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a b s t r a c t 

In order to process multi-view multi-label data sets, we propose global and local multi-view multi-label 

learning (GLMVML). This method can exploit global and local label correlations of both the whole data set 

and each view simultaneously. What’s more, GLMVML introduces a consensus multi-view representation 

which encodes the complementary information from different views. Related experiments on three multi- 

view data sets, fourteen multi-label data sets, and one multi-view multi-label data set have validated that 

(1) GLMVML has a better average AUC and precision and it is superior to the classical multi-view learning 

methods and multi-label learning methods in statistical; (2) the running time of GLMVML won’t add too 

much; (3) GLMVML has a good convergence and ability to process multi-view multi-label data sets; (4) 

since the model of GLMVML consists of both the global label correlations and local label correlations, so 

parameter values should be moderate rather than too large or too small. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

.1. Background: three classical data sets 

In real-world applications, there are three kinds of data sets

re always encountered, i.e., multi-view data sets, multi-label data

ets, and multi-view multi-label data sets [1–9] . 

(1) A multi-view data set consists of multiple instances with dif-

ferent views. Each view denotes information of instances in

a certain area. Taking a web page data set X as an exam-

ple, if this data set consists of n web pages and each page

is an instance x i ( i = 1 , 2 , . . . , n ), then each instance can be

represented by v forms including text, image, video. Each

form x 
j 
i 

is a view of x i and X j = { x j 
i 
} n 

i =1 
represents j -th view

( j = 1 , 2 , . . . , v ). Under this definition, X = { X j } v 
j=1 

= { x i } n i =1 

is a multi-view data set [10] . 

(2) A multi-label data set consists of multiple instances with

multiple class labels. For example, as [11] said, a scene im-

age can be annotated with several tags [12] , a document

may belong to multiple topics [13] , and a piece of music

may be associated with different genres [14] . 

(3) A multi-view multi-label data set consists of instances which

have multiple views and class labels. Namely, for each in-
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stance, it has respective class label if observed and more-

over, each instance has multiple views and different views

will also bring different class labels if still observed. For ex-

ample, if there is a stereoscopic artistic works and people

can appreciate it from multiple aspects including the text

introduction, picture introduction, voice introduction, and 

video introduction. Now text, picture, voice, video can be

regarded as different views. Then from different views, this

stereoscopic artistic works can be labeled as different labels.

Maybe according to the text introduction, this works can be

treated as a historical, classical one and according to picture

introduction, this works can be treated as a nature, rural

one. Here, historical, classical, nature, rural are labels. More-

over, in real-world applications, some instances are difficult

to be labeled with the lack of information. Thus, sometimes,

in a view, some instances lost some labels. 

.2. Background: traditional solutions 

In order to process multi-view data sets, multi-view learning

as been developed and widely used in many fields including

ulti-view clustering [9,15] , handwritten digit recognition [16] , hu-

an gait recognition [17] , image recognition [18,19] , dimensional-

ty reduction [6,7] and so on [20] . For example, Zhang et al. have

roposed a latent multi-view subspace clustering (LMSC) [9] to

mprove the clustering performances. Sun et al. have proposed a

ultiple-view multiple-learner (MVML) [16] to enhance the ability

f handwritten digit recognition. Deng et al. have developed a ro-

https://doi.org/10.1016/j.neucom.2019.09.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
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bust gait recognition method using multiple views fusion and de-

terministic learning so as to encourage recognition accuracy of hu-

man gait characteristics [17] . Wu et al. find that the existing multi-

view dictionary learning (DL) methods suffer from the problem

of performance degeneration when large noise exists in multiple

views and propose a multi-view low-rank DL (MLDL) to overcome

such a problem [18] . Yuan et al. have developed a fractional-order

embedding canonical correlation analysis (FECCA), which is based

on fractional-order within-set and between-set scatter matrices for

multi-view dimensionality reduction [7] and Hou et al. propose a

multiple view semi-supervised dimensionality reduction (MVSSDR)

to solve semi-supervised multi-view data sets whose training in-

stances consist of some labeled ones and some unlabeled ones [6] .

In order to process multi-label data sets, multi-label learning

has also been developed and many methods are proposed. For ex-

ample, Weng et al. have developed a multi-label learning based

on label-specific features and local pairwise label correlation (LF-

LPLC) [21] , Kumar et al. have developed a multi-label classification

machine with hierarchical embedding (MLCHE) to process practi-

cal multi-label classification problems such as image annotation,

text categorization and sentiment analysis [22] , and Zhu et al. have

proposed a multi-label learning named GLOCAL which takes both

global and local label correlation into consideration [11] . 

Since multi-view learning and multi-label learning have a

strong pertinence and they cannot process multi-view multi-label

data sets, thus some scholars develop corresponding solutions.

First, for the multi-view multi-label data sets, most existing

multi-label learning methods do not sufficiently consider the

complementary information among multiple views which leads

to unsatisfying performance, thus Zhang et al. develop latent

semantic aware multi-view multi-label learning (LSA-MML) to

fully take advantage of multiple views of data and well learn the

common representations by simultaneously enforcing the consis-

tence of latent semantic bases among different views in kernel

spaces. Experiments validate that the superiority of LSA-MML

for multi-view multi-label classification [8] . Second, in terms of

the features among the multi-view multi-label data sets, Luo

et al. introduce multi-view vector-valued manifold regularization

( MV 

3 MR ) to integrate multiple features and exploit the comple-

mentary property of different features and discover the intrinsic

local geometry of the compact support shared by different features

under the theme of manifold regularization. Doing so, MV 

3 MR can

process multi-view multi-label image classification tasks well [5] .

Third, Zhu et al. conduct a hierarchical feature selection for the

multi-view multi-label learning and develop a block-row sparse

multi-view multi-label learning framework (BrSMVML). BrSMVML

effectively conducts image classification by avoiding the adverse

impact of both the redundant views and the noisy features [4] .

Besides those learning methods, multi-view based multi-label

propagation (MVMLP) [23] and semi-supervised dimension reduc-

tion for multi-label and multi-view learning (SSDR-MML) [24] are

also the widely used methods. Generally speaking, the above

multi-view multi-label learning methods can effectively process

many multi-view multi-label data sets. 

1.3. Problems 

Although many learning methods are proposed for these differ-

ent kinds of data sets, but with the further analysis, it is found that

these methods neglect two factors. The first factor is the ignorance

of the exploitation of global and local label correlations simulta-

neously. As is known to all, labels of instances exist some correla-

tions, for example, label ’nature’ and label ’rural’ have a subordi-

nate relationship. But for the above methods, they always assume

that the label correlations are global and shared by all instances

or that the label correlations are local and shared only by a data
ubset, namely, they cannot exploit global and local label corre-

ations simultaneously. The second factor is that some multi-view

ulti-label learning methods cannot reflect the consensus or com-

lementary principle of multi-view learning. For some methods in-

luding LSA-MML, LMSC [8,9] , they introduce a consensus multi-

iew representation which encodes the complementary informa-

ion from different views. But for other methods, they neglect that.

.4. Proposal 

In order to introduce these two factors into a multi-view multi-

abel learning method simultaneously, in this work, we take GLO-

AL which can exploit global and local label correlations simulta-

eously as a basic method and extend the model to multi-view

roblem. Then we also introduce a consensus multi-view repre-

entation into this new model so as to reflect the complementary

nformation from different views. The proposed model is named

lobal and local multi-view multi-label learning (GLMVML). 

.5. Novelty and contributions 

The novelty of GLMVML is that in the filed of multi-view multi-

abel learning, it is the first trial for the combination of global and

ocal label correlations and the complementary information from

ifferent views. Different from the basic learning method GLOCAL

hich is a multi-label single-view learning, the proposed GLMVML

s the multi-view version of GLOCAL and GLMVML can reflect the

omplementary information from different views. 

The contributions of GLMVML are (1) it can take advantage of

he complementary information from different views; (2) it can re-

ect the global and local label correlations simultaneously; (3) it

as a better ability to process multi-view multi-label data sets;

4) it pushes on the research of multi-view multi-label learning

urther. 

.6. Framework 

The framework of the rest paper is given below.

ection 2 shows the framework of the developed GLMVML.

ection 3 gives the experimental results. The conclusion and

uture work are given in Section 4 . 

. Global and local multi-view multi-label learning 

.1. Data preparation 

Suppose there is a multi-view multi-label data set X , it has v

iews and its dimensionality is d × n (see Fig. 1 ). d is the dimen-

ionality of each instance and n is the total number of instances.

hen, i th instance x i ∈ R 

d can be represented as 

 i = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

x 1 
i 

x 2 
i 

. 

. 

. 

x v 
i 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

here x 
j 
i 

∈ R 

d j ×1 denotes j th view of i th instance and d = 

∑ v 
j=1 d j ,

 j is the number of features of x 
j 
i 
. Here 

 

j 
i 
= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

x j 
i 1 

x j 
i 2 
. 

. 

. 

x j 
id j 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
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Fig. 1. The expression of a multi-view data set. 
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nd x 
j 
it 

denotes the t th feature of x 
j 
i 
. According to these definitions,

he j th view of this data set can be written as X j = (x 
j 
1 
, x 

j 
2 
, . . . , x 

j 
n )

nd the dimensionality of X 

j is d j × n . Now, we have 

 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

X 

1 

X 

2 

. 

. 

. 

X 

v 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

= (x 1 , x 2 , . . . , x n ) . 

Then for X , since it is a multi-view multi-label data set and in

eal-world applications, some labels can be observed while some

annot. Thus, we suppose X has l class labels, i.e., C = { c 1 , c 2 , . . . , c l }
nd we define the ground-truth label vector of x 

j 
i 

is 
˜ 

y 
j 
i 

∈ R 

l×1 ⊆
−1 , 1 } l , where [ ̃

 

y 
j 
i 
] t = 1 if x 

j 
i 

is labeled as c t , and −1 otherwise.

like, we define the observed label vector of x 
j 
i 

is y 
j 
i 

∈ R 

l×1 ⊆
−1 , 1 , 0 } l , where [ y 

j 
i 
] t = 0 if class label c t is not labeled for x 

j 
i 
,

nd [ y 
j 
i 
] t = [ ̃

 

y 
j 
i 
] t otherwise. With the same definition, for an in-

tance x i , its ground-truth label vector is ˜ y i ∈ R 

l×1 ⊆ {−1 , 1 } l and

ts observed label vector is y i ∈ R 

l×1 ⊆ {−1 , 1 , 0 } l . Here, [ ̃  y i ] t = 1 if

 i is labeled as c t , and −1 otherwise, [ y i ] t = 0 if class label c t is not

abeled for x i , and [ y i ] t = [ ̃  y i ] t otherwise. 

Now, we can get the ground-truth label matrix of the whole

ata set, i.e, ˜ Y = ( ̃  y 1 , ̃  y 2 , . . . , ̃  y n ) ∈ R 

l×n , the observed label ma-

rix of the whole data set, i.e., Y = (y 1 , y 2 , . . . , y n ) ∈ R 

l×n , the

round-truth label matrix of the j th view, i.e, ˜ Y j = ( ̃
 

y 
j 
1 
, ̃

 

y 
j 
2 
, . . . , ̃

 

y 
j 
n ) ∈

 

l×n , the observed label matrix of the j th view, i.e., Y j =
(y 

j 
1 
, y 

j 
2 
, . . . , y 

j 
n ) ∈ R 

l×n . 

.2. Framework 

According to the above contents, we know if ˜ Y is low-rank,

t can be written as the low-rank decomposition, i.e., ˜ Y = U V ,

here U ∈ R 

l×k , V ∈ R 

k ×n , and rank ( ̃  Y ) = k < l. U has a function

o project the original labels to the latent label space while V can

e treated as the latent labels that are more compact and more
emantically abstract than the original labels. For ˜ Y j , it can also

e decomposed by ˜ Y j = U 

j V j where U 

j ∈ R 

l×k j , V j ∈ R 

k j ×n 
, and

ank ( ̃  Y j ) = k j < l. Since in real-world applications, labels are only

artially observed, so we always want to minimize the reconstruc-

ion error on the observed labels, i.e., min 

U,V ,U j ,V j 
| | � �(Y − UV ) | | 2 F +

 v 
j=1 

∣∣∣∣� � j (Y j − U 

j V j ) 
∣∣∣∣2 

F 
. Here, | | � | | 2 F represents the square of

robenius norm for � , � ( �j ) consists of indices of the observed

abels in Y ( Y j ), [ | | � �(A ) | | ] i j = A i j if ( i, j ) ∈ �, and 0 otherwise (sim-

lar to �j case). 

After that, we adopt a linear mapping W ∈ R 

d×k ( W 

j ∈ R 

d j ×k j )

o map instances to the latent labels and W ( W 

j ) is learned by 

min 

,V,W 

j ,V j 

∣∣∣∣V − W 

T X 

∣∣∣∣2 

F 
+ 

v ∑ 

j=1 

∣∣∣∣∣∣V 

j − W 

j T X 

j 

∣∣∣∣∣∣2 

F 
. 

Moreover, in order to introduce the local label correlation,

e divide the data set into several groups with a cluster-

ng method (in our work, k-means is used. Although there are

any clustering methods can be used, but we only select k-

eans just for convenience and selecting another one won’t in-

uence our conclusion). Namely, for X , it is partitioned into g

roups, i.e., X = { X 1 , X 2 , . . . , X g } and each part X m 

∈ R 

d×n m where

 m 

is the number of instances in X m 

. Then under j -th view,

 

j is also divided into g j groups, i.e., X j = { X j 
1 
, X 

j 
2 
, . . . , X 

j 

g j 
} and

 th group of X 

j is X 
j 

m 

∈ R 

d j ×n 
j 
m . Then since the prediction on

nstance x i is sign ( f ( x i )) where f (x i ) = UW 

T x i ∈ R 

l×1 , so F 0 =
 f (x 1 ) , f (x 2 ) , . . . , f (x n )] = UW 

T X represents the classifier output

atrix of X . Similarly, F 
j 

0 
= U 

j W 

j T X j , F m 

= UW 

T X m 

, F 
j 

m 

= U 

j W 

j T X 
j 

m 

epresent the classifier output matrices of X 

j , X m 

, X 
j 

m 

respectively.

he dimensions of F 0 , F 
j 

0 
, F m 

, F 
j 

m 

are l × n, l × n, l × n m 

, l × n 
j 
m 

, re-

pectively. 

Then, on the base of X, X m 

, X 

j , X 
j 

m 

and their corresponding ob-

erved label matrices, we compute the label correlation matrices.

ake X as instance, S 0 = { [ S 0 ] pq } denotes global label correlation

atrix and [ S 0 ] pq = 

y p, : y 
T 
q, : 

| | y p, : | | | | y q, : | | represents the global label corre-

ation of p -th label with respect to q th label and y p ,: is the p th row
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Table 1 

Algorithm: GLMVML. 

Input : X and X j and their corresponding group partition which 

are given with k-means, label matrix Y and Y j , and observation 

indicator matrices J and J j 

Output : Z m , U, W , Z j r , U 
j , W 

j where j = 1 , 2 , . . . , v , 
m = 1 , 2 , . . . , g, r = 1 , 2 , . . . , g j 

1. initialize Z m , U, V, W , Z j r , U 
j , V j , W 

j , P, B j ; 

2. repeat 

3. for m = 1 , 2 , . . . , g, j = 1 , 2 , . . . , v , r = 1 , 2 , . . . , g j 

4. update one of the A ∈ { Z m , U, V, W, Z j r , U 
j , V j , W 

j , P, B j } 
and fix the others simultaneously; 

5. end for 

6. until convergence or maximum number of iterations. 

 

w  

�∣∣
2

 

i  

v  

a  

s  

a

 

w

 

 

W  

t

 

g  

c  

t  

i

2

 

G  

{  

t  
of Y . Then we let L 0 be the Laplacian matrix of S 0 . Similarly, for

X m 

, S m 

= { [ S m 

] pq } is the corresponding local label correlation ma-

trix and L m 

is its Laplacian matrix. Then, under j -th view, for X 

j and

X 
j 

m 

S 
j 
0 

= { [ S j 
0 
] pq } and S 

j 
m 

= { [ S j m 

] pq } are the corresponding global la-

bel correlation matrix and local label correlation matrix, L 
j 
0 

and L 
j 
m 

are their corresponding Laplacian matrices. Dimensions of S 0 , L 0 ,

S m 

, L m 

, S 
j 
0 
, L 

j 
0 
, S 

j 
m 

, L 
j 
m 

are both l × l . 

According to the above definitions, we want the classifier out-

puts can be closer if two labels are more positively correlated and

as [28] said, we should minimize tr(F T 
0 

L 0 F 0 ) + 

∑ g 
m =1 

tr(F T m 

L m 

F m 

) +∑ v 
j=1 (tr( F j 

0 

T 
L 

j 
0 
F 

j 
0 
) + 

∑ g j 

m =1 
tr( F j m 

T 
L 

j 
m 

F 
j 

m 

)) where tr ( A ) represents the

trace of A . 

Furthermore, refer to LSA-MML and LMSC [8,9] which intro-

duce a consensus multi-view representation to encode the com-

plementary information from different views, we adopt the same

way. Suppose P is a latent representation matrix (i.e., consen-

sus multi-view representation), B j is the basic matrix correspond-

ing to j th view, then 

∑ v 
j=1 

∣∣∣∣X j − B j P 
∣∣∣∣2 

F 
searches a comprehensive

multi-view representation and 

∑ 

j � = t IND (B j , B t ) is used to measure

the independence between different views where IND (B j , B t ) =
−HSIC(B j , B t ) and HSIC is a Hilbert-Schmidt independence criterion

estimator [8] . 

So according to the above contents, our goal is to solve the fol-

lowing optimization problem. 

min 

,W,V ,U j ,W 

j ,V j 
| | � �(Y − UV ) | | 2 F 

+ λ0 

∣∣∣∣V − W 

T X 

∣∣∣∣2 

F 
+ λ1 � 

(
U, V, W, U 

j , V 

j , W 

j , P, B 

j 
)

+ 

v ∑ 

j=1 

(
λ2 

∣∣∣∣� � j (Y j − U 

j V 

j ) 
∣∣∣∣2 

F 
+ λ3 

∣∣∣∣∣∣V 

j − W 

j T X 

j 

∣∣∣∣∣∣2 

F 

)
+ λ4 t r 

(
F T 0 L 0 F 0 

)
+ λ5 

g ∑ 

m =1 

t r 
(
F T m 

L m 

F m 

)
+ 

v ∑ 

j=1 

( 

λ j 
6 
tr( F j 

0 

T 
L j 

0 
F j 

0 
) + λ j 

7 

g j ∑ 

m =1 

tr 

(
F j 

m 

T 
L j m 

F j 
m 

)) 

+ λ8 

v ∑ 

j=1 

∣∣∣∣X 

j − B 

j P 
∣∣∣∣2 

F 
+ λ9 

∑ 

j � = t 
IND (B 

j , B 

t ) (1)

where λs are tradeoff parameters, λj s are tradeoff parameters cor-

responding to j -th views, � ( U, V, W, U 

j , V 

j , W 

j , P, B j ) is the regular-

izer. 

Furthermore, for convenience of computation, we use J =
{ [ J] pq } ∈ R 

l×n and J j = { [ J j ] pq } ∈ R 

l×n where J pq = 1 ( J 
j 
pq = 1 ) if ( p,

q ) ∈ � (( p, q ) ∈ �j ), and 0 (0) otherwise. We treat J and J j as

observation indicator matrices. Moreover, it can be easily found

that S 0 = 

∑ g 
m =1 

n m 
n S m 

and S 
j 
0 

= 

∑ g 
m =1 

n 
j 
m 
n S 

j 
m 

, so L 0 = 

∑ g 
m =1 

n m 
n L m 

and L 
j 
0 

= 

∑ g 
m =1 

n 
j 
m 
n L 

j 
m 

. Since Laplacian matrices are symmetric pos-

itive definite, so we can decompose them by L m 

= Z m 

Z T m 

and L 
j 
m 

=
Z 

j 
m 

Z 
j 
m 

T 
where Z m 

∈ R 

l×k and Z 
j 
m 

∈ R 

l×k j . In order to avoid the Z m 

=
0 and Z 

j 
m 

= 0 during the procedure of optimization, we add the

constraint diag(Z m 

Z T m 

) = 1 and diag(Z 
j 
m 

Z 
j 
m 

T 
) = 1 where diag ( A ) rep-

resents a vector which contains the diagonal entries in A . 

Finally, the optimization problem Eq. (1) can be rewritten as

below. 

min 

Z m ,U,V,W,Z j m ,U 
j ,V j ,W 

j 

| | J ◦ (Y − UV ) | | 2 F 

+ λ0 

∣∣∣∣V − W 

T X 

∣∣∣∣2 

F 
+ λ1 � (U, V, W, U 

j , V 

j , W 

j , P, B 

j ) 
+ 

v ∑ 

j=1 

(
λ2 

∣∣∣∣J j ◦ (Y j − U 

j V 

j ) 
∣∣∣∣2 

F 
+ λ3 

∣∣∣∣∣∣V 

j − W 

j T X 

j 

∣∣∣∣∣∣2 

F 

)
+ 

g ∑ 

m =1 

(
λ4 

n m 

n 

tr(F T 0 Z m 

Z T m 

F 0 ) + λ5 tr 
(
F T m 

Z m 

Z T m 

F m 

))
+ 

v ∑ 

j=1 

( 

g j ∑ 

m =1 

( 

λ j 
6 

n 

j 
m 

n 

t r 

(
F j 

0 

T 
Z j m 

Z j m 

T 
F j 

0 

)
+ λ j 

7 
t r 

(
F j 

m 

T 
Z j m 

Z j m 

T 
F j 

m 

)) ) 

+ λ8 

v ∑ 

j=1 

∣∣∣∣X 

j − B 

j P 
∣∣∣∣2 

F 
+ λ9 

∑ 

j � = t 
IND (B 

j , B 

t ) 

s.t. diag(Z m 

Z T m 

) = 1 m ∈ { 1 , 2 , . . . , g} 
diag(Z j m 

Z j m 

T 
) = 1 m ∈ { 1 , 2 , . . . , g j } (2)

here ◦ represents Hadamard (element-wise) product and we let

 (U, V, W, U 

j , V j , W 

j , P, B j ) = 

∣∣∣∣U 

∣∣∣∣2 

F 
+ 

∣∣∣∣V ∣∣∣∣2 

F 
+ 

∣∣∣∣∣∣W 

∣∣2 

F 
+ 

∣∣∣∣U 

j 
∣∣∣∣2 

F 
+ ∣∣V j ∣∣∣∣2 

F 
+ 

∣∣∣∣W 

j 
∣∣∣∣2 

F 
+ 

∣∣∣∣P ∣∣∣∣2 

F 
+ 

∣∣∣∣B j ∣∣∣∣2 

F 
in this work. 

.3. Solution 

In order to solve the problem Eq. (2) , we adopt alternat-

ng optimization. Namely, in each iteration, we update one of the

ariables in { Z m 

, U, V, W, Z 
j 
m 

, U 

j , V j , W 

j , P, B j } with gradient descent

nd leave the others fixed. Here, take the updating of Z m 

as in-

tance. In the each iteration, in order to update Z m 

, we fix others

nd problem Eq. (2) can be reduced to 

min 

Z m 
λ4 

n m 

n 

t r 
(
F T 0 Z m 

Z T m 

F 0 
)

+ λ5 t r 
(
F T m 

Z m 

Z T m 

F m 

)
(3)

s.t. diag(Z m 

Z T m 

) = 1 m ∈ { 1 , 2 , . . . , g} 
Then compute the gradient of the Eq. (3) with respect to Z m 

ith the following equation. 

∇ Z m = λ4 
n m 

n 

UW 

T X X 

T W U 

T Z m 

+ λ5 UW 

T X m 

X 

T 
m 

W U 

T Z m 

(4)

After we get the ∇ A where A ∈ { Z m 

, U, V, W, Z 
j 
m 

, U 

j , V j ,

 

j , P, B j } , we can use A := A − η∇ A to update A where η is

he step size. 

Table 1 gives the summary of the algorithm GLMVML. After we

et the optimal matrices, the UW 

T X can be used to compute the

lassifier outputs for X . For X 

j and the group partitions X 
j 

m 

and X m 

,

he outputs can be gotten with the corresponding optimal matrices

ncluding U 

j s, W 

j s and so on. 

.4. Computational complexity 

In order to solve the problem Eq. (2) and optimize the

LMVML, in each iteration, we update one of the variables in

 Z m 

, U, V, W, Z 
j 
m 

, U 

j , V j , W 

j , P, B j } with gradient descent and leave

he others fixed. Thus, the computational complexity of GLMVML
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Table 2 

Detailed information of Mfeat data set. 

View No. instances No. features No. digits 

fac 2000 216 10 

fou 2000 76 10 

kar 2000 64 10 

pix 2000 240 10 

zer 2000 47 10 

mor 2000 6 10 
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Table 3 

Detailed information of Reuters data set. 

View No. documents Vocabulary size 

EN 18,758 21,513 

FR 26,648 24,839 

GR 29,953 34,279 

SP 12,342 11,547 

IT 24,039 15,506 

Topic No. documents Per(%) 

C15 18,816 16.84 

CCAT 21,426 19.17 

E21 13,701 12.26 

ECAT 19,198 17.18 

GCAT 19,178 17.16 

M11 19,421 17.39 

Table 4 

Detailed information of Corel data set. 

View No. instances No. features No. categories 

Col-h 1000 32 10 

Col-hl 1000 32 10 

Col-m 1000 9 10 

Coo-t 1000 16 10 

Table 5 

Detailed information of multi-label data sets. 

Data set No. instances No. features No. labels label/instance 

Arts 5000 462 26 1.64 

Computers 5000 681 33 1.51 

Entertainment 5000 640 21 1.42 

Recreation 5000 606 22 1.42 

Science 5000 743 40 1.45 

Society 5000 636 27 1.69 

Corel5k 5000 499 374 3.52 

Business 5000 438 30 1.59 

Education 5000 550 33 1.46 

Health 5000 612 32 1.66 

Reference 5000 793 33 1.17 

Social 5000 1047 39 1.28 

Enron 1702 1001 53 3.37 

Image 2000 294 5 1.24 

(  

m  

M  

t  

e  

6  

r  

g  

C

H  

a  

t  

o  

s

 

[  

B

R  

a  
s depended on the ones of the update of these parameters. What’s

ore, since the computational complexity of matrix multiplication

s much larger than matrix subtraction, thus the computational

omplexity of the update for a variable is mainly depended on the

omputation of ∇ A rather than the computation of A := A − η∇ A .

o, we can say that the computational complexity of GLMVML is

nally depended on the computation of ∇ A s. 

Here, for convenience, we take the update of Z m 

as

nstance. According to Eq. (4) , the computational complex-

ty of UW 

T XX 

T WU 

T Z m 

is O ( lk 2 d 2 n 2 d 2 k 2 l 2 k ) and the one of

W 

T X m 

X T m 

W U 

T Z m 

is O (lk 2 d 2 n 2 m 

d 2 k 2 l 2 k ) , since in generally, n and

 m 

is always larger than l, d, k , thus the computational com-

lexity of update of Z m 

is O (n 2 + n 2 m 

) . Then, for others, we can

et the similar operations and the computational complexity of

he update of U, V, W , Z 
j 
m 

, U 

j , V 

j , W 

j , P, B j are O (n 2 + n 2 m 

) ,

 ( kn ), O (n 2 + n 2 m 

) , O (n 2 + n 
j 
m 

2 ), O (n 2 + n 
j 
m 

2 ), O (k j n 
j 
m 

) , O (n 2 +
 

j 
m 

2 ), O ( n ), O (n 2 + n 
j 
m 

2 ), respectively. Then the computational

omplexity of GLMVML is mostly equal to O (3(n 2 + 

∑ g 
m =1 

n 2 m 

) +
n + 3 

∑ g j 

m =1 

∑ v 
j=1 v (n 2 + n 

j 
m 

2 ) + v n + v 
∑ g j 

m =1 

∑ v 
j=1 k j n 

j 
m 

) and since

uadratic term is always larger than the linear term, thus the

omputational complexity of GLMVML can be written as O (3(n 2 +
 g 
m =1 

n 2 m 

) + 3 
∑ g j 

m =1 

∑ v 
j=1 v (n 2 + n 

j 
m 

2 )). If the number of clusters

re larger and n m 

, n 
j 
m 

are smaller simultaneously, then the compu-

ational complexity of GLMVML will be reduced to O ( Gn 2 ) where G

s a constant. In generally, this computational complexity is smaller

han O ( n 3 ) which is the computational complexity of many tradi-

ional methods. 

. Experiments 

In order to validate the performance of GLMVML, we adopt

ome benchmark data sets for experiments and the related exper-

mental results are shown in Section 3.2 . 

.1. Experimental setting 

.1.1. Data set 

In our experiments, the used data sets include multi-view data

ets, multi-label data sets, and multi-view multi-label data sets. 

In terms of the used multi-view data sets, we adopt three clas-

ical ones. They are Mfeat, Reuters, and Corel [10] . (1) Mfeat 1 con-

ists of hand written digits (0–9) [25] and each instance consists

f six views, i.e., Fourier coefficients of the character shapes (fou),

rofile correlations (fac), Karhunen-Love coefficients (kar), pixel av-

rages in 2 × 3 windows (pix), Zernike moments(zer), and morpho-

ogical features (mor). Details of Mfeat can be found in Table 2 . (2)

euters 2 consists of machine translated documents which are writ-

en in five different languages and these languages are treated as

ve views [26,27] . These five languages are English (EN), French
1 http://archive.ics.uci.edu/ml/datasets/Multiple+Features . 
2 http://archive.ics.uci.edu/ml/datasets/Reuters+RCV1+RCV2+Multilingual%2C+ 

ultiview+Text+Categorization+Test+collection 
FR), German (GR), Italian (IT), and Spanish (SP) and each docu-

ent can be translated from one language to another language.

oreover, the documents are also categorized into six different

opics. Details of Reuters can be shown in Table 3 . (3) Corel 3 is

xtracted from a Corel image collection [25] and it consists of

8,040 photos from various categories. In our experiments, we

andomly select 10 0 0 photos from 10 categories and each cate-

ory has 100 photos. The 10 categories are C0-Africa, C1-Beach,

2-Building, C3-Buses, C4-Dinosaurs, C5-Elephants, C6-Flowers, C7- 

orses, C8-Mountains and C9-Food. For this data set, four views

re adopted. They are color histogram (abbr. Col-h), color his-

ogram layout (abbr. Col-hl), color moments (abbr. Col-m), and co-

ccurrence texture (abbr. Coo-t). Each view represents a feature

et. Information of this data set is given in Table 4 . 

In terms of multi-label data sets, we adopt the same ones in

11] , i.e., text data sets including eleven Yahoo data sets 4 (Arts,

usiness, Computers, Education, Entertainment, Health, Recreation, 

eference, Science, Social and Society) and Enron data set 5 and im-

ge data sets 6 including Corel5k and Image. Table 5 shows infor-
3 http://archive.ics.uci.edu/ml/datasets/Corel+Image+Features . 
4 http://www.kecl.ntt.co.jp/as/members/ueda/yahoo.tar . 
5 http://mulan.sourceforge.net/datasets-mlc.html . 
6 http://cse.seu.edu.cn/people/zhangml/files/Image.rar . 

http://archive.ics.uci.edu/ml/datasets/Multiple+Features
http://archive.ics.uci.edu/ml/datasets/Reuters+RCV1+RCV2+Multilingual%2C+Multiview+Text+Categorization+Test+collection
http://archive.ics.uci.edu/ml/datasets/Corel+Image+Features
http://www.kecl.ntt.co.jp/as/members/ueda/yahoo.tar
http://mulan.sourceforge.net/datasets-mlc.html
http://cse.seu.edu.cn/people/zhangml/files/Image.rar
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[

mation of these multi-label data sets and here label / instance repre-

sents the average number of labels possessed by each instance. 

For the multi-view multi-label data sets, we adopt NUS-WIDE

data set [29] . This data set has six views, they are color histogram

(dimensionality: 64), color correlogram (dimensionality: 144), edge

direction histogram (dimensionality: 73), wavelet texture (dimen-

sionality: 128), block-wise color moments extracted over 5 × 5

fixed grid partitions (dimensionality: 255), and bag of words based

on SIFT descriptions (dimensionality: 500). Then this data set has

81 labels and 810 images are adopted as the instances in our ex-

periments. Details can be found in [23,29] . 

3.1.2. Compared method 

The compared methods include multi-view learning methods

MVML [16] , LMSC [9] and MLDL [18] , multi-label learning methods

LF-LPLC [21] , MLCHE [22] , and GLOCAL [11] , multi-view multi-label

learning methods MVMLP [23] , SSDR-MML [24] , and LSA-MML [8] .

3.1.3. Parameter setting 

For the compared methods, the parameter settings can be found

in related work and in terms of the proposed GLMVML, in order to

divide the data set into several groups, we adopt k-means and its

parameter K which also determine the g and g j is selected from the

set { 1 , 2 , 3 , . . . , 10 } × l where l is the number of classes. For the Z m 

,

U, V, W , Z 
j 
r , U 

j , V 

j , W 

j , P, B j , we initialize them according to the X, X 

j

and their corresponding groups. Here, for GLOCAL which also need

to divide the data set into several groups, we adopt the same set-

ting with GLMVML. For parameters λ0 , λ1 , λ2 , and λ3 which are

used for the Frobenius norm regularizer are selected from the set

{ 2 −5 , 2 −4 , . . . , 2 0 } . For the λ4 and λ5 , ( λ6 s and λ7 s) which corre-

spond to the manifold regularizer for global and local label corre-

lations, respectively are selected from the set { 10 −6 , 10 −5 , . . . , 10 0 } .
For λ8 and λ9 which are used for the reflection of complemen-

tary information from different views are selected from the set

{ 10 −2 , 10 −1 , 10 0 , 10 1 , 10 2 } . 
In order to get the optimal results and according to the com-

pared methods’ demands, for each data set, we randomly select

{ 10% , 20% , . . . , 60% } for training and the rest for test. Then for

multi-label data sets and NUS-WIDE, each instance or each view,

we randomly remove 10% ∼ 30% labels so as to get the observed la-

bel matrices. Then we repeat the experiments with each parameter

combination for ten times and get the average results and the cor-

responding standard deviation. The best parameters are the ones

whose average precision is the best. Then, the other performance

indexes including the AUC (i.e., the area under the receiver operat-

ing characteristic (ROC) curve), running time and convergence are

given with the optimal parameters. Here, we should notice that for

each data set, different methods should process same data. 

3.1.4. Experimental environment 

Our experiments are conducted with the following environ-

ment. All the computations are performed on a node of compute

cluster with 16 CPUs (Intel Core Due 3.0GHz) running RedHat

Linux Enterprise 5 with 48GB main memory. The coding envi-

ronment is MATLAB 2016. Furthermore, the maximum number of

iterations is set to be 10 0 0. 

3.2. Experimental results 

3.2.1. AUC And precision 

In the experiments, we adopt AUC and precision to measure the

performance of GLMVML and we know a higher AUC and preci-

sion denote a better performance. Tables 6 and 7 give the test-

ing average AUC and precision respectively. From these tables, it is

found that in terms of testing average AUC, our proposed GLMVML

is better than other compared methods in average. Moreover, the
in/tie/loss counts show that GLMVML is clearly superior to these

ulti-view learning methods and multi-label learning methods, as

t wins for most times and never loses. For the other multi-view

ulti-label learning methods, they performs better than GLMVML

ometimes. In terms of the average precision, we can get similar

esults. 

.2.2. Running time 

Moreover, we want to show the running time of these meth-

ds. Table 8 shows the related experimental results and Avg. (mv)

epresents the average running time for multi-view data sets while

vg. (ml) represents the average running time for multi-label data

ets. From this table, we find that our proposed GLMVML cost a

ittle more running time which is also accepted by us. 

.2.3. Convergence 

Since in GLOCAL, the related scholars empirically studied the

onvergence of GLOCAL [11] , thus in this work, we adopt the same

peration. Fig. 2 shows the objective value with respect to the

umber of iterations. For convenience and due to the lack of space,

e only show the results on multi-view data set Mfeat, multi-label

ata sets Computers and Science, multi-view multi-label data set

US-WIDE. As can be seen, the objective (i.e., Eq. (2) ) converges

uickly in a few iterations (less than 25). A similar phenomenon

an be observed on the other data sets. 

.2.4. Influence of parameters 

In our experiments, for the optimization problem Eq. (2) , there

re many parameters including λs and K should be chosen and

uned. Here, K (this parameter determine the number of g and

 

j ) is selected from { 1 , 2 , 3 , . . . , 10 } × l where l is the number of

lasses; for the Z m 

, U, V, W , Z 
j 
r , U 

j , V 

j , W 

j , P, B j , they are initial-

zed according to the X, X 

j and the corresponding groups; λ0 , λ1 ,

2 , and λ3 are selected from the set { 2 −5 , 2 −4 , . . . , 2 0 } ; λ4 , λ5 , λ6 s,

nd λ7 s are selected from the set { 10 −6 , 10 −5 , . . . , 10 0 } ; λ8 and λ9

re selected from the set { 10 −2 , 10 −1 , 10 0 , 10 1 , 10 2 } . Since accord-

ng to these parameters, we have too many parameter combina-

ions and how to tune them is a challenge, especially, in real-world

pplications. Thus here, we show the influence of parameters and

eal with the following questions. (1) Whether these parameters

re data-dependent or not; (2) can we tune all these parameters

ell in practical experiments; (3) for different cases, how are the

arameters K s determined and what are the optimal values; (4) ac-

ording to the parameters, in optimization problem Eq. (2) , which

art plays an important role for the performance of GLMVML; (5)

hat is the influence of the initialization of Z m 

, U, V, W , Z 
j 
r , U 

j , V 

j ,

 

j , P, B j on the performance of GLMVML. 

We know among these parameter combinations, there is an op-

imal combination and this combination brings the best precision.

hen under this combination, we can also get the corresponding

UC, convergence, and running time. Now we adopt other combi-

ations and change the values of these different parameters so that

e can see the changing of performances. Table 9 shows the in-

uence of parameters on four performance indexes, i.e., AUC, pre-

ision, convergence, and running time. For convenience, we only

how the influence on data set NUS-WIDE since for other data sets,

e find the results are similar. In this table, ‘range’ indicates that

hen we change the value of a parameter, how the corresponding

erformance of an index changes. ’std’ shows the standard devi-

tion of values in the ’range’. ’gap’ means the span of the ’range’.

or example, for AUC and K , we can see the ’range’ is [0.698,0.849].

his means expect for the optimal parameter combination, when

e change the value of K , the AUC falls in the range [0.698,0.849],

amely, the worst AUC is 0.698 and the best one is 0.849. Then the

gap’ is 0 . 849 − 0 . 698 = 0 . 151 and the ’std’ (0.052) is derived from

0.698,0.849]. 
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Table 6 

Testing average AUC (mean ± std.) of GLMVML with compared methods. • / ◦ indicates that GLMVML is significantly better/worse than the corresponding method (pairwise 

t-tests at 95% significance level). The best average AUC for each data set is shown in bold. / represents no result since the related method cannot process that data set. 

data sets GLMVML LMSC MVML MLDL LF-LPLC 

Mfeat 0.796 ± 0.015 0.751 ± 0.020 • 0.775 ± 0.018 • 0.778 ± 0.005 • / 

Reuters 0.948 ± 0.015 0.631 ± 0.011 • 0.894 ± 0.020 • 0.886 ± 0.028 • / 

Corel 0.836 ± 0.001 0.761 ± 0.013 • 0.798 ± 0.015 • 0.717 ± 0.014 • / 

Arts 0.887 ± 0.007 / / / 0.838 ± 0.005 • 
Business 0.967 ± 0.003 / / / 0.926 ± 0.003 • 
Computers 0.928 ± 0.003 / / / 0.842 ± 0.002 

Education 0.887 ± 0.008 / / / 0.870 ± 0.006 • 
Entertainment 0.924 ± 0.007 / / / 0.874 ± 0.005 • 
Health 0.977 ± 0.010 / / / 0.914 ± 0.007 • 
Recreation 0.879 ± 0.000 / / / 0.812 ± 0.000 • 
Reference 0.939 ± 0.004 / / / 0.857 ± 0.004 

Science 0.868 ± 0.013 / / / 0.831 ± 0.010 • 
Social 0.985 ± 0.005 / / / 0.911 ± 0.005 • 
Society 0.891 ± 0.008 / / / 0.800 ± 0.006 • 
Enron 0.927 ± 0.007 / / / 0.861 ± 0.005 

Corel5k 0.852 ± 0.006 / / / 0.796 ± 0.005 • 
Image 0.865 ± 0.013 / / / 0.777 ± 0.009 

NUS-WIDE 0.850 ± 0.027 / / / / 

win/tie/loss 3 / 0 / 0 3 / 0 / 0 3 / 0 / 0 10 / 4 / 0 

data sets MLCHE GLOCAL MVMLP SSDR-MML LSA-MML 

Mfeat / / 0.726 ± 0.017 0.749 ± 0.017 0.712 ± 0.017 • 
Reuters / / 0.820 ± 0.019 • 0.813 ± 0.020 • 0.739 ± 0.019 • 
Corel / / 0.676 ± 0.014 • 0.711 ± 0.014 • 0.698 ± 0.014 • 
Arts 0.851 ± 0.005 • 0.855 ± 0.005 • 0.865 ± 0.005 0.897 ± 0.005 0.881 ± 0.005 

Business 0.885 ± 0.003 • 0.957 ± 0.003 • 0.937 ± 0.003 0.968 ± 0.003 ◦ 0.973 ± 0.003 

Computers 0.882 ± 0.002 0.883 ± 0.002 • 0.886 ± 0.002 0.897 ± 0.002 • 0.814 ± 0.002 • 
Education 0.873 ± 0.006 • 0.874 ± 0.006 • 0.875 ± 0.006 • 0.872 ± 0.006 • 0.878 ± 0.006 

Entertainment 0.799 ± 0.005 • 0.880 ± 0.005 0.879 ± 0.005 0.893 ± 0.005 0.832 ± 0.005 • 
Health 0.868 ± 0.006 • 0.927 ± 0.007 • 0.952 ± 0.007 • 0.938 ± 0.007 • 0.988 ± 0.008 

Recreation 0.764 ± 0.000 • 0.831 ± 0.000 0.832 ± 0.000 • 0.833 ± 0.000 • 0.812 ± 0.000 • 
Reference 0.808 ± 0.004 0.893 ± 0.004 • 0.893 ± 0.004 • 0.904 ± 0.004 • 0.864 ± 0.004 • 
Science 0.799 ± 0.009 0.853 ± 0.010 0.852 ± 0.010 0.843 ± 0.010 • 0.841 ± 0.010 

Social 0.841 ± 0.005 • 0.924 ± 0.005 0.941 ± 0.005 • 0.939 ± 0.005 0.941 ± 0.005 • 
Society 0.815 ± 0.006 • 0.839 ± 0.006 • 0.868 ± 0.006 • 0.869 ± 0.006 • 0.871 ± 0.006 • 
Enron 0.799 ± 0.005 0.875 ± 0.005 0.891 ± 0.005 0.861 ± 0.005 • 0.866 ± 0.005 • 
Corel5k 0.745 ± 0.005 • 0.818 ± 0.005 • 0.809 ± 0.005 0.811 ± 0.005 • 0.877 ± 0.010 

Image 0.758 ± 0.009 0.810 ± 0.009 0.821 ± 0.008 • 0.826 ± 0.008 • 0.794 ± 0.008 • 
NUS-WIDE / / 0.812 ± 0.031 0.815 ± 0.056 0.893 ± 0.056 ◦

9 / 5 / 0 8 / 6 / 0 9 / 9 / 0 12 / 5 / 1 11 / 6 / 1 

Fig. 2. Convergence of GLMVML on data sets Mfeat, Computers, Science, and NUS-WIDE. 
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Table 7 

Testing average precision (mean ± std.) of GLMVML with compared methods. • / ◦ indicates that GLMVML is significantly better/worse than the corresponding method 

(pairwise t-tests at 95% significance level). The best average precision for each data set is shown in bold. / represents no result since the related method cannot process 

that data set. 

data sets GLMVML LMSC MVML MLDL LF-LPLC 

Mfeat 0.818 ± 0.024 0.712 ± 0.011 • 0.725 ± 0.017 • 0.754 ± 0.005 • / 

Reuters 0.972 ± 0.022 0.674 ± 0.013 • 0.894 ± 0.020 • 0.850 ± 0.027 • / 

Corel 0.864 ± 0.014 0.776 ± 0.015 • 0.788 ± 0.014 • 0.696 ± 0.013 • / 

Arts 0.647 ± 0.008 / / / 0.579 ± 0.005 • 
Business 0.910 ± 0.004 / / / 0.837 ± 0.004 • 
Computers 0.717 ± 0.005 / / / 0.695 ± 0.004 • 
Education 0.643 ± 0.010 / / / 0.597 ± 0.008 • 
Entertainment 0.701 ± 0.009 / / / 0.665 ± 0.008 • 
Health 0.785 ± 0.001 / / / 0.753 ± 0.001 • 
Recreation 0.654 ± 0.005 / / / 0.588 ± 0.004 • 
Reference 0.739 ± 0.009 / / / 0.677 ± 0.007 • 
Science 0.607 ± 0.010 / / / 0.571 ± 0.008 • 
Social 0.823 ± 0.010 / / / 0.714 ± 0.008 • 
Society 0.666 ± 0.013 / / / 0.624 ± 0.009 

Enron 0.674 ± 0.009 / / / 0.621 ± 0.006 • 
Corel5k 0.420 ± 0.005 / / / 0.192 ± 0.004 • 
Image 0.824 ± 0.010 / / / 0.760 ± 0.007 • 
NUS-WIDE 0.871 ± 0.011 / / / / 

win/tie/loss 3 / 0 / 0 3 / 0 / 0 3 / 0 / 0 13 / 1 / 0 

data sets MLCHE GLOCAL MVMLP SSDR-MML LSA-MML 

Mfeat / / 0.700 ± 0.016 • 0.699 ± 0.016 • 0.686 ± 0.016 • 
Reuters / / 0.773 ± 0.018 • 0.732 ± 0.018 • 0.733 ± 0.017 • 
Corel / / 0.807 ± 0.013 • 0.748 ± 0.013 • 0.694 ± 0.012 • 
Arts 0.600 ± 0.005 • 0.609 ± 0.005 • 0.614 ± 0.005 • 0.619 ± 0.004 0.645 ± 0.004 

Business 0.827 ± 0.004 • 0.881 ± 0.004 0.871 ± 0.004 • 0.876 ± 0.004 • 0.909 ± 0.004 

Computers 0.681 ± 0.004 0.702 ± 0.004 • 0.694 ± 0.004 • 0.704 ± 0.004 0.739 ± 0.004 ◦
Education 0.562 ± 0.008 • 0.621 ± 0.008 • 0.625 ± 0.007 0.611 ± 0.008 0.577 ± 0.008 • 
Entertainment 0.616 ± 0.007 • 0.676 ± 0.008 • 0.684 ± 0.008 • 0.689 ± 0.008 0.652 ± 0.008 • 
Health 0.748 ± 0.001 0.782 ± 0.001 0.782 ± 0.001 0.772 ± 0.001 • 0.790 ± 0.001 

Recreation 0.582 ± 0.004 • 0.618 ± 0.004 • 0.641 ± 0.004 • 0.612 ± 0.004 • 0.645 ± 0.004 

Reference 0.655 ± 0.007 • 0.694 ± 0.007 • 0.716 ± 0.007 • 0.677 ± 0.007 • 0.692 ± 0.007 • 
Science 0.535 ± 0.008 • 0.587 ± 0.009 • 0.600 ± 0.009 0.599 ± 0.008 • 0.600 ± 0.008 

Social 0.735 ± 0.007 • 0.750 ± 0.008 • 0.778 ± 0.008 • 0.766 ± 0.007 • 0.817 ± 0.007 • 
Society 0.611 ± 0.008 • 0.631 ± 0.009 • 0.645 ± 0.009 • 0.652 ± 0.009 • 0.658 ± 0.009 

Enron 0.616 ± 0.006 0.651 ± 0.006 • 0.659 ± 0.006 • 0.673 ± 0.006 0.682 ± 0.006 ◦
Corel5k 0.190 ± 0.004 • 0.198 ± 0.004 0.200 ± 0.004 • 0.201 ± 0.004 • 0.419 ± 0.014 

Image 0.720 ± 0.007 • 0.798 ± 0.007 • 0.808 ± 0.007 0.802 ± 0.007 • 0.813 ± 0.006 • 
NUS-WIDE / / 0.721 ± 0.015 • 0.803 ± 0.011 • 0.863 ± 0.011 

11 / 3 / 0 11 / 3 / 0 14 / 4 / 0 13 / 5 / 0 8 / 8 / 2 

Fig. 3. Influence of K on NUS-WIDE with GLMVML. 
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Table 8 

Running time (in seconds) of GLMVML with compared methods. / represents no 

result since the related method cannot process that data set. 

data sets GLMVML LMSC MVML MLDL LF-LPLC 

Mfeat 24.19 20.59 20.30 22.24 / 

Reuters 309.03 251.73 294.45 305.06 / 

Corel 9.13 7.64 8.35 9.07 / 

Avg. (mv) 114.12 93.32 107.70 112.12 / 

Arts 53.77 / / / 47.13 

Business 54.18 / / / 44.84 

Computers 58.91 / / / 49.67 

Education 48.88 / / / 42.44 

Entertainment 58.41 / / / 54.77 

Health 73.14 / / / 69.18 

Recreation 55.92 / / / 49.90 

Reference 84.46 / / / 76.51 

Science 76.26 / / / 70.94 

Social 95.87 / / / 79.50 

Society 43.31 / / / 39.23 

Enron 68.56 / / / 62.88 

Corel5k 449.68 / / / 370.10 

Image 15.06 / / / 13.94 

Avg. (ml) 88.31 / / / 76.50 

NUS-WIDE 41.03 / / / / 

data sets MLCHE GLOCAL MVMLP SSDR-MML LSA-MML 

Mfeat / / 20.82 22.46 24.07 

Reuters / / 269.56 286.79 281.91 

Corel / / 8.17 8.52 8.25 

Avg. (mv) / / 99.51 105.92 104.74 

Arts 44.46 49.02 49.28 49.07 51.05 

Business 47.44 49.52 51.37 51.18 50.07 

Computers 49.90 52.99 54.02 54.49 54.23 

Education 44.71 44.94 45.07 47.01 45.60 

Entertainment 56.16 56.33 56.40 59.05 58.10 

Health 63.81 69.23 71.74 71.04 70.81 

Recreation 49.43 51.62 54.19 53.22 52.88 

Reference 77.26 81.23 85.22 83.80 82.76 

Science 71.51 72.03 73.74 72.46 73.06 

Social 78.81 86.50 88.35 90.15 88.62 

Society 38.27 40.84 40.84 42.33 42.39 

Enron 59.97 65.63 66.12 66.63 66.55 

Corel5k 372.42 403.92 423.75 406.00 421.74 

Image 14.19 14.93 15.56 14.94 14.95 

Avg. (ml) 76.31 81.34 83.98 82.95 83.77 

NUS-WIDE / / 36.47 37.63 39.39 
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Table 9 

Influence of parameters in terms of the performance ranges, standard deviation, and 

the gap on AUC, precision, convergence, running time. 

AUC Precision 

Parameter Range / std gap range / std Gap 

K [0.698,0.849] / ± 0.052 0.151 [0.722,0.866] / ± 0.043 0.144 

λ0 [0.830,0.850] / ± 0.007 0.020 [0.852,0.869] / ± 0.005 0.017 

λ1 [0.830,0.850] / ± 0.007 0.020 [0.852,0.866] / ± 0.005 0.014 

λ2 [0.834,0.849] / ± 0.005 0.015 [0.851,0.868] / ± 0.006 0.017 

λ3 [0.831,0.849] / ± 0.005 0.018 [0.852,0.870] / ± 0.006 0.018 

λ4 [0.767,0.848] / ± 0.026 0.081 [0.773,0.869] / ± 0.035 0.096 

λ5 [0.757,0.846] / ± 0.026 0.089 [0.772,0.870] / ± 0.032 0.098 

λ6 [0.760,0.850] / ± 0.028 0.090 [0.793,0.865] / ± 0.023 0.072 

λ7 [0.760,0.849] / ± 0.026 0.089 [0.776,0.867] / ± 0.031 0.091 

λ8 [0.831,0.848] / ± 0.004 0.017 [0.852,0.870] / ± 0.006 0.018 

λ9 [0.834,0.849] / ± 0.004 0.015 [0.853,0.871] / ± 0.006 0.018 

Z m [0.830,0.850] / ± 0.006 0.020 [0.855,0.870] / ± 0.005 0.015 

U [0.838,0.850] / ± 0.004 0.012 [0.852,0.870] / ± 0.006 0.018 

V [0.831,0.848] / ± 0.006 0.017 [0.851,0.871] / ± 0.006 0.020 

W [0.830,0.849] / ± 0.006 0.019 [0.856,0.870] / ± 0.004 0.014 

Z j r [0.831,0.846] / ± 0.005 0.015 [0.852,0.871] / ± 0.005 0.019 

U j [0.831,0.847] / ± 0.006 0.016 [0.852,0.870] / ± 0.006 0.018 

V j [0.830,0.848] / ± 0.005 0.018 [0.851,0.867] / ± 0.006 0.016 

W 

j [0.831,0.849] / ± 0.005 0.018 [0.852,0.869] / ± 0.006 0.017 

P [0.831,0.848] / ± 0.006 0.017 [0.852,0.869] / ± 0.005 0.017 

B j [0.831,0.850] / ± 0.007 0.019 [0.852,0.871] / ± 0.006 0.019 

convergence running time 

parameter range / std gap range / std gap 

K [16,25] / ± 2.98 9 [31.34,48.38] / ± 5.61 17.040 

λ0 [18,22] / ± 1.76 4 [38.54,43.55] / ± 2.02 5.010 

λ1 [18,21] / ± 1.37 3 [38.05,43.88] / ± 2.60 5.830 

λ2 [18,21] / ± 1.21 3 [38.66,43.06] / ± 1.60 4.400 

λ3 [20,22] / ± 0.89 2 [38.31,43.52] / ± 2.05 5.210 

λ4 [17,25] / ± 3.42 8 [31.45,47.38] / ± 6.38 15.930 

λ5 [16,25] / ± 3.95 9 [37.14,49.46] / ± 4.08 12.320 

λ6 [15,24] / ± 3.51 9 [32.58,46.71] / ± 4.87 14.130 

λ7 [15,25] / ± 3.55 10 [31.25,47.11] / ± 5.44 15.860 

λ8 [19,22] / ± 1.64 3 [38.21,43.62] / ± 2.61 5.410 

λ9 [18,22] / ± 1.52 4 [39.13,42.99] / ± 1.47 3.860 

Z m [18,21] / ± 1.17 3 [38.19,42.97] / ± 1.33 4.780 

U [20,22] / ± 0.67 2 [39.10,42.33] / ± 1.04 3.230 

V [18,22] / ± 1.15 4 [38.57,42.98] / ± 1.46 4.410 

W [18,21] / ± 1.03 3 [38.16,42.43] / ± 1.36 4.270 

Z j r [19,22] / ± 1.26 3 [38.24,43.96] / ± 1.78 5.720 

U j [18,22] / ± 1.57 4 [38.34,43.16] / ± 1.87 4.820 

V j [18,22] / ± 1.37 4 [38.53,43.17] / ± 1.75 4.640 

W 

j [18,22] / ± 1.26 4 [41.42,43.76] / ± 0.87 2.340 

P [18,21] / ± 1.26 3 [38.80,42.59] / ± 1.56 3.790 

B j [18,22] / ± 1.76 4 [38.15,43.74] / ± 1.84 5.590 
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Now according to Table 9 , we can see the influence of K, λ4 ,

5 , λ6 , and λ7 is larger, so we adopt Table 10 and Fig. 3 for fur-

her revelation. In Fig. 3 , K × l represents the label value A equals to

 × l . Of course, in Table 10 and Fig. 3 , the results are also not de-

ived from the optimal parameter combination so as to reveal the

nfluence well. Then according to the experimental results given

n Tables 9, 10 , and Fig. 3 , we can draw the following conclusions

nd answer the above mentioned questions. (1) The influence of K,

4 , λ5 , λ6 , and λ7 is larger than others since for other parameters,

o matter which initial value is adopted, the performance gaps for

UC and precision is always not larger than 2%, and the ones for

onvergence and running time are also smaller. In other words, for

0 , λ1 , λ2 , λ3 , λ8 , λ9 , Z m 

, U, V, W , Z 
j 
r , U 

j , V 

j , W 

j , P, B j , when we

hange their values, the performances of AUC, precision, conver-

ence, and running time won’t change too much. But for others,

he influence is a little larger; (2) according to the Table 10 , it is

ound that except for the running time, with the increasement of

arameters λ4 , λ5 , λ6 , and λ7 , the performance of GLMVML im-

roves (for convergence, the smaller the iteration number is, the

etter the performance is) while when these parameters are very

arge, the performance deteriorates due to considering too many

r too few local label correlations will both deteriorate the perfor-

ance. Our GLMVML is a model with both global and local label

orrelations, so considering balanced global and local label corre-
ations is important to improve its performance. Thus in this ta-

le, we can draw a conclusion that setting λ4 , λ5 , λ6 , and λ7 be

0 −3 is much more feasible. Although in this case, setting them

e 10 −3 brings a longer running time, but combining the perfor-

ances of AUC, precision, convergence, a little more running time

s also accepted by us; (3) according to Fig. 3 , it is found that ex-

ect for the running time, with more clusters (i.e., larger K ), per-

ormance improves as more local label correlations are taken into

ccount. While if the number of clusters is too large, this makes

ach cluster possess very few instances, and the local label corre-

ations cannot be reliably estimated. As a result, the performance

tarts to deteriorate. Thus, according to this figure, we can draw

nother conclusion that setting K be 5 × l is feasible. Similar with

he previous conclusion, although in this case, running time is in-

reased, but for the purpose of classification, this increasement is

lso accepted by us; (4) according to the previous two conclusions,

e can see that although there are too many parameters should be

uned, we can still tune them well in practical experiments due to

ome parameters have small influence and some parameters can

e set a feasible initial value; (5) although we only show the in-
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Table 10 

Influence of parameters λ4 ∼λ7 in terms of AUC, precision, convergence, running 

time. 

AUC 10 −6 10 −5 10 −4 10 −3 10 −2 10 −1 10 0 

λ4 0.813 0.820 0.832 0.848 0.791 0.782 0.767 

λ5 0.801 0.813 0.824 0.846 0.795 0.784 0.757 

λ6 0.811 0.830 0.844 0.850 0.808 0.785 0.760 

λ7 0.800 0.814 0.823 0.849 0.795 0.790 0.760 

Precision 10 −6 10 −5 10 −4 10 −3 10 −2 10 −1 10 0 

λ4 0.844 0.858 0.867 0.869 0.814 0.789 0.773 

λ5 0.835 0.845 0.847 0.870 0.819 0.789 0.772 

λ6 0.841 0.850 0.856 0.865 0.837 0.822 0.793 

λ7 0.832 0.837 0.858 0.867 0.828 0.792 0.776 

Convergence 10 −6 10 −5 10 −4 10 −3 10 −2 10 −1 10 0 

λ4 25 24 21 18 20 22 24 

λ5 25 23 20 16 17 18 25 

λ6 24 23 18 15 16 17 21 

λ7 25 21 18 15 16 20 22 

Running time 10 −6 10 −5 10 −4 10 −3 10 −2 10 −1 10 0 

λ4 32.05 42.47 45.06 47.38 40.06 31.45 34.63 

λ5 39.73 42.33 42.39 49.46 46.49 43.11 37.14 

λ6 32.58 34.94 40.40 46.71 43.66 39.00 37.53 

λ7 31.25 32.95 39.45 47.11 35.33 33.93 33.53 

Table 11 

Detailed comparison between our proposed method and other compared ones in 

terms of the increase proportion. 

Multi-view 

index LMSC MVML MLDL 

AUC 14.56% 3.75% 6.63% 

Precision 16.40% 8.22% 11.81% 

Running time 22.28% 5.96% 1.78% 

multi-label 

index LF-LPLC MLCHE GLOCAL 

AUC 6.17% 9.20% 3.97% 

precision 6.71% 8.08% 4.38% 

running time 15.44% 15.73% 8.58% 

multi-view multi-label 

Index MVMLP SSDR-MML LSA-MML 

AUC 4.83% 4.26% 5.16% 

Precision 5.65% 6.12% 4.01% 

Running time 7.22% 6.79% 6.12% 
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fluence on data set NUS-WIDE, for other data sets, we can still get

similar results. This means that the setting of these parameters are

data-independent; (6) according to these tables, we know due to

the influence of K, λ4 , λ5 , λ6 , and λ7 is larger and K always de-

cides the number of clusters which also influences the local label

correlation, thus in optimization problem Eq. (2) , global and local

label correlations plays an important role for the performance of

GLMVML. Of course, generally speaking, since we can get the fea-

sible selections for these parameters, thus in practical experiments,

tuning parameters is not a difficult task. 

3.2.5. Summary of increase proportion of performance 

Table 11 shows the detailed comparison between our proposed

method and other compared ones in terms of the increase propor-

tion. The value in this table means that for an index, compared

with the other method, how many increase proportion does the

GLMVML get. For example, for LMSC and AUC, 14.56% indicates

that compared with LMSC, our GLMVML brings a better AUC and

the increase proportion is 14.56%. Then according to this summary

table, we can see that with the consideration of global and local

label correlation and the complementary information from differ-
nt views, our GLMVML can bring a better performance. Although

LMVML needs a longer running time, but in practice experiments,

 higher classification accuracy is always the priority target. What’s

ore, if we improve the experimental environment and adopt GPU,

e can imagine that the increase proportion of running time will

e smaller. 

. Conclusion and future work 

Multi-view multi-label learning methods are developed to pro-

ess multi-view multi-label data sets which are widely used in

ur real-world applications. But for the global and local label cor-

elations of the data sets, these traditional methods cannot ex-

loit simultaneously. Furthermore, these methods cannot reflect

he complementary information from different views. Thus, in this

aper, we propose global and local multi-view multi-label learn-

ng (GLMVML). In GLMVML, it divides the whole data set and each

iew into several clusters with some clustering methods so as to

onsider both the global and local label correlations. Moreover,

LMVML introduces a consensus multi-view representation to en-

ode the complementary information from different views. Experi-

ents on some multi-view, multi-label, and multi-view multi-label

ata sets have validated that (1) in terms of AUC and precision,

LMVML is better than other compared methods in average; (2)

ccording to the win/tie/loss counts, GLMVML is superior to the

ompared multi-view learning methods and multi-label learning

ethods; (3) although the model of GLMVML is more complicate

han others, only a small amount of running time is added; (4) the

ptimization of GLMVML can be converged in a few iterations; (5)

ome parameters of GLMVML have influence on the performance

f GLMVML while some haven’t. Setting a moderate parameter

alue (not too large and not too small) is important to get a bet-

er performance and the tuning of parameters is data-independent

nd not difficult. 

But according to the optimization and experiments of our

LMVML, it is found that we show the convergence empiri-

ally rather than theoretically. Indeed, proving the GLMVML and

ome other similar models convergence in theory is difficult

nd complex, and many scholars always adopt an alternative,

.e., empirically show the convergence [8,9,11] . Although in

ome references, for example [4] , some scholars prove sim-

lar parts of Eq. (2) , i.e., | | J ◦ (Y − UV ) | | 2 F + λ0 

∣∣∣∣V − W 

T X 
∣∣∣∣2 

F 
+

1 � (U, V, W, U 

j , V j , W 

j , P, B j ) + 

∑ v 
j=1 (λ2 

∣∣∣∣J j ◦ (Y j − U 

j V j ) 
∣∣∣∣2 

F 
+ 

3 

∣∣∣∣∣∣V j − W 

j T X j 
∣∣∣∣∣∣2 

F 
) can converge to a global optimum in theory,

ut for the whole Eq. (2) , it is hard to prove its convergence in

heory. Thus, here, we also empirically show the convergence. In

he future work, we will find a method to show the convergence

n theory. 
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