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partially labeled data with three-way decision. In this paper, we propose a three-way co-
decision model for partially labeled data. More specifically, the problem of attribute reduc-
tion for partially labeled data is first investigated, and two semi-supervised attribute
reduction algorithms based on novel confidence discernibility matrix are proposed. Then,
a three-way co-decision model is introduced to classify unlabeled data into useful, useless,
and uncertain data, and the model is iteratively retrained on the carefully selected useful
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Confidence discernibility matrix data to improve its performance. Moreover, we theoretically analyze the effectiveness of
Co-decision the proposed model. The experimental results conducted on UCI data sets demonstrate
Partially labeled data that the proposed model is promising, and even compares favourably with the single

supervised classifier trained on all training data with true labels.
© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The theory of rough sets [23] is an effective tool for handling vague, uncertain, or imprecise data. Since the pioneering
work of Pawlak [22], several extended and generalized models have been proposed, such as neighbourhood rough sets
[10,45], covering rough sets [15,42], fuzzy rough sets [4,6], probabilistic rough sets [31,32], and others [46]. Among them,
three-way decision [30], proposed by Yao [33,41], is one of the most popular and efficient models for decision-making.
Despite originating from probabilistic rough sets [33], the research and development of three-way decision have gone
beyond the realm of rough sets and become the methodology and philosophy for thinking in threes [35,36,38,40,47]. Due
to the universality and effectiveness, three-way decision has been introduced to many research domains, such as attribute
reduction [43], conflict analysis [37], formal concept analysis [39], etc. Decision-theoretic rough sets (referred to as DTRS
hereafter) [42], as a representative paradigm of three-way decision, generalizes the Pawlak rough sets by introducing the
theory of Bayesian risk decision. In DTRS, binary decisions with options “yes” and “no” are extended into triple decisions,
i.e.,, “yes”, “no”, and “wait-to-see”. Moreover, DTRS provides a unified and comprehensive framework for rough sets and
exhibits the salient characteristics and advantages in probabilistic reasoning and semantic interpretation [34].

Both DTRS and other extensions of rough sets are primarily used to handle either labeled data or unlabeled data. How-
ever, in many real-world applications, such as web-page categorization, image retrieval, and intrusion detection [50], we
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often confront the case where labeled data are scarce since hand-labeled objects are fairly expensive to obtain, whereas unla-
beled data are relatively cheap and readily available. In this scenario, traditional supervised learning may yield undesirable
results because of the scarcity of labeled data, while unsupervised learning using only unlabeled data will result in the waste
of valuable label information. Intuitively, a promising way is to fully capitalize on both labeled and unlabeled data to train an
effective learning model [48,50].

For the data containing both labeled and unlabeled data (referred to as partially labeled data hereafter), Lingras [14] et al.
extended DTRS from two classes to multiple classes and introduced semi-supervised costs for promotional campaigns in
real-world retail stores. Miao et al. [18] developed a semi-supervised discernibility matrix and proposed a diverse semi-
supervised reducts-based model for partially labeled data. Dai et al. [5] employed the consistent rate of objects as the fitness
function to generate semi-supervised reduct. Based on the concept of discernibility, Dai et al. 7] further developed two attri-
bute reduction measures for partially labeled data. Instead of equivalence relation, fuzzy or neighbourhood relations-based
rough set models are also introduced to deal with partially labeled data. Parthalain and Jensen [21] employed the unlabeled
objects contained in the fuzzy lower approximation of all decision classes to retrain the model iteratively and presented a
fuzzy rough set-based self-training model for partially labeled data. Wang et al. [29] used Gaussian kernel-based fuzzy rough
set to measure the inconsistency of unlabeled objects and proposed a SVM-based sample selection algorithm for active
learning. Jensen et al. [11] presented a semi-supervised fuzzy rough attribute reduction method, in which the fuzzy depen-
dency degree on both labeled and unlabeled data was used to measure the quality of attribute subsets. To deal with numer-
ical data, Liu et al. [16] introduced a weighted neighbourhood approximate quality and neighbourhood granules for partially
labeled data. Further, they [17] used a graph-based semi-supervised method to yield the pseudo labels of all unlabeled data,
and local neighbourhood decision error rates under different decision classes were combined to measure the significance of
attributes. Li et al. [13] provided a semi-supervised attribute reduction method for partially labeled data with numerical
attributes, where conditional neighbourhood granulation and neighbourhood granulation were used to measure the signif-
icance of attributes on labeled data and unlabeled data, respectively. By integrating cost-sensitive learning and three-way
theory, Min et al. [19] proposed an active learning algorithm for classification. Qian et al. [24,25] presented several local
rough set models for big data with limited labels and provided some efficient local attribute reduct algorithms based on local
lower approximation. In addition, the theory of rough sets has also been successfully applied to practical problems with par-
tially labeled data [12,26].

The aforementioned works mainly concentrate on rough sets-based semi-supervised attribute reduction or practical
applications. Little attention has been paid for the semi-supervised rough set model to learn directly from both labeled
and unlabeled data. On the one hand, the utilization of unlabeled data is a key problem of semi-supervised learning model,
and unlabeled data may contain noisy or useless objects, which have a negative effect on the learning model. To guarantee
the performance of semi-supervised learning model, it is vital and necessary to develop an appropriate and effective mech-
anism to select useful unlabeled objects. On the other hand, decision-making under uncertainty often results in different
costs or risks. The selection of unlabeled objects should take into consideration the cost or risk of decision. Motivated by
the above facts, we propose a three-way decision-based semi-supervised model for partially labeled data. The main contri-
bution of this paper is threefold.

(1) To address the problem of attribute reduction for partially labeled data, we develop the concept of confidence dis-
cernibility matrix, based on which a heuristic algorithm is designed to yield the optimal reduct of partially labeled
data. The confidence discernibility matrix takes into consideration both labeled and unlabeled data and allows a cer-
tain degree of inconsistency, thus resulting in better adaptability and robustness for partially labeled data. In addition,
we prove several propositions about the confidence discernibility matrix, which provide the theoretical basis for semi-
supervised attribute reduction.

(2) To exploit unlabeled data efficiently, we design a three-way co-decision model for partially labeled data. The unla-
beled objects to use have a considerable effect on the performance of the learning mode. Three way-decision is an
effective method for decision making under uncertainty and risk. We thus introduce the theory of three-way decision
to conduct the selection of useful unlabeled data. Moreover, motivated by the idea of co-training [2], the collaborative
decision framework using two distinct semi-supervised reducts is adopted, which could make the classifiers of the
model learn from each other. By incorporating the theory of three-way decision with the mechanism of co-training,
the co-decision model could make full use of unlabeled data to improve its performance.

(3) To gain a deep insight into the proposed model, we theoretically analyze the model from the perspective of noise
learning and give the upper bound on the number of exploitable unlabeled data. Additionally, extensive experiments
are performed to test the effectiveness of the proposed model, and promising results are achieved, indicating the
potential of the proposed model for partially labeled data.

The rest of this paper is organized as follows. Section 2 presents some concepts in semi-supervised learning and three-
way decision, respectively. Section 3 describes the proposed co-decision model for partially labeled data, and its effective-
ness is also theoretically analyzed. Experimental results and analysis are shown in Section 4. Finally, Section 5 concludes the
paper and indicates future research work.
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2. Preliminaries

This section will briefly review some concepts related to semi-supervised learning and three-way decision. More details
about these theories can be found in [32-41,50].

2.1. Semi-supervised learning

In semi-supervised learning, we are provided with a partially labeled data U =LuN with [+ n objects described by
m-dimensional attributes, where | number of labeled objects L = {x;, y,—}f:1 are labeled and n number of unlabeled objects

N = {x;, ?}/"1", (I < n) are unlabeled. In the context of semi-supervised learning, we can, on the one hand, use labeled data
to enhance the quality of unsupervised clustering, called semi-supervised clustering [50]. On the other hand, unlabeled data
can be utilized to improve the performance of the supervised models that learn only from labeled data, called semi-
supervised classification or regression [49]. The detailed description of these methods could refer to [28,50]. In this paper,
we only focus on semi-supervised classification.

Semi-supervised classification aims at using a large amount of unlabeled data to aid the training of supervised models
when labeled data at hand are scarce. Roughly speaking, semi-supervised classification can be further categorized into gen-
erative methods, low-density separation methods, graph-based methods, and disagreement-based methods [28]. Co-training
[2,3] is one of the most popular multi-view models and has been applied to many practical problems successfully. Standard
co-training assumes that each object can be described by two sufficient and redundant attribute subsets (views). On each
attribute subset, a base classifier is first trained on initial labeled data. By labeling the most confident unlabeled objects
to their counterparts, the two base classifiers learn from each other iteratively and are retrained on their enlarged training
sets to improve the performance.

Unfortunately, in practical applications, it is difficult to meet the assumption of two naturally partitioned attribute sub-
sets in co-training. Although some compromise solutions have been proposed, such as random subspace, resampling, and
heterogeneous algorithms [28], it is still an open question on how to split a natural attribute set into two attribute subsets.
Furthermore, the performance of co-training is highly related to the quality of unlabeled data used in the learning process. In
standard co-training, the highly confident objects are usually selected to enlarge the training sets of base classifiers, and the
evaluation criteria for confident objects, such as classification accuracy, cross-validation, majority voting, and data editing,
are often used [28]. However, these criteria do not consider the misclassification cost of unlabeled objects. It seems unrea-
sonable when different decisions have different misclassification costs.

2.2. Three-way decision

The theory of three-way decision is a methodology for decision-making with the alternatives of acceptance, rejection, and
noncommitment. Decision-theoretic rough sets (DTRS), as an extension of rough sets, is one of the most popular models in
three-way decision and has witnessed a rapid growth of interest in theory and applications [32-39,41]. In what follows, we
will review some related concepts about DTRS.

In DTRS, the data to deal with is called an information system [23] and is denoted as IS = (U,A, V. f), where U is the set of
objects, called the universe; V is the set of attributes to describe the objects; V is the union of attribute domains such that
V = UV, for a € A, where V, denotes the domain of the attribute a; and f is an information function that associates each attri-
bute of an object belonging to U with a unique value such that f(x, a) € V, for each x € U and a € A. The information system
is also called a decision information system or decision table if the attribute set A can be further divided into the condition
attribute set C and the decision attribute set D [23].

For an attribute subset B of 4, it partitions the universe U into a family of equivalence classes U/B. An equivalence class
containing x is denoted as [x]; and is referred to as B-elementary set or B-elementary granule [23]. Let X be a subset of the

universe U, the lower approximation B(X) and the upper approximation B(X) with respect to B are defined as [23]:

B(X) = {x € U], gx}, "
BX) = {x € U|[x]; mx;ég}

The B-lower approximation of X is also called the B-positive region POSg(X) of X over U. The set-theoretic difference of the
B-upper and B-lower approximations is called the B-boundary region BNDg(X) of X over U, i.e., BND(X) = B(X) — B(X). The
universe after removing the objects in the B-upper approximation is called the B-negative region NEGs(X) of X over U, i.e.,
NEGs(X) = U — B(X).

Let U/D = {Y1,Y>,...,Yu,p } be the partition induced by the decision attribute D over U. The positive, boundary, and neg-
ative regions of D with respect to C are defined as [23]:
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POSc(D)= u C(Y;
c(D) Y;€U/D C(¥),

BNDC(D) = 4 (C(¥) =€), )

NEG((D)=U— U _C(Y)).

Y;eU/D
Let Q@ = {X, X} be a set of states indicating an object x is in X or not in X, respectively, and A = {ap,as,ay} be a set of
actions deciding the object x to be POS(X), BND(X), or NEG(X), respectively. The cost functions taking different actions under

the states X and X can be expressed as Table 1 [33]:
In the table, /pp, 1pp, and Ayp denote the costs caused by taking the actions ap, az and ay, respectively, when the object x
belongs to X, and Apy, Asy, and Ayy denote the costs caused by taking the same actions but the object x does not belong to X.
Given an object x, the expected costs of taking different actions can be defined as [33]:

R(ap|[x]) = ZppP(X|[X]) + ZenP(X|[X]),
R(as|(x]) = 2epP(X|[x]) + ZewP(X | [x]). (3)
R(an|[x]) = /neP(X|[x]) + ZP(X“|[x]).

where P(X|[x]) and P(X®|[x]) denote the probabilities that the object x belongs to X and X©, respectively, and

P(X|[x]) = 1 = P(X“|[x]).
According to Bayesian decision theory, the following minimum-risk rules can be derived [33]:

(P) if R(ap|[x]) < min{R(as|[x]),R(an|[x])}, then decide x € POS(X);
(B) if R(ag|[x]) < min{R(ap|[X]), R(an|[x])}, then decide x € BND(X);
(N) if R(an|[x]) < min{R(ap|x]), R(az|[x])}, then decide x € NEG(X).

Suppose the inequality (pny — Zgn)(Anp — Asp) > (Zsp — Zpp)(Zn — Ann) holds, the decision rules can be further simplified as
[33]:

(P) if P(X|[x]) > o, then decide x € POS(X);
(B) if B < P(X|[x]) < «, then decide x € BND(X);
(N) if P(X|[x]) < B, then decide x € NEG(X),

where
_ /PN —7BN
(2pn—2gN)+(2gp—7pp) 7 (4)
p= /BN /NN
(AN —7NN)+(Anp—Zpp) *
Given the parameters « and j, the lower and upper approximations can be redefined as in [33]:

B (X)={xe Ul > o},
~ep) (5)
By (X) = {x € Uluz(x) > p}.

Similarly, the positive, boundary, and negative regions can be defined as [33]:
S¢7(D) = {x € UIP(Dmax ([X]c)X]c) > o},
BNDZP(D) = {x € U|B < P(Dmax(X)|Xlc) < 1}, (6)
NEGZ" (D) = {x € UIP(Dmax ([X]c) IIXlc) < B},

where Dy ([X]c) = argmaxp,cup{P(Di|[X]c)}.

3. Three-way decision-based co-decision model for partially labeled data

In this section, we first describe the overall framework of the proposed model. The concept of confidence discernibly
matrix is then provided and used to yield the reducts of partially labeled data. Subsequently, a three-way decision-based
co-decision model is presented based on two distinct semi-supervised reducts. Finally, the model is theoretically analyzed.

3.1. Overall framework of the proposed model

Traditional models in three-way decision mainly deal with labeled or unlabeled data, and one classifier is often used in
the learning process. Due to the scarcity of labeled objects, learning models with only one classifier may be insufficient and
undesired. In fact, some data sets, especially when there are a large number of attributes, usually have more than one reduct,
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Table 1
Cost functions for different actions under the
states X and XC.

ap ag an
X Zpp P NP
X 2PN ZBN ANN

Partially labeled data PS=(U=LUN, A=CUD, V', f)

e

‘ Attribute a,

Ny

[ Semi-supervised reduct 1 J [ Semi-supervised reduct 2 }

\/

Labeled data L

A

Attribute a,

‘ Attribute a; | - ‘ Attribute a,

E Base classifier H; j E Base classifier H, J

Useful objects

Unlabeled data N
(Uncertain objects)

Useless objects

A 4

Unlabeled data N’

4 4

E Updated classifier H;' J [ Updated classifier H,' J

\/

[ Combined classifier H;"UH,' }

Fig. 1. Framework of three-way decision-based co-decision model for partially labeled data.

and each reduct could describe the data completely and competently. Additionally, these reducts reflect the data from dif-
ferent viewpoints, thus resulting in different inductive biases. Intuitively, one could take advantage of the diversity of mul-
tiple reduct subspaces to construct an efficient multi-view model for partially labeled data. Bearing this in mind, we propose
a distinct reduct subspaces-based co-decision model for partially labeled data (see Fig. 1).

More specifically, a semi-supervised attribute reduction algorithm is first used to generate two distinct reducts of par-
tially labeled data, on each of which a base classifier is trained with initial labeled data. Then two base classifiers learn from
each other iteratively by tagging some useful unlabeled objects with minimum risks to their companions until there is no
eligible unlabeled object. After improved on unlabeled data, the two classifiers are combined to form the final classifier.
In the following sections, we will elaborate on the proposed model.

3.2. Confidence discernibility matrix-based attribute reduction for partially labeled data

Attribute reduction (feature selection) [8,43] is a process of removing irrelevant and redundant attributes from data and
has become an important pre-processing step in machine learning and pattern recognition. It could not only speed up the
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learning process, but also weaken the problem of over-fitting. Attribute reduction is one of the most important applications
of rough sets, and several attribute reduction methods have been proposed [46G]. Among them, the methods based on the
discernibility matrix [27,44] are commonly used and has attracted much attention due to its simplicity and monotonicity.
Formally, the discernibility matrix and its reduct can be defined as follows.
Definition 1. Let IS = (U,A = CUD, V,f) be a decision table. The element of the discernibility matrix M is denoted as [27]:
- {ae Clax)#a(x)}, dox)=dey) 7
v &, otherwise

Definition 2. Let IS = (U,A = Cu D, V,f) be a decision table and M be the discernibility matrix of IS. An attribute a € Cis a
core attribute if and only if there exists a singleton e in M such that e = {a} [44].

Definition 3. Let IS = (U,A = CuD, V,f) be a decision table and M be the discernibility matrix of IS. For an attribute subset
P of C, P is a reduct of C if and only if [44]:

(I) Ve e M Ae#5, Pne#g, and
() YVae PAP"=P—{a},3ec MAP ne= (.

According to the definition, a reduct is a subset of condition attributes that has an intersection with any non-empty ele-
ment in the discernibility matrix. Existing discernibility matrix-based methods mainly deal with labeled or unlabeled data.
However, partially labeled data comes with both labeled and unlabeled data. To address this problem, a new discernibility
matrix is developed to handle partially labeled data.

Generally, a partially labeled data consists of few labeled objects but plenty of unlabeled objects. Intuitively, a reduct of
partially labeled data should be able to distinguish both labeled and unlabeled objects. Therefore, in the process of attribute
reduction, it is desired that the method of attribute reduction could take into consideration all kinds of objects. Moreover, in
partially labeled data, the initial labeled data may be noisy, and the unlabeled data to be used is full of uncertainty so that a
probabilistic method of attribute reduction is preferred. To this end, we propose a novel concept of confidence discernibility
matrix, which takes into consideration the discernible information and probability distribution of both labeled and unlabeled
objects. In what follows, we will give an example to illustrate the proposed discernibility matrix.

Example 1. Let PS= (U=LUN,A=CuD,V',f) be a partially labeled data shown in Table 2, where U = {X1,%2,...,X15},
C={m,a,,...,a7}, Vo = {0,1} for every a € C, and Vp = {d;,d,,ds,7}.

In the table, under all condition attributes, the universe is partitioned into six condition equivalence classes, i.e.,
U/C = {{X1,X10}, {X2,X3,X4,X11}, {X5, X6,X7}, {Xs, X0}, {X12,X13}, {X14,X15} }. For the equivalence class {x;,x;0}, there are two
objects, one of which is labeled and the other is unlabeled. Undoubtedly, the class information of the labeled object can
be propagated to the unlabeled one because the two objects have the same description in each condition attribute. The deci-
sion of the object x;o can thus be changed from “?” to d;. The equivalence class {x,,xs,X4,X11} consists of labeled and unla-
beled objects with different kinds of decisions, i.e., the real decisions d; and d,, and the unknown decision “?”. Actually, this
equivalence class is inconsistent. In this case, the majority decision of all labeled objects in the equivalence class can be
assigned to the unlabeled objects. Therefore, the unlabeled object x;; can be labeled the real decision d,. For other unlabeled
objects x13,X13,X14, and X;5, we consider them as the objects with a special pseudo decision “*”, whose decisions will be
replaced by the real decisions during the learning process. Finally, each object in the table has a real decision or a pseudo
decision, and the partially labeled data becomes a pseudo decision table. To deal with the pseudo decision table transformed
from partially labeled data, we introduce a new confidence discernibility matrix.

Definition 4. Let PS= (U= LUN,A = CuUD,V’,f) be a partially labeled data. For an object x € U, its maximum inclusion
degree and majority decision are denoted as  MP(x) = max{P(D:|[x]¢),P(D:|[X]¢),....P(Dwp|[Xlc)}  and
MD(x) = argmaxp,cy/p{P(D;i|[x].)}, respectively.

Definition 5. Let PS= (U=LUN,A = CuD,V' f) be a partially labeled data and ¢ be a confidence threshold parameter.
The element of the confidence discernibility matrix CM(J) of PS is denoted as:

(MD(xi);éMD(xj)
{a e Clax)=a(x)}, VMD(x;) = » v MD(x;) = *)
€(0) = A(max{MP(x;), MP(x,)} > &) ®
i) i)y 2
g, otherwise

When the maximum inclusion degree of an object is lower than 1, there are different definitions for the element of the
discernibility matrix and may generate different discernible information. In existing discernibility matrix [27], the dis-
cernible information of all inconsistent objects is either all retained or discarded. In fact, the measure of classification ability
under uncertainty is reflected not only in the decision, but also in the maximum confidence the inductive decision rule has.
In Definition 5, besides the decision information, a confidence threshold parameter is introduced to determine the discrim-
inating information of the discernibility matrix. As a result, the discernible information is generated only when two objects
have different majority decisions and at least one of the two objects has a maximum inclusion degree greater than 6. Com-
pared to traditional discernibility matrices, the proposed confidence discernibility matrix ignores the information generated
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Table 2
A partially labeled data.
a; a, as ay as ag a; d

X1 0 0 0 0 0 0 0 d,
X2 0 0 0 0 0 0 1 d,
X3 0 0 0 0 0 0 1 dy
X4 0 0 0 0 0 0 1 d;
Xs5 0 0 0 0 0 1 1 dy
Xe 0 0 0 0 0 1 1 ds
X7 0 0 0 0 0 1 1 d3
X3 0 0 0 0 1 1 1 dq
X9 0 0 0 0 1 1 1 ds
X10 0 0 0 0 0 0 0 ?
X11 0 0 0 0 0 0 1 ?
X12 0 0 0 1 1 1 1 ?
X13 0 0 0 1 1 1 1 ?
X14 1 0 1 0 1 1 1 ?
X15 1 0 1 0 1 1 1 ?

by each pair of objects whose maximum inclusion degree is all less than 6. Actually, in the case of decision-making with
uncertainty, that kind of information, in a sense, is not necessary for classification and may increase the complexity of attri-
bute reduction. Therefore, we should remove them to make the discernibility matrix more concise and efficient.

Formally, the pseudo decision table transformed from partially labeled dataPS = (U =LUN,A = CuD, V'’ f) is denoted as
TS = (U',A = CuD,V',f), while the decision table after labeling all unlabeled objects in the PS with ground-truth decisions is
denoted asIS = (U,A = CuD,V,f) (called the ground-truth decision table). In what follows, we will discuss the properties of
the proposed confidence discernibility matrix.

Proposition 1. Let PS= (U =LUN,A = CuD,V',f) be a partially labeled data and 5 be a confidence threshold parameter. If
CM; is the confidence discernibility matrix of the ground-truth decision table IS, and CM; is the confidence discernibility matrix of
the transformed decision table TS, then, for each element e}j € CM, there is e,?j e CM; such that e}j C e,?j.

Proof. Without loss of generality, assume x; and x; are two objects in the partially labeled data PS. In terms of their deci-
sion values, there are three different cases, i.e, ;e LAX;eL,x;e LAXx;e Norx;e NAX; €L, and x; € NAX; € N.

(1) Case 1: x; € L A x; € L. Since the two objects x; and x; are all labeled, there is no difference between the elements e}j and
ey, e, ej=e;.

(2) Case 2: x; e LAXj € N or x; € NAX; € L. In this case, only one object is labeled. But each unlabeled object of PS is
assigned a certain decision or a pseudo decision “*” after transformation. Thus, e;‘} may be a non-empty element in
CMj. While, in the ground-truth decision table IS, all objects have certain decisions, and the element e}j is an empty
set when the objects x; and x; have the same decision. Thus, the element e}j of CM‘lS is a subset of the element el?j of
M3, i.e., el Cel.

(3) Case 3: x; e NAx; € N. Since both objects are unlabeled, the element e,?j of CM; is definitely non-empty when the
objects x; and x; have distinct values in their condition attributes. However, in the ground-truth decision table IS,
the two objects may have the same decision so that the element e}j may be an empty set. Thus, e}j C eizj.

Therefore, in every possible case, we have e}j C e,?j. The proposition is proved.

Proposition 2. Let PS= (U=LUN,A=CuD,V',f) be a partially labeled data and 5 be a confidence threshold parameter. If
Core; is the set of core attributes in the ground-truth decision table IS, and Core, is the set of core attributes in the transformed
decision table TS, then Core; C Core,.

Proof. According to Definition 2 and Proposition 1, it is straightforward to draw the conclusion.

Proposition 3. Let PS= (U=LUN,A = CuD,V',f) be a partially labeled data and ¢ be a confidence threshold parameter. If
Red, is a reduct of the ground-truth decision table IS, then there must exist a reduct Red, of the transformed decision table TS such
that Red, C Red,.

Proof. Assume that CM? and CM; are the confidence discernibility matrices of the ground-truth decision table IS and the
transformed decision table TS, respectively, and Red, is a reduct in CM3. Without loss of generality, assume the difference set
between the elements of CM] and CM; has only one element e, i.e., CM5 = CM U e. We proceed by cases:

(1) Case 1: 3¢’ € CM‘l5 Ae' Ce. According to the definition for attribute reduction (see Definition 3), each non-empty ele-
ment in C| 1’ has a non-empty intersection with the reduct so that Red; ne’# . Since € C e, we have Red; N e# .
Thus, Red, is also a reduct in CMg, and Red; = Red,.

506



C. Gao et al. Information Sciences 544 (2021) 500-518

(2) Case 2: 3¢’ € CM3 A€’ De. Since e D e, the reduct Red; may have a non-empty intersection With e —e so that
Red; Nne = . However, the reduct Red,; after adding an attribute a € e can be a reduct Red, in CM5. Thus, we have
Red; C Red,.

(3) Case 3: Ve' € CM3 A (€' ¢ e A €' Ze). Since the element e neither contains nor be contained by any element of CM, the
reduct Red; in CM may not be a reduct in CMj. But there exists at least one attribute a € e such that Red, = Red, U {a}
is a reduct in CMj. Thus, we have Red; C Red,.

Thus, in every possible case, we have Red; C Red,. The proposition is proved.

The above propositions indicate that, for any possible ground-truth decision table derived from partially labeled data,
there definitely exists a reduct in the transformed decision table such that the reduct has the full ability to discern all objects
in the ground-truth decision table. On the basis of this fact, we can investigate the problem of attribute reduction for par-
tially labeled data on the transformed decision table.

Definition 6. Let PS= (U=LUN,A=CuD, V' f) be a partially labeled data and CM(é) be the confidence discernibility
matrix of the transformed decision table of PS under the confidence threshold §. Then, for any condition attribute a € C,
its relevant set is defined as:

RM2,,(a) = {e € CM(d)|a € e}. 9)

Definition 7. Let PS= (U=LUN,A=CuD, V' f) be a partially labeled data and CM(é) be the confidence discernibility
matrix of the transformed decision table of PS under the confidence threshold §. Then, for any condition attribute a € C,
the complement set with respect to its relevant set is defined as:

OMy,(a) = {e — {a}|e € RM}y,(a)}. (10)

In the definitions, the relevant set of an attribute consists of the elements that contain the attribute. While, in the relevant
set, the elements after deleting the attribute itself constitute the complement set of the attribute.

On the basis of the set operators defined above, an attribute reduction algorithm can be developed to obtain the reduct of
partially labeled data. However, finding the minimal reduct of a given data is NP-hard so that heuristic algorithms are pre-
ferred. In practice, due to high efficiency and effectiveness, the forward search strategy by iteratively adding attributes is
often used. In this paper, we also adopt the forward search strategy to maximize the discernibility ability of the selected
attributes with respect to the confidence discernibility matrix. The procedure can be depicted by Algorithm 1.

In the algorithm, the partially labeled data is first transformed into a pseudo decision table, and the confidence discerni-
bility matrix is computed under the confidence threshold parameter (line 1 and line 2). After putting the singletons into the
reduct, the algorithm iteratively selects the optimal attributes into the reduct and simultaneously removes their relevant
sets until the confidence discernibility matrix is empty (line 3 to line 8). The optimal semi-supervised reduct is finally gen-
erated after the algorithm terminates, which has a non-empty intersection with any non-empty element of the confidence
discernibility matrix, thus preserving the same discriminating power as all condition attributes.

Algorithm 1 A confidence discernibility matrix-based semi-supervised attribute reduction algorithm for partially
labeled data

Input:
A partially labeled data PS= (U=LUN,A=CuD, V' f) and a confidence threshold parameter J;
Output:
An optimal semi-supervised reduct P;
Transform the partially labeled data PS into a pseudo decision table TS;
Compute the confidence discernibility matrix CM(J) of TS, P +— &;
Add all singletons of CM(d) into P and remove their relevant sets from CM(J);
While CM ()2 Do
Select an attribute aop: that has the maximum frequency within CM(5);
P—Pu {aapt}§

CM(5) — CM(5) — RMZy,(aopt) //Remove the relevant set of agp;
End While
Return The semi-supervised reduct P.

LN QU RWNS

Without loss of generality, assume that a partially labeled data has |U| objects described by |C| attributes. The time cost for

constructing a confidence discernibility matrix is O(|C||U[?). In each iteration, the algorithm selects an optimal attribute and
simultaneously removes the relevant set from the confidence discernibility matrix. In the worst-case, the matrix is empty
after |C| rounds of selection. Therefore, based on the confidence discernibility matrix, the time cost for computing an optimal
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reduct is O(|C|*|UJ?). The total time cost of Algorithm 1 is O(|C||UJ*) + O(|C|*|U|?), which is approximate to O(|C|*|U|*), and the
total space cost is at most O(|C||UJ?).

3.3. Co-decision model for partially labeled data

In traditional three-way decision-based classification, learning model mainly deals with labeled data and trains only one
classifier. However, a partially labeled data usually contains few labeled data but along with a large amount of unlabeled
data. Obviously, due to the scarcity of labeled data, the learning model with one classifier is not sufficient. Co-training is
a multi-view paradigm that has been proved to be effective for partially labeled data [2]. It trains two classifiers on initial
labeled data and achieves better performance by learning from unlabeled data. Standard co-training relies heavily on two
sufficient and redundant subsets of attributes to train its classifiers. However, most real-world data have only one undivided
set of attributes. In order to use the paradigm of co-training, we need to address the problem of splitting the whole attribute
set into two attribute subsets.

Based on Algorithm 1, we can obtain an optimal reduct of partially labeled data. It can be one attribute subset for co-
training because each reduct is a jointly sufficient subset of attributes to discriminate all objects in partially labeled data.
As for the other attribute subset, the theoretically best way is to obtain all reducts of partially labeled data and then select
the reduct that has the least common attributes with the optimal reduct. However, finding all reducts is very time-
consuming, and thus the heuristic algorithm is preferred. Based on the concept of the complement set of an attribute (see
Definition 7), we can develop a heuristic algorithm to yield another distinct reduct by slightly adjusting the procedure of
Algorithm 1. More specifically, in each round of attribute selection, Algorithm 1 will select an optimal attribute and discard
the relevant set of the optimal attribute. According to Definitions 6 and 7, the relevant set of an attribute consists of the attri-
bute itself and its complement set. In fact, the attributes in the complement set can also be used to yield the reducts. There-
fore, we can use the redundancy of attributes to generate two distinct reducts. The procedure is shown in Algorithm 2.

Algorithm 2 A heuristic algorithm for distinct semi-supervised reducts

Input:

A partially labeled data PS= (U=LUN,A=CuD, V' f) and a confidence threshold parameter J;
Output:

Two distinct semi-supervised reducts P; and P5;

1: Transform the partially labeled data PS into a pseudo decision table TS;
2: Compute the confidence discernibility matrix CM(4) of TS, Core «— ¢;
3: Add all singletons in CM(J) to Core and remove their relevant sets from CM(5), P, « Core, P, < Core,

CMS — CM(8), CMS — &;

4: While CM:+#s Do

5: Select an attribute oy that has the maximum frequency within CMj;

6: Py — Py U{ayp} andCM] — CMj — RMYy, (dopt);

7: CM5 — CM3$ U OMy, (@opt); //Information for another reduct

8: End While

9: Add all singletons of CMj, into P, and remove their relevant sets from CMj;

10: While CM$+ & Do

11: Select an attribute aop that has the maximum frequency within CM%;
12: Py« Py U{dop:} andCMj «— CM3 — RMZy, (dope);

13: End While

14: Return Two semi-supervised reducts P; and P,.

In Algorithm 2, after computing the confidence discernibility matrix of the partially labeled data, the core attributes, that is,
the attributes in the singletons of the confidence discernibility matrix, are first added into each semi-supervised reduct, and
their relevant sets are removed accordingly. The algorithm, on the one hand, iteratively selects the optimal attributes from
the current confidence discernibility matrix to form the optimal reduct. On the other hand, the complement sets of the
selected optimal attributes are reserved for the other reduct. The elements after removing an attribute may become the sin-
gletons so that all singletons in the collection of the complement sets are first added into the second reduct. The algorithm
repeatedly selects the optimal attributes in the current collection of the complement sets until the collection is empty. Since
the second reduct is generated from the complement sets of all selected optimal attributes in the optimal reduct, the two
reducts will be different and diverse. For Table 2, the confidence discernibility matrix after the law of absorption is
{{as},{as},{as},{as}, {a1,as}, and two reducts {as,as,as,as,a; } and {as,a;,ds,as,as} can be generated by Algorithm 2.

As for the complexity, Algorithm 2 performs the process of Algorithm 1 twice, thus its time and space cost is almost the
same as that of Algorithm 1, i.e., O(|C|*|UJ*) and O(|C||U}).
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To efficiently learn from partially labeled data, we also need to address the problem of selecting unlabeled objects
because not all unlabeled data is beneficial to the learning model. Generally, unlabeled data can be divided into useful, use-
less, and uncertain objects in terms of their effect on the learning model. The useful objects can be used to improve the per-
formance of the learning model. Conversely, the useless objects are those that have no positive effect on the learning model,
and even make it worse. The unlabeled objects that cannot be determined to be useful or useless belong to uncertain. Intu-
itively, we can categorize each unlabeled object by the probability predicted by the learning model. However, in some cases,
objects with different decisions could result in different risks. Therefore, we should take into consideration both the predic-
tion probability and the decision risk to determine each unlabeled object.

In three-way decision, an object is determined to be positive, negative, or uncertain by using the idea of decision making
with Bayesian minimum risk. A natural idea is to use the theory of three-way decision to evaluate unlabeled objects. But
traditional three-way decision is a single view model. By integrating three-way decision with co-training, we propose a
multi-view co-decision model to categorize unlabeled objects. For each unlabeled object, the co-decision results can be
expressed as Table 3.

In Table 3, a¥ denotes view k makes the decision t for an object x, where k € {1,2},t € {P,B,N}, and P, B, and N in each cell
denote the model with two views makes a co-decision to decide the object x to be positive, boundary, or negative,
respectively.

In the proposed co-decision model, an acceptance decision is made when one of the two views confidently classifies the
object as positive or negative and the other view as boundary; a rejection decision is made when one of the two views con-
fidently determines the object to be positive and the other view to be negative; a wait-and-see decision can be only made
when both views consider the object to be boundary. For the acceptance decision, since one of the two views is confident in
its decision, the uncertain one could leverage the useful objects to improve its performance. For the rejection decision, two
views are both confident in the decision, but their predictions are contradictory. The performance may deteriorate after
learning from the divergent objects so that the co-decision model should discard this kind of unlabeled objects. For the
wait-and-see decision, both views are unconfident to make a certain decision so that the co-decision model cannot use
the uncertain unlabeled objects but keep them for further learning. For the unlabeled objects that both views are confident
to determine to be positive or negative, the co-decision model can make an acceptance decision. However, considering that
each view already has the ability to discern these objects, we do not consider them in order to simplify the learning process.

Taking into consideration both the decision and the risk, the collaborative decision costs under different actions can be
described as:

R(bp|x) = minic(pnjnjeis {R(a} %) + R(ajz\x) ;R(a}[x) + R(a?|x)},
R(bg|x) = minicgyre(sy {R(a ) + R<aj2|x> I (11)

R(bybx) = mintjeqpn)ivi{R(a} ) + R([x) },

where R(bp|x), R(bg|x), and R(by|x) denote the costs for deciding an unlabeled object x to be useful, uncertain, or useless,
respectively. According to Bayesian minimum risk decision, we can drive the following decision rules:

(P) if R(bp|x) < min{R(bg|x),R(bn|x)}, then decide x to be useful;
(B) if R(bg|x) < min{R(bp|x), R(by|x)}, then decide x to be uncertain;
(N) if R(bn|x) < min{R(bp|x), R(bg|x)}, then decide x to be useless.

With the principle of the three-way co-decision, we can examine each unlabeled object and select some useful ones to
improve the learning model. The process of the three-way co-decision model for partially labeled data can be depicted by
Algorithm 3.

Algorithm 3 uses Algorithm 2 to decompose all condition attributes into two distinct reducts, on each of which a base
classifier is trained on the initial labeled data. After initializing all parameters, the two classifiers repeatedly learn from each
other by utilizing the useful objects determined by the three-way co-decision. More specifically, in each round of co-training,
the performance of the two classifiers is evaluated on the initial labeled data, and then all unlabeled objects are grouped into
three disjoint sets using the principle of three-way decision under multi-view, i.e., the useful, uncertain, and useless sets.
When the performance of one classifier does not decrease, the classifier is retrained on a certain number of useful objects
determined by the constrained inequality; otherwise, the classifier does not change. The algorithm terminates if neither clas-
sifier is updated, and the final classifier is generated by combining the two learned classifiers.

Assume that a partially labeled data consists of |L| labeled and |N| unlabeled objects described by |C| attributes
(JU| = |L| + |N]). The time cost of training a base classifier is almost O(|C||U|). In each round of co-training, the two classifiers
learn from each other on some useful objects. In the worst case, Algorithm 3 terminates after |[N| rounds of co-training. Thus,

based on two distinct reducts of a given partially labeled data, the time cost of Algorithm 3 is at most O(|C||U|?), and its space
cost is almost O(|C||UJ).
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Table 3
Co-decision results by two views.
a3 a} a3
a} P P
a} P B P
al, N P P

Algorithm 3 Three-way co-decision model for partially labeled data

Input:
A partially labeled data PS= (U=LUN,A=CuD,V’,f) and a confidence threshold parameter J;
Output:
A combined classifier H;
1: Decompose the condition attribute set C into two distinct semi-supervised reducts P; and P, by Algorithm 2;
2: Train two base classifiers H; and H, on L using the reducts P; and P,, respectively;
3: Set the initial error rates and the sets of initial unlabeled objects for the two classifiers, t — 0, Err} « 0.5,

Errhy, — 0.5, N5; — &, Nby — &, [Nbq| < 1, |Nb,| — 1,N* = N, Update' — True;

4: While Update' = True Do
5: Test the error rates Errﬁ“ and Errg“ of the two classifiers H; and H, on L, Update”] «— False;
6: Categorize unlabeled data N' into the sets of useful objects N}f‘, uncertain objects NE,“, and useless objects N,ﬂ,“

with the principle of the three-way co-decision;
7: Label each useful object with the class that one of the two classifiers confidently predicts, and update the
unlabeled data N**' — N* — N§T;

8:  IfEri*! < Err! Then

9: Select the uncertain objects Ni{' of Hy from N5™';

10: Randomly pick a certain number of unlabeled objects N,t,f‘]] from Nf{rl] to keep the inequality
Erri*! « [Npy UNG Y| < Errf « [Nps :

11: Retrain H; on LUNS!Y, Nbi' — N UNS'Y, Update™ ' — True;

12: End If

13:  If Erry™! < Errl Then

14: Select the uncertain objects N5’ of H, from Nj*';

15: Randomly pick a certain number of unlabeled objects Nf,ﬂz from N‘Pg to keep the inequality
Erry™ s« [Np, UNG | < Errh « [Np,|;

16: Retrain H, on LUNS,, N5 N&, UNGEY, Update™! — True;

17:  EndIf '

18: t—t+1;

19: End While

20: Combine the two classifiers into a final classifier H = Combine(Hq, H;);
21: Return the combined classifier H.

3.4. Theoretical analysis on the effectiveness of co-decision model

Considering the fact that the data in practical application typically has only a naturally undivided attribute set, the co-
decision model relaxes the assumption of sufficient and redundant views in standard co-training into two distinct reducts.
From the perspective of attribute reduction, each reduct is a jointly sufficient subset of all attributes that can preserve the
overall discriminating power as the original attribute set. In addition, the algorithm for attribute reduction keeps two reducts
to share common attributes as few as possible, and each reduct describes the data in different viewpoints such that the two
trained classifiers in the co-decision model are sufficient and diverse to learn from each other. The researches in [20,49] have
shown that the process of co-training can succeed even if the two classifiers have a large diversity, which further guarantees
that the proposed co-decision model could work well for partially labeled data.

The quality of unlabeled objects is another key factor for the success of co-training. On the one hand, the co-decision
model employs the strategy of three-way decision to determine unlabeled objects to be useful, useless, or uncertain. In other
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words, the determination of each unlabeled object is not only related to the prediction probability, but also to the misclas-
sification cost. On the other hand, after categorizing unlabeled data, some useful objects are selected for each classifier only
when the estimated performance of the classifier does not deteriorate. Essentially, the principle of noise learning [1] is
implicitly embedded into the co-decision model. In general, the performance of a classification model learned from noisy
objects is constrained by the following equality:

m= ;27
€(1-2n)
where m is the number of objects for learning, € is the worst-case error rate, #( < 0.5) is an upper bound on the classifica-

tion noise rate, and c is constant with respect to learning task.
By reforming the above equality, the following utility function with respect to the classification noise rate is obtained:

(12)

L _me
(1-2n)? '

(13)

To reduce the classification noise rate, the utility function should decrease in each iteration, i.e., u*! < ut. The following
inequality can be derived:

2

m 1 (e1)? < mi(e)’. (14)
Equivalently, we have
mt+1 €t+1 < mtet., (15)
and also the following constrained condition should be satisfied:
€t+1 mt
0< o St < 1. (16)

According to (15) and (16), the inequality m‘*1et*! < m'e! and the constraints €*! < €' and m' < m**! should be met
simultaneously in each iteration.

In the proposed co-decision model, a classifier is considered for updating on some unlabeled data only when the esti-
mated error rate does not increase. Furthermore, the classifier in each iteration only selects a certain number of unlabeled
objects constrained by the inequality (15) in order to reduce (at least keep) the classification noise rate. Therefore, the co-
decision model could use unlabeled data to improve its performance effectively.

Assume there are n = |N| unlabeled objects in a given partially labeled data. The diversity of two classifiers on unlabeled
data can be described by a confusion matrix (see Table 4).

In the table, n; denotes that the classifier 1 predicts an object to be i and the classifier 2 predicts the object to be j, where i
and j belong to positive, boundary, or negative. In the first round of co-training, at most ngp + ngy and npg + nyz unlabeled
objects can be used to improve the classifier 1 and the classifier 2, respectively, so that total ngp + ngy + npg -+ nyg unlabeled
objects could be utilized by the co-decision model. After each round of co-training, some uncertain unlabeled objects may
become useful. As a result, the co-decision model could at most use ngp + ngy + npg + Nnp + N Unlabeled objects to improve
its performance.

4. Empirical analysis

The purpose of the experiments is twofold. One is to verify the effectiveness of the proposed attribute reduction algorithm
for partially labeled data, i.e., Algorithm 1. The other is set out to show the performance of the proposed model compared to
other semi-supervised learning models for partially labeled data. All experiments were carried out on a computer with Win-
dows 10 operating system, Intel Xeon (R) CPU E5-2670 v3@2.30 GHz processor, and 32 GB Memory.

4.1. Investigated data sets and experiment design

Ten UCI data sets' are considered in the experiments, and the details are summarized in Table 5.

In Table 5, the second column denotes the number of condition attributes, in which the number of numerical attributes is
listed in the brackets. While the number of objects and classes in each data set is shown in the third and fourth columns,
respectively. The fifth column indicates whether the data set has missing values or not, and the last column reports the num-
ber of inconsistent objects within the data set.

To facilitate the experiments, missing values in each data set are all completed by the mean (or mode) of the correspond-
ing attribute. While the numerical attributes in each data set are discretized into categorical attributes since the proposed
model is primarily developed for partially labeled data with categorical attributes. Due to the simplicity and popularity, the
technique of equal frequency binning with three bins is employed to discretize numerical attributes into categorical ones [9].

1 http://archive.ics.uci. edu/ml.
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Table 4
Diversity of two classifiers on unlabeled data.

H, positive H, boundary H, negative

H; positive Npp nNpp npy
H; boundary nNgp nNpg npy
H; negative Nnp Nng NN
Table 5
Investigated data sets.
Data sets IC| U] |U/D| Missing Inconsistency
credit-rating(credit) 15(6) 690 2 Y 8
german-credit(german) 20(7) 1000 2 N 2
gesture-phase-a2va3(gesturel) 32(32) 1260 5 N 27
gesture-phase-b1va3(gesture2) 32(32) 1069 5 N 39
horse-colic(horse) 22(7) 368 2 Y 0
kdd-synthetic-control(kdd) 60(60) 600 6 N 0
parkinson-speech-train(parkinson) 26(26) 1040 2 N 57
sonar(sonar) 60(60) 208 2 N 0
tic-tac-toe(ttt) 9(0) 958 2 N 0
wine(wine) 13(13) 178 3 N 0

In the experiments, 10-fold cross-validation is employed. More specifically, in each fold, 90% of objects are selected for the
training set, and the remaining objects are used as the test set. For a given label rate, the training set is further randomly
partitioned into a set of labeled objects L and a set of unlabeled objects N. For instance, if there is a training set with
1000 objects, under the label rate 0 = 10%, a labeled set of 100 objects and an unlabeled set of 900 objects will be generated
in the experiments.

4.2. Attribute reduction for partially labeled data

To test the effectiveness of the proposed attribute reduction algorithm for partially labeled data, we conduct the exper-
iments on all selected data sets under the label rate 0 = 10%. In the proposed algorithm, a confidence parameter is needed to
generate the discernibility matrix, which could provide the adaptability to noise. The higher the confidence threshold, the
lower the degree of tolerance to noise. The confidence discernibility matrix degenerates into traditional discernibility matrix
when the confidence threshold is set to 1. In practice, the setting for this parameter is task-specific and is suggested to select
from the range (0.5, 1). For simplicity, we empirically set the confidence parameter § to 0.75 in all experiments. The reduct
information of all selected data sets is shown in Table 6.

In the table, we collect the reducts in 10-fold cross-validation. The statistical results, including the maximum, minimum,
and average numbers of attributes in the reducts, are listed in the third to fifth columns. Besides, we also record the real
reduct information for comparison, i.e., the reduct under the label rate 6 = 100%. The difference between the semi-
supervised reduct and the ground-truth supervised reduct is indicated in the last column, i.e., approximate rate, which is
computed by the average number of attributes in the ground-truth reduct over that in the semi-supervised reduct.

In Table 6, it is evident that some of the attributes are removed from each data set after semi-supervised attribute reduc-
tion. By viewing the experimental results, we find that, in every fold of cross-validation, some attributes are excluded from
the reducts, but at the same time some attributes are always included in the reducts. The main reason for this may be that
these attributes are completely irrelevant or strongly relevant to classification task. Compared with the ground-truth reduct,
the proposed algorithm achieves an approximate rate of 73% on all data sets. It is noteworthy that the semi-supervised
reduct of data set “ttt” under the label rate 6 = 10% is exactly the same as the ground-truth supervised reduct obtained
under the label rate 0 = 100%. These results demonstrate the potential of the proposed attribute reduction algorithm for par-
tially labeled data.

4.3. The effectiveness of the co-decision model

The proposed co-decision is compared with classic semi-supervised methods, including self-training and co-training.
Original self-training [20] is a self-taught algorithm with only one view. It trains a base classifier on initial labeled data
and iteratively selects some confident unlabeled data with their predictions to retrain the base classifier until the stop con-
dition is met. Co-training is a multi-view paradigm in disagreement-based methods, but its constraint on view is hard to
satisfy because most of data sets do not have naturally partitioned views. Fortunately, the work in [20] showed that co-
training can still benefit from unlabeled objects by randomly splitting the original attribute set into two subsets. Thus, in
our experiments, we split the attributes in each data set into two disjoint sets with almost equal size. For fair comparison,

512



C. Gao et al. Information Sciences 544 (2021) 500-518

Table 6

Results of semi-supervised attribute reduction under the label rate 6 = 10%.
Data sets Raw Semi-supervised reduct Ground-truth reduct Approximate rate

Min Max Average Min Max Average

credit 15 12 13 12.93 9 11 10.70 0.83
german 20 12 14 13.30 10 11 10.59 0.80
gesturel 32 23 25 24.20 15 19 16.93 0.70
gesture2 32 22 25 23.60 14 17 15.17 0.64
horse 22 11 15 13.67 8 10 8.99 0.66
kdd 60 12 14 13.10 8 9 8.90 0.68
parkinson 26 19 20 19.80 15 16 15.65 0.79
sonar 60 8 9 8.23 6 7 6.57 0.80
ttt 9 8 8 8.00 8 8 8.00 1.00
wine 13 9 11 9.97 4 6 5.21 0.52
Avg. 28.9 13.6 15.4 14.68 9.70 114 10.67 0.73

self-training with two random split views is also investigated. Moreover, we record the initial performance of semi-
supervised methods for comparison. The settings for all selected methods are shown in Table 7.

In Table 7, ST-1View and ST-2Views denote the methods of self-training with one view and two views, respectively. While
CT-2Views and CD-2Views stand for the standard co-training and the proposed co-decision method, respectively. To learn
from partially labeled data, ST-1View, ST-2Views, and CT-2Views require the confidence threshold parameters to determine
useful unlabeled objects. The proposed CD-2Views also needs to generate the confidence discernibility matrix based on a
confidence threshold and categorize unlabeled objects by a pair of threshold parameters, while the latter is calculated from
practical risk functions and task-specific. For simplicity and fair comparison, we use the same parameters
(6 =0.75,00 = 0.75, = 0.55) in all experiments. More specifically, ST-1View and ST-2Views will select the unlabeled objects
whose confidence levels are greater than o, and CT-2Views will use the unlabeled objects when the predicted confidence of
one classifier is greater than « but the other classifier is less than . While CD-2Views will use the confidence threshold § to
generate the discernibility matrix and the threshold parameters o and p to determine the useful, uncertain, and unuseful
unlabeled objects, respectively.

To investigate the effectiveness of the proposed method, two different base classifiers, namely J48 and Naive Bayes, are
utilized in the experiments. When the label rate is set to 0 = 10%, the results of the selected methods on all data sets are
shown in Tables 8 and 9.

In Tables 8 and 9, the columns of “Initial” and “Final” denote the error rates of the selected method learned from initial
labeled data and further improved by unlabeled data, respectively, and their results are averaged from 10-fold cross-
validation. The column of “Improv.” indicates the degree of improvement on performance, which can be computed by divid-
ing the performance gain over the initial performance, and the column of “Max Performance” shows the error rates of the
classifier trained on all training data with true labels, i.e., data set under the label rate 0 = 100%. The best results among
the selected methods are all boldfaced. The row of “Avg.” in the table shows the average error rates of the selected methods
across all data sets. Note that the performance of multi-view models is calculated by averaging all base classifiers.

From Tables 8 and 9, it is observed that, under the label rate 6 = 10%, the performance of the selected algorithm is sig-
nificantly different. Self-training with one view (ST-1View) achieves the best performance improvement on some data sets,
such as “gesture2” (8.51%) in Table 8, “wine” (16.63%) in Table 9, but its performance become worse on most of other data
sets. Self-training with two views (ST-2Views) benefits from the framework of multi-view and obtains relatively stable
results, while the final performance still deteriorates after learning from unlabeled data on most data sets. Co-training with
two views (ST-2Views) can learn from each other so that it could improve its performance by exploiting unlabeled data.
However, it is also shown that, on some data sets, the performance of ST-2Views is almost unchanged or even become worse.
While co-decision with two views (CD-2Views), by carefully selecting useful unlabeled data, gains a performance improve-
ment on most data sets. By averaging all results on the selected data sets, the final performance of CD-2Views using J48 and
Naive Bayes is improved by 4.09% and 6.00%, respectively. Although the performance of ST-1View is also enhanced by 0.67%
and 1.70%, respectively, its final performance is much worse than that of CD-2Views.

To fully evaluate the potential of the proposed model, some experiments under different label rates are also carried out.
Their results are shown in Figs. 2 and 3. Note that “Max” denotes the performance of the classifier under the label rate of
100%.

As shown in Figs. 2 and 3, CD-2Views achieves impressive performance after capitalizing on unlabeled data. Since ST-
1View is a single view model, unlabeled data can be only evaluated by itself. As a result, ST-1View obtains poor results
on most data sets. For example, on data sets “german” and “horse”, ST-1View under higher label rate even gets worse per-
formance. One reason for these results may be the rarity of initial labeled data. Since the labeled objects are selected limit-
edly and randomly in the experiments, the generalization ability of the trained base classifier is relatively weak, resulting in
the unstable performance, especially when the selected objects are not informative and representative. Moreover, the quality
of unlabeled data used for learning has a considerable effect on performance. The self-labeled objects are inevitably misla-
beled, which further reduces the performance of ST-1View. ST-2Views is a multi-view model. But its final performance is still
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Table 7

Settings for all selected methods.
Methods View generation Object selection
ST-1View Original attribute set Confidence level
ST-2Views Random split attribute subsets Confidence level
CT-2Views Random split attribute subsets Confidence level
CD-2Views Attribute reduction Minimum risk

Z?/l:fizgse performance of the selected methods using J48 classifier (0 = 10%).
ST-1View ST-2Views CT-2Views CD-2Views Max
Initial ~ Final Improv. Initial  Final Improv. Initial  Final Improv. Initial ~ Final Improv. performance
credit 0.2086 0.1948 6.61% 02326 0.2354 -1.18% 0.2326 0.2275 2.18% 02074 0.1919 7.48% 0.1592

german 03335 03376 -1.23% 03413 03466 —1.55% 0.3413 0.3383 0.88% 03334 03319 045% 03319
gesturel 0.5341 0.5468 -2.38% 0.5302 0.5413 -0.21% 0.5302 0.5452 -0.03% 0.5294 0.5167 2.40% 0.4546
gesture2 0.6043 0.5528 8.51% 0.5790 0.5922 -2.27% 0.5790 0.5875 -1.46% 0.5837 0.5552 4.88% 03772

horse 0.2353 0.2358 -0.22% 0.2634 0.2615 0.72% 0.2626 0.2626 0.00% 0.2351 0.2329 091% 0.1948
kdd 03967 0.3983 -042% 0.3733 03750 0.45% 0.3868 0.3850 0.46% 0.3833 0.3367 12.17% 0.1440
parkinson 0.4606 04615 -0.21% 04621 04702 -1.74% 04615 0.4615 0.00% 0.4567 0.4525 0.93% 0.4039
sonar 03773 0.3822 -1.30% 0.4053 03977 1.86% 03949 0.3949 0.00% 0.3782 0.3729 1.40% 0.2225
ttt 03178 03221 -1.34% 0.3425 03389 1.07% 0.3425 0.3453 -0.82% 03199 0.3143 1.76% 0.1426
wine 03018 0.3058 -1.33% 0.2733 0.2728 0.19% 0.2733 0.2819 -3.13% 02993 0.2737 8.54% 0.0975
Avg. 03770 0.3738 0.67% 0.3803 03832 -0.27% 03805 0.3830 -0.19% 03726 0.3579 4.09% 0.2528
Table 9
Average performance of the selected methods using Navie Bayes classifier (0 = 10%).
ST-1View ST-2Views CT-2Views CD-2Views Max
Initial ~ Final Improv. Initial  Final Improv. Initial  Final Improv. Initial  Final Improv. performance
credit 0.1464 0.1580 -7.92% 0.1464 0.1435 1.98% 0.1526 0.1464 4.06% 0.1457 0.1407 3.40% 0.1374

german 03137 0.3320 -5.83% 0.2890 0.2900 -0.35% 02890 0.2960 -2.42% 0.3000 0.3040 —1.33% 0.2554
gesturel 04808 0.4857 -1.02%  0.4794 0.4786 0.17% 0.4794 0.4762 0.66% 0.4785 0.4508 5.80% 0.4229
gesture2 0.6334 0.6268 1.04% 0.6313 0.6315 0.00% 0.6373 0.6319 0.84% 0.6303 0.6118 2.94% 0.5605

horse 0.2474 0.2935 —18.63% 0.2396 0.2365 1.28% 0.2366 0.2366 0.00% 0.2355 0.2258 4.15% 0.2077
kdd 0.1600 0.1473 7.94% 0.1543 0.1517 1.73% 0.1567 0.1507 3.83% 0.1403 0.1050 25.18% 0.0707
parkinson 0.4673 0.4692 -0.41%  0.4702 0.4615 1.84% 0.4702 04712 -0.20% 04615 0.4558 1.25% 03912
sonar 0.3467 0.4419 -27.47% 0.3474 0.3360 3.29% 03412 03412 0.00% 0.3319 0.3267 1.58% 0.2286
ttt 03704 0.3621 -2.24% 03710 0.3836 —3.38% 0.3810 0.3700 2.90% 0.3721 0.3564 4.21% 0.2996
wine 0.1308 0.1091 16.63%  0.1356 0.1412 —4.10%4 0.1456 0.1356 6.87% 0.1124 0.0980 12.85% 0.0515
Avg. 0.3297 03426 1.70% 0.3264 0.3254 0.25% 0.3289 0.3256 1.65% 0.3208 0.3075 6.00% 0.2626

unsatisfactory. In fact, the classifiers in ST-2Views are all self-taught. Furthermore, ST-2Views uses the randomly split attri-
bute subsets to train its base classifiers. These reasons could attribute to the disappointing performance of ST-2Views.
Although the classifiers in CT-2Views could use unlabeled data to improve the performance by learning from their counter-
parts, the subspaces for two classifiers are also randomly generated by halving the whole attribute set. Thus, the quality of
the two classifiers cannot be guaranteed. As a result, some mislabeled objects may be selected by the two classifiers for their
counterparts and the final performance of CT-2Views is undoubtedly poor. It can be verified by data sets “credit”, “horse”,
and “ttt”. Different from ST-2Views and CT-2Views, CD-2Views trains its base classifiers with reduct subspaces, each of
which is a jointly sufficient subset of attributes that keeps the same level of discriminating power as the whole attribute
set. Thus, the quality of the base classifiers in CD-2Views is much better than that of ST-2Views and CT-2Views. In addition,
the performance of semi-supervised models is closely related to the unlabeled data used in the training stage. On the one
hand, CD-2Views employs the theory of three-way decision to categorize unlabeled data in a collaborative way. Only the
useful unlabled objects determined by the co-decision model are selected to learn, while the useless unlabeled objects will
be directly abandoned by the model. On the other hand, the eligible unlabeled objects in each round of co-training are fur-
ther tested by the effect on the performance of the classifier to learn. The training set of each classifier is updated only when
the unlabeled objects to learn bring a positive effect on performance. With the above constraints, CD-2Views could use the
really helpful unlabeled objects to improve the performance. On data sets “credit”, “gesture2” and “parkinson”, CD-2Views
under some label rates achieves a slightly worse performance. These results may be due to the strict constraint on the num-
ber of useful unlabeled objects in each round of co-training so that the performance improvement is confined. However, on
most of other data sets, CD-2Views under different label rates yields a significant performance improvement. These exper-
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Fig 2. Average performance of the selected methods under different label rates (J48).

imental results demonstrate that CD-2Views could effectively make use of unlabeled data to improve the performance, indi-
cating the potential of the proposed model to learn from partially labeled data.
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Fig 3. Average performance of the selected methods under different label rates (Naive Bayes).

It is worth mentioning that, on some data sets, like “horse” and “parkinson” with J48, and “credit” and “german” with
Naive Bayes, the performance of the selected methods decreases as the label rate increases. One possible explanation is that
the scale of labeled data is not sufficient to train a classifier with good generalization ability. Besides, the methods cannot
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obtain satisfactory results when the initial labeled data is not representative. It is also impressive that the selected methods,
especially the proposed one, achieve even better results than the maximum performance of data set, i.e., a trained classifier
with the label rate 0 = 100%. These findings are understandable because these methods benefit from unlabeled data and
multi-view. These results confirm the fact that unlabeled data are helpful for improving learning performance.

5. Conclusions

Most real-world applications come with few labeled data and a large amount of unlabeled data. While the way of select-
ing and using informative unlabeled objects is of great importance to learning model for partially labeled data. In this paper,
we develop the concept of the confidence discernibility matrix, based on which two semi-supervised attribute reduction
algorithms are presented. To effectively learn from partially labeled data, we also introduce the co-decision model by incor-
porating the theory of three-way decision into co-training. Furthermore, the principle of noise learning is employed to con-
duct the selection of useful unlabeled data. The experimental results on UCI data sets show that the performance of our
proposed model is promising when compared with the representatives. It should be noted that the proposed model focuses
on partially labeled data with only categorical attributes so that the numerical attributes must be discretized. An extended
model for partially labeled data with both categorical and numerical attributes is expected in the future. Also, the uncer-
tainty analysis of the proposed model is our future work.
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