will say that a vertex vi ∈ V is related with a vertex vj ∈ V , denoted as
viRps

vj , if and only if ∃G
′
ri

∈ G
′
r such that vi, vj ∈ G

′
ri

, being R
ps

a equivalence
relation. The set built from all the vertices related to a vertex vi forms the so
called equivalence class of vi, denoted as [vi]Rps

. Therefore, [vi]Rps
is the set of

vj ∈ V such that share the same connected component G
′
ri

. This means that the
vertices belonging to the same connected component have a strong relationship
in terms of sharing the equal communities of PS. This strong relationship is
measured by S

ps
(vi, vj).

Let EC = {[v1]Rps
, [v2]Rps

, . . . , [vq]Rps
} be a set of equivalence classes under

the indiscernibility relation R
ps

. The elements of EC are disjoint sets. Let Gr =
{Gr1 , Gr2 , . . . , Grq

} be the set of subgraphs induced by EC on G = (V,E).
Hence, Gri

is a subgraph on G = (V,E) induced from [vi]Rps
. Therefore, Gr

is viewed as granules of indistinguishable elements which do not share vertices.
These granules constitutes our initial granularity criterion [21], and also we will
use them to build the final covering of the network.
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3.2 Second Step: Build the Final Covering of G = (V,E)

We take the k biggest granules, Gri
∈ Gr, according to the number of vertices, as

prototypes of clusters and the remaining of them are assigned to those selected
ones. Therefore, the foundation is to initially covering the network with those
granules of indistinguishable vertices that give greater coverage of the network.
The variable k, 1 ≤ k ≤ q receives the median value of the number of clusters
that form the solutions at the Pareto Set. For this purpose, we define a similarity
function between any two granules Gri

, Grj
∈ Gr. This function is defined as

follows:

S
Gr

(Gri
, Grj

) =

∑
vi∈Gri

∑
vj∈Grj

S
ps

(vi, vj)

|Gri
| · |Grj

| (3)

As described in Sect. 2, the use of k-means clustering in Rough Clustering
requires adapting the calculation of the centroids (cluster prototype) and decides
whether an object is assigned to a lower or upper approximation of a cluster.
In our case, we selected as prototypes of communities the k biggest granules,
according to their number of vertices. Next, the remaining granules are assigned
to those selected ones. A granule Gri

is assigned to the lower approximation
of a community when the similarity between Gri

and the particular prototype
of the community Grj

, 1 ≤ j ≤ k, is much greater than the similarity to the
remaining other prototypes. In this case, the similarity function defined in the
Eq. 3 is used for deciding whether the remained granules are assigned to a lower
or upper approximation of the selected k granules.

Worth noting that in this step, the assignation process uses the granules
obtained in the previous step, Gr = {Gr1 , Gr2 , . . . , Grq

}. The selected k biggest
granules represent the initial communities of network and also the lower approx-
imations of them. The remaining granules Gri

, k < i ≤ q will be part of the
lower or upper approximations of the communities according to the similarity
S

Gr
and the γ user-defined parameter (γ ∈ [0, 1]).

The pseudocode of MOOCD-RC is shown in Algorithm 1. It is important to
notice that the used Pareto Set is the result of using the MOGR-OV algorithm
[16]. In MOOCD-RC, initially the cover CV is formed by the k greatest gran-
ules in Gr, which ones represent the lower approximations of the communities.
These k selected granules represent the prototypes of communities to be built.
Afterly, the remaining granules are included in the lower or upper approxima-
tions of the communities in CV according to S

Gr
. Worth noting that the lower

approximation of those communities are formed by the vertices that definitely
belong to them, whereas the upper approximations are formed by the vertices
that are located at the boundary of the communities. These vertices represent
the overlapping in themselves.

In the first step, the building of the equivalence classes is tightly bound to
the thresholded similarity graph Gβ = (V,Eβ), which in turn depends on the β
user-defined parameter. The higher the value of β the smaller granules will be
obtained and vice versa. On the other hand, in the second step the dimensions of
the lower and upper approximations of the communities depend on γ user-defined
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Algorithm 1: MOOCD-RC algorithm
Input: G = (V, E), Pareto Set with overlapping communities (PSetOC)
Output: Covering of the network CV = {CV1, CV2, . . . , CVk}
First Step: build the granules of indiscernible objects
for vi, vj ∈ V do

Take PSetOC and compute Sps(vi, vj);

Build a thresholded similarity graph Gβ = (V, Eβ);
Identify a β-connected component in Gβ ;
Compute [vi]Rps

for each vi ∈ V ;

Build the set Gr = {Gr1 , Gr2 , . . . , Grq}, subgraphs induced by each
[vi]Rps

, vi ∈ V ;

Second Step: build the final covering of G = (V, E)
Sort descending Gr by number of vertices;
Select the first k granules Gri ∈ Gr as prototypes of communities CVi ∈ CV ;
for i = 1 to k do

CVi ← Gri ;

for j = k + 1 to q do
Determine the most similarity between Grj and the k granules Gri ∈ Gr:
Grmax ← max

1≤i≤k
SGr

(Grj , Gri);

T ← {};

for i = 1 to k do

if SGr
(Grj , Gri)�SGr

(Grj , Grmax) ≤ γ then

Add Gri to T ;

if |T | > 1 then
∀Gri ∈ T take the community CVi associated;
Add Grj to CVi;

else
Take take the community CVi associate to Grmax ;
Add Grj to CVi and CVi;

return CV

parameter. In the way of this parameter changes we will obtain boundaries of
communities more or less tight.

The parameters β and γ allow decision-makers to obtain a final covering of
the network by adjusting the cores or boundaries of the communities. In our
experiments, we set β = 0.75 and γ = 0.1. We chose these values according to
the related works [13,14,20].

4 Experimental Results

In this section, we conduct several experiments for evaluating the effectiveness of
our proposal. Since the built-in communities in benchmark networks are already
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known, we use the Normalized Mutual Information external evaluation measure
to test the performances of different community detection algorithms.

Hence, the experiments were focused on evaluating the accuracy attained by
our proposal in terms of the NMI value. Our algorithm was applied to synthetic
networks generated from the Lancichinetti–Fortunato–Radicchi (LFR) bench-
mark dataset [4]. Its performances were compared against the one attained by
MEA CDP [5], iMEA CDP [7], MCMOEA [8] and MOEA-OCD [9] algorithms,
described in Sect. 2.

The algorithms of the related works do not build a final covering from the
communities of the Pareto Set. Thus, we choose the best solution in the Pareto
Set, according to the NMI, and compare this solution with respect to the ones
obtained by our algorithm.

The NMI takes values in [0, 1] and it evaluates a set of communities based
on how much these communities resemble a set of communities manually labeled
by experts, where 1 means identical results and 0 completely different results.

In LFR benchmark networks, both node degrees and community sizes follow
the power-law distribution and they are regulated using the parameters τ1 and
τ2. Besides, the significance of the community structure is controlled by a mix-
ing parameter μ, which denotes the average fraction of edges each vertex has
with others from other communities in the network. The smaller the value of
μ, the more significant community structure the LFR benchmark network has.
The parameter On is specially defined for controlling the overlapping rate of
communities in the network. On is the number of overlapping nodes, evaluating
overlapping density among communities. Similar to μ, the higher the value of
On, the more ambiguous the community structure is.

In the first part of the experiment, we set the network size to N = 1000,
τ1 = 2, τ2 = 1, the node degree is in [0, 50] with an average value of 20, whilst the
community sizes vary from 10 to 50 elements. Using previous parameter values
we vary μ from 0.1 to 0.6 with an increment of 0.05. After, we set μ = 0.1 and
μ = 0.5, and we vary the percent of overlapping nodes existing in the network
(parameter On of LFR Benchmark) from 0.1N to 0.5N with an increment of
0.1; the other parameters remain the same as the first experiment.

The average NMI value attained for each algorithm over the LFR benchmark
when μ varies from 0.1 to 0.6 with an increment of 0.05, as show in Fig. 1. As the
value of μ increases the performance of each algorithm deteriorates, being both
MOEA-OCD and MOOCD-RC those that performing the best. As the mixing
parameter μ exceeds 0.5, the MOEA-OCD algorithm begins to decline in its
performance and it is outperformed by MOOCD-RC. Figure 1 shows the good
performance of our method.

For summarizing the above results, we evaluated the statistical significance of
the NMI values using the Friedman test as Non-Parametric Statistic Procedure
included in the KEEL Software Tool. Also, we used the Holms and Finner as
post hoc methods. Table 1 shows the average ranks obtained by each method in
the Friedman test. Our method ranks second, however, Table 2 shows the overall
performance of MOEA-OCD with respect to the remaining algorithms, where
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Fig. 1. Average NMI value attained by each algorithm on LFR benchmark networks
when μ varies from 0.1 to 0.6 with an increment of 0.05.

Table 1. LFR benchmark networks when μ varies from 0.1 to 0.6. Average Rankings
of the algorithms (Friedman).

Algorithm Ranking

MOOCD-RC 1.5455

iMEACDPs 3.6364

MCMOEA 3.3636

MOEAOCD 1.4545

Table 2. LFR benchmark networks when μ varies from 0.1 to 0.6. Post Hoc comparison
where α = 0.05 (Friedman).

i Algorithm z = (R0 − Ri)/SE p Holm Finner

3 iMEACDPs 3.96347 0.000074 0.000222 0.000222

2 MCMOEA 3.468036 0.000524 0.001049 0.000786

1 MOOCD-RC 0.165145 0.86883 0.86883 0.86883

there is not statistically significance between our proposal and MOEA-OCD. The
Friedman statistic value distributed according to chi-square with three degrees
of freedom is 26.6727. Besides, the p-value computed by the Friedman test is
0.000007.

The structures of the networks are well defined in the second part of the
experiment, as shown in Fig. 2. Our proposal and MOEA-OCD have a per-
formance almost stable, independently of the number of overlapping nodes in
the network, being MOEA-OCD the one that performs the best. On the other
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hand, when the structure of the communities is uncertain, the performance of the
MOEA-OCD algorithm drops off when the overlapping in the network increases,
being our proposal the one that performs better, as shown in Fig. 3.

Similar to the previous experiment, we evaluated the statistical significance
of the NMI values. Table 3 shows the average ranks obtained by each algorithm
in the Friedman test. The Friedman statistic value distributed according to chi-
square with three degrees of freedom is 25.92. Besides, the p-value computed
by the Friedman test is 0.00001. Our algorithm ranks second, however, like the
previous experiment, Table 4 shows the overall performance of MOEA-OCD with
respect to the remaining algorithms, where there is not statistically significance
between our proposal and MOEA-OCD.
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Fig. 2. Average NMI value attained by each algorithm on LFR benchmark networks
when μ = 0.1 and On varies from 100 to 500 with an increment of 100.
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Fig. 3. Average NMI value attained by each algorithm on LFR benchmark networks
when μ = 0.5 and On varies from 100 to 500 with an increment of 100.
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Table 3. LFR benchmark networks when μ = 0.1, μ = 0.5, and On varies from 100 to
500. Average Rankings of the algorithms (Friedman).

Algorithm Ranking

MOOCD-RC 1.5

iMEA-CDPs 3.1

MCMOEA 3.9

MOEA-OCD 1.5

Table 4. LFR benchmark networks when μ = 0.1, μ = 0.5, and On varies from 100 to
500. Post Hoc comparison where α = 0.05 (Friedman).

i Algorithm z = (R0 − Ri)/SE p Holm Finner

3 MCMOEA 4.156922 0.000032 0.000097 0.000097

2 iMEA-CDPs 2.771281 0.005584 0.011167 0.008364

1 MOOCD-RC 0 1 1 1

From the above experimental results, we can conclude that MOEA-OCD
and our proposal have outstanding performances on LFR benchmark networks
in most cases. However, our algorithm employs the information contained in the
communities of Pareto Set to build a final covering of the network. Although
the solutions of Pareto Set do not have overlapping communities, our proposal
does not depend on this for building the final communities. Thus, our algorithm
can be used by multi-objective evolutionary algorithms which build disjoint or
overlapping community structures.

It should be noted that our proposal depends on the obtained non-dominated
solutions. In these experiments we used the algorithm MOGR-OV [16] to gen-
erate the Pareto Set. On the other hand, the settings of β and γ have a nar-
row relationship over the obtained final covering. Following, we will give a brief
description about this.

4.1 Community Structure Under Different Lower and Upper
Approximation Scales

In the above experiments, the parameters β and γ are fixed to 0.75 and 0.1,
respectively. We will have as results boundaries of communities more or less
tight, depending on the way we change those parameters. Hence, both of them
allow decision-makers to analyze the network according to the domain problem.

Using the synthetic network generated above with the parameters values
μ = 0.1 and On = 0.1N , we will show the overlapping communities with different
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lower and upper approximation scales. For that, we change the γ parameter and
keep the same β value used in the experiments. The parameter γ allows to tune
the boundaries of communities. Thus, the higher the value of γ is, the wider the
boundaries are and vice versa, which means that there is going to be more or
less overlapping vertices, respectively.

Furthermore, we build two coverings of the obtained synthetic network by
considering γ = 0.1 and γ = 0.25. For a better comprehension of the studied
network we used the graph analysis tool Gephi. It employs both the network
properties (e.g., vertex degree) and also the identified communities in the net-
work in the visualization process. Figures 4 and 5 showed next were obtained
using the Force Atlas 2 [23] method belonging to Gephi.1

As shown in Figs. 4 and 5, the covering obtained using γ = 0.25 shows bound-
aries of communities wider than the covering obtained with γ = 0.1. Thus, the
communities showed in Fig. 5 have more overlapping vertices than communi-
ties showed in Fig. 4. The overlapped vertices are bigger visualized than others
and they are placed in the boundaries of communities. As described before, the
parameter γ allows the DM from its own knowledge to tight or wide the bound-
aries of communities. In this way, the decision maker has a mechanism to weigh
the importance of lower and upper approximations in the obtained communities.
However, the adjustment of β and γ has a direct control over the final cover-
ing. Worth noting that our algorithm builds the final covering only using the
information about the communities of the Pareto Set.

Fig. 4. Covering obtained over the obtained synthetic network based on the parameter
values μ = 0.1, On = 0.1N and γ = 0.1.

1 http://gephi.github.io/.

http://gephi.github.io/
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Fig. 5. Covering obtained over the obtained synthetic network based on the parameter
values μ = 0.1, On = 0.1N and γ = 0.25.

5 Conclusions

In this paper, we proposed a new algorithm, named MOOCD-RC, for discovering
overlapped communities through a combination of a multi-objective approach
and Rough Clustering. It is composed of two steps: (a) build the granules of the
indiscernible objects, and (b) build the final covering of network.

In the fist step, MOOCD-RC defined an equivalence relation between each
pair of vertices of the network through the thresholded similarity graph. The
obtained equivalence classes under the indiscernibility relation induce a granule
set which constitutes our initial granularity criterion. We will also use them
to build the final covering of the network. Afterward, in the second steps, the
algorithm built the resulting communities through the Rough Clustering, taking
the k greatest granules as prototypes of the communities; they also represent the
lower approximations inside their own communities.

The MOOCD-RC algorithm was evaluated over synthetic networks in terms
of its accuracy and it was compared against four algorithms of the related work.
From the above experimental results, we can draw the conclusion that MOEA-
OCD and our algorithm have outstanding performances on LFR benchmark
networks in most cases. Moreover, this evaluation showed that MOOCD-RC is
promising and effective for overlapping community detection in complex net-
works. As future work, we would like to make a more automatic adjustment to
the β and γ parameters.
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6. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community
structure of complex networks in nature and society. Nature 435, 814–818 (2005)

7. Liu, C., Liu, J., Jiang, Z.: An improved multi-objective evolutionary algorithm for
simultaneously detecting separated and overlapping communities. Int. Nat. Com-
put. 15(4), 635–651 (2015). https://doi.org/10.1007/s11047-015-9529-y

8. Wen, X., et al.: A maximal clique based multiobjective evolutionary algorithm for
overlapping community detection. IEEE Trans. Evol. Comput. 21, 363–377 (2016)

9. Yuxin, Z., Shenghong, L., Feng, J.: Overlapping community detection in com-
plex networks using multi-objective evolutionary algorithm. Comput. Appl. Math.
36(1), 749–768 (2015). https://doi.org/10.1007/s40314-015-0260-1

10. Shen, H., Cheng, X., Cai, K., Hu, M.B.: Detect overlapping and hierarchical com-
munity structure in networks. Phys. A Stat. Mech. Appl. 388(8), 1706–1712 (2009)

11. Gong, M., Cai, Q., Chen, X., Ma, L.: Complex network clustering by multiobjective
discrete particle swarm optimisation based on decomposition. IEEE Trans. Evol.
Comput. 18(1), 82–97 (2014)

12. Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Rough-fuzzy
collaborative clustering. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 36(4),
795–805 (2006)

13. Lingras, P., Chen, M., Miao, D.: Qualitative and quantitative combinations of
crisp and rough clustering schemes using dominance relations. Int. J. Approximate
Reasoning 55(1), 238–258 (2014)

14. Lingras, P., Chen, M., Miao, D.: Applying rough set concepts to clustering. In:
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Abstract. In this work, we have proposed a simple overlapping commu-
nity detection algorithm based on a distributed neighbourhood threshold
method (DNTM). DNTM uses pre-partitioned disjoint communities and
then analyzes the neighbourhood distribution of boundary nodes in dis-
joint communities to detect overlapping communities. It is a form of
seed-based global method since boundary nodes are considered as seeds
and become the starting point for detecting overlapping communities.
Threshold value for each boundary node is used as minimum influence
by the neighbours of a node in order to determine its belongingness
to any community. The effectiveness of the DNTM algorithm has been
demonstrated by testing on fifteen real-world datasets and compared
with seven overlapping community detection algorithms. DNTM out-
performs comparable algorithms with 10 out of 15 datasets and gives
comparable results for the remaining 5 datasets in terms of the extended
modularity Qov measure. Experiments with various disjoint algorithms
on 15 datasets reveal that DNTM with tolerance community detection
(TCD) as a preprocessing algorithm gives the best result.

Keywords: Community detection · Social networks analysis ·
Overlapping communities · Graph clustering

1 Introduction

There are a plethora of methods for detecting overlapping communities in social
networks for both synthetic and real-world datasets starting from [19]. Clas-
sical strategies include: local expansion of seed nodes [20,22], label propaga-
tion [7,13,33], clique-based [26] and ensemble-based methods [3,4] to name a
few. In this paper, we propose a new method based on detecting overlapping
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communities by i) utilizing disjoint communities, and ii) analyzing the neigh-
bourhood distribution of boundary nodes in disjoint communities to detect over-
lapping clusters. Our method is akin to the more recent class of ensemble meth-
ods [3] that uses disjoint methods as a starting point for development of overlap-
ping method. In this paper, we propose a distributed neighbourhood threshold
method (DNTM) which depends on the neighbourhood distribution of boundary
nodes in disjoint communities. The threshold for each boundary node is used as
minimum neighbour influence for a node to belong in any community. DNTM
can be considered as global method since we are not performing any local expan-
sion on a set of initial seed nodes for generating overlapping clusters. Instead,
we are using boundary nodes and exploring the clusters external to the home
clusters of boundary nodes to generate overlapping clusters. It is also a form
of seed-based method since boundary nodes are considered as seeds and become
the starting point for detecting overlapping clusters. There is only a user-defined
maximum threshold (tolerance) criteria to form a neighbourbood. Four disjoint
methods have been considered in this work with the primary method based on
a tolerance community detection (TCD) [15]. The other partitioning methods
include: Louvain [1], Girvan-Newman [10] and Greedy Modularity [5]. Typical
metrics such as Overlapping Normalized Mutual Information (ONMI), Precision,
Recall, or F-measure require ground-truth communities. However, ground-truth
communities are readily available for large real networks. In their absence, com-
puter generated benchmark networks with built-in ground-truth communities,
called synthetic networks such as LFR [19] must be used, to first generate the
ground-truth communities. In this paper, DNTM uses an extended modularity
Qov measure introduced by Nicosia et al. [24] as a performance metric. The effec-
tiveness of the DNTM algorithm has been demonstrated by testing on fifteen
real-world datasets and compared with seven overlapping community detection
algorithms.

The contribution of this paper is a simple algorithm which outperforms com-
parable algorithms with 10 out of 15 datasets and gives comparable results for
the remaining 5 datasets in terms of extended modularity Qov measure. Another
noteworthy feature of DNTM is that no optimization strategy such as satisfying
some fitness function criteria has been used. Experiments with various parti-
tioning methods on 15 datasets reveal that: TCD gives the best result with 7
datasets, Greedy Modularity method gives the best result with 4 datasets and
both Louvain and Girvan-Newman methods with 4 datasets.

Our paper is organized as follows: In Sect. 2, we briefly review some repre-
sentative overlapping community detection algorithms. In Sect. 3, we give a brief
overview of definitions and cluster quality measure used in this paper. In Sect. 4,
we give details of the proposed DNTM algorithm and its complexity. In Sect. 5,
we present experimental results and analysis. Lastly, we give concluding remarks
in Sect. 6.
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2 Related Works

In this section, we briefly review some representative algorithms in terms of
general strategies used by these algorithms.

2.1 Local Expansion

The general strategy is to start with a set of initial nodes as seeds and then
expand to communities based on a fitness function criteria.

OSLOM [20]: Introduced in 2011 by Lancichinetti et al., this method was the
first that detected communities based on their statistical significance that takes
into account different types of graphs, edge direction, edge weights, overlap-
ping communities, network hierarchy and to recognize the absence of commu-
nity structure and/or the presence of randomness in graphs. It is based on a local
expansion and optimization strategy where community expansion is performed
by comparing the statistical significance of clusters defined with respect to a
global null model (which is the configuration model).

LEMON [22]: This algorithm proposed in 2018 by Li et al., is based on the
concepts of seed sets, local spectral diffusion, and local spectra. Here, a subspace
around the initial seed sets called local spectra is explored using a short random
walk also known as local spectral diffusion. Local spectra avoids computation
burden by replacing a large number of singular vectors with short random walks.
The running time of LEMON scales with the size of the community rather than
that of the entire graph and has been tested on large networks.

2.2 Label Propagation

The general strategy is to label every node with a unique value and replace the
node’s label value with that of its most commonly detected neighbour. Once this
process terminates, the nodes having the same label form a community.

COPRA [13]: Introduced in 2010, this method extends the label propagation
algorithm(LPA) method by Raghavan et al. [27] to detect overlapping communi-
ties with a novel termination condition. This method is dependent on parameters
such as node belonging coefficient and maximum number of communities a node
can belong to, and can handle weighted and bipartite graphs. COPRA usually
produces results that are better (in terms of modularity) for large networks.

SLPA [33]: This algorithm is based on speaker-listener mechanism to trans-
fer the information known as labels between the nodes. Each node in this
method maintains a list of labels and a randomly selected label from this list is
propagated further to the node under consideration presently for detecting com-
munities.

DEMON [7,8]: Label propagation algorithm is applied at the core of DEMON
method to merge the locally generated clusters using merging function to obtain
overlapping communities.
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2.3 Ensemble Based

The general strategy here is to leverage disjoint clusters produced by various dis-
joint community detection algorithms to discover the overlapping communities.

MEDOC [4]: Introduced in 2016 by Chakraborty et al., this is the first
ensemble based method for discovering overlapping communities by using meta-
communities created from combining various similar clusters produced by dis-
joint communities detection methods. Further an association matrix which
records the probability of a vertex belonging to a meta-community is utilized to
generate both non-overlapping and overlapping communities.

EnCoD [3]: This method uses various disjoint community detection algorithms
to generate disjoint clusters and further utilize the good qualities of these clusters
to create an ensemble solution. This algorithm uses node membership as a feature
and similarity of node pairs to form a network.

2.4 Others

CPM [26]: Introduce by Gergely Palla et al. in 2005, this classical algorithm is
the first method to detect overlapping communities based on clique-percolation
technique.

NECTAR [6]: It is a node-centric overlapping community detection algorithm
in which the best communities for a given node are found using objective function
and further this node is added to these communities to obtain the overlapping
communities. In this method, Louvain’s local search heuristic approach is gener-
alized to discover overlapping communities. This algorithm tries to maximize the
dynamically chosen objective function (i.e. WOCC and QE ) by testing every
possible existence of each node in it’s neighbouring cluster in order to generate
overlapping communities. All the clusters with a maximum value of objective
function are considered to obtain the overlapping communities.

IEDC [14]: This algorithm provides an integrated framework for discovering
both overlapping and non-overlapping communities. It uses a node-based crite-
ria with a probabilistic model. It includes computation of internal associations
(non-overlapping communities), computation of external associations (overlap-
ping communities) using interaction matrix and a community propagation prob-
ability of its neighbours.

3 Preliminaries

Here, we give a brief overview of definitions and cluster quality measure used in
this paper.

Undirected Graph: A graph G is defined as a pair of (V,E) where V is a
set consisting all the nodes and E is set consisting all the edges E ⊆ V × V .
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Undirected graphs are such graphs in which if an edge (x, y) ∈ E then edge
(y, x) must also be in E. The degree of a node v is defined as the number of
edges containing v. Two nodes are adjacent if they share a common edge.

Path: A path is composed of a series of nodes P = (v1, v2, . . . , vn) ∈ V n where
∀i, 1 ≤ i < n, vi is adjacent to vi+1. The path length of P is measured as
n − 1 where n is the total number of nodes in path P . It is also measured as
the number edge(s) in that path. The path with minimum length (or number of
edge(s)) from a source node s to a destination node d is called the shortest path
sp from s to d.

Neighbourhood of a Node: The neighbourhood of a node x for a graph
G = (V,E) is defined as:

Nr(x) =def {y ∈ V : dist(x, y) < ε} (1)

where

dist(x, y) =

{
∞ if no sp exists
|sp| else

(2)

ε is a user-defined positive real threshold value, sp is the shortest path from x
to y and |sp| is the number of edge(s) in sp. A breadth first search is used for
traversing the graph in order to find the neighbourhood of any given node.

Neighbourhood Cluster of a Node: Let C = {C1, C2, . . . Cn} be a set of
disjoint clusters that cover the graph G where Ci = {v1, v2, . . . vn} is a cluster
or community such that vi ∈ V . Let x ∈ Cj where Cj is the home cluster, then

NC(x) =def {Ci ∈ C \ Cj : ∃ y ∈ Ci ∧ y ∈ Nr(x)} (3)

In Fig. 1, the neighbourhood cluster(s) for the green node belonging to cluster
C1 are: clusters C2 and C3. Note, for the green node, cluster C1 is considered as
the home cluster.

Distributed Neighbourhood Threshold: Equaion 4 defines this threshold
as the ratio of total number of the neighbours of a given node v over the total
number of neighbourhood clusters of v plus the home cluster of v.

Dt(v) =def

⌊ |Nr(v)|
|NC(v)| + 1

⌋
(4)

Overlapping Candidate Node: Let v ∈ Cj , then v is a candidate overlapping
node if it satisfies the following equation:

Ocn(v) =def NC(v) 	= ∅ (5)

Overlapping Node: Node v is a overlapping node if for any Ci ∈ NC(v) it
satisfies the following equation:

ON(v) =def Ocn(v) ∧ (Dt(v) ≤ |{y : y ∈ Nr(v) ∧ y ∈ Ci}|) (6)
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Example 1. In Fig. 1, the green node in cluster C1 is an overlapping candidate
node since it has neighbours in clusters C2 and C3. All nodes that have neigh-
bours outside their home clusters are considered as overlapping candidate nodes.
Using Eq. 4, |Nr(green node)| = 8 and |NC(green node)| = 2, hence Dt(v) = 2.
In other words, Dt(v) is considered as the minimum threshold value for a node v
to be classified as overlapping node. As shown in Fig. 1 green node shares 3 edges
with C3 which also means |Nr(green node)| in C3 is 3. Since cluster C3 includes
neighbours of green node and Dt(green node) meets the threshold requirement,
the green node will be shared with C3 as shown in Fig. 2.

Fig. 1. Overlapping candidate node
(Color figure online)

Fig. 2. Sample overlapping clusters
(Color figure online)

Cluster Quality Measure: Extended Modularity: In this work we have
used the extended modularity Qov measure introduced by Nicosia in [24,25]
given in Eq. 7 where V is the set of nodes, |V | represents the number of nodes,
C represents the set of overlapping cluster, m is the total number of edges and
Ai,j is the adjacency matrix for the graph. We have chosen to use this measure
since it does not require the ground-truth to measure the quality of the generated
clusters. Generally, good quality overlapping clusters have higher Qov value. The
value of Qov will be 0 when only one cluster is obtained with all the nodes in it.
Details about various coefficients in Eq. 7 can also be found in [25].

Qov =
1
m

∑
c∈C

∑
i,j∈V

[
βl(i,j),cAi,j −

βout
l(i,j),ck

out
i βin

l(i,j),ck
in
j

m

]
(7)

βin
l(i,j),c =

∑
i∈V F (αi,c, αj,c)

|V | (8)

βout
l(i,j),c =

∑
j∈V F (αi,c, αj,c)

|V | (9)

In overlapping communities, each node can belong to multiple communities
but with different strengths of belonging. An array of such belonging factor
[αi,1, αi,1, αi,1, .......αi,|C|] is calculated and allotted to each node i in the graph G.
The strength of node i belonging to community c is depicted by coefficient αi,c.
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Since the belonging coefficient for each node is already defined, it is also possible
to define the belonging coefficient to each community for edges incoming to or
outgoing from a node. Belonging coefficient of edge l = (i, j) with source node i
and target node j to community c is represented by function βl,c . Further, the
belonging coefficient for link l(i, j) pointing to a node going into the community
c is represented by βin

l(i,j),c and given by Eq. 8 similarly the belonging coefficient
for link l(i, j) pointing to a node going out of the community c is obtained by
using Eq. 9 and is represented by βout

l(i,j),c. Extended Modularity measures for
overlapping cluster depends on F (αi,c, αj,c) which is defined in the Eq. 10

F (αi,c, αj,c) =
1

(1 + e−f(αi,c))(1 + e−f(αj,c))
(10)

where f(αi,c) is a simple linear scaling function given in Eq. 11 . The value of p
is set to 30 in [25]. Generally, good quality overlapping clusters have higher Qov

value. The value of Qov will be 0 when only one cluster is obtained with all the
nodes in it.

f(x) = 2px − p, p ∈ R (11)

Datasets: Various sized real-world datasets were used in this study: Karate [34],
Dolphin [23], Lesmis [16], Football [10], Polbooks [17], Jazz [11], Power grid [31],
Durgnet [32], Highschool [18], Netscience [29], C.elegans [9], Bible-names [18],
Protein [18], Internet-Route [21] and PGP [2].

4 Overlapping Community Detection Algorithm: DNTM

In Fig. 3, the flow of the DNTM algorithm is given where DNTM takes crisp
partitioned clusters as input irrespective of the algorithm used. We first generate
non-overlapping clusters and use these clusters to examine all such nodes which
have neighbours in other clusters to find overlapping nodes. Once an overlapping
node is found, we update the respective clusters by including this overlapping
node to obtain the resultant overlapping clusters.

Fig. 3. Flow diagram of DNTM Algorithm

The main steps of DNTM algorithm are as follows: i) generate non-
overlapping clusters, ii) find candidate overlapping nodes using Eq. 5, iii) cal-
culate distributed neighbourhood threshold using Eq. 4, iv) filter overlapping
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Algorithm 1: Find Overlapping Clusters
Input: G // Input graph.

L // List of non-overlapping clusters.
ε // Distance Threshold.

Output: {OC1,OC2,OC3,......OCn} // List of Overlapping clusters

1 procedure findOverlapCluster(G, L, ε)
2 NCdic ← ∅
3 Ldic ← ∅
4 Lo ← ∅
5 cid ← 0
6 for each cluster C ∈ L do
7 cid ← cid + 1
8 for each node v ∈ C do
9 NCdic[v] ← cid

10 Ldic[cid] ← C
11 CoNdic ← ∅
12 NrNdic ← ∅
13 for each cluster C ∈ L do
14 for each node v ∈ C do
15 Nr(v) ← BFS(G, v, ε)
16 NrNdic[v] ← Nr(v)
17 Nr(v) ← Nr(v) − C
18 if Nr(v) �= ∅ then
19 CoNdic[v] ← Nr(v)
20 for each v ∈CoNdic.keys() do
21 NrCdic ← ∅
22 Nr(v) ← CoNdic[v]
23 for each vertex vn ∈ Nr(v) do
24 cid ← NCdic[vn]
25 NrCdic[cid] ← {vn}
26 NC(v) ← NrCdic.keys()

27 Dt(v) ← |NrNdic[v]|−1
|NC(v)|+1

28 for each clusterId cid ∈ NC(v) do
29 if Size(NrCdic[cid]) ≥ Dt(v) then
30 Ldic[cid] ← Ldic[cid] ∪ v
31 for each clusterId cid ∈ Ldic.keys() do
32 Lo.append(Ldic[cid])
33 return Lo

nodes using Eq. 6, and v) update the clusters with overlapping nodes to obtain
the resultant overlapping clusters. Note, DNTM takes crisp partitioned clusters
as input, irrespective of the algorithm used (see Fig. 6 and 7).

Algorithm 1 includes the following data structures: list of overlapping clus-
ters Lo is used to store generated overlapping clusters, Node-Cluster Dictionary
NCdic to store cluster id of each node, Cluster-Node Dictionary Ldic to store nodes
in each cluster, Neighbour Node-Cluster Dictionary NrCdic to store cluster id of



440 R. Jaiswal and S. Ramanna

neighbourhood nodes, Overlapping-Candidate-Node Dictionary CoNdic to store
overlapping candidate nodes and its neighbours Nr from neighbourhood cluster
NC, Node-Neighbour Dictionary NrNdic to store node and its neighbours.

4.1 Time Complexity

In DNTM algorithm for a graph G(V,E), the time taken for pre-processing the
disjoint clusters is O(|L|.|C|) which is less than or equal to O(|V |) where |L| is the
number of disjoint clusters, |C| represents the number of nodes in a cluster C and
|V | represent total number of nodes in graph G. Running time of BFS is O(bd)
where b is branching factor and d is maximum depth. In DNTM, we consider
neighbours at depth 1, so time taken is O(b). To find overlapping candidate
nodes, the time consumed is O(|L|.|C|).O(b) = O(|V |.b). To filter overlapping
nodes, computation time is O(|OCN |).O(|Nr| + |NrCdic|) where |OCN | is the
number of overlapping candidate nodes, |Nr| is the number of neighbourhoods
in other clusters and |NrCdic| is the number of neighbourhood clusters. Since
|Nr| ≥ |NrCdic|, so the computation time will be O(|OCN |.|Nr|). Finally it
takes O(|L|) time to generate overlapping clusters. So the obtained final time
complexity is O(|V |.b + |OCN |.|Nr|)

5 Experiments and Results

To examine the performance of DNTM, 15 real world data-sets were used and
compared with the following overlapping communities detection algorithms:
CPM [26], OSLOM [20], COPRA [13], SLPA [33], Node Perception [30],
DEMON [7,8] and CONGO [12] with h = 2 and h = 3. Except for OSLOM
and COPRA, all other algorithms were taken from CDlib [28] Python pack-
age. Table 1 gives the results of our experiments where DNTM (TCD) is the
proposed algorithm which uses TCD method to generate non-overlapping clus-
ters with ε = 2 with source code made available by the authors. TCD method
relies on a tolerance relation where a tolerance class represents members of the
same community and uses an objective function based on two well-known quality
functions, modularity and coverage.

Since most of the algorithms have a non-unique output for Qov for each
execution, hence these algorithms were executed 10 times and the average of the
5 best scores for Qov was used in our reporting shown in Table 1 and bold values
represent the best score for each dataset. In additon, the number of clusters
generated by majority of the algorithms is used as input for those algorithms
that require number of clusters as input.

Based on the results in Table 1 and Fig. 4 and Fig. 5, we can observe that
the proposed DNTM algorithm outperforms comparable algorithms with 10 out
of 15 datasets and gives comparable results for the remaining 5 datasets. The
quality of generated overlapping clusters from DNTM is greatly affected by the
number of disjoint clusters passed as input, generated by the initial disjoint
algorithm. From Eq. 4 it can be observed that Dt has an inverse relation with
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Table 1. Extended Modularity (Qov) values

Datasets CPM OSLOM COPRA SLPA NodePer. DEMON CONGO CONGO DNTM

h = 2 h = 3 (TCD)

Karate 0.51 0.7099 0.7228 0.5405 0.1944 0.38 0.3423 0.488 0.7282

Dolphins 0.66 0.7426 0.7434 0.7231 0.1947 0.457 0.4085 0.134 0.734

Lesmis 0.586 0.6908 0.7156 0.7772 0.3259 0.385 0.315 0.6586 0.755

Football 0.44 0.6674 0.6962 0.7052 0.072 0.353 0.4332 0.4955 0.75

Polbooks 0.786 0.8263 0.8226 0.8286 0.142 0.279 0.3468 0.4945 0.81

Jazz 0.096 0.5142 0.6626 0.7401 0.0438 0.382 0.24 0.22 0.6904

Power 0.15 0.3887 0.4842 0.6363 0.0970 0.077 0.8312 0.7878 0.90

Durgnet 0.207 0.1697 0.7664 0.6255 0.1355 0.155 0.235 0.235 0.7853

Highschool 0.056 0.6762 0.7064 0.6581 0.144 0.056 0.4612 0.7015 0.755

Netscience 0.0 0.7862 0.8444 0.8353 0.512 0.436 0.7547 0.7314 0.953

C.elegans 0.217 0.4551 0.212 0.4346 0.080 0.0279 0.07426 0.10357 0.61

Bible names 0.425 0.2965 0.4025 0.3657 0.0938 0.013 0.19 0.160 0.6424

Protein 0.16 0.1784 0.363 0.7402 0.1015 0.140 0.57221 0.5858 0.7958

Internet route 0.245 0.3475 0.102 0.63 0.0213 0.0045 0.1467 0.25482 0.5273

PGP 0.568 0.5364 0.775 0.737 0.2523 0.2024 0.5607 0.5563 0.7963

Fig. 4. Part 1: Qov results with 7
datasets

Fig. 5. Part 2: Qov results with 8
datasets

number of communities. Dt is highly sensitive and dependent on the number
of communities. As a result, increasing number of communities, will decrease
the value of Dt, which will in turn affect the overlap between the communities.
In our experiments, the number of communities, range from 2 to 109. We also
observed that in general, for the datasets, where the number of communities is
greater than 4, DNTM achieves the best result. Also, DNTM depends on the
boundary nodes in the disjoint clusters as well their internal and external links
(edges). If the number of external links of a node is extremely less as compared
to its internal links, this node is less likely to qualify the condition in Eq. 6 to be
classified as an overlapping node. Most algorithms use an internal objective func-
tion to obtain good quality clusters which entails parameter selection. DNTM
does not have this limitation as it does not use an internal objective function
and the major computation is done for overlapping candidate nodes which is
comparatively less than |V |. Hence DNTM is computationally efficient. Table 2
gives comparative results for Qov with the proposed DNTM algorithm where the
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input (disjoint clusters) was obtained using Louvain [1] DNTM (LN), Girvan-
Newman [10] DNTM (GN) and Greedy Modularity [5] DNTM (GD) methods
on all the datasets. It can be observed that DNTM (TCD) is giving best results
in 7 out of 15 datasets and comparable with the other data sets (either second
best or third best).

Table 2. DNTM results with different partitioning methods

Datasets DNTM (TCD) DNTM (LN) DNTM (GN) DNTM (GD) Best in DNTM

Karate 0.7282 0.615 0.7185 0.5861 TCD

Dolphins 0.734 0.6193 0.7232 0.7359 GD

Lesmis 0.755 0.6644 0.2689 0.7034 TCD

Football 0.75 0.6563 0.7777 0.6493 GN

Polbooks 0.81 0.8138 0.8090 0.825 GD

Jazz 0.6904 0.7064 0.0379 0.7016 LN

Power 0.90 0.9513 0.8709 0.9511 LN

Durgnet 0.7853 0.7299 0.8654 0.7907 GN

Highschool 0.755 0.5909 0.5964 0.7329 TCD

Netscience 0.953 0.9154 0.8674 0.9256 TCD

C.elegans 0.61 0.3473 0.0756 0.5035 TCD

Bible names 0.6424 0.4156 0.1 0.5815 TCD

Protein 0.7958 0.8076 0.6095 0.8171 GD

Internet route 0.5273 0.4305 0.01519 0.4375 TCD

PGP 0.7963 0.8975 0.2042 0.9082 GD

Fig. 6. DNTM clustering using dis-
joint clusters generated from Girvan-
Newman method on the Karate dataset

Fig. 7. DNTM clustering using dis-
joint clusters generated from Louvain
method on the Karate dataset

Figure 6 and 7 show overlapping clusters generated with the proposed DNTM
algorithm where the input (disjoint clusters) was obtained using Louvain [1] and
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Girvan-Newman [10] methods on the Karate dataset. In Fig. 6, three overlap-
ping nodes [3, 14, 20] were detected, whereas using TCD as input method, five
overlapping nodes [9, 10, 20, 29, 31] were detected. In Fig. 7, 12 overlapping nodes
were detected including a hierarchical cluster where nodes [28, 29] are present in
3 clusters.

6 Conclusion and Future Work

In this paper, we have proposed a new overlapping community detection algo-
rithm (DNTM) based on: i) utilizing disjoint communities produced by commu-
nity detection algorithm(s), and ii) analyzing the neighbourhood distribution of
boundary nodes of discovered disjoint communities to detect overlapping clus-
ters. The effectiveness of the DNTM algorithm has been demonstrated by testing
on fifteen real-world datasets and compared with seven overlapping community
detection algorithms in terms of an extended modularity Qov measure. Three
other well-known disjoint methods have been considered in this work with the
primary method based on a tolerance community detection. DNTM outperforms
comparable algorithms with 10 out of 15 datasets and gives comparable results
for the remaining 5 datasets. Experiments with various disjoint algorithms on
15 datasets reveal that DNTM with TCD as a preprocessing algorithm gives the
best result. Another noteworthy feature of DNTM is that no any optimization
strategy has been used during or after the clustering process. Future work with
DNTM will include: i) considering an ensemble mechanism to use various dis-
joint methods to select the best disjoint clusters in terms of quality and number
of clusters as a preprocessing step to the DNTM algorithm, ii) defining an inter-
nal objective function to obtain good quality clusters, iii) testing and analyzing
the behavior of DNTM on synthetic networks and iv) implementing a parallel
DNTM to be able to handle datasets with larger nodes and communities.
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Abstract. Fuzzy cognitive maps are recurrent neural networks, where
the neurons have a well-defined meaning. In certain models, some neu-
rons receive outer input, while other neurons produce the output of the
system. According to this observation, some neurons are categorized as
input neurons and the others are the state neurons and output neurons.
The output of the system is provided as a limit of an iteration process,
which may converge to an equilibrium point, but limit cycles or chaotic
behaviour may also show up. In this paper, we examine the existence
and uniqueness of fixed points for two types of input-output fuzzy cog-
nitive maps. Moreover, we use network-based measures like in-degree,
out-degree and connectivity, to express conditions for the convergence of
the iteration process.

Keywords: Fuzzy cognitive map · Input-output fuzzy cognitive map ·
Stability · Convergence · Equilibrium point

1 Introduction

Fuzzy cognitive maps (FCMs) are decision support tools, based on the recurrent
neural network modelling method. The essence is that the neurons have well-
defined meaning, they represent specific factors or characteristics of the modelled
system [14]. The structure of a fuzzy cognitive map is a weighted, directed graph.
The weights are assigned to the edges from the interval [−1, 1] to express the
strength and direction of causal connections. The current states of the neurons
(which are called concepts in FCM literature) are also described by values from
the [0, 1] interval (or from the interval [−1, 1], see for example [15]). These are
the activation values of the concepts [12].

The system can be described by the set of concepts (C1, C2, . . . , Cn); the
current activation values of the concepts (A1, A2, . . . , An); the weight matrix
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W which assigns weight wij to each edge connecting the nodes Ci and Cj ,
expressing how strongly influenced is concept Ci by concept Cj . The sign of wij

indicates whether the relationship between Cj and Ci is direct or inverse. So
matrix W represents the weighted causal connections between the concepts. A
transformation (or transfer, or threshold) function f : R → [0, 1] calculates the
activation value of concepts at every time step of the iteration and keeps the
activation values in the allowed range (sometimes a function f : R → [−1, 1] is
applied).

The iteration rule which calculates the values of the concept at every step
may or may not include self-feedback. In general form it can be written as

Ai(k) = f

⎛
⎝

n∑
j=1,j �=i

wijAj(k − 1) + diAi(k − 1)

⎞
⎠ (1)

where Ai(k) is the value of concept Ci at discrete time k, wij is the weight of
the connection from concept Cj to concept Ci and 0 ≤ di ≤ 1 expresses the
possible self-feedback. If di = 0, then there is no self-feedback. If we include the
dis into the diagonal of weight matrix W , the iteration equation can be rewritten
in more compact style:

Ai(k + 1) = f

⎛
⎝

n∑
j=1

wijAj(k)

⎞
⎠ = f(wiA(k)), (2)

where wi = [wi1, . . . , win] is the ith row of W and A(k) = [A1(k), . . . , An(k)]T

is the concept vector after k iterations. We apply dot product between them, so
wiA

(k) is a real number.
Moreover, if we couple the coordinates of the concept vector together and

denote by G the mapping R
n → R

n that generates the concept vector A(k + 1)
from A(k), then we have that:

A(k + 1) =

⎡
⎢⎣

A1(k + 1)
...

An(k + 1)

⎤
⎥⎦ =

⎡
⎢⎣

f(w1A(k))
...

f(wnA(k))

⎤
⎥⎦ = G(A(k)). (3)

The iteration rule is repeated until either the FCM converges to an equilibrium
state (fixed point) or the maximal number of iterations is reached. Mathemat-
ically, the FCM may converge to a fixed point, may arrive to a limit cycle or
shows chaotic pattern [4,10,11].

Sufficient mathematical condition for the existence and uniqueness of fixed
points of a special class of FCMs has been introduced in [2], expressed by the sum
of the squared elements of W . This result was later generalized in [4]. In [7], the
authors examined the problem of unique fixed points taking into consideration
only the topology of the FCM, but not the weights. They pointed out that if the
parameter of the sigmoid transfer function is small enough, then the FCM has
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exactly one fixed point. In [8] the global asymptotic stability of FCMs has been
discussed via Lyapunov method.

Recently, various generalizations of FCMs have been introduced [1,3,9],
where some concepts (neurons, nodes of the graph) are considered as inputs
to the system, while some other (or all of the remaining) concepts form the out-
put of the system. This article aims to provide sufficient converge conditions for
these models, based on the weight structure and the parameter(s) of the transfer
(threshold) function(s).

The rest of the paper is organized as follows. In Sect. 2 we recall the most
important mathematical tools and notions applied in the proofs of our findings.
In Sect. 3, we examine the behaviour of the generalized FCM model introduced in
[1] and [3]: sufficient conditions for the existence and uniqueness of fixed points
are provided. Moreover, we show that under certain mathematical conditions
different input values may produce different steady-state concept vectors and
different output values. In Sect. 4, sufficient condition for the convergence of
FCM model introduced in [9] is given, and finally in Sect. 5 we summarize the
main contributions of the paper.

2 Mathematical Background

In this section, we recall the most important definitions and results applied in the
subsequent sections. First we recall the definition of contraction mapping [13]:

Definition 1. Let (X, d) be a metric space. A mapping G : X → X is a con-
traction mapping or contraction if there exists a constant c (independent from
x and y), with 0 ≤ c < 1, such that

d (G(x), G(y)) ≤ cd(x, y). (4)

The notion of contraction is related to the distance metric d applied. It may
happen that a function is a contraction w.r.t. one distance metric, but not a
contraction w.r.t. another distance metric. The iterative process of an FCM may
end at an equilibrium point, which is a so-called fixed point.

Let G : X → X, then a point x∗ ∈ X such that G(x∗) = x∗ is a fixed
point of G. The following theorem provides sufficient condition for the existence
and uniqueness of a fixed point [13]. Moreover, if mapping that generates the
iteration is a contraction, it ensures the stability of the iteration.

Theorem 1 (Banach’s fixed point theorem). If G : X → X is a contraction
mapping on a nonempty complete metric space (X, d), then G has only one fixed
point x∗. Moreover, x∗ can be found as follows: start with an arbitrary x0 ∈ X
and define the sequence xn+1 = G(xn), then limn→∞ xn = x∗.

Definition 2. Let x∗ be a fixed point of the iteration xn+1 = G(xn). x∗ is
locally asymptotically stable if there exist a neighborhood U of x∗, such that for
each starting value x0 ∈ U we get that

lim
n→∞ xn = x∗. (5)
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If this neighborhood U is the entire domain of G, then x∗ is a globally asymp-
totically stable fixed point.

Corollary 1. If G : X → X is a contraction mapping on a nonempty com-
plete metric space (X, d), then its unique fixed point x∗ is globally asymptotically
stable.

The following property of the sigmoid function will be applied: The derivative
of the sigmoid function f : R → R, f(x) = 1/(1 + e−λx), (λ > 0) is bounded by
λ/4. Moreover, for every x, y ∈ R the following inequality holds

|f(x) − f(y)| ≤ λ/4 · |x − y| . (6)

Basic properties of the spectral radius of a matrix M [6]:

– The spectral radius of matrix M ∈ R
n×n is given by

ρ(M) = max {|λi| : λi eigenvalue of M} (7)

We should note that the spectral radius itself is not a norm.
– ρ(M) = inf {‖M‖ : ‖ ∗ ‖ is a matrix norm on R

n×n}
– Let matrix M have spectral radius ρ(M). If ε > 0 is any positive number,

then there exists a matrix norm ‖ · ‖, such that ρ(M) ≤ ‖M‖ ≤ ρ(M) + ε.
– If for matrices M1, M2 the entry-wise inequality 0 ≤ M1 ≤ M2 holds, then

ρ(M1) ≤ ρ(M2).

3 Input-Output Fuzzy Cognitive Maps

In classical fuzzy cognitive map modelling, the concepts have their initial acti-
vation values and the final activation values are computed as the limit of the
iteration (if the limit exists). In some cases, few features of the modelled system
should not change during the simulation. From the FCM point of view, it means
that values of some concepts should not change, but must remain the same for
all steps of the iteration. This fact requires the re-thinking of the FCM-based
modelling.

Based on the well-known discrete time linear time-invariant model:

x(k + 1) = Ax(k) + Bu(k)
y(k + 1) = Cx(k) + Du(k) (8)

Groumpos, Anninou et al. introduced the following FCM model [1,3]:

x(k + 1) = f (WAx(k) + WBu(k))
y(k + 1) = f (WCx(k) + WDu(k)) (9)

where u ∈ R
r, x ∈ R

p, y ∈ R
m. The matrices are extracted from the weight

structure of the FCM:
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– WA describes the dynamics between the states (x);
– WB describes the role of the inputs (u);
– WC describes the role of x in the output (y);
– WD describes the contribution of u to the output.

The following block scheme defines the weight matrix. The order of concepts:
input, state, output (vertically and horizontally). Of course it is a bit redundant
modell, since a state neuron can have input and state can be an output, too, but
for the analogy with discrete linear systems we preserve these categories.

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

WB WA 0

WD WC 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

The activation vector A ∈ R
r+p+m then A = [u, x, y]T . The updating process

is determined by the mapping A(k+1) = G(A(k)), where G : Rr+p+m → R
r+p+m

is defined elementwise:

– Input variables: if 1 ≤ i ≤ r, then Ai = ui (constant input signal for every
input channel);

– State variables: if r + 1 ≤ i ≤ r + p, then

Ai(k + 1) = f(wAix(k) + wBiu) = f(wiA(k))

– Output variables: if r + p + 1 ≤ i ≤ r + p + n, then

Ai(k + 1) = f(wCix(k) + wDiu) = f(wiA(k))

Consequently,

A(k + 1) = [A1, . . . , Ar︸ ︷︷ ︸
input

, Ar+1, . . . , Ar+p︸ ︷︷ ︸
state

, Ar+p+1, . . . , Ar+p+m︸ ︷︷ ︸
output

]T

= [A1, . . . , Ar︸ ︷︷ ︸
u

, f(wAix(k) + wBiu)︸ ︷︷ ︸
r+1≤i≤r+p

, f(wCix(k) + wDiu)︸ ︷︷ ︸
r+p+1≤i≤r+p+m

]T (11)

3.1 Convergence Condition for the Input-Output FCM

In this subsection, a sufficient condition for the existence and uniqueness of fixed
points of input-output FCMs will be stated. The fixed point is unique in the
sense that for a given input, the FCM reaches the same fixed point (activation
vector) regardless of the initial values of the other (state and output) concepts.
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The condition is based on the Jacobian matrix (matrix of the partial derivatives)
of the mapping G generating the iteration and the on the tight upper bound of
the derivative of the sigmoid function.

The Jacobian of mapping G is the matrix JG(i, j) = ∂Gi

∂Aj
, namely

– for input variables (u):

JG(i, j) =
{

1 if i = j
0 otherwise

– for state variables (x):

JG(i, j) =
{

λ · wBijf(wiA)(1 − f(wiA)) , if (i, j) ∈ (state, input)
λ · wAijf(wiA)(1 − f(wiA)) , if (i, j) ∈ (state, state)

– for output variables (y):

JG(i, j) =
{

λ · wDijf(wiA)(1 − f(wiA)) , if (i, j) ∈ (output, input)
λ · wCijf(wiA)(1 − f(wiA)) , if (i, j) ∈ (output, state)

Since the input terms are constant values (do not change during the itera-
tion), the iteration is convergent if and only if the dynamical terms generate a
convergent sequence. The dynamics of this part is governed by the submatrix

W ′ =

⎡
⎢⎢⎢⎢⎢⎢⎣

WB WA

WD WC

⎤
⎥⎥⎥⎥⎥⎥⎦

(12)

The Jacobian of G belonging to this submatrix is

J ′
G = λ · diag[f(wiA)(1 − f(wiA))] · W ′ (13)

Since for any A and wi, f(wiA)(1 − f(wiA)) ≤ 1/4, the spectral radius of the
Jacobian at any point:

ρ(J ′
G) ≤ ρ

(
λ

4
W ′

)
=

λ

4
ρ(W ′) (14)

If the spectral radius over the whole space is less than one, then the iteration
converges to a unique fixed point. So we can conclude the following theorem:

Theorem 2. Consider the input-output FCM model described by Eq. 9 with
a constant input vector u. Let W ′ be the matrix constructed by matrices
WA,WB ,WC and WD, according to Eq. 12. If

ρ(W ′) <
4
λ

(15)

then the iteration converges to a unique fixed point, regardless of the initial acti-
vation values of the state and output concepts.
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The spectral radius of a matrix is less than any norm of this matrix, i.e.
ρ(W ′) ≤ ‖W ′‖. It means that if we express a condition for convergence to a
unique stable equlibrium point using any norm of W ′, then we get weaker theo-
rem. Nevertheless, in some cases a weaker a condition gives more comprehensible
explanation.

Remark 1. We have concluded that if ρ(W ′) < 4
λ , then the FCM has exactly

one fixed point, i.e. the limit of the iteration process is the same, regardless to
the initial values of non-input variables. It also means that this fixed point is
globally asymptotically stable.

3.2 Further Convergence Conditions

In this subsection, we prove other conditions for the convergence of input-output
FCMs. Although these conditions are weaker, they might be useful, since they
are directly based on the weight structure of the FCM. First, we recall some
definitions about the structure of the network.

Definition 3. The weighted in-degree of concept Cj equals the sum of the abso-
lute values of the weights of in-coming edges:

degin
j =

n∑
i=1

|wij | (16)

which is the sum of the absolute values of the entries of the jth column of W .

Definition 4. The weighted out-degree of concept Ci equals the sum of the abso-
lute values of the weights of out-going edges:

degout
i =

n∑
j=1

|wij | (17)

which is the sum of the absolute values of the entries of the ith row of W .

Although usually not considered graphically as a real edge, but self-feedback
means self-loop in the graph. So if self-feedbacks are applied in the iteration,
then the weights of the feedback are counted in the in-degree and the out-degree,
too. It is the reason that we did not exclude i = j from the summations above.

Definition 5. The connectivity of an FCM is the ratio of the number of con-
nections between concepts to the maximum number of such possible connections.

In some sense, connectivity measures the ‘density’ of the network. If self-feedback
is allowed, then the maximum number of connections is n2, if not, then the
maximum number of connections is n(n − 1).

Definition 6. The weighted connectivity of an FCM is the ratio of the sum
of absolute values of weights of connections between concepts to the maximum
number of such possible connections.
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If self-feedback is allowed, then the weighted connectivity is

Conw =

∑n
i=1

∑n
j=1 |wij |

n2
(18)

If self-feedback is not allowed, then the weighted connectivity is

Conw =

∑n
i=1

∑n
j=1 |wij |

n(n − 1)
(19)

Theorem 3. Let λ be the parameter of the sigmoid threshold function applied for
every concept. If the maximal in-degree of the FCM (including possible feedback)
is less than 4/λ, then the FCM has one and only one fixed point.

Proof. Using the definition of in-degree:

max
1≤j≤n

degin
j = max

1≤j≤n

n∑
i=1

|wij | = ‖W‖1 (20)

Since ‖W‖1 ≥ ρ(W ), if ‖W‖1 < 4/λ, then ρ(W ) < 4/λ, which ensures the
convergence to a unique fixed point.

Theorem 4. Let λ be the parameter of the sigmoid threshold function applied for
every concept. If the maximal out-degree of the FCM (including possible feedback)
is less than 4/λ, then the FCM has one and only one fixed point.

Proof. The proof goes similarly to the previous one, but instead of 1-norm we
use the infinity norm.

max
1≤i≤n

degout
i = max

1≤i≤n

n∑
j=1

|wij | = ‖W‖∞ (21)

As in the previous case, if ‖W‖∞ < 4/λ, then ρ(W ) < 4/λ, which ensures the
convergence to a unique fixed point.

Theorem 5. Let λ be the parameter of the sigmoid threshold function applied
for every concept. If the weighted connectivity (Conw) of the FCM small enough,
namely

1. if self-feedback is allowed:

Conw <
4

λn2
, (22)

2. if self-feedback is not allowed:

Conw <
4

λn(n − 1)
, (23)

then the FCM has one and only one fixed point.
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Proof. Consider the following entry-wise matrix norm:

n∑
i=1

n∑
j=1

|wij | (24)

(Unfortunately, the usual notation of this norm is ‖∗‖1, which is confusing, since
the 1-norm has the same notation.) We know that

ρ(W ) ≤
n∑

i=1

n∑
j=1

|wij | (25)

So, if
∑n

i=1

∑n
j=1 |wij | < 4/λ, then ρ(W ) < 4/λ.

Consequently, if
λ

4

n∑
i=1

n∑
j=1

wij < 1, then the mapping is a contraction. It means

that the iteration converges to a unique fixed point, regardless to the initial
value. Rearranging this inequality and division both sides by n2 ( or n(n − 1))
completes the proof.

The direct practical usability of this result is very limited, since it gives very weak
condition. Nevertheless, it has an important mathematical statement: extremely
weakly connected fuzzy cognitive maps always produce simple behaviour. Of
course, the notion ‘weakly’ depends on n and λ.

3.3 Different Input - Different Output?

Under certain circumstances, classical FCMs may converge to the same equi-
librium state (fixed point) from completely different initial values. This prop-
erty is advantageous in some applications, for example, it ensures the system’s
robustness against noise, while it is not useful for example in pattern recognition
problems. In this subsection, we examine input-output FCMs from this point of
view.

Let us assume that the inputs are u1 and u2, and the iteration converges
to a fixed point in both cases. Let’s denote these fixed points by A∗

1 and A∗
2,

respectively. According to our assumption, both scenario lead to a steady state,
i.e.:

A∗
1 = [u1, x

∗
1, y

∗
1 ]

T ∈ R
r+p+m

A∗
2 = [u2, x

∗
2, y

∗
2 ]

T ∈ R
r+p+m (26)

Consequently, the steady state equations hold for [u1, x
∗
1, y

∗
1 ]

T and [u2, x
∗
2, y

∗
2 ]

T :

x∗
1 = f (WAx∗

1 + WBu1) x∗
2 = f (WAx∗

2 + WBu2)
y∗
1 = f (WCx∗

1 + WDu1) y∗
2 = f (WCx∗

2 + WDu2) (27)
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Let’s assume, that u1 �= u2, but x∗
1 = x∗

2. From the equations and from the
monotonicity of f we have

WAx∗
1 + WBu1 = WAx∗

2 + WBu2 (28)

Rearranging the equation yields:

WA(x∗
1 − x∗

2) = WB(u2 − u1) (29)

According to our assumption, the left hand side is zero:

0 = WB(u2 − u1) (30)

Since u1 �= u2, this equality holds if and only if u2 − u1 lies in the null-space of
WB . If WB is of full rank, then dimKerWB = 0, so every different input value
generates different steady-state values (KerWB denotes the null-space, a.k.a.
kernel of WB). When dim KerWB �= 0, and u1 − u2 ∈ KerWB , then u1 and u2

generate the same equilibrium state. Else, when u1−u2 /∈ KerWB , they produce
different x∗

1 and x∗
2. Similar arguments hold for y∗

1 and y∗
2 . y∗

1 = y∗
2 implies that

u2 −u1 lies in the null-space of WD, but there are infinite number of cases when
u1 − u2 /∈ KerWD, and in these cases u1 �= u2 yields y∗

1 �= y∗
2 .

4 Hybrid Fuzzy Cognitive Maps

An other input-output model has been introduced by Napoles et al. [9] under the
name hybrid FCM, with the following more general and highly flexible sigmoid
threshold function defined for the ith concept :

fi(x) = li +
ui − li

1 + e−λi(x−hi)
(31)

The topology of the proposed neural system is comprised of r input neurons
and m output neurons, so there are no distinct inner state neurons. The weight
matrix W is composed of two submatrices WI and WO. The first one contains
the connections between the input concepts, while the second one contains the
weights connecting the input neurons with the output ones. There are no con-
nections from output neurons to input neurons.

Comparing this model to the previous one, we can observe that

– here is no difference between input and state concepts;
– inputs do not act directly on the output;
– the transfer functions fi are highly customized to each neuron, ensuring more

flexibility in modelling.

W =

⎡
⎢⎢⎢⎢⎢⎢⎣

WI 0

WO 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(32)
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The dynamics of the system is determined by the input part WI (but don’t
forget that in this model there is no difference between input and state concepts).

The general term of the Jacobian of the mapping that generates the updating
process is the following:

JG(i, j) =
∂Gi

∂Aj
= wijλi(ui − li)

1
1 + e−λi(wiA−hi)

(
1 − 1

1 + e−λi(wiA−hi)

)
(33)

With the shorthand gi = 1
1+e−λi(wiA−hi)

, the Jacobian is

JG = diag[λi(ui − li)]diag[gi(1 − gi)] · W (34)

Since gi(1 − gi) ≤ 1/4, the following inequality holds for the spectral radius of
the Jacobian at any point:

ρ(JG) ≤ 1
4
ρ
(
diag[λi(ui − li)] · W

)
(35)

Moreover, because of the block structure of W , the spectral radius (largest abso-
lute value of the eigenvalues) of W equals the spectral radius of WI (it also proves
that the dynamics of the system is determined by the input neurons and their
weight structure). Consequently,

ρ(JG) ≤ 1
4
ρ
(
diag[λi(ui − li)] · WI

)
(36)

Similarly to the previous section, we get the following theorem:

Theorem 6. Consider an FCM with weight structure described by Eq. 32 and
transfer functions defined by Eq. 31. If

1
4
ρ
(
diag[λi(ui − li)] · WI

)
< 1, (37)

then the FCM has exactly one fixed point. This fixed point is the limit of the
iteration from any starting point.

Remark 2. In a special case, when li = −ui and hi ≡ 0, the concept vector
A = [0, . . . , 0]T is always a fixed point, but not always a fixed point attractor. If
the inequality in Theorem 6 holds, then this point is a globally asymptotically
stable equilibrium point. On the other hand, when the inequality does not hold,
the iteration may lead to this fixed point from certain starting point(s) (these
are the elements of KerW ), but this fixed point is not stable. This problem was
discussed for the case of hyperbolic tangent threshold function in [5].

5 Summary

In this paper, the input-output fuzzy cognitive map model has been exam-
ined from the viewpoint of unique fixed points. Based on the spectral radius
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of the weight matrix and with various matrix norms, several convergence condi-
tions have been proved. Although the conditions expressed by matrix norms are
weaker, they are might more understandable for the users of FCMs.

Classical FCMs may produce the same output for totally different initial
activation values. Although this property is useful in some models, since it means
a kind of robustness concerning noise, there are many applications (for example
pattern recognition or classification problems), where this is a disadvantageous
feature. As we have seen, the input-output model does not have this drawback,
it can produce different fixed points for different outputs. On the other hand,
there are cases when different input values yield the same output values.

Finally, convergence condition for another type of input-output FCM was
introduced, expressed by the spectral radius of the submatrix containing the
weight structure between the input neurons.
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Abstract. Fuzzy Cognitive Maps (FCMs) are recurrent neural networks
made up of well-defined neurons and causal relations. Fuzzy Grey Cogni-
tive Maps (FGCMs) are an extension of FCMs, intended to surpass the
intrinsic uncertainties modeling real-world problems by means of Grey
theory. Despite the rising number of studies about FGCM-based mod-
els, little has been investigated with regard to the convergence of such
networks. In this paper, we build a mathematical basis to uncover the
behavior FGCM-based models equipped with transfer F -functions. To
do so, we propose sufficient conditions for the existence and unicity of
fixed-point attractors. Also, the results reported in the literature on the
convergence of FGCMs, are compared with ours. Furthermore, we eluci-
date the reach and depth of our findings, especially and not exclusive to
the prediction of FCMs’ behavior.

Keywords: Fuzzy Cognitive Maps · Fuzzy Grey Cognitive Maps ·
Convergence · Grey theory · Shrinking Grey State Vector · Limit grey
state

1 Introduction

Fuzzy Cognitive Maps (FCMs) are knowledge-based recurrent neural networks for
modeling complex systems [5] and an increasing number of FCM scientific arti-
cles have been published in the last few years [4,11–14]. Whether using FCMs or
not, the construction of models to face real-world problems always carry in intrin-
sic uncertainties. Sometimes the vast information contained in a complex system
cannot be represented only by means of crisp values. Grey numbers [20] emerged
as a way to shape these uncertainties and, given that FCMs are not exempt from
these issues, Fuzzy Grey Cognitive Maps (FGCMs) were proposed by [16]. These
networks are convenient for modeling human knowledge in decision-making pro-
cess. FGCMs are considered a generalization of FCMs, since the latter is an FGCM
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with all the causal relations represented by white numbers. Some FGCMs’ theo-
retical breakthroughs emerged in the last decade, as well as applications on time
series forecasting [6], surveillance assets coordination [17], reliability engineering
[18] and radiotherapy treatment planning [19].

Convergence analysis is the most discussed topic in theoretical studies on the
FCM field [4,10–12]. The possible states of the FCMs’ inference process are the
same as in FGCMs, since both may reach a fixed point or a limit cycle, or exhibit
chaotic behavior. Like in FCMs, the convergence in FGCMs is crucial because
cycles and chaos make the network responses to be unstable. Unstable cases occur
given that activation values always vary through iterations, while remaining
stable when a fixed point is reached. While several theoretical studies as well
as applications have been conducted using FGCM-based models, convergence
issues have been little analyzed [7,8].

In [7], the authors provided some sufficient conditions for the convergence of
FGCMs to a unique fixed point, regardless of the initial values of neurons. These
conditions are proven for the cases of the log-sigmoid and the hyperbolic tan-
gent threshold functions and also generalized to arbitrary sigmoidal (S-shaped)
threshold functions. The convergence conditions are expressed by the elements
of the weight matrix and the maximal value of the derivative of the transfer
function. Such conditions are applicable to a particular set of the FGCMs’ uni-
verse, since a small number of neurons and low values for weights are required.
Also, the estimation of the maximal value of the derivative could produce loose
bounds.

Our previous research on the theoretical analysis of FCM-based models and
their dynamics [4] motivated a similar approach to FGCMs. First, we propose
novel simplified formulas to calculate the grey raw activation values in FGCMs.
Such formulas are the basis to introduce several definitions, lemmas, theorems
and corollaries, that allow studying the dynamic behavior of FGCMs equipped
with F -functions. The proposed theorems and corollaries give sufficient condi-
tions for the grey state vector to continuously shrink through the inference pro-
cess and to converge to a so-called limit grey state. After that, we contrast our
findings with the achievements depicted in [7] and the employment of FGCMs
as predictors for FCMs is proposed.

The rest of this paper is organized as follows. Section 2 goes over the FGCMs’
mathematical underpinnings. Section 3 introduces novel formulas for the grey
raw activation values, while Sect. 4 enunciates two theorems and their respec-
tive corollaries giving conditions on the convergence of FGCM-based models.
Section 5 compares our findings with those in the literature. In Sect. 6, we briefly
summarize our achievements in this research.

2 Theoretical Background

As mentioned, FGCMs are an extension of traditional FCMs so that both weight
and neurons’ activation values are described with interval grey numbers.
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2.1 Grey Theory

Let Ω be the universal set, then a grey set ψ ⊂ Ω is defined by two membership
functions μ−

ψ (·) ∈ [0, 1] and μ+
ψ (·) ∈ [0, 1] denoting the lower and upper mem-

bership functions, respectively, such that μ−
ψ (·) ≤ μ+

ψ (·). Interval grey numbers
with upper (g+) and lower (g−) limits are denoted as g± ∈ [g−, g+] | g− ≤ g+

[20]. The crisp value of a grey number is unknown, but the range in which the
crisp value is located is known [9].

If g± only has an upper limit, it is denoted by g± ∈ (−∞, g+], but if g± only
has a lower limit it is denoted by g± ∈ [g−,+∞). A black number with both
unknown limits is denoted as g± ∈ (−∞,+∞) and it becomes a white number
when both limits have the same value g− = g+. Although the length of a grey
number with only one limit known (g± ∈ [g−,+∞) or g± ∈ (−∞, g+]) is infinite,
the grey number is not necessarily a black number because it is possible to know
one of these limits.

Equations (1a)–(1d) show the grey arithmetic operations according to the
common interval algebra:

g±a + g±b ∈ [
g−a + g−b , g+a + g+b

]
(1a)

g±a − g±b ∈ [
g−a − g+b , g+a − g−b

]
(1b)

g±a · g±b ∈ [
min

{
g−a · g−b , g+a · g+b , g−a · g+b , g+a · g−b

}
,

max
{
g−a · g−b , g+a · g+b , g−a · g+b , g+a · g−b

}] (1c)

g±a
g±b

∈
[
min

{
g−a
g−b

,
g+a
g+b

,
g−a
g+b

,
g+a
g−b

}
,

max

{
g−a
g−b

,
g+a
g+b

,
g−a
g+b

,
g+a
g−b

}]
| g−b , g+b �= 0.

(1d)

2.2 Fuzzy Grey Cognitive Maps

The mathematical formalism of grey numbers and the recurrent inference mech-
anism of traditional FCMs are the foundational underpinnings behind FGCM-
based models. Roughly speaking, such models can be defined by means of the
following 4-tuple:

Θ = 〈C±, A±,W±, f±(·), �(ψ)〉. (2)

where C± = {C±
1 , . . . , C±

i , . . . , C±
M} is the set of M neurons with grey states

A± = {A±
1 , . . . , A±

i , . . . , A±
M} such that A±

i ∈ [0, 1], f±(·) represents the grey
transfer function and �(ψ) is the range of the activation space. The grey weight
connecting neurons C±

i and C±
j is denoted by w±

ij ∈ [−1, 1] and gathered into
the grey weight matrix W±, which is defined as follows:
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W± =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

w±
11 . . . w±

1i . . . w±
1M

...
. . . . . . . . .

...

w±
j1

. . . w±
jj

. . . w±
jM

...
. . . . . . . . .

...
w±

M1 . . . w±
Mi . . . w±

MM

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The recurrent reasoning process of FGCMs is devoted to updating neurons’
grey activation values given an initial stimulus [15]. Thus, in each iteration t the
model produces a grey state vector A±(t) = [A±(t)

1 , . . . , A
±(t)
i , . . . , A

±(t)
M ] contain-

ing the grey activation values of all neurons in the model. The first state vector
A±(0) in this sequence is either provided by experts when performing WHAT-
IF simulations or derived automatically from data. This iterative procedures is
given below:

A
±(t+1)
i = f±

i

⎛
⎝

M∑
j=1

w±
ji · A

±(t)
j

⎞
⎠ (3)

such that
f±

i (Ā±(t+1)
i ) = [fi(Ā

−(t+1)
i ), fi(Ā

+(t+1)
i )] (4)

where Ā
−(t+1)
i and Ā

+(t+1)
i represents the neuron’s lower and upper grey raw

activation values, respectively, while fi(.) denotes the transfer function. Notice
that self-feedback is allowed, given that the expert can avoid this by explicitly
setting w±

jj = [0, 0].
The FGCMs’ inference process finishes when the stability appears or a max-

imal number of iterations is reached. After the inference process, the FGCM
either settles down to a fixed pattern of activation values (grey fixed-point attrac-
tor), keep cycling between several fixed grey states (limit grey cycle) or behaves
chaotically (grey chaotic attractor) [16]. The last state occurs when, instead of
stabilizing, the FGCM continues to produce different results for each iteration.
Also, this state is only attainable with a continuous activation function.

The most widely used transfer functions are [3] the sigmoid function and the
hyperbolic tangent. The bivalent, trivalent and threshold functions have also been
employed. The former have continuous open intervals as their image set, while the
latter are bounded into closed intervals instead (they also have discrete image
set). Generally speaking, any bounded and monotonically increasing function
over the set of real numbers is a candidate transfer function, since the image set
of a bounded function belongs to an interval.

Let F be the set of all monotonically increasing functions bounded into non-
negative intervals. Let F 0 ⊂ F and F ′ ⊂ F be the subsets bounded into open
intervals and closed intervals respectively. Also, let fi ∈ F be the transfer func-
tion used in the activation process of neuron C±

i (i.e., every neuron has its own
transfer function). This means that fi is bounded into a non-negative interval
(either open or closed). Observe that the hyperbolic tangent and the trivalent
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functions do not belong to F . In this paper, we refer to an F -function as any
function belonging to F . It should be highlighted that Eq. (4) holds because fi

is an F -function and thus monotonically increasing. Given that A±
i ∈ [0, 1], in

this paper we assume that the image set of F -functions belongs to [0, 1].

3 Raw Activation Values of Grey Neurons

Equations (1a)–(1d) provide tools for operating with grey values and they involve
finding the extreme values of sets. When applied to the inference mechanism of
FGCMs, the latter equations can be used in simpler ways given the intrinsic
properties of these networks. The grey raw activation value for the neuron C±

i

at the (t + 1)-th iteration is

Ā
±(t+1)
i =

M∑
j=1

w±
ji · A

±(t)
j . (5)

Equation (5) shows the summation of M terms, where each term is the prod-
uct of two grey values. Equation (1c) is employed to solve such product, where
we would have a set with four elements and we would select the minimum and
the maximum among them. The above summation has M terms, so we would
repeat the procedure in Eq. (1c) M times and then, we would add up the results
using Eq. (1a). For a computer it is not a hard procedure, but using the restric-
tions of the grey numbers used in Eq. (5), we propose a formula which speeds
up the computations while yielding a simplified representation for Ā

±(t+1)
i . Also,

this formula avoids explicitly finding minimum and maximum values of sets.
The raw activation value can also be represented by following grey dot

product:

w±
i .A±(t) =

M∑
j=1

w±
ji · A

±(t)
j . (6)

As derived from Eq. (3), the grey dot product between w±
i and A±(t) is con-

sidered for every neuron C±
i in order to compute its activation value. In this

research, we assume that each neuron is influenced by, at least, another neural
processing entity. In the case of input neurons, their activation values either
remain unchanged or become inactive (depending on the FGCM implementa-
tion). Whichever the case, their values are easy to predict. Based on Eq. (1c),
but using the fact that A±

i ⊆ [0, 1] and w±
ji ⊆ [−1, 1], we propose new formulas to

calculate the bounds for the grey dot product between w±
i and A±(t). The latter

product is the grey raw activation value used to calculate the next activation
value for the neuron C±

i .
It is known that A

±(t)
j = [A−(t)

j , A
+(t)
j ] denotes the grey number associated to

the j-th neuron at the t-th iteration. Then, the lower limit of w±
i .A±(t), denoted
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by Ā
−(t+1)
i , is:

M∑
j=1

w−
ji

(
A

+(t)
j (1 − sgn(w−

ji)) + A
−(t)
j (1 + sgn(w−

ji))
)

2
(7)

and the upper limit, denoted by Ā
+(t+1)
i , is

M∑
j=1

w+
ji

(
A

−(t)
j (1 − sgn(w+

ji)) + A
+(t)
j (1 + sgn(w+

ji))
)

2
(8)

where sgn(.) is the sign function

Proof. Previous equations are a compact representation based on the following
ideas. Analyzing Eq. (6) we realize that we need to focus on the grey product
w±

ji ·A±(t)
j ∀j to find the lower limit depicted in (7). As we know, the grey limits

for A
±(t)
j are non-negative while the grey limits for w±

ji could be either positive,
negative or zero. According to the sign of w±

ji, two cases emerge in order to find

the lower limit of w±
ji · A

±(t)
j :

– IF w−
ji < 0 THEN (w±

ji · A
±(t)
j )− = w−

jiA
+(t)
j

– IF w−
ji ≥ 0 THEN (w±

ji · A
±(t)
j )− = w−

jiA
−(t)
j

By applying the aforementioned reasoning and using the sign function
(sgn(.)) we assemble both cases within a single formula without ramifications.
This results in the lower limit shown at (7).

Analogously, to derive Eq. (8) we analyze the upper limit of the grey product
w±

ji · A
±(t)
j ∀j. Two cases arise:

– IF w+
ji < 0 THEN (w±

ji · A
±(t)
j )+ = w+

jiA
−(t)
j

– IF w+
ji ≥ 0 THEN (w±

ji · A
±(t)
j )+ = w+

jiA
+(t)
j

From this point, the upper limit shown at (8) is derived in the same way as
the lower limit. ��

4 Studying Convergence in FGCMs

In this section, we provide sufficient conditions for the existence and uniqueness
of grey fixed-point attractors of FGCMs equipped with transfer F -functions. To
present the first theorem about the FGCMs’ behavior, we need to define when
a grey value a± contains another b±.

Definition 4.1. The grey value a± contains the grey value b± if a− ≤ b− and
a+ ≥ b+.
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In other words, the interval where the crisp value of a± lies, contains the
interval where the crisp value of b± is located.

Definition 4.2. The grey vector A± contains the grey vector B± if they have
the same length and every grey value from A± contains the corresponding grey
value in B±.

Now, we are in conditions to introduce the theorem. This theorem asserts
that if some grey state vector contains the next one, then every successive state
vector contains the following. Nevertheless, it is possible that A±(t) = A±(t+1),
which implies that A±(t) = A±(t+k) ∀k ∈ N. So, the grey state vectors may not
shrink forever.

Theorem 4.1 (Weak Shrinking Grey State Vector). In an FGCM Θ,
A±(t) contains A±(t+1) ∀t > t0 : t0 ∈ N, if A±(t0) contains A±(t0+1) with fi ∈
F ∀i ∈ {1, 2, . . . ,M}.

Proof. Let A±(t0) = {A
±(t0)
1 , . . ., A

±(t0)
M }, A±(t0+1) = {A

±(t0+1)
1 , . . ., A

±(t0+1)
M }

and A±(t0+2) = {A
±(t0+2)
1 , . . ., A

±(t0+2)
M }.

We must demonstrate that A
±(t0+1)
i contains A

±(t0+2)
i for every i =

1, 2, . . . ,M , to prove that A±(t0+1) contains A±(t0+2). The fact that A±(t0) con-
tains A±(t0+1) means that A

±(t0)
i contains A

±(t0+1)
i for every i = 1, . . . ,M .

Based on this knowledge, we will prove that A
±(t0+1)
i contains A

±(t0+2)
i for

every i = 1, . . . , M .
According to Eqs. 3 and 4, we have that A

±(t0+1)
i = f±

i (Ā±(t0+1)
i ) and

A
±(t0+2)
i = f±

i (Ā±(t0+2)
i )∀i. Given that fi is monotonically increasing, it suffices

to prove that Ā
±(t0+1)
i contains Ā

±(t0+2)
i ∀i. Based on Definition 4.1 we need to

prove two inequalities.

– Inequality 1: Ā
−(t0+1)
i ≤ Ā

−(t0+2)
i Formula (7) leads us to prove that:

M∑
j=1

w−
ji

(
A

+(t0)
j (1 − sgn(w−

ji)) + A
−(t0)
j (1 + sgn(w−

ji))
)

2

≤
M∑

j=1

w−
ji

(
A

+(t0+1)
j (1 − sgn(w−

ji)) + A
−(t0+1)
j (1 + sgn(w−

ji))
)

2

It is sufficient to prove that, for every j:

w−
ji

(
A

+(t0)
j (1 − sgn(w−

ji)) + A
−(t0)
j (1 + sgn(w−

ji))
)

≤ w−
ji

(
A

+(t0+1)
j (1 − sgn(w−

ji)) + A
−(t0+1)
j (1 + sgn(w−

ji))
)

There are three possible scenarios depending on the sign of w−
ji:
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• Scenario 1. If sgn(w−
ji) = −1 then

A
+(t0+1)
j (1 − sgn(w−

ji)) ≤ A
+(t0)
j (1 − sgn(w−

ji))

A
+(t0)
j ≤ A

+(t0+1)
j

which is true because the condition in Theorem 4.1 saying that A±(t0)

contains A±(t0+1).
• Scenario 2. If sgn(w−

ji) = 1 then

A
−(t0)
j (1 + sgn(w−

ji)) ≤ A
−(t0+1)
j (1 + sgn(w−

ji))

A
−(t0)
j ≤ A

−(t0+1)
j

which is true because the aforementioned condition in Theorem 4.1.
• Scenario 3. If sgn(w−

ji) = 0 then the inequality holds because both sides
of the inequality are zero.

– Inequality 2: Ā
+(t0+1)
i ≥ Ā

+(t0+2)
i

Formula (8) leads us to prove that:

M∑
j=1

w+
ji

(
A

−(t0)
j (1 − sgn(w+

ji)) + A
+(t0)
j (1 + sgn(w+

ji))
)

2

≥
M∑

j=1

w+
ji

(
A

−(t0+1)
j (1 − sgn(w+

ji)) + A
+(t0+1)
j (1 + sgn(w+

ji))
)

2

It is sufficient to prove that, for every j:

w+
ji

(
A

−(t0)
j (1 − sgn(w+

ji)) + A
+(t0)
j (1 + sgn(w+

ji))
)

≥ w+
ji

(
A

−(t0+1)
j (1 − sgn(w+

ji)) + A
+(t0+1)
j (1 + sgn(w+

ji))
)

Again, three possible scenarios arise, depending on the sign of w+
ji:

• Scenario 1. If sgn(w+
ji) = −1 then

A
−(t0+1)
j (1 − sgn(w+

ji)) ≥ A
−(t0)
j (1 − sgn(w+

ji))

A
−(t0+1)
j ≥ A

−(t0)
j

which is true because the condition in Theorem 4.1 saying that A±(t0)

contains A±(t0+1).
• Scenario 2. If sgn(w+

ji) = 1 then

A
+(t0)
j (1 + sgn(w+

ji)) ≥ A
+(t0+1)
j (1 + sgn(w+

ji))

A
+(t0)
j ≥ A

+(t0+1)
j

which is true because the aforementioned condition in Theorem 4.1.
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• Scenario 3. If sgn(w+
ji) = 0 then the inequality holds because both sides

of the inequality are zero.

At this point, we have demonstrated that A
±(t0+1)
i contains A

±(t0+2)
i , from

A
±(t0)
i contains A

±(t0+1)
i . Based on this and proceeding inductively, we can prove

that A
±(t0+2)
i contains A

±(t0+3)
i and so on. Then we confirm that A±(t) con-

tains A±(t+1), ∀t > t0, t0 ∈ N if A±(t0) contains A±(t0+1), having fi ∈ F ∀i ∈
{1, 2, . . . ,M}. ��

As presented in Sect. 2, F -functions are bounded into either open or closed
intervals. Therefore, we can associate a grey value with this kind of intervals.

Definition 4.3. The induced grey value of neuron C±
i is such that its lower and

upper limits are the same as the lower and upper limits of the interval that the
fi transfer function is bounded to.

Note: It should be highlighted that function fi is associated to neuron C±
i .

A consequence of this definition is the following lemma:

Lemma 4.1. The induced grey value of neuron C±
i contains A

±(t)
i ∀t ∈ N : t >

0, which is the grey activation value of neuron C±
i .

Proof. The fi transfer function is bounded to an interval containing A±t
i ∀t ∈

N : t > 0. This happens because the activation values are generated by fi.
When t = 0, the experts might decide to assign values out of this interval, but
when the inference is triggered, the following activation values will meet the
interval restriction. The lemma holds based on Definition 4.3, since the induced
grey value of neuron C±

i has the same limits as the interval mentioned in such
definition. ��
Definition 4.4. The induced grey vector for the FGCM Θ is such that the i-th
component is the induced grey value for the neuron C±

i .

The following lemma extends Lemma 4.1 to the grey vector space. This
lemma is the basis of a new corollary that will be defined next.

Lemma 4.2. The induced grey vector for the FGCM Θ contains A±(t) ∀t ∈ N :
t > 0, which is the grey state vector of the FGCM at t-th iteration.

Proof. The demonstration results by applying Lemma 4.1 for every activation
value in A±t and also for every t > 0. ��

The following corollary shows that the first state vector A±(0) plays a major
role in the FGCM’s behavior.

Corollary 4.1.1. In an FGCM Θ, A±(t) contains A±(t+1) ∀t ∈ N, if A±(0) is
the induced grey vector of the FGCM, with fi ∈ F ∀i ∈ {1, 2, . . . ,M}.
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Proof. We only need to prove that A±(0) contains A±(1). According to
Lemma 4.2, the induced grey vector contains A±(1). Having that A±(0) is the
induced grey vector, the demonstration is completed. ��

In order to affirm that grey state vectors will shrink forever and A±(t) =
A±(t+k) is not possible, for any t, k ∈ N, we need to define when a grey value a±

strictly contains b±.

Definition 4.5. The grey value a± strictly contains the grey value b± if a− < b−

and a+ > b+.

Definition 4.6. The grey vector A± strictly contains the grey vector B± if they
have the same length and every grey value from A± strictly contains the corre-
sponding grey value in B±.

Similarly to Theorem 4.1, the next theorem declares that if some grey state
vector strictly contains the next one, then every successive state vector strictly
contains the following. Thus, it is not possible that A±(t) = A±(t+1), which
implies that A±(t) = A±(t+k) ∀k ∈ N. Hence, grey state vectors will shrink
forever.

Theorem 4.2 (Strong Shrinking Grey State Vector). In an FGCM Θ,
A±(t) strictly contains A±(t+1) ∀t > t0 : t0 ∈ N, if A±(t0) strictly contains
A±(t0+1) with fi ∈ F ∀i ∈ {1, 2, . . . ,M}.
Proof. The proof is analogous to the weak version of the theorem, except that
all inequalities are turned into strict ones. This means that every occurrence of
the ≤ and ≥ symbols is replaced with the < and > symbols, respectively. Still,
the scenario where sgn(w−

ji) = 0 needs special attention. When this happens,
both sides of inequality are equal to zero. If it were true for a fixed i and every
j, then we would obtain that the grey activation value for neuron C±

i remains
constant through iterations of the FGCM. This would imply that any grey state
vector does not strictly contain the next one. It turns out that this situation is
impossible given that, as we explained in Sect. 3, each neuron is influenced by at
least another neural processing entity. Thus, for every neuron C±

i , there must
be at least a non-zero incoming connection. Therefore, the strong version of the
theorem is true. ��

To define a corollary for Theorem 4.2 we must go over F -functions and spe-
cially its subset F 0, which is a subset of F where functions are bounded into
open intervals. Also, Definitions 4.4, 4.5 and 4.6 will be useful.

Lemma 4.3. The induced grey value of neuron C±
i strictly contains A±t

i ∀t ∈
N : t > 0 if fi ∈ F 0 ∀i ∈ {1, 2, . . . ,M}.
Proof. Transfer functions are bounded into open intervals, which means that
grey activation values will always be contained into a grey value with lower and
upper limits matching the interval’s limits. Such grey value is the induced grey
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value and this concludes the proof. Being more explicit, let us take an example
whit the sigmoid function f(x) = 1/(1+e−λ(x−h)), which belongs to F 0 because
its image set is (0, 1). In this case, the grey activation values of every neuron will
take values between 0 and 1, but not inclusive. Also, according to Definition 4.3,
the lower and upper limits of the induced grey value of any neuron are 0 and 1,
respectively. Therefore, the lemma holds. ��

To define a corollary for Theorem 4.2, the following lemma extends
Lemma 4.3 to the grey vector space.

Lemma 4.4. The induced grey vector for the FGCM Θ strictly contains A±(t)

∀t ∈ N : t > 0 if fi ∈ F 0 ∀i ∈ {1, 2, . . . ,M}.
Proof. The demonstration results by applying Lemma 4.3 for every activation
value in A±(t) and also for every t > 0. ��

Again, the first state vector A±(0) plays a major role in the FGCM’s behavior,
together with the fact that the transfer function belongs to F 0.

Corollary 4.2.1. In an FGCM Θ, A±(t) strictly contains A±(t+1) ∀t ∈ N, if
A±(0) is the induced grey vector of the FGCM, with fi ∈ F 0 ∀i ∈ {1, 2, . . . ,M}.
Proof. We only need to prove that A±(0) strictly contains A±(1). According to
Lemma 4.4, the induced grey vector contains A±(1). Having that A±(0) is the
induced grey vector, the demonstration is completed. ��

The above results lead to the question of whether the grey state vectors will
shrink until they become a vector of white numbers or not. Becoming a white
number would imply that, for every activation value, both grey limits have the
same value. This would indicate that every FGCM converges to a white fixed-
point attractor. This situation is false, as we know by other studies [4]. Such
concerns serve as a motivation to define the limit grey state.

Let G be the set of all grey values with non-negative limits and let SM

be the set of all M -ary Cartesian products over the elements in G. Formally,
SM = {I1 × I2 × . . . × IM : Ii ∈ G,∀i = 1, 2, . . . , M}. Grey state vectors of an
FGCM with M neurons, belong to SM .

Definition 4.7. A±(∞) ∈ SM is the limit grey state of Θ, such that A±(∞) =
limt→∞ A±(t).

Theorem 4.3. The limit grey state A±(∞) of FGCM Θ always exists if Θ fulfills
the premises in Theorems 4.1 or 4.2.

Proof. The shrinkage of the state vectors implies a contraction of the activation
values. Also, from a mathematical point of view, iterative grey state vectors (e.g.,
A±(0), A±(1), . . . , A±(t), . . .) are a sequence of elements over SM and iterative
grey activation values of a neuron are a sequence of elements over G. A sequence
over G can be interpreted as two other sequences: the sequence of lower bounds
and the sequence of upper bounds of the iterative grey activation values (both
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sequences are defined over the set of real numbers). We say that a sequence over
G is convergent, if the sequences of lower and upper bounds are also convergent.

Theorems 4.1 and 4.2 imply that grey activation values associated with neu-
rons become smaller from one iteration to the following, meaning that the lower
bound becomes bigger and the upper bound becomes smaller. This suggests that
the lower bounds sequence increases and the upper bounds sequence decreases.
Besides, both sequences are bounded from each other, so the lower bounds
sequence is a lower bound for the higher bound sequence and vice versa. Thus,
both sequences are convergent because the monotone convergence theorem [1]
and have a limit (in the extreme case, the limit is a closed interval with identical
lower and upper bounds). Now, we have that the sequence of grey activation
values is convergent, which implies the convergence of the sequence of grey state
vectors. At this point, there is no doubt about the existence and unicity of a
limit for iterative feasible state spaces. ��

As long as the FGCM is equipped with transfer F -functions and any activa-
tion vector contains (or strictly contains) the next one, it will converge to a grey
fixed-point attractor, the so-called limit grey state. Corollaries 4.1.1 and 4.2.1
are useful when the initial stimulus is unknown or the experts want to analyze
the FGCM’s behavior under full uncertainty to arrive at conclusions.

5 Comparison with Previous Convergence Results

In this section we discuss some results reported in the literature, specifically in
[7]. Then we explain the reach and depth of our theoretical findings while we
compare them with the latter results. Finally, we show the broad applicability
of our results, particularly predicting the dynamic behavior of FCMs.

5.1 Literature Results

As mentioned earlier, in [7], conditions for the existence and uniqueness of fixed
points of FGCMs are presented. The authors expanded and corrected the ideas
presented by [2], who firstly addressed the convergence issues of FCMs from a
mathematical perspective. Former conditions are expressed by matrix norms and
applying the contraction mapping theorem [2] with suitable distance metrics.
To do so, authors build on strict analytical bounds for the derivatives of the
transfer functions. These functions may be the log-sigmoid threshold function,
the hyperbolic tangent and, in general, the sigmoid-like (S-shaped) threshold
function. Also, they assume that the human expert or the training process assigns
the proper signs to the grey weights, so a weight is either non-positive or non-
negative. This means that the type of relationship (direct or inverse) between
the neurons is properly described by the FGCMs.

These sufficient conditions are summarized in Theorem 9 in [7]. This theorem
is based upon some definitions that we are going to present briefly.
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– W ∗ is the matrix where every element w∗
ij is the maximum between the

absolute values of the lower and upper limits of the grey weight w±
ij .

– The 1-norm of W ∗ is given by: ||W ∗||1 = max1≤j≤M

(∑M
i=1 w∗

ij

)

– The ∞-norm of W ∗ is given by: ||W ∗||∞ = max1≤i≤M

(∑M
j=1 w∗

ij

)

– The Frobenius norm of W ∗ is given by: ||W ∗||F =
(∑M

i=1

∑M
j=1 (w∗

ij)
2
) 1

2

– Let K be the maximal value of f ′(x), where f is an S-shaped transfer func-
tion. This real function is bounded, monotone increasing and continuously
differentiable defined for all real values.

Essentially, Theorem 9 states that the FGCM has one and only one grey fixed
point, regardless of the initial values of neurons, if at least one of the inequalities
||W ∗||1 < 1

K , ||W ∗||∞ < 1
K or ||W ∗||F < 1

K holds.
In the particular case of the log-sigmoid threshold function (the most widely

used), taking into account its common set of parameters, the values of K are
always higher than 1. So, it would be needed at least one norm (among the
three) lower than 1. If we take a closer inspection on the norms’ definitions, we
notice that fulfilling this condition would need, we need FGCMs with a small
number of neurons and with low values for the influences. In this case, if there
exist only one grey weight whose upper limit is equal to 1, then no norm fulfills
the inequality. In conclusion, the theorem conditions are quite restrictive to a
particular set of the FGCMs’ universe.

5.2 Our Findings

First, let us compare our definition of FGCM with the one reported in [7]. Two
major differences appear:

– They assume that both limits of the grey weight connecting neurons are either
non-positive or non-negative.

– Their transfer functions are S-shaped, bounded, monotone increasing and
continuously differentiable.

– They use a single transfer function for the whole FGCM.

We do not restrict weights beyond the property w±
ij ∈ [−1, 1]. A specific

weight could normally be w±
ij = [−0.5, 0.5], which contradicts the assumption

found in [7]. On the other hand, we allow transfer functions to be any bounded
and monotonically increasing function, as long as its image set lies into [0, 1]
(intrinsic restriction in our FGCMs). We do not restrict to have a single transfer
function in the model, since each neuron has one of these functions and the
parameters may vary among them. Moreover, the estimation of K (the maximal
value of f ′(x)) may result hard working with more complex functions or loose
bounds could be obtained.

By means of Theorems 4.1 and 4.2, we ensure the shrinkage of successive grey
state vectors, where the only condition that must hold is that some state vector
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contains (or strictly contains) the next one. No restrictions are required for the
weights’ matrix or the number of transfer functions or the functions’ parameter
set. Beyond the shrinkage, we also prove the convergence to a unique grey fixed
point, the so-called grey limit state.

Corollaries 4.1.1 and 4.2.1 lead us to a particular application for the FGCMs:
the prediction of the state space of FCMs. When the first grey state vector is
the induced grey vector, our results match the findings in [4]. In that paper we
showed that, approximating the state space of an FCMs is useful to predict fixed-
point attractors and to find hidden behavior even in unstable FCMs, without
running the inference mechanism. Hence, FGCMs serve as predictors for FCMs
that can notify human experts about the limitations of the FCM-model with no
computational burden caused by the inference process.

6 Concluding Remarks

In this paper, motivated by our findings regarding the dynamic behavior of FCMs
[4], we have introduced a set of mathematical entities (i.e., definitions, lemmas,
theorems, corollaries) to uncover the behavior of FGCMs equipped with transfer
F-functions. The research conducted in [7] is quite similar to ours, in the sense
that our goals are the existence and uniqueness of grey fixed-point attractors.
However, we use a completely different approach producing less restrictive rules
for the existence and unicity of FGCMs. Furthermore, our definition of such
models is wider when we refer to the influences among neurons, the usage of a
transfer function per neuron and the parameters of these functions. Our research
presents more flexible models, while brings forward less restrictive sufficient con-
ditions in order to fulfill the convergence goal.

Theorems 4.1 and 4.2 ensure the shrinkage of the grey state vectors through
the inference process, for FGCMs equipped with transfer F -functions. In case
the conditions are met, the inference process leads to the grey limit state. This
knowledge could be used by experts or maybe in the learning procedure, to
ensure the convergence for this neural networks. Finally, we prove that FGCMs
are predictors for FCMs’ state spaces, disclosing hidden behavior with no need
to trigger the inference mechanism.
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11. Nápoles, G., Concepción, L., Falcon, R., Bello, R., Vanhoof, K.: On the accuracy-
convergence tradeoff in sigmoid fuzzy cognitive maps. IEEE Trans. Fuzzy Syst.
26(4), 2479–2484 (2018)
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Abstract. Distributed Artificial Intelligence is attracting interest day
by day. In this paper, the authors introduce an innovative method-
ology for distributed learning of Particle Swarm Optimization-based
Fuzzy Cognitive Maps in a privacy-preserving way. The authors design
a training scheme for collaborative FCM learning that offers data pri-
vacy compliant with the current regulation. This method is applied to
a cancer detection problem, proving that the performance of the model
is improved by the Federated Learning process, and obtaining similar
results to the ones that can be found in the literature.

Keywords: Fuzzy Cognitive Maps · Federated Learning · Distributed
Artificial Intelligence · Cancer diagnosis

1 Introduction

Distributed Artificial Intelligence is a subfield of Artificial Intelligence that stud-
ies the coordination among several semi-autonomous agents called participants.
Such systems are able to solve more complex problems involving a large amount
of data, but there are privacy concerns about sharing sensitive information.

Federated Learning is a novel approach to Distributed Artificial Intelligence
that enables privacy-preserving communications by sharing the model (or gra-
dients) instead of the data. A central server sends a model to be trained by the
participants with their local data, who send the parameters of the model back to
the server to be aggregated. After iterating this process, the output is a model
that has been trained with the private information of all participants.

This method is especially useful when dealing with sensitive data, from
domains such as finance or healthcare. In this paper, the authors propose a
Federated Fuzzy Cognitive Map approach to help diagnose malignant breast
tumor cells.
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The contributions of this paper can be summarized as follows:

– Distributed learning. The authors propose a PSO-based FCM learning in a
distributed way.

– Privacy-preserving machine learning. The authors design a training scheme
for collaborative FCM learning that offers data privacy. This proposal enables
multiple participants to learn a FCM model on their own inputs, preserving
the privacy of their own data and complying with data privacy regulations.

– Implementation. The authors evaluate the performance of the proposal with
a well-known dataset of cancer diagnosis. The experimental results show that
the proposal achieve a similar performance to other non-distributed methods
and improves the performance of the non-collaborative approach.

The rest of this paper is organized as follows. We discuss existing fundamen-
tals of FCM and the learning approach in Sect. 2. Distributed Artificial Intel-
ligence is described in Sect. 3. Then, we present the methodological proposal
in Sect. 3. Section 4 describes the details of the experimental approach and the
results. Finally, we draw a conclusion in Sect. 5.

2 Fuzzy Cognitive Maps

2.1 Fundamentals

Fuzzy Cognitive Maps (FCMs) were initially proposed by Kosko [3]. FCMs rep-
resent concepts, variables or features as nodes, the relationships between them
as arcs, and the strengths of those relations as weights. It means that a weight
assesses how much node X causes node Y . The fuzzy weights for arcs are nor-
malised on the range {[0,+1]|[−1,+1]}, depending if it includes negative val-
ues or not. The maximum negative influence is −1 and the maximum positive
influence is +1. The value zero shows that there is no relationship between
the concepts. For computational purposes, FCMs can be described via a weight
matrix (connection or adjacency matrix) which contains all weight values of
edges between the concepts.

The relationships between the nodes are expressed by their weights. That is,
if there is a positive causality between two nodes, then �ij > 0. If there is a
negative causality, then �ij < 0 and if there is no relationship between the two
nodes, then �ij = 0. The state of the nodes together is shown in the state vector
c = [c1, c2, . . . , cN ] that gives a snapshot of nodes at any point of the instant in
the scenario.

From a formal point of view, it is possible to represent a FCM as a 4-tuple
Φ = 〈c,W, f, r〉, where c = {ci}n

i=1 is the state of the nodes with n as the number
of nodes, W = [�ij ]n×n is the adjacency matrix representing the weights between
the nodes, f is the activation function, and r is the nodes’ range.

FCMs are dynamical systems involving feedback, where the effect of change
in the state of a node may affect the state of other nodes, which in turn can
affect the former node [7].
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The dynamic starts with an initial vector state c(0) =
(
c1(0), . . . , cn(0)

)
,

which represents the initial state (value) of each node. The new state of the nodes
is computed as an iterative process. It includes an activation function [1] for map-
ping monotonically the node state into a normalized range {[0,+1]|[−1,+1]}. If
the range is [0,+1], the unipolar sigmoid is the most used activation function,
but hyperbolic tangent is the most used when the range is [−1,+1].

The component i of the vector state at time t, ci(t), can be computed as

ci(t) = f

(
n∑

j=1

�ji · cj(t − 1)

)

. (1)

Some systems include nodes whose states should be steady because their
states are not related with the dynamics of the system but their state has some
influence on the state of the other nodes (i.e. sun radiation, wind speed and
so on). In such cases, the state of the node is the same along the dynamics
ci(t) = c(t − 1) | ci ∈ O, where O is the set of output concepts.

If the activation function f is unipolar sigmoid, then the component i of the
vector state ci(t) at the instant t is computed as follows

ci(t) =
(
1 + e−λ·∑n

j=1 �ji·cj(t−1)
)−1

(2)

If the activation function f is hyperbolic tangent, then the component i of
the vector state ci(t) at the instant t is computed as follows

ci(t) =
eλ·∑n

j=1 �ji·cj(t−1) − e−λ·∑n
j=1 �ji·cj(t−1)

eλ·∑n
j=1 �ji·cj(t−1) + e−λ·∑n

j=1 �ji·cj(t−1)
(3)

After the dynamics, the FCM reaches one of the three following states after
a number of iterations: it settles down to either a fixed pattern of node values
(the so-called hidden pattern), a limited cycle, or a fixed-point attractor.

2.2 Augmented FCMs

According to the FCM literature [4], an augmented adjacency matrix is built
by aggregating the adjacency matrix of each FCM. The elements’ aggregation
depends on whether there are common nodes. If the adjacency matrices had no
common nodes, the elements �ij in the augmented matrix (⊗N

i=1) are computed
by adding the adjacency matrix of each FCM model (Wi).

The addition method when the adjacency matrices have not common nodes
is known as direct sum of matrices, and the augmented matrix is denoted as
⊗N

i=1�i. Given a couple of FCMs with no common nodes and even different
number of nodes with adjacency matrices [�ij ]n×n and [�kl]m×m, the resulting
augmented adjacency matrix is as follows

⊗N
i=1�i = diag(�jk,�lo)

=
(

0 [�jk]r×r

[�lo]m×m 0

) (4)
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where N is the number or adjacency matrices to add, zeroes are actually zero
matrices and the dimension of ⊗N

i=1�i is [·]m+r×m+r. In the case of common
nodes, they would be computed as the average or weighted average of the states
of the nodes in each adjacency matrix.

2.3 FCM for Classification

FCMs classification capabilities have been analysed by [8]. In general terms, the
main goal of a conventional classifier is the mapping of an input to a specific
output according to a pattern. In this proposal, the input concepts represent the
features of the dataset, while the output concepts are the classes’ labels where
the patterns belong.

Figure 1 shows the typical topology of a FCM classifier where the state of
the concepts c1 and c2 defines the class where the input vector state belongs. In
that sense, if c1 > c2 the input vector state belongs to class 1 but if c1 < c2 the
input vector state belongs to class 2. Note that ci ∈ {[−1,+1], [0,+1]}, therefore
if c1 = 0.03 and c2 = 0.1, then the input vector state belong to class 2.

Features

c1

c2

c3

c4

c5

c6

cn

�31�32

�41

�42 �51

�52

�61

�62

�n1 �n2

Classes

Fig. 1. Fuzzy Cognitive Maps classifier

2.4 PSO-Based FCM Learning

FCM learning endeavours are commonly focused on building the adjacency
matrix based either on the available historical raw data or on expert knowledge.
FCM learning approaches could be divided into three categories [10]: Hebbian,
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population-based, and hybrid, mixing the main aspects of Hebbian-based and
population-based learning algorithm.

The goal of the Hebbian-based FCM learning approaches is to modify adja-
cency matrices leading the FCM model to either achieve a steady state or con-
verge into an acceptable region for the target system.

Population-based approaches do not need the human intervention. They com-
pute adjacency matrices from historical raw data that best fit the sequence of
input state vectors (the instances of the dataset). The learning goal of FCM evo-
lutionary learning is to generate optimal adjacency matrix for modeling systems
behaviour.

In this sense, Salmeron et al. [11] proposed an advanced decision support
tool based on consultations with a group of experienced medical professionals
using FCMs trained with Particle Swarm Optimization (PSO). Also, Salmeron
and Froelich [9] apply PSO for time series forecasting.

PSO is a bio-inspired, population-based and stochastic optimization algo-
rithm. The PSO algorithm generates a swarm of particles moving in an n-
dimensional search space which must include all potential candidate solutions.

In order to train the FCM adjacency matrices we take into account the
kth particle’s position (a candidate solution or adjacency matrix), denoted as
�k = (�k1 , . . . , �kj

) and its velocity, vk = (vk1 , . . . , vkj
). Note that each particle

is a potential solution or FCM candidate and its position �k represents its
adjacency matrix.

Each particle’s velocity and position are updated at each time step. The
position and the velocity of each particle is computed as follows

�k(t + 1) = �k(t) + vk(t) (5a)
vk(t + 1) = vk(t) + U(0, φ1) ⊗ (�̇k − �k(t)) + U(0, φ2) ⊗ (�̈k − �k(t)) (5b)

where U(0, φi) is a vector of random numbers generated from a uniform distri-
bution within [0, φi], generated at each iteration and for each particle. Also, �̇k

is the best position of particle k in all former iterations and �̈k the best position
of the whole population in all previous iterations and ⊗ is the component-wise
multiplication.

The PSO algorithm’s goal is to locate all the particles in the global optima to
a multidimensional hyper-volume. The fitness function used in this research is the
complement of the Jaccard similarity coefficient (J = (Y × Ŷ ) \J). The Jaccard
score computes the average of Jaccard similarity coefficients between pairs of
the sets of labels. The Jaccard similarity coefficient of the i-th samples, with a
ground truth label set and a predicted label set. The complement operation is
needed in terms of minimization of the fitness function. The Jaccard similarity
coefficient’s complement is computed as follows

J(yi, ŷi) = 1 − |yi ∩ ŷi|
|yi ∪ ŷi| (6)
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The fitness function is sampled after each particle position update and is the
objective function used to compute how close a given particle is in order to be
able to achieve the set aims.

3 Methodological Proposal

3.1 Fundamentals

Distributed Artificial Intelligence is a subset of Artificial Intelligence that allows
the sharing of information among several agents or participants that interact by
cooperation, by coexistence or by competition. Such system manages the distri-
bution of tasks, being therefore more apt to solve complex problems, especially
if they involve a large amount of data.

One of the methods available to construct a distributed artificial intelligence
system is Federated Learning, proposed by McMahan et al. [5] and further devel-
oped in Konecny et al. [2] and McMahan and Ramage [6]. In such system, a
central server constructs a model, usually a neural network, and sends it to the
participants, who train the model in their private data. Their data never leaves
their local devices, therefore ensuring privacy and security. The parameters of
the participant’s model are then averaged to obtain a global model. This process
may be iterated till convergence.

Described in a formal way, a Federated Learning project is composed by a
central server and the participants. The central server is responsible for man-
aging the federated model and the communications with the participants. The
participants own the datasets and train the partial models. The whole process
is described in Fig. 2 and it is as follows:

1. The central server sends a federated model to each participant. If it is the
initial iteration the federated model is proposed by the central server.

2. Each participant trains the received model with their own private dataset.
3. After the partial model is trained, each participant sends the parameters of

the model or its gradients to the central server, encrypted to ensure privacy.
4. The central server aggregates the partial model and builds the federated

model.
5. The central server checks the termination condition and if it is accomplished

the federated model is finished, otherwise the process goes back to step 1.

When the researchers at Google first defined Federated Learning, their initial
idea was to allow Android mobile phones to collaborative construct a prediction
model without migrating the training data from the phone (see McMahan et
al. [6] from the Google AI Blog). A first application they had was to use FL in
Gboard on Android, the Google Keyboard, which predicts the most probable
next phrase or word based on the user-generated preceding text. Recently, Fed-
erated Learning has improved this process, allowing the use of more accurate
models with lower latency, ensuring privacy and less power consumption.
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Fig. 2. Federated Learning process

One of the main advantages of Federated Learning is the promise of secure
and private distributed machine learning, but there are risks associated with
sharing data among several agents, such as the reconstruction of training exam-
ples from the neural network parameters, the uploading of private data from the
agents to the central server, and the protection of the models as intellectual prop-
erty of the companies. There is a large research interest in privacy-preserving
methods applied to Federated Learning, such as the application of Differential
Privacy, Secure Multi-Party Computation or Homomorphic encryption.

3.2 FCM Distributed Learning

The proposed methodology combines Federated Learning with learning FCMs
using Particle Swarm Optimization. The process is shown in Fig. 3 and it is
explained as follows.

1. Triggering the Federated Learning process. The central server triggers the
process in the participants machines.

2. Training FCM in the local dataset. Each participant trains a local FCM with
their own dataset. The authors apply PSO but this methodology is agnostic
to the learning approach. The FCM dynamics is considered steady when the
difference between two consecutive vector states is under tol = 0.00001

3. Sending the trained adjacency matrices and local accuracy for this stage to
the central server. The local FCM is stored in the participant devices.
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4. Weighting local FCMs using accuracy. The central server aggregates the local
FCMs weighting by the accuracy. The aggregation method have been detailed
as Sect. 2.2.

5. Aggregating Federated and Local FCMs. The participants aggregate the Fed-
erated FCM from the central server and their own local FCM.

6. Sending adjacency matrices and accuracy. Participants send again the local
adjacency matrices and the new local accuracy.

7. Checking termination condition. The central server checks if the Federated
process has been run 20 iterations as termination condition. If it is not accom-
plished then it goes back to the step 4.

8. If the termination condition is accomplished then a Federated FCM is
achieved.

Fig. 3. Proposed methodology

The main contribution of this paper is the application of Federation Learning
paradigm for privacy-preserving FCM distributed and coorperative learning.

4 Experimental Approach

4.1 Dataset

Breast cancer is one of the most common cancers among women, accounting for
25% of all cancer cases that affect women worldwide. According to the American
Cancer Society, when breast cancer is detected early, and is in the localized stage,
the 5-year relative survival rate is 99%, which makes the early diagnosis of breast
cancer a main key in the prognosis and chance of survival of such types of cancer.

In recent years the use of Machine Learning algorithms in medicine has
increased exponentially, with applications such as EEG analysis and Cancer
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detection. For example, automatized algorithms have been use to examine bio-
logical data such as DNA methylation and RNA sequencing to infer which genes
can cause cancer and which genes can instead be able to suppress its expression.

In this paper the authors will use the Breast Cancer Wisconsin Dataset,
created by Dr. William H. Wolberg, physician at the University Of Wisconsin
Hospital at Madison, and made publicly available at the UC Irvine Machine
Learning Repository. The dataset comprises data from digitized images of the
fine-needle aspirate of a breast mass that describes features of the nucleus of the
current image of 569 patients, of which 212 are malignant and 357 are benign
cases.

The first two features correspond to the identifier number and the diagno-
sis status (our target). The remaining attributes are thirty real attributes that
measure the mean, the standard error, and the worst radius, texture, perimeter,
area, smoothness, compactness, concave points, concavity, symmetry, and fractal
dimension of the nucleus of the solid breast mass (see Table 1). These data were

Table 1. Dataset details

Id Description Mean Std

Diagnosis Target 0.3726 0.4839

radius mean Mean of distances from center to points on the perimeter 14.1273 3.524

texture mean Standard deviation of gray-scale values 19.2896 4.301

perimeter mean 91.969 24.299

area mean 654.8891 351.9141

smoothness mean Local variation in radius lengths 0.0964 0.0141

compactness mean Perimeter2 / area - 1 0.1043 0.0528

concavity mean Severity of concave portions of the contour 0.0888 0.0797

concave points mean Number of concave portions of the contour 0.0489 0.0388

symmetry mean 0.1812 0.0274

fractal dimension mean Coastline approx. - 1 0.0628 0.0071

radius se Mean of distances from center to points on the perimeter 0.4052 0.2773

texture se Standard deviation of gray-scale values 1.2169 0.5516

perimeter se 2.8661 2.0219

area se 40.3371 45.491

smoothness se Local variation in radius lengths 0.007 0.003

compactness se Perimeter2 / area - 1 0.0255 0.0179

concavity se Severity of concave portions of the contour 0.0319 0.0302

concave points se Number of concave portions of the contour 0.0118 0.0062

symmetry se 0.0205 0.0083

fractal dimension se Coastline approx. - 1 0.0038 0.0026

radius worst Mean of distances from center to points on the perimeter 16.2692 4.8332

texture worst Standard deviation of gray-scale values 25.6772 6.1463

perimeter worst 107.2612 33.6025

area worst 880.5831 569.357

smoothness worst Local variation in radius lengths 0.1324 0.0228

compactness worst perimeter2 / area - 1 0.2543 0.1573

concavity worst Severity of concave portions of the contour 0.2722 0.2086

concave points worst Number of concave portions of the contour 0.1146 0.0657

symmetry worst 0.2901 0.0619

fractal dimension worst Coastline approx. - 1 0.0839 0.0181
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obtained using a graphical computer program called Xcyt, which is capable of
perform the analysis of cytological features based on a digital scan. More details
can be found in [12,13].

4.2 Results

After 20 iterations of the Federated Learning process, the Fuzzy Cognitive Map-
based classifier is able to predict whether the tumor is malignant with an average
accuracy of 0.9383 across all participants, improving the accuracy of a single
Fuzzy Cognitive Map trained in the whole data, and the accuracy in each par-
ticipant before the federation.

The goal of this paper is not the accuracy of the proposal but a distributed
and privacy-preserving approach. Nevertheless, our results are similar to the ones
found in literature [14] (Table 2).

Table 2. Results of the experiments

Accuracy Accuracy

Participant pre-federated post-federated

learning learning

1 0.7727 0.9091

2 0.9130 0.9130

3 0.8696 0.8696

4 0.9565 1.0000

5 1.0000 1.0000

5 Conclusions

This paper proposes an innovative methodology for learning Fuzzy Cognitive
Maps with Federated Learning. It is a step forward for Distributed Artificial
Intelligence and accomplishes the privacy-preserving requirements of the society.

In addition, the authors have developed a method for distributed Fuzzy Cog-
nitive Maps that improves the accuracy of both the algorithm trained in the
whole dataset in a local node and the participant’s algorithms before the Feder-
ated Learning process.

This method was applied to a cancer detection problem, obtaining an accu-
racy of 0.9383. The participants in this process do not share their private data,
therefore forming a privacy-preserving distributed system.
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Abstract. We present fuzzy-rough-learn, the first Python library of
fuzzy rough set machine learning algorithms. It contains three algorithms
previously implemented in R and Java, as well as two new algorithms
from the recent literature. We briefly discuss the use cases of fuzzy-rough-
learn and the design philosophy guiding its development, before provid-
ing an overview of the included algorithms and their parameters.

Keywords: Fuzzy rough sets · OWA operators · Machine learning ·
Python package · Open-source software

1 Background

Since its conception in 1990, fuzzy rough set theory [2] has been applied as
part of a growing number of machine learning algorithms [17]. Simultaneously,
the distribution and communication of machine learning algorithms has spread
beyond academic literature to a multitude of publicly available software imple-
mentations [7,10,19]. And also during the same period, Python has grown from
its first release in 1991 [13] to become one of the world’s most popular high-level
programming languages.

Python has become especially popular in the field of data science, in part
due to the self-reinforcing growth of its package ecosystem. This includes scikit-
learn [11], which is currently the go-to general purpose Python machine learning
library, and which contains a large collection of algorithms.

Only a limited number of fuzzy rough set machine learning algorithms have
received publicly available software implementations. Variants of Fuzzy Rough
Nearest Neighbours (FRNN) [5], Fuzzy Rough Rule Induction [6], Fuzzy Rough
Feature Selection (FRFS) [1] and Fuzzy Rough Prototype Selection (FRPS)
[14,15] are included in the R package RoughSets [12], and have also been released
for use with the Java machine learning software suite WEKA [3,4].
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So far, none of these algorithms seem to have been made available for Python
in a systematic way. In this paper, we present an initial version of fuzzy-rough-
learn, a Python library that fills this gap. At present, it includes FRNN, FRFS,
FRPS, as well as FROVOCO [18] and FRONEC [16], two more recent algorithms
designed for imbalanced and multilabel classification. These implementations all
make use of a significant modification of classical fuzzy rough set theory: the
incorporation of Ordered Weighted Averaging (OWA) operators in the calcula-
tion of upper and lower approximations for increased robustness [1].

We discuss the use cases and design philosophy of fuzzy-rough-learn in Sect. 2,
and provide an overview of the included algorithms in Sect. 3.

2 Use Cases and Design Philosophy

The primary goal of fuzzy-rough-learn is to provide implementations of fuzzy
rough set algorithms. The target audience is researchers with some programming
skills, in particular those who are familiar with scikit-learn. We envision two
principal use cases:

– The application of fuzzy rough set algorithms to solve concrete machine learn-
ing problems.

– The creation of new or modified fuzzy rough set algorithms to handle new
types of data or to achieve better performance.

A third use case falls somewhat in between these two: reproducing or bench-
marking against results from existing fuzzy rough set algorithms.

To facilitate the first use case, fuzzy-rough-learn is available from the two
main Python package repositories, pipy and conda-forge, making it easy to install
with both pip and conda. fuzzy-rough-learn has an integrated test suite to limit
the opportunities for bugs to be introduced. API documentation is integrated in
the code and automatically updated online1 whenever a new version is released,
and includes references to the literature.

We believe that it is important to make fuzzy rough set algorithms available
not just for use, but also for adaptation, since it is impossible to predict or
accommodate all requirements of future researchers. Therefore, the source code
for fuzzy-rough-learn is hosted on GitHub2 and freely available under the MIT
license. We have attempted to write accessible code, by striving for consistency
and modularity. The coding style of fuzzy-rough-learn is a compromise between
object-oriented and functional programming. It makes use of classes to model the
different components of the classification algorithms, but as a rule, functions and
methods have no side-effects. Finally, subject to these design principles, fuzzy-
rough-learn generally follows the conventions of scikit-learn and the terminology
of the cited literature.

1 https://fuzzy-rough-learn.readthedocs.io.
2 https://github.com/oulenz/fuzzy-rough-learn.

https://fuzzy-rough-learn.readthedocs.io
https://github.com/oulenz/fuzzy-rough-learn
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3 Contents

fuzzy-rough-learn implements three of the fuzzy rough set algorithms mentioned
in Sect. 1: FRFS, FRPS and FRNN, making them available in Python for the
first time. In addition, we have included two recent, more specialised classifiers:
the ensemble classifier FROVOCO, designed to handle imbalanced data, and the
multi-label classifier FRONEC.

Together, these five algorithms form a representative cross-section of fuzzy
rough set algorithms in the literature. In the future, we intend to build upon
this basis by adding more algorithms (Table 1).

3.1 Fuzzy Rough Feature Selection (FRFS)

Fuzzy Rough Feature Selection (FRFS) [1] greedily selects features that induce
the greatest increase in the size of the positive region, until it matches the size
of the positive region with all features, or until the required number of features
is selected.

The positive region is defined as the union of the lower approximations of
the decision classes in X. Its size is the sum of its membership values.

The similarity relation RB for a given subset of attributes B is obtained by
aggregating with a t-norm the per-attribute similarities Ra associated with the
attributes a in B. These are in turn defined, for any x, y ∈ X, as the complement
of the difference between the attribute values xa and ya after rescaling by the
sample standard deviation σa (1).

Ra(x, y) = max(1 − |xa − ya|
σa

, 0) (1)

Table 1. Parameters of FRFS in fuzzy-rough-learn

Name Default value Description

n features None Number of features to
select. If None, will
continue to add features
until positive region size
becomes maximal

owa weights deltaquadsigmoid (0.2, 1) OWA weights to use for
calculation of soft
minimum in lower
approximations

t norm ‘lukasiewicz’ T-norm used to aggregate
the similarity relation R
from per-attribute
similarities
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3.2 Fuzzy Rough Prototype Selection (FRPS)

Fuzzy Rough Prototype Selection (FRPS) [14,15] uses upper and/or lower
approximation membership as a quality measure to select instances. It follows
the following steps:

1. Calculate the quality of each training instance. The resulting values are the
potential thresholds for selecting instances (Table 2).

2. For each potential threshold and corresponding candidate instance set, count
the number of instances in the overall dataset that have the same decision
class as their nearest neighbour within the candidate instance set (excluding
itself).

3. Return the candidate instance set with the highest number of matches. In
case of a tie, return the largest such set.

There are a number of differences between the implementations in [15] and
[14]. In each case, the present implementation follows [14]:

– While [15] uses instances of all decision classes to calculate upper and lower
approximations, [14] calculates the upper approximation membership of an
instance using only instances of the same decision class, and its lower approx-
imation membership using only instances of the other decision classes. This
choice affects over what length the weight vector is ‘stretched’.

Table 2. Parameters of FRPS in fuzzy-rough-learn

Name Default value Description

quality measure ‘lower’ Quality measure to use for
calculating thresholds.
Either the upper
approximation of the
decision class of each
attribute, the lower
approximation, or the
mean value of both

aggr R np.mean Function used to
aggregate the similarity
relation R from
per-attribute similarities

owa weights invadd() OWA weights to use for
calculation of soft
maximum and/or
minimum in quality
measure

nn search KDTree() Nearest neighbour search
algorithm to use
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– In addition, [14] excludes each instance from the calculation of its own upper
approximation membership, while [15] does not.

– [15] uses additive weights, while [14] uses inverse additive weights.
– [15] defines the similarity relation R by aggregating the per-attribute simi-

larities Ra using the �Lukasiewicz t-norm, whereas [14] recommends using the
mean.

– In case of a tie between several best-scoring candidate prototype sets, [15]
returns the set corresponding to the median of the corresponding thresholds,
while [14] returns the largest set (corresponding to the smallest threshold).

In addition, there are two implementation issues not addressed in [15] or [14]:

– It is unclear what metric the nearest neighbour search should use. It seems
reasonable that it should either correspond to the similarity relation R (and
therefore incorporate the same aggregation strategy from per-attribute simi-
larities), or that it should match whatever metric is used by nearest neighbour
classification subsequent to FRPS. By default, the present implementation
uses Manhattan distance on the scaled attribute values.

– When the largest quality measure value corresponds to a singleton candidate
instance set, it cannot be evaluated (because the single instance in that set
has no nearest neighbour). Since this is an edge case that would not score
highly anyway, it is simply excluded from consideration.

3.3 Fuzzy Rough Nearest Neighbour (FRNN) Multiclass
Classification

Fuzzy Rough Nearest Neighbours (FRNN) [5] provides a straightforward way
to apply fuzzy rough sets for classification. Given a new instance y, we obtain
class scores by calculating the membership degree of y in the upper and lower
approximations of each decision class and taking the mean. This implementation
uses OWA weights, but limits their application to the k nearest neighbours of
each class, as suggested by [8] (Table 3).

3.4 Fuzzy Rough OVO Combination (FROVOCO) Multiclass
Classification

Fuzzy Rough OVO COmbination (FROVOCO) [18] is an ensemble classifier
specifically designed for, but not restricted to, imbalanced data, which adapts
itself to the Imbalance Ratio (IR) between classes. It balances one-versus-one
decomposition with two global class afinity measures (Table 4).

In a binary classification setting, the lower approximation of one class cor-
responds to the upper approximation of the other class, so when using OWA
weights, the effective number of weight vectors to be chosen is 2. FROVOCO
uses the IR-weighting scheme, which depends on the IR between the classes. If
the IR is less than 9, both classes are approximated with exponential weights. If
the IR is 9 or more, the smaller class is approximated with exponential weights,



496 O. U. Lenz et al.

Table 3. Parameters of FRNN in fuzzy-rough-learn

Name Default value Description

upper weights additive() OWA weights to use in
calculation of upper
approximation of decision
classes

upper k 20 Effective length of upper
weights vector (number of
nearest neighbours to
consider)

lower weights additive() OWA weights to use in
calculation of lower
approximation of decision
classes

lower k 20 Effective length of lower
weights vector (number of
nearest neighbours to
consider)

nn search KDTree() Nearest neighbour search
algorithm to use

while the larger class is approximated with a reduced additive weight vector of
effective length k equal to 10% of the number of instances.

Provided with a training set X, and a new instance y, FROVOCO calculates
the class score of y for a class C from the following components:

V (C, y) weighted vote For each other class C ′ �= C, calculate the upper approx-
imation memberships of y in C and C ′, using the IR-weighting scheme. Rescale
each pair of values so they sum to 1, then sum the resulting scores.
mem(C, y) positive affinity Calculate the average of the membership degrees
of y in the upper and lower approximations of C, using the IR-weighting scheme.
msen(C, y) negative affinity For each class C ′, calculate the average positive
affinity of the members of C in C ′. Combine these average values to obtain the
signature vector SC . Calculate the mean squared error of the positive affinities
of y for each class and SC , and divide it by the sum of the mean squared errors
for all classes.

Table 4. Parameters of FROVOCO in fuzzy-rough-learn

Name Default value Description

nn search KDTree() Nearest neighbour search algorithm to use



fuzzy-rough-learn 0.1 497

The final class score is calculated from these components in (2).

AV (C, y) =
V (C, y) + mem(C, y)

2
− 1

m
msen(C, y). (2)

3.5 Fuzzy Rough Neighbourhood Consensus (FRONEC) Multilabel
Classification

Fuzzy Rough Neighbourhood Consensus (FRONEC) [16] is a multilabel classi-
fier. It combines the instance similarity R, based on the instance attributes, with
label similarity Rd, based on the label sets of instances. It offers two possible
definitions for Rd. The first, R

(1)
d , is simply Hamming similarity scaled to [0, 1].

The second label similarity, R
(2)
d , takes into account the prior probability pl of

a label l in the training set. Let L the set of possible labels, and L1, L2 two
particular label sets. Then R

(2)
d is defined as follows (Table 5):

a =
∑

l∈L1∩L2

(1 − pl)

b =
∑

l∈L\(L1∪L2)

pl

R
(2)
d =

a + b

a + b + 1
2 |L1ΔL2|

(3)

Table 5. Parameters of FRONEC in fuzzy-rough-learn

Name Default value Description

Q type 2 Quality measure to use for
identifying most relevant
instances: based on lower
(1), upper (2) or both
approximations (3)

R d type 1 Label similarity relation
to use: Hamming
similarity (1) or based on
prior probabilities (2)

k 20 Number of neighbours to
consider for
neighbourhood consensus

weights additive() OWA weights to use for
calculation of soft
maximum and/or
minimum

nn search KDTree() Nearest neighbour search
algorithm to use
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Provided with a training set X, and a new instance y, FRONEC predicts the
label set of y by identifying the training instance with the highest ‘quality’ in
relation to y. There are three possible quality measures, based on the upper and
lower approximations.

Q1(y, x) = OWAwl
({I(R(z, y), Rd(x, z))|z ∈ N(y)})

Q2(y, x) = OWAwu
({T (R(z, y), Rd(x, z))|z ∈ N(y)})

Q3(y, x) =
Q1(y, x) + Q2(y, x)

2

(4)

Where Rd is a choice of label similarity, T the �Lukasiewicz t-norm, I the
�Lukasiewicz implication, and N(y) the k nearest neighbours of y in X, for a
choice of k.

For a choice of quality measure Q, FRONEC predicts the labels of the training
instance with the highest quality. If there are several such training instances, it
predicts all labels that appear with at least half.

3.6 OWA Operators and Nearest Neighbour Searches

Each of the algorithms in fuzzy-rough-learn uses OWA operators [20] to calculate
upper and lower approximations. OWA operators take the weighted average of
an ordered collection of real values. By choosing suitably skewed weight vectors,
OWA operators can thus act as soft maxima and minima. The advantage of
defining upper and lower approximations with soft rather than strict maxima and
minima is that the result is more robust, since it no longer depends completely
on a single value.

To allow experimentation with other weights, we have included a range of pre-
defined weight types, as well as a general OWAOperator class that can be extended
and instantiated by users and passed as a parameter to the various classes.

Similarly, users may customise the nearest neighbour search algorithm that
is used in all classes except FRFS by defining their own subclass of NNSearch.
For example, by choosing an approximative nearest neighbour search like Hier-
archical Navigable Small World [9], we obtain Approximate FRNN [8].
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Abstract. A number of nonequivalent perspectives on granular com-
puting are known in the literature, and many are in states of contin-
uous development. Further related concepts of granules and granula-
tions may be incompatible in many senses. This expository paper is
intended to explain basic aspects of these from a critical perspective, their
range of applications and provide directions relative to general rough sets
and related formal approaches to vagueness. General granular principles
related to knowledge are also mentioned.
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granular computing · Rough objects · Mereology · High granular
operator spaces · Contamination problem · Ontology

1 Introduction

In its simplest form, granules or information granules are building blocks of
a reasoning or computational procedure in soft or hard contexts. Information
granulation can be viewed as a human way of achieving complexity reduc-
tion (rather than data compression) that often plays a key role in divide-and-
conquer strategies used in human problem-solving. Granulations are collec-
tions of granules that have been integrated by some processes that involve
indistinguishability, similarity, proximity or functionality. Associated soft con-
texts typically involve vagueness, uncertainty, indecision or fuzziness and some
level of indeterminacy. This has lead to many distinct mutually not-necessarily
compatible approaches. For example, not all frameworks of granular comput-
ing used in general rough sets are compatible with those used in fuzzy sets.

A natural question is do granulations come first or do granules come first? If
the goal is to perceive and classify objects irrespective of ontology or associ-
ated process, then the question is not particularly relevant. Some approaches
to granularity as in the classical granular computing approach (CGCP) prefer to
start from granulations and proceed to consider granules at multiple levels
of precision. In the axiomatic approach (AGCP) [1], especially when ontol-
ogy is important, it is more common to proceed from granules to granulations.
c© Springer Nature Switzerland AG 2020

R. Bello et al. (Eds.): IJCRS 2020, LNAI 12179, pp. 500–517, 2020.
https://doi.org/10.1007/978-3-030-52705-1_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52705-1_37&domain=pdf
http://orcid.org/0000-0002-0880-1035
https://doi.org/10.1007/978-3-030-52705-1_37


Comparative Approaches to Granularity in General Rough Sets 501

But the converse approach is also relevant in AGCP. In adaptive systems, when
granules are permitted to change relative to events or time or temporal instants,
it makes sense to keep track of the changes through additional operators. This
does suggest that a bottom up approach would be optimal in the scenario.

The number of distinct approaches to ideas of granularity depends on the
perspective used. The level or qualitative description of granules involved may
also be a key determiner of the perspective used. The major approaches are
CGCP, AGCP, primitive granular computing paradigm and adaptive variants
of the first two. Hierarchies within each of these types can also be formalized
or specified.

1.1 Background

The concept of information can also be defined in many not necessarily equiv-
alent ways. In the present author’s view anything that alters or has the potential
to alter a given context in a significant positive way is information. In the contexts
of general rough sets, the concept of information must have the potential to
alter supervenience relations in the contexts (A set of properties Q supervene
on another set of properties T if there exist no two objects that differ on Q with-
out differing on T ), be formalizable and be able to generate concepts of roughly
similar collections of properties or objects. One of the popular abstractions is
that of an information table.

Formally an information table I, is a tuple of the form

I = 〈O, A, {Va : a ∈ A}, {fa : a ∈ A}〉

with O, A and Va being respectively sets of Objects, Attributes and Values respec-
tively. fa : O �−→ ℘(Va) being the valuation map associated with attribute
a ∈ A. Values may also be denoted by the binary function ν : A × O �−→ ℘(V)
defined by for any a ∈ A and x ∈ O, ν(a, x) = fa(x).

Relations may be derived from information tables by way of conditions of
the following form: For x, w ∈ O and B ⊆ A, (x, w) ∈ σ if and only if (Qa,b ∈
B)Φ(ν(a, x), ν(b, w), ) for some quantifier Q and formula Φ. The relational
system S = 〈S,σ〉 (with S = O) is said to be a general approximation space (S
and S will be used interchangeably). In particular if σ is an equivalence relation
then S is referred to as an approximation space. It should be noted that objects
are assumed to be defined (to the extent possible) by attributes and associated
valuations.

In classical rough sets, on the power set ℘(S), lower and upper approxima-
tions of a subset A ∈ ℘(S) operators, apart from the usual Boolean operations,
are defined as per: Al =

⋃
[x]⊆A[x], Au =

⋃
[x]∩A�=∅

[x], with [x] being the equiv-
alence class generated by x ∈ S. If A,B ∈ ℘(S), then A is said to be roughly
included in B (A � B) if and only if Al ⊆ Bl and Au ⊆ Bu. A is roughly equal to
B (A ≈ B) if and only if A � B and B � A. The positive, negative and boundary
region determined by a subset A are respectively Al, (Au)c and Au\Al (c being
the set complement).
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In a general approximation space S = 〈S,R〉, any subset A ⊆ S will be said
to be a R-block if and only if it is maximal with respect to the property A2 ⊆ R.
The set of all R-blocks of S will be denoted by BR(S). If R is reflexive, then BR(S)
is a proper cover of S. These are examples of granules. Any map n : H �−→ ℘(H)
on a set H generates a set of granules called neighborhood granules [2] on H.
These are called neighborhood maps if x ∈ n(x) holds for all x. Specifically, the
successor neighborhood generated by a point x ∈ S is [x] = {a : Rax} (Rax in
infix form is aRx).

In any formal approach to vagueness, it is necessary to specify the environ-
ment or context of discourse, the main objects of interest, presumptions about
how objects interact with the environment, and interpretation. Often people
working in AI and ML refer to meta levels to partly specify this relative to what
is known or assumed in the literature. This relative specification may not be
always adequate (and requires elaboration) in a number of problems as indi-
cated in [1,3]. Specific classes of domains that require different formalism are
considered in [4,5].

In the context of general rough sets, various concepts of rough objects
(including roughly equivalent objects) [1,3,6] with associated meta operations
and rules correspond to semantic domains (or domains of discourse). In the
context of relation based rough sets, the power set ℘(S) (or generalizations
thereof), lower and upper approximation operators, and other usual opera-
tions, generate a semantics. The associated semantic domain in the sense of
a collection of restrictions on possible objects, predicates, constants, functions
and low level operations on those is referred to as the classical semantic domain
(meta-C) for general rough sets [3]. In contrast, the semantic domain associ-
ated with sets of rough objects is a rough semantic domain (meta-R). Many
other domains, including hybrid semantic domains, can be generated [1]. In
[7], the models refer to reasoning about the power set of the set of possible
order-compatible partitions of the set of rough objects in the context, while in
[8], the models refer to maximal sequences of mutually distinguishable objects.

The concept of contamination was introduced in [9] and explored in [1,3,8]
by the present author. It is always relative to the application context and can
be read as a realization of the meta principle models should avoid making assump-
tions or simplifications that are not actualized in the application context in the contexts
of human reasoning (or reasoning that involves causality as in human reasoning). A
model is contaminated if and only if it does not satisfy the principle. Because of
its focus on human reasoning (or reasoning that involves causality as in human
reasoning), the problem of avoiding contamination may not always be impor-
tant or may be solved in much weaker senses in specific application contexts
of rough sets. For example, while computing attribute reducts of high dimen-
sional noisy data, it may be more relevant to focus on quality of classification
(especially when few preferences among attributes can be indicated or derived).
On the other hand, while approximately designing the most tasty food for tigers
under resource constraints, the addition of sodium glutamate and pepper to red
meat (based on the experiences of non-vegetarian humans that possess far more
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sophisticated sense of taste) is not a good idea – in this scenario the approxima-
tions of tasty food are contaminated. Contamination may also be due to opera-
tions used in constructing approximations and rough objects [10].

Contamination avoidance is associated with a distinct minimalist approach
that takes the semantic domains involved into account and has the potential to
encompass the three principles of non-intrusive analysis. Some sources of con-
tamination are those arising from assumptions about distribution of attributes,
introduction of assumptions valid in one semantic domain into another by
oversight [10], numeric functions used in rough sets (and soft computing in
general) and fuzzy representation of linguistic hedges. It is essential for mod-
eling relation between attributes [1,6,11,12]. A Bayesian approach to modeling
causality between attributes is proposed in [13] – the approach tries to avoid
contamination to an extent.

For basics of partial algebras, see [14]. A partial algebra P is a tuple of the form
〈P, f1, f2, . . . , fn, (r1, . . . , rn)〉 with P being a set, fi’s being partial function
symbols of arity ri. The interpretation of fi on the set P should be denoted by f

P
i ,

but the superscript will be dropped in this paper as the application contexts are
simple enough. If predicate symbols enter into the signature, then P is termed
a partial algebraic system.

Terms are defined in the following way:

• All variable symbols are term symbols;
• If t1, . . . tri

are term symbols, then fi(t1, . . . tri
) is also a term symbol;

• Nothing else is a term symbol.

When a term symbol t is interpreted on the partial algebra, then it is formally
denoted by tP and referred to as a term. The distinction between the two will
be left to the context in this paper.

For two terms s, t, s
ω
= t shall mean, if both sides are defined then the two

terms are equal (the quantification is implicit). ω
= is the same as the existence

equality (also written as e
=) in the present paper. s ω∗

= t shall mean if either side
is defined, then the other is and the two sides are equal (the quantification is
implicit). Note that the latter equality can be defined in terms of the former as

(s
ω
= s −→ s

ω
= t)& (t

ω
= t −→ s

ω
= t)

2 Mereology

Mereology is a collective term for a number of philosophical and formal the-
oretical approaches to parts and wholes, connectedness of objects, and variants
thereof. Many of these approaches are not mutually compatible and so the dis-
cipline should be regarded as a plural one that is united by the goal to study
parts and wholes [15,16].
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Five distinct phases in the development of mereology (based on significant
methodological differences) are ancient, medieval, universal parthood related, early
twentieth century and modern mereologies. The subject of mereology is common to
most ancient cultures and philosophical debates associated concern questions
related to the universality of parthood, the whole being a sum or fusion of its
parts and concepts of emptiness. Many of these debates have had significant
impact on subsequent developments. Gradation of wholes into strong, weak and
weaker wholes, for example, can be related to debates about no component (like
wheels, poles and axle) of a chariot having the property of being a chariot. A
whole in which the parts exist relative to the whole and are mutually depen-
dent on the same is said to be strong, while a weak whole is one in which parts
are less united. The concept of emptiness or the empty is complicated in most
mereologies and is of ancient origin.

Some important principles that may be accepted in a specific theory are the
existence of mereological atoms (entities with no proper parts), atomistic compo-
sitionality (everything is ultimately composed of atoms), extensionality (no two
composite wholes can have the same proper parts), and the principle of unre-
stricted composition (any group of objects composes a whole).

A major difference between mereology and set theory is that the latter is
committed to the existence of abstract entities such as empty sets and classes.
In the former, the whole can be as concrete as the part is. The idea of empty
set is inadmissible in Lesniewski’s mereology, and ideally it should be studied
over categories or in a formal language. In most of this tutorial, parthood will
be explored over a set-theoretic framework with its associated dualism. While
the sum of certain things is unique whenever it exists, at least three concepts of
mereological fusion are known. The third definition of fusion is that a fusion of
b’s is a sum of at least some bs. Thus a fusion of tomatoes may be the sum of
all bright red ovaloid tomatoes. Variants of the third definition are used in this
exposition. The fusion axiom is the principle that fusion is unrestricted. That is
the principle that every plurality of objects has at least one fusion – this is not
assumed.

For ground mereology, in a first order language enhanced with quantifiers,
the binary parthood predicate P is assumed to be reflexive, antisymmetric and
transitive. Theories that start from this mereology almost always assume a lot
more. In the axiomatic approach to granules, transitivity is not always assumed. So
associated mereology is quite distinct. From a basic parthood predicate P (irre-
spective of assumptions), the following derived predicates and partial opera-
tions ⊕, ·, � can be defined (some conditions are omitted below):

Overlap: Oxa ↔ (∃z)Pzx ∧ Pza

Proper Part: Pxa ↔ Pxa ∧ ¬Pax,
Overcross: Xxa ↔ Oxa ∧ ¬Pxa

Proper Overlap: Oxa ↔ Xxa ∧ Xax,
wDifference1: (∀x,a, z)(x � a = z → (∀w)(Pwz ↔ (Pwx ∧ ¬Owa)))
Sum1: (∀x,y, z)(x ⊕ y = z → (∀w)(Owz ↔ (Owx ∨ Owy)))
Product1: (∀x,y, z)(x � y = z → (∀w)(Pwz ↔ (Pwx ∧ Pwy)))
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3 General Rough Sets and Granularity

General rough sets can be studied for different purposes from the perspec-
tive of AGCP, CGCP or non-granular perspectives and in many different ways.
Ideas of granularity used in fuzzy sets (see [17]) in particular are not always
compatible with those used in general rough sets. It can however be said that
granules (or information granules) are basically collections sharing some prop-
erties relating to indiscernibility, similarity or functionality at some levels of
discourse.

3.1 Granules and Granulations

A granule may be vaguely defined as some concrete or abstract realization of
relatively simpler objects through the use of which more complex problems
may be solved. They exist relative to the problem being solved in question. In
the present author’s view at least some of the basic ideas of granular computing
have been in use since the dawn of human evolution. In earlier papers [1,3,18],
she has shown that the methods can be classified into the PGCP, CGCP and
AGCP. Adding adaptive aspects and other time related constraints (especially
for handling interactive or emergent systems [19,20]) leads to additional cat-
egories. Because they have been considered in the perspective of CGCP, they
may be regarded as extensions of the same. In all theories or theoretical under-
standings of granularity, the term granules refer to parts or building blocks of
the computational process and granulations to collections of such granules in
the context.

3.2 Primitive Granular Computing

Even in the available information on earliest human habitations and dwellings,
it is possible to identify a primitive granular computing process at work. This
can for example be seen from the stone houses, dating to 3500 BCE, used in
what is present-day Scotland. Related details can be found in [1].

The main features of primitive granular computing are that

• requirements associated with the problem are not rigidly specified;
• both vague and precise granules (more often the former) may be used;
• not much formalization is involved in the specifications (historically these

become more complicated in mereological approaches) and that has never
been part of the goals;

• scope for abstraction is relatively limited and
• the concept of granules used may be concrete or abstract (relative to all mate-

rialist and extended materialist viewpoints), but may be barely constrained
by rules.

While the method may be of ancient origin, it is still used in a num-
ber of modern contexts. The diet of people living in regions close to the sea
depends on seasonal fluctuations in the production of fish and other foods.
These dynamics can be understood in the perspective of PGCP [1].
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3.3 Classical Granular Computing Paradigm

In the context of commercial painting, different parts of navigation indicators
can be painted with brushes of different sizes. The artist involved may be able
to use many distinct subsets of brushes to paint the sign based on choice of
style, the time required to complete the sign and quality. The entire thinking
process associated with the execution of the job can be viewed from a granular
computing paradigm based on approximate precision as opposed to exact pre-
cision (see [1]). One possible granular strategy in the situation is the following:

• draw outline of sign using stencils;
• identify sub-regions from the finest to the broadest;
• make an initial selection of brushes;
• paint and check the progress (and quality) of work produced, and finally
• stop or repeat steps using more appropriate brush sizes.

The strategy used in the example falls under the classical granular comput-
ing because painting brushes have fixed size. It differs from PGCP in that the
form of the sign was preconceived and the tools including brushes do not have
a role in determining the conception of the product.

Security personnel, while opening the gates of a building for incoming or
outgoing vehicular traffic proceed to open gates from a granular perspective of
approximation of the size or width of the vehicle involved in question. Gran-
ules of varying precision may be used in the process as opposed to the kind
of precision supposed in the previous example. This also suggests a different
axiomatic framework being employed in the rough computation. The extent to
which gates have already been opened at a particular instant also has a role
in influencing subsequent moves. If switching between levels of granularity is
done, then it can also be argued that the solution used falls under CGCP and
not PGCP. Because adaptivity is understood from a higher order perspective
and in relation to features falling outside precision, this may be read from such
a viewpoint as well.

In [3], the precision based granular computing paradigm was traced to [21]
and named as the classical granular computing paradigm CGCP by the present
author. More correctly, it is also an ancient method that has been identified as
such in [1] and elsewhere by her. CGCP is often referred to as the granular
computing paradigm and has since been used in soft, fuzzy and rough set the-
ories in different ways [22–26]. Some of the paradigm fragments involved in
applying CGCP are:

• PF-1: Granules can exist at different levels of precision.
• PF-2: Among the many precision levels, a precision level at which the prob-

lem at hand is solvable should be selected.
• PF-3: Granulations (granules at specific levels or processes) form a hierarchy

(later development).
• PF-4: It is possible to easily switch between precision levels.
• PF-5: The problem under investigation may be represented by the hierarchy

of multiple levels of granulations.
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CGCP is Ancient. Many approximation methods used in mathematical practice
essentially use CGCP for solving problems. Examples range from those relating
algorithms for approximating π to finding square roots of numbers. An ancient
procedure of computing square roots is the Babylonian method. It is at least
2500 years old and is essentially the following:

Babylonian Method

• Problem: To compute
√

a, a ∈ R+ to some desired level of accuracy (speci-
fied in relative or absolute terms).

• Initialization: Select an arbitrary value ao close to
√

a.
• Recursion Step: an+1 = 0.5(an + a

an
) for n ∈ N

• Repeat previous step
• stop if desired accuracy is attained

The algorithm is quadratically convergent and good initialization is neces-
sary for fast convergence. In other words some idea about possible approximate
solutions is also essential. It is a special case of many other methods including
the Newton-Raphson method and the modern Householder’s method. In fact,
in mathematical contexts, it is possible to indicate concepts of precision in a
number of ways:

• Fixed values of initialization correspond to bounds on the precision of the
solution at different cycles of computation.

• If the precision of the solution desired is alone fixed, then wide variation in
initialization would be admissible.

• If the time required for computation is alone fixed or specified by an interval,
then again wide variation in precision of initialization would be admissible.

This suggests the following problem: Can CGCP be classified or graded relative
to possible ways in which the precision can be categorized?

3.4 Axiomatic Granular Computing Paradigm

The axiomatic approach to granularity essentially consists in investigations
relating to axioms satisfied by granules, the very definitions of granules and
associated frameworks. Emphasis on axiomatic properties of granules can be
traced to papers [7,9,27] in the year 2007. That is, if some covers used in con-
structing approximations are overlooked. Neighborhoods had been investi-
gated by a number of authors (see references in [3,26,28–30]) with emphasis on
point-wise approximations. A systematic axiomatic approach to granules and
granulations has been due to the present author in [3,9]. Relatively more spe-
cific versions of this approach have rich algebraic semantics associated. Parts of
the axiomatic approach developed by the present author for general rough sets
have been known in some form in implicit terms. But these were not stressed
in a proper way because of the partial dominance of the point-wise approach.
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The axiomatic approach to granularity initiated in [9] has been developed by
the present author in the direction of contamination reduction in [1,3,8,10,12].
The concept of admissible granules, mentioned earlier, was arrived in the latter
paper. From the order-theoretic algebraic point of view, the deviation is in a new
direction relative to the precision-based paradigm. The paradigm shift includes
a new approach to measures.

In the present author’s classification, a rough approximation operator may
be granular (in the axiomatic sense), co-granular, pointwise, abstract or empirical [31].
Most of the point-wise approximations in cover or relation-based approaches
are co-granular. In cover based rough sets, three kinds of approximations
are mentioned in [28]. Of these the subsystem based approximations would
fall under the axiomatic granular approach and are not non granular. This is
because in the approach, granulations are necessarily set-theoretically derived
from covers (while the approximations remain a simple union of granules). By
empirical approximations is meant a set of approximations that have been spec-
ified in a concrete empirical context. These may not necessarily be based on
known processes or definite attributes. Examples of such approximations have
been discussed by the present author in rough contexts in [3,32].

4 High Granular Operator Spaces and Variants

Abstract frameworks for the axiomatic approach called rough Y-systems (RYS)
were introduced and studied by the present author in [3] and other papers.
Granular operator spaces (and variants), investigated by the present author
in [1,33,34] in particular, are simplifications and higher order variants of RYS.
They are meant for both abstract and concrete approximations that are granular
in nature in the sense of the axiomatic approach, and are well suited for inves-
tigating semantic questions, representation, ontology, formulation of semantics
and the inverse problem. Other abstract approaches to rough sets without any
restrictions on granularity, but with additional assumptions about order struc-
ture and negations as in [35] are less related. For the connection of the present
approach to the numeric function based rough mereological approach [36] the
reader may refer to [1,3,37].

In a high general granular operator space (GGS), defined below, aggrega-
tion and co-aggregation operations (∨, ∧) are conceptually separated from
the binary parthood (P), and a basic partial order relation (�). Parthood is
assumed to be reflexive and antisymmetric. It may satisfy additional general-
ized transitivity conditions in many contexts. Real-life information processing
often involves many non-evaluated instances of aggregations (fusions), com-
monalities (conjunctions) and implications because of laziness or supporting
meta data or for other reasons – this justifies the use of partial operations. Spe-
cific versions of a GGS and granular operator spaces have been studied in [1] by
the present author for handling a large spectrum of rough set contexts. GGS has
the ability to handle adaptive situations as in [38] through special morphisms –
this is again harder to express without partial operations.
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The underlying set S may be a set of collections of attributes, objects with or
without labels or anything else. In practice, the set of all attributes in a context
need not be known exactly to the reasoning agent constructing the approxima-
tions. The element � may be omitted in these situations or the issue can be
managed through restrictions on the granulation. Also, it often happens that cer-
tain objects cannot be approximated in an acceptable way. Therefore, it can be argued
that the approximations operations used should be partial. Related abstractions
(Pre-GGS) are not discussed in this tutorial.

Definition 1. A High General Granular Operator Space (GGS) S shall be a partial
algebraic system of the form S = 〈S,γ, l,u,P,�,∨,∧,⊥,�〉 with S being a set, γ

being a unary predicate that determines G (by the condition γx if and only if x ∈ G)
an admissible granulation(defined below) for S and l,u being operators : S �−→ S

satisfying the following (S is replaced with S if clear from the context. ∨ and ∧ are
idempotent partial operations and P is a binary predicate. Further γx will be replaced
by x ∈ G for convenience.):

(∀x)Pxx (PT1)
(∀x,b)(Pxb & Pbx −→ x = b) (PT2)

(∀a,b)a ∨ b
ω
= b ∨ a ; (∀a,b)a ∧ b

ω
= b ∧ a (G1)

(∀a,b)(a ∨ b) ∧ a
ω
= a ; (∀a,b)(a ∧ b) ∨ a

ω
= a (G2)

(∀a,b, c)(a ∧ b) ∨ c
ω
= (a ∨ c) ∧ (b ∨ c) (G3)

(∀a,b, c)(a ∨ b) ∧ c
ω
= (a ∧ c) ∨ (b ∧ c) (G4)

(∀a,b)(a � b ↔ a ∨ b = b ↔ a ∧ b = a) (G5)

(∀a ∈ S)Pala & all = al & Pauauu (UL1)

(∀a,b ∈ S)(Pab −→ Palbl & Paubu) (UL2)

⊥l = ⊥ & ⊥u = ⊥ & P�l� & P�u� (UL3)
(∀a ∈ S)P⊥a & Pa� (TB)

Let P stand for proper parthood, defined via Pab if and only if Pab & ¬Pba). A
granulation is said to be admissible if there exists a term operation t formed from the
weak lattice operations such that the following three conditions hold:

(∀x∃x1, . . . xr ∈ G) t(x1, x2, . . . xr) = xl

and (∀x) (∃x1, . . . xr ∈ G) t(x1, x2, . . . xr) = xu, (Weak RA, WRA)

(∀a ∈ G)(∀x ∈ S)) (Pax −→ Paxl), (Lower Stability, LS)

(∀x, a ∈ G)(∃z ∈ S))Pxz, &Paz & zl = zu = z, (Full Underlap, FU)

The conditions defining admissible granulations mean that every approximation is
somehow representable by granules in a algebraic way, that every granule coincides
with its lower approximation (granules are lower definite), and that all pairs of distinct
granules are part of definite objects (those that coincide with their own lower and upper
approximations). Special cases of the above are defined next.
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Definition 2

• In a GGS, if the parthood is defined by Pab if and only if a � b then the GGS is
said to be a high granular operator space GS.

• A higher granular operator space (HGOS) S is a GS in which the lattice opera-
tions are total.

• In a higher granular operator space, if the lattice operations are set theoretic union
and intersection, then the HGOS will be said to be a set HGOS.

In [39], it is shown that the binary predicates can be replaced by partial two-
place operations and γ is replaceable by a total unary operation. The results in
a semantically equivalent partial algebra called a high granular operator partial
algebra (GGSp).

Example 1. Suppose the problem at hand is to represent the knowledge of a spe-
cialist in automobile engineering and production lines in relation to a database
of cars, car parts, calibrated motion videos of cars and performance statistics.
The database is known to include a number of experimental car models and
some sets of cars have model names, or engines or other crucial characteristics
associated. Let S be the set of cars, some subsets of cars, sets of internal parts
and components of many cars. G be the set of internal parts and components of
many cars. Further let

• Pab express the relation that a is a possible component of b or that a belongs
to the set of cars indicated by b or that

• a � b indicate that b is a better car than a relative to a certain fixed set of
features,

• al indicate the closest standard car model whose features are all included in
a or set of components that are included in a,

• au indicate the closest standard car model whose features are all included
by a or fusion of set of components that include a

• ∨, ∧ can be defined as partial operations, while ⊥ and � can be specified in
terms of attributes.

Under the conditions, S = 〈S,G, l,u,P,�,∨,∧,⊥,�〉 forms a GGS. If the spe-
cialist has updated her knowledge over time, then this transformation can be
expressed with the help of morphisms from a GGS to itself.

Granular operator spaces and variants (specifically high granular opera-
tor spaces) adhere to the weak definitions of granularity as per the axiomatic
granular approach, do not assume a negation operation, their universe may
be a collection of rough objects (in some sense), or a mix of rough and non
rough objects or even a collection of all objects involved, the sense of parthood
between objects is assumed to be distinct from other order relations, permit
realistic partial aggregation and commonality operations, and numeric sim-
plified measures are not assumed in general. These features are motivated by
properties satisfied by models in real reasoning contexts, and help in avoiding
contamination to a substantial extent.
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4.1 Granularity Axioms

Even when additional lower and upper approximation operators are added
to a GGS, the resulting framework will still be referred to as a GGS. In such a
framework, granules definitely satisfy some of the following list of axioms (that
are not assumed to be exhaustive). It is assumed that a finite number of lower
({li}ni=1) and upper ({ui}

n
i=1) approximations are used. These have been grouped

based on their role relative to approximations and ontology, and are known to
have a central role in defining possible concepts of granules. For readability, the
interpretations of the predicate γ are written out explicitly.

Representation Related Axioms. The central idea expressed by these axioms
is that approximations are formed from granules through set theoretic or more
general operations on granules that may be derived from the parthood relation
used. In classical rough sets, every approximation is a union of equivalence
classes (the granules). If + is an aggregation operation (possibly related to the
parthood used)

∀i, (∀x)(∃a1, . . .ar ∈ G)a1 + a2 + . . .+ ar = xli and
(∀x)(∃a1, . . . ap ∈ G)a1 + a2 + . . .+ ap = xui (Representability, RA)

In the weaker versions below, approximations are assumed to be repre-
sentable by derived terms instead of through aggregation of granules.

∀i, (∀x∃a1, . . .ar ∈ G) ti(a1, a2, . . . ar) = xli and
(∀x)(∃a1, . . . ar ∈ G) ti(a1, a2, . . . ap) = xui (Weak RA, WRA)

The prefix sub as in Sub RA is used to indicate situations, where only a
subset of approximations happen to be representable.

Crispness Axioms. As indicated before an object is crisp in a sense if it is its
own approximation in that sense. This is quite different from claiming that crisp
objects are those that cannot be approximated by any other object. While crispness
of granules is not a given, they may possibly satisfy the following crispness
axioms:

For each i, (∀a ∈ G)ali = aui = a (Absolute Crispness,ACG)

Crispness Variants: By analogy, the crispness variants sub crispness (SCG),
lower absolute crispness (LACG), upper absolute crispness (UACG), lower sub
crisness (LSCG), and upper sub crispness (USCG) can be defined as for repre-
sentation related axioms.
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Mereological Axioms. The axioms for mereological properties of granules is
presented next. The axiom of mereological atomicity says that no definite ele-
ments (relative to any permitted pair of lower and upper approximations) can
be proper parts of granules.

∀i, (∀a ∈ G)(∀x ∈ S)(Pxa, xli = xui = x −→ x = a)
(Mereological Atomicity, MER)

The axiom of sub-mereological atomicity says that no definite elements (rel-
ative to at least one specific pair of lower and upper approximations) can be
proper parts of granules, while the axiom of inward-mereological atomicity says
that no definite elements (relative to every permitted pair of lower and upper
approximations) can be proper parts of granules.

(∀a ∈ G)(∀x ∈ S)(Pxa,
∧

i

(xli = xui = x) −→ x = a) (Inward MER, IMER)

Stability Axioms. Stability of granules is that granules should preserve appro-
priate parthood relations relative to approximations. Lower stability, defined
below, says that if a granule is part of an object, then the granule should still
be part of the lower approximation of the object. In general, the same does not
hold for all objects. Some stability axioms are

∀i, (∀a ∈ G)(∀x ∈ S)(Pax −→ P(a)(xli)) (Lower Stability, LS)

∀i, (∀a ∈ G)(∀x ∈ S)(Oax −→ Paxui) (Upper Stability, US)

LS & US (Stability, ST)

Overlap Axioms. The possible implications of the mereological overlap and
underlap relations between granules is captured by these axioms. Some of these
are

(∀x, a ∈ G)¬Oxa, (No Overlap, NO)

∀i, (∀x, a ∈ G)(∃z ∈ S)Pxz, Paz, zli = zui = z (Full Underlap, FU)

∀i, (∀x, a ∈ G)(∃z ∈ S)Pxz, Paz, zli = z (LU)



Comparative Approaches to Granularity in General Rough Sets 513

Idempotence Axioms. Idempotence of approximation operators relative to
granules are indicated by axioms such as

∀i, (∀x ∈ G)xli = xlili (l-Idempotence, LI)

The pre-similarity axiom concerns the relation of commonalities between
granules and parthood. It is redundant for classical rough sets with granules
being the equivalence relations.

(∀x, a ∈ G)(∃z ∈ G)P(x · a)(z) (Pre-similarity, PS)

Apparently the three axioms WRA, LS, LU hold in most of the known the-
ories and with most choices of granules. This has been the main motivation for
the definition of admissibility of a subset to be regarded as a granule in [3] and
in the definition of GGS.

4.2 Specific Cases

Few examples that partially justify the formalism of the axioms are presented
next. More details can be found in [1,3]. Let S = 〈S,R〉 be a general approx-
imation space, with granulation being G - the set of successor neighborhoods
and

Al = ∪{g : g ⊆ A, g ∈ G}

Au = ∪{g : g ∩ A �= ∅g ∈ G}.

Theorem 1

• If R is an equivalence, then all of RA, ACG, MER, AS, FU, NO, PS, I, ST hold,
but UU does not hold in general.

• If R is a partial equivalence relation (symmetric, transitive and partially reflexive
relation), RA, MER, NO, UU, US hold, but ACG may not.

• If R is a reflexive relation, then RA, LFU holds, but none of MER, ACG, LI, UI,
NO, FU holds in general.

Let 〈S, (Ri)i ∈ K〉 be a multiple approximation space [40], then apart from
the strong lower, weak lower, strong upper and weak upper approximations
discussed in the paper a hierarchy of approximations can be defined and related
properties can be studied [1].

In the perspective of the axiomatic approach, the next definition is natural:

Definition 3. A specific mathematical approach to relation-based rough set is gran-
ular only if it can be rewritten in the form of a general granular operator space or a
higher order granular operator space satisfying additional conditions.

Some representation theorems that connect GGS with general approxima-
tion spaces are known and more are of natural interest [1].



514 A. Mani

5 Knowledge Representation and Granularity

From a theory of knowledge and application perspective, it is of much inter-
est to study definitions, representation, ontology and relative consistency of
knowledge among other things. Ontological correspondences between knowl-
edge in different contexts, and problems of conflict representation and resolu-
tion are also of interest. The framework of high granular operator spaces (and
partial algebras) can represent knowledge in a far more substantial way than
is afforded by non granular extensions of the situation in classical rough sets.
More so because it is easily extensible with ontology.

In classical rough sets, if S = 〈S,R〉 is an approximation space, then approx-
imations of subsets of S the form Al and Au represent clear and definite con-
cepts [41]. Further every equivalence class interpreted as a granule is definite.
R in this perspective encodes knowledge by way of the distribution of definite
objects. If Q is another stronger equivalence (Q ⊆ P) on S, then the state of the
knowledge encoded by 〈S, Q〉 is a refinement of that of S = 〈S, P〉. Subsequent
work on logics and semantics for comparing different types of knowledge and
measures of relative consistency can be found in [42–44] and elsewhere.

This knowledge interpretation has been extended in a natural granular way
to general approximation spaces by the present author in [9,11]. In [9], choice
operations are used over granules in the context tolerances spaces for the con-
struction of definite objects that correspond to clear concepts or beliefs with
ontology. The upper approximation of an object may be a proper part of the
upper approximation of the upper approximation of the same object in proto-
transitive rough sets considered in [11]. This itself has an impact on the granular
axioms satisfied.

In general some axioms of interest are

K1 All Granules are atomic units of knowledge.
K2 Knowledge is characterized by granules.
K3 Maximal collections of granules subject to a concept of mutual indepen-

dence are admissible concepts of knowledge.
K4 Parts common to subcollections of maximal collections of granules are also

knowledge.
K5 Knowledge K1 is fully consistent with another knowledge K2 if and only if

both generate the same granules.
K6 Knowledge K1 is fully inconsistent with another knowledge K2 if and only if

no granule of one is included in a granule of the other.
K7 Some Granules are atomic units of knowledge.
K8 Every atomic unit of knowledge is a granule.
K9 Some collections of granules form a consistent unit of knowledge.

These axioms are not necessarily true in every context and stand to benefit
much from additional ontologies that can specify rules of combination. This in
turn makes the different semantic models that generalize high granular opera-
tor spaces (and partial algebras) all the more relevant [1,39,45].
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