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Preface

Rough Set Theory (RST) is a prominent methodology within the umbrella of
Computational Intelligence and Granular Computing (GrC) to handle uncertainty in
inconsistent and ambiguous environments. RST has enjoyed widespread success in a
plethora of real-world application domains and remains at the forefront of numerous
theoretical studies to consolidate and augment its well-established properties.

The International Joint Conference on Rough Sets (IICRS) is the flagship confer-
ence of the International Rough Set Society (IRSS). Held annually, the IJCRS con-
ference series aim at bringing academic researchers and industry practitioners together
to discuss and deliberate on fundamental issues around rough sets and unveil successful
applications of this vibrant theory in multiple domains. IJCRS provides an excellent
opportunity for researchers to present their ideas before the rough set community, or for
those who would like to learn about rough sets and find out whether this approach
could be useful for their problems.

IJCRS 2020 was originally planned to take place during June 29 — July 3, 2020, at
the Melia Habana Hotel in Havana, Cuba. Due to the COVID-19 pandemic, however,
the conference was turned into a virtual forum (https://virtualijcrs2020.uclv.edu.cu/) in
order to facilitate the exchange among the conference participants while ensuring their
physical safety and well-being.

IJCRS 2020’s submission topics revolved around three major groups:

— Fundamental Rough Set Models and Methods: e.g. covering rough set models,
decision-theoretic rough set methods, dominance-based rough set methods, rough
clustering, rough computing, rough mereology, partial rough set models or
game-theoretic rough set methods

— Related Methods and Hybridization: e.g. arttificial intelligence, machine learning,
pattern recognition, decision support systems, fuzzy sets and near sets, uncertain
and approximate reasoning, information granulation, formal concept analysis, Petri
nets or nature-inspired computation models

— Application Areas: e.g. medicine and health, bioinformatics, business intelligence,
smart cities, semantic web, computer vision and image processing, cybernetics and
robotics, knowledge discovery, etc.

This volume is a compilation of the IJCRS 2020 conference proceedings and
contains all papers accepted by the Program Committee (except short papers) after a
rigorous peer-review process.

IJCRS 2020 received 50 submissions from 119 authors in 18 countries.! Every
submission was reviewed by at least two Program Committee members. On average,

! While this number of submissions is lower than previous years, it is also very encouraging that over
100 authors chose to submit their work despite the lingering shadow of COVID-19 and the increasing
number of postponed/cancelled conferences because of this pandemic.
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each submission received 2.84 reviews. Finally, the Program Committee chairs selected
37 regular submissions based on their originality, significance, correctness, relevance,
and clarity of presentation to be included in the IJCRS 2020 proceedings. The Program
Committee chairs also accepted two tutorials to be part of the proceedings and two
short papers that are available at the virtual forum. We would like to thank all authors
for submitting their papers and the Program Committee members for their valuable
contribution to the conference through their anonymous, detailed review reports. We
also wish to congratulate those authors whose papers were selected for presentation
and/or publication in the proceedings.

IJCRS 2020’s success was possible thanks to the dedication and support of many
individuals and organizations. First and foremost, we want to thank IRSS for kindly
accepting Havana, Cuba, as the venue of the 2020 IJCRS edition, which signals the
increasing interest RST is amassing across Latin America and the Caribbean. We wish
to express our gratitude to our honorary chairs (Andrzej Skowron and Yiyu Yao), the
Steering Committee members (Tamas Mihalydedk, Victor Marek, and Sushmita Mitra),
and the 70 Program Committee members for their invaluable suggestions, support, and
excellent work throughout the organization process.

We are very grateful to our plenary speakers (Witold Pedrycz and Dominik Slezak),
tutorial speakers (Mani A. and Oliver Urs Lenz), and our special session organizers for
accepting our invitations to share their cutting-edge research work on rough sets and
granular computing.

Special thanks go to Lazaro Pérez Lugo (Universidad Central de Las Villas, Cuba)
whose relentless efforts building, testing, and deploying the virtual forum ensured the
success of this conference in the new COVID-19 circumstances.

Last but certainly not least, we acknowledge the excellent Springer support provided
by Aliaksandr Birukou and Anna Kramer. Their diligent work was greatly appreciated
as they navigated us in a very professional and smooth manner during the compilation
and editing of these proceedings.

Happy reading! We hope that this volume helps spark further interest in RST and
other related methodologies.

June 2020 Rafael Bello
Duogian Miao

Rafael Falcon

Michinori Nakata

Alejandro Rosete

Davide Ciucci
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Rough Forgetting

Patrick Doherty™? and Andrzej Szalas'3(®)

! Department of Computer and Information Science, Linképing University,
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Abstract. Recent work in the area of Knowledge Representation and
Reasoning has focused on modification and optimization of knowl-
edge bases (KB) through the use of forgetting operators of the form
forget(KB, R), where R is a set of relations in the language signature
used to specify the KB. The result of this operation is a new KB where
the relations in R are removed from the KB in a principled manner
resulting in a more efficient representation of the KB for different pur-
poses. The forgetting operator is also reflected semantically in terms of
the relation between the original models of the KB and the models for
the revised KB after forgetting. In this paper, we first develop a rough
reasoning framework where our KB’s consist of rough formulas with a
semantics based on a generalization of Kleene algebras. Using intuitions
from the classical case, we then define a forgetting operator that can be
applied to rough KBs removing rough relations. A constructive basis for
generating a new KB as the result of applying the forgetting operator to
a rough KB is specified using second-order quantifier elimination tech-
niques. We show the application of this technique with some practical
examples.

1 Introduction and Motivations

In Artificial Intelligence, the field of Knowledge Representation and Reasoning
(KRR) deals with the use of logical languages to represent knowledge or beliefs
and the use of inference in some logic to derive additional knowledge or belief
implicit in a base theory represented as a set of logical formulas. The explicit base
theory is often called a Knowledge Base (KB). Consequences A of the KB are
derived through a consequence relation, KB |= A. A signature X (vocabulary) is

The first author has been supported by the ELLIIT Network Organization for
Information and Communication Technology, Sweden; the Swedish Foundation for
Strategic Research SSF (SymbiKBot Project); and a guest professor grant from
Jinan University (Zhuhai Campus). The second author has been supported by grant
2017/27/B/ST6/02018 of the National Science Centre Poland.
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associated with the logical language and is used for specifying the legal relations,
functions, constants, etc., used in the syntax of formulas.

In recent years, there has been much interest in the topic of forgetting oper-
ations in KRR [12]. Intuitions for such operators are based loosely on the fact
that humans often forget what they know or believe for reasons of efficiency
in reasoning. Mapping this loose intuition over to KRR results in some very
powerful and useful techniques for dealing with redundant information in KB’s,
optimizing query retrieval in relation to KB’s [10,17], progressing databases [18],
forgetting with description logics [6,31] and rule based languages [26,27], dealing
with missing information and dataset reduction [14], forgetting sets of literals in
first-order logic [28], in addition to other techniques. In general, one major type
of forgetting aims at removing information from a KB in a controlled manner
where the syntactic elimination has a principled semantic correlation character-
ized in model theory.

Given a KB and a signature X', a common type of forgetting, forget(KB,X"),
can be formulated where X’ C X and KB’ is the result of forgetting the compo-
nents in X’ in KB. One interesting question is the relation between the models
and consequences of KB and the consequences of KB’ after the forgetting oper-
ation is applied to KB. Initial intuitions for this type of forgetting can be traced
all the way back to Boole [2] and his use of variable elimination. Assume a
propositional language with signature X' = {p, ¢, r}. Given a propositional for-
mula A and a signature X’ = {p}, the result of forgetting p in A, forget(A, X"),
is AY vV A, where A is the result of replacing all occurrences of p in A with
‘true” and A, is the result of replacing all occurrences of p in A with ‘false” and
simplifying the result.

In KRR application areas such as robotics, the knowledge or beliefs robots
have about different aspects of the world, is often incomplete and/or uncertain.
Consequently, one wants to find a concise way to model this. Rough set the-
ory [7,8,22,23] has been used to model different types of incompleteness using
indiscernibility and approximations. The general idea is to begin with a universe
of individuals and define an indiscernibility relation over these individuals. In the
classical case, this generates an equivalence relation over individuals. A rough
set is defined by specifying a lower and upper approximation, each consisting
of a number of equivalence classes generated by the indiscernibility relation. All
individuals in equivalence classes included in the lower approximation are in the
rough set, all equivalence classes in the upper approximation intersect with the
rough set, and the individuals in the remaining equivalence classes lie outside the
set. This brings to mind a division of individuals into a tripartite division remi-
niscent of three-valued logics. Later in the paper, this intuition will be formalized
more precisely. In the context of KRR, there has been interest in generalizations
of logical languages and inference to include rough logical languages and infer-
ence using rough theories [8]. This generalization will be used as a vehicle for
specifying rough forgetting operators applied to rough relations in such logics.

Another application area for rough sets and logics is with big data applica-
tions. According to [14],
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“most of the attribute values relating to the timing of big data [...] are
missing due to noise and incompleteness. Furthermore, the number of miss-
ing links between data points in social networks is approximately 80% to
90% and the number of missing attribute values within patient reports
transcribed from doctor diagnoses are more than 90%.”

Rough sets are discussed in [14] as one of remedies to deal with missing data. In
this context, the combination of rough sets with the use of forgetting operations
might prove to be very useful. In cases where important information is missing, it
might be useful to forget the relation or find a relation’s explicit definition and —
using the definition — complete parts of the missing content. In fact, the second-
order quantifier elimination techniques which we describe in this paper and use
as a tool for forgetting, provide us with definitions of eliminated (forgotten)
relations as a side effect.

This paper is primarily about developing a first-order logical framework for
rough theories that can be used to construct rough KB’s, with a formal semantics
based on rough relational structures. Given such a logic, we then define a forget-
ting operator that can be applied to rough theories and we provide the semantics
for such an operator. The forgetting operator is based on second-order quantifier
elimination techniques developed for rough theories. In previous work, we have
shown how second-order quantifier elimination techniques can be automated for
well-behaved fragments of second-order logic. We expand on these results in the
context of rough theories.

The paper is structured as follows. In Sect. 2 we discuss the rough reasoning
framework used throughout the paper. In Sect. 3, we recall definitions for for-
getting used with classical logic and then generalize these and introduce rough
forgetting. Next, in Sect. 4, we provide second-order quantifier elimination the-
orems with proofs which can serve as foundations for algorithmic techniques
for rough forgetting. Section 5 provides a number of examples showing how the
proposed techniques work in practice. Finally, Sect. 6 concludes the paper.

2 Rough Reasoning Framework

Rough sets [21,22] have been defined in many ways (see, e.g., [4,5,7,8,16,23,
25,29,30] and numerous references there). Three- and many-valued approaches
have been intensively studied in the context of rough sets [3,4,15,16]. In the
current paper we will follow the presentation of [16].

Definition 1 (Approximation space). Let U be a set of objects and E be an
equivalence relation on U, Then A = (U, E) is called an approximation space.
By the lower approximation (s*) and upper approximation (s®) of a set s CU
we mean:

st {reU|Vy(E(x,y) —>yes)}; % def {x el |Fy(E(z,y)Ay € s)}. (1)

A set s CU is definable in A iff s is a union of equivalence classes of E. "
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In rough sets, E represents an indiscernibility relation. Approximations are
interpreted as follows, where s C U is a set:

— the lower approximation s represents objects certainly belonging to s;
— the upper approximation s® represents objects possibly belonging to s.

Definition 2 (Rough sets). For an approzimation space A, the ordered pair
(s1, 8u), where s; C s, and s;,8, are definable sets, is called a rough set (wrt

AL .

Remark 1. In the literature, the equivalence relation used to define rough
approximations has been argued to be too strong for many application areas
[8,24,25]. In fact, seriality of E (i.e., the property that Va3y(E(x,y)) has been
proposed as the weakest well-behaved requirement on E. This ensures that
the lower approximation is included in the upper approximation of a rough
set [11,29].

Note also that, according to [19, Section 19.3], every reflexive similarity rela-
tion can be refined to an equivalence relation in a natural way. So reflexivity can
be used as a basic requirement on indiscernibility relations.? .

As shown in [16], there is a close correspondence between rough sets and
Kleene algebras defined below.

Definition 3 (Kleene algebra). An algebra K = (K,U,N,—, L, T) is called
a Kleene algebra if the following hold.

1. K is a De Morgan algebra, i.e., (K,U,N, L, T) is a distributive lattice with
the greatest element T and the least element L, and for all s,t € K,
(a) —(sNt) =—sU—t (De Morgan property),
(b) — —s=s (involution).

2. sN—s<tU-—t, forall s,t € K (Kleene property). .

Note that in Definition 3 we refer to “greatest” and “least” elements. As usual
in lattice theory, we mean the ordering:

Qu
=

€

s<t = (s=snNt), (equivalently: t = sUt). (2)

For rough sets, a subclass of Kleene algebras, rough Kleene algebras, will
have the role of Boolean algebras for classical sets.

Definition 4 (Rough Kleene algebra). Let U be a set of objects. A Kleene
algebra K = (K,U,N,—, L, T) is called a rough Kleene algebra over U iff:

! The set s; serves as the lower approzimation and s, — as the upper approximation
of a set.
2 Note that reflexivity implies seriality.
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— K consists of pairs of sets (si, s,) such that s; C s, CU;
-1 déf <®7@>7T déf <uvu>;

def
- _<Sla5u> é <_5ua_51>-

By a generalized rough set we mean any element of K. "

As the logical counterpart of rough Kleene algebras we will use the three
valued logic of Kleene, K3, with truth values T (true), F (false) and U (unknown),
ordered by:

F<U<T, (3)

with connectives V, A, -. The semantics of connectives is defined by:
TV Ty def max{11,72}; TI AT def min{7, 72 }; (4)
P vty ¥y (5)

where 71,72 € {F,U, T} and max, min are the maximum and minimum wrt (3).

Let us now define the syntax of rough formulas used in this paper. In addition
to connectives =, A,V and quantifiers V, 3 of Kleene logic K3, we add two con-
nectives: € and C. Their intended meaning is rough set membership and rough
set inclusion, respectively.

Definition 5 (Syntax of rough formulas). Let V be a set of first-order vari-
ables (representing domain elements), C be a set of constants and R be a set of
relation symbols. Then:

- Kleene formulas, KF, are defined by the grammar:

(KF) = (R) | ~(KF) | (KF) V (KF) | (KF) A (KF) |
IVNEF) | V{V)(KF);

- rough formulas, RF', are defined by the grammar, where C' UV denotes tuples
consisting of constants and/or variables:

(RF) 2= (KF) | (CUV) e (KF)
F

| (
~(RF) | (RF) V(RF) | (R
I(VV(RF) | (V) (RF).

KF) C (KF) |
F) A (RF) |

An occurrence of a variable is called bound in a formula if it appears inside
the scope of a quantifier. It is called free when it is not bound. "

Rough theories (rough knowledge bases) are defined below.

Definition 6 (Rough theories, rough knowledge bases). Finite sets of

rough formulas are called rough theories (or rough knowledge bases). A finite

set of formulas T is understood as a single formula being the conjunction of for-

mulas in T': /\A. .
AeT
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Remark 2. In the rest of the paper we will often use the traditional syntax
for relations. For example, rather than writing Va3y((z,y) € r), we will write

szly(r(x, y)) =

Definition 7 (Rough literals and facts). By a rough literal we mean an
expression of the form +r(e), where & is the empty symbol or =, r is a relation
symbol and € is a tuple of constants and/or variables. By a rough fact we mean
a rough literal not containing variables. "

The following important property, justifying the use of K3 in the context of
rough forgetting, is an immediate consequence of Theorems 8, 11, 15, proved
in [16]. Below:

— Ag is the class of Kleene algebras;

— RS is the class of rough Kleene algebras;

— A = s B iff for every assignment w : RF — {F, U, T},
e w(A) =T implies w(B) = T, and
e w(B) = F implies w(A) =F.

Corollary 1. For any rough formulas A, B € RF:

AFEac Biff Ay B iff A Ers B, (6)

where =4, and A |Ers are semantic consequence relations for Ax and RS,
respectively. "

To define the semantics of rough formulas, we first need a generalization of
relational structures to their rough version.

Definition 8 (Rough relational structures). Let U be a set of objects, K
be a rough Kleene algebra over U and n > 1 be a natural number. By an n-
argument rough relation over U we mean any generalized rough set consisting
of tuples of the Cartesian product U™. By a rough relational structure we mean
(U,r1,...,1K) where for 1 < i <k, r; is an ng-argument rough relation over U.
One-argument rough relations are called rough concepts and two-argument ones
are called rough roles. "

The semantics of rough formulas is defined below, where A(z«a) denotes
the formula obtained from A by substituting all free occurrences of variable z in
A by constant a.

Definition 9 (Semantics of rough formulas). Let U be a set, K =
(K,U,N,—, L, T) be a rough Kleene algebra over U and R = U, r1,...,7r) be a
rough relational structure,
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. The value of a rough formula, vsg : KF — K, is inductively defined by:

R

— for a relation symbol r, vsgr(r) 4f R where 7R is the relation r in R

- vsr(—A) = ef —vsR(A)
- vsp(AV B) = USR( YUwvsgr(B);
- vsgr(A A B) &ef s r(A) Nvsg(B);
- v (Jz(A(z))) ef U vsg (A(z—a));
acU
- vr (Vo (A(z))) e ﬂ vsg (A(z—a)).
acl
. The truth value of a rough formula, vg : RF — {F, U, T}, is defined induc-
tively:
~ for a Kleene formula A with k free variables, a € U*, and vsgr(A) =
<Tl7 Tu>,
T when a € ry;
R(EL S A) 4 ) U when a € 7o \ 715
F when a € U\ 1y,.
T when for all a € U*,vg(a € A) < vr(a € B);
F otherwise,
where A, B are Kleene formulas with k free variables, and < is the reflex-
ive closure of (3);
— vr(~A) ¥ —wr(A), for o€ {V,A},vr(AoB) ¥ vr(A) o vr(B),
where the semantics of =, V, A on truth values is defined by (4)—(5);

~wp(ACB) Y

- v (Jz(A(z))) e max {vr (A(z—a))}, where max is the mazimum
wrt (3);

- vr (Vo (A(z))) def IHGIg{l {vr(A(za))}, where min is the minimum
wrt (3).

We write R = A to indicate that vg(A) = T. We say that formulas A and
B are equivalent, iff for every R, vg(A) = vr(B). .

3 Forgetting and Rough Forgetting

In the rest of the paper, we assume that knowledge bases are given in the form
of finitely axiomatizable theories. As indicated in Definition 6, each theory con-
sisting of a finite set of axioms is understood as a single formula, being the
conjunction of the axioms.

3 To simplify notation, we use the same notation for relation symbols and correspond-
ing rough relations. Similarly, objects in U are identified with constants denoting
them.
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3.1 Forgetting
The following definition, theorem and example have been formulated in [18].

Definition 10 (Forgetting). Let r be a relation symbol and My, My be rela-
tional structures. Then Mi~,Ms denotes the fact that My differs from My at
most in the interpretation of r.

Let T be a theory. A theory T' is a result of forgetting r in T iff for any
relational structure M', M’ |=T" iff there is a relational structure M such that
MET and M~,. M'. By forget(T;r) we denote the result of forgetting r in T.

In the rest of the paper T'(r«X) denotes the formula resulting from 7'(r) by
replacing every occurrence of r in T by X.

Theorem 1. Let v be a relation symbol and X be a second-order variable with
the same number of arguments as r. Then forget(T;r) = 3X (T(’IN—X)). .

Ezample 1. Let T = ((student(joe) V student(john)) A teacher(john)). Note
that:

((student(joe) V student(john)) A teacher(john)) (student—X)) = (1)
(X (joe) V X (john)) A teacher(john).

Using Theorem 1 and (7) we have:
forget(T’; student) = 3X ((X (joe) V X (john)) A teacher(john)). (8)

It can be easily shown that the formula 3X ((X (joe)V X (john)) Ateacher(john)),
thus forget(T; student) too, is equivalent to teacher(john). "

Theorem 1 shows that the problem of computing forget(T;r) can be reduced
to second-order quantifier elimination. For this purpose, in the current paper we
will adapt the techniques of [1,20] to rough theories.*

3.2 Rough Forgetting
Rough forgetting is defined by analogy with Definition 10.

Definition 11 (Rough forgetting). Let r be a relation symbol and Ry, Ra be
rough relational structures. Then Ri=,Ro denotes the fact that Ry differs from
Ro at most in the interpretation of r.

Let T be a rough theory. A theory T' is a result of rough forgetting r in 7
iff for any rough relational structure R', R’ = T' iff there is a rough relational
structure R such that R =T and R~,R'. By rforget(T;r) we denote the for-
mula being the result of rough forgetting of r in T . "

4 For a broad discussion of related second-order quantifier elimination techniques
see [13].
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As in the case of classical forgetting, we have the following theorem analogous
to Theorem 1, where we use a second-order quantifier, whose semantics is defined
by:®

or (3X (T(X)) = max{ve (T(X—s))}, 9)
where max, min are the maximum and minimum wrt (3).

Theorem 2. Let r be a rough relation symbol and X be a second-order vari-
able with the same number of arguments as r. Then for every rough relational
structure R.:

v (rforget(T;7)) = vr (3X (T (r—X))). .

Comparing to classical forgetting, in rough forgetting we deal with rough
relations rather than with the classical relations. Thus, 3X in Theorem2 is
a second-order quantification over rough sets rather than over the classical ones.

4 Eliminating Second-Order Quantifiers from Rough
Formulas

To formalize second-order quantifier elimination methods and related concepts,
we need a notation A(X«B]z]) defined as follows. Let A, B be rough formulas
such that A contains an n-argument second-order variable X and Z is a tuple of
n first-order variables with free occurrences in formula B. Then:

A(X—BJ[z])

denotes the result of substituting all occurrences of the second-order variable X
by B(Z), where Z in B is respectively substituted by actual parameters of X
(possibly different in different occurrences of X). For example,

(X(a) Vv X(b) ) (X<— r(z,y)[z]) is (r(a,y) vV r(b,y)).
A(X) B(z,y)

The quantifier elimination techniques we develop are based on a monotonicity
property, defined as follows.

Definition 12 (Monotonicity). Let X be a second-order variable represent-
ing n-argument relations and let Z be a tuple consisting of n (first-order) vari-
ables. We say that a rough formula A(X) is monotone in X iff for every rough
relational structure R and rough formulas B,C not containing X and with Z
being all variables with free occurrences, one of the following properties holds:

vr(B(2)) < vr(C(2)) implies vg (A(X(*B[ED) <wor (A(X(—C[Z])); (10)
vr(B(2)) < vr(C(2)) implies vr (A(X—C[z])) < vr (A(X—B[z])). (11)

5 Recall that K is the universe of a rough Kleene algebra K, fixed earlier.
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Properties (10) and (11) are called up-monotonicity and down-monotonicity of
A, respectively. .

The following theorem adapts Ackermann’s Lemma [1,9,13] to rough
theories.

Theorem 3. Let X be an n-argument second-order variable. Let Z be an n-
tuple of variables, A(Z) be a rough formula containing no occurrences of X, with
variables z occurring free, and let B(X) be a rough formula with X as a free
variable.

1. If B(X) is down-monotone in X then for every rough relational structure R,

R(HX(VZ(A(E) C X(2)) A B(X))) = v (B()@-A[z])). (12)

2. If B(X) is up-monotone in X then for every rough relational structure R,

vR (3X(VZ(X(§) C A(2) A B(X))) = v (B(X<—A[§])). (13)

Proof. Let us prove (12).% Let R be an arbitrary rough relational structure.

We have to prove three equivalences vg(lhs) = 7 iff vg(rhs) = 7 for 7 €

{T,U,F}, where lhs and rhs are respectively the letfthand and the righthand

side of Equation (12):

1. (—) Assume that vg (HX(VZ(A( Z) C X(2)) AN B(X ))) = T. In this case,
there is X such that vg (Vz(A(2) € X(2))) = T and vg (B(X)) = T. Thus,
by Definition 9, for every Zz, 1173( (z ) (X (z )) By down-monotonicity of

B(X) in X we conclude that vg (B (X<—A[2])> =T.

~—

(+) Assume that ’UR< (X—Alz )) T. To show that there is X satisfying
vr (VZ(A(2) € X(2)) A B(X)) = T it suffices to set Vz(X(2) % A(2)).
2. (—) Assume that vg <3X(VZ(A( ) C X(2)) A B(X))) = U. In this case,

there is X such that vg (VZ(A(2) C X(2))) = T and B(X) = U. Thus, by
Definition 9, for every z, vg(A(z)) < R(X(z)) By down-monotonicity of

B(X) in X we conclude that vg (B (X—Alz

\_/

> U. Suppose that:
or (B(XAl2 )) T. (14)

However, by 1.(«), (14) implies vg (EIX(VZ(A( ) C X(2) A B(X))) =T,
contradicting the assumption. Therefore, UR< (X —A(z ) =U.
(<) Here, like in the previous point, it suffices to set Vz(X () def A(z)).

5 The proof of (13) is analogous, so we skip it here.
7 Note that C is two-valued, i.e., its truth value can only be T or F.
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3. (—) Assume that vg (HX (Vz(A(2) € X(2)) A B(X))) = F. By points 1.(«)
and 2.(«<), the value vg (B (X<—A[Z]))) can neither be T nor U (since, as

before, this would contradict the assumption). Therefore we can only con-
clude that vg <B (XeA[Z]))) =F.

4. (+) Here, like in the previous points, it suffices to set Vz(X(z) def A(z)). =

The following theorem adapts the fixpoint theorem proved in [20] to rough
theories, where LFP X [A(X)] and GFP X[A(X)] stand for the least and the
greatest fixpoint of A(X) wrt X. Note that we deal with complete lattices and
will always make sure that A(X) is up-monotone in X, such fixpoints exist by
Knaster and Tarski fixpoint theorem.

Theorem 4. Let X be an n-argument second-order variable. Let Z be an n-tuple
of variables, A(X, z) be a rough formula in which variables X and Z are free. Let
A(X, Z) be up-monotone in X and let B(X) be a rough formula with X being a
free variable.

1. If B(X) is down-monotone in X then for every rough relational structure R,

r (3X (Y2(A(X,2) € X(2) A B(X))) =

15
vr (B(X—Lrr X[A(X, 2)[2]]) ) 15)

2. If B(X) is up-monotone in X then for every rough relational structure R,

or (3X (¥2(X(2) € A(X,2) A B(X))) =

16
r (B(X—Grr X[A(X, 2)[]]) ). 1e)

Proof. (Sketch) The proof is similar to the proof of Theorem 3. In the case of (15)
it suffices to notice that the least X satisfying the lefthand side of the equality
is defined by the least fixpoint of A(X). In the case of (16) the suitable X is
defined by the greatest fixpoint of A(X). .

Remark 8. Theorems3 and 4 provide us with definitions of the least and the
greatest rough relations interpreting eliminated relation symbols:

— if the lefthand side of (12) is true then the least relation X satisfying the
formula Vz(A(2) C X(2)) A B(X) is defined by Vz(X (2) < A(2));

— if the lefthand side of (13) is true then the greatest relatlon X satisfying the
formula Vz(X (2) C A(2)) A B(X) is defined by Vz(X (2 5) <Az ));

— if the lefthand side of (15) is true then the least relation X satisfying the for-
mula VZ(A(X, 2) € X(2))AB(X) is defined by Vz(X (2 ) = LFPX[A(X,z)]),
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— if the lefthand side of (16) is true then the greatest relation X satisfy-
ing the formula Vz(A(X,2z) € X(2)) A B(X) is defined by Vz(X(2) def

Grp X [A(X, 2)]).

These definitions can be used for computing lower and upper approximations of
the eliminated relations. "

The following lemma shows monotonicity properties of connectives, useful in
second-order quantifier elimination. It directly follows from Definition 9.

Lemma 1.

1. z € X is up-monotone in X;

2. X CY is down-monotone in X and up-monotone inY;

3. foro e {V,A}, X oY is up-monotone in X and in'Y;

4. =X is down-monotone in X;

5. for Q € {V,3}, Qz(X(z)) is up-monotone in X. .

5 Applications and Examples

5.1 The Scenario
Below we will use the following notation:

— x,y are variables denoting places and p1, . . ., p,, are constants denoting places;

— ice(x) stands for “x being covered by ice”, rain(x) — for “rain in ”, freezing(x)
— for “temperature in z being close to 0°C”, safe(x) — for “z being safe” and
base(x) indicating that “there is a base in place z7;

— connected(x,y) stands for “places xz,y being (directly) connected”,
slippery(xz,y) — for “connection from x to y being slippery”, and
sconnected(x,y) — for “z,y being safely connected” (perhaps indirectly, via a
chain of connections connected()).

Let us consider a scenario formalized by the following theory T":

VaVy((ice(x) V ice(y)) € slippery(z,y)) A (17)
VaVy ((x = y) V connected(y, z)) C connected(z,y))A (18)
V:ch(((connected(x, y) A —slippery(x, y))V

Jz(sconnected(z, z) A sconnected(z,y))) C sconnected(z,y))A (19)
Va (base(x) C safe(z))A (20)
Va (safe(x) C (base(x) V Jy(sconnected(x,y) A base(y))))A (21)
Va ((rain(x) A freezing(x)) C ice(x)). (22)

Note that the relations used in (17)—(22) are rough relations which can be spec-
ified as a part of the considered theory. For example, given that there are n
places, and:
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— connected()’s lower approximation is {(p1,p1a),. .., (P20,Pn)} and its upper
approximation is the complement of {{p7,po), ..., (P20, P30);---};

— rain()’s lower approximation is {ps,...,pss} and its upper approximation is
the complement of {p1,p2};

— 4ce()’s lower and upper approximation is {p1,...,p17};

— freezing()’s lower and upper approximation is {p1,...,pn},

one can add to the theory the following conjunction of rough facts:

connected(p1,p14) A ... A connected(pag, pr) A (23)
—connected(p7,pg) A ... A —~connected(pag, P3o) A ... A

rain(ps) A ... A rain(pag) A —rain(pr) A —rain(pz) A (24)

ice(pr) A ... Nice(prr) A —ice(pis) A ... A —vice(pp)A (25)

freezing(p1) A ... A freezing(pr). (26)

Remark 4. Tt is important to note that the conjunction of rough facts, as speci-
fied by (23)—(26), does not affect the applicability of the second-order quantifier
elimination techniques provided by Theorems 3 and 4. "

5.2 Forgetting Rough Concepts

In the first example, let us forget ice() in the scenario theory above. That is, we
consider rforget(T’;ice()) and, according to Theorem 2, we eliminate 3X from
formula:

EIX(VJC((min(x) A freezing(z)) C X (z)) A

corresponding to (22) (27)
Vwa((X(x) Vv X (y)) C slippery(z, y)) A B)7

corresponding to (17)

where B %' ((18)A(19)A(20) A(21)). According to Lemma 1, the part of (27) cor-

responding to (17) is down-monotone in X thus, using equality (12) of Theorem 3,
we obtain the following formula equivalent to (27):

VaVy(((rain(z) A freezing(z)) V (rain(y) A freezing(y))) C slippery(z,y)) A B.

In the second example, let us forget base() in the scenario theory above. We
counsider rforget(T; base()) and apply Theorem 2 to eliminate 3X from:

EIX(Vx (X(z) C safe(z)) A

corresponding to (20) (28)
Va (safe(x) C (X (z) vV y(sconnected(z,y) A X(y)))) A C),

corresponding to (21)
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where C & ((A7)A(18)A(19)A(22)). According to Lemma 1, the part of (28) cor-
responding to (21) is up-monotone in X thus, using equality (13) of Theorem 3,
the equivalent of (28) is Vx (safe(z) C (safe(z)VIy(sconnected(z,y) Asafe(y)))).

Observe that the resulting formula is equivalent to T, so rforget(T’; base()) is
equivalent to C. Indeed, when base() is forgotten, the theory no longer provides
useful information about safe(), too.

5.3 Forgetting Many-Argument Relations

Forgetting rough relations with more than one argument is very similar to forget-
ting rough concepts. To illustrate the use of Theorem 4, let us forget connected().
That is, consider rforget(T; connected()) and, according to Theorem 2, we elim-
inate 3X from:

ax(vxvy((x —yV X(y,7)) € X(2,)) A

corresponding to (18)
Vavy (X (2, y) A —slippery(z,y)) V (29)

corresponding to (19), line 1

Jz(sconnected(z, z) A sconnected(z,y))) C sconnected(x,y)) A D),

(19), line 2

where D % ((17) A (20) A (21) A (22)).
According to Lemma 1, the part of (29) corresponding to (19) is down-monotone
in X thus, using equality (15) of Theorem 4, we obtain the following equivalent
of (29):

vavy((Lep X (z,y) [v = y v X (y, 2)] (2, y) A ~slippery(z, y))V (30)

Jz(sconnected(z, z) A sconnected(z,y))) C sconnected(z,y)) A D.
Note that LFP[...] in (30) is equivalent to # = y, so (30) can further be
simplified to:

V;EVy(((x =y A —slippery(z,y))V
Jz(sconnected(z, z) A sconnected(z,y))) C sconnected(z,y)) A D.

6 Conclusions

In this paper, we provided basic foundations for the specification and application
of a forgetting operator for rough theories. To do this, we defined a logical lan-
guage for rough theories consisting of rough formulas and a semantics for such
formulas containing rough relations, in terms of rough Kleene algebras. Using
intuitions from work with forgetting operators in classical logic, we then specified
a rough forgetting operator in the context of rough relational theories. We then
showed how the constructive generation of the result of applying a forgetting
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operator to a rough theory could be achieved by using second-order quantifier
elimination techniques. These foundations open up opportunities for the use of
these rough logics for KRR applications and the study of additional types of
forgetting operators in this context, in particular of forgetting in rule languages
that use a Kleene logic-based semantics. Also, algorithmic techniques based on
insights using second-order quantifier elimination techniques, are worth investi-
gating as a basis for forgetting operators used with rough relational theories.
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Abstract. A number of low and high-level models of general rough
sets can be used to represent knowledge. Often binary relations between
attributes or collections thereof have deeper properties related to deci-
sions, inference or vision that can be expressed in ternary functional rela-
tionships (or groupoid operations) — this is investigated from a minimalist
perspective in this research by the present author. General approxima-
tion spaces and reflexive up-directed versions thereof are used by her as
the basic frameworks. Related semantic models are invented and an inter-
pretation is proposed in this research. Further granular operator spaces
and variants are shown to be representable as partial algebras through
the method. An analogous representation for all covering spaces does
not necessarily hold. Applications to education research contexts that
possibly presume a distributed cognition perspective are also outlined.

Keywords: General approximation spaces - Up-directedness + Rough
objects - Mereology + Groupoidal semantics + Parthood - Knowledge -
AT - Higher granular operator spaces + Contamination problem -
Education research

1 Introduction

In relational approach to general rough sets various granular, pointwise or
abstract approximations are defined, and rough objects of various kinds are
studied [1-6]. These approximations may be derived from information tables or
may be abstracted from data relating to human (or machine) reasoning. A gen-
eral approzimation space is a pair of the form S = (S, R) with S being a set and
R being a binary relation (S and S will be used interchangeably throughout this
paper). Approximations of subsets of S may be generated from these and studied
at different levels of abstraction in theoretical approaches to rough sets. Because
approximations and related semantics are of interest here, the relational system
is much more than a general frame. Often it happens that S is interpreted as a
set of attributes and that any two elements of S may be associated with a third
element through a mechanism of reasoning, by preference, or via decision-making
© Springer Nature Switzerland AG 2020
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guided by an external mechanism. The purpose of this research is to study these
situations from a minimalist perspective. This approach also directly adds to the
concept of knowledge in classical rough sets [7] and in general rough sets [3,8-10]
and therefore the study is referred to as an extension of the same.

Mereology, the study of parts and wholes, has been studied from philosoph-
ical, logical, algebraic, topological and applied perspectives. In the literature on
mereology [9,11,12], it is argued that most ideas of binary part of relations in
human reasoning are at least antisymmetric and reflexive. A major reason for
not requiring transitivity of the parthood relation is because of the functional rea-
sons that lead to its failure (see [11]), and to accommodate apparent parthood
[12]. The study of mereology in the context of rough sets can be approached in
at least two essentially different ways. In the approach aimed at reducing con-
tamination by the present author [1,2,8,10], the primary motivation is to avoid
intrusion into the data by way of additional assumptions about the data relative
to the semantic domain in question. In numeric function based approaches [13],
the strategy is to base definitions of parthood on the degree of rough inclusion
or membership — this differs substantially from the former approach. Rough Y-
systems and granular operator spaces, introduced and studied extensively by the
present author [1,2,8,10,12], are essentially higher order abstract approaches in
general rough sets in which the primitives are ideas of approximations, part-
hood, and granularity. Part-of relations can also be the subject of considerations
mentioned in the first paragraph, and the relation R in a general approxima-
tion space can be a parthood. Specific versions of parthood spaces have been
investigated in a forthcoming joint work by the present author. Relative to that
work new results on parthood spaces are proved, up-directedness is studied in
classical approximation spaces, and the formalism on granular operator spaces
and variants are improved in this research. Applications to education research
contexts are also outlined.

1.1 Background

An information table Z, is a tuple of the form
T =S A {Vo:acA}, {fo: acA})

with S, A and V, being sets of objects, attributes and values respectively. Infor-
mation tables generate various types of relational or relator spaces which in turn
relate to approximations of different types and form a substantial part of the
problems encountered in general rough sets.

In classical rough sets [7], equivalence relations of the form R are derived
by the condition =,y € S and B C A, let (x,y) € R if and only if (Va €
B)v(a, z) = v(a, y). (S, R) is then an approzimation space. On the power
set ©(5), lower and upper approximations of a subset A € p(S) operators,
(apart from the usual Boolean operations), are defined as per: Al = Upcalzl;
A" = U nazol], with [z] being the equivalence class generated by z € S. If
A, B € p(9), then A is said to be roughly included in B (A C B) if and only if
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Al C B and A* C B%. A is roughly equal to B (A ~ B) if and only if A C B
and B C A (the classes of ~ are rough objects).

The rough domain corresponds to rough objects of specific type, while the
classical and hybrid one correspond to all and mixed types of objects respectively
[2]. Boolean algebra with approximation operators forms a classical rough seman-
tics. This fails to deal with the behavior of rough objects alone. The scenario
remains true even when R in the approximation space is replaced by arbitrary
binary relations. In general, p(S) can be replaced by a set with a parthood
relation and some approximation operators defined on it as in [2]. The associ-
ated semantic domain is the classical one for general Rough sets. The domain
of discourse associated with roughly equivalent sets is a rough semantic domain.
Hybrid domains can also be generated and have been used in the literature [1].

The problem of reducing confusion among concepts from one semantic
domain in another is referred to as the contamination problem. Use of numeric
functions like rough membership and inclusion maps based on cardinalities of
subsets are also sources of contamination. The rationale can also be seen in the
definition of operations like LI in pre-rough algebra (for example) that seek to
define interaction between rough objects but use classical concepts that do not
have any interpretation in the rough semantic domain. Details can be found in
[14]. In machine learning practice, whenever inherent shortcomings in algorith-
mic framework being used are the source of noise then the frameworks may be
said to be contaminated.

Key concepts used in the context of general rough sets (and also high granular
operator spaces [1,10]) are mentioned next.

— A crisp object is one that has been designated as crisp or is an approximation

of some other object.

A wvague object is one whose approximations do not coincide with itself or

that which has been designated as a vague object.

An object that is explicitly available for computations in a rough semantic

domain (in a contamination avoidance perspective) is a discernible object.

— Many definitions and representations are associated with the idea of rough
objects. From the representation point of view these are usually functions
of definite or crisp or approximations of objects. Objects that are invariant
relative to an approximation process are said to be definite objects. In rough
perspectives of knowledge [7,8], algebraic combinations of definite objects (in
some sense) or granules are assumed to correspond to crisp concepts, and
knowledge to specific collections of crisp concepts. It should be mentioned
that non algebraic definitions are excluded in the present author’s axiomatic
approach [1,2,10].

Definition 1. A partial algebra (see [15]) P is a tuple of the form

<£7 flv f2a teey fn;(rla cee Tn)>

with P being a set, f;’s being partial function symbols of arity r;. The interpre-
tation of f; on the set P should be denoted by fiB, but the superscript will be
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dropped in this paper as the application contexts are simple enough. If predicate
symbols enter into the signature, then P is termed a partial algebraic system.

In this paragraph the terms are not interpreted. For two terms s, t, s = t
shall mean, if both sides are defined then the two terms are equal (the quantifi-
cation is implicit). £ is the same as the existence equality (also written as =)
in the present paper. s = t shall mean if either side is defined, then the other
is and the two sides are equal (the quantification is implicit). L is written as =
in [18]). Note that the latter equality can be defined in terms of the former as

2 Relations and Groupoids
Under certain conditions, partial or total groupoid operations can correspond to
binary relations on a set.

Definition 2. In a general approzimation space S = (S, R) consider the follow-
ing conditions:

(Va, b)(3¢)Rac & Rbe (up-dir)
(Va)Raa (reflexivity)
(Va,b)(Rab& Rba — a = b) (anti-sym)

If S satisfies up-dir, then it shall said to be a up-directed approximation space.
If it satisfies the last two then it shall said to be a parthood space and a up-
directed parthood space when it satisfies all three.

The condition up-dir is equivalent to the set Ug(a,b) = {z : Raz & Rbx}
being nonempty for every a,b € S and is also referred to as directed in the
literature. It is avoided because it may cause confusion.

The problem of rewriting the semantic content of binary relations of different
kinds using total or partial operations has been of much interest in algebra (for
example [16,17]). Results on using partial operations for the purpose are of more
recent origin [18,19].

Definition 3. If R is a binary relation on S, then a type-1 partial groupoid
operation (1PGQO) determined by R is defined as follows:

b if Rab
(Va,b)aob =X ¢ ¢ € Ug(a,b) & —Rab
undefined otherwise

If R is up-directed, then the operation is total. In this case, the collection of
groupoids satisfying the condition will be denoted by B(S) and an arbitrary ele-
ment of it will be denoted by B(S). If R is not up-directed, then the collection
of partial groupoids associated will be denoted by B,(S). The term ‘aob’ will be
written as ‘ab’ for convenience.
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Theorem 1. The partial operation o corresponds to a binary relation R if and
only if
(Va,b)(3z)(ab # b& az = bz = z — a(ab) = b(ab) = ab)
(Va,b,c)(ab=c—c=0b or (3Iz)az = bz = 2)
The following results have been proved for relational systems in [18,19].

Theorem 2. For a groupoid A, the following are equivalent

— A reflexive up-directed approximation space S corresponds to A
— A satisfies the equations

aa = a& a(ab) = b(ab) = ab

Definition 4. If A is a groupoid, then two general approximation spaces corre-
sponding to it are R(A) = (A, Ra) and R*(A) = (4, RY,) with

R4 ={(a,b): ab=b}
le - U{(aa ab)a (ba CLb)}

Theorem 3. — If A is a groupoid then R*(A) is up-directed.
— If a groupoid A = a(ab) = b(ab) = ab then R(A) = R*(A).
— If S is an up-directed approzimation space then R((B)(S)) = S.

Theorem 4. If S = (S, R) is a up-directed approximation space, then

- R is reflexive < B(S) | aa = a.

— R is symmetric < B(S) = (ab)a = a.

- R is transitive < B(S) = a((ab)c) = (ab)c.

— If B(S) = ab = ba then R is antisymmetric.

If B(S) = (ab)a = ab then R is antisymmetric.
- If B(S) = (ab)e = a(be) then R is transitive.

Morphisms between up-directed approximation spaces are preserved by cor-
responding groupoids in a nice way. This is an additional reason for investigating
the algebraic perspective.

3 Up-Directed General Approximation Spaces

In general, partial/quasi orders, and equivalences need not satisfy up-dir. When
they do satisfy the condition, then the corresponding general approximation
spaces will be referred to as up-directed general approzimation spaces.

For any element a € S, the neighborhood granule [a] and inverse neighbor-
hood [a]; associated with it in a general approximation space shall be given by
[a] = {z : Rza} and [a]; = {z : Rax} respectively.
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Definition 5. For any subset A C S, the following approximations can be
defined:

AL = [l : [a] € A} (lower)
(1)
A" = U{[a] :dz € a] N A} (upper)

If inverse neighborhoods are used instead, then the corresponding approximations
will be denoted by l; and u; respectively.

3.1 Classical Approximation Spaces

If an approximation space is up-directed, then it is essentially redundant with
respect to the relation. Proof of the following theorem is not hard and can be
found in a forthcoming paper due to the present author.

Theorem 5. Let S be an approximation space, then all of the following hold:

— If R is up-directed, then S? = R.
- If R is not up-directed, then the groupoid operation of Definition 3 is partial
and it satisfies
(Va,b,c)(ab=c—b=rc)

— For each x € S, [x] is closed under o and so every equivalence class is a total
groupoid that satisfies:

(Va,b,c)aa = a & (ab)a = a & a((ab)c) = (ab)c

Definition 6. On the power set p(S), the partial operation o induces a total
operation as in Eq. 2.

(VA, B € p(S)A® B = {z: (3a € A)3b € B)ab =z} 2)

Proposition 1. If S is an approximation space then <p(S)7 U, lu,o, L, T>
s a Boolean algebra with operators enhanced by a groupoid operation that satisfies
all of the following (apart from the well known conditions):

(Va,b)aaNa =aa&abNb=ab (pre-refl)

(Va,b,¢) ((aUb)c) N ((ac) U (be)) = (ac) U (be) (pre-mo)
(Va,b,c) (aUb=b— (ac) U (bc) = bc) (mo)
(Ya,b) (ab)! Ub = bl (1-mo)

(Va,b) (ab)* Nb* = (ab)* (u-mo)

Proof. — Note that by the definition of the partial groupoid operation, for any
two sets a,b € p(S) ab must be a subset of b. So the pre-refl property holds.
— pre-mo is again a consequence of pre-refl.



Functional Extensions of Knowledge Representation in General Rough Sets 25

— If a is a subset of b, then ac must again be a subset of bc which in turn would
be a subset of c. This can be verified by a purely set-theoretic argument.

— ab must be a subset of b. So (ab)! must be subset of b'. It follows that their
union must be the latter.

Because classes are closed under the groupoid operation, it follows that

Theorem 6. On the set of definite elements 6(S) of an approzimation space S,
the induced operations from the algebra in Proposition 1 again forms a Boolean
subalgebra with groupoid operations that satisfies reflexivity (Va) aa = a.

It should be noted that up-directedness is not essential for a relation to be
represented by groupoid operations. The following construction that differs in
part from the above strategy can be used for partially ordered sets as well, and
has been used by the present author in [20] in the context of knowledge gen-
erated by approximation spaces. The method relates to earlier algebraic results
including [21,22]. The groupoidal perspective can be extended for quasi ordered
sets.

If S = (S, R) is an approximation space, then define (for any a,b € S)

a if Rab
“®b"{bﬁﬁ3m) ®)

Relative to this operation, the following theorem (see [21]) holds:

Theorem 7. (S, ®) is a groupoid that satisfies the following axioms (braces are
omitted under the assumption that the binding is to the left, e.g. ‘abc’ is the same
as (ab)c’):

xx =1 (E1)

z(az) = (za)(xz2) (E2)
rar =T (E3)

azrauz = auz (E4)

)

= o
[SLENTN

u(azzra)z = uaz

3.2 Parthood Spaces

Definition 7. Let S be a parthood space, then let Sy, = {x : * = a' orz =
a*&a € S}. On Sy, the following operations can be defined (apart from | and
u by restriction):

amb=(anb) (Cap)
alUb=(aUb)" (Cup)
L=0; T=48" (iu34)

The resulting algebra Sy, = <%,@,@,U,Z,U,L,T> will be called the algebra
of approximations in a up-directed space (UA algebra). If R is a up-directed
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parthood relation or a reflexive up-directed relation respectively, then it shall
said to be a up-directed parthood algebra of approximations (AP algebra) or a
reflexive up-directed algebra of upper approxzimations (AR algebra) respectively.

Theorem 8. A AP algebra Sy, satisfies all of the following (universal quanti-
fiers have been omitted):

aMa=a&(aUa)Ma=a (idp3)
aUa=a" (qidp4)
amMb=bMa&aVb=>bUa (com12)
am(®Ua)=a (habs)
al(bUc)=(aUb*)Uc" (qasl)
(aU(bUe)U((aUbd)Uc) =
((aVa)U (bUb))U(cUcUCc) (qas0)

Proof. idp3 ama= (aNa) =a'=aand aVUa=a"and a*Na=a

qidp4 aVUa = (aUa)* = a*.

coml12 This follows from definition.

habs af (bWa) = (anN (bUa)*) = ((aNa*) U (anb*)) which is equal to
(aU(anbt)) =al =a

qasl aU (bUc) = (aU(bUc)") = (a* Ub*™ U ") and this is (aUb*))* U™ =
(aUb*) W c*

gas0 This can be proved by writing all terms in terms of U. In fact (a U (b U
) U ((aUb)Uc) = a*™® U b*“* U ¢***. The expression on the right can be
rewritten in terms of U by qidp4.

The above two theorems in conjunction with the properties of approximations
on the power set, suggest that it would be useful to enhance UA-, AP-, and AR-
algebras with partial operations for defining an abstract semantics.

Definition 8. A partial algebra of the form
Sl*u = <%7 rmv @7 U7 |_|7N ) lv u, J—v T>

will be called the algebra of approximations in a up-directed space (UA partial
algebra) whenever Sy, = <%,@,@,U,l,u,J_,T> is a UA algebra and M and
5 are defined as follows (N and © being the intersection and complementation
operations on o(S)):

anb ifanbe Sy
undefined otherwise

(Va,bESlu)alTb:{ (4)
a‘ if a® € Sy, (5)
undefined otherwise

If R is an up-directed parthood relation or a reflexive up-directed relation
respectively, then it shall said to be a up-directed parthood partial algebra of
approzimations (AP partial algebra) or a reflexive algebra of upper approzima-

tions (AR partial algebra) respectively.

(Va € Sp) a™ = {
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Theorem 9. If S is an up-directed approrimation space, then its associ-
ated enhanced up-directed parthood partial algebra S}, = (Sp,M,Y,U,M, 0%,
Lyu, L, T) satisfies all of the following:

(@,rm, @J,U,l,u,J_,T> is a AP algebra (appl)
alNa=a&alNl=1&aNT=a (app2)
alMbZbMa&an (bMe) = (aMb)Me (app3)
afNa*=a=aNd &a" Za (app4)
an(bUc) £ (aMb)U(aMc) (app5.0)
aU(®ne) = (aub)M(aUc) (app5.1)

(aMb)s Za"Ub™ & (aUb)™ £ a" Mb* (app6)

o s the partial groupoid operation induced from its power set.
Proof. The theorem follows from the previous theorems in this section.

If the parthood relation is both up-directed and also transitive, then it is
possible to have an induced groupoid operation on the set of definite elements
(81,0, (8) = {z: 2l = av &z € p(S)}. If A, B € §,(5), then let A- B = {aba €
A, &b € B}. 6,(5) is closed under set union and intersection, and the pseudo-
complementation T is defined from [z]; = U{A : A € Sju(s) & anfa]s=p for any
relS.

Theorem 10. If S is an up-directed parthood space in which R is transitive,
then <5l7:u,:(5)7 - N,U,T L0, 1> is a Heyting algebra with an extra groupoid opera-

tion induced by the groupoid operation on S.

Proof. The proof that <5liui (@Q),N,u,*, 1, T> is a Heyting algebra is analogous
to the proof in [23].

If a,b € [z];, for an inverse neighborhood granule, then there exists a ¢ such
that Rac and Rbe, but by the definition of [z], ¢ € [z] follows. Therefore [z]; is
a subgroupoid of S for each x € S.

Suppose A, B € §;,4,(S), then (as any element in these sets must be in some
granules) for any a € [z]; € Aand b € [2]; C B, ab is in the order filter generated
by [x] U [z]. So AB must be an element of d;,,,(S). This essentially proves the
theorem.

3.3 Examples, Meaning and Interpretation

Abstract examples are easy to construct for the situations covered and many
are available in other papers [11,12,18] by the present author and others. So an
application strategy to student-centric learning (a constructive teaching method
in which students learn by explorative open-ended activities) is proposed. It
should be noted that education researchers adhere to various ideas of distributed
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cognition (that the environment has a key role in cognitive process that are
inherently personal [24]) and so the basic assumptions of formal concept analysis
may be limiting [25]. Suppose a student has access to a set K of concepts and
is likely to arrive at a another set of potentially vague concepts H. Teachers
typically play the role of facilitators, are not required to be the sole source of
knowledge, and would need to direct the activity to an improved set of concepts
H™. In the construction of these sets, groupoidal operations can play a crucial
role. Equations of the form ab = ¢ can be read in terms of concepts — ¢ can be a
better relevant concept for the activity in comparison to the a and b. Note that no
additional order structure on the set of concepts is presumed. This is important
also because concepts may not be structured as in lattice-theoretic perspective of
formal concept analysis or classical rough sets.

In classical rough sets, definite concepts correspond to approximations (def-
inite objects). From the present study, it can be seen that the induced total
groupoid operation on the set of definite objects is the part of a concept b that
can be read from another concept a. This interpretation is primarily due to
the relation R being symmetric and reflexive. When the approximation space is
up-directed, then it happens that every object is indiscernible from every other
object. So the property of up-directedness is not of much interest in the classical
context. The ® operation concerns choice between two things and so is relevant
for pairwise comparisons [26].

In parthood and other up-directed general approximation spaces, a groupoid
operation typically corresponds to answering the question which attribute or
object is preferable to two given attributes or objects? Therefore collections of all
possible definable groupoid operations correspond to all answers. Ideas of vision
then must be about choices of subsets or subclasses among possible definable
operations. Formally,

Definition 9. A vision for an up-directed approximation space, S is a subset

V(S) of B(S).

4 Formalism of Higher Granular Operator Spaces

Granular operator spaces and variants [1,8,10,27] are abstract frameworks for
extending granularity and parthood in the context of general rough sets, and are
also variants of rough Y-systems studied by the present author [2]. In this section,
it will be shown that all types of granular operator spaces and variants can be
transformed into partial algebras that satisfy additional conditions. This is also
nontrivial because all covering approximation spaces cannot be transformed in
the same way.

Definition 10. A High General Granular Operator Space (GGS) S shall be a
partial algebraic system of the form'S = (S,~,l,u, P, <, V,A, L, T) with S being
a set, v being a unary predicate that determines G (by the condition vz if and
only if x € G) an admissible granulation (defined below) for S and l,u being
operators : S — S satisfying the following (S is replaced with S if clear from the
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context. V and A are idempotent partial operations and P is a binary predicate.
Further vz will be replaced by x € G for convenience.):

(Vo)Pzx (PT1

(V,b)(Pzb & Pbx — © =) (PT2
(Va,b)aVbZbVa; (Ya,b)aANbZbAa (
(Va,b)(aVb)AaZa; (Va,b)(aAD)VaZa (

(Va,b,c)(aAb)VeZ (aVe)A(bVe) (G3
(VYa,b,c)(aVb)AecZ (anc)V (DAc) (
(

(Va,b)(a <b—aVb=b < aAb=a) G5
(Va € S)Pd'a & a"' = a' & Pa'a™ (UL1
(Va,b € S)(Pab — Pa'bt! & Pab") (UL2

= 1&1"=1L&PT'T&PT"T (UL3

(VaeS)PLla & PaT (TB

Let P stand for proper parthood, defined via Pab if and only if Pab & —Pba).
A granulation is said to be admissible if there exists a term operation t formed
from the weak lattice operations such that the following three conditions hold:

(Va3zq, ... 2 € G) (21, T2,... Tp) = a!

and (Vo) (Fzq, ... zr € G) t(x1, T2,... ) = 2, (Weak RA, WRA)
(Va € G)(Vx € S) (Pax — Paz'), (Lower Stability, LS)
(Vz, a € G)(3z € S)Paz, & Paz & 2! = 2% = 2, (Full Underlap, FU)

The conditions defining admissible granulations mean that every approzimation
18 somehow representable by granules in a algebraic way, that every granule coin-
cides with its lower approzimation (granules are lower definite), and that all pairs
of distinct granules are part of definite objects (those that coincide with their own
lower and upper approximations). Special cases of the above are defined next.

Definition 11. - In a GGS, if the parthood is defined by Pab if and only if
a < b then the GGS is said to be a high granular operator space GS.

— A higher granular operator space (HGOS) S is a GS in which the lattice
operations are total.

— In a higher granular operator space, if the lattice operations are set theoretic
union and intersection, then the HGOS will be said to be a set HGOS.

Theorem 11. In the context of Definition 10, the binary predicates P can be
replaced by partial two-place operations 1IPGO ® and ~y is replaceable by a total
unary operation h defined as follows:

oz ifqye
e = {107, ©)
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Consequently ST = (S, h, I, u, ®,V,A, L, T) is a partial algebra that is seman-
tically (and also in a category-theoretic sense) equivalent to the original GGS S.

Proof. Because of the restriction UL3 on L and the redundancy of < (because
of G5), the result follows.

Definition 12. The partial algebra formed in the above theorem will be referred
to a high granular operator partial algebra (GGSp).

Problem 1. All covering approximation spaces considered in the rough set liter-
ature actually assume partial Boolean or partial lattice theoretical operations.
Some authors (especially in modal logic perspectives) [3,5,28] presume that all
Boolean operations are admissible — this view can be argued against. A natural
question is Are the modal logic semantics themselves only a possible interpreta-
tion of the actuality? All this suggests the problem of finding minimal operations
involved in the context.

Because all covering approximation spaces do not use granular approxima-
tions in the sense mentioned above, it follows that they do not form GGSo
always. In the next example, the applicability of the above to activity based
mathematics teaching is considered.

Ezxample 1. In constructivist activity based learning, teachers almost always set
learning goals ahead of initiating activities. Therefore knowledge constructed in
such contexts are constrained by concept maps (typically directed) accessible
to the teacher in question [29-31]. As a consequence desired concept granules
(and explicit or implicit ontology) can be specified by teachers. But students and
teachers are likely to make use of a number of additional vague or exact concepts
in any specific activity. In addition, general ideas of parthood as specified in the
definition of GGS can be interpreted over the collection of vague and exact
concepts. It may even make sense to define additional groupoid operations apart
from the ones induced by the relations. [30,31] do not make room for vague
concepts and presume a transitive parthood that operates over the teacher’s
goals.

For example, in [32], the goal of the game activity is to understand and
apply Pythagoras theorem in few situations. The board game (see Fig. 1) involves
students throwing a pair of die, form the square root of the sum of the squares
of the values obtained and round off the result to a whole number and advance
that many squares on the board. The goal of the game (for students) is to reach
the finish block. It can be seen that concepts such as sample space, events, floor
and ceiling functions, and vague variants thereof, incorrect concepts of biased
dies are all part of the potential learning space. All these can be approximated
(irrespective of consequence) relative to the teacher’s specification of granules.
Moreover they may improperly specify the relation between concepts that are of
lesser interest to the lesson plan.

It is not hard to see that the generalized scenario described in the last two
paragraphs can be modeled by a GGSp.

An expanded version of the last example will appear separately.
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Fig. 1. Board game

5 Further Directions and Remarks

In this research methods of representing important ideas of decisions or prefer-
ences inherent in information tables (related to data including those relating to
human reasoning) have been invented and the semantics considered in two types
of rough sets. A representation theorem is proved for transitive parthood spaces.
Further the formalism of higher granular operator spaces and variants are shown
to be representable as partial algebras. Examples illustrating key aspects of the
research in education research contexts have also been constructed.
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Among the many directions of research motivated by this paper, the following

are more important: a finer algebraic classification of the derived groupoids and
partial groupoids, representation of derived partial algebras as quasi varieties,
detailed application to education research contexts (especially in the direction
indicated in Example 1), and in self-organizing systems.

Acknowledgement. The present author would like to thank the reviewers for useful
remarks that led to improvement of the presentation of this research.
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Abstract. In the authors’ previous research, a possible usage of the
correlation clustering in rough set theory was investigated. Correlation
clustering is based on a tolerance relation and its output is a partition.
The system of granules can be derived from the partition and as a result,
a new approximation space appears. This space focuses on the similar-
ity (represented by a tolerance relation) itself and it is different from
the covering type approximation space relying on a tolerance relation.
In real-world applications, the number of objects is very high. So it can
be effective only if a portion of the data points is used. Previously we
provided a method that chooses the necessary number of objects that
represent the data set. These members are called representatives and it
can be useful to apply them in the approximation of an arbitrary set. A
new approximation pair can be defined based on the representatives. In
this paper, some very important properties are checked for this approx-
imation pair and the system of granules.

Keywords: Rough set theory - Correlation clustering - Set
approximation - Representatives + Granules

1 Introduction

Nowadays a huge amount of data is stored in databases. The stored data is
usually represented by objects with (maybe different) properties. Properties are
handled in two steps: attributes and the corresponding attribute values. Gen-
erally, a finite number of attributes and a finite number of the corresponding
attribute values are used. Usually, there are more objects than attribute values.
Therefore, more than one object may have the same attribute values (not con-
sidering the IDs), so they are indiscernible based on the available knowledge.
Naturally, indiscernible objects have to be treated in the same way. Pawlak’s
original system of rough sets shows the consequences of indiscernibility. In many
practical cases, not only indiscernible objects have to be treated in the same way,
but objects with the same attribute values of some (and not all) attributes. This
is one of the theoretical bases of the generalizations of Pawlak’s original theory.
Some objects have to be treated in the same way. In rough set theory the objects,
that are treated in the same way, belong to a base set. In our previous study, we
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examined whether the partition, generated by correlation clustering, can be con-
sidered as the system of base sets in an application. Correlation clustering is a
clustering method in data mining which creates a partition of the input data set
based on a tolerance relation (representing similarity). The clusters gained this
way contain similar objects. In our previous paper [11,12] we showed that it is
worth to generate the system of base sets from the partition. This way, the base
sets contain objects that are typically similar to each other and the generated
approximation space (similarity based rough sets) possesses several very useful
properties. Informally, in granular computing a granule contains objects which
have to be treated in the same way. Granules play—as the most fundamental
concept—a crucial role in granular computing. It means that granules (and not
objects belonging to them) are in the focus of investigations. The clusters gen-
erated by the correlation clustering can be considered as granules. In order to
use granules, one has to give their names. In order to preserve the connection
between a granule and its objects, the name of the granule can be an object
belonging to the granule. This object can represent the given granule. In a very
general case to choose representatives is not a trivial problem. In the case of a
system relying on an indiscernible relation any object of a granule can be its
name, can represent the corresponding granule. When similarity (represented
by a tolerance relation) is used to get granules, then the method of correla-
tion clustering gives a possibility to define representatives [5,10]. In [10] a new
approximation pair is proposed that is completely based on the representatives.
Professor Mihir Chakraborty proposed some very important properties of gran-
ules (presented at the International Workshop on Modern and Unconventional
Approaches to Reasoning and Computing in 2017). In this paper, we examined
these properties along with some other ones for our introduced granules. We
also show that the clusters gained from the correlation clustering satisfy all the
minimal properties of the granules. Therefore, the clusters can be really treated
as granules. The structure of the paper is the following: we begin by introducing
the theoretical background of rough set theory. In Sect.3 correlation clustering
is defined. In Sect. 4 we present our previously introduced approximation space.
In Sect.5 we show the definition of the approximation pairs that are based on
the representatives. After this, we show which of the defined properties hold for
the proposed approximation pair. Finally, we conclude the results.

2 Theoretical Background

From the granular point of view a Pawlakian approximation space [13-15] is
an ordered 5-tuple (U, &, D, |, u) generated by an equivalence relation R (which
represents indiscernibility), where:

— U # 0 is the universe of objects

— & is the set of granules for which the following properties hold:
e BAD
e fGe®then GCU and G#0D
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e 6={G|GCU, and z,y € G if Ry}
— ® is the set of definable sets which can be given by the following inductive
definition:
1. 8 CD;
2. heD;
3. if D1, Dy € ®, then D1 U Dy € ®.
— The functions |, u form a Pawlakian approximation pair (I, u) if the followings
are true for an arbitrary set S C U:
1. Dom(l) = Dom(u) = 2Y
2.1(8)=U{G |G €& and G CS};
B ulS)=U{G|GeBand GNS # 0}.

3 Correlation Clustering

Cluster analysis is an unsupervised learning method in data mining. The goal is
to group the objects so that the objects in the same group are more similar to
each other than to those which are in other groups. In many cases, the similarity
is based on the attribute values of the objects. Although there are some cases
when the properties of objects can be difficult to be quantified, but something
about their similarity or dissimilarity can still be said. For example, let’s consider
the humans. We cannot describe someone’s looks using only a number, but we
can make simple statements on whether two people are similar or dissimilar.
These opinions are dependent on the person making the statements. Someone
can say that two people are similar while others treat them as dissimilar. If
we want to formulate the similarity and dissimilarity using mathematics, we
need a tolerance relation (i.e. a reflexive and symmetric relation). If this relation
holds for two objects, we can say that they are similar. If this relation does not
hold, then they are dissimilar. This relation is reflexive because every object is
similar to itself. It is also symmetric because if some object is similar to another
one, then the similarity is equivalent the other way round. However transitivity
does not necessarily hold. If we take a human and a mouse, then due to their
inner structure they are considered similar. This is the reason mice are used in
many drug experiments. A human and a mannequin are also similar, this time
according to their shape. This is why these dolls are used in display windows.
However, a mouse and a mannequin are dissimilar (except that both are similar
to the same object). Correlation clustering is a clustering technique based on a
tolerance relation [6,7,17].

The task is to find an R C U x U equivalence relation which is closest to the
tolerance relation. A (partial) tolerance relation R [8,16] can be represented by
a matrix M. Let matrix M = (m;;) be the matrix of the partial relation R of
similarity: m;; = 1 if objects ¢ and j are similar, m;; = —1 if objects ¢ and j are
dissimilar, and m;; = 0 otherwise.

A relation is called partial if there exist two elements (¢, j) such that m,;; = 0.
It means that if we have an arbitrary relation R C U x U we have two sets of
pairs. Let Ry... be the set of those pairs of elements for which R holds and
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Rtaise be the one for which R does not hold. If R is partial, then Ryyye U Rgise
is a proper subset of U x U. If R is total, then Ryye U Rpqrse = U x U.

A partition of a set S is a function p : § — N. Objects z,y € S are in the
same cluster at partitioning p, if p(z) = p(y). For a conflict one of the following
two cases holds:

— Two dissimilar objects end up in the same cluster
— Two similar objects end up in different clusters

The cost function is the number of these disagreements. The formal definition
can be seen in [11]. For a relation, the partition with the minimal cost function
value is called optimal. Solving a correlation clustering problem is equivalent to
minimising its cost function for the fixed relation. If the cost function’s value
is 0, the partition is called perfect. Given the R and R we call the value f the
distance of the two relations. With this definition, the partition generates an
equivalence relation. This relation can be considered to be the closest to the
tolerance relation.

It is easy to check that we cannot necessarily find a perfect partition for an
arbitrary similarity relation. Consider the simplest such case, given three objects
A, B and C, and A is similar to both B and C, but B and C' are dissimilar. In
this situation, the following 5 partitions can be given:

{4, B,C}, {{A, B} {C}}, {{A, O} {B}} {{B, O {A}), {{A}  {B}, {C} )

It is easy to see that in every of one them there is at least 1 conflict. The number
of partitions can be given by the Bell number [1], which grows exponentially. So
the optimal partition cannot be determined in reasonable time. In a practical
case a quasi optimal partition can be sufficient, so a search algorithm can be
used.

The main advantage of the correlation clustering is that the number of clus-
ters does not need to be specified in advance like in many clustering algorithms,
and this number is optimal based on the similarity. However, as the number of
partitions grows exponentially it is an NP-hard problem.

4 Similarity Based Granules

The system of granules is based on the background knowledge embedded in
an information system. The granules represent the background knowledge (or
its limit). In the Pawlakian systems, two objects are treated as indiscernible if
all of their known attribute values are the same. The indiscernibility property
can be represented by an equivalence relation. In practical applications not only
the indiscernible objects must be handled in the same way but also those that
are similar to each other based on some property. (Irrelevant differences for
the purpose of the given applications should not be taken into account.) Some
covering approximation spaces use tolerance relations, which represent similarity,
instead of equivalence relations, but the usage of these relations is very special.
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It emphasizes the similarity to a given object and not the similarity of objects
‘in general’. This means that a granule contains objects which are similar to a
distinguished object. In these systems, each object generates a granule. With
correlation clustering, a quasi-optimal partition of the universe can be obtained
[2-4]. The members of a partition are called clusters. They contain objects that
are typically similar to each other and not just to a distinguished member. In
our previous research, we investigated if the partition can be understood as a
system of granules [9,11,12]. According to our results, it is worth to generate
a partition with correlation clustering. Singleton clusters represent very little
information (its member is only similar to itself). Without increasing the number
of conflicts its member cannot be considered similar to any objects. So, they
always require an individual decision. By deleting the singletons, a partial system
of granules can be defined. The formal definition of the proposed approximation
space (similarity based rough sets) can be seen in the following definition.

Definition 1. Similarity based rough set approximation space can be represented
by an ordered 6-tuple (U, &,D,1,u, &) based on a tolerance relation (representing
sitmilarity) R. Let p be the partition gained from the correlation clustering (based
on R).

— the definition of U, 0,1 and u are the same as in the Pawlakian space.
— & denotes the set of the singleton members.
-6 ={G|GCU\G, andz,y € G if p(x) =p(y)}

The introduced approximation space has some useful features:

— the similarity of objects relying on their properties (and not the similarity to
a distinguished object) plays an important role in the definition of granules;

— the system of granules consists of disjoint sets, so the lower and upper approxi-
mations are closed in the following sense: Let S be aset and x € U. If z € 1(S),
then we can say, that every object y € U which is in the same cluster as z is
in I(S). If x € u(S), then we can say, that every object y € U which is in the
same cluster as z is in u(S).

— the number of clusters is not predefined because the algorithm finds the opti-
mal number. This way, only the necessary number of granules appear (in
applications we have to use an acceptable number of granules);

— the size of the granules is not too small, nor too big.

The amount of daily produced data is unbelievable. There are around 2.5
quintillion bytes of data created each day at our current pace and it is only
accelerating with the growth of the Internet of Things (IoT). In data sciences, it
is extremely important that certain methods can be used for a large amount of
data. Due to the exploding volume and speed of data growth, the resource need
and execution time of the algorithms show an increasing trend. In data mining
to mitigate this problem, it is common to use samples. There are numerous
ways to choose a part of the input dataset which can be treated as a sample.
In every method, it is crucial that the chosen objects must represent the entire
population. In this case, representativeness means that the specific properties are
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as similar in the sample as in the entire set. Without this property, important
information might be disregarded. Imagine that a product is needed to be sold,
for example, a toy to a group of children. In almost every group of youngsters,
there is at least one child whose decision has the most influence on the group’s
life. In this case, one child is enough to be found and convinced to buy the
toy. The rest of the group will follow them. This child can be treated as the
representative of the group. It means that in the computations only this child
should be considered instead of the whole group. In a pawlakian system, any
object can be the representative of a certain granule. In the covering systems
(based on a tolerance relation) the representatives are obvious in each granule.
In the similarity based rough set approximation space, the situation is not that
simple. In each granule, we need to choose an object that is the most similar in
the set. Naturally, it can happen that the entire granule cannot be represented by
only one member. In [5] we proposed an algorithm that produces the necessary
number of representatives for each granule. The algorithm assigns a rank value to
each object. This value shows how much the given object represents the granule.

Definition 2. The object with the highest rank value is called primary repre-
sentative. If there is more than one object with the same rank, then the primary
representative is chosen randomly.

Generally speaking, we can say that a granule represents a property. A rep-
resented property can be characterized by attributes and the corresponding
attribute values. For example, the property ‘being red apple’ can be character-
ized by color and fruit type as attributes and by red and apple as corresponding
attribute values. If P is a property, then P can be an intension of a granule G.
The granule itself is a set of objects that possess the property described by its
intension. In our system, a granule contains objects that are typically similar
to each other. Every granule has a primary representative which represents the
entire granule the most. In an information system, every object has attributes
and attributes values. The list of these attribute values describes a certain

property.

Definition 3. The intension of a granule is the property described by its primary
representative.

5 Approximation Based on Representatives

In the classical sense, the lower approximation of a set S is the union of those
granules that are subsets of S. In order to get these granules, every object in each
granule must be considered. It can be a time-consuming task if the number of
points is high. The effectiveness of the representatives lies in situations when the
number of objects is very large. It can be practical to use the strength of repre-
sentatives in the approximation process. For each granule, let us consider only its
representatives. Let G € & be a granule, and REP(G) be the set of its represen-
tatives such that REP(G) C G and REP(G) # () for all G € & (and so) ¢ &).
The approximation pair are defined as the following:
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Fig. 1. Approximation based on representatives

- 1,(S)=U{G | G € & and REP(G) C S} (and so |,(S) € D);
- u(S)=U{G | G € & and REP(G)N S # 0} (and so u,(S) € D).

This way, the lower approximation of a set .S becomes the union of those
granules for which every representative is a member of S. A granule belongs to
the upper approximation if at least one of its representatives is in the set S.
Naturally, the certainty of the lower approximation might be lost, but as the
number of points is increasing, it can be very useful.

In Fig.1 a simple example is provided for the method. The granules are
denoted by solid-line rectangles, and the set we wish to approximate (S) is
denoted by a grey ellipse. For each granule, the black circles symbolise the rep-
resentatives.

The approximation of the set S is the following based on the representatives:

— |r(S) = GoUGg
- Ur(S) :G1UG2UG3UG6

The approximation of the set S is the following based on the classical approx-
imation pair:

~1(S) = G2 UGs
- U(S):G1UG2UG3UG5UG6

The lower approximation is the same in both cases. The upper approximation
differs in one granule (G5). When there is a huge number of points and there are
several sets to be approximated, we recommend approximation using representa-
tives. In this case, the method can reduce the run-time of the approximation sig-
nificantly. Determining the approximation with the classical functions 32 objects
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needed to be considered. Using the proposed method, only 13 of them had to be
tested, so almost 60% of the original points were discarded. Of course, with 32
to 13 points is not a significant change, but in the case of millions of objects, it
can be very useful. Working with only the representatives, we can always save
time and resources because we can be sure that the number of representatives is
less than that of U. Proving this is very straightforward. Naturally, there cannot
be more representatives than objects in the universe. Their numbers cannot be
equal either because it could only happen if every object were a representative
which implies that every cluster were singleton. Using these system is pointless
because the system of granules is empty (every singleton cluster is discarded).

6 Properties of Granules

In this section, we examine the following properties (we call them as axioms) of
granules (by Prof. Mihir Chakraborty):

IVGe®B:G#D
IT VG € & : Ja € U such that G may be associated with a. Notation: G,
IIT if b € G, then a € G,
IVVGe&: I (G)=G
VVGe®B:u(G)=G
VIVG e &: | (I,(G)) = 1(G)
VII VG € & : u,(u,(G)) = u()
VIII VG € & : u (I,(G)) = I,(G)
IX VG € & : 1,(u(GQ)) = u(G)
X I(G) and u,(G) are duals

Theorem 1. In (U,&,D,l,u) (classical Pawlakian approzimation space), all of
the aforementioned axioms hold.

Theorem 2. All the existing granules admit Axziom I, I and IV.

Theorem 3. In (U, &,D,l,,u,, &) (similarity based rough sets approximation
space based on the representatives) all of the aforementioned azioms hold except
for the duality property.

Proof (Aziom I). This axiom trivially holds because in the similarity based rough
sets approximation space every granule contains at least 2 objects.

Proof (Aziom II). The axiom holds as every granule has at least one repre-
sentative. We can associate the granule with one of the representatives of the
granule.

Proof (Aziom III). If representative b is in the granule of representative a, then
it could only happen if G, = G,. Let us suppose that G, # Gp. From Axiom IT
we know that b € Gy. So if representative b is in G, then G, N Gy = {b} which
means that G, and G} are not disjoint. This is a contradiction, therefore G, and
G, must be the same set.
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Proof (Aziom IV). I,(G) = U{G’' | G’ € & and Vx € REP(G’) : = € G}. The
granules are pairwise disjoint, so there is no granule whose representatives is a
member of G (other than G itself). Naturally, every representative of G is the
member of G. Therefore, the set {G' | G’ € & and Vo € REP(G') : z € G}
contains only G from which I,(G) = G follows.

Proof (Aziom V). The proof of the fifth axiom is very similar to the proof of
the fourth axiom. u(G) = U{G’' | G’ € & and 3= € REP(G') : © € G}. The
granules are pairwise disjoint, so there is no granule whose representatives is
a member of G (other than G itself). If Vo € REP(G) : x € G is true, then
Jz € REP(Q) : « € G will be also true. Therefore, the set {G' | G’ € & and Vz €
REP(G') : x € G} contains only G from which u,(G) = G follows.

Proof (Aziom VI-IX). If Axiom 4 and 5 hold, then Axiom VI-IX follow.

Proof (Aziom X). The duality property holds if the following two equalities hold
for any granule G (C denotes the complement operator):

1. 1,(G) = u (G5
2. u (@) =1,(GE)E

Let U = {a,b, C, d,e}, 6 = {Gl,GQ}, G1 = {a,b}, G2 = {C, d}, REP(Gl) =
{a}, REP(G3) = {c}. In this example, I,(Glg = {a,b} and G% = {¢,d, e}. From
this u,(G%) = {c, d} follows. However, u,(G%)® = {a,b, e} # {a,b}. Therefore the
duality property does not hold.

6.1 Properties of Approximation Pairs

In the previous section, the axioms only focused on the granules. In this section,
we examine some additional properties of the proposed approximation pair. Here,
the properties to be checked are based on definable and arbitrary sets not only
granules. The most essential features of approximation pairs are specified as
follows.

Monotonicity

| and u are said to be monotone if S C S’ then I(S) C I(S’) and u(S) C u(S’)
Weak approximation property

VS €2V 1 1(S) C u(9)

Strong approximation property

VS e 2V :1(8) C S Cu(S)

Normality of |

1(0) =0
Normality of u
u(@) =0

Theorem 4. In (U,&,D,l,,u,,S8) (similarity based rough sets approximation
space based on the representatives), the monotonicity, the weak approzimation
property and the normality of |, and u, hold and the strong approximation prop-
erty does not hold.
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Proof (Monotonicity). Let S and S’ be two arbitrary set such that S C S’ which
means that there is an object x which is a member of S’ but not a member of
S. The following cases can be true for x:

1. x € &, then I,(S) = I,(S") and u,(S) = u,(5")
2. z is a non-representative, then I,(S) = 1,(S") and u,(S) = u,(5")
3. x is a representative of a granule G, then the following cases can happen:
(a) if ~Jy(y € REP(G) Nz £y Ay € S), then I.(S) = 1,(5") and u,(S) C
ur ()
(b) if Iy(y € REP(G) Ax £ yAy € S), then I,(S) = 1,(S’) and u,(S) = u,(5)
(c) if Vy(y € REP(G) Nz £y — y & S), then I,(S) C I,(S") and u,(S) C
ur (S

In every case, we found that I,(S) C I.(S’) and u,(S) C u,(S’), therefore the
monotonicity holds.

Proof (Weak approzimation property). Let S be an arbitrary set and let us
assume that there is a granule G such that G C I,(S) but G ¢ u,(S). Due to
the definition of the lower approximation, we know that V& € REP(G) : z € S
is true, so 3z € REP(G) : x € S is also true. This implies that G C u,(S). We
reached a contradiction, therefore the weak approximation property holds.

Proof (Strong approzimation property). Let U = {a,b,c} be the universe, G =
{a,b,c} a granule, & = {G} be the system of granules, S = {a,b} be the set to
be approximated and REP(G) = {b} be the representatives of G. In this case
I,(S) = G = {a,b,c} which means that I,(S) € S. So the strong approximation
property does not hold.

Proof (Normality of |, and u,). The empty set does not have a representative.
Therefore the condition in the definition of the lower and upper approximation
is false for every granule. This implies that I,(0) = u,(0) = 0.

Theorem 5. Let G€ ® and D € D. Ifa € G and a € D then G C D.

Proof. If a € D then there exists a G’ € & such that « € G’ and G’ C D.
The members of & are pairwise disjoint, so it is true for all G1,G2 € & that
G1NGy # B only if G; = G5. Therefore G = G’ hence a € G and a € G'. Earlier
we have found that G’ C D and so G C D.

Theorem 6. |, (D) C D for all D € D.

Proof. We indirectly suppose, that there exists a D € © so that I, (D) € D.
Therefore there exists an a € I,(D) so that a ¢ D. If a € |,(D) then there exists
a G € & where REP(G) C D such that a € G. REP(G) # () so there exists a
b€ REP(G) and so b € D. Because REP(G) C G it is also true that b € G.
Based on Theorem 5, if b € G and b € D then G C D. Because of a € G the
a € D contradiction appears.
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Theorem 7. u,(D) C D for all D € D.

Proof. We indirectly suppose, that there exists a D € © so that u,(D) € D.
Therefore there exists an a € u,(D) so that a ¢ D. If a € u,(D) then there
exists a G € 6 where REP(G) N D # 0 such that a € G. So there exists a
b€ REP(G) N D so obviously b € REP(G) and b € D. Because REP(G) C G
it is also true that b € GG. Based on Theorem 5, if b € G and b € D then G C D.
Because of a € G the a € D contradiction appears.

Definition 4 (Weak approximation pair). An approzimation pair (I, u) is a
weak approximation pair on U if:

— | and u are monotone (monotonicity)

—u(®) =0 (normality of u)

—if D €D, then (D) = D (granularity of D)

if VS € 2V 1 I(S) C u(S) (weak approrimation property)

Theorem 8. (I,,u,) is a weak approzimation pair.

Proof. Previously we proved that I, and u, are monotone and the normality
of u, and the weak approximation property hold. We need to prove that the
granularity of © also holds. From Theorem 6 we know that |,(D) C D for any
definable set. We just need to prove that D C I,(D) for any definable set. Let’s
indirectly suppose that D ¢ I,(D). It means that there is a granule G’ such that
G' C D but G’ € I,(D). Therefore, there must be a representative member r of
G’ such that r ¢ D. By definition r € G'. If G’ C D, then every member of G’
is a member of D. However r € G’ but r ¢ D, therefore G’ cannot be a subset
of D. This contradicts our original assumption. So D C |,(D).

7 Conclusion

In [11,12] the authors introduced a partial approximation space relying on the
tolerance relation (representing similarity). The genuine novelty of this new
approximation space is the way in which the system of base sets is defined:
it is the result of correlation clustering, and so the similarity is taken into con-
sideration generally. In granular computing, a granule is a collection of objects
that are treated in the same way. In correlation clustering, a cluster contains
entities that are typically similar to each other. In this case, the objects that
are in the same cluster are treated in the same way. Therefore, we can treat the
clusters and so the base sets as granules. In data sciences, it is very common
to use only a subset of the original dataset instead of the entire collection. The
members of this subset can be called as representatives. A very important crite-
rion is that these objects must have the same properties as the whole data set.
In [5,10] we provided a possible way to choose the necessary number of repre-
sentatives of a set. We also introduced a new approximation pair which is based
on the representatives. In this paper, we examined some essential properties of
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granules (proposed by Prof. Mihir Chakraborty). We showed that the system of
granules generated by the correlation clustering satisfies all the minimal prop-
erties of the granules. Therefore, the clusters can be really treated as granules.
We also proved that the introduced approximation pair is a weak approximation
pair.

Acknowledgement. This work was supported by the construction EFOP-3.6.3-
VEKOP-16-2017-00002. The project was supported by the European Union, co-
financed by the European Social Fund.

References

10.

11.

12.

. Aigner, M.: Enumeration via ballot numbers. Discret. Math. 308(12),

2544-2563 (2008). https://doi.org/10.1016/j.disc.2007.06.012. http://www.science
direct.com/science/article/pii/S0012365X07004542

. Aszalés, L., Mihdlydedk, T.: Rough clustering generated by correlation clustering.

In: Ciucci, D., Inuiguchi, M., Yao, Y., Slezak, D., Wang, G. (eds.) RSFDGrC 2013.
LNCS (LNAI), vol. 8170, pp. 315-324. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-41218-9_34

. Aszalés, L., Mihalydedk, T.: Rough classification based on correlation clustering.

In: Miao, D., Pedrycz, W., Slezak, D., Peters, G., Hu, Q., Wang, R. (eds.) RSKT
2014. LNCS (LNATI), vol. 8818, pp. 399-410. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-11740-9_37

. Aszalés, L., Mihdlydedk, T.: Correlation clustering by contraction. In: 2015 Fed-

erated Conference on Computer Science and Information Systems (FedCSIS), pp.
425-434. IEEE (2015)

Aszalds, L., Nagy, D.: Iterative set approximations based on tolerance relation. In:
Mihélydedk, T., et al. (eds.) IJCRS 2019. LNCS (LNAI), vol. 11499, pp. 78-90.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22815-6_7

Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1-3),
89-113 (2004)

Becker, H.: A survey of correlation clustering. In: Advanced Topics in Computa-
tional Learning Theory, pp. 1-10 (2005)

Mani, A.: Choice inclusive general rough semantics. Inf. Sci. 181(6), 1097-1115
(2011)

Mihalydedak, T.: Logic on similarity based rough sets. In: Nguyen, H.S., Ha, Q.-T.,
Li, T., Przybyla-Kasperek, M. (eds.) IJCRS 2018. LNCS (LNAI), vol. 11103, pp.
270-283. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99368-3_21
Nagy, D., Aszalds, L.: Approximation based on representatives. In: Mihalydedk, T,
et al. (eds.) IJCRS 2019. LNCS (LNAI), vol. 11499, pp. 91-101. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-22815-6_8

Nagy, D., Mihdlydedk, T., Aszalds, L.: Similarity based rough sets. In: Polkowski,
L., Yao, Y., Artiemjew, P., Ciucci, D., Liu, D., Slezak, D., Zielosko, B. (eds.) LJCRS
2017. LNCS (LNAI), vol. 10314, pp. 94-107. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-60840-2_7

Nagy, D., Mihalydedk, T., Aszalds, L.: Similarity based rough sets with annotation.
In: Nguyen, H.S., Ha, Q.-T., Li, T., Przybyla-Kasperek, M. (eds.) IJCRS 2018.
LNCS (LNAI), vol. 11103, pp. 88-100. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-99368-3_7


https://doi.org/10.1016/j.disc.2007.06.012
http://www.sciencedirect.com/science/article/pii/S0012365X07004542
http://www.sciencedirect.com/science/article/pii/S0012365X07004542
https://doi.org/10.1007/978-3-642-41218-9_34
https://doi.org/10.1007/978-3-642-41218-9_34
https://doi.org/10.1007/978-3-319-11740-9_37
https://doi.org/10.1007/978-3-319-11740-9_37
https://doi.org/10.1007/978-3-030-22815-6_7
https://doi.org/10.1007/978-3-319-99368-3_21
https://doi.org/10.1007/978-3-030-22815-6_8
https://doi.org/10.1007/978-3-319-60840-2_7
https://doi.org/10.1007/978-3-319-60840-2_7
https://doi.org/10.1007/978-3-319-99368-3_7
https://doi.org/10.1007/978-3-319-99368-3_7

13.
14.
15.
16.

17.

Similarity Based Granules 47

Pawlak, Z.: Rough sets. Int. J. Parallel Prog. 11(5), 341-356 (1982)

Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inf. Sci. 177(1), 3-27 (2007)
Pawlak, Z., et al.: Rough sets: theoretical aspects of reasoning about data. In: Sys-
tem Theory, Knowledge Engineering and Problem Solving, vol. 9. Kluwer Academic
Publishers, Dordrecht (1991)

Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Infor-
maticae 27(2), 245-253 (1996)

Zimek, A.: Correlation clustering. ACM SIGKDD Explor. Newslett. 11(1), 53-54
(2009)



q

Check for
updates

Approximate Reaction Systems Based
on Rough Set Theory

Andrea Campagner! ™) Davide Ciucci', and Valentina Dorigatti?

! Dipartimento di Informatica, Sistemistica e Comunicazione,
University of Milano—Bicocca, Viale Sarca 336/14, 20126 Milan, Italy
a.campagner@Qcampus.unimib.it
2 Dipartimento di Scienze Teoriche e Applicate, University of Insubria,
Via J.H. Dunant 3, 21100 Varese, Italy

Abstract. In this work we investigate how Rough Set Theory could be
employed to model uncertainty and information incompleteness about a
Reaction System. The approach that we propose is inspired by the idea
of an abstract scientific experiment: we define the notion of test, which
defines an approximation space on the states of a Reaction System, and
observation, to represent the interactive process of knowledge building
that is typical of complex systems. We then define appropriate notions
of reducts and study their characterization in terms of both computa-
tional complexity and relationships with standard definitions of reducts
in terms of Information Tables.

Keywords: Complex systems - Reaction Systems - Rough sets

1 Introduction

Complex systems, that are characterized by the mutual interaction of basic com-
ponents, represent currently one of the topics of major interest in many disci-
plines. This interest has been fostered both by the potential impact that these
systems have in the real world and also by the difficulty that they pose with
respect to the modeling and formalization point of view. Indeed, as interaction
represents one of the main features of complex systems, there has been increasing
attention towards developing mathematical and formal models that are explic-
itly based on the notion of interaction: some prominent examples are cellular
automata [5], membrane computing [14], formalisms to describe concurrent pro-
cesses [4,16], reaction systems [8]. This latter class of models has recently been
proposed as a simple and abstract formalization of biochemical processes involv-
ing substances and reactions, by which the states (i.e., collections of substances)
are transformed. While interesting from a computational or purely mathematical
point of view, one of the major limitations of this framework (and, more in gen-
eral, of abstract idealized models of complex systems), as recently acknowledged
in [6], relates to the fact that these models ignore the realistic aspects that are
intrinsic in complexity, in particular with respect to the fact that information
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available about these systems is usually only partial, uncertain and incomplete
and acquired through interaction with the system.

Rough Set theory [15] has originally been proposed to explicitly deal with
this type of information: both with respect to the representation of uncertain
and potentially incomplete information [13] (through the notion of lower and
upper approximations) and also with respect to knowledge acquisition [3,10,22]
(through the notion of reducts and rule extraction). Indeed, the relationship
between these two mathematical frameworks have been investigated, under the
perspective of Interactive Granular Computing [19], in [6,18] where Rough Set
Theory is integrated with Reaction Systems in order to be able to account for
uncertainty and incomplete knowledge in the latter formalism.

In this work, we also discuss how to relate these two modeling frameworks,
though under a different perspective. Indeed, the main purpose of this article is
to investigate how Rough Set Theory can be used to study Reaction Systems,
both from the modeling point of view and from the uncertainty representation
and management one. More specifically, we will consider the case where states
of a Reaction System are not directly perceived as is, but only through the
observation of the results of some experiments or tests that have been performed
on those states, as would be the case in a realistic scientific experiment. As such,
the reaction system in intrinsically built on information that can be affected by
different forms of uncertainty. Notably, while we will focus on the specific case of
Reaction Systems, the methodology that we propose mainly considers the graph
of the dynamics that underlies the model and thus, at least in principle, should
be easily generalizable to any class of discrete dynamical systems.

The rest of this paper will be structured as follows: in Sect. 2 we recall the
necessary background concerning both Reactions Systems, Rough Sets and their
linking; while in Sect. 3 we present the mathematical framework that we propose.
Finally, in Sect.4 we discuss the obtained results and possible future research
directions.

2 Mathematical Background

In this section, the basic notions on both reaction systems and rough sets are
given.
2.1 Introduction to Reaction Systems

Reaction Systems are a model of computation inspired by biochemical reactions
involving reactants, inhibitors and products from a finite background set.

Definition 1. A Reaction System is an ordered pair (S, A) such that S is a
finite set of substances or entities, and A is a set of reactions in S.

A reaction can be formally defined as follows.
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Definition 2. A reaction, in a reaction system (S, A), is a triplet a =
(Rqa, L, P,) where R, C S is the set of reactants, I, C S is the set of inhibitors,
and P, C S is the set of products.

The result of applying reaction a to a set X C S, denoted by res,(X), is
conditional: if R, is included in X and I, is disjoint with X, then a is enabled
on X, otherwise a is not enabled on X. If a is enabled on X, then a transforms
the set of reactants into the product set. Thus, formally:

P, R,CXandI,NX =10
)  otherwise

resqe(X) = { (1)

For a reaction system (S, A), the result function of A is res4 : 25 — 29 and
for each T C S it is defined as:

resa(T) = U Pr (2)
acena(T)

where en4(T) is the set of reactions of A enabled in T

Given a RS R = (S, A) the associated graph of the dynamics is the graph
G[R] = (V, E) where V = 29 and (v, vs) € E if resa(vy) = vo. An example of
a Reaction System is illustrated in Example 1.
Example 1. Let R = (S, A) be a Reaction System where:
- S={A,B,C};
- A= {(®7 ABCa BC)7 (Aa Oa AB)a (B7 07 AB)7 (Cv AB7 AC)? (AB, ®7 ABC)}

The graph of the dynamics of R is shown in Fig. 1.

Fig. 1. Graph of the dynamics for the Reaction System described in Example 1.

We refer the reader to [7] for a recent overview and tutorial on Reaction
Systems.
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2.2 Introduction to Rough Sets

Rough sets are an approach to imperfect knowledge proposed by Zdzitaw Pawlak
to model uncertain and incomplete knowledge [15]. For recent overviews on
Rough Set Theory and applications we refer the reader to [1,23]. The basic
notion of Rough Set Theory is that of an information table.

Definition 3. An Information Table is an ordered pair IT = (U, Att) such that
U is a finite non-empty set of objects and Att is a finite non-empty set of
attributes, where each a € Att is a function a : U — V, and V, is the set of
possible values of a.

Given an IT, we say that two objects u,u’ are indiscernible w.r.t. B C Att
if Vb € B,b(u) = b(u'). Indiscernibility defines an equivalence relation where the
equivalence class of an object u is denoted as [u]p.

Given an Information Table IT = (U, Att) and B C Att, we can define for
X C U its rough approzimation (or, rough set) as B(X) = (Ip(X),up(X)),
where Ip(X) = U, ,cx[uls is the lower approzimation of X and up(X) =
U[u]BmXﬂ[u]B is the respective upper approzimation. We denote with Rp(U)
the set of rough sets on U determined by B C Att.

The lower approximation of a set consists of all the elements that surely
belong to that set, while the upper approximation of a set is made of all the
element that possibly belong to the set. The boundary region can be defined
as Bnd(X) = u(X) \ I[(X) and can be understood as the collection of elements
whose belonging to the set is not certain.

Given an Information Table IT = (U, Att), a super-reduct [21] is a subset of
attributes R C Att such that Va, [z]p = []an. A super-reduct R is a reduct if
no subset of R is also a super-reduct. We denote by RED(IT') the set of reducts
of IT, the core of an IT is defined as Co(IT) = \gerppr) R-

Finally, we notice that sometimes the starting point for defining rough sets
is a so-called approximation space (U, R), with U a set of instances and R an
equivalence relation (or, equivalently, a partition of U). Thus, any Information
Table induces an approximation space, which is a more general notion. The lower
and upper approximations are, then, defined exactly as above.

2.3 Related Work on Linking Rough Sets and Reaction Systems

The importance of linking Rough Set Theory and Reaction Systems, with the
goal of augmenting the formalism of Reaction Systems with notions of partial
information and incompleteness, has been recognized in [6,18]. Intuitively, in
these studies, the basic concept is that of a situation that could be understood as
a state of the system under observation. Situations can only be perceived through
attributes (that could represent physical experiments or other properties) and for
the observed situations (which represents the objects in an Information Table)
we are able to precisely tell whether a given substance was present or not in
that situation. However, we can give a lower and an upper approximation of the
present substances.
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Formally, in this framework, the authors start from the substances s of a
Reaction System R = (S, A) and, for each such substance, they define a Deci-
sion Table DT'(s) = (U, Atts,ds), that is an Information Table (U, Atts) plus
a decision ds : U — {0,1}, where U is a set of physical situations, Atts are
attributes through which the physical situation is perceived and ds(u) = 1 iff
substance s is present in situation w. Then, the set of situations in which s is
present is represented by the decision class D(s) = {u|ds(u) = 1}. Since it can
happen that the attributes Att; do not carry enough information to take a clear
decision, the decision class can be approximated via the information given by
the attributes Atts using the standard Rough Set notions of lower and upper
approximations, thus defining, L(D(s)) and U(D(s)). Then, the authors define
how a state S could be represented by aggregation of the decision systems DT'(s)
for se S.

The approach that we take in the following is similar in spirit, in that we also
take states as the basic notion of our framework and we assume that, in general,
these states are not completely recognizable but only perceived via tests that
affirm whether some substances are present or not in the current situation. A
fundamental difference, however, relates to the fact that the decision attribute in
the framework of [6,18] can be seen as an a-priori notion that is independent of
the attributes, in that it is already represented in the decision system. As we will
see in the following sections, in the approach that we propose the decision w.r.t.
a substance being present or not in a situation is only an a-posteriori notion that
is entirely defined by the values of the attributes or, as we will call them, tests.
Indeed, the result of the tests is the only information that we have about a state
and we are able to state that a given substance s is present in a given situation
only inasmuch the result of the tests is able to do so.

The notion of test that we will introduce resembles the notion of a sensor
in complex dynamical systems [11]: both represent available information about
the state of a complex system and, in both cases, one of the most interesting
problem is related to finding a minimal and sufficient set of tests (resp. sensors)
that are able to accurately describe the dynamics of the whole, partially unob-
servable system. The main differences between these two notions relate to the
fact that: sensors are defined in the context of classical (i.e. based on dynamical
systems theory), typically continuous, complex systems while the notion of test
that we will introduce is based on discrete dynamical systems; furthermore, the
underlying theory for minimal set of sensors are based on ideas from statisti-
cal mechanics, control theory and related disciplines, while the theory that we
develop for tests is based on Rough Sets and graph theory.

3 Methods

As argued in Sect. 1, one of the main features of real complex systems which
is lacking in the formalism of Reaction Systems is the ability to model partial
or uncertain information about the states of the system. Further, a Reaction
System is fully specified in terms of the reactions, while in reality the model
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is usually construed via gradual observation of the behavior of the system. In
this section we will formalize both concepts through application of Rough Set
Theory to Reaction Systems. We assume that the dynamics of the complex sys-
tem that we observe is fully described by an underlying Reaction System which,
however, may be unknown. The goal is then to understand, given a certain set
of experimental tests that we may perform, whether these tests are sufficient to
accurately describe the dynamics of the system. In order to do so, in Sect. 3.1 we
will formalize the notion of partial observability of a Reaction System through
the notion of Approximate Reaction System and tests. Further we will consider
the issue of dynamic acquisition of knowledge about a Reaction System, for-
malized via observations, that is states of partial knowledge about the graph
of the dynamics of a Reaction System. In Sect. 3.2 we will describe reducts for
Approximate Reaction Systems, their existence conditions and characterization.

3.1 Approximate Reaction Systems

Definition 4. An Approximate Reaction System (ARS) is a triple R =
(S, A, T), where S is the set of substances, A is the set of reactions and T is
the set of tests. A test t € T is a function t : S — {L, T}, we denote with
supp(t) = {s € S|t(s) = T} the support of t. The result of test t on state

X CSisr(X)=\/t(s) =

seX

3)

T supp(t)NX #0

L otherwise
Definition 5. We say that a test t identifies a substance s € S if supp(t) = {s}.
As all tests t that identify a given substance s are isomorphic, we will denote
any such test as ts.

Intuitively, a test represents a piece of information about the state of a Reac-
tion System that tells an observer whether some given substances are present,
or not, in the state. In particular a test is given a disjunctive interpretation, it
is only able to tell us whether at least one (but not necessarily all) of the sub-
stances it tests for are present in the given state. The intuition for this definition
derives from the concept of a chemical test, that is a qualitative or quantitative
procedure designed to identify, quantify, or characterise a chemical compound
or chemical group: so, a test that identifies a substance represents a chemical
test that is able to precisely detect a single chemical compound (e.g. a test for
blood sugar), while a chemical test for recognizing chemical groups, e.g. acids,
can be represented by a general test. Then, an Approximate Reaction System
represents the uncertain and partial knowledge that we have on the behaviour
of a real underlying reaction system given that we are only able to observe its
states through the tests specified by T'.

We observe that a set of tests T' defines an indiscernibility partition of the
states:

X ~p Y iffVEe T t(X)=tY) (4)
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We denote by [X]r the equivalence class of state X C 2° determined by the
set of tests T'. Thus, it follows that the set of test determines an approximation
space (2%, ~7). The rough approximations of the states are formally defined as
follows: let X C 2° be a state, then, its rough approzimation determined by T
is given by 7(X) = (I(X),u(X)) where

(xX)= (| Y (5)
Ye[X]

uX)= |J v (6)
Y €e[X]

T

Given an ARS R = (5, A,T), the associated graph of the dynamics is the
graph G[R] = (Vr, Er) where:

— Vr =R (2%);

(o = (UX),u(X)), v = (V) u(Y)) € Br iff 3U(X) € W C u(X),[(Y)
Z Cu(Y)s.t. (W, Z) is an edge in the graph of the non-approximated reaction
system.

An example of an ARS and its associated graph of the dynamics is shown in
Example 2.

Example 2. Let R be a ARS R = (S, A, T): where S and A are as detailed in
Ezample 1, while T = {t1,ts,t3} where supp(t;) = {B}, supp(tes) = {A,C} and
supp(ts) = {B,C}. Figure 2 illustrates the related graph of the dynamics.

({B}L{A,B,C}

)

Fig. 2. Graph of the dynamics for the ARS in Example 2.

We notice that this graph features a form of non-determinism as, for example,
there are multiple outgoing arcs from the node labeled (B, ABC). We notice,
furthermore, that the state where only substance B is distinct from the state
(B, ABC) even though the lower approximation of the latter one is exactly B.

As illustrated in Example 2, one can observe that, in general, the incom-
pleteness and uncertainty determined by the fact that the result of tests is the
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only information available about the states, the resulting graph of the dynamics
could feature a form of non-determinism, while the graph of the dynamics of a
standard Reaction System is necessarily deterministic. This suggests that, hav-
ing fixed a set of tests, if we observe the evolution of a system and we derive that
the resulting graph of the dynamics is non-deterministic then, the employed test
are not sufficient to properly describe the system (at least, if we assume that the
underlying phenomenon could be modeled as a Reaction System).

While tests formalize the notion of partial observability in terms of the sub-
stances, they do not provide a formalization of the idea that, in general, knowl-
edge about a complex system is acquired iteratively by repeatedly observing
its evolution over time from an initial state. We formalize this other notion via
observations:

Definition 6. Given the graph G[R] = (Vp, Er) of an ARS R, we denote as
G[R). = (V, E;) the set of all mazimal paths starting from x.

We say that an observation of an ARS is a collection O(R) =
{G[R]z,,..,G[R]s,} for x1,...,2, € Vp. We denote with Vo(r), Eo(ry), respec-
tively, the set of nodes and edges in O(R).

Given an observation of an ARS we can define the respective Information
Table as:

Definition 7. An ARS Information Table I[O(R)] for an observation O(R) of
an ARS R = (S, A,T) is an ordered pair (U,T), where U = Ug g}, cor) Ve

Thus an ARS Information Table represents two different types of partial,
incomplete information about an underlying Reaction System: first, the incom-
pleteness of information w.r.t. the global dynamics of the Reaction System as
only the dynamics involving the states under observation is known; second,
the incompleteness of information w.r.t. the states, as these are only observed
through the set of tests that are performed.

We notice that the definition of identifies that we previously defined applies
only to single tests. In order to generalize this notion we would need to consider
set of tests. Intuitively a set of tests F' identifies s if we know with certainty
that, given a state X, if 3t € F,#(X) = T then s € X.

Formally,

Definition 8. A set of tests FF C T identifies s € S if
VX C25 3t € F s.t. s € supp(t) and t(X) = TA .
Vs' € supp(t) \ {s},3t' #t € F s.t. 8" € supp(t') At'(X) = L. 0

This notion allows to define an alternative formulation of lower and upper
approximations that is not explicitly based on the equivalence relation on the
states:

Definition 9. The lower and upper approzimation defined by the relation T
identifies s are, respectively:

'(X)={seSNteT st sesuppt),t(X)=TAT identifies s}  (8)
W(X)={se SVteT s.t. sesupp(t),t(X)=T} (9)
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Then, we can prove the following result, that states that the two alternative
formulations are equivalent:

Lemma 1. (X) =1I'(X) and u(X) = v/ (X).

Proof. Consider first the upper approximation «(X): by Definition 6 a substance
sisin w(X) iff Y € [X]r.s € Y. Thus, Vt € T.s € supp(t), t(Y) = T; but, by
definition of ~7 this also means that ¢(X) = T. Since s was arbitrary we can
see that Definition 6 implies Definition 8. For the converse we can consider two
cases:

1. s € X, then obviously Definition 6 holds;
2. s¢ X but Vit € T s.t. s € supp(t).t(X) = T. Let Y = X U{s}, then evidently
Y € [X]r but this means that Definition 6 follows.

As regards the lower approximation, we showed that the first part of the
Definition characterizes the substances that are in the upper approximation, then
we must show that the condition that 7" identifies s is necessary and sufficient
for saying that s is also in the lower approximation. Let us assume that T
identifies s, and ¢ be the test that satisfies the condition for state X. Similarly
for each substance s let ¢* be the test s.t. &' € supp(t*) and t¥(X) = L.
Then if supp(t) = {s} the implication obviously follows, so let us focus on the
case where {s} C supp(t). Consider the equivalence class [X|r, then evidently
VY € [X]p, t(Y) = T and ¢ (Y) = L which means that s’ ¢ Y and since this
holds Vs’ # s € supp(t) is must hold that s € Y, so Definition 5 follows.

For the converse, notice that if Definition 5 holds then if s € I(X), then
Jt € T.s € supp(t) ANt(Y) = T, otherwise there would be a state Z =Y \ {s}
with both Z,Y € [X]p. If {s} = supp(t) then Definition 8 follows. On the
contrary, consider s’ # s € supp(t) such that 3t' # ¢t with s’ € supp(t’). If IY
s.t. /(Y) = L then we are done. Otherwise we can notice that such a couple
t,t’ must exist otherwise it must exists Z,Y € [X]r s.t. Z = (Y \ {s}) U {s'}
but this is an absurd as we assumed that s € I(X). Thus Definition 8 really is a
characterization of lower approximations.

In the following section we will define the concept of reduct for an ARS.

3.2 Reducts

Given an ARS = (S, A, T), we may ask whether the given set of tests is sufficient
to describe the dynamics that we could observe, if we had been able to fully
observe the states of the Reaction System. More in general, one may assume
that the provided set of tests is all we can have (e.g., for a certain situation the
provided tests are the most precise and powerful that are known) to describe
the Reaction System: in this case we can ask whether all the tests available are
necessary or there exists some test that is redundant.

Both these two concepts correspond to the idea of a reduct in Rough Set
Theory.
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Definition 10. Given an ARS Ry = (S, A,T) and an observation O(Rr), for
a given F C T, we define Rp = (S, A, F). Then, we say that F is a:

— complete super-reduct if G[Rr| = G[(S, A)];
- relative super-reduct if G[Rr] = G[Rr);
— weak super-reduct if G[Rr]|o(r,) = G[Rr]i0(r)

where G[Rr)|o(ry) is the restriction of G[Rr] to O(Rr). We say that F is a
complete (resp. relative, weak) reduct if it is a complete (resp. relative, weak)
super-reduct and it is minimal w.r.t. this property.

The following result characterizes (complete, relative, weak) reducts in terms
of Information Tables:

Proposition 1. Let Rr = (S, A,T) be an ARS and O(Rr) an observation.
Then F CT:

— is a weak reduct iff it is a reduct for I[O(Rr)];

~ is a relative reduct iff it is a reduct for I[Ry) = (2°,T);

— is a complete reduct iff it is a reduct for I*[Rr]| = (2S,TU {ts|s € S}), where
ts 1s a test that identifies s.

Proof. The case of weak reducts follows directly from Definition 10.

The condition for relative reducts is equivalent to saying that Rp(2%) =
Rr(2%), that is the set of rough sets of states are the same when considering the
full set of tests or the reduct F'. We can notice that an equivalent condition for F
being a relative reduct would be being a reduct for the ARS information system
I[Rr] = ({[X]r : X €25}, T) in which the equivalence classes determined by T
are made explicit.

On the other hand, the condition for complete reducts states that F' must be
able to identify all the substances s € S. O

Corollary 1. The smallest complete reduct RED ., of an ARS where Vs € S
Jts € T has |REDpin| = 19|

We notice that while the definition of (complete, relative, weak) reducts sug-
gests an algorithm for checking whether F C T is a reduct (e.g. by constructing
the discernibility matrix for the corresponding Information Table), the time com-
plexity of this algorithm is linear in the size of the ARS Information Table but,
in general, exponential in |S|. We can see from Corollary 1 that, at least for
complete reducts, a simple algorithm for finding reducts (and hence for testing
them) when we restrict to the case where Vs € S,¢; € T and that operates in
time linear in |T| can be given.

A different, but equivalent, characterization of reducts can be formulated in
terms of the identifies relation defined in Sect. 3.1.

Theorem 1. Let ARS = (S,A,T) be an ARS and let St = {s €
S|T identifies s}. Then F C T



58 A. Campagner et al.

- is a complete super-reduct iff S = Sg;
— is a relative super-reduct iff St = Sp.

Proof. This follows from the fact that if the condition holds then VX the lower
and upper approximations remain equal.

Notice that while Theorem 1 and Proposition 1 are equivalent characteri-
zations, the former result suggests an algorithm for testing reducts whose run-
time is O(|S|?|T’|?). Algorithm 1 describes the algorithm for the case of complete
reducts, the case for relative reducts is equivalent. The consequence of this result
is that the problem of finding complete and relative reducts is in NP not only
when considering the graph of the dynamics as the size of the problem, but also
when considering the size of the Reaction System. As finding reducts in gen-
eral Information Tables is N P-complete [20], we conjecture that the problem of
finding (complete, relative) reducts lies in the same complexity class.

Algorithm 1. A polynomial-time algorithm for the verification of complete
reducts.
procedure CHECK-COMPLETE-REDUCT
Require: R = (S, A) Reaction System , F' a reduct
check — T
for all s € S do
for all f € F: s € supp(f) do
temp — T
for all s’ # s € supp(f) do
temp «— temp A 3f' # f.s' € supp(f') A s & supp(f’)
end for
if temp = T then
check — T
Break
else
check «— L
end if
end for
end for
Return check
end procedure

Notice that while a similar characterization could be given also for checking
weak reducts, in that case the complexity would still be polynomial w.r.t. the
number of states in the observation, hence, in the worst case, exponential in the
number of substances.

4 Conclusion

In this paper we considered the study of mathematical methods to model com-
plex systems, focusing on the formalism of Reaction Systems, in particular with
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respect to their ability to model incomplete and partial information. As these
characteristics are commonly represented through Rough Set Theory, and also
acknowledging a recent research direction towards the linking of Reaction Sys-
tems and Rough Sets, we developed a mathematical framework, based on core
Rough Set theoretic concept to study these issues. We introduced the notion of
partial observability of the states of a Reaction System, through the notion of
tests, and after observing that this induces an approximation space we applied
ideas from Rough Set Theory to define lower and upper approximations; reducts
that could be used to automatically model Reaction Systems based on (poten-
tially uncertain and incomplete) observations. In order to further the applica-
tions of Rough Set Theory to the study of complex systems, we think that the
following open problems may be of interest:

— We provided a characterization of complete and relative reducts based on tests
and their ability to identify the substances. This characterization suggests
that the problem of finding (complete, relative) reducts is in NP not only
w.r.t. the size of the graph of the dynamics (which is in general exponential
in the number of substances) but also w.r.t. the size of the Reaction System.
Similar characterizations for weak reducts would be interesting;

— We considered reducts as sets of tests that are able to represent, without
loss of information, the graph of the dynamics of the Reaction System (or
Approximate Reaction System). It is not hard, however, to observe that this
definition may be too restrictive: indeed, if one’s interest only concerns the
general dynamics of a system, then an approximated graph may be tolerable
as long as it has the same properties of the original graph (e.g., w.r.t. the
reachability of states). It would then be interesting to give a definition of
reducts that characterizes this property of invariance w.r.t. the satisfaction
of properties expressed in a given logic [2];

— While in this work we considered approximations and reducts, Rough Set The-
ory also encompasses methods for rule induction [9,17] in order to explain a
Decision Table via sets of rules. Applying these approaches in the context of
Approximate Reaction Systems and observations (and, more in general, com-
plex systems) could enable the interactive and iterative learning and updating
of Reaction System models [12] based on observed dynamics;

— Finally, while the present work applies to Reaction Systems, we argued that,
as the proposed methods mainly use the graph of the dynamics, these notions
could also be extended to other discrete complex systems formalisms: in order
to do so, appropriate definitions of tests should be considered.
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Abstract. In this paper, we consider the decision tables provided by
experts in the field. We construct an algorithm for executing a highly
parallel program represented by a fuzzy Petri net from a given decision
table. The constructed net allows objects to be identified in decision
tables to the extent that appropriate decisions can be made. Conditional
attribute values given by experts are propagated by the net at maximum
speed. This is done by properly organizing the net’s work. Our approach
is based on rough set theory and weighted generalized fuzzy Petri nets.

Keywords: Decision system -+ Information system - Rough set -
Decision rule - Weighted generalized fuzzy Petri net

1 Introduction

Rough set theory, proposed by Pawlak in 1982 [18], is a mathematical tool for
dealing with unclear, imprecise, incoherent and uncertain knowledge. It has been
observed for many years that both research and applications of rough set theory
are attracting more and more attention of researchers. It can be successfully used
in many areas of application alone or in combination with other approaches.
Here, we use this theory to support modeling of decision-making systems using
weighted generalized fuzzy Petri nets.

In this paper, we assume that a decision table S representing experimental
knowledge is given [17]. It consists of a number of rows labeled by elements from
a set of objects U, which contain the results of measurements, observations,
reviews etc. represented by a value vector of conditional attributes (conditions)
from A together with a decision d corresponding to this vector. Values of con-
ditions are provided by experts in the field. In some applications the values of
conditional attributes can be interpreted as states of local processes in a com-
plex system and the decision value is related to the global state of that system
[13,16,24]. Sometimes it is necessary to transform a given experimental decision
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table by taking into account other relevant features (new conditional attributes)
instead of the original ones. This step is necessary when the decision algorithm
constructed directly from the original decision table yields an inadequate classi-
fication of unseen objects or when the complexity of decision algorithm synthesis
from the original decision table is too high. In this case some additional time
is necessary to compute the values of new features after the original values are
given. The input for our algorithm consists of a decision table (if necessary,
pre-processed as described above).

We shall construct a fuzzy Petri net allowing to make a decision as soon
as a sufficient number of conditional attribute values is known and conclusions
drawn from the knowledge encoded in S (cf. [22]). In the paper we formulate
this problem and present its solution.

First, we assume that knowledge encoded in S is represented by rules auto-
matically extracted from S. We consider acceptable rules in .5, i.e. rules for which
the accuracy factor need not necessarily be equal to 1 [23]. We assume that the
knowledge encoded in S is complete in the sense that invisible objects have
attribute value vectors consistent with rules extracted from S. This assumption
may be too restrictive, because the rules for the classification of new objects
should be generated only from appropriate features (attributes). The rule is
active if the values of all attributes on its left side are given. Our algorithm
should propagate information from attributes to other attributes as soon as
possible. This is the reason for generating true decision rules corresponding to
relative reducts with respect to the decision in S [22]. The last step of our algo-
rithm is the implementation of the set of generated rules using fuzzy Petri nets.
Each step of a computation of the constructed fuzzy Petri net consists of two
phases. In the first phase, it is checked that all condition values are known, and
if so, in the second phase, new information about the values is sent through the
net at maximum speed. The whole computation process is carried out by proper
organization of the net’s work.

In the paper, we use fuzzy Petri nets [3,5,10,12,30] as a model of the tar-
get decision-making system. Net properties can be verified using tools for the
analysis of Petri nets (see e.g. [28]).

Over the past few decades, there has been a series of modifications to the
classic fuzzy Petri nets (FPNs) [12] to deal with complex decision-making sys-
tems. Chen [4] introduced weight factors into FPNs and proposed a weighted
FPN (WFPN) model. Ha et al. [7] extended his work by adding input and output
weight factors into WFPNs. Then the intuitionistic fuzzy sets were integrated
into FPNs, and an intuitionistic FPN was presented in [11,26]. Skowron and
Suraj [23] developed a parallel algorithm for real-time decision-making based
on rough set theory and classic Petri nets. Peters et al. [20] combined the the-
ory of FPNs, rough sets, and colored Petri nets to develop a rough fuzzy Petri
net model. Suraj and Fryc [27] introduced time factor to approximate Petri nets,
which plays a vital role in developing real-time decision-making systems. Bandy-
opadhyay et al. [1] proposed to link Petri nets and soft sets and introduced a soft
Petri net model. Suraj and Hassanien [29] combined the theory of FPN and sets
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of fuzzy intervals to avoid the problem of determining the exact membership or
truth value.

This paper establishes some relationships between rough set theory and fuzzy
Petri nets. Parameter values such as rule certainty coefficients, input and out-
put weights of arcs in the net model are calculated automatically from a given
decision table. The empirical example provided here shows the effectiveness of
the proposed model.

The rest of this paper is organized in the following way. Section 2 contains
some background knowledge regarding rough set theory. In Sect. 3, the weighted
generalized fuzzy Petri net formalism is given. Section4 describes three struc-
tural forms of decision rules and a method for transformation of decision tables
into weighted generalized fuzzy Petri nets. An example illustrating the approach
presented in this paper is provided in Sect. 5. Finally, Sect. 6 suggests some direc-
tions for further research related to our approach.

2 Preliminaries of Rough Set Theory

In this section we recall basic notions of rough set theory. Among them are those
of information systems, indiscernibility relations, dependencies of attributes, rel-
ative reducts, significance of attributes and rules [14,15].

2.1 Information Systems and Decision Systems

An information system is a pair S = (U, A), where U is a non-empty finite set
of objects called the universe and A is a non-empty finite set of attributes such
that a : U — V, for every a € A. The set V, is called the wvalue set of a, and
V' = Ugaea Va is said to be the domain of A.

Let S = (U, A) be an information system and let B C A and X C U. Then
there is associated an equivalence relation ind(B): ind(B) = {(u,v') €e U x U :
for every a € B a(u) = a(u)}. ind(B) is called the B-indiscernibility relation.
If (u,u') € ind(B), then objects u and u' are indiscernible from each other by
attributes from B. The equivalence classes of the B-indiscernibility relation are
denoted [u]p.

We can approximate X using only the information contained in B, construct-
ing the B-lower and B-upper approzimations of X, denoted by BX and BX
respectively, where BX = {u: [ulp € X} and BX = {u : [u]p N X # 0}. The
objects in BX can be with certainty classified as members of X on the basis of
knowledge in B, while the objects in BX can be only classified as possible mem-
bers of X on the basis of knowledge in B. The set X is rough if BX — BX # ().

A decision system (a decision table) is any information system of the form S =
(U, A U {d}), where d ¢ A is a distinguished attribute called decision attribute
(decision). The elements of A are called conditional attributes (conditions).

Let S = (U, AU {d}) be a decision system. The cardinality of the image
d(U) = {k: d(u) =k for some v € U} is called the rank of d and is denoted by
r(d). We assume that the set V; of values of the decision d is equal to {1, ..., r(d)}.
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Let us observe that the decision d determines a partition {X1, ..., X;.g)} of the
universe U, where Xy, = {u € U : d(u) = k} for 1 < k < r(d). The set X, is
called the i-th decision class of S. If X1, ..., X, (4) are the decision classes of S,
then the set BX;U...UBX, ) is called the B-positive region of S and is denoted
by POSg(d).

Any decision system S = (U, AU {d}) can be represented by a data table
with the number of rows equal to the cardinality of the universe U and the
number of columns equal to the cardinality of the set A U {d}. On the position
corresponding to the row u and column a the value a(u) appears.

Example 1. A small decision system is shown in Table1. We have a set of
objects (patients) U = {1, 2, 3,4, 5,6}, a set of conditional attributes (symptoms)
A = {H (Headache), M (Muscle-pain), T (Temperature)}. The decision attribute
is denoted by F (Flu). The possible values of attributes from A U {F} are equal
to no, yes, normal, high, or very high and r(F) = 2. The decision F defines a
partition {X1, Xo} of U, where X; = {1,2,3,6}, Xo = {4,5}. Each row of the
table can be seen as information about specific patient.

Table 1. An example of a decision system

U/Au{d} H |[M |T F

1 no |yes | high yes
2 yes | no | high yes
3 yes | yes | very high | yes
4 no | yes | normal no
5 yes | no | high no
6 no |yes | very high | yes

2.2 Dependency of Attributes

An important issue in data analysis is discovering of dependencies between
attributes. Intuitively, a set of attributes C' depends totally on a set of attributes
B, denoted by B = C, if there exists a functional dependency between values
of C' and B.

Let S = (U, A) be an information system and let B,C C A.

We say that the set C depends on B in degree k (0 < k < 1), denoted by

B =, C, if k = y(B,C) = 92 where POS5(C) = Uxeyjo B(X) and
| X | denotes the cardinality of X # (. The set POSg(C) is called a positive region
of the partition U/C with respect to B. In fact, it is the set of all elements of U
that can be uniquely classified to blocks of the partition U/C by means of B.
Let B,C C A, and B’ C B. A set B’ is a C-reduct of B (or B’ is a relative
reduct of B with respect to C), if B’ is a minimal subset of B and v(B,C) =

~(B',0).
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Example 2. Consider once again the decision system presented in Table 1. For
example, for the dependency {H,M, T}=,{F} we get k = 2/3. However, for
the dependency {T}={F}, we get & = 1/2. The attribute T offers a worse
classification than the entire set of attributes H, M, T. It is worth to noting that
neither H nor M can be used to recognize flu, because for both dependencies
{H}=1{F} and {M}={F} we have £k = 0. In Table1 there are two relative
reducts with respect to {F}, Ry = {H, T} and Ry = {M, T} of the set of
conditions {H, M, T}.

2.3 Significance of Attributes

Significance of an attribute a in a decision system S = (U, A U {d}) can be
evaluated by measuring the effect of removing of an attribute a € A from the
attribute set A on the positive region defined by the table S.

Let B C A. Significance of an attribute a € A is defined as follows:
o(B,d,a) = (B, {d}) — v(B — {a},{d}) = LOUDIZDSe- U g
is simply denoted by o(a) when B and {d} are understood.

This numerical factor measures the difference between v(B,{d}) and v(B —
{a},{d}), i.e. it says how the factor (B, {d}) changes when an attribute a is
removed.

Note that the following relationship is also met: 0 < o(B,d,a) < 1.

Example 3. Using the above formula for the decision system from Example 1,
we obtain the following results for Table 1:

1. For the set of conditional attributes A: ¢(H) =0, o(M) =0, o(T) =1/2
2. For the relative reduct R;: o(H) =1/6, o(T) =2/3
3. For the relative reduct Ry: o(M) =0, o(T) = 3/4

2.4 Rules in Decision Systems

Rules express some of the relationships between values of the attributes described
in decision tables. In this subsection we recall the definition of rules as well as
other related concepts.

Let S = (U, A U {d}) be a decision system, B C A U {d}, and V = |
Vo U Vg

Atomic formulae over B and V' are expressions of the form a = v. They are
called descriptors over B and V, where a € B and v € V,. The set DESC(B, V)
of formulae over B and V is the least set containing all atomic formulae over B
and V and closed with respect to the propositional connectives OR (disjunction),
AND (conjunction) and NOT (negation).

Let 7 € DESC(B, V). ||Ts| denotes the meaning of 7 in the decision system
S which is the set of all objects in U with the property 7. These sets are defined
as follows:

acA
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1. if 7 is of the form a = v then ||7s|| = {u € U : a(u) = v}
2. [[(r OR T)sll=lIms[Ull7s s [[( AND 7)s||=[I7s[N[l7s s [NOT 7s||=U—||7s]|-

The set DESC(A,V,), a € A, is called the set of conditional formulae of S.

A decision rule v for S is any expression of the form IF 7 THEN d = v,
where 7 € DESC(A,V,), v € Vg and ||7g|| # (0. Formulae 7 and d = v are called
the predecessor and the successor of the decision rule r. ||7g]|| is the non-empty
set of objects matching the decision rule and ||7s|| N [|(d = v)g] is the set of
objects supporting the rule. With every decision rule r we can associate sev-
eral numerical factors. The accuracy factor of the decision rule r is the number

ace(r) = W, while the strength factor of the decision rule r is under-
stood as str(r) = W. The decision rule r is true in S, if ace(r) =1,

otherwise it is acceptable in S.
It is also easy to see that 0 < str(r) < acc(r) < 1 for every the decision rule
rin S.

Example 4. Let us consider the decision system table S from Examplel pre-
sented in Table 1. Using the method for generating decision rules in S [22], we
get the following rules, corresponding to the relative reduct Ry = {H, T} along
with the numerical factors defined above:

— r1: IF H=no AND T=very high THEN F=yes; str(r1) = 1/6, acc(r1) =1
— ro: IF H=yes AND T=very high THEN F=yes; str(rs) = 1/6, acc(rz) =1
— rg: IF H=no AND T=high THEN F=yes; str(rs) = 1/6, acc(rs) =1

— r4: IF H=yes AND T=high THEN F=yes; str(r4) = 1/6, acc(rs) = 1/2

— r5: IF H=yes AND T=high THEN F=no; str(rs) = 1/6, acc(rs) = 1/2

— re: IF H=no AND T=normal THEN F=no; str(r¢) = 1/6, acc(rg) =1

Note that the rules 71, 2, 73, 76 are true in Table 1, while the other rules are
acceptable in this table.

For a systematic overview of rule synthesis, see e.g. [9,15,21].

3 Weighted Generalized Fuzzy Petri Nets

Fuzzy Petri nets are a modification of classic Petri nets to deal with imprecise,
unclear or incomplete information in knowledge-based systems that are widely
used to model fuzzy production rules and rule-based reasoning.

In this section, we define weighted generalized fuzzy Petri nets (WGFP-net).
The new model is a modification of generalized fuzzy Petri nets, proposed in
[25]. The main difference between the current net model and the previous one
concerns the weights of arcs. Weights are now added to the input and output
arcs. They are any numbers from 0 to 1, automatically calculated from the data
table and interpreted in the concepts of rough set theory (see Sect. 4) (cf. [2,10]).
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In this paper WGFP-nets are used as a tool for computing a parallel program
from a given decision table. After modeling a decision table by a WGFP-net the
states are identified in the net to an extent allowing to take the appropriate
decisions.

We also assume that the reader knows the basic concepts of classic Petri nets
[6] and triangular norms [8].

Let [0,1] denotes the set of real numbers between 0 and 1.

A weighted generalized fuzzy Petri net is a tuple N = (P,T, I,0,
My, S, a, 8,7,0p,6), where: (1) P = {p1,p2,...,pn} is a finite set of places;
(2) T = {t1,t2,...,tm} is a finite set of transitions; (3) I: P x T — [0,1] is
the input function that maps directed arcs from places to output transitions of
those places. If a directed arc (p,t) exists between a place p and a transition ¢,
then I(p,t) > 0, otherwise 0. The values of I(p,t) for (p,t) € P x T are called
input weights of transitions ¢ and are denoted by iw; (4) O: T x P — [0,1] is
the output function that maps directed arcs from transitions to output places
of those transitions. If a directed arc (¢,p) exists between a transition ¢ and a
place p, then O(¢,p) > 0, otherwise 0. The values of O(t, p) for (t,p) € T x P are
called output weights of transitions ¢ and are denoted by ow; (5) My: P — [0,1]
is the initial marking; (6) S = {s1, $2,...,8n} is a finite set of statements; (7)
a: P — S is the statement binding function; (8) f: T — [0,1] is the truth
degree function; (9) v: T — [0, 1] is the threshold function; (10) Op is a union
of t-norms and s-norms called the set of operators, and the sets P, T', S, Op are
pairwise disjoint; (11) 6: T — Op x Op x Op is the operator binding function.

We also accept that if I(p,t) = 0 (O(p,t) = 0) then the directed arc from
input (output) place p to transition ¢ does not exist in the net drawing. Similarly,
if My(p) = 0 then the token does not exist in the place p. In addition, if I(p,t) =1
(O(t,p) = 1), then the weight of the arc equal to 1 is also disregarded in the
net drawing. The numbers §(t) and ~(t) are placed in a net picture under the
transition ¢. The first number is interpreted as the truth degree of an implication
corresponding to a given transition ¢. The role of the second one is to limit the
possibility of transition firings, i.e., if the input operator In value for all values
corresponding to input places of the transition ¢ is less than a threshold value ()
then this transition cannot be fired (activated). The operator binding function ¢
connects transitions with triples of operators (In, Outy, Outy). The first operator
in the triple is called the input operator, and two remaining ones are the output
operators. The input operator In concerns the way in which all input places are
connected with a given transition ¢ (more precisely, statements corresponding to
those places). However, the output operators Out; and Outs concern the way in
which the next marking is computed after firing the transition ¢. In the case of
the input operator we assume that it can belong to one of two classes, i.e., t- or
s-norm, whereas the second one belongs to the class of t-norms and the third to
the class of s-norms.

Let N be a WGFP-net. A marking of N is a function M: P — [0, 1].

The dynamic behavior of the system is represented by the firing of the cor-
responding transition, and the evolution of the system is represented by a firing
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sequence of transitions. We assume that the networks built in the form presented
in this paper operate according to the firing rule consisting of the following three
steps:

1.

N

A transition t € T is enabled (or ready for firing) for marking M if the
number produced by input operator In for all input places of the transition ¢
by M multiplied by the relevant weights of arcs is positive and greater than,
or equal to the number being a value of threshold function v corresponding to
the transition ¢. Formally, the following condition for v(¢) should be satisfied:
In(iwsy - M(ps1), iwio + M(pia), .., iwsg, - M (pir)) > v(t) > 0, where In is an
input operator of the transition ¢, {w;; is an input weight of ¢t and M (p;;) is
a marking of a place p;; for j =1,2,...,k.

A transition can fire only if it is enabled.

If M is a marking of N enabling transition ¢ and M’ is the marking derived
from M by firing transition ¢, then for each p € P a procedure for computing
the next marking M is as follows: (1) Tokens in all output places of ¢ are
modified in the following way: at first the value of input operator In for all
input places of ¢ is computed, next the value of output operator Out; for the
value of I'n and for the value of truth degree function 3(t) is determined, and
finally, a value corresponding to M’ (p) for each p € O(p) is obtained as a
result of output operator Outy for the value of Out, multiplied by the weight
ow and the current marking M (p). (2) Tokens in the remaining places of net
N are not changed.

Formally, for each p € P

Outa(ow - Outy (In(iwiy - M(ps1), twsz - M(ps2), .., twg, - M (pix)), B(2)),

M'(p) = { M(p)) if p € O(t)

M (p) otherwise

We also assume that if several transitions are simultaneously enabled in the

same marking (i.e. transitions are concurrent) then they can be fired by an
application of the firing rule described above in one and the same step and the
resulting marking is computed according to this rule.

(ZIN,GIN,ZsN) (ZIN,GIN,ZsN)

(a) (b)

Fig. 1. A WGFP-net with the initial marking: (a) before firing ¢1, (b) after firing ¢1
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Example 5. Consider a WGFP-net in Fig. 1. For the net we have: the set of
places P = {p1,p2,p3}, the set of transitions T' = {¢; }, the input function I and
the output function O in the form: I(p1,t1) = iwy = 2/5, I(ps, t1) = twy = 1/2,
I(ps,t1) = iwz = 0, O(t1,p1) = owy = 0, O(t1,p2) = owy = 0, O(t1,p3) =
ows = 1, and the initial marking My = (1/2,2/5,0), the set of statements S =
{s1, s2, 83}, the statement binding function a:: a(p1) = s1, a(p2) = s2, a(ps) =
s3, the truth degree function 8: ((¢;) = 1.0, the threshold function ~: v(¢1) =
0.1, the set of operators Op = {ZtN, GtN, ZsN}, the operator binding function
d: 6(t1) = (ZtN, GtN, ZsN), where ZtN(a,b) = min(a,b) (minimum, Zadeh t-
Norm), GtN(a,b) = a - b (algebraic product, Goguen t-Norm), and ZsN(a,b) =
max(a,b) (maximum, Zadeh s-Norm). The transition ¢; is enabled by the initial
marking My, since ZtN(I(p1,t1) - Mo(p1), I(p2,t1) - Mo(p2)) = min(1/5,1/5) =
1/5 > 0.1 = ~(t1). Firing transition ¢; by the marking My transforms My to
the resulting marking M’ = (1/2,2/5,1/5), because ows- GtN(1/5,8(t1)) = 1-
GtN(1/5,1.0) = 1/5 and ZsN(1/5, My(ps)) = max(1/5,0) = 1/5. Note that in
this case the transition ¢; is still enabled by M’, but when it is fired at this
marking, the result marking is the same as M’. We omit the detailed description
of the relevant calculations illustrating the transformation from the marking M’
to M’ after firing ¢1. They run similarly to these above.

4 Transformation of Decision Systems into WGFP-nets

Now we present a method for transforming decision rules representing a given
decision system into a WGFP-net.

We assume that a decision system is represented by decision rules of the form
IF 7 THEN d = v.

Let S = (U, AU {d}) be a decision system, and DESC(A, V,) be the set of
the set of conditional formulae of S.

In the paper, we consider three structural forms of decision rules with a list
of numerical factors enclosed in square brackets ‘[’ and ‘]’ characterizing these
rules (cf. [4,7,10]).

Type 1: A simple decision rule

ri: IF a =v THEN d =
[b; o(a),str(r1); acc(ry)]

where a = v and d = v’ denote descriptors such that a = v € DESC(A, V,) and
v’ € Vg, b is the truth degree value of a = v, o(a) is significance of the attribute
a, while str(ry) and acc(ry) are the strength factor and the accuracy factor of
the rule 71, respectively.

A WGFP-net structure of the decision rule 7y is shown in Fig. 2, where iw
is the input weight of the transition r; and interpreted as o(a), while ow is the
output weight of 71 and interpreted as str(r1) (see Subsect. 2.3 and 2.4). A larger
value of i,, or ow means a stronger corresponding connection. However, the value
B(r1) = c is interpreted as acc(ry). Similarly as before, the larger value of § the
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a=v. d=v’
iw ow
® )
p=c
7=d
(In,Out,,0ut,)

Fig. 2. A WGFP-net representation of the rule of type 1

more credible the rule is. The value of v represents the threshold value. Larger
value b requires greater truth degree of the rule precedence, i.e., a = v. The
operator In and the operators Outy, Outy represent the input operator and the
output operators, respectively. According to Fig. 3 the token value in an output
place p’ of a transition ¢ corresponding to the decision rule r; is calculated as
b = ow - Outy(b-iw,c), if b-iw > d, where d = y(r1) and y(ry) is the threshold
value associated to the transition r; and it is given by an expert in the field
during the simulation process of the network.

If the predecessor or the successor of a decision rule contains AND or OR
(propositional connectives), it is called a composite decision rule. Below, two
types of composite decision rules are presented together with their WGFP-net
representation (see Fig. 3 and Fig. 4).

a;=vy

p=c
r=d
(In,0Out,,0ut,)

Fig. 3. A WGFP-net representation of the rule of type 2

Type 2: A composite conjunctive decision rule in the predecessor of the rule

r9: IF a3 = v; AND ay =vy--- AND ai = vi; THEN d = o’

[b1,ba, ..., by; o (a),0%(a),..., ok(a), str(re); acc(ra)]

where a1 = vy, as = va, ..., ay = Vi, d = v’ denotes descriptors, and by, ba,
..., by, b’ their truth degree values, respectively. The meaning of all numerical
factors characterizing this rule is similar to the meanings of the relevant factors
described for the rule of type 1. The token value b’ is calculated in the output
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place as follows (Fig.3): v/ = Outy(In(by - dwy,bs - twa, ..., b - iwg), c)) - ow), if
In(by - dwq, by - dwa, ..., by - twg) > d, where d = (r2).

Type 3: A composite disjunctive decision rule in the successor of the rule

r3: IFa’ =v THENd=v; ORd=wv2--- ORd=vp

v ol (a), o? (@),...,oa™(a), strl(rg), stT'Q(Tg), ooy str(rs); acct (r3), (1(:02(7"3)7 coyacc™(r3)]

where @' = v', d = v1, d = va, ..., d = v, denotes descriptors, and b’ is the
truth degree value of @’ = v'. The token value for the type 3 is calculated in each
output place as follows (Fig.4): b; = ow; - Out (V' - iw, ¢;), if b’ - tw > d;, where
dj :’yj(Tg),j = 1,...,n.

f=e;
=d
(In,0uty,0ut,)
rs? OW,
=
7=d;
.. (In,Out,,0Outy)

d=v,

f=c,
7=d,

(In,0ut,,0ut,)

Fig. 4. A WGFP-net representation of the rule of type 3

Remarks:

1. It is easy to see that the rule of type 1 is a particular case of the rule of
type 2, as in the case of the rule of type 1, there is only one descriptor in
the predecessor. Type 3 can also be easily converted to type 1. Therefore,
without losing generality, we can only consider the rules of type 1 and 2.

2. As the rules of type 1 and 3 have only one descriptor in their predecessors,
we may omit the input operator In in Fig.2 and 4. Nevertheless, for better
readability of these figures we leave the operator where it is. What’s more,
the rule of type 3 can be generalized in the case when in the predecessor of
the rule instead of one descriptor we have a conjunction of descriptors (as in
the rule of type 2). Then the net modeling of such a rule in relation to its
predecessor is similar to the one done for the rule of type 2.

3. We assume that the initial markings of output places are equal to 0 in all
net models corresponding to the considered rule types. Therefore, in the
descriptions of the token values in output places we do not regard the out-
put operator Outs. In the opposite case, i.e., for non-zero markings of output
places, we should take into account this output operator. Thus, in each for-
mula presented above the final token value a’ should be computed as follows:
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b = Outo (b, M(p')), where " denotes the token values computed for suit-
able rule types by means of formulas presented above, and M (p’) is a marking
of output place p’. Intuitively, a final token value corresponding to M’(p’) for
each output place p’ of a transition representing a decision rule r is obtained
as a result of Outs operation for the computed Out; operation value and the
current marking M (p').

Using the method described above, we can formulate a simple algorithm that
constructs a WGFP-net based on a given set of rules extracted from a decision
system S. This algorithm transforms the rule into a WGFP-net depending on
the form of the transformed rule.

Let S = (U, AU{d}) be a decision system.

Algorithm 1: Construction of WGFP-net using a set of decision rules
in S

Input : A finite set R of decision rules in with a list of parameters

Output: A WGFP-net Ng

F — @; (* The empty set. *)

for each r € R

if r is a rule of type 1 then
| construct a subnet N, as shown in Fig. 2;

if r is a rule of type 2 then
| construct a subnet N, as shown in Fig. 3;

if r is a rule of type 3 then
| construct a subnet N, as shown in Fig. 4;
F — FU{N,};
integrate all subnets from a family F' on joint places and create a result net Ng;
return Ng;

5 An Example

To illustrate our methodology, let’s reconsider the decision rules corresponding
to the relative reduct R; from Example4 along with a full list of parameters
needed to build a structure of WGFP net model:

— r1: IF H=no AND T=very high THEN F=yes [c(H) = 1/6, o(T) = 2/3,
str(ry) = 1/6; acc(r1) = 1]

— rg: IF H=yes AND T=very high THEN F=yes [oc(H) = 1/6, o(T)
str(re) = 1/6; acc(rg) = 1]

— r3: IF H=no AND T=high THEN F=yes [c(H) = 1/6, o(T) = 2/3, str(r3) =
1/6; ace(rs) = 1]

— ry: IF H=yes AND T=high THEN F=yes [c(H) = 1/6,0(T) = 2/3, str(ry) =
1/6; acc(ry) = 1/2]

2/3,
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— r5: IF H=yes AND T=high THEN F=no [o(H) =1/6, o(T) = 2/3, str(rs) =
1/6; ace(rs) = 1/2]

— r¢: IF H=no AND T=normal THEN F=no [o¢(H) = 1/6, o(T) = 2/3,
str(rg) = 1/6; acc(rg) = 1]

213 (ZIN,GIN ZsN)

0.1
(ZIN,GIN.ZsN)

F=no

T=normal

(ZIN,GIN.ZsN}

Fig.5. An example of the WGFP-net model for the diagnosis of flu diseases with the
initial marking

Using Algorithm 1 (Sect.4) for constructing a WGFP-net on the base of
a given set of rules, we present the WGFP-net model corresponding to these
rules. This net model is shown in Fig. 5. Note that the places ps and p4 include
the truth degree values 3/4 and 1/2 corresponding to the descriptors H=yes
and T=high, respectively. The remaining places on the net model are empty.
In this example, input weights iw attached to arcs belong to the interval [0,1]
and are shown in Fig.5. Moreover, there are: the truth degree function (:
B(t1) = B(t2) = B(ts) = B(ts) = 1.0 and B(t4) = B(ts) = 0.5, the threshold
function ~: v(¢;) = 0.1 for ¢ = 1,2,...,6, the set of operators Op = {ZtN, GtN,
ZsN} and the operator binding function § defined as follows: §(¢;) = (ZtN, GtN,
LsN) for all transitions in the net.
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T=normal

1=0.1
(ZIN,GIN,ZsN)

Fig. 6. An example of the WGFP-net model for the diagnosis of flu diseases with the
final marking after firing the transitions t4, ts

Assessing the statements (descriptors) attached to places ps and py, we
observe that transitions ¢4 and t5 are enabled in the initial marking (see Fig. 5).
After firing these transitions in any order we obtain the same values for the deci-
sions F=yes, F=no equal to 1/48 (see Fig.6). This means that an unambiguous
decision does not exist in this case. In the net model with parameters (and this
is the model presented in the paper) the problem of ambiguity of decisions is
easier to solve than in the model without parameters. In a situation like this,
the ambiguity of decisions could be relatively easily resolved if the weights of the
output arcs for t4 and t5 were different. This situation is possible with a different
interpretation of the weights of the input and/or output arcs in this net model.
We intend to address this problem in more detail in our future research work.

It is also visible in this figure that in the current marking the transitions
ty and t5 are still enabled. Firing these two transitions in the current marking
does not change this marking, therefore the simulation of the net operation is
already completed. We omit the particular calculation in this case, because it
runs similarly as in Example5 (Sect. 3).
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6 Conclusion

Trying to make fuzzy Petri nets more realistic with regard to the perception of
physical reality, in this paper we established the relationship between fuzzy Petri
nets and rough set theory. This link is of a methodological nature and shows the
possible application of rough set methodology to transform the WGFP-net into
a more realistic net model. In the proposed model, the weights of arcs and the
function ( are interpreted using appropriate concepts from the rough set theory,
thanks to which their values are calculated from data tables. Decision rules are
also automatically generated from these tables, which are the basis for building
the net model of the decision algorithm. In addition, the considered net model
allows the use of any triangular norms to describe the behavior of the WGFP-
nets. The approach developed seems promising and one could try to apply it to
problems that can be solved in a similar way.

It is worth noting that the presented net model allows relatively quickly
identify the objects specified in a given decision table. However, the algorithm
described does not propagate information from attributes to other attributes as
soon as possible. If such an algorithm did this, we would achieve even faster
decision making in the net model. It is well known that this aspect is extremely
important in real-time systems. This is the reason to consider in the next study
the rules in minimal form, i.e. with a minimal number of descriptors on its left
hand side. Another interesting problem arises when we are unable to determine
the exact membership or value of truth, then we should focus our attention
on e.g. interval fuzzy sets [19] to indicate their scope instead of exact values.
Therefore, it seems useful to examine the WGFP-net in the context of interval
t-norms. This should make the model proposed here even more flexible, general
and practical. These are just some examples of problems that we would like to
examine using the approach presented in the paper.
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Abstract. In this paper, we present a new view on how the concept of
rough sets may be interpreted in terms of statistics and used for rea-
soning about numerical data. We show that under specific assumptions,
neighborhood based rough approximations may be seen as statistical
estimations of certain and possible events. We propose a way of choos-
ing the optimal neighborhood size inspired by statistical theory. We also
discuss possible directions for future research on the integration of rough
sets and statistics.

Keywords: Rough sets - Statistical learning + Neighborhood based
rough sets

1 Introduction

Zdzistaw Pawlak introduced rough sets in 1982 to deal with inconsistencies
within information tables [15]. His approach is applied to the representation
of classes of objects in an information table using two new sets called lower
and upper approximation. The lower approximation contains objects which cer-
tainly belong to the approximated class, while the objects which are possibly in
the approximated class are included in the upper approximation. Formulated in
another way, the approach identifies the objects which are certainly consistent
with the available knowledge and the objects which are possibly consistent with
it. The original method is designed to deal with categorical data or data with a
finite domain.

The extension of the model to numerical data faces some difficulties. One
possibility to deal with numerical data is to discretize the attributes in the
information table and make them categorical [7]. However, such an approach
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may lead to a loss of information, since discretization considers a set of values
as one single value. The other option are neighborhood based rough sets where
the equivalence class from Pawlak’s approach is replaced with the neighborhood
of an object in a high dimensional Euclidean space [9]. They are related to sim-
ilarity based rough sets [21], and are part of the more general family of covering
based rough sets [26]. The third approach are fuzzy rough sets which use fuzzy
generalizations of equivalence relations suitable for application to numerical data
[5]. In this paper, we use probability and statistics instead of fuzziness to model
uncertainty in data.

From the very beginning, it was acknowledged that Pawlak’s approach runs
into limitations when it comes to problems which are more probabilistic than
deterministic in nature [27]. In general, data consist of true values affected by
some noise. Therefore, the first step in data analysis is to remove that noise in
order to use the real values to solve the problem of interest. As a robust version of
rough sets, the Variable Precision Rough Set (VPRS) approach was proposed by
Ziarko [27]. Tt was also the first attempt to integrate the probabilistic approach
and rough sets. Other probabilistic versions of rough sets were presented later,
including decision theoretic rough sets [25] and parameterized rough sets [6].
Later on, Ziarko also introduced the assumption that the data are just a sample
from an unknown space [28] into rough sets. That is a widely used assumption in
statistics and machine learning: data are a realization of a random variable. With
this assumption, we seek for a deeper integration of rough sets and statistics. In
this paper, we propose a new view on the definition of rough sets, and provide a
new definition independent of the type of data. It leads to a natural extension of
the initial rough set approach to numerical data. We provide an example how to
calculate rough sets for numerical data, elaborate on some of issues we are facing
and present some ideas about how to direct the future research on integration
of rough sets and statistics.

The paper is organized as follows. In the next section we recall basic con-
cepts of rough set theory. In Sect. 3, statistical learning theory for Pawlak’s rough
sets is introduced. Section 4 presents rough approximations for numerical data.
Section 5 identifies and discusses some potential pitfalls and drawbacks identi-
fied in Sect. 4 together with ideas for improvement. Conclusions are provided in
Sect. 6.

2 Preliminaries

2.1 Rough Sets

An information table is a 4-tuple <U, QU{d}, X UY, f> where U = {uq,...,u,}
is a finite set of objects or alternatives, Q@ = {q1,...,¢m} is a finite set of
condition attributes, d is a decision attribute; X = UzeqXy, where X is the
domain of attribute g € @ while Y is the domain of d. The information function
f:UxQU{d} - X UY satisfies that Vu € U,Vqg € Q : f(u,q) € X, and that
f(u,d) € Y. Denote by X¢q = quQ X, the joint domain of condition attributes,
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while f(u, Q) € X¢ represents the |Q|-tuple of values f(u,q) for ¢ € Q. If X, is
finite, we say that ¢ is categorical, while if X; C R we say that ¢ is numerical.

First we assume that all condition attributes are categorical. We define the
equivalence relation = on objects v and v as u = v < Vg € Q, f(u,q) = f(v,q).
This means that two objects are related (indiscernible) if they are equally eval-
uated on all attributes. Let [u]= denote the equivalence class of object u, and
A C U. We recall Pawlak’s lower and upper approximations on U:

apr_(A) = {u e Ul[u]= € A}, apr_(A) ={u e Ullul=NA #0}.

In the lower approximation of A, we include objects u for which all identically
evaluated objects are also in A. Therefore, we may conclude that u for sure
belongs to A based on available knowledge, since all the instances with the same
values are also in A. We include object u in the upper approximation of A if
there is an instance in A identically evaluated as u. Hence, we may say that u
is possibly in A if some instances, identically evaluated as u, are in A. In this
way, we distinguish certain and possible knowledge. Below, we list the important
properties of inclusion and duality [15]:

— (inclusion) apr_(A) C apr_(4),
-~ (duality) apr_(A°) = (apr_(A))°, apr_(A°) = (apr_(A))".

A question arises: how to apply a similar reasoning when we have numerical
data? If we apply the reasoning presented above, the equivalence classes will
mostly consist of only one object since it is almost impossible that two objects
with numerical characteristics will be identically evaluated on all attributes. This
means that all objects from A belong to the lower approximations of A, i.e., all
objects from A certainly belong to A. However, in this way we ignore the fact
that the noise present in data affects the certainty of objects belonging to a
set. The noise is related to imprecision of numerical attributes and, even if the
measurement of numerical attributes is precise, to human perception of these
precise values.

A way to handle this problem is the neighborhood based rough set app-
roach. Assume now that condition attributes are taking real values and let
d be Euclidean distance on Xg C R™. Here, any distance metrics can be
used, but Euclidean distance corresponds with the later statistical approach
we will use. For object u € U we define its e-neighborhood n.(u) = {v €
U;d(f(u,Q), f(v,Q)) < €}. We define the approximations in the following
way [9]:

apr (A) = {u € Usn,(u) C A}, Pr,(A) = {u € Uin.(u) N A # 0}

Here, object u certainly belongs to A if its close neighborhood only contains
objects from A. Object u possibly belongs to A if its close neighborhood contains
at least one object from A. Equivalent properties of inclusion and duality also
hold in this case [9)].

From the definition we may see that the approximations heavily depend on
the parameter e. The question is, what is the optimal neighborhood size which
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will identify certain and possible knowledge. Later on we will see that statistical
techniques may be useful for this purpose.

2.2 Value-Based Definitions and Inconclusive Regions

Pawlak defines the approximations as sets of objects (SO). The main goal of
these definitions is to distinguish possible knowledge from certain knowledge
and for this we do not need to refer exactly to the set of objects. We can define
the approximations as sets of values (SV), i.e., the sets which will only contain
values from the domain of condition attributes. Let © € X¢. Similarly as in [§]
we define sets [z] = {u € U; f(u, Q) = z}. The SV approximations are

aprSY (A) = {ws[o] £ 0[] C A}, @prSY(A) = {u: [1] N A # 0.

We refer to this definition as SV definition while the original one will be called
SO definition. We note that the SV definition keeps the same knowledge as the
SO definition. The SO approximations can be obtained from the SV definition
by collecting all objects with condition values belonging to the SV approxima-
tions (lower or upper). The SV approximations can be obtained from the SO
definition as a set of unique condition values f(u,Q) of the objects from the
SO approximations. Therefore, in terms of Pawlak’s environment of categorical
data, SO and SV definitions are equivalent.

We notice that there are values from the domain which cannot be assigned
to any approximation. In particular, the condition |[z]| > 0 is necessary in the
definitions. Otherwise a value z for which |[z]| = 0 would belong to the lower
approximations of A and A€ at the same time, i.e., it would certainly belong
to two opposite classes. Of course, that is not possible and such values from
the domain are called inconclusive. We denote the set I C Xq of inconclusive

values by
I={z;2 € XgNl[z] =0}

The inclusion property is clearly preserved while duality still holds if the com-
plement operator on Xqg excludes inconclusive values i.e., if it is defined as:
S¢=Xg—-1—-SforSCXg.

On the other hand, for the SV extension in the neighborhood based approx-
imations, neighborhood may be defined for any value from the domain Xg. If
Xg CR™ and z € Xg we define n.(z) = {u € U;d(z, f(u,Q)) < €}. The SV
approximations are:

@SV(A) = {z;n(z) #DAn(z) C A}

apr, " (A) = {z;ne(x) N A # 0}

An arbitrary value x € Xg is in the lower approximation of A if its e-
neighborhood contains only objects from A while it is in the upper approxi-
mation if it contains at least one object from A. Here again we consider the
inconclusive areas, i.e., values in which neighborhood there are no objects from
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U. As for the SV definitions for Pawlak’s rough sets, the inclusion property is
preserved while duality holds with exclusion of the inconclusive areas. The SO
and SV definitions are not equivalent in this case since SV is more general, and
SO can be obtained from it, but not vice versa. For example, there can exist
a value z € X such that its neighborhood contains exactly one object u € A
and no elements from A€, and such that u is not in the SO lower approxima-
tion of A. The latter holds in particular if there exists some v € A€ such that
d(f(u,Q), f(v,Q)) < e. However, x belongs to the SV lower approximation, and
such x cannot be reconstructed from the SO lower approximation.

We will use the SV definition to derive a statistical extension of rough sets
to numerical data.

3 A Statistical View of Pawlak’s Rough Sets

One widely used assumption in statistics and machine learning (ML) is that data
are realizations of a joint random variable. Let objects be outcomes of the joint
random variable U = (X, )) where X is a random variable corresponding to the
condition attributes, while )} corresponds to the decision attribute. Since we are
dealing with classification problems, we know that ) is always discrete, while
X is discrete if we work with categorical data, or X takes values from R™ if we
have numerical data. Those random variables are unknown in practice, so using
data as their realizations, we explain the relations between X and ).

The idea here is to redefine the approximations in terms of random variables
instead of data. The SV approximations were defined on the domain w.r.t. neigh-
borhood operators, while here the approximations are defined on the domain
w.r.t. a random variable. In terms of statistics these are the “true” approxima-
tions dependent on unknown random variables. The SV approximations on data
will play the role of estimators of such approximations.

Since Y is discrete, assume that its domain is the set {0,1,...,K} for
some K. Classification tasks in machine learning often refer to calculation of
the conditional probabilities of the particular classes. More formally, for class
k € {0,1,...,K} we want to model the expression P(}Y = k|X = z) as a
function of x for all z from the domain space (either a space of categories or
R™). Assume now that the domain X¢g of X is finite i.e., X is discrete. If cer-
tainty is modeled in a probabilistic environment, we say that an event is cer-
tain if its probability is 1 while an event is possible if its probability is greater
than 0. We want to know if value x € X¢ certainly belongs to class k, i.e., if
P(Y = k|X = x) = 1. In practice, we do not have exact knowledge about the
conditional distribution of ) on X, so we need to estimate it. We recall the set
of objects U = {u; = (z;,y;)|i = 1...n} which is now a set of realizations of
random variable I/, known as a sample. The empirical estimation of the above
mentioned conditional probability is

« Ly —kri—a j = =
Pt = ) = DhesLnminmey _ I3 = 07 = )]
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where 14 is the indicator function, [{§ = k}| is the number of objects y; equal
to k, while |{Z = x}| is the number of objects x; equal to x. To estimate the set
of values z for which P(Y = k|X = z) = 1, we use the estimated probability
instead of the true one. We have that:

{9 =k} N {2 = =}
{& = a}|

— 1o [{g=kInH{i=c} = {& =} Al[{z =a}| >0

s{t=z}C{y=k}AN{z =2} >0.
‘We obtain

{r e Xo; PV =kX =1)} ={v e Xg; |{& =2} > 0A {2 =2} C{g =k}}.

The right side of the latter equality is identical to the SV definition of Pawlak’s
rough sets, where [z] is replaced by {# = z} while A is replaced with {§ = k}.
Here, it can be noticed that the SV lower approximation may be seen as an
estimation of the unknown lower approximation dependent on random variables.
A similar procedure may be used for the upper approximation. This leads to the
definition of the lower and upper approximations of the class k with respect to
random variable X

— KX =z =1}, 1)
= k|X =) > 0}.

apr’™V (Y = k)

{a; P(
apry’ (¥ =k) = {z; P

(
We call this the RV definition of rough sets. Such defined “true” approximations
do not require any assumptions on X (X being discrete or continuous) as long
as the conditional probability is defined. This version of the approximations pro-
vides a natural extension of rough sets to numerical data (and all other types of
data). In practice, approximation estimates for categorical and numerical data
are different since the probability estimation is different in the discrete and the
continuous case. We have already seen the estimation of the lower approximation
for categorical data. Later on it will be shown how to estimate the approxima-
tions in the numerical case. The RV rough set definitions can be taken out of
the context of classification and they can be extended to arbitrary events. Let A

be an event and X be a random variable. The lower and upper approximations
of A w.r.t. X are defined as:

y
y

apr’® (4) = {o: P(AJX =2) = 1}, &pri" (4) = {w; P(A|X = 2) > 0}.

However, such general definition will not play an important role for our goal,
but it may find some other applications in data analysis.

4 Rough Approximations for Numerical Data

In the previous section we have seen how the approximations may be estimated in
practice when we deal with categorical data, and that such estimation coincides
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with Pawlak’s approach. Since the approximations do not depend on the type of
data, the question is how to estimate them for numerical data. To make things
simpler, we assume that classification is binary, i.e., K = 1, and we only have two
values for the variable ), 0 and 1. Assume also that the domain of X' is X C R™
i.e., X is a continuous random variable. By fx we denote the probability density
function (PDF) of X, while by fy(k) = P(Y = k) we denote the PDF of the
binary random variable Y. The joint PDF of J and & is denoted as fy x. From
probability theory it holds that fy(0) + fy(1) =1, fa(x) > 0 for z € X and
S X0 fx(x)dx = 1. We calculate the approximations of class 1. Probability theory
tells us that:

_ o) @) - fyalz) o fya(0,2)
PO =0 =56 7! Fale) e
For the lower approximation we have that
o o o . fy,X(O,SU) o fy,X(va) _ _
PY=1lx=a)=1<1 7]51/(%) =1& 7}5{(1‘) =0« fyx(0,2) =0.

The last equality can be divided by fy(0) and we get the condition fx|y—o(z) =
0. Here fx|y—o stands for the conditional PDF of & on event {) = 0}. For the
upper approximation we have:

PY=1X =2x) 50 Pal2) >0e fyx(l,z)>0.

fa(z)

The last equality can be divided by fy (1) and we get the condition fx|y—;(z) > 0.

The conclusion we may derive from the calculations is that x certainly belongs
to class 1 if the conditional PDF of X on {) = 0} evaluated in x is 0. We have
that x possibly belongs to class 1 if the conditional PDF of X on {¥ = 0}
evaluated in x is greater than 0. These conditions depend on conditional PDF's
which are unknown in practice and have to be estimated. More precisely, we need
to estimate the so-called level sets, i.e., areas on which the PDF is smaller or
greater than some value [2]. In our case, the thresholds we consider for the PDFs
are when they are equal to 0 and greater than 0 (lower and upper approximation).

The estimation of level sets is an emerging field in statistics and ML [2,3,20].
Such estimations are essentially different from estimating the PDF itself since
we are searching for good estimators for a particular area of the PDF, not for
the whole PDF.

Below we present a naive approach of estimating level sets using the estima-
tion of the PDF. Density estimation is a well studied area of statistics [18,19,23].
The main methods are histogram density estimation, kernel density estimation
(KDE) and nearest neighbour density estimation. Histograms are known for per-
forming badly in high dimensions [18], while the nearest neighbour methods do
not assume that there are areas where the PDF is equal to 0 [14]. For these
reasons, KDE appears the most appropriate choice to calculate level sets. We
refer the reader to [19] for an overview of density estimation methods.
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4.1 Rough Sets and KDE

A kernel K : R™ x R™ — R is a positive and symmetric mapping for which
it holds that Vt € RM, [o,, K(t,s)ds = 1 [24]. It may be seen as a measure of
similarity between points from R™. The kernel density estimator is defined as:

n

FE@0 == S K,

i=1

where {t1,t2,...,t,} is a given sample from the unknown PDF f. The motivation
behind this definition is that if x has more points in its proximity, then value
fK (z) will be larger, which indicates an area of higher density.

Similarity measures are usually based on distances between points since, intu-
itively, the closer points are, the more similar they are to each other. Therefore,
we use kernels based on Euclidean distance, called radial kernels [12]:

Kle,y) = hk(”x;yn>

The notation ||-|| stands for the standard norm on R™, h is a positive real
parameter called bandwidth while & is a univariate positive function. Using radial
kernels, the PDF estimator becomes:

Pk, h |z — 2l
P = g (1520, @
From before we have that the lower approximation can be formulated as:

aprV (¥ = 1) = {&; fajy=o(z) = 0}.

Therefore, using (2) we get the estimator of the lower approximation:

alﬁv( =1) = {=; f)(|y o( r) = 0}.

Although it is not possible that fxjy—o(z) = 0 and fX|y 1(x) = 0 at the
same time, it may happen that fi’lg,:o(a:) = 0 and f D’ () = 0 for some
x. Such values we will denote as inconclusive and we will exclude them from the
approximations, as before. Following this, we redefine the estimation of the lower
approximation:

@gv( =1)={z; f;\{\y 0( z) = 0Afx|y 1( z) > 0}. (3)

Henceforth we will focus on the lower approximation. A very similar proce-
dure can be used to estimate the upper approximation.

We have to decide which area satisfies the condition from (3). To estimate
fx|y=0 we use objects from class 0 and to estimate fy|y—; we use objects from
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class 1. Recall U = {(z1,¥1),---,(Zn,¥Yn)} as the set of objects or the sample.
Set U is split into two subsets; objects which belong to class 0, and objects which
belong to class 1. We denote those sets U° = {(29,0), (9,0),..., (29 ,0)} and
{U" = (21,1), (23,1),...,(z},,1)}. To estimate the conditional PDFs fx|y_g
and fxjy—1 we use the objects from U° and U! respectively. To estimate the

level set fx|y—o(z) = 0 we have to find values of 2 for which ff{ﬁ}:o(x) =0

and to estimate fxjy—i(z) > 0 we are searching for x where fféﬁ,zl(m) > 0. It
follows that:

20 _ 40

nth(”x H):O<:>Vie{1,...n0};k(”xh$’|>:0.
||$ i - flz = ||

nth >0&die{l,...nm}; k W > 0.

The derivation up to now is general and holds for all functions k and bandwidths
h. The question is, which kernel best suits the last condition. The moslt used 11<e12r—
. L . S . - 1,
nel in practice is the Gaussian kernel which is also radial: k(z) = We 2%,
Its main drawback is that it is nowhere equal to 0. It is used under the assump-
tion that there are no impossible or certain events which is not the case here.
Therefore, a better choice would be a kernel with different assumptions. In par-
ticular, we require a kernel for which & is bigger than 0 on a bounded set i.e., a
kernel with bounded support (Fig. 1).

—— Gaussian —— Epanechikov —— Uniform

Fig. 1. Kernel examples in univariate case

The theory developed in [13] states that the smallest estimation error under
certain conditions is achieved for the Epanechikov kernel. The Epanechikov ker-

nel is radial with 5
k(xz) = max {0, rr;+ (1-— x2)},

™m

where ¢, is the volume of the m-dimensional unit ball. According to the def-
inition, its support is the unit hypersphere, which implies that it is bounded.
Another kernel with bounded support is the spherical uniform kernel, i.e., the
constant radial kernel for which
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k(z) = {Om if 2 € (0,1)

otherwise.

Let he and h, be the bandwidths corresponding to the Epanechikov kernel
and spherical uniform kernel, respectively. For the Epanechikov kernel, we have
that:

a0 2 — a?|?
k(f”:”l”)o@”H <1Hx z )SO@Iwa?IIZhev

h 2em, h?
_ ! 2 — 12
k:(xhxl”>>0(:>n;j (1—”x h;UZH )>O<:>||x—x§||<he,

while for the spherical uniform kernel it holds that:

_ g0 o
() —oe e at = k(B2 s 0w oo aty <

In both cases, value x certainly belongs to class 1 if in the neighborhood there
are no objects from the opposite class and there are some objects from the same
class. Hence, by using kernels with bounded support, we obtain simple conditions
for estimating the lower approximations.

4.2 Relationship to Neighborhood Based Rough Sets

We summarize the results obtained so far: we defined the lower approximation
of class {¥ =1} as: @f;V(y =1) = {z; fx|y=o(x) = 0} for continuous random
variable X. We estimated the approximation by estimating the PDF from the
expression using kernel density estimators as:

@f}v(l’ =1) = {z; f)ﬁy:o(x) =0A f}ﬂy:ﬂx) > 0}.

We have shown that the estimators for certain radial kernels with bounded sup-
port lead to the expression:

apr (¥ = 1) = {a3Vi : [z — %] = h A it |o — ol < b,

for some h. Let us write the neighborhood definition replacing e with h: nj,(z) =
{z; € U;d(z,z;) < h}, where d is the Euclidean distance. Condition 3 : ||z —
x}|| < h means that there is at least one object from U in ny (), i.e., np(z) # 0,
while Vi : ||z — 2?|| > h means that there are no objects from U in ny(z), i.e.,
np(z) C UL Tt follows that the approximation estimator can be written as:

aprSV (Y = 1) = {w;np(x) # 0 Anp(z) CU'}.

The latter expression is exactly the SV (set of values) definition of the neighbor-
hood based rough sets. We can conclude that the estimators of the RV approx-
imations coincide with the SV definition of the neighborhood based rough sets.
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The advantage of this representation of the neighborhood based rough sets is
that we have proper mathematical tools to calculate the neighborhood size in
order to get better results. We are now able to use statistical methods to obtain
a proper bandwidth which plays the role of the neighborhood size.

In the following subsection, we will outline a procedure to select the band-
widths in theory, that is: we provide some insights on how the bandwidths can
be calculated independently from data, using only the chosen kernel and the
original PDF.

4.3 Bandwidth Selection - An Example

This subsection relies on the work presented in [19]. Using the KDE theory, we
are able to construct the proper bandwidths for different kernels in order to
obtain the best possible estimator of PDFs (or at least close to the best). The
bandwidths are chosen to minimize the error of the PDF estimation. A widely
used error function is Mean Integrated Square Error (MISE):

MISE(f) = [ B (@)~ f(@))do
Xq

where E stands for the expected value. When n is significantly larger than the

number of attributes m, the MISE of radial kernels can be approximated as:

p C!

MISE(f*M) ~ Cyh* + —2.

nhm

The latter expression is also called AMISE or Asymptotic MISE. By minimizing
the expression above, we get the optimal bandwidth:

__1
hOpt = an m+4 |

Constants C1,Cs and C3 are dependent on the kernel and on the actual proba-
bility density function f. Assuming that our data are normally distributed (or
something close to normal with bounded support), we are able to calculate the
optimal bandwidths. Under normality assumption, the optimal bandwidths for
the Epanechikov and spherical uniform kernels are:

1

B = [8(d + 4)e,, (2v/m) T, R = [4(d + 2)e;) (2V/m) ],

From the AMISE expression, we may see that the rate of convergence is not
dependent on constant C3. Therefore, in order to avoid the assumptions and to
achieve better results one can try to tune constant C3 using data. Under h°Pt
for some kernel we also ensure that:

lim MISE(f*"""") =o.

n—oo
That ensures that for a sufficiently large sample size n, the inconclusive areas
will become negligible. That is also intuitive since with more data we acquire
more knowledge which leaves less space for uncertainty.
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5 Discussion

We have presented a new way to calculate the neighborhood size in neighbor-
hood based rough sets. A question arises: does it provide satisfactory results in
practice?

It is well known that rough sets are widely used in attribute selection [4,10].
The attribute selection in rough sets focuses on preservation of certain knowl-
edge; we delete attributes as long as the lower approximations of all classes
remain unchanged.

We have run a series of experiments applying the attribute selection
using neighborhood based rough sets together with the calculated bandwidths.
Unfortunately, the results were not satisfactory. First, we simulated data
with normal distribution to fulfill the assumption from the previous subsec-
tion. We have noticed that for lower dimensions, both h2‘-neighborhood and
hPt-neighborhood are too wide, meaning that they cover a large amount of data.
Consequently, the lower approximations obtained with them consist of a low per-
centage of data which is unrealistic. With higher dimensions, we observed the
opposite problem; the neighborhoods are too narrow which leads to the lower
approximation containing almost all data, which is also unrealistic. We can con-
clude that the naive approach of estimating PDF and searching for the optimal
bandwidth is not the best idea. The reason for the failure, even under the nor-
mality assumption, may lie in the fact that the optimal bandwidths are mainly
useful in the following cases.

— The number of objects in the sample is significantly larger than the number
of attributes since the bandwidth optimality is asymptotic.

— The MISE error is calculated using I norm (the integral of the squared dif-
ference). Our interest is to get the optimal bandwidth for the level set where
PDF is equal to 0. The I3 convergence does not guarantee that the estimator
also uniformly converges to the actual PDF [17]. Thus, we may have that
hoPt is suitable for the higher density regions where the PDF is significantly
larger than 0 and that it may have poor performance for the regions where
the PDF is close to 0.

We have also applied the procedure on real data for which the normality assump-
tion does not hold. As soon as the assumption is not fulfilled, the results are get-
ting worse. For example, we considered binary classification in mammographic
data from UCI [1] for which n = 830 and m = 5. In all cases, the lower approxi-
mations contained less than 7 % of data, meaning that only 7 % of data can be
certainly classified. Keeping in mind that the classification accuracy we obtained
with SVM on this dataset is around 85%, 7 % of certainty is unrealistic.

To overcome the limitations of the theoretical bandwidth selection, we iden-
tify the following options for future integration of rough sets, KDE and statistics
in general.

— Data driven estimation. The calculation of bandwidths may be data
driven. There is also a statistical theory on how to calculate bandwidths
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based on data (again [19]). Data driven bandwidths will help us to overcome
any a priori assumptions on the distribution of data.

— Robust approaches. Having 0 probability regions is a strong assumption
which usually does not coincide with reality. Mostly, numerical data exhibit
rare events, which may occur in the training data and/or during the prediction
process. Having the assumption that data lie in a bounded region may be
misleading in many cases and it can produce bad results. The 0 probability
regions can be eliminated by applying robust approaches similar to Variable
Precision Rough Sets (VPRS).

— Direct level set estimation. The bandwidth calculation needs to be more
adjusted to the problem of the level set estimation, rather than to the PDF
estimation. After we identify the regions of interest, we have to set up the
optimization problem to get the best possible (or close to the best) bandwidth
for that particular case.

— Different estimators than KDE. We can try to use other estimators for
level sets, besides KDE. The nearest neighbor based estimator can give inter-
esting results [14].

— Integration with SVM. Do we have to use densities to estimate the approx-
imations defined in (1)? We showed that the estimation of the RV approxi-
mations (1) boils down to the estimation of level sets. We may explore the
relation between SVM and level set estimation as has been done in [11,16,22].
On the other hand, there is a direct correspondence between principles of
rough sets and SVM. The applications of rough sets in binary classification
divide the domain into three sets, two certain regions for each class and one
boundary region. SVM is doing something similar where it trains two margins
which divide the space similarly as the rough sets: one boundary region and
two regions for two classes. Thus, using the similarities between rough sets
and SVM, we can try to integrate them in order to achieve better results.

6 Conclusion

We presented a new view on the definition of rough sets for the case when data
are not necessarily categorical. From the statistical point of view, the calculation
of rough set approximations is basically the estimation of the unknown RV (ran-
dom value) approximations dependent on random variables that generate data.
Such estimation under certain conditions (i.e., using radial kernels with bounded
support) is equivalent to the definition of neighborhood based rough sets. We
also showed a simple way how to calculate the neighborhood size using statistics.
Moreover, we discussed several options for future research on the integration of
rough sets and statistics. Of course, for each of the proposals it should be studied
if it can be tailored to the main applications of rough sets: rule induction and
attribute selection.
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Abstract. The NIS-Apriori algorithm, which is extended from the Apri-
ori algorithm, was proposed for rule generation from non-deterministic
information systems and implemented in SQL. The realized system han-
dles the concept of certainty, possibility, and three-way decisions. This
paper newly focuses on such a characteristic of table data sets that there
is usually a fixed decision attribute. Therefore, it is enough for us to han-
dle itemsets with one decision attribute, and we can see that one frequent
itemset defines one implication. We make use of these characteristics and
reduce the unnecessary itemsets for improving the performance of exe-
cution. Some experiments by the implemented software tool in Python
clarify the improved performance.

Keywords: Rule generation - The Apriori algorithm - Frequent
itemset - Incomplete information - Three-way decisions

1 Introduction

We are following rough set based rule generation from table data sets [10,14,22]
and Apriori based rule generation from transaction data sets [1,2,9], and we
are investigating a new framework of rule generation from table data sets with
information incompleteness [17-21].

Table 1 is a standard table. We term such a table as a Deterministic Informa-
tion System (DIS). In DISs, several rough set based rule generation methods are
proposed [3,5,10,14,16,22,23]. Furthermore, missing values ‘7’ [6,7,11] (Table 2)
and a Non-deterministic Information System (NIS) [12,13,15] (Table 3) were also
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Table 1. An exemplary DIS 1.
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Table 2. An exemplary NIS & with  Table 3. An exemplary NIS &. Each ‘?’
missing value ‘?’, whose value is one of s replaced with a set {1,2,3} of possible

1, 2, 3. attribute values.
Object | P|Q RS Dec Object | P Q RIS Dec
zl 307 22 a 1 3 {1,2,3}2 2 a
22 2/{2,3}27 |a 2 2 {2,3} 2 /{1,2,3}|a
3 ap) 2 [{1,2}/b z3 {1,2,3} 2 2 {1,2} b
x4 1/3 312 b x4 1 3 312 b
b 312 3.7 c x5 3 2 3 1{1,2,3}|c

investigated to cope with information incompleteness. In [12], question-answering
based on possible world semantics was investigated, and an axiom system was
given for query translation to one equivalent normal form [12].

In NIS, some attribute values are given as a set of possible attribute values
due to information incompleteness. In Tables 2, {2,3} in «2 implies ‘either 2 or
3 is the actual value, but there is no information to decide it’, and ‘7’ does there
is no information. We replace each ‘?” with all possible attribute values and have
Table 3. Thus, we can handle ‘?” in NIS (some discretization may be necessary for
continuous attribute values). Formerly in NISs, question-answering and informa-
tion retrieval were investigated, and we are coping with rule generation from NISs.

The Apriori algorithm [1] was proposed by Agrawal for handling transaction
data sets. We adjust this algorithm to DIS and NIS by using the characteristics
of table data sets. The highlight of this paper is the following.

(1) A brief survey of Apriori based rule generation and a rule generator,
(2) Some improvements of the Apriori based algorithm and a rule generator,
(3) Experiment by the improved rule generator in Python.

This paper is organized as follows: Sect.2 surveys our framework on NISs and
the Apriori algorithm [1,2,9]. Section 3 connects table data sets to transaction
data sets and copes with the manipulation of candidates of rules. Then, more
effective manipulation is proposed in DISs and NISs. Section4 describes a new
NIS-Apriori based system in Python and presents the improved results. Section 5
concludes this paper.
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2 Preliminary: An Overview of Rule Generation and
Examples

This section briefly reviews rule generation from DISs and NISs.

2.1 Rules and Rule Generation from DISs

In Table1, we consider implications like [P, 3] = [Dec,a] from z1 and [R,2] A
[S,1] = [Dec, b] from x3. Generally, a rule is defined as an implication satisfying
some constraint. The following is one standard definition of rules [1,2,9,14,22].
We follow this definition and consider the following rule generation from DIS.

(A rule from DIS). A rule is an implication 7 satisfying support(r) > « and
accuracy(t) > B (0 < a, B < 1.0) for given threshold values o and S.

(Rule generation from DIS). If we fix o and ( in DIS, the set of all rules is also
fixed, but we generally do not know them. Rule generation is to generate all
minimal rules (we term a rule with minimal condition part a minimal rule).

Here, support(T) is an occurrence ratio of an implication 7 for the total
objects and accuracy(r) is a consistency ratio of 7 for the condition part of 7.
For example, let us consider 7 : [R,2] A [S, 1] = [Dec, b] from 3. Since T occurs
one time for five objects, we have support(r)=1/5. Since [R,2] A [S,1] occurs
two times, we have accuracy(r) =1/2. Fig. 1 shows all minimal rules (redundant
rules are not generated) from Table 1.

waqlr zelect # from rulel;
T e e +
| support | accuracy l
b 0.400 1.000
a 0.200 1.000
a 0.200 1.000
0 Dec b 0.200 1.000
end attr[b NIILL NULL NULL NIJLL NI_ILL
e Frmmmmmmmmmee e SEE TR
b rows in ;E:t {0.00 sec_
wsgl > aE:lBCL # 1‘rom rule?;
et T B S T Hommmmmmmem +
| attl l vall ] att? | val2 | deci | deci_value | support | accuracy |
S Gt S |t S SRR S +
P 3 [n} 2 Dec c 0.200 1.000
P 3 R 2 Dec a 0.200 1.000
P 3 R 3 Dec c 0.200 1.000
P 3 2 1 Dec c 0.200 1.000
P 3 3 2 Dec a 0.200 1.000
[t} 2 R 3 Dec c 0.200 1.000
R 2 2 2 Dec a 0.200 1.000
R 3 3 1 Dec C 0.200 1.000
R 3 2 2 Dec b 0.200 1.000
end_attrib | NULL | NULL | NULL | MWULL | MWULL NULL MULL
T s ST T etk TS S +
10 rows in ﬁe\‘. (0.00 =ec)

Fig. 1. The obtained all minimal rules (support(r) > 0.2, accuracy(r) > 0.9) from
Table 1. Our system ensures that there is no other rule except them. In the table
rulel, the first rule is 7 : [P, 1] = [Dec,b]. Even though 7' : [P,1] A [Q, 2] = [Dec,b]
satisfies the constraint of rules, 7’ is a redundant implication of 7 and 7’ is not minimal.
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2.2 Rules and Rule Generation from NISs

From now, we employ the symbols @ and 1 for expressing NIS and DIS, respec-
tively. In NIS @, we replace a set of all possible values with an element of this
set, and then we have one DIS. We term such a DIS a derived DIS from NIS,
and let DD(®P) denote a set of all derived DISs from NIS. Table1 is a derived
DIS from Table3. In NISs like Table 3, we consider the following two types of
rules,

(1) A rule which we certainly conclude from NIS (a certain rule),
(2) A rule which we may conclude from NIS (a possible rule).

These two types of rules seem to be natural for rule generation with information
incompleteness. Yao recalls three-valued logic in rough sets and proposes three-
way decisions [23,24]. These types of rules concerning missing values were also
investigated in [6,11], and we coped with the following two types of rules based
on possible world semantics [18,20]. The definition in [6,11] and the following
definition are semantically different [18].

(A certain rule from NIS). An implication 7 is a certain rule, if 7 is a rule in
each of derived DIS from NIS,

(A possible rule from NIS). An implication 7 is a possible rule, if 7 is a rule in
at least one derived DIS from NIS.

(Rule generation from NIS). If we fix o and 8 in NIS, the set of all certain rules
and the set of all possible rules are also fixed. Rule generation is to generate all
minimal certain rules and all minimal possible rules.

Two types of rules depend on all derived DISs from NIS, and the number
of them increases exponentially. For Table 3, the number is 324 (=22 x 3%), and
the number is more than 10'%° for the Mammographic data set [4]. Thus, the
realization of a system to handle two types of rules was seemed to be hard,
however, we gave one solution to this problem.

(Proved Property). For each implication 7, we developed some formulas to cal-
culate the following,

(1) minsupp(T) = minyepp(e){support(r) in ¥},

(2) minacc(T) = minyepp(e){accuracy(r) in ¥},

(3) maxsupp(T) = maxyecpp(s){support(r) in 1},

(4) mazacc(t) = maxyecpp(@)iaccuracy(r) in ¥}.

This calculation employs the rough sets based concept and is independent of

the number of derived DISs [18,20,21]. By using these formulas, we proved a

method to examine ‘7 is a certain rule or not’ and ‘7 is a possible rule or not’.

This method is also independent of the number of all derived DISs [18,20,21].
We apply this property to the Apriori algorithm for realizing a rule generation

system. The Apriori algorithm effectively enumerates itemsets (candidates of

rules), and the support and accuracy values of every candidate are calculated

by the Proved Property. Figures 2 and 3 show the obtained minimal certain rules

and minimal possible rules from Table 3. As for the execution time, we discuss

it in Sect. 4.
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vaql» select # from clrule;

| attl | wall | deci | deci_value | minsupp | minacc |

[P (1| Dec | b | 0.200 | 1.000 |

end_attrib | NULL | NULL | NULL NULL MULL

2 rows in set (0.00 sec)

vsql» select # from c2rule;

| att1 | wall | att2 | val2 | deci | deci_value | minsupp | minacc |

[P [3 |R |3 |[Des |c [ 0.200 | 1.000 |
o 2 R 3 Dec [ 0.200 1.000
[t} 3 R 3 Dec b 0.200 1.000
end_attrib | NULL | NULL | WULL | NULL | NULL HULL MULL

4 rows in set (0.00 sec)

Fig. 2. The obtained all minimal certain rules (support(r) > 0.2, accuracy(r) > 0.9)
from Table 3. There is no rule except them.

vsql> select # from plrule;
| att1 | wall | deci | deci_value | maxsupp | maxacc |
P 1 Dec | b 0.400 1.000
P 2 Dec | a 0.200 1.000
0 1 Dec | a 0.200 1.000
o 3 Dec | b 0.200 1.000
S 1 Dec | a 0.200 1.000
S 1 Dec | b 0.200 1.000
S 1 Dec | c 0.200 1.000
S 3 Dec | a 0.200 1.000
S B Dec | c 0.200 1.000
end_attrib | NULL | NULL | NULL NULL NULL

————————— + } I fommmmm -+
10 rows in set (0.00 sec)

vsql> select # from pZrule;

- + + + hns et G S
| attl | wall | att2 | wal2 | deci | deci_value | maxsupp | maxacc |
| + + + e LT ST dommmmmoe pommmmeee +

P 2 o 2 Dec | b 0.
P 2 S 2 Dec | b 0.
P 3 o 2 Dec c 0.
P 3 il 3 Dec a 0.
P 3 R 2 Dec a 0.
P 3 R 3 Dec c 0.
P 3 3 2 Dec a 0.
o 2 R 2 Dec b 0.
o 2 R 3 Dec C 0.
1] 2 S 2 Dec: a 0.
o 2 S 2 Dec | b 0.
o 2 S 2 Dec: [ 0.
o 3 R 2 Dec a 0.
R 2 S 2 Dec a 0.
R B S 2 Dec | b 0.
&l MULL | WULL | WULL | MULL | NULL
16 rows in set (0.00 sec)

Fig. 3. The obtained all minimal possible rules (support(r) > 0.2, accuracy(r) > 0.9)
from Table 3. There is no rule except them.

2.3 A Relation Between Rules in DISs and Rules in NISs

Let ectual he a derived DIS with actual information from NIS @ (we cannot
decide ¥2¢*“e! from @, but we suppose there is an actual ¥2°*“? for @), then we
can easily have the next inclusion relation.

{7 | 7 is a certain rule in @} C {7 | T is a rule in yctual}
C {7 | 7 is a possible rule in &}
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Due to information incompleteness, we know lower and upper approximations
of a set of rules in ¥*°*#%! This property follows the concept of rough sets based
approximations.

2.4 The Apriori Algorithm for Transaction Data Sets

Let us consider Table 4, which shows four persons’ purchase of items. Such struc-
tured data is termed a transaction data set. In this data set, let us focus on
a set {ham,beer}. Such a set is generally termed an itemset. For this item-
set, we consider two implications 7y : ham = beer and 7 : beer = ham.
In 71, support(m;)=3/4 and accuracy(m1)=3/3. In 79, support(rz) =3/4 and
accuracy(rz) =3/4. For an itemset {ham,beer, corn}, we consider six implica-
tions, ham Abeer = corn, - - -, beer = corn/\ham. Like this, Agrawal proposed a
method to obtain rules from transaction data sets, which is known as the Apriori
algorithm [1,2,9]. This algorithm makes use of the following.

Table 4. An exemplary transaction data set

Transaction | Items

1 bread, milk, ham, beer, corn
2 cheese, ham, beer

3 ham, beer, apple, potato, corn
4 cheese, cake, beer

(Monotonicity of support). For two itemsets P and Q, if P C Q, support(Q) <
support(P) holds.

By using this property, the Apriori algorithm enumerates all itemsets, which
satisfy support > «. FEach of such itemsets is termed a frequent itemset. Let
us consider the manipulation of itemsets in Table 4 under support > 0.5. Since
there are four transactions, each itemset must occur more than two times. Let
CAN; and FI; (i > 0) denote a set of all candidates of itemsets and a set of all
frequent itemsets consisting of (i+ 1)-items, respectively. We have the following.

CANy = {{bread}(Occurrence=1), {milk}(1),{ham}(3), {beer}(4), {corn}(2),
{cheese}(2), {apple} (1), {potato}(1),{cake} (1)},
FIy = {{ham}(3),{beer}(4),{corn}(2), {cheese}(2)},
CAN; = {{ham, beer}, {ham, corn}, {ham, cheese}, {beer, corn},
{beer, cheese}, {corn, cheese}},
FI, = {{ham, beer}(3), {ham, corn}(2), {beer, corn}(2), {beer, cheese}(2)},
CANy = {{ham,beer, corn}, {ham, beer, cheese}, { ham, corn, cheese},
{beer, corn, cheese}},

FIy = {{ham,beer, corn}(2)}.
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Each element in CAN; (i > 1) is generated by the combination of two itemsets
in FI;_1 [1,2]. Then, every itemset satisfying the support condition becomes
the element of FI;. For example, for A : {ham,corn}, B : {beer,cheese} €
FI,, we add one element of B to A and have {ham,corn,beer}, {ham,corn,
cheese} € C'AN,. We also do the converse and have {beer, cheese, ham}, {beer,
cheese, corn} € C AN,. Only one itemset {ham, corn, beer} satisfies the support
condition and becomes an element of F'I,. Like this, F Iy, Fls, ---, FI, are
obtained at first, then the accuracy value of each implication defined by a fre-
quent itemset is evaluated. In the subsequent sections, we change the above
manipulation by using the characteristics of table data sets.

3 Some Improvements of the NIS-Apriori Based Rule
Generator

We describe the improvements in our framework based on Sect. 2.

3.1 From Transaction Data Sets to Table Data Sets

We translate Table 1 to Table 5 and identify each descriptor with an item. Then,
we can see that Table b is a transaction data set. Thus, we can apply the Apriori
algorithm to rule generation.

Table 5. A transaction data set for DIS ¢ in Table 1.

Object | Descriptors as items

zl [P,3], [Q,1], [R,2], [S,2], [Dec,a]
2 [P.2], [Q,2], [R.2], [S,1], [Dec,a]
3 [P,1], [Q.,2], [R.2], [S,1], [Dec,b]
4 [P,1], [Q,3], [R,3], [S,2], [Dec,b]
5 [P,3], [Q,2], [R,3], [S,1], [Dec,c]

We define the next sets IM Py, IMPs, ---, IMP,.

IMP, = {[A,val 4] = [Dec,vall},
IMP, = {[A,vala] A [B,valg] = [Dec,vall},
IMPs = {[A,vala] A [B,valg] A [C,valc] = [Dec,val]},

Here, IMP; means a set of implications which consist of i-condition
attributes. A minimal rule is an implication 7 € U;IM P;, and we may examine
each 7 € U;IM P;. However, in the subsequent sections, we consider some effec-
tive manipulations to generate minimal rules in IM Py, IM Py, -- -, sequentially.
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The manipulation | (The Apriori adjusted to tables) for generating
sets of frequent itemsets, Fl,, Fl,, Fl3,

S CAN,(CIMP,) CAN,(CIMP,) CAN;(CIMP5)
D I {{[A.a],[Dec ]} } {{[A.al.[Bb], {{[Aal,[B.b],
Condition descriptor [Dec,vl} } [C.cl.[Dec,v]} }
{[Aal} A set of pairs of Aset of triplet of Aset of
support([A,a])>=a descriptors descriptors quadruplet
Decision descriptor
e / \ su)pfgn / \ Suff:n / ‘su)pf:n
support([Dec,v])>=a SN
Fl, Fl, Fl;
{{[A.a],[Dec,v]} {{[Aal,[B,b], {{[Aa],[B,b],
[Dec,v]} } [C.c].[Dec,v]} }
i i accuracy i accuracy i accuracy
HEE { >=p L o>=B

(| Rue, | [ Rule, | [ Rute, |

Fig. 4. The manipulation I for itemsets.

3.2 The Manipulation I for Frequent Itemsets by the Characteristics
of Table Data Sets

Here, we make use of the characteristics of table data sets below.

(TA1). The decision attribute Dec is fixed. So, it is enough to consider each
itemset including one descriptor whose attribute is Dec. For example, we do not
handle any itemset like {[P, 3], [@, 2]} nor {[P, 3], [Dec, a], [Dec, b]} in Table5.
(TA2). An attribute is related to each descriptor. So, we handle itemsets with
different attributes. For example, we do not handle any itemset like {[P, 3], [P, 1],
[Q, 2], [Dec,b]} in Table5.

(TA3). To consider implications, we handle CANy, FI, (CIMP,), CANy, FI,
(CIMP,), - -+, which are defined in Sect. 2.4.

Based on the above characteristics, we can consider Fig. 4. In Fig. 4, itemsets
satisfying (TA1) and (TA2) are enumerated. Generally, in the Apriori algorithm,
the accuracy value is examined after obtaining all FI;, because the decision
attribute is not fixed. For each set in F'I;, there are plural implications. How-
ever, in a table data set, one implication corresponds to a frequent itemset. We
employed this property and proposed the Apriori algorithm adjusted to table
data sets [20,21] in Fig.5. We term this algorithm the DIS-Apriori algorithm.
Here, we calculate the accuracy value of every frequent itemset in each while
loop (the rectangle area circled by the dotted line in Fig. 4 and lines 5-7 in Fig. 5).
We can easily handle certain rules and possible rules in NISs by extending the
DIS-Apriori algorithm.
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Input: Table data set DIS v, decision attribute Dec, threshold values «, 3.
Output: A set Rule(¢)) of minimal rules.

1: Rule(y) — {}; i 1;

2: create FI1={{[A, a], [Dec, v]}|support([A, a] = [Dec,v]) > a} from CANy;
3: while (|FI;| > 1) do

4: Rest; — {}; Rule; — {};

5: for all 7 ; € F'I; do

6: if accuracy(ti ;) > B then add 7;,; to Rule;; else add 7;; to Rest;;
7 end if

8: end for

9: remove redundant implications from Rule;;

10: i < 1+ 1; create FI;;
11: end while
12: return Rule(y))=Uj<;Ruley,

Fig.5. The Apriori algorithm adjusted to table data set DIS 1. We can examine
the accuracy value in each while loop (the rectangle area circled by the dotted line in
Fig.4). This examination is not done in the Apriori algorithm for transaction data sets.

Proposition 1. [20,21]

(1) We replace DIS o with NIS @, support and accuracy with minsupp and
minacc, respectively. Then, this algorithm generates all minimal certain
rules.

(2) We replace DIS ¢ with NIS @, support and accuracy with maxsupp and
maxacc, respectively. Then, this algorithm generates all minimal possible
rules.

(8) We term the algorithm consisting of (1) and (2) the NIS-Apriori algorithm.

Both DIS-Apriori and NIS-Apriori algorithms are logically sound and complete
for rules. They generate rules without excess and deficiency.

Figures 1, 2 and 3 by the rule generator in SQL are based on the algorithm
in Fig.5 and Proposition 1.

3.3 The Manipulation II for Frequent Itemsets by the
Characteristics of Table Data Sets

Now, we advance the manipulation I to the manipulation II. We focus on the
statement ‘create F'I;” in lines 2 and 10 in Fig. 5. In every while loop, we examine
each 7 € F'I; C CAN; C IMUP;, so to reduce sets CAN; and FI; will influence
the performance of execution. In Fig. 5, we at first need to remark the following.

(Rule generation). The purpose of rule generation is to generate each minimal
implication 7 € U;IM P; satisfying support(t) > « and accuracy(r) > B. We
obtain Ruley, Rest; C IM Py in the 1st while loop, Rules, Resto C IM Ps in the
2nd while loop, and Rules, Rests in the 3rd while loop, ---.
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(Relation between sets in Fig.5). We clarify the relation and the definition of
NOrule; below.

(1) Rule; = {7 € IMP; | support(t) > «, accuracy(r) > 5},
(2) Rest; ={r € IMP; | support(t) > o, accuracy(t) < 8},
(3) FI, = {7 € IMP; | support(r) > a},

(4) NOrule; = {T € IMP; | support(T) < a},

(5)

5) IMP; = FI, U NOrule; = (Rule; U Rest;) U NOrule;.

(A case of 7 € Rule;). If 7 : A;j[A;,val;] = [Dec,val] € Rule;, we do not
deal with any redundant implication 7’ : (A;[A;,val;]) A [B,b] = [Dec,val] €
IMP; 4, because 7/ cannot be a minimal rule.

(A case of T € NOrule;). If 7 : Aj[Aj,val;] = [Dec,val] € NOrule;, any redun-
dant implication 7/ : (Aj[A;,val;]) A[B, b] = [Dec,val| satisfies support(r') < a.
So, 7' € IMP;y; cannot be a rule. Thus, we do not deal with any redundant
implication 7.

(A case of T € Rest;). In the accuracy value, the monotonicity like support does
not hold (an example is in [20]). Thus, if 7 : A;[A;,val;] = [Dec,val] € Rest;,
accuracy(t’) > [ may hold for a redundant implication 7/ : (A;[A;,val;]) A
[B,b] = [Dec,val] € FI;41.

Proposition 2. Let us suppose that we had Rule; and Rest; (IM P;=Rule; U
Rest; U NOrule;) in the i-th while loop in Fig. 5. Fvery candidate of a minimal
rule in IM P;11 is a redundant implication of T € Rest;.

(Proof)

For every implication 7 ¢ FI; C IMP;, its redundant implication 7' satisfies
support(t') < support(t) < a. Thus, 7' cannot be a minimal rule in IMP;4.
Based on the Apriori algorithm, we need to combine two frequent itemsets in
FI;=Rule; U Rest; (an example of this combination is described in Sect. 2.4).
Howewver, for the minimality condition of rules, we do not handle any redundant
implication of T € Rule;. Thus, we conclude that every candidate of a minimal
rule in IM P;11 is a redundant implication of T € Rest;.

Definition 1. We define a set RCAN; (C CAN;), whose element is a candidate
of a minimal rule in IM P; w.r.t. rules Uj— ... ;_1)Rule; and a set RFI; = {re
RCAN; | support(t) > a} (C FI, CIMP;).

In the Apriori algorithm, the concept of redundancy is not introduced, so
that some redundant rules may be generated. The sets CAN; and FI; in Fig. 4
are generated from FI; i (=Rule;_1 U Rest;_1). However, we can generate
RCAN;(C CAN;) and RFI;(C FI;) from Rest;_;. Furthermore, we previously
generated itemsets {[A,a],[B,b],[Dec,v1]},{[4,al,[B,b], [Dec,v2]} € RC AN,
from {[A, a], [Dec, v1]},{[B,b], [Dec,v2]} € Rest1, and we removed this combi-
nation, because there is no object satisfying both [Dec,v1] and [Dec, v2]. This
combination formerly generated meaningless itemsets. This revision is another
improvement in the manipulation of itemsets.
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Proposition 3. The set RCAN; and RFI; are given as follows:

(i = 1)RCAN; = CAN; and RFI, = FI,,

(i > 2)RCAN; = {71 : (\j[Aj,val;]) A [B,b] = [Dec,val] |
AjlAj,val;] = [Dec,val] € Rest;_1,[B,b] = [Dec, val] € Rest1},
RFI; = {r € RCAN; | support(t) > a}.

The manipulation Il for generating
RCAN;(€CAN,), RFI,(<Fl;), Rule;, and Rest;, ::

- CANp 7 = CAN; -

DIS RCAN,=CAN,| |- RCAN, { - RCAN; 7 |
e : (CIMP;) ) [ —I : { -|
Condition descriptor #

{[Aa]}

support([A.a))>=a
/ support  /

Decision descriptor
{[Dec,v] }

support([Dec,v])>=a RF|1=F|1

{{[A.a],[Dec,v]}

£

/

[Rule1 ] | Rest, | [ Rule, ] ‘ Rest, | [ Rule; ] Rest; |
accuracy accuracy  accuracy ~ accuracy accuracy  accuracy
>=f <B >=p <B >=p <

Fig. 6. New manipulation II of itemsets. We can handle RCAN; C CAN, and
RFI; C FI; for generating minimal rules. In the Apriori algorithm, CAN; and FI;
are employed, so redundant rules may be generated. By using RCAN; and RFI;, the
candidates of rules are reduced, and the performance of execution is improved.

(Proof)

(In case of i =1) RCAN, =CAN; and RFI; =FI, hold, because redundant
rules occur after 2nd while loop.

(In case of i > 2) We add one descriptor [B,b] to A;[A;,val;] = [Dec,val] €
Rest;_1 and have a redundant implication T : (Aj[Aj,valj]) A [B,b] =
[Dec,val] € IMP; due to Proposition 2.

(1) In order to handle the same decision, [B,b] must be the condition part of
7' [B,b] = [Dec,val] € RFI; =FI,. (If ' ¢ FI,, support(t) < a holds
and T cannot be a rule, because T is a redundant implication of T').

(2) FI, = RuleyUResty holds. If 7" € Ruley, T cannot be a minimal rule, because
7' is a minimal rule.

Based on the above discussion, we conclude 7' € Resty.

We propose the manipulation IT in Fig. 6 due to the above propositions. In the
Apriori algorithm, C AN, is generated by FI; 1, but we can remove redundant
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implications of 7 € Rule;_1. Thus, we can handle RC' AN;, which is a subset of
C AN;. If the number of elements in Rule;_; is large, the number of elements in
RCAN; will be much smaller than that of CAN;.

Proposition 4. The DIS-Apriori algorithm with the manipulation II is sound
and complete for minimal rules in DIS, and the NIS-Apriori algorithm with
the manipulation II is also sound and complete for minimal certain rules and
manimal possible rules in NIS. They do not miss any rule defined in DIS ¢ or
NIS .

(Sketch of Proof). We have proved that the DIS-Apriori and NIS-Apriori algo-
rithms are sound and complete [20,21]. We newly introduced sets RCAN; C
CAN; and RFI; C FI; by using the redundancy of rules, and we extended the
previous two algorithms to those with the manipulation II. The proposed algo-
rithm does not examine each 7 € U;IMP;, but examines each 7 € U;RCAN;.
As a result, this algorithm generates the same rules defined by the procedure ‘to
examine each T € U; IMP;°.

4 An Improved Apriori Based Rule Generator and Some
Experiments

This section compares the NIS-Apriori algorithm and the NIS-Apriori algorithm
with the manipulation II. Of course, two algorithms generate the same rules due
to Propositions 1 and 4, and the latter algorithm makes use of the redundancy
concept. We newly implemented two systems in Python (Windows PC, CPU:
Intel i7-4600U, 2.7z). Table 6 shows the results on the Car Evaluation data set
[4], and Table 7 does the results on the Phishing data set [4]. They are the cases
of DISs, and the characteristic of RCAN; C C'AN; is effectively employed.
Now, we show two examples by the NIS-Apriori algorithm. The one is the
Congressional Voting data set [4], and the other is the Lithology data set [8].

Table 6. The Car Evaluation data set (Objects: 1728, condition attributes: 6).
A:|Rulei|, B:|CAN;z| or |RCAN;|, C:|Rulez|, D:|CANs| or |RCANs|, E:|Rules|,
F:|CANy4| or |RCANy|, G:|Rules|.

CASE Manipulation | Time (sec) | A|B |C|D E|F G
support > 0.2 |1 0.037 5124 |00 010 0
accuracy > 0.7 |11 0.027 5|2 010 010 0
support > 0.1 |1 0.096 813660 |27 010 0
accuracy > 0.7 |11 0.059 874 1010 010 0
support > 0.05 | I 0.189 8 13660 16940 |0 0
accuracy > 0.7 |11 0.123 8 11760 |572 |0 |0 0
support > 0.01 | 1 0.621 817320 |3388 |1 65880
accuracy > 0.7 |11 0.329 8 13490 |11721 [1840|0
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Table 7. The Phishing data set (Objects: 1353, condition attributes: 9). Here, A, B,

.-+, G are the same as Table6.

CASE Manipulation | Time (sec) |A|B |C |D E |F G
support > 0.2 |1 0.139 311482 |276 0 |15 0
accuracy > 0.7 | 11 0.083 3125 |2 |30 |0 |O 0
support > 0.1 |1 0.847 6 1426 13|2380 1 |5774 |0
accuracy > 0.7 | 11 0.291 6 |167|13|552 |1 |1101 |O
support > 0.05 | I 1.409 7 1831|23|5355|9 | 124382
accuracy > 0.7 |11 0.647 7 1285(23]1259 |9 |3508 |2
support > 0.01 | T 2.532 7 1831/30|5355|25]22113 | 11
accuracy > 0.7 | 11 1.522 7 15831303118 |25|10611 | 11

Table 8. The Congressional Voting data set (Objects: 435, condition attributes: 16).
thus |[DD(®)|=2%"% > 10'% (the number of derived
DISs exceeds 10'%°). A certain rule is a rule in each of more than 10'° derived DISs.

There are 392 missing values,

A possible rule is a rule in at least one derived DISs. Here, A, B, .-+, G are the same
as Table6.
CASE Manipulation Time (sec) | A |B |C|D |E|F G
support > 0.2 accuracy > 0.6 |I (certain rule) |23.73 2319006 |8120|0 {50960 |0
IT (certain rule) |0.12 23|50 (6 |77 0|0 0
I (possible rule) |23.56 2819603 81200 |50960 0
IT (possible rule)|0.12 2841 (3|30 00 0
support > 0.1 accuracy > 0.6 |I (certain rule) |26.35 2319606 | 8960 0 582400
II (certain rule) |0.81 231326 448 |0 /1064 |0
I (possible rule) |26.72 29/960|7 |8960|2 | 58240 0
IT (possible rule)|0.52 29/100|7 (290 |2 |580 |0
support > 0.05 accuracy > 0.6 |1 (certain rule) |26.59 231960 |6 | 8960 0 582400
IT (certain rule) |1.79 23122016 (949 |0 /2788 |0
I (possible rule) |27.29 291960 7 89602 |58240 0
II (possible rule)|1.84 29/223|7 (984 |2 /2967 |0
support > 0.01 accuracy > 0.6 |1 (certain rule) |27.46 231960 6 8960 0 |58240 0
IT (certain rule) |4.28 23/354|6 [1981|0 | 7630 |0
I (possible rule) |28.71 291960 7 89602 |58240 0
IT (possible rule) |3.59 29/296|7 |1599|2 |6141 |0

As we described in Proposition 1, the NIS-Apriori algorithm (certain rule gener-
ation) is the DIS-Apriori algorithm with criterion values minsupp and minacc.
Thus, the number of candidates of itemsets is also reduced by the manipula-
tion II. The experiments easily examine the advancement of the manipulation

IT (Tables 8 and 9).
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Table 9. The Lithology data set (Objects: 1923, condition attributes: 10). There are
519 missing values, therefore there are more than 10'%° (2519 = (2'9)%° > (10%)%° >

10%°°) derived DISs. Here, A, B, ---, G are the same as Table6.

CASE Manipulation | Time (sec)|/A |B |C |D E F G
support > 0.2 accuracy > 0.5 |I (certain rule) [0.18 11|54 |0 [120 0 |210 0
II (certain rule) |0.06 11/0 00 00 0
I (possible rule) 0.2 11154 |0 156 0 210 0
1T (possible rule)|0.07 11/0 0|0 010 0
support > 0.1 accuracy > 0.5 |I (certain rule) [0.43 17|127 |0 |464 0 |985 0
II (certain rule) |0.06 17,0 0|0 010 0
I (possible rule) |0.51 17/127 |0 549 0 1521 |0
II (possible rule) 0.06 17|10 00 00 0
support > 0.05 accuracy > 0.5|1 (certain rule) [0.84 18/900 |0 1228 |0 |3657 |0
II (certain rule) 0.06 1836 |0 |4 00 0
I (possible rule) |1.26 19/1122|0 (4128 |0 (4535 |0
1T (possible rule)|0.08 19|76 |0 |97 00 0
support > 0.01 accuracy > 0.5|1 (certain rule) [17.05 23|6055|7 44940 |21|222420|14
II (certain rule) |4.18 23|1185|7 7772 |21|36799 |14
I (possible rule) [48.87 39|8806|27]116466|37|755202|34
1T (possible rule)|6.45 39|1413|27|9804 |37|48932 34

5 Concluding Remarks

We recently adjusted the Apriori algorithm to table data sets and proposed the
DIS-Apriori and NIS-Apriori algorithms. This paper makes use of the character-
istics of table data sets (one decision attribute Dec is fixed) and improved these
algorithms. If we do not handle table data sets, there was no necessity for con-
sidering Fig. 6. The framework of the manipulation II (Fig. 6) is an improvement
of Apriori based rule generation by using the characteristics of table data sets.
We can generate minimal rules by using RCAN; C CAN; and RFI; C FI,.
This reduction causes to reduce the candidates of itemsets. We newly imple-
mented the proposed algorithm in Python and examined the improvement of
the performance of execution by experiments.
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Abstract. Keyphrase extraction has been a popular research topic in the field of
natural language processing in recent years. But how to extract keyphrases
precisely and effectively is still a challenge. The mainstream methods are
supervised learning methods and graph-based methods. Generally, the effects of
supervised methods are better than unsupervised methods. However, there are
many problems in supervised methods such as the difficulty in obtaining training
data, the cost of labeling and the limitation of the classification function trained
by training data. In recent years, the development of the graph-based method has
made great progress and its performance of extraction is getting closer and
closer to the supervised method, so the graph-based method of keyphrase
extraction has got a wide concern from researchers. In this paper, we propose a
new model that applies the three-way decision theory to graph-based keyphrase
extraction model. In our model, we propose algorithms dividing the set of
candidate phrases into the positive domain, the boundary domain and the neg-
ative domain depending on graph-based attributes, and combining candidate
phrases in the positive domain and the boundary domain qualified by graph-
based attributes and non- graph-based attributes to get keyphrases. Experimental
results show that our model can effectively improve the extraction precision
compared with baseline methods.

Keywords: Keyphrase extraction - Three-way decision - Graph-based

1 Introduction

Keyphrase extraction has been a popular research topic in the natural language pro-
cessing research field. Especially with the current increasing requirements for appli-
cations of texts, keyphrase extraction has attracted widespread attention from
researchers. Although it has been greatly developed in recent years at home and abroad,
the extracted results are far from the ideal.

With the rapid growth of text applications, the analysis of text data has become an
important research area that has attracted much attention. Among them, how to extract
keyphrases that reflect the subjects of texts has always been a research hotspot in the
field of natural language processing, and its research results can be widely used in text
retrieval, text summarization, text classification and question answering systems.
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Especially with the rise of research on unstructured big data of texts in recent years, the
issue of keyphrase extraction has received in-depth research, and many researches have
appeared in the international top conferences of artificial intelligence and natural lan-
guage processing, such as the International Joint Conference on Artificial Intelligence
(IJCAI) [1], The Annual Meeting of the Association for the Advance of Artificial
Intelligence (AAAI) [2-4], International Computational Linguistics Association The
Annual Meeting of the Association for Computational Linguistics (ACL) [5], The
International Conference of World Wide Web (WWW) [6] and Conference on
Empirical Methods in Natural Language Processing (EMNLP) [7], etc.

Researchers generally believe that the extracted keyphrases [8] should meet the
following basic standards: (i) Keyphrases should be meaningful phrases. For example,
“keyphrase extraction” is a meaningful phrase, but “and” does not meet the standard.
(i1) Keyphrase extraction should meet the relevance standard that keyphrases must be
closely related to the subjects of texts, which is the most essential requirement for
keyphrase extraction. For example, the subtitle “Introduction” in this paper is not an
appropriate keyphrase obviously. (iii) Keyphrase extraction should correspond to the
coverage standard. Keyphrases should be able to cover various topics of the text and
the main aspects of each topic, not just focus on only one topic and ignore others.
(iv) Keyphrases extraction should meet the coherence standard. Several keyphrases of
the text should be semantically and logically related. For an instance, a piece of
academic paper that mainly introduces a graph-based keyphrase extraction model. The

ELINTS

set of keyphrases is {“keyphrase extraction”, “graph-based”}, which is more suitable
than {“keyphrase extraction”, “target detection”}. (v) Keyphrase extraction should
correspond the conciseness standard. The number of keyphrases is limited, and the set
of keyphrases should not contain any redundant phrase.

To meet any of the above standard, there is a huge challenge. Although there are
many methods to solve this scientific problem such as statistical-based methods,
supervised learning methods and graph-based methods, how to extract keyphrases
precisely and efficiently is still a challenge.

In this paper, we propose a new model that applies the three-way decision theory to
the graph-based keyphrase extraction model. In our model, we propose algorithms
dividing the set of candidate phrases into the positive domain, the boundary domain
and the negative domain depending on graph-based attributes, and combining candi-
date phrases in the positive domain and the boundary domain qualified by graph-based
attributes and non-graph-based attributes to get keyphrases. Experimental results show
that our model can effectively improve the extraction precision compared with baseline
methods.

In Sect. 2, we briefly introduce the three-way decision theory and some related
works in the field of keyphrase extraction. In Sect. 3, we describe the structure of our
model and algorithms we proposed. In Sect. 4, we report the experimental results and
analysis. Finally, we make a conclusion in Sect. 5.
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2 Related Work

2.1 Statistical-Based Methods

Using statistical-based methods to extract keyphrases of texts is relatively simple,
because it requires neither training data nor external knowledge. After the prepro-
cessing of texts, simple statistical rules can be used to form a set of candidate phrases.
The estimation of candidate phrases usually uses quantification of feature values. The
main statistical-based keyphrase extraction method is TF-IDF (Term Frequency-
Inverse Document Frequency) [9] and its improved methods. The advantage of the TF-
IDF algorithm is that it is simple and fast. However, the traditional TF-IDF algorithm
also has obvious shortcomings that it is not comprehensive enough to measure the
importance of phrases based on the frequency. Sometimes important phrases may not
appear frequently.

2.2 Graph-Based Methods

The graph-based keyphrase extraction method is the most effective and widely studied
unsupervised keyphrase extraction method, because the method considers the co-
occurrence relationship between phrases in the text. If there is a co-occurrence rela-
tionship between two phrases, it indicates that they are semantically related in the text.
On the other hand, the graph-based method can incorporate more other features, so it
has reached better effect of Extraction. The graph-based method has been widely
concerned by researchers, from the TextRank method proposed by Mihalcea [10] to the
PositionRank method proposed by Florescu [4]. In this paper, we propose a new model
that applies the three-way decision theory to graph-based keyphrase extraction method.

2.3 Three-Way Decision

As generally considered, there are only acceptance and rejection in making a decision,
which is a two-branch decision model, but it is often not the case in practical appli-
cation. Based on the rough set theory proposed by Pawlak [11], Yao’s three-way
decision theory [12] provided a third alternative. The idea of three-way decision is
based on three categories: acceptance, rejection and non-commitment. The goal is to
divide a domain into three disjoint parts. Positive rules acquired from positive domain
are used to accept something, negative rules acquired from negative domain are used to
deny something, and rules that fall on boundary domain need further observation,
which called delayed decision-making. Miao [13] has made some researches about
three-way decision theory with multi-granularity, and Zhang [14] has applied it to the
application of sentiment classification. The way of three-way decision describes the
thinking mode of human beings in solving practical decision-making problems.
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3 The Model with Three-Way Decision

3.1 Structure of the Model

We propose a graph-based keyphrase extraction model with three-way decision. As
Fig. 1 illustrated, we could obtain candidate phrases through the preprocessing of texts
from the raw, and then transform texts to text graphs with candidate phrases as nodes to
get their graph-based attributes and non-graph-based attributes. With the support of the
three-way decision theory, we divide the set of candidate phrases into the positive
domain, the boundary domain and the negative domain depending on their graph-based
attributes, and combine candidate phrases in the positive domain and the boundary
domain qualified by their graph-based attributes and non-graph-based attributes to get
keyphrases.

preprocessing (* candidate
Phrases

Graph-based
Attributes

construction

Input
Non-Graph-based Three-way
Keyphrases <——‘ Attributes ——
Output

positive

Fig. 1. The structure of the model with three-way decision

3.2 Preprocessing of Texts and Graph Construction

The step of preprocessing of texts from the raw plays an important role in the process
of extracting keyphrases due to its output affecting the result deeply. The generic
preprocessing way of graph-based keyphrases extraction: (i) Tokenizing: The process
of tokenizing is to split strings into phrases. (ii) Tagging [15]: The task of tagging is to
tag part-of-speech of phrases preparing for filtering. (iii) Filtering: Filter out phrases
that do not meet the part-of-speech requirements according to the result of tagging.
(iv) Stemming [16, 17]: Stemming phrases is in order to eliminate the effects of phrases
forms that can get the main part of phrases. The differences between the phrases before
stemming and after stemming are as follows (Table 1):

After preprocessing the raw, we construct the text graph to obtain graph-based
attributes of candidate phrases. The text graph G = (V,E, W), V is the set of nodes
representing candidate phrases, E is the set of edges and W is the set of corresponding
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Table 1. Examples for stemming results

Before stemming | After stemming
Harmonic Harmon
Effective Effect
Axiomatized Axiom

Reality Real

Validated Valid

edge weights where weight w;; for an edge e;; indicates the frequency of two phrases v;
and v; co-occurring in consecutive sentences, adopting the context-aware graph con-
struction method from Duari [18] due to its simple construction method and well
performance. The higher value of wy; is, the stronger relationships between v; and v; are.

3.3 Keyphrase Extraction with Three-Way Decision

In our opinion, the three-way decision is making a delayed decision on uncertainty, and
decides based on other information in the future. In this paper, we propose two
Algorithms, which applies the three-way decision theory to the graph-based keyphrase
extraction model (see Algorithm 1 and Algorithm 2). The main notations in this paper

are listed in Table 2.

Table 2. The list of main notations

Variable

Explanation

Ci

Candidate phrases

84ai

Graph-based attributes

nga;

Non-graph-based attributes

Keyphrases extraction results

The positive domain

The boundary domain

The negative domain

The set of candidate phrases

The set of graph-based attributes

The set of non-graph-based attributes
The set of keyphrases extraction results
The threshold of the three-way decision
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Algorithm 1 Classify the candidate phrases by graph-based attributes

Input: The set of candidate phrases C = {c;, ¢y, ..., ¢} and its graph-based attributes
G= {galﬂ gas, "'lgan}

Output: C, = {1y, €2y, s Crnem) s Co = {Crnens1) Crnens2y - Ca=TnYsm)}
and Cy, = {C(a—rhysm+1) C((1=Th)sn+2)s > C(m)

fori=1tondo

if ga; ranked in top Th * n then
put ¢; from C into Cp;

else if ga; ranked in bottom Th * n then
put ¢; from C into Cp,;

else
put ¢; from C into Cp;

end if

end for

From Cohen’s [19] Trusses theory, for a weighted, undirected and simple graph
G = (V,E, W), a k-truss subgraph of G is the maximal subgraph Gy = (Vy, Ex, Wy),
such that each edge e; € E; belongs to at least (k — 2) triangles. The truss level of an
edge e; is k if it lies in k-truss but not in (k + 1)-truss. Kaur [20] expanded the concept
of truss to nodes and defined truss level /; of node v; as follows.

Ai = maxy,en; {ly} (1)

where N; is the set of neighbours of node v; and [; is the truss level of edge e;;.
Based on the definition of the truss level of nodes, Duari [18] defined the semantic
strength y; of node v; and the semantic connectivity SC; of node v; as follows.

D SR @)

_ { Ak : vi € Ni}|

SC;
MAaxtruss

3)

We take these attributes on the basis of the graph into account and define the graph-
based attributes ga; of node v; as follows.

ga; = Ai X Xi X SC; (4)

In this paper, we propose Algorithm 1 to classify the candidate phrases by graph-
based attributes and divide the set of candidate phrases C into the positive domain Cp,
boundary domain C;, and negative domain C, respectively.
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Algorithm 2 Extract keyphrases with three-way decision
Input: Set of candidate phrases in the positive domain, boundary domain, negative domain

Cp = {c1y €2y o Crnemy > Cb = {Ccrnans1ys Crnms2)s - Cca=rhysm) }
C, = {c((l_rh)*nﬂ), C((1=-Th)sn+2)r =+ c(n)} and their corresponding attributes sets
Gy = {g9aay, 9902y, -r Garnemy ) Gy = {9A(rhen+1), 9 Tnn+2) o GAA=TH)em) }s
Gn = {9a(a-tn)n+1) 9A(1-Thyn+2) - GAm) }: NGy = {ngacry, ngaczy, ... ngarnany }»
NG, = {ngacrnm+1y NGaATnms2) - NIA-TR) ) }»
NG, = {nga((l—Th)*rHl)rnga((l—Th)*n+2): = G A ()
Output: Set of keyphrases R = {ry, 75, ..., 1%}
if Th*n > kthen
fori=1to Th*ndo
put ga; * nga; ranked top k from C, into R;
end for
else if (1 — Th) * n < k then
put C, and C, into R;
fori=(1-Th)*n+ 1tondo
put ga; * nga; ranked top k — (1 — Th) * n from C, into R;

end for
else
put C, into R;
fori=Th*n+ 1to (1—Th)*ndo
put ga; * nga; ranked top k — Th * n from C, into R;
end for
end if

Position information is an important factor in identifying keyphrases except for
graph-based attributes. Florescu [4] proposed PositionRank and took the position of
candidate phrases into account to identify keyphrases, we regard it as non-graph-based
attributes nga; of node v; with the following definition.

n,-l
P

(5)

nga; =

In this paper, we propose Algorithm 2 taking graph-based and non-graph-based
attributions of the candidate phrases into account in the boundary domain. Generally,
both of the candidate phrases in the positive domain and the boundary domain are
considered as the output of the Algorithm 2, where Th is the threshold of the three-way
decision and the value of k represents the count of keyphrases to extract.
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4 Experiments and Results

4.1 Benchmark Datasets and Baseline Methods

We evaluate the performance of the model with two widely used benchmark datasets,
which are Hulth2003 and Krapivin2009. Hulth2003 is a dataset including about 2,000
abstracts of academic articles. Krapivin2009 consists of over 2,000 scientific papers
from computer science domain published by ACM used for keyphrase extraction
specially. We use the uncontrolled list of keyphrases of Hulth2003 and gold-standard
keyphrases of Krapivin2009 for evaluation. We take Textrank [10], DegExt [21], k-
core retention [22] and PositionRank [4] as baseline methods and evaluate our model
against them.

4.2 Performance Results and Discussions

Duari [18] reported that values of k are 25 for Hulth2003 and 10 for Krapivin2009 that
yield the highest F1-measure with all algorithms mentioned above, which correlate
with the average number of labeled keyphrases in datasets, and we adopted the reported
values of k and the results of baseline methods. In the experiment, we separate a part of
data from data sets as validation sets to explore the most appropriate value of Th. The
results show the value of Th is 0.1 for Hulth2003 and 0.4 for Krapivin2009 yields the
best performance (see Table 3 and Table 4).

Table 3. The performance of Hulth2003 (k = 25)

Th | Precision | Recall | F1

0.143.92 63.28 |51.85
0.2 143.20 62.25 |51.01
0.3 ]42.62 61.40 |50.31
0.4 142.90 61.81 |50.65

Table 4. The performance of Krapivin2009 (k = 10)

Th | Precision | Recall | F1

0.127.57 29.69 |28.60
0.2 39.07 42.07 40.52
0.3141.78 44.99 43.32
0.4 42.08 45.31 |43.64
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Fig. 2. The performance of Hulth2003 (threshold = 0.1) and Krapivin2009 (threshold = 0.4)

To verify the value of k yields the highest F1-measure mentioned above, we com-
pared the F1-measure where the value of k was 5, 10, 15, 20, 25 and 30. The result shows
that the F1-measure reaches the best when the value of k is 20 or 25 for Hulth2003 and 10
for Krapivin2009 (see Fig. 2). We find that the result of recall increases and the result of
precision decreases when the value of k increases, which meets the fact.

The performance evaluation of keyphrase extraction can be divided into micro-
statistical evaluation and macro-statistical evaluation. The micro one calculates the
performance for each text first and then takes the average value. In comparison, the
macro one statistics the result of extraction first and then calculates the performance at
one time. We compared our model with Textrank [10], DegExt [21], k-core retention
[22] and PositionRank [4] under the macro-statistical evaluation, where the value of k
was 25 for Hulth2003 and 10 for Krapivin2009. The result shows that our model gets
the best performance where the F1-measure reaches 51.85 for Hulth2003 and 43.64 for
Krapivin2009 (see Table 5 and Fig. 3).

Table 5. The comparing performance with baseline methods

Dataset DegExt | TextRank | K-core | PositionRank | Ours
Hulth2003 18.22 | 18.37 43.41 |5041 51.85
Krapivin2009 | 13.34 | 13.72 2270 |37.07 43.64
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Fig. 3. The comparing performance with baseline methods
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5 Conclusion

In this paper, we propose a new model that applies the three-way decision theory to
graph-based keyphrase extraction model. In our model, we propose algorithms dividing
the set of candidate phrases into the positive domain, the boundary domain and the
negative domain depending on graph-based attributes, and combining candidate
phrases in the positive domain and the boundary domain qualified by graph-based
attributes and non-graph-based attributes to extract keyphrases. Experimental results
show that our model can effectively improve the extraction accuracy compared with
baseline methods. In future work, we will do more experiments to prove the perfor-
mance of keyphrase extraction.

Acknowledgments. Authors would like to thank the anonymous reviewer for their critical and
constructive comments and suggestions. This work was supported by National Natural Science
Foundation of China (Grant No. 61976158). It was also supported by National Natural Science
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Abstract. Ranking and measuring attribute importance is one of the
key research topics in data mining and machine learning. Most of
the existing attribute importance research relying on data-oriented
approaches such as statistics and information theory perspectives. User
preference, which involves a user specifying his or her preferential atti-
tude towards a set of attributes, is another meaningful perspective. How-
ever, the research community has not paid much attention to this per-
spective. We adopt the three-way decision theory as a framework and
concentrate on analyzing attribute importance based on user preference
in this paper. In particular, we propose qualitative and quantitative anal-
ysis of attribute importance approaches that result a ranking list as well
as a set of numerical weights of an attribute set. We then categorize
attributes into different groups of importance using qualitative and quan-
titative analysis results. Finally, a unified model to analyze user-oriented
attribute importance is constructed.

Keywords: Three-way decision + Attribute importance + User
preference

1 Introduction

The main task of data mining is to derive valuable and representative patterns
or knowledge from a dataset. Usually, a dataset is represented as a set of objects
described by a set of attributes. In some clustering and classification problems,
we treat attributes with equal importance. However, in real-world situations,
different importance of attributes should be considered. There are various meth-
ods to analyze attribute importance from different perspectives, such as entropy
based methods [2,11], maximizing deviation methods [17], and rough set based
methods [18].

Generally speaking, analysis of attribute importance can be categorized into
two classes, data-oriented and user-oriented. For data-oriented methods, we care
more about the inner data structure by different attributes, which is also called
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internal information based analysis. In contrast, user-oriented methods empha-
size the preferential attitude of a user towards an attribute set, which is called
external information based analysis.

Attribute importance analysis based on data-oriented research is an objective
approach. Using statistics or information theory, data-oriented analysis focuses
on predictive ability or objects distribution of different attributes. One good
example is entropy based methods, whose basic idea is that attributes leading
to more entropy reduction would have a higher predictive ability, therefore, they
are considered to be relatively more important. Apart from the data-oriented
approach, user-oriented attribute importance analysis is subjective. It underlines
the user’s preferential judgment towards a set of attributes. Most current studies
only focus on the former one, and user-oriented analysis has not received its due
attention. In fact, researches from both perspectives are meaningful. This paper
concentrates on the user-oriented approach, as a part of integrated attribute
importance analysis, this is shown in Fig. 1.

Entropy

Maximizing

Data-oriented
methods:

. . . deviati
internal information cviation
Attribute importance

analysis 1 X
! Binary |
| relations !
,,,,,,,,,,,,, I

User-oriented Qualitative

methods:
external information

I
Eigenvector | |
method .

,,,,,,,,,,,,,

Quantative

Fig. 1. A framework of attribute importance analysis

The primary purpose of this paper is to provide a general framework and
adopt concrete methods to analyze user-oriented attribute importance. The con-
tent of this paper is generally arranged into three parts, qualitative attribute
importance analysis using binary relations, quantitative attribute importance
analysis using the eigenvector method, and evaluation based analysis.
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2 Three-Way Decision in Processing User-Oriented
Attribute Importance

Three-way decision theory, which was proposed by Yao [20], aims at provid-
ing a unified framework for thinking, problem solving, and information process-
ing in three. It provides us with a practical framework for modeling real-world
problems. Three-way decision has been expanded in various fields and acquired
fruitful results, for example, three-way conflict analysis [9,22], three-way cluster-
ing [1,16,25,28], three-way recommender systems [5,26,27], three-way concept
analysis [14,21], three-way granular computing [19,20], three-way face recogni-
tion [10] etc.

To analyze user-oriented attribute importance, we utilize three-way decision
theory as our basic framework. Three models, namely, the Trisecting-Acting-
Outcome (TAO) model, the three-level computing model, and the evaluation
based model, are used to analyze attribute importance. We conduct qualitative
and quantitative analysis of the attribute importance as shown in Fig. 1.

In qualitative analysis, we aim at ranking a set of attributes. The ranking is
induced by considering the order relations of attribute pairs. We use TAO mode
in three-way decision to model the structure and analyze attribute importance.
We first compare and determine the relative importance of all attributes in pairs.
Then, we trisect all these pairs into three classes, preferred, indifferent, and less
preferred. Finally, by adopting a certain binary relation, we rank attributes in
order.

In quantitative analysis, we utilize the eigenvector method to derive
attributes’ weights. It is reported that a drawback of the eigenvector method
is when the number of objects is over 9, significant error could be introduced in
the calculation [15]. The three-level computing model is used to overcome this
problem by building a three-level structure. And then, weights calculation is
applied from top to bottom using the eigenvector method several times, so that
we can derive a large number of attributes’ weights without losing too much
accuracy.

The results of qualitative and quantitative analysis are a ranking list and
a set of numerical weights considering attributes’ importance. For the purpose
of understanding and representing these results in a more clear way, we further
categorize attributes into three groups with different importance levels, three-
way evaluation based model is used in this analysis.

3 Three-Way Qualitative User-Oriented Attribute
Importance Analysis

An important implication of binary relations is order relations, which is an
intuitive notion ranking element against one another. For example, (z,y) is an
ordered pair of two elements, we can determine order relations between = and v,
which could be x is larger than y, = is worse than y, or x is a part of y consider-
ing different situations. In decision theory, order relations are commonly used in
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representing user preference, we write an order relation as = or . If z > y, we
say x is at least as good as vy, if x > y, we say x is strictly better than y. In this
paper, to define user preference later on in a more straightforward way based on
the property of trichotomy, we only concentrate on the strict order relation .

3.1 User Preference and the Property of Trichotomy

The theory of user preference, also named individual choice behavior, is widely
studied in different user-oriented researches, such as information retrieval [8,29],
economics [3], and social sciences [6]. The idea of user preference theory can
also be applied in qualitative attribute importance analysis and the property
of trichotomy plays an essential role. Order relations having this property are
suitable to model a user’s preferential attitude towards a set of attributes.

In our daily lives, human beings are good at making a relative comparison
between numbers, products, strategies, etc. In number theory, given two arbi-
trary real numbers n and m, it is easy for us to conclude that exactly one of
n < m,n =m, or n > m must hold, this is called the trichotomy property of
real numbers. Similarly, by comparing a pair of objects x and y under a specific
criterion, an individual can determine the ordering relation between x and y as
one of the followings, x is preferred than y, x is indifferent with y, or x is less
preferred than y. Obviously, an individual’s preferential attitude towards a pair
of objects is three. This idea can also be generalized into order relations.

If we use an order relation > to represent the meaning “preferred”, the indif-
ference relation ~ is defined as an absence of >, which is defined as:

o~y = (= y) Ay = o). (1)

Give an ordered pair (z,y), if an order relation > expresses the first element

is preferred than the second element. Its converse relation, written as ;, is called
a less preferred relation, which is defined as:

x;y<:>(y>x) (2)

We usually write — as < if it does not cause any ambiguity.

Definition 1. An order relation = on a set A is called trichotomous if ¥(x,y),
x,y € A, exactly one of x = y,x ~y or x <y holds.

From the perspective of a decision maker, the goal of user preference related
studies is to find optimal choice by analyzing the order relations among ele-
ments of a nonempty set, this primitive characteristic of a user is summarized
as preference relation. The process of user preference theory can be viewed as
to bring up rational axioms based on the decision maker’s preference first, then
analyzing a user’s choice behavior based on preference [3]. From the perspective
of mathematics, we model a preference relation using the property of trichotomy
and transitivity.
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Definition 2. A preference relation, denoted as >, is a special type of binary
relations on the set of elements A, that satisfies the following two rationality
properties. Vx,y,z € A,

Trichotomous : (z = y)V (x ~y) V (x < y),
Transitive: z >y Ay >z = z > z. (3)

If we use an order relation > as a preference relation, user preference is
represented as:

T -y <= x is preferred than y
T~y <= xisindif ferent with y
x <y <= xis less preferred than y (4)

For an attribute set At, we divide all attribute pairs into three classes. Based
on this trisection, attribute ranking can be induced. This process is shown in
Fig. 2:

({ewl -] ({@ok~ )  [{@ok<y

Ranking

Fig. 2. The property of trichotomy

There are three kinds of order relations, namely linear orders, weak orders,
and semiorders, which all equip the property of trichotomy and transitivity. In
this paper, these three order relations are used in representing user preference
for attribute importance analysis.

3.2 Modeling User Preference as a Linear Order

Given an attribute set At, a linear order > enables us to arrange attributes in
the form At = {a1,aq,...,a,}, such that a; = a; if and only if ¢ < j, for this
reason, a linear order is also called a chain.
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Definition 3. Given a set At, a binary relation = is a linear order on At, if it
satisfies for any x,y,z € At:

Asymmetric: x>y = —(y > x),
Transitive: x = yAy >z = = > z,
Weakly Complete: z £y = (z>y)V (y = x). (5)

The property of asymmetric excludes the situation of a; is better than a;, as
well as a; better than a; happen at the same time. The transitive property
ensures that reasonable inference can be applied. The property of weakly com-
plete ensures that all attributes are comparable with others.

Example 1. Given a set of attributes At = {a1, a2, as,a4,a5}, a user’s prefer-
ence on At is defined by a linear order ». Suppose the ordering between attributes
is specified by a user as:

a1 > as,a1 > a4,01 > Q2,03 > 1,03 > a2,
as > 4,03 > as5,05 > 4,05 > 42,04 > G2.

Then, attributes are ranked as:

as > ajp > as > a4 > as.

3.3 Modeling User Preference as a Weak Order

Weak orders are widely used in representing user preference relations in different
fields [3,6,8,29]. Different from a linear order arranges elements in a chain, which
is pretty strong in modeling real-world problems, a weak order allows ties in the
ranking results. In other wolds, some attributes in a set could be considered as
indifferent.

Definition 4. A weak order > is a binary relation on set At, if it satisfies for
any x,y € At:

Asymmetric: z >y = —(y = ),
Negative transitive : —(z > y) A =(y > 2) = —(z > 2). (6)

Example 2. Given a set of attributes At = {a1, a2, a3,a4,a5}, a user’s prefer-
ence on At is defined by a weak order —. Suppose the ordering between attributes
18 specified as:

ay > as,aj > aq4,a1 > 45,02 > a3z, a2 > 4,09 > 45,03 > Q4,03 > A5.
Because the user neither preferences ay to as, mor prefer as to ai, so ai is
indifferent with as, written a; ~ as. Similarly, ay ~ as. By considering the

above ordering, we can rank attributes like:

a)p ~ Az > az > aq ~ as.
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3.4 Modeling User Preference as a Semiorder

Actually, an indifference relation does not necessarily be transitive. One good
example is after reading three books, a reader might believe book A and B
are equally good, so does book B and C, while he can tell that he prefers A
to C based on his intuition. In other words, from an individual’s preferential
attitude, he can not distinguish the preference between A and B, and he also
can not distinguish the preference between B and C, however, he can tell apart
his preference between A and C'. Luce [12] introduced semiorders to model this
kind of problems.

Definition 5. A semiorder >= on a set At is a binary relation which satisfies
for any x,x', 2" y,y € At:

Asymmetric: z >y = —(y = ),
Ferrers: (z =2 )A(y=9y) = (x=y)V(y = 2),
Semitransitive : (z = 2') A (2’ = 2") = (z = y) V (y = 2”). (7)

Example 3. Given a set of attributes At = {a1, a2,as,a4,as}, a user’s prefer-
ence on At is defined by a semiorder ». Suppose the ordering between attributes
1s specified as:

ai > as,a1 > as,a1 > 4,01 > a5,02 > Q4,02 > 05,03 > G5, A4 > Q5.

The user neither prefers as to as, nor prefer as to as, so as ~ as, similarly we
can get ag ~ ay4, however, the indifference is intransitive, because as > a4. So,
we can not rank all attributes in one order but several, like below:

ai > ag > a4 > as,

aiy > as ~ az > as,

ap > asg ~ a4 > as.

4 Three-Way Quantitative User-Oriented Attribute
Importance Analysis

Mathematically, quantitative attribute importance analysis can be considered as
a process of mapping each attribute to a numerical value,

w: At — R, (8)

where At is a set of attributes, R is a real number set, and w is a mapping
function that calculates or assigns a numerical value to each attribute. For an
attribute a € At, w(a) represents its weight from the perspective of a user.
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4.1 A Three-Level Structure

To calculate or assign numerical weights for each attribute, this paper pro-
posed two approaches. The first one is weights calculation using the eigenvector
method, this is described in Sect. 4.2. The second approach is weights assignment.
To be more specific, we derive an importance scale with numerical weights using
the eigenvector method first, and then each attribute will be compared with
this scale to get its weight, this approach is described in Sect.4.3. Obviously,
the eigenvector method plays an important role in both approaches, while, it
has a drawback that not applicable in the situation when the number of objects
is more than 9, because significant errors would be introduced in the calcula-
tion [15]. To overcome this problem, we introduce the three-way decision theory.
More explicitly, the problem is arranged into a three-level structure, then, we
apply the eigenvector method for weights calculation from top to bottom. The
three-level structure enables us to control the number of objects in weights calcu-
lation is no more than 9, so that we can use the eigenvector method to calculate
weights without losing too much accuracy.

4.2 Three-Way Quantitative Attribute Weighting Method Based
on Eigenvector Method

The framework of the quantitative attribute weighting model is shown in Fig. 3.
Suppose we have an attribute set At, a;; at the bottom level represents an
attribute. By grouping attributes into different clusters concerning semantic
meaning, we build a three-level structure.

Fig. 3. The structure of the three-level attribute weighting method

Once we have this three-level structure, the calculation using the eigenvector
method is applied from top to bottom as the second step. We calculate clusters’
weights based on user preference, then, for each cluster, the weights of attributes
within this cluster are calculated based on this cluster’ weight.

Weights calculation using the eigenvector method is described as follows.
Suppose an attribute set At has been grouped it into n clusters, n < 9 and the
number of attributes in each cluster is also no more than 9. To derive a weight
vector w = (wy,ws, - ,wy,) for clusters, we build a comparison matrix M as
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defined in Definition 6, where element m;; represents the relative importance of
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a cluster A; compared with a cluster A;.

Definition 6. A comparison matriz M is a square matriz of order n, whose

elements are my;, M is a positive reciprocal matriz if M is:

A comparison matrix M is in the form like below, and in a perfect situation,

Positive : Vi,j < n,m; >0,

Reciprocal : Vi,j < n,m;; = 1/mj;.

(9)

m;; should exactly be the weights ratio of a cluster A; compared with A;.

(10)

mi1 Mmi2 -+ Min wl/wl wl/’w2 ’wl/’wn

Ma1 Mag -+ Map wa /wy wa/ws - -+ wa /Wy
M = . . . =

Mp1 Mp2 - Mpp wn/wl wn/w2 wn/wn

In a real situation, the values of elements in a comparison matrix is given by a
user based on his or her preference. For the purpose of determining two clusters’
weight ratio wj/we precisely, we utilize the 9-points rating scale proposed by

Saaty [15], see Table 1.

Table 1. The Saaty’s 9-points rating scale [15]

Intensity of | Definition Explanation
importance
1 Equal importance Two activities contribute

equally to the objective

Weak importance of one over
another

Experience and judgment
slightly favor one activity over
another

Essential or strong importance

Experience and judgment
strongly favor one activity over
another

Demonstrated importance

An activity is strongly favored
and its dominance demonstrated
in practice

Absolute importance

The evidence favoring one
activity over another is of the
highest possible order of
affirmation

2,4,6,8

Intermediate values between the
two adjacent judgments

When compromise is needed
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In Tablel, we can learn that the value 1 means two clusters are equally
important. For an arbitrary cluster, it should be equally important with itself,
thus in a comparison matrix, the value m;; of the main diagonal must be 1.
Besides, for two clusters a and b, if a is preferred than b, the weight ratio w, /wy
should be greater than 1, otherwise, it should be equal or less than 1.

Under ideal conditions, we can get the matrix equation as follows:

wy/wy wy/wa -+ wy/wy wy
wo /w1 wp/ws -+ wa/wy wa
Wy /W1 Wy /Wa -+ Wy /Wy, W,

where M is multiplied on the left by the vector of weights w, and the result
of this multiplication is nw. The problem we are dealing with has been trans-
formed into solving Mw = nw, or (M — nl)w = 0. Ideally, M is consistent
if and only if its principle eigenvalue A4, = n [15]. However, elements in a
comparison matrix are personal judgments which are estimated by a user and
inconsistency is inevitable. Under this circumstance, perturbations in the matrix
imply perturbations in the eigenvalues. Now, we need to solve a new problem:

Mw' = ez, (12)
where M’ = (mj;) is the perturbed matrix of M = (m;;), w’ is the principal
eigenvector and A,,q; is the principal eigenvalue of M’. What we want to learn
is how good the principal eigenvector w’ represents w. Consistency ratio C.R. is
used to determine whether an inconsistency is acceptable:

Amaz — N

CR.= (n—1) x R.L’

(13)

where R.I. is an average random consistency index, see Table 2. These indexes are
derived from a sample of randomly generated reciprocal matrices using 9-point
rating scale [15].

Table 2. Average random consistency index (R.I.)

n |1/2]3 4 5 6 7 8 9 10
RI|0[/0]/0.52|/0.89|1.11/1.25/1.35/1.40 1.45|1.49

If C.R. < 10%, eigenvector w can be used as weights of clusters, else, the
comparison matrix is need to be revised until C.R. < 10%.

Example 4. Suppose we have an attribute set At which has been categorized
into siz clusters, that is At = {Ay, Ag, A3, Ay, A5, Ag}. A comparison matriz
has been built based on a user’s judgment, the process of weights calculation is
shown as follows (Table 3):
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Table 3. Weights calculation of six clusters

Ay | Ay | As Ay As | As | Weight
A1 3 [1/2/4 |2 1/30.140
Ay (1311 [1/7/1 |1/21/9 0.041
As|2 |7 1 9 |5 1/2/0.290
Ay 1/41 [1/9/1 [1/21/9 0.038
As 1/2/2 1/5 2 |1 |1/6 0.071
A¢'3 19 |2 |9 |6 |1 0420
Amaz = 6.048
C.I = 0.010

C.R. =0.762% < 10%

Since C.R. < 10%, which satisfies consistency checking, the eigenvector of com-
parison matriz can be used as the weights of { A1, Aa, Az, Ay, As, Ag}, that is:

w = (0.140,0.041, 0.290, 0.038,0.071, 0.420).

Once we have clusters’ weights, we use them the as a basic and calculate the
weights of attributes in each cluster using the same idea. Then, we normalize
the weights of attributes by dividing by their cluster’ weights. Finally, we can
derive weights of all attributes.

4.3 A Quantitative Attribute Weighting Method Using an
Importance Scale

It is a straightforward way for a user to directly assign numerical values for
attributes as their weights based on his or her preferential attitude. However,
when the number of attribute is large, a fluctuated performance in judgment is
inevitable, and this causes low accuracy in the result. Considering this situation,
an importance scale is used to overcome this problem [15].

The process of attribute weighting method using an importance scale can be
described as the following three steps. First, from a user’s perspective, intensi-
ties of preferential degree of attributes are categorized into different levels, like:
significantly important, very important, moderately important, weakly impor-
tant, not important. Next, using the eigenvector method described in Sect. 4.2,
we can derive weights for each intensity degree. When the number of intensity
degrees is over 9, a three-level structure is a necessity. By doing this, we build an
importance scale to assist our judgment. Finally, attributes are compared with
this scale to determine their weights.

Example 5. Suppose we set five intensities of preferential degree, which are A :
signi ficantly important, B : very important, C' : moderately important, D :
weakly important, E : not important. A user builds a comparison matrix of these
intensities, and the weights calculation of intensities is described as (Table 4):
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Table 4. A pairwise comparison matrix of intensity levels

A B |C |D | E|Weight
All 2 3 5 9 10.450
Bl1/2/1 |2 |4 6 0277
cli/3/1/2/1 |2 |3 0147
D1/5/1/4/1/2/1 |2 0.081
E|1/9/1/6/1/31/2]1 |0.046
Amaz = 5.024
C.I. = 0.006
C.R. =0.533%

Since consistency checking is satisfied, an importance scale is built using these
intensities’ weights. Then, we compare attributes with this scale one by one,
different weights will be assigned to different attributes from the perspective of a
user.

5 Three-Way Evaluation Based Attribute Importance
Analysis

Dividing the universe into three regions and applying different strategies sepa-
rately are the main idea of the three-way decision [23]. In qualitative or quanti-
tative attribute importance analysis, the result we get is a ranking list or a set
of numerical weights, they are meaningful but relatively impractical for a user
to make a decision. In this section, these results will be processed and catego-
rized into three pair-wise disjoint classes with different importance levels, which
are high importance, median importance, and low importance. In the rest of this
paper, We use H, M and L to represent these three classes. The reason we select
three as the number of classes is that human cognition and problem solving rely
on such a three-way division, which enables us turns complexity into simplicity
in many situations [24].

5.1 Trisecting an Attribute Set Based on Percentiles

One approach to trisect an attribute set is by using two percentiles. The first
step is to transform the result of qualitative or quantitative analysis into a linear
order . For the result of the qualitative approach based on a linear order, this
procedure can be skipped. The second step is using a pair of percentiles to
determine the three regions.

There are several ways to transform the qualitative and quantitative results in
a linear order. The first one is topological sorting, whose basic idea is an element
will not appear in a ranking list until all elements preferred than this element
have been listed [7]. By using a topological sorting, we can get a ranking list in
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descending order. Another way is using an evaluation function to transform the
results of qualitative and quantitative analysis into a set of attributes’ evaluation
status values (ESVs). The ESV of attribute a can be defined as:

_ Hz € Atla > x}|

(@) i (14)

Attributes will be ranked based on their ESVs in descending order, attributes
having a same ESV will be ranked in any order.

Now, we have a list of ESVs, which is in the form of vy, vs, ..., v,, where vy
is the largest value and v, is the smallest value. Using the ranking lists of the
above two methods, we then adopt two ESVs at o and 8" percentiles with
0 < B < a < 100 to calculate a pair of thresholds [ and h as:

h = Ulan /10075
L= v|8n/100); (15)

where the ceiling function [z] gives the smallest integer that is not less than z,
and the floor function |z gives the largest integer that not greater than x. The
floor and ceiling functions are necessary for the reason that an/100 and 8n/100
may not be integers [23].

Based on the descending ranking list and a pair of thresholds, three regions
H, M and L can be constructed. Attributes in H region have high importance,
attributes in M region are with median importance and attributes in L region
have low importance.

5.2 Trisecting an Attribute Set Based on a Statistical Method

Yao and Gao [23] discussed the process of constructing and interpreting three
regions from a statistical view. Mean and standard deviation are useful statistical
tools for analyzing numerical values, which are applicable to the results of quan-
titative user-oriented attribute importance analysis. Suppose w(aq),w(az), ...,
w(ay,) are the weights of attributes in At, n is the cardinality of At, the mean
and standard deviation are calculated by:

p= > wle), (16)

(17)
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We use two non-negative number k; and ko to represent the position of
thresholds away from the mean, then a pair of thresholds is determined as [23]:

h:,u—FklO',kl ZO,
l:M—kQU,kQ Z 0. (18)
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Based on thresholds h and I, three regions of an attribute set can be con-
structed as:

Hjo, o) (w) = {2 € Atjw(z) > h}
= {z € Atjw(z) > p+ kio},

Mgy oy (w) = { € At|l < w(z) < h}
={z € Atlp — ko <w(x) < p+kio},

Lk o) (w) = {z € Atjw(z) < 1}
= {z € Atlw(z) < u— koo}. (19)

Attributes can be categorized into three regions H, M and L considering their
weights.

6 Conclusions

Attribute importance analysis includes two perspectives: data-oriented and user-
oriented. Using the three-way decision as a framework, we propose a unified
model for user-oriented attribute importance analysis which consists of three
parts, quantitative analysis, quantitative analysis, and evaluation based analysis.
In the qualitative analysis, by using binary relations and the TAO model, we
rank attributes considering their importance. In quantitative analysis, the three-
level computing model is adopted, numerical weights are assigned to attributes
using the eigenvector method. Finally, we trisect the results of qualitative and
quantitative analysis into three classes of different importance in advance.
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Abstract. In this work we introduce a framework, based on three-
way decision (TWD) and the trisecting-acting-outcome model, to handle
uncertainty in Machine Learning (ML). We distinguish between handling
uncertainty affecting the input of ML models, when TWD is used to iden-
tify and properly take into account the uncertain instances; and handling
the uncertainty lying in the output, where TWD is used to allow the ML
model to abstain. We then present a narrative review of the state of the
art of applications of TWD in regard to the different areas of concern
identified by the framework, and in so doing, we will highlight both the
points of strength of the three-way methodology, and the opportunities
for further research.

1 Introduction

Three-way decision (TWD) is a recent paradigm emerged from rough set theory
(RST) that is acquiring its own status and visibility [46]. This paradigm is based
on the simple idea of thinking in three “dimensions” (rather then in binary terms)
when considering how to represent computational objects. This idea leads to the
so-called trisecting-acting-outcome (TAO) model [82]: Trisecting addresses the
question of how to divide the universe under investigation in three partitions;
Acting explains how to deal with the three parts identified; and Outcome gives
methodological indications on how to evaluate the adopted strategy.

Based on the TAO model, we propose a framework to handle uncertainty
in Machine Learning: this model can be applied both to the input and the
output of the Learning algorithm. Obviously, these two latter aspects are strictly
related and they mutually affect each other in real applications. Schematically,
the framework looks as illustrated in Table 1.

With reference to the table, we distinguish between applications that handle
uncertainty in the input and those that handle uncertainty with respect to the
output. By uncertainty in the input we mean different forms of uncertainty that
are already explicitly present in the training datasets used by ML algorithms.
By wuncertainty in the output we mean mechanisms adopted by the ML algo-
rithm in order to create more robust models or making the (inherent and partly
insuppressible) predictive uncertainty more explicit.
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Table 1. TAO model applied to Machine Learning

Trisecting Acting Outcome

Input | The dataset contains The ML-algorithm Ad-hoc measures
different forms of should take into should be introduced to
uncertainty and it can |account the dataset quantify the dataset
be split in uncertainty and handle | uncertainty, which
certain/uncertain it should also be
instances considered in the

algorithm evaluation

Output | The output can contain | The ML algorithm New measures to
instances with no abstains from giving evaluate ML algorithms
decision (classification, |the result on uncertain | with abstention should
clustering, etc.) instances be introduced

In the following Sections, we will explain in more detail the different parts of
the framework outlined in Table 1, and discuss the recent advances and current
research in the framework areas by means of a narrative review of the literature
indexed by the Google Scholar database. In particular, in Sect. 2, we describe the
different steps of the proposed model with respect to the handling of uncertainty
in the input, while in Sect.3 we do the same for the handling of the uncertainty
in the output. In Sect.4, we will then discuss the advantages of incorporating
TWD and the TAO model for uncertainty handling into Machine Learning, and
some relevant future directions.

2 Handling Uncertainty in the Input

Real-world datasets are far from being perfect: typically they are affected by
different forms of uncertainty (often missingness) that can be mainly related to
either the data acquisition process or the complexity (e.g, in terms of volatility)
of the phenomena under consideration or for both these factors.

These forms of uncertainty are usually distinguished in three common
variants:

1. Missing data: this is usually the most common type of uncertainty in the input
[6]. The dataset could contain missing values in its predictive features either
because the original value was not recorded (e.g. the data was collected in two
separate times, and the instrumentation to measure the feature was available
only at one time), was subsequently lost or considered irrelevant (e.g. a doctor
decided not to measure the BMI of a seemingly healthy person). This type of
uncertainty has been the most studied, typically under the data imputation
perspective, that is the task in which missing values are filled in before any
subsequent ML process. This can be done in various ways, with techniques
based on clustering [34,65], statistical or regression approaches [7], rough set
or fuzzy rough set methods [4,51,67];
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2. Weak supervision: in the case of supervised problems, the supervision (i.e.
the target or decision variable) is only given in an imprecise form or only
partially specified. This type of uncertainty has seen some increase in interest
in the recent years [105], with a growing literature focusing specifically on
superset learning [17,29]; this is a specific type of weak supervision in which
instances are associated with sets of possible but mutually exclusive labels that
are guaranteed to contain the true value of the decision label;

3. Multi-rater annotation: this form of uncertainty is getting more and more
impact due to the increasing use of crowdsourcing [5,23,69] for data annota-
tion purposes, but it is also inherent in many domains where it is common
(and in fact recommended) practice to involve multiple experts to increase
the reliability of the Ground Truth, which is a crucial requirement in many
situations where ML models are applied for sensitive or critical tasks (like
in medicine for diagnostic tasks). Involving multiple raters who annotate the
dataset independently of each others often results in multiple and conflicting
decision labels for a given instance [9], for a common phenomenon that has
been denoted with many expressions, like observer variability or inter-rater
reliability.

While superficially similar (e.g. weak supervision could be seen as a form of
missing data), the problems inherent to and the methods to handle these types
of uncertainty are such that they should be distinguished. In the case of miss-
ing data, the main problem is to build reliable models of knowledge despite the
incomplete information, and the completion of the dataset is but a means to an
end, often under assumptions that are difficult to attain (or verify). In the case
of weak supervision, on the other hand, the task of completion (which is usually
called disambiguation) is of fundamental importance and the goal is, usually,
to simultaneously build ML models and disambiguate the uncertain instances.
Finally, in the case of multi-rater annotations, while the task of disambiguation
is obviously present, there is also the problem of inferring the extent each sin-
gle rater can be trusted (i.e., how accurate they are) and how to meaningfully
aggregate the information they provide in order to build a consensus which is to
be used to build the ground truth by which to train the ML model.

2.1 'Trisecting and Acting Steps

In all three uncertainty forms, the trisecting act is at the basis of the process
of uncertainty handling, as the uncertain instances (e.g., the instances missing
some feature values, or those for which the provided annotations are only weak)
must be necessarily recognised for any action to be considered: this also means
that the trisecting act usually amounts to simply dividing the certain instances
from the uncertain ones, and the bulk of the work is usually performed in the
acting step in order to decide how differently handle the two kinds of instances.
According to the three kinds of problems described at the beginning of the
section, we present the following solutions.
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Missing Data. Missing data is the type of uncertainty for which a TWD method-
ology to handle this kind of uncertainty is more mature, possibly because the
problem has been well studied in RST and other theories for the management
of uncertainty that are associated with TWD [21,22]. Most approaches in this
direction have been based on the notion of incomplete information table, which
is typically found in RST: Liu et al. [42] introduced a TWD model based on an
incomplete information table augmented with interval-valued loss functions; Luo
et al. [45] proposed a multi-step approach by which to distinguish different types
of missing data (e.g. “don’t know”, “don’t care”) and similarity relations; Luo
et al. [44] focused on how to update TWD in incomplete and multi-scale informa-
tion systems using decision-theoretic rough sets; Sakai et al. [57-59] described
an approach based on TWD to construct certain and possible rules using an
algorithm which combines the classical A-priori algorithm [3] and possible world
semantics [30]. Other approaches (not directly based on the incomplete infor-
mation table notion) have also been considered: Nowicki et al. [52] proposed
a TWD algorithm for classification with missing or interval-valued data based
on rough sets and SVM; Yang et al. [75] proposed a method for TWD based
on intuitionistic fuzzy sets that are construed based on a similarity relation of
instances with missing values.

While all the above approaches propose techniques based on TWD with
missing data for classification problems, there have also been proposals to deal
with this type of uncertainty in clustering, starting from the original approach
proposed by Yu [85,87], to deal with missing data in clustering using TWD:
Afridi et al. [2] described an approach which is based, as for the classification
case, on a simple trisecting step in which complete instances are used to produce
an initial clustering and then use an approach based on game-theoretic rough
sets to cluster the instances with missing values; Yang et al. [74] proposed a
method for three-way clustering with missing data based on clustering density.

Weak Supervision. With respect to the case of weak supervision, the application
of three-way based strategies is more recent and different techniques have been
proposed in the recent years. Most of the work in this sense has focused on the
specific case of semi-supervised learning, in which the uncertain instances have
no supervision, and active learning, in which the missing labels can be requested
to an external oracle (usually a human user) at some cost: Miao et al. [48]
proposed a method for semi-supervised learning based on TWD; Yu et al. [8§]
proposed a three-way clustering approach for semi-supervised learning that uses
an active learning approach to obtain labels for instances that are considered
as uncertain after the initial clustering; Triff et al. [66] proposed an evolution-
ary semi-supervised algorithm based on rough sets and TWD and compare it
with other algorithms obtaining interesting results when only the certainly clas-
sified objects are considered; Dai et al. [18] introduced a co-training technique
for cost-sensitive semi-supervised learning based on sequential TWD and apply
it to different standard ML algorithms (k-NN, PCA, LDA) in order to obtain
a multi-view dataset; Campagner et al. [10,13] introduced a three-way Deci-
sion Tree model for semi-supervised learning and show that this model achieves
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good performance with respect to standard ML algorithms for semi-supervised
learning; Wang et al. [70,71] proposed a cost-sensitive three-way active learn-
ing algorithm based on the computation of label error statistics; Min et al. [49]
proposed a cost-sensitive active learning strategy based on k-nearest neighbours
and a tripartition of the instances in certain and uncertain ones.

In the case of more general weakly supervised learning, Campagner et al. [12]
proposed a collection of approaches based on TWD and standard ML algorithms
in order to take into account this type of uncertainty in the setting of classi-
fication. In particular, the authors considered an algorithm for Decision Tree
(and ensemble-based extensions, such as Random Forest) learning, in which the
trisecting and acting steps are dynamically and iteratively performed during the
Decision Tree induction process on the basis of TWD and generalized informa-
tion theory [33], and a generalized stochastic gradient descent algorithm based on
interval analysis and TWD, in order to take into account the fact that the uncer-
tain instances naturally determine interval-valued information with respect to
the loss function to be optimized. In both cases, promising results were reported,
showing that they outperform standard superset learning and semi-supervised
techniques. A different approach, which is based on treating weakly supervision
as a type of missing data, proposed by Sakai et al. [58], employs a three-way rule
extraction algorithm that could also be applied in the case of weakly supervised
data: this approach is of particular interest in that 