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Abstract In recent years, deep learning has developed rapidly and is widely used in various fields, such as

computer vision, speech recognition, and natural language processing. For end-to-end person re-identification,

most deep learning methods rely on large-scale datasets. Relatively few methods work with small-scale

datasets. Insufficient training samples will affect neural network accuracy significantly. This problem limits

the practical application of person re-identification. For small-scale person re-identification, the uncertainty

of person representation and the overfitting problem associated with deep learning remain to be solved.

Quantifying the uncertainty is difficult owing to complex network structures and the large number of hyper-

parameters. In this study, we consider the uncertainty of pedestrian representation for small-scale person

re-identification. To reduce the impact of uncertain person representations, we transform parameters into

distributions and conduct multiple sampling by using multilevel dropout in a testing process. We design an

improved Monte Carlo strategy that considers both the average distance and shortest distance for matching

and ranking. When compared with state-of-the-art methods, the proposed method significantly improve

accuracy on two small-scale person re-identification datasets and is robust on four large-scale datasets.
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1 Introduction

In this study, the person re-identification task is to match pictures of a target pedestrian taken from

different perspectives among a set of gallery pictures. The probe can be one or multiple pictures and the

gallery pictures are captured by more than two sets of cameras. Many factors contribute to uncertainty in

this typical computer vision problem. First, video quality various among cameras. Second, surveillance

cameras must deal with different scene information, i.e., location, illumination, and weather conditions.

Third, occlusion objects as well as the pedestrians’ pose and their clothing can change.

The availability of large-scale person re-identification datasets, such as Market1501 [1], CUHK03 [2],

DukeMTMC [3], and MSMT17 [4], benefits research on large-scale video surveillance networks that can

be used for person re-identification. Currently, mainstream research in this area is focused on three

different methods. (1) Methods to extract pedestrian descriptors based on image features [5–10] focus on

robust and reliable pedestrian representation models that can describe pedestrian image color, texture,

shape, as well as spatial information. (2) Methods based on metric learning [11–13] rely on machine

*Corresponding author (email: zhaocairong@tongji.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-019-2675-3&domain=pdf&date_stamp=2019-11-15
https://doi.org/10.1007/s11432-019-2675-3
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-019-2675-3
https://doi.org/10.1007/s11432-019-2675-3


Zhao C R, et al. Sci China Inf Sci December 2019 Vol. 62 220102:2

Person

representation?

Feature

vector

Deep networks

Figure 1 (Color online) Typical examples of uncertainty in person representation.

learning and train a group of new spaces to optimize a pedestrian feature similarity measurement model.

(3) Methods based on end-to-end deep learning architecture [14–21] to build an end-to-end platform for

training and testing. Such methods employ an appropriate feature-extraction network and loss function,

and process the input image directly to obtain final identification results.

In large-scale person re-identification, accuracy has been greatly improved with the application of deep

learning methods. However, in many cases, the number of training samples is not sufficient. For small-

scale person re-identification, deep learning methods face serious overfitting problems. The influence

of uncertainties in pedestrian representation is magnified. In addition, the noisy data and inaccurate

labels become more problematic with an insufficient number of training samples. These problems lead to

inadequate optimization of network hyperparameters, which results in the deviation of the final trained

model and affects re-identification accuracy.

Figure 1 illustrates a typical problem in small-scale person re-identification caused by uncertainty.

For most deep learning methods, we treat some uncertain factors, such as occlusion, background, and

illumination, as parts of the pedestrian representation. When the number of samples becomes half or

even a quarter of the original, these noises will become saliency features during the matching process and

may lead to error matching.

In this study, we aim to deal with the overfitting problem and uncertain pedestrian representation in

small-scale person re-identification. The primary contributions of this study are as follows: (1) We use

a multilevel dropout method in both training and testing to generalize parameters and obtain multiple

distance matrices when testing. (2) We design an improved Monte Carlo strategy that considers the

mean value and the closest person representation to obtain the final distance matrix for ranking. (3) Ex-

periments on different scales of datasets demonstrate that the proposed method significantly improves

the person re-identification recognition rate on small-scale datasets and remains robust on large-scale

datasets.

2 Related work

Our research refers to many existing person re-identification studies, particularly those that involve deep

learning methods. In addition, we refer to some existing methods for small-scale person re-identification

and some studies on Bayesian deep learning.



Zhao C R, et al. Sci China Inf Sci December 2019 Vol. 62 220102:3

Typical person re-identification systems [22, 23] focus on mining robust and characteristic descriptors

for images and creating a distance space or embedding kernels to measure the similarity between different

images. Inspired by the implementation of deep learning, mainstream research is focused on construct-

ing deep convolutional neural network (CNN) architectures and designing functions to optimize CNN

networks.

Deep person re-identification architectures primarily involve two components. The first is the main-

stream CNN backbone that is designed to learn features, which has developed from a shallow convolutional

network to today’s more popular backbone networks (ResNet [24], Inceptions [25]), that are pretrained

using the ImageNet [26] dataset. Such backbone networks are widely used in computer vision problems

and can be easily fine-tuned for person re-identification tasks. The improvements usually lie in alignment,

an attention model, or divide images into blocks. Overall, the backbone network aims to extract global

and semantic features as descriptors. Ahmed et al. [27] presented the first research on simultaneously

learning features and a corresponding distance metric that measures the Euclidean distance between two

embedding features in a cross neighborhood layer. Zhang et al. [28] used the shortest path method to

align the horizontal part of pedestrian pictures. Sun et al. [29] proposed a part-based convolutional and

a refined part pooling (PCB-RPP) method, in which the pedestrian image is evenly partitioned and com-

bined in the horizontal direction, and the parts are aligned using attention mechanisms. Wang et al. [30]

proposed the multiple granularity network (MGN), which learns discriminative features with multiple

granularity by combining multiple block schemes for pedestrian images.

The second component of person re-identification architectures aims to design proper functions to

penalize error matching and optimize network parameters through back propagation [31, 32]. Zheng

et al. [33] trained a Siamese network with pairwise input. The cross entropy and Siamese loss jointly

optimize the shared parameters. Hermans et al. [34] proved that triplet loss, particularly hard triplet

loss, outperforms other optimization methods for deep person re-identification models and significantly

improves the baseline. Zhong et al. [35] proposed a k-order derivative coding method to re-rank images in

a gallery. This re-ranking method is widely used in deep methods for large scale person re-identification.

For small-scale person re-identification, there are relatively few deep learning methods, most of which

focus on how to expand the training data [36–39]. Chen et al. [40] proposed a cross-domain architecture

that could use an auxiliary training set. Zheng et al. [41] generated some unlabeled training data using a

generative adversal network (GAN). Wei et al. [4] proposed a person transfer GAN to eliminate differences

in camera styles between different datasets.

There have been some pioneering efforts in the area of uncertainty in small-scale tasks and deep

learning [42–46]. Xu et al. [47] reduced the uncertainty in a face recognition task by preprocessing the

training data and provided a theorem that determines the upper bound of the number of useful training

samples. Blundell et al. [48] discussed weight uncertainty and assigning weight with Gaussian distribution.

Gal et al. [49] proposed a Bayesian neural network and used variational inference to solve the posterior

distribution.

Inspired by these studies, we find that there is a common way to solve such problems, i.e., changing

parameters from discrete values to probability distributions. Thus, we use a multilevel dropout method

to generalize parameters and an improved Monte Carlo strategy for end-to-end training and testing.

3 Proposed method

Person re-identification aims to find images of the same identity with a probe image from a set of gallery

images. For small-scale datasets, data are usually not sufficient to train a deep model. The overfitting

and uncertain problems are serious. Thus, we design an uncertain-optimized deep model for small-scale

person re-identification.
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Figure 2 (Color online) Overall framework when testing.

3.1 Overall framework

First, we describe the overall framework. Figure 2 illustrates the proposed framework when testing.

We use GoogleNet (inceptionv1) with multilevel dropout as the backbone. Our approach differs from

conventional approaches in that we use multilevel dropout in both train and test process. In the test

processing, for each probe, we repeatedly send the probe image to a network with multilevel dropout and

obtain more than one distance matrix. Then, we introduce an improved Monte Carlo strategy to obtain

the final distance matrix. For each probe, we can obtain the final ranking list by sorting the distances.

3.2 Multilevel dropout

The existing methods [27, 28] usually position the dropout layer after the fully connected layer and use

it only for training to avoid overfitting. Assuming that the network parameter can be expressed as

ω = (Wi)
L

i=1, L is the number of convolutional layers. Random discarding can be seen as adding binary

distributions on each node of the network. We only consider weights when the number of convolutional

layer is 1. This changes the parameters from discrete values to probability distributions. In our method,

a dropout operation is executed over multilevel convolution layers in both the training and testing. We

multiply Wi with a Bernoulli random distribution zi,j . The output of the ith layer W ∗
i can be expressed

as follows:

W ∗
i = Wi · (zi,j)

Ki

j=1 , (1)

zi,j =

{
1, pi,

0, 1− pi,
i = 1, . . . , Li; j = 1, . . . ,Ki−1, (2)

where zi,j is a random Bernoulli distribution with pi being the probability. Wi is the weight matrix to

be optimized, and the “ · ” operator is matrix dot. j = 1, . . . ,Ki is the index of kernels in a CNN. In

back propagation, we use the same binary variable values when transferring derivatives and optimizing

the weight parameters. We make copies of each sample and put them in different batches for training.

Therefore, the weights under Bernoulli distribution will be learned and updated during the training

process. With multilevel dropout, the output of a deep network will not depend on local features, which

means that the uncertain person representations will not be saliency descriptors. In this way, the feature

descriptors will lose a certain amount of information. This is exactly what we expect to avoid the

impact of uncertainty factors. However, there is a certain probability that significant information will be

discarded. Thus, forward propagation is executed multiple times when testing to ensure the existence of

saliency descriptors. These descriptors are used to calculate the distance matrix. Because we have more

than one distance matrix, we improved the Monte Carlo strategy to calculate the final distance matrix.

3.3 Improved Monte Carlo strategy

When we need to solve random variables with probability distribution, the process can be simulated

using a Monte Carlo method. The random variables are network parameters. For each instance of

forward propagation, we obtain a distance matrix that represents the similarity between image descriptors.

Typically, the Monte Carlo strategy takes the mean distance as the final distance, which represents

the similarity between probe and gallery. This process can be seen as the estimation of distance from

bootstrap sampling. We improved this strategy by considering the shortest distance. The shortest
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distance means that after eliminating some descriptors, the remaining representations of two person

images are closest to each other. In theory, when the uncertain descriptor is discarded, the shortest

distance is more likely to be obtained. We obtain the final distance d∗ (P,Gi) according to the following

formula:

d (P,Gi) = (xP − xGi
)T (xP − xGi

) , (3)

d∗ (P,Gi) = λ
1

N

N∑

k=1

dk (P,Gi) + (1− λ)min (dk (P,Gi) , k ∼ (1−N)) , (4)

where d (P,Gi) is the Euclidean distance between probe P and person Gi in gallery. xp and xGi
are

the descriptor of person P and Gi. N is the number of repetitions and k denotes each of the repetition.
1
N

∑N

k=1 dk (P,Gi) is Monte Carlo distance and min(·) is the minimum distance of N times. λ represents

the tradeoff parameter between the Monte Carlo distance and the minimum distance. Finally, we can

obtain the ranking list L∗ (P,Gi) by sorting the final distance in ascending order.

3.4 Algorithm

The complete proposed method is summarized in Algorithm 1.

Algorithm 1 Uncertainty-optimized testing process

1: Input: Probe and Gallery: P,Gi, number to repetitions N , trade off parameter λ;

2: Output: Ranking list L∗ (P,Gi);

3: t = 0;

4: while t < N do

5: t ⇐ t+ 1;

6: for all input images P,Gi do

7: Compute feature embedding xi by forward propagation (multilevel dropout);

8: Compute d(P,Gi) by Euclidean distance of xp, xGi
;

9: d∗ (P,Gi)+ = d (P,Gi);

10: if d (P,Gi) < dmin (P,Gi) then

11: dmin (P,Gi) = d (P,Gi);

12: end if

13: end for

14: d∗ (P,Gi) = λ/n× d∗ (P,Gi) + (1− λ)× dmin (P,Gi);

15: end while

16: L∗ (P,Gi) = sort (d∗ (P,Gi)) for each P .

3.5 Understanding our approach from Bayesian perspective

This subsection explains the working of our method in the Bayesian perspective. Following the Bayesian

approach, it is assumed that there is an ideal function f between inputs X and their labels Y . From

person re-identification datasets, we have the posterior distribution p(f |X,Y ). The process of pedestrian

matching proceeds as follows:

p (y∗|x∗, X, Y ) =

∫
p (y∗|f∗) p (f∗|x∗, ω) p(ω|X,Y )df∗dω, (5)

where y∗ is the probe label, and x∗ are galleries. From re-identification datasets, we have person X

and label Y . f∗ can be considered as a set of transformations in deep networks. By using p(ω|X,Y )

and following an approximate inference [50], we define a simpler distribution q(ω) as the approximate of

p(ω|X,Y ). Then, we obtain

p (y∗|x∗, X, Y ) ≈

∫
p (y∗|x∗, ω) q(ω)dω. (6)

In order to match our multiple dropout layers, we set q(ω) as a Bernoulli distribution, which is a fairly

weak approximation with no additional parameters. The sampling operation on q(ω) is the same as the
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Figure 3 (Color online) Example images from the CUHK01 dataset.

multilevel dropout operation on the parameters of the ith layer (Wi)
L

i=1. This is why we use multilevel

dropout in the test process. The generation of over-fitting is partly attributed to the fixed value of the

parameters of the neural networks. When we apply multilevel dropout to give Bernoulli distribution to

parameters, the probability solution can be obtained by a Monte Carlo strategy. By following Monte

Carlo approach we can approximate the integral as follows:

p (y∗|x∗, X, Y ) ≈
1

N

N∑

k=1

p (y∗|x∗, ω̂k) , ω̂i ∼ q(ω). (7)

In small-scale person re-identification, we should consider both the mean value obtained by the Monte

Carlo strategy, and the closest pedestrian representation. Consequently, we improve the Monte Carlo

strategy as described in Subsection 3.3.

4 Experiments

We carry out experiments on some mainstream person re-identification datasets. These datasets have dif-

ferent scales and the results of our uncertainty-optimized deep learning model are analyzed in Subsection

4.4.

4.1 Datasets

The following datasets are used in our experiment.

CUHK01 [2]. This dataset contains 3884 pictures of 971 identities collected from two camera views.

Each identity has two images from two camera views. We use 486 identities for testing in the experiment.

The remaining pedestrian images are used for training. Figure 3 is example images in CUHK01.

VIPeR [51]. This dataset contains 632 identities collected from two camera views where the illumination

conditions differ significantly. This dataset contains 632 images. We use 316 identities for training and

316 identities for testing. Figure 4 is example images in VIPeR.
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Figure 4 (Color online) Example images from the VIPeR dataset.

CUHK03 [2]. CUHK03 contains 13164 well pre-cut pictures from 1360 pedestrians. The images are

captured from six different pairs of camera views. The dataset is well-divided, and we shuffle the training

sets. For each epoch, we use approximately 1500 pictures from 150 different identities for the training.

Market-1501 [1]. Market-1501 contains 32668 detected person boxes from 1501 identities. The images

are collected from six cameras, one of which is a low-pixel camera. We use 12936 pictures as a training set

and the other 19732 images are used for testing. In addition, this dataset contains some labeled detection

errors, which are not used in our methods.

DukeMTMC [3]. DukeMTMC contains more than 2000000 manually annotated frames from more than

2000 identities. The pictures are captured by eight synchronized cameras with more than 7000 single

camera trajectories. This dataset can be used for both image person re-identification and video person

re-identification.

MSMT17 [4]. MSMT17 is a new large-scale dataset that contains 126441 bounding boxes of 4101

pedestrians. The bounding boxes are obtained by Faster R-CNN [52] and validated manually. The

images in MSMT17 are captured by 15 groups of camera in a campus over a long period of time.

4.2 Evaluation matrix

According to our method, we obtain the final ranking lists in the test process. Cumulative matching

characteristic (CMC) curves [53] are used to evaluate our ability to find pedestrians from top k similar

matches. The mean average precision (mAP) [54] is used to estimate the ability to distinguish pedestrians.

Rank-k means that we find the target in k-most similar gallery pictures.

4.3 Implementation

The architecture of our backbone in Table 1 is the multilevel dropout added to the convolutional layer

with different dropout ratios. We train our model with a combination of hard mining triplet loss and

cross entropy loss. We select this training process with reference to Zheng et al. [33] and Herman et

al. [34]. We do not use tricks like alignment or blocking on person images. On one hand, we do not want

the network to be too large. On the other hand, a simple network can better reflect the practicability of

our method on small-scale data.

We use the pytorch [55] framework to implement our model. We shuffle the dataset and randomly

order the images without any data augmentation. We use the cosine distance for feature measurement.

We set the batch size to 64. The learning rate is 0.001 at the beginning with a 0.9 learning rate decay

over 1000 iterations. The weight decay is 0.0002, and the momentum parameter is 0.95. We train our

model for 50000 iterations within 5 hours on an NVIDIA 1080Ti GPU. When testing with the Monte
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Table 1 Structure of our backbone network

Name Patch size/stride Output size #1×1 #3×3 reduce #3×3 #5×5 reduce #5×5 pool + proj Dropout ratio

Input – 3×224×224 – – – – – – –

Conv1/Relu 7×7/2 64×112×112 – – – – – – 0.1

Pool1 3×3/2 64×56×56 – – – – – Max –

Conv2/Relu 3×3/1 192×56×56 – – – – – – 0.1

Pool2 3×3/2 192×28×28 – – – – – Max –

Inception 3a – 256×28×28 64 96 128 16 32 Max+32 0.1

Inception 3b – 480×28×28 128 128 192 16 32 Max+64 0.1

Pool3 3×3/2 480×14×14 – – – – – Max –

Inception 4a – 512×14×14 192 96 208 16 48 Max+64 0.2

Inception 4b – 512×14×14 160 112 224 24 64 Max+64 0.2

Inception 4c – 512×14×14 128 128 256 24 64 Max+64 0.2

Inception 4d – 512×14×14 112 144 288 32 48 Max+64 0.2

Inception 4e – 512×14×14 256 160 320 32 128 Max+64 0.3

Pool4 3×3/2 832×7×7 – – – – – Max –

Inception 5a – 832×7×7 256 160 320 32 128 Max+128 0.3

Inception 5b – 1024×7×7 384 192 384 48 128 Max+128 0.3

Pool5 7×7/1 1024×1×1 – – – – – Average –

fc – 1024 – – – – – – 0.3

Carlo classification strategy, we set the number of repetitions to 100 and the tradeoff parameter to 1

(N = 100, λ = 0.5).

4.4 Experimental results

Our uncertainty-optimized deep learning model is trained and tested on both small-scale and large-scale

datasets. We discuss the experimental results on different datasets in detail in this subsection.

4.4.1 Results on CUHK01 dataset

CUHK01 is a small-scale dataset. To improve matching accuracy, some state-of-the-art methods often

merge CUHK03 and CUHK01 datasets to increase the number of training samples. For our method, we

use CUHK01 dataset samples directly to train the deep learning model. We contrast with the existing

mainstream methods for person re-identification, and give the result as follows:

As can be seen from Figure 5 and Table 2, obtaining highly accurate small-scale person re-identification

results using deep learning methods is difficult, particularly with complex neural networks, such as

PCB [29] and MGN [30]. When there are insufficient training samples, the multi-granularity features

increase overfitting, and it is difficult for the networks to converge. The baseline network has relatively

good result (55.2% Rank-1 accuracy). After the introduction of multiple dropout and the improved

Monte Carlo strategy, the accuracy increases by 7.1%.

4.4.2 Results on VIPeR dataset

VIPeR is a very small person re-identification dataset. Existing deep learning methods do not work well.

Experimental results obtained using the proposed method are shown in Figure 6 and Table 3.

It is obvious that the proposed deep learning method achieves relatively good results with the VIPeR

dataset.

4.4.3 Results on Large-scale datasets

We also conduct experiments on four large-scale person re-identification datasets. The performance of

our uncertainty-optimized method on large-scale datasets is shown in Table 4. Here, we use Resnet50 as

a baseline for comparison.
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Figure 5 (Color online) CMC curves on CUHK01 dataset.

Table 2 Performance comparison on CUHK01 dataset

Method Rank-1 (%) Rank-5 (%) Rank-10 (%) Rank-15 (%) Rank-20 (%)

KISSME [12] 52.6 75.2 82.5 84.5 88.0

XQDA [7] 55.8 78.6 85.7 90.5 93.1

MGN [30] 44.7 56.5 63.2 77.7 82.6

PCB [29] 49.8 58.4 67.9 80.8 84.4

Part-net [16] 55.1 77.7 84.6 89.8 91.1

GLAD [23] 58.9 80.9 86.9 92.4 93.8

Resnet50 (Baseline) 55.2 78.1 85.6 91.5 95.3

Resnet50+Re-ranking [35] 60.0 80.8 86.7 92.2 97.3

Ours 55.2 89.4 94.2 96.3 99.5

53.30%
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Figure 6 (Color online) CMC curves on VIPeR dataset.

In Figure 7 the blue and red lines indicate the Rank-1 accuracy of our method and the baseline variation

with decrease in training samples on four large-scale datasets.

It can be seen from Table 4 that the accuracy is close to the baseline, which means that the proposed
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Table 3 Performance comparison on VIPeR dataset

Method Rank-1 (%) Rank-5 (%) Rank-10 (%) Rank-15 (%) Rank-20 (%)

KISSME [12] 32.3 64.9 77.9 83.8 85.2

XQDA [7] 39.0 69.3 81.3 85.1 88.9

MGN [30] 26.7 53.8 68.5 72.1 75.3

PCB [29] 30.4 59.2 72.5 77.9 81.2

Pose [15] 35.4 67.9 81.0 86.2 89.5

GLAD [23] 39.5 70.2 82.4 87.7 91.4

Resnet50 (Baseline) 29.4 55.7 70.9 76.3 79.3

Resnet50+Re-ranking [35] 36.8 61.4 78.5 83.2 90.0

Ours 53.3 72.3 85.2 89.4 92.1

Table 4 Performance on large-scale datasets

Dataset Rank-1 (%) Rank-5 (%) Rank-10 (%) Rank-20 (%) mAP (%)

Market1501 (Ours) 86.2 94.6 97.1 83.8 67.8

Market1501 (Baseline) 82.3 89.9 95.4 97.9 60.3

CUHK03 (Ours) 80.4 92.5 94.3 97.0 59.6

CUHK03 (Baseline) 78.3 93.3 97.0 98.7 61.1

DukeMTMC (Ours) 76.9 84.5 87.5 90.2 62.0

DukeMTMC (Baseline) 73.5 78.6 81.8 85.1 57.4

MSMT17 (Ours) 68.4 78.8 82.6 88.4 40.2

MSMT17 (Baseline) 68.3 81.4 85.9 92.5 45.6
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Figure 7 (Color online) Robustness of the proposed model to the number of samples on large-scale datasets of (a)

Market1501, (b) CUHK03, (c) DukeMTMC, and (d) MSMT17.

method also works on large-scale datasets. Typically, when there is sufficient training data, deeper and

more complex networks can obtain better results. The network structure used in the proposed method is

not complicated, and the accuracy did not reach the top level. However, considering both accuracy and
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consumption of network computing resources, the proposed method still has some advantages.

Obviously, our method is more applicable to small-scale datasets, which are more common in practice.

Therefore, we perform experiments where we gradually reduce the number of training sets on four large-

scale datasets to test the robustness of the proposed model relative to the number of samples. Here, we

also use Resnet50 as a baseline for comparison. The results are shown in Figure 7. As can be seen, as the

number of training samples decreases, the accuracy of the baseline model drops dramatically while the

proposed method is obviously more stable and accurate. This is because the multilevel dropout layers

and improved Monte Carlo strategy reduce the impact of uncertainties and the Bayesian approach can

prevent overfitting to a certain extent.

5 Conclusion

In this study, we implemented a multilevel dropout method and an improved Monte Carlo strategy to

solve the overfitting problem and reduce the uncertainty in person representation. In this way, a deep

learning method can be applied to small-scale person re-identification. The proposed method significantly

improves the recognition rate of person re-identification on small-scale datasets and also works on large-

scale datasets. The end-to-end network structure and robustness under small data conditions make our

method more suitable for practical application.
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