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a b s t r a c t 

The inconsistency of data distributions among multiple views is one of the most crucial issues which 

hinder the accuracy of person re-identification. To solve the problem, this paper presents a novel similar- 

ity learning model by combining the optimization of feature representation via multi-view visual words 

reconstruction and the optimization of metric learning via joint discriminative transfer learning. The 

starting point of the proposed model is to capture multiple groups of multi-view visual words ( MvVW ) 

through an unsupervised clustering method (i.e. K-means ) from human parts (e.g. head, torso, legs). Then, 

we construct a joint feature matrix by combining multi-group feature matrices with different body parts. 

To solve the inconsistent distributions under different views, we propose a method of joint transfer con- 

straint to learn the similarity function by combining multiple common subspaces, each in charge of a 

sub-region. In the common subspaces, the original samples can be reconstructed based on MvVW under 

low-rank and sparse representation constraints, which can enhance the structure robustness and noise 

resistance. During the process of objective function optimization, based on confinement fusion of multi- 

view and multiple sub-regions, a solution strategy is proposed to solve the objective function using joint 

matrix transform. Taking all of these into account, the issue of person re-identification under inconsistent 

data distributions can be transformed into a consistent iterative convex optimization problem, and solved 

via the inexact augmented Lagrange multiplier ( IALM ) algorithm. Extensive experiments are conducted on 

three challenging person re-identification datasets (i.e., VIPeR, CUHK01 and PRID450S), which shows that 

our model outperforms several state-of-the-art methods. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

The central theme of person re-identification (Re-ID) is to

atch two pedestrian images undergoing significant human ap-

earance changes in viewpoint, illumination and pose across cam-

ra views (see Fig. 1 ). To address this challenge, many algorithms

ave been proposed, and the researches can be divided into two

ajor directions. 

One of the research directions is to develop robust feature

escriptor for representing human appearance [10,44] . Currently,

ost appearance-based Re-ID methods use low-level visual fea-

ures as feature representations of pedestrian images such as color

eatures [16] and texture features [9] . To improve the performance
∗ Corresponding author. 

E-mail address: zhaocairong@tongji.edu.cn (C. Zhao). 
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f Re-ID, a wide variety of fusion methods have been designed

41] , such as deep context-aware features [26] , CRAFT [3] , joint

lobal and local feature learning [30] , hierarchical Gaussian de-

criptor [10] , local maximal occurrence representation [6] , cross-

odality feature [27] and salience matching [23] . Besides, deep

earning is also a noteworthy category of methods which has ex-

ibited promising performance in learning feature representation

17] . However, it remains very challenging to design a feature rep-

esentation that is discriminative, reliable and invariant to severe

hanges and misalignment across disjoint views. 

Another research direction, e.g., metric learning [28,37] , tries to

earn a similarity function or a robust distance metric to optimize

he matching score. Typical metric learning methods include Local

isher Discriminant Analysis (LFDA) [11] , kernel-based method

19] , Cross-view Quadratic Discriminant Analysis (XQDA) [6] ,

upervised smoothed manifold [25] , domain adaptation [39] , ref-

rence constraints [40] , ranking [2] and deep metric learning [14] .

lthough these metric learning based methods outperform most

https://doi.org/10.1016/j.patcog.2019.107014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2019.107014&domain=pdf
mailto:zhaocairong@tongji.edu.cn
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Fig. 1. Examples of person re-identification datasets. 
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d  
Re-ID approaches, they are nevertheless limited by some classical

problems, such as the inconsistent distributions between multiple

views and the small sample size ( SSS ) issue for model learning. 

To address these problems, we propose a novel similarity learn-

ing approach under joint transfer constraints, in which four groups

of multi-view visual words ( MvVW ) can be captured, including

three groups of local features and one group of global features

via an unsupervised clustering method ( K-means ), to effectively

describe the structure of human body. Also, the MvVW has the

ability to integrate multi-view information. Based on the MvVW

representation, we learn to reconstruct the original samples with

the assistance of transformation matrix, reconstruction coefficient

matrix and noise matrix. Note that for the sake of ensuring con-

sistent distributions of sample data, we utilize transfer learning

[13] to obtain a common subspace, denoted as the transformation

matrix. Meanwhile, we impose joint low-rank and sparse con-

straints on the reconstruction coefficient matrix and noise matrix

in order that more relevant samples from different domains are

interlaced, in comparison to irrelevant samples in these domains

[8] . Furthermore, we apply discriminative analysis to transfer ma-

trix and obtain discriminative low-level transfer features, and then

utilize the learned transfer matrix to compute the reconstruction

coefficient matrix which is defined as the mid-level features in

our model. To get the consistent optimal solutions, we combine

the discriminative analysis with the mid-level features and trans-

fer learning, and then produce the solutions via the proposed

method of similarity learning function which can maintain the

consistency of representation and metric learning [5] . In addition,

by employing light weighting method, max and min operator, we

can expand the samples to suppress the adverse effect of the SSS

problem on Re-ID. Compared to deep learning based methods, the

training process of our method does not require a large number of

samples, thus our method can better cope with the SSS problem.

When the number of samples is sufficient, the features extracted

by our method may not be robust enough compared to deep

features, but when the number of samples is small, the perfor-

mance of our method is much higher than the ones using deep

features. 

Finally, we describe the motivation and contribution of this pa-

per as follows: 

1.1. Motivation 

Although considerable progress has been made in person Re-ID,

there remains some limitations for most existing methods: 
(1) Most approaches assume that the data distributions under

multi-camera views are consistent. However, this assump-

tion is one-sided because important attributes of each cam-

era view are different in practice. In our approach, we ap-

ply transfer-learning method to seek a common subspace for

different camera views, and obtain the mid-level features for

similarity metric; 

(2) Traditional descriptors are mainly based on low-level fea-

tures. However, mid-level features are also helpful for per-

son Re-ID. In our approach, we combine transfer learning,

discriminant analysis and sparse constraint to learn mid-

level features, and then consider multi-level feature for sim-

ilarity metric; 

(3) Most metric learning methods suffer from the SSS problem

and it is difficult to obtain an optimal solution. To address

the problems above, we propose a novel similarity learning

method under joint transfer constraints for multi-view and

multi-region person Re-ID. In particular, it should be noted

that the relaxed loss term considering sample pairs instead

of single sample can alleviate the SSS issue. 

.2. Contribution 

The main contributions of our work are summarized as follows:

(1) We propose a novel similarity learning method by consider-

ing joint transfer constraints which can learn a discrimina-

tive subspace with consistent data distributions and perform

better than the competing methods for multi-view person

Re-ID; 

(2) The mid-level features are introduced by defining the recon-

struction matrix, solved via the inexact augmented Lagrange

multiplier ( IALM ) algorithm, and then integrated with low-

level features and discriminative transfer features to de-

scribe the appearance of pedestrian images; 

(3) In order to fuse the local and global features, we design a

joint transfer constraint to solve the optimal function. For

this optimization problem, a new solution strategy is pre-

sented by using joint matrix transform. Furthermore, the

proposed method is shown to be effective and efficient

through person Re-ID experiments on three public datasets. 

. Related work 

In complicated real-world tasks, the data taken from different

omains have different f eature spaces and different types of data
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Table 1 

Notations. 

Notation Description 

X im feature matrix 
˜ X the joint feature matrix 

P i transfer matrix for different with different regions 
˜ P the joint transfer matrix 

D i the multi-view word matrices with different regions 
˜ D the joint multi-view word matrix 

Z i the reconstruction coefficient matrices with different regions 
˜ Z the joint reconstruction coefficient matrix 

E i the noise matrices with different regions 
˜ E the joint noise matrix 

α, β , γ , η, ρ , μ, λ, σ model parameters 
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istributions [13] . To address the problem of inconsistent distribu-

ions, numerous approaches based on transfer learning have been

roposed and applied for various visual tasks [20,42,43] . 

.1. Transfer learning for person Re-ID 

For person Re-ID, one of the essential requirements is to build a

obust matching model which can always work well from one type

f scene to another under the challenges of camera viewing angle

ifferences, pose variation, occlusion change, etc. [18] . Accordingly,

he transfer learning methods have been exploited to address the

hallenges of cross-scenario transfer. In [1] , Tamar et al. proposed

he approach of Implicit Camera Transfer (ICT) to model the bi-

ary relation by training a (non-linear) binary classifier with con-

atenations of vector pairs captured from different camera views.

imilarly, considering the consistency of cross view, Wang et al.

18] combined the learning of the shared latent subspace and the

earning of the corresponding task specific subspace to get the sim-

larity measurement for each task in cross-scenario transfer person

e-ID. Furthermore, Zheng et al. [24] formulated a transfer local

elative distance comparison (t-LRDC) model to address the open

orld person Re-ID problem. In addition, Shi et al. [15] suggested

 framework to learn a semantic attribute model from the existing

ashion datasets, and adapted the resulting model to facilitate per-

on Re-ID. Different from the above-mentioned methods, Lv et al.

31] considered unsupervised cross-dataset and utilize Bayes analy-

is for fusing spatial-temporal patterns for person Re-ID under dif-

erent domains. Wang et al. [29] also investigated the problem of

nsupervised person Re-ID by learning transferable joint attribute-

dentity feature. 

.2. Transfer subspace learning 

In preliminary works [38] , we assume that the original samples

an be linearly represented by transfer learning in a common sub-

pace. According to Shao et al. [13] , we can reconstruct the two

omain samples ( X, Y ) using the coefficient matrix Z and transfer

earning (ensuring the consistency of distributions), as follows: 

 

T X = P T Y Z (1) 

here P denotes the transfer matrix, which can be used to obtain

 common subspace and can minimize the divergence between the

istributions of both domains. However, due to the fact that n sam-

les belong to c different classes and n � c , these samples should

e drawn from c different subspace. 

Therefore, the coefficient matrix Z is expected to be of low rank

20] , and the F-norm constraint can be further incorporated to pre-

erve the local structure of data such that each source sample can

e well reconstructed from a few samples. Thus the transfer ma-

rix and coefficient matrix are obtained by solving the following
ptimization problem, 

in 

P,Z 
rank ( Z ) + α‖ Z‖ 

2 
F , s.t. P T X = P T Y Z (2)

here ‖ · ‖ F is the Frobenius norm, rank ( ·) is a nonconvex function,

nd α is the penalty parameter. In order to alleviate the effect of

oise, we introduce the matrix E with sparse constraint to model

oise, resulting in the following model, 

in 

P,Z 
rank ( Z ) + α‖ Z‖ 

2 
F + β‖ E‖ 1 , s.t. P T X = P T Y Z + E (3)

We adopt the nuclear norm to relax the rank function [20] , and

he modified model can be written as 

in 

P,Z 
‖ Z ‖ ∗ + α‖ Z ‖ 

2 
F + β‖ E‖ 1 , s.t. P T X = P T Y Z + E (4)

here ‖ Z ‖ ∗ is the nuclear norm of matrix Z . 

. Our approach 

In this section, we first revisit the polynomial feature map.

ased upon the map, we present a novel framework of transfer

earning for multiple features by a constrained similarity func-

ion, and formulate the learning problem specifically designed for

erson Re-ID. The abbreviations of main variables and parameters

sed in this paper are summarized in Table 1 . 

.1. Multi-view visual words by K-means 

To capture structure information and multi-view information,

e propose a descriptor called multi-view Visual words ( MvVW )

sing an unsupervised clustering method of K-means . Firstly, we

ivide a pedestrian image ( x i ) into five horizontal stripes, along the

ertical direction of human body consistently. Next, we define each

ow-level feature histogram as a visual word, and then capture

hree groups of local visual words from three horizontal stripes 1 
5 ,

2 
5 , 

2 
5 and one group of global visual words from the whole per-

on images, as shown in Fig. 2 . And these three local areas usually

nclude the head, torso and legs of the human body structure. Fur-

hermore, we employ k-means to fuse the multi-view information

nd obtain seven groups of MvVW . Note that, a light weighting

ethod, as well as the max and min operators, is employed to ex-

and the sample data for reducing the effect of the SSS problem. 

In the following, we define M v V W = { D i } , i ∈ { l 0 , l 1 , l 2 , g } ,
here { D i } represents the i th group of MvVW , { D 0 , D 1 , D 2 } are

he local multi-view visual words obtained from five horizontal

tripes of pedestrian images and D 3 is the global multi-view vi-

ual word obtained from the whole pedestrian images. Then, we

se each group of MvVW to reconstruct the corresponding region

f multi-view person sample data X . It is worth noting that the

ead of a human body is most probably represented by the other
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Fig. 2. The framework of our proposed method: 1) Capture the global feature ˜ X g , local feature ˜ X lo , ̃  X l1 , ̃  X l2 from different regions and obtain the multi-view visual words 
˜ D g , ˜ D lo , ̃  D l1 , ̃  D l2 . 2) Joint the multi-group features capturing from three local regions and one global region, and learn the joint transfer subspace with consistent distribution 

constraints. Then combine sparse and low-rank constraints (shown in Eq. (10) ) in the joint transfer subspace and solve this optimal function with a new approach described 

in section IV. 3) Considering the advantages of multi-level features, we combine low-level and mid-level features and utilize the metric method of XQDA to obtain the final 

rank results for person Re-ID. 
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heads with similar structures. We can therefore formulate the re-

construction problem as: 

min 

P,Z 
‖ Z ‖ ∗ + α‖ Z ‖ 

2 
F + β‖ E‖ 1 , s.t. P T X = P T DZ + E (5)

where Z is the reconstruction coefficient matrix and can be cap-

tured from the low-level features, denoted as the mid-level fea-

tures for person Re-ID. Considering two different domains of D and

X , they have different data distributions. To address this problem,

we will utilize transfer learning to seek a subspace with consistent

data distribution. 

3.2. Multiple transfer features function 

In our proposed method, we consider three kinds of local fea-

tures and one kind of global features, and different features have

inconsistent distributions. Thus, to combine multiple descriptors,

we reformulate the optimal function based on Eq. (5) as: 

min 

Z i , P i , E i 

n ∑ 

i =0 

(‖ Z i ‖ ∗ + ‖ Z i ‖ 

2 
F + ‖ E i ‖ 1 

)
, s . t . P 

T 
i X i = P 

T 
i D i Z i + E i (6)

where X i represents the set of the i th feature and n is the number

of the group of features. 

3.2.1. Discriminant term 

We combine the discriminant analysis for the transfer matrix of

P and define the discriminant term as: 

min 

(
−P T i 	E i P i 

)
s.t.P T i 	I i P i = 1 (7)

where 	I i 
and 	E i 

are the covariance matrices of the intrapersonal

variations and the inter-personal variations for the sample of X i .

Furthermore, according to Lagrange operator, we can rewrite the

discriminative term as: 

ˆ J ( P i ) = −P T i 	E i P i + η
(
P T i 	I i P i − 1 

)
(8)

3.2.2. Relaxed loss term 

The training data for person Re-ID can be organized

as follows. Given the descriptors of probe images X i =
{ x i 0 , x i 1 , . . . , x im 

, . . . , x iM 

} , i = [ 0 , 1 , 2 , 3 ] represents the descriptors

with different body parts. M is the number of probe images. x im 

is associated with two sets of gallery images: a positive set X + 
im 

composed of the descriptors about the same person and a negative

set X −
im 

composed of the descriptors about different persons. To
nforce the relative comparison, we adopt a relaxed loss term

32] : 

 ( P i ) = 

1 

N 

N ∑ 

i =0 

[ 

1 −
∑ 

x ip ∈ x + im 
, x iq ∈ x −im s 

(
x ip , x iq , x im 

)∣∣X 

+ 
im 

∣∣ ·
∣∣X 

−
im 

∣∣
] 

+ 

(9)

here s ( x ip , x iq , x im 

) = ‖ P T 
i 

x iq − P T 
i 

x im 

‖ 2 
F 

− ‖ P T 
i 

x ip − P T 
i 

x im 

‖ 2 
F 

and

 ·] + denotes the hinge loss. N is the number of sample pairs.

iven a probe descriptor, instead of forcing every positive pair

o achieve a higher score than negative pairs, we require the

verage score of positive pairs should be higher than the average

core of the negative pairs at least by a margin 1, representing as

1-…]. The relaxed loss term only consists of N constraints, largely

ccelerating the training in comparison with the non-relaxed one. 

.2.3. Objective function 

According to Eqs. (6) and (9) , the overall model for person Re-

D is given by: 

min 
 i , P i , E i 

n ∑ 

i =0 

(‖ Z i ‖ ∗ + ‖ Z i ‖ 2 F + ‖ E i ‖ 1 + L ( P i ) + 

ˆ J ( P i ) 
)

s.t. P T i X i = P T i D i Z i + E i (10)

. Optimization 

.1. Solution 

To clarify the notation, we first concatenate the multiple feature

escriptors in each sub-region together: 

˜ 
 = 

X 0 0 0 0 0 

0 · · · 0 0 0 

0 0 X i 0 0 

0 0 0 · · · 0 

0 0 0 0 X n −1 

here n = 4. 

And, we define the multiple visual words matrix as follows: 

˜ 
 = 

D 0 0 0 0 0 

0 · · · 0 0 0 

0 0 D i 0 0 

0 0 0 · · · 0 

0 0 0 0 D n −1 

Furthermore, with 

˜ P = [ P 0 , . . . , P i , . . . , P n ] , the similarity func-

ion of Eq. (10) can be reformulated as: 

in 

˜ P , ̃ Z ̃  ,E 
‖ ̃  Z ‖ ∗ + α‖ ̃  Z ‖ 2 F + β‖ ̃  E ‖ 1 + γ L 

(
˜ P 
)

+ λJ 
(

˜ P 
)

s.t. ̃  P T ˜ X = 

˜ P T ˜ D ̃

 Z + 

˜ E (11)
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In the light of the non-convexity of Eq. (11) , we adopt the inex-

ct ALM (IALM) algorithm [20] to solve this optimization problem.

irst, we introduce variables ˜ Z 1 , 
˜ Z 2 and impose two constraints on

˜ 
 to relax the original problem, 

min 

˜ 
 , ̃ Z , ̃  Z 1 ̃  , Z 2 ̃  ,E 

∥∥˜ Z 1 
∥∥

∗ + α
∥∥˜ Z 2 

∥∥2 

F 
+ β‖ ̃  E ‖ 1 + γ L 

(
˜ P 
)

+ λJ 
(

˜ P 
)

s.t. ̃  P T ˜ X = 

˜ P T ˜ D ̃

 Z 

+ 

˜ E , ˜ Z = 

˜ Z 1 = 

˜ Z 2 (12) 

More specifically, the function of Eq. (12) can be written as: 

min 

˜ 
 , ̃ Z , ̃ Z 1 , ̃ Z 2 , ̃ E , L 1 , L 2 , L 3 

∥∥˜ Z 1 
∥∥

∗ + α
∥∥˜ Z 2 

∥∥2 

F 
+ β

∥∥ ˜ E 1 
∥∥ + γ L 

(
˜ P 
)

+ λJ 
(

˜ P 
)

+ 

〈
L 1 , ˜ P T ˜ X − ˜ P T ˜ D ̃

 Z − ˜ E 
〉

+ 

〈
L 2 , ̃  Z − ˜ Z 1 

〉
+ 

〈
L 3 , ̃  Z − ˜ Z 2 

〉
+ 

μ

2 

(∥∥ ˜ P T ˜ X − ˜ P T ˜ D ̃

 Z − ˜ E 
∥∥2 

F 
+ 

∥∥ ˜ Z − ˜ Z 1 
∥∥2 

F 

+ 

∥∥ ˜ Z − ˜ Z 2 
∥∥2 

F 

)
(13) 

here μ> 0 and γ > 0 are penalty parameters. L 1 ∈ R m ×n , L 2 ∈
 

m ×p , L 3 ∈ R m ×n are Lagrange multipliers. The main steps of solv-

ng Eq. (13) are given as follows and all steps have closed-form

olutions. 

Step 1 (Update ̃  P ) : ˜ P can be updated by solving the following

optimization problem, 

min 

˜ P 

μ

2 

∥∥∥ ˜ P T ˜ X − ˜ P T ˜ D ̃

 Z − ˜ E + 

L 1 

μ

∥∥∥2 

F 

+ γ L 
(

˜ P 
)

+ λJ 
(

˜ P 
)

(14) 

Then, we can obtain the closed-form solution of P ∗. 

P ∗ = 

(
μG 1 G 

T 
1 − λ	E + η	I + σ I 

)−1 (
μG 1 G 

T 
2 − γ


(
˜ P 
))

(15) 

where G 1 = 

˜ X − ˜ D ̃

 Z and G 2 = 

˜ E − L 1 
μ . 
( ̃  P ) represent the par-

tial derivatives of P . 

Step 2 (Update ˜ Z ): ˜ Z is updated by solving the optimization

problem, 

min 

˜ Z 

∥∥∥ ˜ P T ˜ X − ˜ P T ˜ D ̃

 Z − ˜ E + 

L 1 

μ

∥∥∥2 

F 

+ 

∥∥∥ ˜ Z − ˜ Z 1 + 

L 2 

μ

∥∥∥2 

F 

+ 

∥∥∥ ˜ Z − ˜ Z 2 + 

L 2 

μ

∥∥∥2 

F 

(16) 

Then, we can obtain the closed-form solution of Z ∗. 

Z ∗ = 

(
μ ˜ D 

T ˜ P ̃  P T ˜ D + 2 μI 
)−1 (

G 4 + G 5 − ˜ D 

T ˜ P G 3 

)
(17) 

where G 3 = 

˜ P T ˜ X − ˜ E + 

L 1 
μ , G 4 = 

˜ Z 1 − L 2 
μ , G 5 = 

˜ Z 2 − L 3 
μ . 

Step 3 (Update ̃  Z 1 ): 
˜ Z 1 is updated by solving optimization prob-

lem, 

min ˜ Z 1 

∥∥˜ Z 1 
∥∥

∗ + 

μ

2 

∥∥∥ ˜ Z − ˜ Z 1 + 

L 2 

μ

∥∥∥2 

F 

(18) 

The closed-form solution of ˜ Z 1 
∗

is 

˜ Z 1 
∗ = θ 1 

μ

(
˜ Z + 

L 2 

μ

)
(19) 

where θλ(A ) = U S λ(	) V T is a singular value threshold-

ing operator with respect to a singular value λ; S λ(	) =
sign (	) max ( 0 , | 	 − λ| ) is the soft-thresholding operator.

A = U	V T defines the singular value decomposition of A . 

Step 4 (Update ˜ Z 2 ): 
˜ Z 2 is updated by solving the optimization

problem, 

min ˜ Z 2 

μ

2 

∥∥∥ ˜ Z − ˜ Z 2 + 

L 3 

μ

∥∥∥2 

F 

(20) 

And its closed-form solution is obtained by, 

˜ Z 2 = 

˜ Z + 

L 3 
(21) 
αμ t  
Step 5 (Update ˜ E ): ˜ E is updated by solving the optimization

problem, 

min 

˜ E 
β‖ ̃

 E ‖ 1 + L 1 , ˜ P T ˜ X − ˜ P T ˜ D ̃

 Z − ˜ E + 

μ

2 

‖ ̃

 P T ˜ X − ˜ P T ˜ D ̃

 Z − ˜ E ‖ 

2 
F 

(22) 

with the shrinkage operator [20] , the above problem has the

following closed-form solution 

E ∗ = shrink 

(
˜ P T ˜ X − ˜ P T ˜ D ̃

 Z + 

L 1 

μ
, 
β

μ

)
(23) 

where shrink ( x, a ) = sgn (x ) max ( | x | − a, 0 ) 

Step 6: Multipliers L 1 , L 2 , L 3 and iteration step-size ρ( ρ > 0)

are updated, ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

L 1 = L 1 + μ
(

˜ P T ˜ X − ˜ P T ˜ D ̃

 Z − ˜ E 
)

L 2 = L 2 + μ
(

˜ Z − ˜ Z 1 
)

L 3 = L 3 + μ
(

˜ Z − ˜ Z 2 
)

μ = min ( ρμ, μmax ) 

(24) 

Finally, the process of solving Eq. (12) is summarized in

Algorithm 1 . 

lgorithm 1 Solving problem of Eq. (25) by IALM. 

Input: ˜ X , ̃ D , α, β , γ , η, λ, σ , ρ , μ, μmax 

Initialization: ˜ Z = ̃

 Z 1 = ̃

 Z 2 , ˜ E = 0 , L 1 = 0 , L 2 = 0 , L 3 = 0 , α = 0 . 07 , β = 0 . 2 , 

γ = 0 . 1 , η = 0 . 06 , λ = 0 . 06 , σ = 0 . 3 , ρ = 1 . 05 , μ = 0 . 4 , μmax = 10 7 

Begin: 

While not converged 

Update ˜ P by solving Eq. (15) . 

Update ˜ Z by solving Eq. (17) . 

Update ˜ Z 1 by solving Eq. (19) . 

Update ˜ Z 2 by solving Eq. (21) . 

Update ˜ E by solving Eq. (23) . 

Update the multipliers and parameters by solving Eq. (24) . 

Given others fixed. 

Check the convergence condition: 

‖ ̃ P T ˜ X − ˜ P T ˜ D ̃ Z − ˜ E ‖ ∞ < ε, ‖ ̃ P T ˜ P − I p ‖ ∞ < ε, 

‖ ̃ Z − ˜ Z 1 ‖ ∞ < ε, ‖ ̃ Z − ˜ Z 2 ‖ ∞ < ε

End while 

Output: ̃ Z , ˜ P , ˜ E 

.2. Multi-level descriptor 

With the optimal solution of Eq. (12) , we can compute the

ransfer matrix P , and then obtain the transfer subspace features

y P T X . Thus, we can obtain the mid-level descriptor of the con-

truction matrix of Z as follows: 

min 

˜ 
 , ̃ Z 1 , ̃ Z 2 

∥∥˜ Z 1 
∥∥

∗ + α
∥∥˜ Z 2 

∥∥2 

F 
+ β

∥∥ ˜ E 
∥∥

1 
+ 

〈
L 1 , ̃  P T ˜ X − ˜ P T ˜ D ̃

 Z − ˜ E 
〉

+ 

〈
L 2 , ̃  Z − ˜ Z 1 

〉
+ 

〈
L 3 , ̃  Z − ˜ Z 2 

〉
+ 

μ

2 

(∥∥ ˜ P T ˜ X − ˜ P T ˜ D ̃

 Z − ˜ E 
∥∥2 

F 
+ 

∥∥ ˜ Z − ˜ Z 1 
∥∥2 

F 
+ 

∥∥ ˜ Z − ˜ Z 2 
∥∥2 

F 

)
(25) 

The above problem can also be solved using the IALM algo-

ithm, as given in Algorithm 2 . 

.3. Metric learning 

In our approach, we first get the low-level feature of local

aximal occurrence feature (LOMO) [6] and hierarchical Gaus-

ian descriptor (GOG) [10] . Then, we obtain the mid-level fea-

ures via the aforementioned method, defined respectively as
˜ 
 LOMO and 

˜ Z GOG , which all include seven reconstruction coef- 

cient matrices. Furthermore, we combine the low-level fea-

ures ( F ∈ R d LOMO ×n , F ∈ R d GOG ×n ) and the mid-level features
LOMO GOG 
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Algorithm 2 Solving problem of Eq. (12) by IALM. 

Input: ˜ X , ̃  D , ̃  P , α, β, γ , η, σ, μ, μmax 

Initialization: ˜ Z = ̃

 Z 1 = ̃

 Z 2 , ˜ E = 0 , L 1 = 0 , L 2 = 0 , L 3 = 0 , α = 0 . 07 , β = 0 . 2 , 

γ = 0 . 1 , η = 0 . 06 , λ = 0 . 06 , σ = 0 . 3 , ρ = 1 . 05 , μ = 0 . 4 , μmax = 10 7 

Begin: 

While not converged 

Update ˜ Z by solving Eq. (17) . 

Update ˜ Z 1 by solving Eq. (19) . 

Update ˜ Z 2 by solving Eq. (21) . 

Update ˜ E by solving Eq. (23) . 

Update the multipliers and parameters by solving Eq. (24) . 

Given others fixed. 

Check the convergence condition: 

‖ ̃ P T ˜ X − ˜ P T ˜ D ̃ Z − ˜ E ‖ ∞ < ε, 

‖ ̃ Z − ˜ Z 1 ‖ ∞ < ε, ‖ ̃ Z − ˜ Z 2 ‖ ∞ < ε

End while 

Output: ̃ Z , ˜ E 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

The recognition results of our model and other the state-of-the-art meth- 

ods on VIPeR dataset at rank-1, 5, 10, 20. 

Method R ank = 1 Rank = 5 Rank = 10 Rank = 20 

Ours 56.32 83.03 90.01 95.76 

CRAFT + XQDA [3] 47.82 77.53 87.78 94.84 

GOG + XQDA [10] 49.68 79.71 88.67 94.52 

LSSL [21] 47.86 78.03 87.63 94.05 

LOMO + MLAPG [7] 39.46 70.04 82.41 92.84 

LOMO + XQDA [6] 40.00 68.13 80.51 91.08 

KCCA + XQDA [35] 33.53 62.31 74.43 85.25 

FFN4096 + XQDA [34] 28.86 55.35 68.13 81.14 

ELF16 + XQDA [33] 23.64 47.78 62.5 75.60 

ResNet + XQDA [36] 22.66 52.97 67.78 83.70 

kLFDA [19] 22.17 47.23 60.27 76.01 

MFA [19] 20.46 48.97 63.35 76.08 

KISSME [1] 22.53 49.57 64.11 78.15 

SVMML [12] 25.41 54.75 70.28 83.50 

LFDA [11] 18.34 44.64 57.25 72.96 
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( ̃  Z LOMO ∈ R m ×n , ̃  Z GOG ∈ R m ×n ) to formulate our descriptor. Note that,

in order to reduce the dimension of our descriptor, we define the

new low-level features as ˜ F LOMO ∈ R n ×n and 

˜ F GOG ∈ R n ×n by PCA .

Therefore, the final dimension of our descriptor is ( 2 n + 2 × 4 m ).

Finally, we apply the metric learning method of XQDA [6] to mea-

sure the similarity for person Re-ID. 

4.4. Complexity analysis 

For complexity analysis, we can consider two aspects: time

complexity and spatial complexity. In our approach, we utilize

IALM algorithm to obtain the optimal solution and most of the

time computational effort is concentrated on solving inverse ma-

trices, especially when the dimension of sample feature increases.

Besides, the spatial complexity is also related to the dimension of

sample feature and the number of samples. In addition, our ap-

proach concatenates the multiple feature descriptors in each sub-

region and it leads to an increase in the complexity of the algo-

rithm. This is also a disadvantage of our algorithm and our future

work will try to solve this problem. 

5. Experiments 

5.1. Experimental setting 

5.1.1. Datasets 

We consider three datasets to train and evaluate the proposed

method: VIPeR [4] , CUHK01 [23] and PRID450S [10] . VIPeR is one

of the most challenging dataset for person Re-ID, due to that the

images of the 632 people are taken in different poses, from differ-

ent viewpoints. CUHK-01 dataset was captured from two camera

views, with higher resolution, containing 971 persons, and each

person has two images in each view. PRID450S contains 450 im-

age pairs recorded from two different static surveillance cameras.

All images are scaled to 128 × 48 pixels. 

5.1.2. Evaluation 

For these datasets, we randomly divide all of the images into

two equal-size subsets for training and testing, respectively. To

quantitatively evaluate the experimental results, the widely used

cumulative match curve (CMC) metric is adopted in our experi-

ments. For each query image, we first compute the distance be-

tween the query image and each image in the gallery set, then

return the top n gallery images with the smallest distance. If the

returned list contains at least one image belonging to the same

person as the query image, this query is considered as success of

top n . Top 1, 5, 10 and 20 are used in our experiments. The exper-
ments are repeated 10 times, and the average rate is used as the

valuation result. 

.1.3. Parameters 

In our model, the parameters include mainly α, β , γ , η, λ, σ ,

and ρ . We obtain the optimal parameters through a method of

djusting one parameter while fixing other parameters. Note that,

 large value for μ is adopted for the sake of fast convergence. 

.2. Comparison on the VIPeR dataset 

We evaluated our proposed method against 14 existing meth-

ds on VIPeR dataset and randomly choose 316 pairs of images

or training and leave the rest for testing. These methods consider

ow-level descriptor, such as LOMO, GOG, CRAFT or deep features,

uch as ResNet [36] , and learn the metric function, such as XQDA,

SSL, kLFDA and so on. For our proposed method, we try to learn

he mid-level features and utilize the metric function of XQDA for

e-ID. 

.2.1. Comparison to the state-of-the-art methods 

We utilize the K-means method to obtain 4 × 100 multi-view

isual words ( MvVW ) including 3 groups of local and 1 group of

lobal features. Table 2 clearly shows the clear performance supe-

iority of our proposed method over the competing methods. The

esults of CMC curves are shown in Fig. 3 . 

It can be seen that our proposed method is obviously bet-

er than other state-of-the-art methods. Specifically, our proposed

ethod, achieving a rate of 56.32%, outperforms the 2nd best

odel (i.e. GOG + XQDA) by 6.64% at rank = 1. Furthermore, our pro-

osed method also outperforms other methods at rank > 1 from

ig. 3 . From these results, we can see that the consideration of

he multi-view information and applying the discriminative trans-

er learning to a common subspace with consistent contributions

re necessity for person Re-ID. It further proves our model, captur-

ng the mid-level features, can effectively improve the performance

f person Re-ID. 

.2.2. Comparison with the metric learning methods 

We evaluate the proposed method with different metric learn-

ng methods, including L1-Norm distance, kLFDA and XQDA. The

esults of CMC curves are shown in Fig. 4 and Table 3 . It can be

een that the proposed method with XQDA is better than the other

etric learning algorithms, with a gain of 23.49%, in comparison

ith kLFDA. This indicates that our model with XQDA performs fa-

orably in learning a discriminative transfer subspace as well as an

ffective metric. 
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Fig. 3. The CMC curves and rank-1 matching rates on the VIPeR dataset. 

Fig. 4. The CMC curves and rank-1 matching rates by different metric learning 

methods on the VIPeR dataset. 

Table 3 

The recognition results of our model with different metric methods on 

the VIPeR dataset at rank-1, 10, 20. 

Method R ank = 1 Rank = 10 Rank = 20 

Ours + XQDA 56.32 90.01 95.76 

Ours + kLFDA 22.53 49.57 76.50 

Ours + L1-Norm 9.18 24.68 60.75 

5

 

v  

a  

w  

m  

f  

o  

Fig. 5. The CMC curves and rank-1 matching rates on the VIPeR dataset with 

m = 50, 100, 150, 200 and all. 

Table 4 

The results of comparison with different numbers of multi-view visual 

words ( m = 50, 100, 150, 200, All). 

Method R ank = 1 Rank = 10 Rank = 20 

Ours(50- MvVW ) 48.59 78.47 90 

Ours(100- MvVW ) 56.32 83.03 90.5 

Ours(150- MvVW ) 57.05 81.56 89 

Ours(200- MvVW ) 56.6 80.04 88.56 

Ours(All- MvVW ) 49.69 71.56 78.48 
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.2.3. Effect of the number of multi-view visual words 

We compare the performances with different numbers of multi-

iew visual words ( MvVW ) obtained by K-means, and the results

re shown in Fig. 5 and Table 4 . It is obvious that our method

ith the number of (100, 150 and 200) can do better than other

odels. It can also be observed that our proposed method per-

orms consistently the best with all of MvVW . Especially, we can

btain the best result of 57.05% at rank-1 with m = 150, which is
.27%, higher than the visual words without K-means (All- MvVW ).

he result indicates that the original visual words have more re-

undant information and the MvVW , fusing multiview information

ith K-means, can achieve a better recognition rate. Nonetheless,

e should also ensure that the available information is sufficient,

o we set m = 100 on VIPeR dataset. 

.2.4. Contribution of each region 

It is interesting to investigate which region is more effective

n our proposed method. At the testing stage, we only use the

imilarities measurement for a single region and set the similar-

ty scores of other regions to be 0. The CMC curves in Fig. 6 show

hat the similarity measurement of the whole region evidently out-

erforms any individual local region. For local similarity measure-

ents, the ones for upper body are more effective than those for

ower body. In particular, the measurement of Region2 including

he torso achieves better performances with the low rank value. 

.2.5. Effect of parameter selection 

In this experiment, we compare the performances with differ-

nt parameters and describe the method of parameters selection.

n our model, the parameters include mainly α, β , γ , η, λ, σ , μ
nd ρ . We provide the results of our model with different param-

ters at rank-1 in Fig. 7 where the scale of horizontal ordinate

s 10 −2 , 10 −1 , 10 −1 , 10 −2 , 10 −2 , 10 −1 , 10 −1 , 10 −0 . As we can see

n this figure, our proposed model is insensitive to the setting on

hese parameters, performing the best with a small change for per-

on Re-ID. In our model, we obtain the optimal parameters through

 method of adjusting one parameter while fixing other parame-

ers, and set the values of α, β , γ , η, λ, σ , μ and ρ as 0.07, 0.2,
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Fig. 6. The CMC curves and rank-1 matching rates on the VIPeR dataset with dif- 

ferent regions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

The recognition results of our model and other the state-of-the-art meth- 

ods on CUHK01 dataset at Rank-1, 5, 10, 20. 

Method R ank = 1 Rank = 5 Rank = 10 Rank = 20 

Ours 68.44 86.24 93.65 96.8 

GOG + XQDA [10] 65.33 84.13 90.25 94.61 

LOMO + MLAPG [7] 64.74 86.60 91.55 95.40 

LOMO + XQDA [6] 63.02 83.33 90.47 94.56 

FFN4096 + XQDA [19] 39.69 60.05 68.43 75.79 

kLFDA [19] 35.91 52.71 61.05 69.77 

MFA [19] 35.44 55.10 64.11 72.09 

KISSME [1] 30.20 47.66 57.54 68.16 

SVMML [12] 31.07 56.04 67.27 78.30 

LFDA [11] 34.86 50.91 59.91 68.03 

Table 6 

The recognition results of our model and other the state-of- 

the-art methods on PRID450S dataset at Rank-1, 10. 

Method R ank = 1 Rank = 10 

Ours 72.15 94.62 

GOG + XQDA [10] 67.9 94.4 

LOMO + XQDA [6] 52.3 84.6 

SCNCD [22] 41.6 79.4 

Semantic [15] 43.1 78.2 
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7  

t  

1  

a

0.1, 0.0 6, 0.0 6, 0.3, 0.4 and 1.05 when m = 100. Note that, if we

need fast convergence speed, we can set a larger value for μ. 

5.3. Experiments on the CUHK01 dataset 

The CUHK-01 dataset was captured from two camera views,

with higher resolution, containing 971 persons, and each person

has two images in each view. We randomly choose 486 pairs of

images for training and leave the rest for testing. And we utilize

the K-means method to obtain 4 × 200 MvVW . The rank-1, rank-5,

rank-10 and the rank-20 matching rates are described in Table 5

and the CMC curves are drawn in Fig. 8 . As we can see in the

Table 5 and Fig. 8 , our method outperforms the competing meth-

ods, achieving the best rank-1 matching rate of 68.44% with a gain

of 3.11%, in comparison with the best result of 65.33% obtained

by GOG + XQDA. Similar to the experimental results on the VIPeR

dataset, the experimental results on the CUHK01 dataset also show
(1) 

(5) 

(2) 

(6) 

Fig. 7. The CMC curves and rank-1 matching rates with different parameters
hat our method can achieve a better performance on small sample

ize dataset, which further verifies the robustness of our method. 

.4. Experiments on the PRID450S dataset 

The PRID450S dataset contains 450 image pairs recorded from

wo different static surveillance cameras. In this experiment, we

andomly choose 250 pairs of images for training and leave the

est for testing. And we utilize the K-means method to obtain

 × 100 MvVW . The rank-1, rank-10 matching rates are reported in

able 6 . As we can see in this table, our proposed method achieves

2.15% rank-1 matching rate and 94.62% rank-10 matching rate on

he PRID450S dataset, which improves the state-of-the-art rank-

,10 matching rates by 4.15% and 0.22%, respectively. The results

lso verify the robustness and effectiveness of our method. 
(3) 

(7) 

(4) 

(8) 

 on the VIPeR dataset. (1) α (2) β (3) γ (4) λ (5) η (6) σ (7) μ (8) ρ . 
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Fig. 8. The CMC curves with different metric learning methods on the CUHK01 

dataset. 
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. Conclusion 

In this paper, we have proposed a novel similarity learning

odel that formulating the person Re-ID problem as a consistent

terative multi-view joint transfer learning optimal problem, and

hen solved this optimal problem using IALM algorithm. By adding

he transfer, low-rank, and sparse representation constraints, the

ap between multi-view images was greatly eliminated and the

mall sample size problem was effectively alleviated. The ex-

erimental results on three challenging person Re-ID benchmark

atasets prove that our proposed model achieves state-of-the-art

erformance and is robust against inconsistent data distributions

n terms of viewpoint changes and illumination variations. How-

ver, as a major difficulty in person re-identification, the problem

f imbalance between positive and negative samples still affect the

erformance of our method. Besides, for large datasets or more dif-

cult scenes, the features may not be robust. In future, we will

tudy alternative schemes for choosing the proper samples to train

he model, and combine with deep learning methods. In addition,

e will try to solve the computational complexity problem caused

y the dimension of features and blocking strategy. 
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