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The inconsistency of data distributions among multiple views is one of the most crucial issues which
hinder the accuracy of person re-identification. To solve the problem, this paper presents a novel similar-
ity learning model by combining the optimization of feature representation via multi-view visual words
reconstruction and the optimization of metric learning via joint discriminative transfer learning. The
starting point of the proposed model is to capture multiple groups of multi-view visual words (MvVW)
through an unsupervised clustering method (i.e. K-means) from human parts (e.g. head, torso, legs). Then,
we construct a joint feature matrix by combining multi-group feature matrices with different body parts.
To solve the inconsistent distributions under different views, we propose a method of joint transfer con-
straint to learn the similarity function by combining multiple common subspaces, each in charge of a
sub-region. In the common subspaces, the original samples can be reconstructed based on MvVW under
low-rank and sparse representation constraints, which can enhance the structure robustness and noise
resistance. During the process of objective function optimization, based on confinement fusion of multi-
view and multiple sub-regions, a solution strategy is proposed to solve the objective function using joint
matrix transform. Taking all of these into account, the issue of person re-identification under inconsistent
data distributions can be transformed into a consistent iterative convex optimization problem, and solved
via the inexact augmented Lagrange multiplier (JALM) algorithm. Extensive experiments are conducted on
three challenging person re-identification datasets (i.e., VIPeR, CUHKO1 and PRID450S), which shows that
our model outperforms several state-of-the-art methods.
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1. Introduction of Re-ID, a wide variety of fusion methods have been designed

[41], such as deep context-aware features [26], CRAFT [3], joint

The central theme of person re-identification (Re-ID) is to
match two pedestrian images undergoing significant human ap-
pearance changes in viewpoint, illumination and pose across cam-
era views (see Fig. 1). To address this challenge, many algorithms
have been proposed, and the researches can be divided into two
major directions.

One of the research directions is to develop robust feature
descriptor for representing human appearance [10,44]. Currently,
most appearance-based Re-ID methods use low-level visual fea-
tures as feature representations of pedestrian images such as color
features [16] and texture features [9]. To improve the performance
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global and local feature learning [30], hierarchical Gaussian de-
scriptor [10], local maximal occurrence representation [6], cross-
modality feature [27] and salience matching [23]. Besides, deep
learning is also a noteworthy category of methods which has ex-
hibited promising performance in learning feature representation
[17]. However, it remains very challenging to design a feature rep-
resentation that is discriminative, reliable and invariant to severe
changes and misalignment across disjoint views.

Another research direction, e.g., metric learning [28,37], tries to
learn a similarity function or a robust distance metric to optimize
the matching score. Typical metric learning methods include Local
Fisher Discriminant Analysis (LFDA) [11], kernel-based method
[19], Cross-view Quadratic Discriminant Analysis (XQDA) [6],
supervised smoothed manifold [25], domain adaptation [39], ref-
erence constraints [40], ranking [2] and deep metric learning [14].
Although these metric learning based methods outperform most
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Fig. 1. Examples of person re-identification datasets.

Re-ID approaches, they are nevertheless limited by some classical
problems, such as the inconsistent distributions between multiple
views and the small sample size (SSS) issue for model learning.

To address these problems, we propose a novel similarity learn-
ing approach under joint transfer constraints, in which four groups
of multi-view visual words (MvVW) can be captured, including
three groups of local features and one group of global features
via an unsupervised clustering method (K-means), to effectively
describe the structure of human body. Also, the MvVW has the
ability to integrate multi-view information. Based on the MvVW
representation, we learn to reconstruct the original samples with
the assistance of transformation matrix, reconstruction coefficient
matrix and noise matrix. Note that for the sake of ensuring con-
sistent distributions of sample data, we utilize transfer learning
[13] to obtain a common subspace, denoted as the transformation
matrix. Meanwhile, we impose joint low-rank and sparse con-
straints on the reconstruction coefficient matrix and noise matrix
in order that more relevant samples from different domains are
interlaced, in comparison to irrelevant samples in these domains
[8]. Furthermore, we apply discriminative analysis to transfer ma-
trix and obtain discriminative low-level transfer features, and then
utilize the learned transfer matrix to compute the reconstruction
coefficient matrix which is defined as the mid-level features in
our model. To get the consistent optimal solutions, we combine
the discriminative analysis with the mid-level features and trans-
fer learning, and then produce the solutions via the proposed
method of similarity learning function which can maintain the
consistency of representation and metric learning [5]. In addition,
by employing light weighting method, max and min operator, we
can expand the samples to suppress the adverse effect of the SSS
problem on Re-ID. Compared to deep learning based methods, the
training process of our method does not require a large number of
samples, thus our method can better cope with the SSS problem.
When the number of samples is sufficient, the features extracted
by our method may not be robust enough compared to deep
features, but when the number of samples is small, the perfor-
mance of our method is much higher than the ones using deep
features.

Finally, we describe the motivation and contribution of this pa-
per as follows:

1.1. Motivation

Although considerable progress has been made in person Re-ID,
there remains some limitations for most existing methods:

(1) Most approaches assume that the data distributions under
multi-camera views are consistent. However, this assump-
tion is one-sided because important attributes of each cam-
era view are different in practice. In our approach, we ap-
ply transfer-learning method to seek a common subspace for
different camera views, and obtain the mid-level features for
similarity metric;

(2) Traditional descriptors are mainly based on low-level fea-
tures. However, mid-level features are also helpful for per-
son Re-ID. In our approach, we combine transfer learning,
discriminant analysis and sparse constraint to learn mid-
level features, and then consider multi-level feature for sim-
ilarity metric;

(3) Most metric learning methods suffer from the SSS problem
and it is difficult to obtain an optimal solution. To address
the problems above, we propose a novel similarity learning
method under joint transfer constraints for multi-view and
multi-region person Re-ID. In particular, it should be noted
that the relaxed loss term considering sample pairs instead
of single sample can alleviate the SSS issue.

1.2. Contribution

The main contributions of our work are summarized as follows:

(1) We propose a novel similarity learning method by consider-
ing joint transfer constraints which can learn a discrimina-
tive subspace with consistent data distributions and perform
better than the competing methods for multi-view person
Re-ID;

(2) The mid-level features are introduced by defining the recon-
struction matrix, solved via the inexact augmented Lagrange
multiplier (IALM) algorithm, and then integrated with low-
level features and discriminative transfer features to de-
scribe the appearance of pedestrian images;

(3) In order to fuse the local and global features, we design a
joint transfer constraint to solve the optimal function. For
this optimization problem, a new solution strategy is pre-
sented by using joint matrix transform. Furthermore, the
proposed method is shown to be effective and efficient
through person Re-ID experiments on three public datasets.

2. Related work

In complicated real-world tasks, the data taken from different
domains have different feature spaces and different types of data
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Table 1
Notations.
Notation Description
Xim feature matrix
X the joint feature matrix
P; transfer matrix for different with different regions
P the joint transfer matrix
D; the multi-view word matrices with different regions
D the joint multi-view word matrix
Z; the reconstruction coefficient matrices with different regions
VA the joint reconstruction coefficient matrix
E; the noise matrices with different regions
E the joint noise matrix
o, B,Y,0, 0,4, 0  model parameters

distributions [13]. To address the problem of inconsistent distribu-
tions, numerous approaches based on transfer learning have been
proposed and applied for various visual tasks [20,42,43].

2.1. Transfer learning for person Re-ID

For person Re-ID, one of the essential requirements is to build a
robust matching model which can always work well from one type
of scene to another under the challenges of camera viewing angle
differences, pose variation, occlusion change, etc. [18]. Accordingly,
the transfer learning methods have been exploited to address the
challenges of cross-scenario transfer. In [1], Tamar et al. proposed
the approach of Implicit Camera Transfer (ICT) to model the bi-
nary relation by training a (non-linear) binary classifier with con-
catenations of vector pairs captured from different camera views.
Similarly, considering the consistency of cross view, Wang et al.
[18] combined the learning of the shared latent subspace and the
learning of the corresponding task specific subspace to get the sim-
ilarity measurement for each task in cross-scenario transfer person
Re-ID. Furthermore, Zheng et al. [24] formulated a transfer local
relative distance comparison (t-LRDC) model to address the open
world person Re-ID problem. In addition, Shi et al. [15] suggested
a framework to learn a semantic attribute model from the existing
fashion datasets, and adapted the resulting model to facilitate per-
son Re-ID. Different from the above-mentioned methods, Lv et al.
[31] considered unsupervised cross-dataset and utilize Bayes analy-
sis for fusing spatial-temporal patterns for person Re-ID under dif-
ferent domains. Wang et al. [29] also investigated the problem of
unsupervised person Re-ID by learning transferable joint attribute-
identity feature.

2.2. Transfer subspace learning

In preliminary works [38], we assume that the original samples
can be linearly represented by transfer learning in a common sub-
space. According to Shao et al. [13], we can reconstruct the two
domain samples (X, Y) using the coefficient matrix Z and transfer
learning (ensuring the consistency of distributions), as follows:

PTX =PTYZ (1)

where P denotes the transfer matrix, which can be used to obtain
a common subspace and can minimize the divergence between the
distributions of both domains. However, due to the fact that n sam-
ples belong to c different classes and n>>c, these samples should
be drawn from c different subspace.

Therefore, the coefficient matrix Z is expected to be of low rank
[20], and the F-norm constraint can be further incorporated to pre-
serve the local structure of data such that each source sample can
be well reconstructed from a few samples. Thus the transfer ma-
trix and coefficient matrix are obtained by solving the following

optimization problem,

n‘}izn rank(Z) + || Z||3,s.t. PTX =PTYZ (2)

where || - ||r is the Frobenius norm, rank(-) is a nonconvex function,
and « is the penalty parameter. In order to alleviate the effect of
noise, we introduce the matrix E with sparse constraint to model
noise, resulting in the following model,

min rank(Z) + a||Z||2 + BIE|l1,s.t. PPX=P'YZ+E (3)

We adopt the nuclear norm to relax the rank function [20], and
the modified model can be written as

min [|Z].. + al|Z||F + BIIE|l1.s.t. P'X =P'YZ+E (4)
where ||Z||+ is the nuclear norm of matrix Z.

3. Our approach

In this section, we first revisit the polynomial feature map.
Based upon the map, we present a novel framework of transfer
learning for multiple features by a constrained similarity func-
tion, and formulate the learning problem specifically designed for
person Re-ID. The abbreviations of main variables and parameters
used in this paper are summarized in Table 1.

3.1. Multi-view visual words by K-means

To capture structure information and multi-view information,
we propose a descriptor called multi-view Visual words (MvVW)
using an unsupervised clustering method of K-means. Firstly, we
divide a pedestrian image (x;) into five horizontal stripes, along the
vertical direction of human body consistently. Next, we define each
low-level feature histogram as a visual word, and then capture
three groups of local visual words from three horizontal stripes %
2,2 and one group of global visual words from the whole per-
son images, as shown in Fig. 2. And these three local areas usually
include the head, torso and legs of the human body structure. Fur-
thermore, we employ k-means to fuse the multi-view information
and obtain seven groups of MvVW. Note that, a light weighting
method, as well as the max and min operators, is employed to ex-
pand the sample data for reducing the effect of the SSS problem.

In the following, we define MUWW = {D;}, i< {l0, I1, 12, g},
where {D;} represents the i th group of MvWW, {Dy, D;, D,} are
the local multi-view visual words obtained from five horizontal
stripes of pedestrian images and Ds is the global multi-view vi-
sual word obtained from the whole pedestrian images. Then, we
use each group of MvVW to reconstruct the corresponding region
of multi-view person sample data X. It is worth noting that the
head of a human body is most probably represented by the other
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Fig. 2. The framework of our proposed method: 1) Capture the global feature X;, local feature X, X1, X, from different regions and obtain the multi-view visual words
Dg, Dio, Diy, Dyy. 2) Joint the multi-group features capturing from three local regions and one global region, and learn the joint transfer subspace with consistent distribution
constraints. Then combine sparse and low-rank constraints (shown in Eq. (10)) in the joint transfer subspace and solve this optimal function with a new approach described
in section IV. 3) Considering the advantages of multi-level features, we combine low-level and mid-level features and utilize the metric method of XQDA to obtain the final

rank results for person Re-ID.

heads with similar structures. We can therefore formulate the re-
construction problem as:

min (|||, + al|Z||2 + BlE|l1,s.t. PTX =P'DZ+E (5)

where Z is the reconstruction coefficient matrix and can be cap-
tured from the low-level features, denoted as the mid-level fea-
tures for person Re-ID. Considering two different domains of D and
X, they have different data distributions. To address this problem,
we will utilize transfer learning to seek a subspace with consistent
data distribution.

3.2. Multiple transfer features function

In our proposed method, we consider three kinds of local fea-
tures and one kind of global features, and different features have
inconsistent distributions. Thus, to combine multiple descriptors,
we reformulate the optimal function based on Eq. (5) as:

n
min > (IZill + 1ZilI7 + IEill1). s.t. P{X; =P[D;Zi +E;  (6)
i=0

where X; represents the set of the i th feature and n is the number
of the group of features.

3.2.1. Discriminant term
We combine the discriminant analysis for the transfer matrix of
P and define the discriminant term as:

min (-P] £P) st.PTEP =1 (7)

where ¥ and X, are the covariance matrices of the intrapersonal
variations and the inter-personal variations for the sample of X;.
Furthermore, according to Lagrange operator, we can rewrite the
discriminative term as:

J(R) = -P'ZgP +n(PTZ,P - 1) (8)

3.2.2. Relaxed loss term

The training data for person Re-ID can be organized
as follows. Given the descriptors of probe images X;=
{Xi0, Xi1>---»Xim»---» Xim}, i =1[0,1,2,3] represents the descriptors
with different body parts. M is the number of probe images. x;;
is associated with two sets of gallery images: a positive set X!
composed of the descriptors about the same person and a negative
set X;, composed of the descriptors about different persons. To

enforce the relative comparison, we adopt a relaxed loss term
[32]:

1 N
=5y |1-
i=0

Where  s(Xjp, Xig, Xim) = ”P,'Txiq - P,'Txim”)Z: - ”P,'Txip - PiTxim”;Z: and
[-]+ denotes the hinge loss. N is the number of sample pairs.
Given a probe descriptor, instead of forcing every positive pair
to achieve a higher score than negative pairs, we require the
average score of positive pairs should be higher than the average
score of the negative pairs at least by a margin 1, representing as
[1-...]. The relaxed loss term only consists of N constraints, largely
accelerating the training in comparison with the non-relaxed one.

inpexi‘;n, Xiq€Xi, S(Xip, Xigs xim)
|X£1| ' |X'

1m|

(9)

+

3.2.3. Objective function
According to Egs. (6) and (9), the overall model for person Re-
ID is given by:

n

min 3" (IZill. + 1Zil1F + 1Eills + L(P) +J(P)) st. PTX; = PTDizi + £ (10)

i=0
4. Optimization
4.1. Solution

To clarify the notation, we first concatenate the multiple feature
descriptors in each sub-region together:

X 0 0 O 0

o --- 0 O 0
X=0 0 X, 0 0

0 o o0 - 0

0 0 0 0 X;1
where n=4.

And, we define the multiple visual words matrix as follows:

Db, 0 O O 0

o .. 0 O 0
b=0 o0 D 0 0

0 o o ... 0

0 0 0O O Dy,

Furthermore, with P={[Ry,..., P, ..., P,], the similarity func-
tion of Eq. (10) can be reformulated as:

min 2]+ allZI? + BIEN: +yL(P) + (P) seF'X = P'BZ+E (1)
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In the light of the non-convexity of Eq. (11), we adopt the inex-
act ALM (IALM) algorithm [20] to solve this optimization problem.
First, we introduce variables Z;, Z, and impose two constraints on
Z to relax the original problem,

min HZ1 H + a”Zz ”F + BIEll + yL(P) + AJ(P) s.t.P"X = P'DZ

P2 E
+E, Z=Z1=ZZ (12)
More specifically, the function of Eq. (12) can be written as:
el B+ Bl ] 41
+ WJ(P) + (€1, PTR — PTDZ — E)
+ (52,Z—Z~1)+(E3,Z—Z~2)

min 121

P.2,21,2,,E .L1,L5,L3

+ g(”ﬁfx Dz -E|P+|2-Z)°

+ |2-2];) (13)

where ;>0 and y >0 are penalty parameters. £ € R™" [, €
R™*P L3 € R™" are Lagrange multipliers. The main steps of solv-
ing Eq. (13) are given as follows and all steps have closed-form
solutions.

Step 1 (UpdateP): P can be updated by solving the following
optimization problem,

in &
Il"lISlIl2

J U A R - -

PTx—PTDZ—E+—1H +yL(P) + AJ(P (14)
| )+ ()

Then, we can obtain the closed-form solution of P*.

P*:(Mclc{—AEE+nE,+01)’1(Mclc§—ycb(ﬁ)) (15)

where G; =X — DZ and G, = E — £L. ®(P) represent the par-
tial derivatives of P.
Step 2 (Update Z): Z is updated by solving the optimization

problem,
2
mln ”PTX Fpz_F4+ Xl Hz sl
122 Hollp
= & L]
+ ‘ -7+ —= (16)
2 wollg
Then, we can obtain the closed-form solution of Z*.
z* = (uD"PB'D + 2ul) ' (Gy + Gs — D'PGs) (17)

where G3=ﬁTX7E+%, G4=ZN1 7%, Gs = sz%
Step 3 (Update Z ): Z~1 is updated by solving optimization prob-
lem,

Ly

n}lin“Z]”*—k Hz Z“Lu (18)

The closed-form solution of 21
5 L
—6, (z + i) (19)
B 122

where 0, (A) =US, (2)VT is a singular value threshold-
ing operator with respect to a singular value A; S, (X) =
sign(X)max(0, |X — A|) is the soft-thresholding operator.
A =UXVT defines the singular value decomposition of A.
Step 4 (Update Z~2): Z~2 is updated by solving the optimization

problem,
- 2
mjnﬁHZ—z ] (20)
Z 2 F
And its closed-form solution is obtained by,
Zy=7+ £s (21)

ap

Step 5 (Update E): E is updated by solving the optimization
problem,
min B||E|l; + £1. BT — PDZ — E + %HﬁTX—ﬁTDZ—Eug
E
(22)

with the shrinkage operator [20], the above problem has the
following closed-form solution

E* _ shrink (ﬁfx b7+ % ﬁ) (23)

where shrink(x, a) = sgn(x)max(|x| — a, 0)
Step 6: Multipliers £, £, £3 and iteration step-size p(p >0)
are updated,

L1 =L+ p(PTX - P'DZ - E)
Ly=Ly+pu(Z-2))
L3=L3+n(Z-2)
p=min(pi, Umax)

Finally, the process of solving Eq. (12
Algorithm 1.

(24)

) is summarized in

Algorithm 1 Solving problem of Eq. (25) by IALM.

Input: X,D.at, B, ¥, 1, A, 0, 0, Iy Mmax

Initialization: Z = 21 —Zz E=0,£,=0,£,=0,£3=0a=007 =02,
y =0.1, 7=0.06, A =006, ¢ =03, p=1.05 =04, fma =107

Begin:

While not converged

Update P by solving Eq. (15).

Update Z by solving Eq. (17).

Update Z; by solving Eq. (19).

Update Z,by solving Eq. (21).

Update E by solving Eq. (23).

Update the multipliers and parameters by solving Eq. (24).

Given others fixed.

Check the convergence condition:

P'X —P'DZ ~Elle < & |P"P Il <&,
P
I1Z-Zillx <€ 1Z2-Z)lw <€

End while
Output:Z, P, E

4.2. Multi-level descriptor

With the optimal solution of Eq. (12), we can compute the
transfer matrix P, and then obtain the transfer subspace features
by PTX. Thus, we can obtain the mid-level descriptor of the con-
struction matrix of Z as follows:

min [Z1], + |Z|: + BE|, +(c1. F'X - B'DZ - E)

+(L2.2-21) +(£3.2 - 2)
(IR -roz-g|}+ |22+ |2-Z]2) @5)

The above problem can also be solved using the IALM algo-
rithm, as given in Algorithm 2.

4.3. Metric learning

In our approach, we first get the low-level feature of local
maximal occurrence feature (LOMO) [6] and hierarchical Gaus-
sian descriptor (GOG) [10]. Then, we obtain the mid-level fea-
tures via the aforementioned method, defined respectively as
Ziomo and Zgoe, which all include seven reconstruction coef-
ficient matrices. Furthermore, we combine the low-level fea-
tures (Fomo € RdtoMoxn F-»~ e Rdcoc*") and the mid-level features
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Algorithm 2 Solving problem of Eq. (12) by IALM.

Input: X, D, B, o, B, .1, 0, it [hmax
Initialization: Z=7; =25, E=0, £, =0, £, =0, £3=0, &« =0.07, f=0.2,

y =0.1, n=0.06, A =0.06, 0 =03, p=1.05 =04, tme =107
Begin:
While not converged
Update Z by solving Eq. (17).
Update Z; by solving Eq. (19).
Update Z, by solving Eq. (21).
Update E by solving Eq. (23).
Update the multipliers and parameters by solving Eq. (24).
Given others fixed.
Check the convergence condition:

IPTR — PTDZ — Ells < 6.
1Z-Zillw <& 1Z-22ll <€

End while
Output:Z, E

(Ziomo € R™M, Zcoe € R™*M) to formulate our descriptor. Note that,
in order to reduce the dimension of our descriptor, we define the
new low-level features as Fopo € R™" and Feoc € R™" by PCA.
Therefore, the final dimension of our descriptor is (2n+2 x 4m).
Finally, we apply the metric learning method of XQDA [6] to mea-
sure the similarity for person Re-ID.

4.4. Complexity analysis

For complexity analysis, we can consider two aspects: time
complexity and spatial complexity. In our approach, we utilize
IALM algorithm to obtain the optimal solution and most of the
time computational effort is concentrated on solving inverse ma-
trices, especially when the dimension of sample feature increases.
Besides, the spatial complexity is also related to the dimension of
sample feature and the number of samples. In addition, our ap-
proach concatenates the multiple feature descriptors in each sub-
region and it leads to an increase in the complexity of the algo-
rithm. This is also a disadvantage of our algorithm and our future
work will try to solve this problem.

5. Experiments
5.1. Experimental setting

5.1.1. Datasets

We consider three datasets to train and evaluate the proposed
method: VIPeR [4], CUHKO1 [23] and PRID450S [10]. VIPeR is one
of the most challenging dataset for person Re-ID, due to that the
images of the 632 people are taken in different poses, from differ-
ent viewpoints. CUHK-01 dataset was captured from two camera
views, with higher resolution, containing 971 persons, and each
person has two images in each view. PRID450S contains 450 im-
age pairs recorded from two different static surveillance cameras.
All images are scaled to 128 x 48 pixels.

5.1.2. Evaluation

For these datasets, we randomly divide all of the images into
two equal-size subsets for training and testing, respectively. To
quantitatively evaluate the experimental results, the widely used
cumulative match curve (CMC) metric is adopted in our experi-
ments. For each query image, we first compute the distance be-
tween the query image and each image in the gallery set, then
return the top n gallery images with the smallest distance. If the
returned list contains at least one image belonging to the same
person as the query image, this query is considered as success of
top n. Top 1, 5, 10 and 20 are used in our experiments. The exper-

Table 2
The recognition results of our model and other the state-of-the-art meth-
ods on VIPeR dataset at rank-1, 5, 10, 20.

Method Rank=1 Rank=5 Rank=10  Rank=20
Ours 56.32 83.03 90.01 95.76
CRAFT+XQDA [3] 47.82 77.53 87.78 94.84
GOG+XQDA [10] 49.68 79.71 88.67 94.52
LSSL [21] 47.86 78.03 87.63 94.05
LOMO+MLAPG [7] 39.46 70.04 82.41 92.84
LOMO+XQDA [6] 40.00 68.13 80.51 91.08
KCCA+XQDA [35] 33.53 62.31 74.43 85.25
FFN4096+XQDA [34]  28.86 55.35 68.13 81.14
ELF16+XQDA [33] 23.64 47.78 62.5 75.60
ResNet+XQDA [36] 22.66 52.97 67.78 83.70
KLFDA [19] 22.17 47.23 60.27 76.01
MFA [19] 20.46 48.97 63.35 76.08
KISSME [1] 22.53 49.57 64.11 78.15
SVMML [12] 25.41 54.75 70.28 83.50
LFDA [11] 18.34 44.64 57.25 72.96

iments are repeated 10 times, and the average rate is used as the
evaluation result.

5.1.3. Parameters

In our model, the parameters include mainly «, 8, ¥, 1, A, o,
u and p. We obtain the optimal parameters through a method of
adjusting one parameter while fixing other parameters. Note that,
a large value for u is adopted for the sake of fast convergence.

5.2. Comparison on the VIPeR dataset

We evaluated our proposed method against 14 existing meth-
ods on VIPeR dataset and randomly choose 316 pairs of images
for training and leave the rest for testing. These methods consider
low-level descriptor, such as LOMO, GOG, CRAFT or deep features,
such as ResNet [36], and learn the metric function, such as XQDA,
LSSL, kKLFDA and so on. For our proposed method, we try to learn
the mid-level features and utilize the metric function of XQDA for
Re-ID.

5.2.1. Comparison to the state-of-the-art methods

We utilize the K-means method to obtain 4 x 100 multi-view
visual words (MvVW) including 3 groups of local and 1 group of
global features. Table 2 clearly shows the clear performance supe-
riority of our proposed method over the competing methods. The
results of CMC curves are shown in Fig. 3.

It can be seen that our proposed method is obviously bet-
ter than other state-of-the-art methods. Specifically, our proposed
method, achieving a rate of 56.32%, outperforms the 2nd best
model (i.e. GOG+XQDA) by 6.64% at rank=1. Furthermore, our pro-
posed method also outperforms other methods at rank>1 from
Fig. 3. From these results, we can see that the consideration of
the multi-view information and applying the discriminative trans-
fer learning to a common subspace with consistent contributions
are necessity for person Re-ID. It further proves our model, captur-
ing the mid-level features, can effectively improve the performance
of person Re-ID.

5.2.2. Comparison with the metric learning methods

We evaluate the proposed method with different metric learn-
ing methods, including L1-Norm distance, KLFDA and XQDA. The
results of CMC curves are shown in Fig. 4 and Table 3. It can be
seen that the proposed method with XQDA is better than the other
metric learning algorithms, with a gain of 23.49%, in comparison
with KLFDA. This indicates that our model with XQDA performs fa-
vorably in learning a discriminative transfer subspace as well as an
effective metric.
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Fig. 3. The CMC curves and rank-1 matching rates on the VIPeR dataset.
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Table 4
The results of comparison with different numbers of multi-view visual
words (m=>50, 100, 150, 200, All).
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Fig. 4. The CMC curves and rank-1 matching rates by different metric learning
methods on the VIPeR dataset.

Table 3
The recognition results of our model with different metric methods on
the VIPeR dataset at rank-1, 10, 20.

Method Rank=1 Rank=10 Rank=20
Ours+XQDA 56.32 90.01 95.76
Ours+KkLFDA 22.53 49.57 76.50
Ours+L1-Norm 9.18 24.68 60.75

5.2.3. Effect of the number of multi-view visual words

We compare the performances with different numbers of multi-
view visual words (MvVW) obtained by K-means, and the results
are shown in Fig. 5 and Table 4. It is obvious that our method
with the number of (100, 150 and 200) can do better than other
models. It can also be observed that our proposed method per-
forms consistently the best with all of MvVW. Especially, we can
obtain the best result of 57.05% at rank-1 with m =150, which is

Method Rank=1 Rank=10 Rank=20
Ours(50-MvVW) 48.59 78.47 90
Ours(100-MvVW) 56.32 83.03 90.5
Ours(150-MvVW) 57.05 81.56 89
Ours(200-MvVW) 56.6 80.04 88.56
Ours(All-MvVW) 49.69 71.56 78.48

6.27%, higher than the visual words without K-means (All-MvVW).
The result indicates that the original visual words have more re-
dundant information and the MvVW, fusing multiview information
with K-means, can achieve a better recognition rate. Nonetheless,
we should also ensure that the available information is sufficient,
so we set m=100 on VIPeR dataset.

5.2.4. Contribution of each region

It is interesting to investigate which region is more effective
in our proposed method. At the testing stage, we only use the
similarities measurement for a single region and set the similar-
ity scores of other regions to be 0. The CMC curves in Fig. 6 show
that the similarity measurement of the whole region evidently out-
performs any individual local region. For local similarity measure-
ments, the ones for upper body are more effective than those for
lower body. In particular, the measurement of Region2 including
the torso achieves better performances with the low rank value.

5.2.5. Effect of parameter selection

In this experiment, we compare the performances with differ-
ent parameters and describe the method of parameters selection.
In our model, the parameters include mainly «, B8, ¥, n, A, 0,
and p. We provide the results of our model with different param-
eters at rank-1 in Fig. 7 where the scale of horizontal ordinate
is 1072, 101, 101, 1072, 102, 101, 10~1, 1070. As we can see
in this figure, our proposed model is insensitive to the setting on
these parameters, performing the best with a small change for per-
son Re-ID. In our model, we obtain the optimal parameters through
a method of adjusting one parameter while fixing other parame-
ters, and set the values of o, B, ¥, n, A, o, n and p as 0.07, 0.2,
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Fig. 6. The CMC curves and rank-1 matching rates on the VIPeR dataset with dif-
ferent regions.

0.1, 0.06, 0.06, 0.3, 0.4 and 1.05 when m=100. Note that, if we
need fast convergence speed, we can set a larger value for u.

5.3. Experiments on the CUHKO1 dataset

The CUHK-01 dataset was captured from two camera views,
with higher resolution, containing 971 persons, and each person
has two images in each view. We randomly choose 486 pairs of
images for training and leave the rest for testing. And we utilize
the K-means method to obtain 4 x 200 MvVW. The rank-1, rank-5,
rank-10 and the rank-20 matching rates are described in Table 5
and the CMC curves are drawn in Fig. 8. As we can see in the
Table 5 and Fig. 8, our method outperforms the competing meth-
ods, achieving the best rank-1 matching rate of 68.44% with a gain
of 3.11%, in comparison with the best result of 65.33% obtained
by GOG+XQDA. Similar to the experimental results on the VIPeR
dataset, the experimental results on the CUHKO1 dataset also show

Table 5

The recognition results of our model and other the state-of-the-art meth-
ods on CUHKO1 dataset at Rank-1, 5, 10, 20.
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Method Rank=1 Rank=5 Rank=10  Rank=20
Ours 68.44 86.24 93.65 96.8
GOG+XQDA [10] 65.33 84.13 90.25 94.61
LOMO+MLAPG [7] 64.74 86.60 91.55 95.40
LOMO+XQDA [6] 63.02 83.33 90.47 94.56
FFN4096+XQDA [19]  39.69 60.05 68.43 75.79
KLFDA [19] 35.91 52.71 61.05 69.77
MFA [19] 35.44 55.10 64.11 72.09
KISSME [1] 30.20 47.66 57.54 68.16
SVMML [12] 31.07 56.04 67.27 78.30
LFDA [11] 34.86 50.91 59.91 68.03
Table 6

The recognition results of our model and other the state-of-
the-art methods on PRID450S dataset at Rank-1, 10.

Method Rank=1 Rank=10
Ours 72.15 94.62
GOG+XQDA [10] 67.9 94.4
LOMO+XQDA [6] 52.3 84.6
SCNCD [22] 41.6 79.4
Semantic [15] 431 78.2

that our method can achieve a better performance on small sample
size dataset, which further verifies the robustness of our method.

5.4. Experiments on the PRID450S dataset

The PRID450S dataset contains 450 image pairs recorded from
two different static surveillance cameras. In this experiment, we
randomly choose 250 pairs of images for training and leave the
rest for testing. And we utilize the K-means method to obtain
4 x 100 MvVW. The rank-1, rank-10 matching rates are reported in
Table 6. As we can see in this table, our proposed method achieves
72.15% rank-1 matching rate and 94.62% rank-10 matching rate on
the PRID450S dataset, which improves the state-of-the-art rank-
1,10 matching rates by 4.15% and 0.22%, respectively. The results
also verify the robustness and effectiveness of our method.
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Fig. 8. The CMC curves with different metric learning methods on the CUHKO1
dataset.

6. Conclusion

In this paper, we have proposed a novel similarity learning
model that formulating the person Re-ID problem as a consistent
iterative multi-view joint transfer learning optimal problem, and
then solved this optimal problem using IALM algorithm. By adding
the transfer, low-rank, and sparse representation constraints, the
gap between multi-view images was greatly eliminated and the
small sample size problem was effectively alleviated. The ex-
perimental results on three challenging person Re-ID benchmark
datasets prove that our proposed model achieves state-of-the-art
performance and is robust against inconsistent data distributions
in terms of viewpoint changes and illumination variations. How-
ever, as a major difficulty in person re-identification, the problem
of imbalance between positive and negative samples still affect the
performance of our method. Besides, for large datasets or more dif-
ficult scenes, the features may not be robust. In future, we will
study alternative schemes for choosing the proper samples to train
the model, and combine with deep learning methods. In addition,
we will try to solve the computational complexity problem caused
by the dimension of features and blocking strategy.
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