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The notion of fuzzy concept is proposed to deal with object-attribute data with L-values 
(where L is a truth-value structure). One disadvantage of fuzzy concept is that a fuzzy 
context contains a considerable number of fuzzy concepts. This makes it very time-
consuming to generate a fuzzy concept lattice, and it is very difficult to find important 
concepts. In addition, the fuzzy concept shows great strictness when applying to crisp 
sets. To overcome these problems, we propose several new kinds of variable-precision 
concepts within L-contexts in this paper. First, we present two kinds of variable-precision 
two-way (VP2W) concepts: α-positive concept and β-negative concept. The family of each 
kind of VP2W concept forms a complete lattice. Next, considering both the positive and 
negative parts, we investigate two kinds of variable-precision three-way (VP3W) concepts: 
(α, β)-object-induced three-way concept and (α, β)-attribute-induced three-way concept. 
The family of each kind of VP3W concept forms a complete lattice. Then, we study 
the relationships between VP2W concepts and VP3W concepts. The results show that 
VP3W concept lattices can be directly generated by VP2W concept lattices. Finally, the 
experiments are preformed to verify the effectiveness of our model.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Formal concept analysis (FCA) introduced by Wille [43] provides an effective way to unfold concepts from the context of 
bivalent data. Considering that human concepts have a graded structure (since whether a concept is applicable to a given 
object is a matter of degree instead of a yes-or-no question), L-concept analysis (LCA, or fuzzy concept analysis) generalizes 
FCA from the perspective of fuzzy set and the bivalent formal context is generalized to the L-context. An L-context consists 
of a universe of objects, a universe of attributes, and an L-relation between the two universes. The notation L represents 
a truth-value structure, like a complete lattice [9,10] or a residuated lattice [4,5]. An L-concept is a special pair of L-sets 
that mutually determine each other by derivation operators. The first paper relating to LCA is contributed by Burusco and 
Fuentes-González [9], followed by contributions by Pollandt [34] and Belohlavek [4]. The difference between their work is 
twofold: The approach proposed by Burusco and Fuentes-Gonzá adopts complete lattices as the truth-value structure while 
the latter uses residuated lattices; concepts of the former are defined based on t-conorms while the latter defines concepts 
by residual implications. Since then, LCA has been deeply researched and widely applied in various fields [1,2,5,10,13,15,21].
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One disadvantage of LCA is the considerable number of generated concepts for a given L-context. This makes it very 
time-consuming to generate a fuzzy concept lattice. Even though a variety of works were proposed to reduce the number 
of concepts [22,28,30–32,41,52], it is still very difficult to figure out important concepts from a set of L-concepts. On the 
other hand, an L-concept is a pair of L-sets. When it applies to crisp sets, it lays strong requirements on a pair of crisp sets 
〈O , A〉 to be an L-concept: For all o ∈ O and a ∈ A they must be totally related; for o /∈ O there should exist an attribute a
which is totally not related to o, and for a /∈ A there should exist an object which is totally not related to a (see Section 2). 
To overcome these problems, we propose several new kinds of variable-precision concepts within L-contexts in this paper.

In the framework of FCA, a concept is represented by a set of objects (called extent) and a set of attributes (called 
intent). The objects in the extent share all attributes in the intent, and the attributes in the intent are shared by all objects 
in the extent at the same time. This leads to a preference model of focusing only on commonly-shared information or 
positive information. In some cases, such as elections, we need not only positive information (such as supporters), but also 
negative information (such as opponents) for making decisions to promote the next step. To overcome this problem, Qi, Wei, 
and Yao [36] proposed three-way concept analysis (3WCA) by combining FCA with three-way decision theory [17,18,24,44,
46–48]. With 3WCA, different three-way concepts were investigated [14,19,25,36–38,42,51], for example, the OE concept 
and AE concept [36], the OEO concept and AEP concept [42], and the OEP concept and OED concept [51]. Note that the 
aforementioned three-way concepts were studied in complete formal contexts. Investigations of three-way concepts related 
to incomplete formal contexts (that is, according to current information, the information between some of the objects and 
attributes is unknown) can be found in [8,11,26,27,36,35,45]; these excellent works are omitted, since we only focus on 
complete contexts in the current paper.

Considering the respective advantages of LCA and 3WCA, it is natural to combine them together, which leads to the 
research of L-three-way concept analysis (L3WCA). Following this idea, He, Wei, and She [16] generalized OE concept and 
AE concept to LOE concept and LAE concept in L-contexts. Considering both positive and negative attributes, Bartl and 
Konecny [3] proposed two kinds of L-three-way concepts based on antitone and isotone concept-forming operators. Within 
the neutrosophic context, Singh [39] proposed the three-way fuzzy concept. The meaning of “three”, however, is differ-
ent from that in [36]. A three-way fuzzy concept of Singh’s is a pair of neutrosophic sets, while a neutrosophic set N
is characterized by a triple of functions (T N , IN , F N) representing truth-membership function, indeterminacy-membership 
function, and falsity-membership function, respectively. Thus, the number “three” means that both the extent and intent of 
a three-way fuzzy concept are represented by “three” membership functions.

For L-three-way concept, it has similar disadvantages as L-concept, that is, a large number of generated concepts and 
the strict requirements when applying to crisp sets. In order to overcome these problems, we introduce a new method to 
deal with three-way concepts in L-contexts and propose the so-called variable-precision three-way (VP3W) concepts. The 
key idea of “variable-precision” is not first-born in this paper. Ma, Zhang, and Cai [29] introduced the notion of variable 
threshold concept in fuzzy contexts. Zhang, Ma, and Fan [49] introduced three kinds of variable threshold concepts in L-
contexts, namely, crisp-crisp, crisp-fuzzy, and fuzzy-crisp variable threshold concepts. Based on the notion of α-satisfaction 
put forward by Pernelle [33], Ventos and Soldano [40] gave an overview of α-Galois lattice in a general sense without 
concrete formal contexts. Compared to these methods, the advantages of VP3W concepts proposed in current paper are 
listed as follows:

• The definition of VP3W concepts is closer to three-way concepts in form. In fact, the (1,0)-object-induced three-way 
concept is the OE concept and the (1,0)-attribute-induced three-way concept is the AE concept.

• The complexity of generating a VP3W concept lattice for an L-context is much lower than that of generating an L-three-
way concept lattice [16] which has the same complexity as that of generating a three-way concept lattice [36].

• Due to the flexibility of the thresholds α and β , the VP3W concepts show more flexibility in applications. Besides, the 
important concepts can be found by setting the thresholds reasonably.

The rest of this paper is organized as follows. Section 2 is a brief review of LCA and indicates the strictness of L-concept 
when applying to crisp sets. Section 3 introduces the notion of variable-precision two-way (VP2W) concept, namely, α-
positive concept and β-negative concept and investigates some related properties of them. Section 4 presents the main 
results: the study of VP3W concepts and the generalization of the main theorem of concept lattice which characterizes the 
hierarchical structure of VP3W concepts. Section 5 analyzes the relationships between VP2W concepts and VP3W concepts. 
In Section 6, we conduct several experiments to verify the effectiveness of our model. The last section concludes this paper.

2. L-concept analysis

This section recalls some basic notions related to LCA and analyzes a deficiency of L-concept when applying to crisp sets.
A complete residuated lattice L is a structure (L, ∨, ∧, ⊗, →, 0L, 1L) such that (1) (L, ∨, ∧, 0L, 1L) is a complete lattice 

with the greatest element 1L and the least element 0L , (2) (L, ⊗, 1L) is a commutative monoid,1 and (3) (⊗, →) is an 

1 A commutative monoid is a triplet (L, ⊗, 1L) consisting of a set L, a binary operation ⊗ on L, and an identity element 1L of L such that for a, b, c ∈ L, 
(1) a ⊗ b = b ⊗ a, (2) a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c, and (3) a ⊗ 1L = 1L ⊗ a = a.
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adjoint pair2 on L. In the rest of this paper, the notation L always denotes a complete residuated lattice. With L, one can 
establish the following notions: An L-set Ã of a universe O  B is a mapping Ã : O  B −→ L with Ã(o) interpreting as “the 
truth degree of o belonging to Ã”. The set of all L-sets in O  B is denoted by L OB . An L-context is a triplet K = (O  B, AT , R̃)

where O  B is a set of objects, AT is a set of attributes, and R̃ is an L-relation from O  B to AT , that is, a binary mapping 
R̃ : O  B × AT −→ L with R̃(o, a) interpreting as “the truth degree of object o having attribute a”. Some special cases of 
L-contexts are listed as follows:

(1) If L = {0, 1}, then an L-context is a formal context.
(2) If L = [0, 1], then an L-context is a fuzzy context.
(3) If L = {[a−, a+] | 0 ≤ a− ≤ a+ ≤ 1}, then an L-context is an interval-valued fuzzy context.
(4) If L = {(u, v) | 0 ≤ u, v ≤ 1, 0 ≤ u + v ≤ 1}, then an L-context is an intuitionistic fuzzy context.

Bělohlávek [4,5,7] generalized formal concepts to L-concepts by introducing a pair of operators (∗̃, ̃∗) defined by residual 
implication.

Definition 1. [4,5,7] Given an L-context K = (O  B, AT , R̃), a pair of fuzzy subsets 〈Õ , Ã〉 with Õ ∈ L OB and Ã ∈ L AT is an 
L-concept if Õ ∗̃ = Ã and Ã∗̃ = Õ , where

Õ ∗̃(a) =
∧

o∈O B

(
Õ (o) → R̃(o,a)

)
, a ∈ AT , (1)

Ã∗̃(o) =
∧

a∈AT

(
Ã(a) → R̃(o,a)

)
, o ∈ OB. (2)

According to basic rules of fuzzy logic, the value of Õ ∗̃(a) is interpreted as the truth degree of the proposition “a is 
shared by all objects from Õ ” and Ã∗̃(o) the truth degree of the proposition “o has all attributes from Ã”. The following 
results show the strictness of L-concepts applied to crisp sets.

Theorem 1. Given an L-context K = (O  B, AT , R̃) with O  ⊆ O  B and A ⊆ AT , 〈O , A〉 is an L-concept if and only if

(1) for each o ∈ O and each a ∈ A, R̃(o, a) = 1L ;
(2) for a /∈ A, there exists an o ∈ O such that R̃(o, a) = 0L ;
(3) for o /∈ O , there exists an a ∈ A such that R̃(o, a) = 0L .

Proof. For O  ⊆ O  B and a ∈ AT , it follows from Eq. (1) that

O ∗̃(a) =
∧

o∈O B

(
O (o) → R̃(o,a)

)

=
∧
o∈O

(
O (o) → R̃(o,a)

) ∧
∧

o∈O c

(
O (o) → R̃(o,a)

)

=
∧
o∈O

(
1L → R̃(o,a)

) ∧
∧

o∈O c

(
0L → R̃(o,a)

)

=
∧
o∈O

R̃(o,a). (The properties of → can be found in [7].)

In a similar way, one can prove that A∗̃(o) = ∧
a∈A R̃(o, a) for A ⊆ AT and o ∈ O  B . Suppose 〈O , A〉 is an L-concept, then 

O ∗̃ = A. Accordingly, the following conditions must be satisfied:

(1) for a ∈ A, 
∧

o∈O R̃(o, a) = 1L , namely, R̃(o, a) = 1L , ∀o ∈ O ;
(2) for a /∈ A, 

∧
o∈O R̃(o, a) = 0L , namely, there exists an o ∈ O such that R̃(o, a) = 0L .

Similarly, since A∗̃ = O , the following hold:

(1) for o ∈ O and a ∈ A, R̃(o, a) = 1L ;
(2) for o /∈ O , there exists an a ∈ A such that R̃(o, a) = 0L .

2 An adjoint pair (⊗, →) is a pair of binary operations on L satisfying the property that a ⊗ b � c ⇔ a � b → c, for all a, b, c ∈ L. The operation ⊗ is 
called a multiplication on L and → is called a residuum or a residual implication on L.
109



X. Zhao, D. Miao and H. Fujita International Journal of Approximate Reasoning 130 (2021) 107–125
Table 1
A fuzzy context.

a b c d e f

o1 0.35 1 0.10 0.90 0.90 0
o2 0.80 0.90 1 0.40 0.85 0
o3 0.25 0.90 0.50 0.80 0.65 0.80
o4 1 0.85 0.75 0.30 0.20 0.45

The converse is obvious. �
Theorem 1 shows the strictness of L-concept when applying to a pair of crisp sets 〈O , A〉: (1) For o ∈ O and a ∈ A, they 

must be 1L -related; (2) for o /∈ O , there should exist a 0L -related attribute a; (3) for a /∈ A, there should exist a 0L -related 
object o. On the other hand, one may face a large number of L-concepts generated from an L-context. This is not helpful for 
finding important concepts. To overcome these problems, we investigate several new kinds of variable-precision concepts in 
the sequel.

3. Variable-precision two-way concepts

This section introduces two kinds of VP2W concepts: α-positive concept and β-negative concept. Our aim in this section 
is to prepare necessary notions and facts to obtain VP3W concepts (which will be the subject of the next section).

3.1. α-positive concept

In some cases, people expect concepts to be determined by “some important attributes”, namely, by a set of attributes 
which are key to the concepts. For o ∈ O  B and a ∈ AT , if R̃(o, a) ≥ α, we call a an α-positive attribute of o and o an 
α-positive object of a, where α ∈ L. This leads to the following definition of α-positive operator.

Definition 2. Given an L-context K = (O  B, AT , R̃) and α ∈ L, for O  ⊆ O  B and A ⊆ AT , we define

O ∗α = {a ∈ AT | R̃(o,a) ≥ α,∀o ∈ O } (3)

the set of α-positive attributes shared by each object in O with a degree not less than α, and

A∗α = {o ∈ OB | R̃(o,a) ≥ α,∀a ∈ A} (4)

the set of α-positive objects sharing all attributes in A with a degree not less than α. The operator ∗α is called the α-
positive operator.

Obviously, it holds that

O ∗α =
⋂
o∈O

R̃α(o), A∗α =
⋂
a∈A

R̃α(a) (5)

where R̃α(o) = {a ∈ AT | R̃(o, a) ≥ α} and R̃α(a) = {o ∈ O  B | R̃(o, a) ≥ α}.

Remark 1. If K is a fuzzy context, namely, L = [0, 1], then the operators defined in Eqs. (3) and (4) degenerate into those 
in [29].

Example 1. A fuzzy context is given in Table 1, where O  B = {o1, o2, o3, o4}, AT = {a, b, c, d, e, f }, and R̃ is a fuzzy relation. 
Let O  = {o1, o2}, A = {b, e}, and α = 0.8. By computation, we have

O ∗0.8 = {b, e}, A∗0.8 = {o1,o2}. (6)

Proposition 1. The pair of operators (∗α, ∗α) forms a Galois connection between (2OB , ⊆) and (2AT , ⊆), namely,

(1) O ∗α
2 ⊆ O ∗α

1 whenever O 1 ⊆ O 2 ⊆ O  B;
(2) A∗α

2 ⊆ A∗α
1 whenever A1 ⊆ A2 ⊆ AT ;

(3) O  ⊆ O ∗α∗α for O  ⊆ O  B;
(4) A ⊆ A∗α∗α for A ⊆ AT .

Proof. (1) Suppose O 1 ⊆ O 2 ⊆ O  B and a ∈ O ∗α
2 , then R̃(o, a) ≥ α, ∀o ∈ O 2. Considering that O 1 ⊆ O 2, it follows R̃(o, a) ≥ α, 

∀o ∈ O 1, which means a ∈ O ∗α . Therefore, O ∗α ⊆ O ∗α .
1 2 1
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(2) Similarly, one proves that A∗α
2 ⊆ A∗α

1 for A1 ⊆ A2 ⊆ AT .
(3) For O  ⊆ O  B , one obtains

O ∗α∗α = {o ∈ OB | R̃(o,a) ≥ α,∀a ∈ O ∗α }
by Eq. (4). On the other hand, for a given o ∈ O , it follows that R̃(o, a) ≥ α for a ∈ O ∗α based on Eq. (3). This means 
o ∈ O ∗α∗α , or equivalently, O  ⊆ O ∗α∗α .

(4) In a similar way, one proves that A ⊆ A∗α∗α for A ⊆ AT . �
Properties in Items (1) and (2) exhibit the monotonic properties of ∗α . Properties in Items (3) and (4) illustrate the 

relationship between a set and the derived set by applying ∗α twice. These properties ensure the pair of operators (∗α, ∗α)

to be a Galois connection.

Proposition 2. For O , O i ⊆ O  B, A, Ai ⊆ AT (i ∈ � where � is an index set), and α, α1, α2 ∈ L, the following properties hold:

(1) O  ⊆ A∗α ⇔ A ⊆ O ∗α ;
(2) O ∗α = O ∗α∗α∗α , A∗α = A∗α∗α∗α ;
(3)

(⋃
i∈� O i

)∗α = ⋂
i∈� O ∗α

i , 
(⋃

i∈� Ai
)∗α = ⋂

i∈� A∗α
i ;

(4)
(⋂

i∈� O i
)∗α ⊇ ⋃

i∈� O ∗α
i , 

(⋂
i∈� Ai

)∗α ⊇ ⋃
i∈� A∗α

i ;
(5) O ∗α2 ⊆ O ∗α1 , A∗α2 ⊆ A∗α1 for α1 ≤ α2 .

Proof. (1) Suppose O  ⊆ A∗α with O  ⊆ O  B and A ⊆ AT . For a ∈ A, it follows from Eq. (4) that R̃(o, a) ≥ α for each o ∈ O , 
which means a ∈ O ∗α . Therefore, A ⊆ O ∗α . Similarly, one proves that A ⊆ O ∗α implies O  ⊆ A∗α .

(2) For O  ⊆ O  B , since O  ⊆ O ∗α∗α by Proposition 1(3), it follows that O ∗α∗α∗α ⊆ O ∗α by Proposition 1(1). On the other 
hand, let A = O ∗α . Then, A ⊆ A∗α∗α by Proposition 1(4), namely, O ∗α ⊆ O ∗α∗α∗α . Therefore, we have O ∗α = O ∗α∗α∗α . 
The other equation is similarly proved.

(3) For O i ⊆ O  B , the following equivalent statements hold:

a ∈
( ⋃

i∈�

O i

)∗α

⇔ R̃(o,a) ≥ α,∀o ∈
⋃
i∈�

O i

⇔ R̃(o,a) ≥ α,∀o ∈ O i,∀i ∈ �

⇔ a ∈ O ∗α
i ,∀i ∈ �

⇔ a ∈
⋂
i∈�

O ∗α
i

which means (
⋃

i∈� O i)
∗α = ⋂

i∈� O ∗α
i . The other one is similarly proved.

(4) Since 
⋂

i∈� O i ⊆ O j for all j ∈ �, it follows that O ∗α
j ⊆ (

⋂
i∈� O i)

∗α , ∀ j ∈ �, moreover, 
⋃

i∈� O ∗α
i ⊆ (

⋂
i∈� O i)

∗α . The 
other one is similarly proved.

(5) It is obvious. �
Item (1) is an equivalent statement of Galois connection. From Item (2), it can be found that the result of applying ∗α

three times in succession is the same as the result of applying it once. Properties in Items (3) and (4) indicate that the 
distributive property is applicable to set union but not to set intersection. Properties in Item (5) show the monotonicity 
about the threshold. With a pair of α-positive operators, one can define a new kind of variable-precision concept.

Definition 3. For O  ⊆ O  B , A ⊆ AT , and α ∈ L, if O ∗α = A and A∗α = O , then 〈O , A〉 is called a variable-precision positive 
concept or an α-positive concept; O is called the extent and A the intent of 〈O , A〉.

Let C∗α (K ) denote the set of all α-positive concepts of the L-context K . Taking Table 1 as an example, according to 
Eq. (6), we know that 〈O , A〉 = 〈{o1, o2}, {b, e}〉 is a 0.8-positive concept.

Remark 2.

(1) If the L-relation R̃ degenerates into a binary relation R (namely, L = {0, 1}) and α = 1, one obtains the sufficiency 
operator ∗ in [43], namely,

O ∗1 = {a ∈ AT | R̃(o,a) ≥ 1,∀o ∈ O } = {a ∈ AT | ∀o ∈ O (xRa)} = O ∗,
A∗1 = {o ∈ OB | R̃(o,a) ≥ 1,∀a ∈ A} = {o ∈ OB | ∀a ∈ A (xRa)} = A∗.
111
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〈O  B, b〉

〈12, be〉 〈24, ab〉 〈13, bd〉

〈1, bde〉 〈2, abce〉 〈3, bdf 〉

〈∅, AT 〉

(a) α = 0.8.

〈O  B, b〉

〈123, be〉 〈24, abc〉

〈13, bde〉

〈2, abce〉〈3, bdef 〉

〈∅, AT 〉

(b) α = 0.6.

Fig. 1. α-positive concept lattices.

Thus, a 1-positive concept is a formal concept in [43].
(2) One needs to pay attention to the difference between similar concepts and α-positive concepts: The α concept in [28,30]

is defined on the basis of inclusion degree within formal contexts; the variable threshold concept in [29] is proposed 
within fuzzy contexts; the variable threshold concepts in [49] are defined based on fuzzy implication operator.

For two α-positive concepts 〈O 1, A1〉, 〈O 2, A2〉 ∈ C∗α (K ), we say 〈O 1, A1〉 is a sub-concept of 〈O 2, A2〉 if and only if 
〈O 1, A1〉 ≤∗α 〈O 2, A2〉 if and only if O 1 ⊆ O 2 (or equivalently, A2 ⊆ A1). Obviously, ≤∗α is a partial order on C∗α (K ). 
According to Proposition 2(3), the intersection of any number of intents (respectively, extents) is always an intent (respec-
tively, extent). However, the union of extents or intents does not generally result in an extent or an intent. Based on these 
properties and the order ≤∗α , we can define the infimum and supremum of α-positive concepts.

Definition 4. For 〈O 1, A1〉, 〈O 2, A2〉 ∈ C∗α (K ), we define

〈O 1, A1〉 ∧∗α 〈O 2, A2〉 = 〈O 1 ∩ O 2, (A1 ∪ A2)
∗α∗α 〉

= 〈O 1 ∩ O 2, (O 1 ∩ O 2)
∗α 〉,

〈O 1, A1〉 ∨∗α 〈O 2, A2〉 = 〈(O 1 ∪ O 2)
∗α∗α , A1 ∩ A2〉

= 〈(A1 ∩ A2)
∗α , A1 ∩ A2〉. (7)

Obviously, we have 〈O 1 ∩ O 2, (A1 ∪ A2)
∗α∗α 〉, 〈(O 1 ∪ O 2)

∗α∗α , A1 ∩ A2〉 ∈ C∗α (K ) for any 〈O 1, A1〉, 〈O 2, A2〉 ∈ C∗α (K )

according to Proposition 2 Items (2) and (3), which means (C∗α (K ), ∧∗α , ∨∗α ) is a lattice. The following is the main theorem 
of α-positive concept.

Theorem 2. For α ∈ L, (C∗α (K ), ∧∗α , ∨∗α ) is a complete lattice, called α-positive concept lattice.

Proof. To prove a complete lattice, we assume 〈O i, Ai〉 ∈ C∗α (K ), i ∈ � with � being an index set. Obviously, we 
have 〈⋂i∈� O i, (

⋃
i∈� Ai)

∗α∗α 〉 ∈ C∗α (K ) and 〈⋂i∈� O i, (
⋃

i∈� Ai)
∗α∗α 〉 ≤∗α 〈O i, Ai〉 for each i ∈ �. Next, we prove 

〈⋂i∈� O i, (
⋃

i∈� Ai)
∗α∗α 〉 is the infimum. If not, suppose 〈O , A〉 ≤∗α 〈O i, Ai〉 and 〈⋂i∈� O i, (

⋃
i∈� Ai)

∗α∗α 〉 ≤∗α 〈O , A〉. Then, 
it holds O  ⊆ O i for i ∈ � and 

⋂
i∈� O i ⊆ O . This leads to O  = ⋂

i∈� O i ; besides, A = O ∗α = (
⋂

i∈� O i)
∗α = (

⋂
i∈� A∗α

i )∗α =
(
⋃

i∈� Ai)
∗α∗α by Proposition 2(3). Together, we can say 〈⋂i∈� O i, (

⋃
i∈� Ai)

∗α∗α 〉 is the infimum.
In a similar way, one can prove that 〈(⋃i∈� O i)

∗α∗α , 
⋂

i∈� Ai〉 is the supremum of 〈O i, Ai〉, i ∈ �. Therefore, 
(C∗α (K ), ∧∗α , ∨∗α ) is a complete lattice. �
Example 2 (Continued from Example 1). Fig. 1 exhibits the 0.8-positive concept lattice and 0.6-positive concept lattice by two 
Hasse diagrams, respectively. The number i in each node represents object oi . A line connects two concepts, in which the 
lower concept is a sub-concept of the upper one.

An object set or an attribute set can generate an α-positive concept.

Proposition 3. Given O  ⊆ O  B, A ⊆ AT , and α ∈ L, 〈O ∗α∗α , O ∗α 〉 and 〈A∗α , A∗α∗α 〉 are α-positive concepts.

Proof. It is obvious from Proposition 2(2). �
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Example 3 (Continued from Example 1). Let α = 0.8 and O  = {o2, o3, o4}. By computation, we have O ∗0.8 = {b} and O ∗0.8∗0.8 =
{b}∗0.8 = O  B . Therefore, 〈O  B, {b}〉 is a 0.8-positive concept. This can be easily verified from Fig. 1.

Proposition 4. For a given L-context K = (O  B, AT , R̃) and α ∈ L, let Kα = (O  B, AT , R̃α) be the α-positive formal context of K , 
where R̃α = {(o, a) | R̃(o, a) ≥ α}. Then, 〈O , A〉 is an α-positive concept in K if and only if 〈O , A〉 is a formal concept in Kα .

Proof. It is obvious. �
Proposition 4 provides us a convenient way to generate α-positive concept lattice: For an L-context K and α ∈ L, one 

first computes α-positive formal context Kα , then applies the methods of generating formal concept lattice (e.g. [23]) to Kα . 
The obtained formal concept lattice is just the α-positive concept lattice C∗α (K ). Therefore, the complexity of generating an 
α-positive concept lattice is the same as that of generating a formal concept lattice.

3.2. The relationship between fuzzy concepts and α-positive concepts

In this section, by analyzing the relationship between fuzzy concepts and α-positive concepts of fuzzy contexts, we 
further show the strictness of fuzzy concept when applying to crisp sets.

Theorem 3. Suppose K = (O  B, AT , R̃) is a fuzzy context and O  ⊆ O  B, A ⊆ AT , then

(O ∗̃)α = O ∗α , (A∗̃)α = A∗α , ∀α ∈ [0,1]
where O ∗̃ and A∗̃ are defined by Eqs. (1) and (2).

Proof. Given O  ⊆ O  B and a ∈ AT , it follows from the proof of Theorem 1 that O ∗̃(a) = ∧
o∈O R̃(o, a). Then, we have

a ∈ (O ∗̃)α ⇔
∧
o∈O

R̃(o,a) ≥ α ⇔ R̃(o,a) ≥ α, ∀o ∈ O ⇔ a ∈ O ∗α

which leads to (O ∗̃)α = O ∗α , ∀α ∈ [0, 1]. Similarly, one can prove that (A∗̃)α = A∗α . �
On the basis of Theorem 3, O ∗̃ and A∗̃ can be expressed by O ∗α and A∗α , respectively.

Theorem 4. Suppose K = (O  B, AT , R̃) is a fuzzy context and O  ⊆ O  B, A ⊆ AT , then

O ∗̃ =
⋃

α∈[0,1]
αO ∗α , A∗̃ =

⋃
α∈[0,1]

αA∗α

where (αO ∗α )(a) = α ∧ O ∗α (a) and (αA∗α )(o) = α ∧ A∗α (o) with o ∈ O  B and a ∈ AT .

Proof. It is obvious according to the decomposition theorem of fuzzy set [20] and Theorem 3. �
The relationship between fuzzy concepts formed by crisp sets and α-positive concepts is demonstrated below.

Theorem 5. Suppose K = (O  B, AT , R̃) is a fuzzy context and O  ⊆ O  B, A ⊆ AT , then 〈O , A〉 is a fuzzy concept if and only if 〈O , A〉 is 
an α-positive concept for all α ∈ (0, 1].

Proof. For O  ⊆ O  B and A ⊆ AT , suppose 〈O , A〉 is a fuzzy concept, then O ∗̃ = A and A∗̃ = O by Eq. (1) and, naturally, 
(O ∗̃)α = Aα and (A∗̃)α = Oα , ∀α ∈ [0, 1]. Since O and A are crisp sets, it follows from Theorem 3 that O ∗α = A and 
A∗α = O , ∀α ∈ (0, 1], namely, 〈O , A〉 is an α-positive concept for all α ∈ (0, 1].

Conversely, suppose O ∗α = A and A∗α = O , ∀α ∈ (0, 1]. By Theorem 4, it follows that

O ∗̃ =
⋃

α∈[0,1]
αO ∗α =

⋃
α∈(0,1]

αO ∗α =
⋃

α∈(0,1]
αA = A,

A∗̃ =
⋃

α∈[0,1]
αA∗α =

⋃
α∈(0,1]

αA∗α =
⋃

α∈(0,1]
αA = A.

Therefore, 〈O , A〉 is a fuzzy concept (note that 0O ∗0 = ∅ and 0A∗0 = ∅). �
Theorem 5 again shows the strictness of fuzzy concept applied to crisp sets.
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3.3. β-negative concept

This section introduces two notions of β-negative operator and β-negative concept. For o ∈ O  B and a ∈ AT , if R̃(o, a) ≤ β , 
we call a a β-negative attribute of o and o a β-negative object of a, where β ∈ L.

Definition 5. Given an L-context K = (O  B, AT , R̃) and β ∈ L, for O  ⊆ O  B and A ⊆ AT , we define

O ∗̄β = {a ∈ AT | R̃(o,a) ≤ β,∀o ∈ O } (8)

the set of β-negative attributes shared by each object in O with a degree not greater than β , and

A∗̄β = {o ∈ OB | R̃(o,a) ≤ β,∀a ∈ A} (9)

the set of β-negative objects sharing all attributes in A with a degree not greater than β . The operator ∗̄β is called the 
β-negative operator.

Obviously, the following results hold:

O ∗̄β =
⋂
o∈O

RN
β (o), A∗̄β =

⋂
a∈A

RN
β (a) (10)

where RN
β (o) = {a ∈ AT | R̃(o, a) ≤ β} and RN

β (a) = {o ∈ O  B | R̃(o, a) ≤ β}.
The operators defined in Eqs. (8) and (9) are dually adjoint.

Proposition 5. The pair of operators (∗̄β, ̄∗β) forms a Galois connection between (2OB, ⊆) and (2AT , ⊆), namely,

(1) O
∗̄β

2 ⊆ O
∗̄β

1 whenever O 1 ⊆ O 2 ⊆ O  B;

(2) A
∗̄β

2 ⊆ A
∗̄β

1 whenever A1 ⊆ A2 ⊆ AT ;
(3) O  ⊆ O ∗̄β ∗̄β for O  ⊆ O  B;
(4) A ⊆ A∗̄β ∗̄β for A ⊆ AT .

Proof. The proof is similar to that of Proposition 1. �
The basic properties of β-negative operators are presented in the following.

Proposition 6. For O , O i ⊆ O  B, A, Ai ⊆ AT (i ∈ �), and β, β1, β2 ∈ L, the following properties hold:

(1) O  ⊆ A∗̄β ⇔ A ⊆ O ∗̄β ;
(2) O ∗̄β = O ∗̄β ∗̄β ∗̄β , A∗̄β = A∗̄β ∗̄β ∗̄β ;

(3)
(⋃

i∈� O i
)∗̄β = ⋂

i∈� O
∗̄β

i , 
(⋃

i∈� Ai
)∗̄β = ⋂

i∈� A
∗̄β

i ;

(4)
(⋂

i∈� O i
)∗̄β ⊇ ⋃

i∈� O
∗̄β

i , 
(⋂

i∈� Ai
)∗̄β ⊇ ⋃

i∈� A
∗̄β

i ;

(5) O ∗̄β1 ⊆ O ∗̄β2 , A∗̄β1 ⊆ A∗̄β2 if β1 ≤ β2;

Proof. The proof is similar to that of Proposition 2. �
With the pair of dually adjoint operators (∗̄β, ̄∗β), one can define another kind of variable-precision concept.

Definition 6. For O  ⊆ O  B , A ⊆ AT , and β ∈ L, if O ∗̄β = A and A∗̄β = O , then 〈O , A〉 is called a variable-precision negative 
concept or a β-negative concept; O is called the extent and A the intent of 〈O , A〉.

Denote by C ∗̄β (K ) the set of all β-negative concepts of the L-context K . Taking Table 1 as an example, for O  = {o2, o4}, 
A = {d}, and β = 0.4, we have O ∗̄0.4 = {o2}∗̄0.4 ∩ {o4}∗̄0.4 = {d, f } ∩ {d, e} = {d} and A∗̄0.4 = {d}∗̄0.4 = {o2, o4}. Therefore, 
〈{o2, o4}, {d}〉 is a 0.4-negative concept.

Remark 3. If the L-relation R̃ degenerates into a binary relation R (namely, L = {0, 1}) and β = 0, then one obtains the 
negative sufficiency operator ∗̄ in [47], namely,

O ∗̄0 = {a ∈ AT | R̃(o,a) ≤ 0,∀o ∈ O } = {a ∈ AT | ∀o ∈ O (¬(xRa))} = O ∗̄,
A∗̄0 = {o ∈ OB | R̃(o,a) ≤ 0,∀a ∈ A} = {o ∈ OB | ∀a ∈ A(¬(xRa))} = A∗̄.

Thus, a 0-negative concept is a negative formal concept in [47].
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〈O  B, ∅〉

〈12, f 〉

〈4, e〉

〈1, cf 〉

〈∅, AT 〉

(a) β = 0.2.

〈O  B, ∅〉

〈12, f 〉 〈24, d〉 〈13, a〉

〈1, acf 〉〈2, df 〉 〈4, de〉

〈∅, AT 〉

(b) β = 0.4.

Fig. 2. β-negative concept lattices.

For two β-negative concepts 〈O 1, A1〉, 〈O 2, A2〉 ∈ C ∗̄β (K ), we say 〈O 1, A1〉 is a sub-concept of 〈O 2, A2〉 if and only if 
〈O 1, A1〉 ≤∗̄β 〈O 2, A2〉 if and only if O 1 ⊆ O 2 (or equivalently, A2 ⊆ A1). Based on the order ≤∗̄β and Proposition 6(3), we 
define the infimum and supremum of β-negative concepts as follows.

Definition 7. For 〈O 1, A1〉, 〈O 2, A2〉 ∈ C ∗̄β (K ), we define

〈O 1, A1〉 ∧∗̄β 〈O 2, A2〉 = 〈O 1 ∩ O 2, (A1 ∪ A2)
∗̄β ∗̄β 〉

= 〈O 1 ∩ O 2, (O 1 ∩ O 2)
∗̄β 〉,

〈O 1, A1〉 ∨∗̄β 〈O 2, A2〉 = 〈(O 1 ∪ O 2)
∗̄β ∗̄β , A1 ∩ A2〉

= 〈(A1 ∩ A2)
∗̄β , A1 ∩ A2〉. (11)

The following is the main theorem of β-negative concepts.

Theorem 6. For β ∈ L, (C ∗̄β (K ), ∧∗̄β , ∨∗̄β ) is a complete lattice, called β-negative concept lattice.

Proof. The proof is similar to that of Theorem 2. �
Example 4 (Continued from Example 1). Fig. 2 exhibits two variable-precision negative concept lattices with β = 0.4 and 
β = 0.2, respectively. A line connects two concepts, in which the lower concept is a sub-concept of the upper one.

An object set or an attribute set can generate a β-negative concept.

Proposition 7. Given O  ⊆ O  B, A ⊆ AT , and β ∈ L, 〈O ∗̄β ∗̄β , O ∗̄β 〉 and 〈A∗̄β , A∗̄β ∗̄β 〉 are β-negative concepts.

Proof. It is obvious from Proposition 6(2). �
Proposition 8. For a given L-context K = (O  B, AT , R̃) and β ∈ L, let K N

β = (O  B, AT , RN
β ) be the β-negative formal context of K , 

where RN
β = {(o, a) | R̃(o, a) ≤ β}. Then, 〈O , A〉 is a β-negative concept in K if and only if 〈O , A〉 is a negative formal concept in K N

β .

Proof. It is obvious. �
Based on Proposition 8, one can construct β-negative concept lattices in the following way: For an L-context K and 

β ∈ L, first compute β-negative formal context K N
β , then apply the methods of generating formal concept lattices to K N

β . The 
obtained formal concept lattice is just the β-negative concept lattice C ∗̄β (K ). Consequently, the complexity of generating a 
β-negative concept lattice is the same as that of generating a formal concept lattice.

Remark 4. Applying the α-positive operator or β-negative operator to an object set or an attribute set, one gets two disjoint 
parts of the corresponding universes. For example, for O  ⊆ O  B and α ∈ L, one obtains two disjoint regions of AT by applying 
the α-positive operator:

POSα(O ) = O ∗α = {a ∈ AT | R̃(o,a) ≥ α,∀o ∈ O },
NEGα(O ) = (O ∗α )c.
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Therefore, we call the α-positive operator and β-negative operator the VP2W operators, and the α-positive concept and 
β-negative concept the VP2W concepts.

4. Variable-precision three-way concepts

By generalizing the idea of three-way concepts [35,36], we investigate the notion of VP3W concept in this section.

4.1. Variable-precision three-way operators

Suppose (P , Q ) and (Z , W ) are two pairs of sets, we say (P , Q ) ⊆ (Z , W ) if and only if P ⊆ Z and Q ⊆ W . The 
intersection, union, and complement are defined as follows [36]:

(P , Q ) ∩ (Z , W ) = (P ∩ Z , Q ∩ W ),

(P , Q ) ∪ (Z , W ) = (P ∪ Z , Q ∪ W ),

(P , Q )c = (P c, Q c). (12)

Based on VP2W operators, one can define VP3W operators and their inverses.

Definition 8. Given an L-context K = (O  B, AT , R̃) and α, β ∈ L with 0L ≤ β < α ≤ 1L , for O  ⊆ O  B and A ⊆ AT , we define

O�
α
β = (O ∗α , O ∗̄β ) (13)

the variable-precision object-induced three-way operator or (α, β)-object-induced three-way operator (short for VPO3W 
operator or (α, β)-O3W operator) and

A�
α
β = (A∗α , A∗̄β ) (14)

the variable-precision attribute-induced three-way operator or (α, β)-attribute-induced three-way operator (short for 
VPA3W operator or (α, β)-A3W operator).

Note that the condition 0L ≤ β < α ≤ 1L is to make sure the disjointness of O ∗α and O ∗̄β as well as A∗α and A∗̄β . The 
operator �α

β combines the α-positive operator and β-negative operator which considers not only the positive attributes 

(or objects) but also the negative attributes (or objects). In addition, for any O  ⊆ O  B , O�
α
β divides AT into three disjoint 

regions:

POSα(O ) = O ∗α = {a ∈ AT | R̃(o,a) ≥ α,∀o ∈ O },
NEGβ(O ) = O ∗̄β = {a ∈ AT | R̃(o,a) ≤ β,∀o ∈ O },
BND(α,β)(O ) = (POSα(O ) ∪ NEGβ(O ))c.

If the order ≤ on L is a total order, then BND(α,β)(O ) = {a ∈ AT | β < R̃(o, a) < α}. Similarly, for any A ⊆ AT , A�
α
β divides 

O  B into three disjoint regions:

POSα(A) = A∗α = {o ∈ OB | R̃(o,a) ≥ α,∀a ∈ A},
NEGβ(A) = A∗̄β = {o ∈ OB | R̃(o,a) ≤ β,∀a ∈ A},
BND(α,β)(A) = (POSα(A) ∪ NEGβ(A))c.

And BND(α,β)(A) = {o ∈ O  B | β < R̃(o, a) < α} for a total order ≤ on L.

Definition 9. Given an L-context K = (O  B, AT , R̃) and α, β ∈ L with 0L ≤ β < α ≤ 1L , for O 1, O 2 ⊆ O  B and A1, A2 ⊆ AT , we 
define

(O 1, O 2)
�

α
β = O ∗α

1 ∩ O
∗̄β

2 , (A1, A2)
�

α
β = A∗α

1 ∩ A
∗̄β

2 (15)

the object-induced inverse operator and attribute-induced inverse operator, respectively.

The set (O 1, O 2)
�

α
β consists of attributes common to each object in O 1 with a degree not less than α and common to 

each object in O 2 with a degree not greater than β . The set (A1, A2)
�

α
β consists of objects owning all attributes in A1 with 

a degree not less than α and owning all attributes in A2 with a degree not greater than β . The basic properties of operators 
�

α and �α are listed below.
β β
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Proposition 9. For O , O j, O ij ⊆ O  B ( j = 1, 2, 3, 4 and i ∈ �), the following properties hold:

(1) O 1 ⊆ O 2 ⇒ O
�

α
β

2 ⊆ O
�

α
β

1 ;

(2) (O 1, O 2) ⊆ (O 3, O 4) ⇒ (O 3, O 4)
�

α
β ⊆ (O 1, O 2)

�
α
β ;

(3) O  ⊆ O�
α
β�

α
β ;

(4) (O 1, O 2) ⊆ (O 1, O 2)
�

α
β�

α
β ;

(5) O�
α
β = O�

α
β�

α
β�

α
β ;

(6) (O 1, O 2)
�

α
β = (O 1, O 2)

�
α
β�

α
β�

α
β ;

(7)
(⋃

i∈� O i
)�α

β = ⋂
i∈� O

�
α
β

i ;

(8)
(⋃

i∈�(O i1, O i2)
)�α

β = ⋂
i∈�(O i1, O i2)

�
α
β ;

(9)
(⋂

i∈� O i
)�α

β ⊇ ⋃
i∈� O

�
α
β

i ;

(10)
(⋂

i∈�(O i1, O i2)
)�α

β ⊇ ⋃
i∈�(O i1, O i2)

�
α
β .

Proof. (1) Suppose O 1 ⊆ O 2, then we have O
�

α
β

2 = (O ∗α
2 , O ∗̄β

2 ) ⊆ (O ∗α
1 , O ∗̄β

1 ) = O
�

α
β

1 by Propositions 1 and 5.

(2) Suppose (O 1, O 2) ⊆ (O 3, O 4), then we have (O 3, O 4)
�

α
β = O ∗α

3 ∩ O
∗̄β

4 ⊆ O ∗α
1 ∩ O

∗̄β

2 = (O 1, O 2)
�

α
β by Propositions 1 and 

5.
(3) It follows from Propositions 1 and 5 that O�

α
β�

α
β = (O ∗α , O ∗̄β )

�
α
β = O ∗α∗α ∩ O ∗̄β ∗̄β ⊇ O  ∩ O  = O .

(4) It follows from Propositions 1, 2, 5, and 6 that (O 1, O 2)
�

α
β�

α
β = (O ∗α

1 ∩ O
∗̄β

2 )
�

α
β = ((O ∗α

1 ∩ O
∗̄β

2 )∗α , (O ∗α
1 ∩ O

∗̄β

2 )∗̄β ) ⊇
(O ∗α∗α

1 ∪ O
∗̄β∗α

2 , O ∗α ∗̄β

1 ∪ O
∗̄β ∗̄β

2 ) ⊇ (O ∗α∗α
1 , O ∗̄β ∗̄β

2 ) ⊇ (O 1, O 2).

(5) According to Items (1) and (3), we have O�
α
β�

α
β�

α
β ⊆ O�

α
β . On the other hand, it follows from Propositions 2 and 6 that 

O�
α
β�

α
β�

α
β = (O ∗α , O ∗̄β )

�
α
β�

α
β = (O ∗α∗α ∩ O ∗̄β ∗̄β )

�
α
β = ((O ∗α∗α ∩ O ∗̄β ∗̄β )∗α , (O ∗α∗α ∩ O ∗̄β ∗̄β )∗̄β ) ⊇ (O ∗α∗α∗α , O ∗̄β ∗̄β ∗̄β ) =

(O ∗α , O ∗̄β ) = O�
α
β . Finally, it holds O�

α
β = O�

α
β�

α
β�

α
β .

(6) According to Items (2) and (4), we have (O 1, O 2)
�

α
β�

α
β�

α
β ⊆ (O 1, O 2)

�
α
β . On the other hand, it follows from 

Propositions 1 and 5 that (O 1, O 2)
�

α
β�

α
β�

α
β = ((O 1, O 2)

�
α
β ∗α , (O 1, O 2)

�
α
β ∗̄β )

�
α
β = (O 1, O 2)

�
α
β ∗α∗α ∩ (O 1, O 2)

�
α
β ∗̄β ∗̄β ⊇

(O 1, O 2)
�

α
β ∩ (O 1, O 2)

�
α
β = (O 1, O 2)

�
α
β . Therefore, we have (O 1, O 2)

�
α
β = (O 1, O 2)

�
α
β�

α
β�

α
β .

(7) It follows from Eq. (12) and Propositions 2 and 6 that 
(⋃

i∈� O i
)�α

β = ((⋃
i∈� O i

)∗α
, 
(⋃

i∈� O i)
∗̄β

) = (⋂
i∈� O ∗α

i ,⋂
i∈� O

∗̄β

i

) = ⋂
i∈�(O ∗α

i , O ∗̄β

i ) = ⋂
i∈� O

�
α
β

i .

(8) It follows from Eq. (12) and Propositions 2 and 6 that 
(⋃

i∈�(O i1, O i2)
)�α

β = (⋃
i∈� O i1, 

⋃
i∈� O i2

)�α
β = (⋃

i∈� O i1
)∗α ∩(⋃

i∈� O i2
)∗̄β = (⋂

i∈� O ∗α
i1

) ∩ (⋂
i∈� O

∗̄β

i2

) = ⋂
i∈�(O ∗α

i1 ∩ O
∗̄β

i2 ) = ⋂
i∈�(O i1, O i2)

�
α
β .

(9) The proof is similar to that of Item (7).
(10) The proof is similar to that of Item (8). �

For attribute sets, one gets similar properties.

Proposition 10. For A, A j, Aij ⊆ AT ( j = 1, 2, 3, 4 and i ∈ �), the following properties hold:

(1) A1 ⊆ A2 ⇒ A
�

α
β

2 ⊆ A
�

α
β

1 ;

(2) (A1, A2) ⊆ (A3, A4) ⇒ (A3, A4)
�

α
β ⊆ (A1, A2)

�
α
β ;

(3) A ⊆ A�
α
β�

α
β ;

(4) (A1, A2) ⊆ (A1, A2)
�

α
β�

α
β ;

(5) A�
α
β = A�

α
β�

α
β�

α
β ;

(6) (A1, A2)
�

α
β = (A1, A2)

�
α
β�

α
β�

α
β ;

(7)
(⋃

i∈� Ai
)�α

β = ⋂
i∈� A

�
α
β

i ;

(8)
(⋃

i∈�(Ai1, Ai2)
)�α

β = ⋂
i∈�(Ai1, Ai2)

�
α
β ;

(9)
(⋂

i∈� Ai
)�α

β ⊇ ⋃
i∈� A

�
α
β

i ;

(10)
(⋂

i∈�(Ai1, Ai2)
)�α

β ⊇ ⋃
i∈�(Ai1, Ai2)

�
α
β .

Proof. The proof is similar to that of Proposition 9. �
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) ∩
4.2. (α, β)-object-induced three-way concept

With (α, β)-O3W operator and attribute-induced inverse operator, one can define the (α, β)-object-induced three-way 
concept.

Definition 10. For O  ⊆ O  B and A1, A2 ⊆ AT , if O�
α
β = (A1, A2) and (A1, A2)

�
α
β = O , then 〈O , (A1, A2)〉 is called a variable-

precision object-induced three-way concept or an (α, β)-object-induced three-way concept (short for VPO3W concept or 
(α, β)-O3W concept); O is called the extent and (A1, A2) the intent of 〈O , (A1, A2)〉.

Denote by O  C
�

α
β

3 (K ) the set of all (α, β)-O3W concepts of the L-context K . Taking Table 1 as an example, let α = 0.8, 
β = 0.4, and O  = {o1, o2}. From Figs. 1 and 2, we have O�

0.8
0.4 = (O ∗0.8 , O ∗̄0.4 ) = ({b, e}, { f }); besides, ({b, e}, { f })�0.8

0.4 =
{b, e}∗0.8 ∩ { f }∗̄0.4 = {o1, o2} ∩ {o1, o2} = {o1, o2}. Thus, 〈{o1, o2}, ({b, e}, { f })〉 is a (0.8, 0.4)-O3W concept.

For two (α, β)-O3W concepts 〈O 1, (A11, A12)〉, 〈O 2, (A21, A22)〉 ∈ O  C
�

α
β

3 (K ), we say 〈O 1, (A11, A12)〉 is a sub-concept of 
〈O 2, (A21, A22)〉 if and only if 〈O 1, (A11, A12)〉 ≤�

α
β

〈O 2, (A21, A22)〉 if and only if O 1 ⊆ O 2 (or equivalently, (A21, A22) ⊆
(A11, A12))). Obviously, ≤�

α
β

is a partial order on O  C
�

α
β

3 (K ). With this order and Proposition 9 Items (7) and (8), one can 
define the infimum and supremum of (α, β)-O3W concepts.

Definition 11. For 〈O 1, (A11, A12)〉, 〈O 2, (A21, A22)〉 ∈ O  C
�

α
β

3 (K ), we define

〈O 1, (A11, A12)〉 ∧�
α
β

〈O 2, (A21, A22)〉 = 〈O 1 ∩ O 2, ((A11, A12) ∪ (A21, A22))
�

α
β�

α
β 〉

= 〈O 1 ∩ O 2, (O 1 ∩ O 2)
�

α
β 〉,

〈O 1, (A11, A12)〉 ∨�
α
β

〈O 2, (A21, A22)〉 = 〈(O 1 ∪ O 2)
�

α
β�

α
β , (A11, A12) ∩ (A21, A22)〉

= 〈((A11, A12) ∩ (A21, A22))
�

α
β , (A11, A12) ∩ (A21, A22)〉. (16)

According to Proposition 10 Items (6) and (8), we have 〈O 1 ∩ O 2, ((A11, A12) ∪(A21, A22))
�

α
β�

α
β 〉, 〈(O 1 ∪ O 2)

�
α
β�

α
β , (A11, A12

(A21, A22)〉 ∈ O C
�

α
β

3 (K ), which means (O  C
�

α
β

3 (K ), ∧�
α
β
, ∨�

α
β
) is a lattice. Actually, the set of all (α, β)-O3W concepts forms 

a complete lattice.

Theorem 7. Given α, β ∈ L with 0L ≤ β < α ≤ 1L , (O  C
�

α
β

3 (K ), ∧�
α
β
, ∨�

α
β
) is a complete lattice, called (α, β)-O3W concept lattice.

Proof. To prove the result, we assume 〈O i, (Ai1, Ai2)〉 ∈ O  C
�

α
β

3 (K ), i ∈ � with � being an index set. First, it is ob-

vious from Proposition 10 Items (6) and (8) that 〈⋂i∈� O i, (
⋃

i∈�(Ai1, Ai2))
�

α
β�

α
β 〉 is an (α, β)-O3W concept and 

〈⋂i∈� O i, (
⋃

i∈�(Ai1, Ai2))
�

α
β�

α
β 〉 ≤ 〈O i, (Ai1, Ai2)〉 for each i ∈ �. Next, we prove 〈⋂i∈� O i, (

⋃
i∈�(Ai1, Ai2))

�
α
β�

α
β 〉 is the 

infimum. If not, suppose 〈O , (A1, A2)〉 ≤�
α
β

〈O i, (Ai1, Ai2)〉 and 〈⋂i∈� O i, (
⋃

i∈�(Ai1, Ai2))
�

α
β�

α
β 〉 ≤�

α
β

〈O , (A1, A2)〉. Then, 

it follows O  ⊆ O i for i ∈ � and 
⋂

i∈� O i ⊆ O . This leads to O  = ⋂
i∈� O i ; besides, (A1, A2) = O�

α
β = (

⋂
i∈� O i)

�
α
β =

(
⋂

i∈�(Ai1, Ai2)
�

α
β )

�
α
β = (

⋃
i∈�(Ai1, Ai2))

�
α
β�

α
β . Equivalently saying, 〈⋂i∈� O i, (

⋃
i∈�(Ai1, Ai2))

�
α
β�

α
β 〉 is the infimum of 

〈O i, (Ai1, Ai2)〉, i ∈ �.
In a similar way, one can prove that 〈(⋃i∈� O i)

�
α
β�

α
β , 

⋂
i∈�(Ai1, Ai2)〉 is an (α, β)-O3W concept and also the supremum 

of 〈O i, (Ai1, Ai2)〉, i ∈ �. Consequently, (O  C
�

α
β

3 (K ), ∧�
α
β
, ∨�

α
β
) is a complete lattice. �

4.3. (α, β)-attribute-induced three-way concept

With (α, β)-A3W operator and object-induced inverse operator, one can define the (α, β)-attribute-induced three-way 
concept.

Definition 12. For O 1, O 2 ⊆ O  B and A ⊆ AT , if (O 1, O 2)
�

α
β = A and A�

α
β = (O 1, O 2), then 〈(O 1, O 2), A〉 is called a variable-

precision attribute-induced three-way concept or an (α, β)-attribute-induced three-way concept (short for VPA3W concept 
or (α, β)-A3W concept).
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Denote by AC
�

α
β

3 (K ) the set of all (α, β)-A3W concepts of the L-context K = (O  B, AT , R̃). Taking Table 1 as an 
example, for α = 0.8, β = 0.4, and A = {d, f }, we have A�

0.8
0.4 = (A∗0.8 , A∗̄0.4 ) = ({o3}, {o2}); besides, ({o3}, {o2})�0.8

0.4 =
{o3}∗0.8 ∩ {o2}∗̄0.4 = {b, d, f } ∩ {d, f } = {d, f }. Therefore, 〈({o3}, {o2}), {d, f }〉 is a (0.8, 0.4)-A3W concept.

Given two (α, β)-A3W concepts 〈(O 11, O 12), A1〉, 〈(O 21, O 22), A2〉 ∈ AC
�

α
β

3 (K ), we say 〈(O 11, O 12), A1〉 is a sub-concept 
of 〈(O 21, O 22), A2〉 if and only if 〈(O 11, O 12), A1〉 ≤�

α
β

〈(O 21, O 22), A2〉 if and only if (O 11, O 12) ⊆ (O 21, O 22) (or equiva-

lently, A2 ⊆ A1). With the order ≤�
α
β

and Proposition 10 Items (7) and (8), we now define the infimum and supremum of 
(α, β)-A3W concepts.

Definition 13. For 〈(O 11, O 12), A1〉, 〈(O 21, O 22), A2〉 ∈ AC
�

α
β

3 (K ), we define

〈(O 11, O 12), A1〉 ∧�
α
β

〈(O 21, O 22), A2〉 = 〈
(O 11, O 12) ∩ (O 21, O 22), (A1 ∪ A2)

�
α
β�

α
β
〉

= 〈
(O 11, O 12) ∩ (O 21, O 22), ((O 11, O 12) ∩ (O 21, O 22))

�
α
β
〉
,

〈(O 11, O 12), A1〉 ∨�
α
β

〈(O 21, O 22), A2〉 = 〈
((O 11, O 12) ∪ (O 21, O 22))

�
α
β�

α
β , A1 ∩ A2

〉
= 〈

(A1 ∩ A2)
�

α
β , A1 ∩ A2

〉
. (17)

The set of all (α, β)-A3W concepts forms a complete lattice.

Theorem 8. Given α, β ∈ L with 0L ≤ β < α ≤ 1L , (AC
�

α
β

3 (K ), ∧�
α
β
, ∨�

α
β
) is a complete lattice, called (α, β)-A3W concept lattice.

Proof. The proof is similar to that of Theorem 7. �
Note that we call (α, β)-O3W operator and (α, β)-A3W operator VP3W operators, and (α, β)-O3W concept and (α, β)-

A3W concept VP3W concepts.

5. The relationships between VP2W concepts and VP3W concepts

This section mainly investigates the relationships between VP2W concepts and VP3W concepts.

5.1. The relationships between VP2W concepts and (α, β)-O3W concepts

An α-positive concept can produce an (α, β)-O3W concept; a β-negative concept can also produce an (α, β)-O3W 
concept.

Theorem 9. Given O  ⊆ O  B, A ⊆ AT , and α, β ∈ L with 0L ≤ β < α ≤ 1L ,

(1) if 〈O , A〉 is an α-positive concept, then 〈O , (A, O ∗̄β )〉 is an (α, β)-O3W concept;
(2) if 〈O , A〉 is a β-negative concept, then 〈O , (O ∗α, A)〉 is an (α, β)-O3W concept.

Proof. (1) Suppose 〈O , A〉 is an α-positive concept, then O ∗α = A and A∗α = O . By Proposition 5, we have O�
α
β =

(O ∗α , O ∗̄β ) = (A, O ∗̄β ) and (A, O ∗̄β )
�

α
β = A∗α ∩ O ∗̄β ∗̄β = O  ∩ O ∗̄β ∗̄β = O . This proves that 〈O , (A, O ∗̄β )〉 is an (α, β)-

O3W concept.
(2) This is similarly proved as Item (1). �

Conversely, for a given (α, β)-O3W concept, one can naturally get an α-positive concept and a β-negative concept.

Theorem 10. Given O  ⊆ O  B, A1, A2 ⊆ AT , and α, β ∈ L with 0L ≤ β < α ≤ 1L , if 〈O , (A1, A2)〉 is an (α, β)-O3W concept, then 
〈A∗α

1 , A1〉 is an α-positive concept and 〈A
∗̄β

2 , A2〉 is a β-negative concept.

Proof. Suppose 〈O , (A1, A2)〉 is an (α, β)-O3W concept, then O ∗α = A1 and O ∗̄β = A2. It, therefore, follows that A∗α∗α
1 =

O ∗α∗α∗α = O ∗α = A1, which means 〈A∗α
1 , A1〉 is an α-positive concept. Similarly, one proves that 〈A

∗̄β

2 , A2〉 is a β-negative 
concept. �

Theorem 9 provides us a hint to form (α, β)-O3W concepts from α-positive concepts and β-negative concepts. The-
orem 10 introduces a method to obtain α-positive concepts and β-negative concepts from (α, β)-O3W concepts. The 
following result establishes an equivalence between VP2W concepts and (α, β)-O3W concepts.
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Algorithm 1: Generate (α, β)-O3W concept lattice.

input : α-positive concept lattice: C∗α (K ) = {〈O P
i , AP

i 〉},
β-negative concept lattice: C∗β (K ) = {〈O N

i , AN
i 〉}.

output : (α, β)-O3W concept lattice: O C
�

α
β

3 (K ) = {〈O i , (Aα
i , Aβ

i )〉}.

1 n = 0,
2 for i = 1 to |C∗α (K )| do
3 for j = 1 to |C∗β (K )| do
4 n = n + 1,
5 O n = O P

i ∩ O N
j ,

6 end
7 end
8 Delete repeated elements in {O 1, O 2, · · · },
9 for each O i do

10 compute Aα
i , Aβ

i .
11 end

〈O  B, (b, ∅)〉

〈12, (be, f )〉 〈13, (bd, a)〉 〈24, (ab, d)〉

〈1, (bde, acf )〉 〈2, (abce, df )〉 〈3, (bdf , a)〉 〈4, (ab, de)〉

〈∅, (AT , AT )〉

Fig. 3. (0.8,0.4)-O3W concept lattice.

Theorem 11. Given α, β ∈ L with 0L ≤ β < α ≤ 1L , 〈O , (A1, A2)〉 is an (α, β)-O3W concept if and only if there exist an α-positive 
concept 〈O 1, A′〉 and a β-negative concept 〈O 2, A′′〉 such that O  = O 1 ∩ O 2 , A1 = (O 1 ∩ O 2)

∗α , and A2 = (O 1 ∩ O 2)
∗̄β .

Proof. Suppose 〈O , (A1, A2)〉 is an (α, β)-O3W concept. Let O 1 = A∗α
1 , A′ = A1 and O 2 = A

∗̄β

2 , A′′ = A2. Then, according to 
Theorem 10, 〈O 1, A′〉 is an α-positive concept and 〈O 2, A′′〉 is a β-negative concept. On the other hand, since 〈O , (A1, A2)〉
is an (α, β)-O3W concept, we have O  = (A1, A2)

�
α
β = A∗α

1 ∩ A
∗̄β

2 = O 1 ∩ O 2, (O 1 ∩ O 2)
∗α = O ∗α = A1, and (O 1 ∩ O 2)

∗̄β =
O ∗̄β = A2.

To prove the contrary, suppose 〈O 1, A′〉 is an α-positive concept and 〈O 2, A′′〉 is a β-negative concept. Let O  = O 1 ∩
O 2, A1 = (O 1 ∩ O 2)

∗α , and A2 = (O 1 ∩ O 2)
∗̄β . Next, we prove 〈O , (A1, A2)〉 is an (α, β)-O3W concept. Obviously, O�

α
β =

(O ∗α , O ∗̄β ) = (A1, A2) and (A1, A2)
�

α
β = A∗α

1 ∩ A
∗̄β

2 = (O 1 ∩ O 2)
∗α∗α ∩(O 1 ∩ O 2)

∗̄β ∗̄β . According to Propositions 1(3) and 5(3), 
it follows that (O 1 ∩ O 2)

∗α∗α ∩ (O 1 ∩ O 2)
∗̄β ∗̄β ⊇ O 1 ∩ O 2. On the other hand, since O 1 ∩ O 2 ⊆ O 1 and O ∗α∗α

1 = O 1, we have 
(O 1 ∩ O 2)

∗α∗α ⊆ O 1; in a similar way, we have (O 1 ∩ O 2)
∗̄β ∗̄β ⊆ O 2. Therefore, (O 1 ∩ O 2)

∗α∗α ∩ (O 1 ∩ O 2)
∗̄β ∗̄β ⊆ O 1 ∩ O 2. 

Finally, it holds (O 1 ∩ O 2)
∗α∗α ∩ (O 1 ∩ O 2)

∗̄β ∗̄β = O 1 ∩ O 2 = O , namely, (A1, A2)
�

α
β = O . �

Theorem 11 provides us a way to produce (α, β)-O3W concept lattices from α-positive concept lattices and β-negative 
concept lattices. Each (α, β)-O3W concept can be obtained in the following way: Take an α-positive concept 〈O 1, A1〉
from C∗α (K ) and a β-negative concept 〈O 2, A2〉 from C ∗̄β (K ), compute O 1 ∩ O 2, (O 1 ∩ O 2)

∗α , and (O 1 ∩ O 2)
∗̄β , then 

〈O 1 ∩ O 2, ((O 1 ∩ O 2)
∗α , (O 1 ∩ O 2)

∗̄β )〉 is an (α, β)-O3W concept. Algorithm 1 is applied to generate an (α, β)-O3W concept 
lattice from an α-positive concept lattice and a β-negative concept lattice. The time complexity of generating an (α, β)-O3W 
concept lattice is O (|C∗α (K )| × |C ∗̄β (K )|).

Example 5 (Continued from Examples 2 and 4). Applying Algorithm 1, one gets the (0.8, 0.4)-O3W concept lattice from 0.8-
positive concept lattice and 0.4-negative concept lattice. The result is shown in Fig. 3.

Remark 5. When L = {0, 1}, α = 1, and β = 0, we get the relationships between OE-concept and two-way concepts (namely, 
formal concept and negative formal concept) [35].
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Algorithm 2: Generate (α, β)-A3W concept lattice.

input : α-positive concept lattice: C∗α (K ) = {〈O P
i , AP

i 〉},
β-negative concept lattice: C∗β (K ) = {〈O N

i , AN
i 〉}.

output : (α, β)-A3W concept lattice: AC
�

α
β

3 (K ) = {〈(Oα
i , O β

i ), Ai〉}.

1 n = 0,
2 for i = 1 to |C∗α (K )| do
3 for j = 1 to |C∗β (K )| do
4 n = n + 1,
5 An = AP

i ∩ AN
j ,

6 end
7 end
8 Delete repeated elements in {A1, A2, · · · },
9 for each Ai do

10 compute Oα
i , O β

i .
11 end

5.2. The relationships between VP2W concepts and (α, β)-A3W concepts

An α-positive concept can produce an (α, β)-A3W concept; a β-negative concept can produce an (α, β)-A3W concept. 
Conversely, one can get an α-positive concept and a β-negative concept from a given (α, β)-A3W concept. The results are 
stated in Theorems 12 and 13, respectively.

Theorem 12. Given O  ⊆ O  B, A ⊆ AT , and α, β ∈ L with 0L ≤ β < α ≤ 1L ,

(1) if 〈O , A〉 is an α-positive concept, then 〈(O , A∗̄β ), A〉 is an (α, β)-A3W concept;
(2) if 〈O , A〉 is a β-negative concept, then 〈(A∗α, O ), A〉 is an (α, β)-A3W concept.

Proof. The proof is similar to that of Theorem 9. �
Theorem 13. Given O 1, O 2 ⊆ O  B, A ⊆ AT , and α, β ∈ L with 0L ≤ β < α ≤ 1L , if 〈(O 1, O 2), A〉 is an (α, β)-A3W concept, then 
〈O 1, O ∗α

1 〉 is an α-positive concept and 〈O 2, O
∗̄β

2 〉 is a β-negative concept.

Proof. The proof is similar to that of Theorem 10. �
There also exists an equivalence between VP2W concepts and (α, β)-A3W concepts.

Theorem 14. Given α, β ∈ L with 0L ≤ β < α ≤ 1L , 〈(O 1, O 2), A〉 is an (α, β)-A3W concept if and only if there exist an α-positive 
concept 〈O ′, A1〉 and a β-negative concept 〈O ′′, A2〉 such that A = A1 ∩ A2 , O 1 = (A1 ∩ A2)

∗α , and O 2 = (A1 ∩ A2)
∗̄β .

Proof. The proof is similar to that of Theorem 11. �
Theorem 14 provides us a convenient way to produce (α, β)-A3W concept lattices from α-positive concept lattices 

and β-negative concept lattices. Briefly speaking, for an α-positive concept 〈O 1, A1〉 and a β-negative concept 〈O 2, A2〉, 
〈A1 ∩ A2, ((A1 ∩ A2)

∗α , (A1 ∩ A2)
∗̄β )〉 is an (α, β)-A3W concept. We provide Algorithm 2 to generate an (α, β)-A3W concept 

lattice from an α-positive concept lattice and a β-negative concept lattice. The time complexity of generating an (α, β)-A3W 
concept lattice is O (|C∗α (K )| × |C ∗̄β (K )|).

Example 6 (Continued from Examples 2 and 4). Applying Algorithm 2, we obtain the (0.8, 0.4)-A3W concept lattice (exhibited 
in Fig. 4) from 0.8-positive concept lattice and 0.4-negative concept lattice.

6. Experiments

In this section, we conducted some experiments to verify the effectiveness of our model. About datasets: The datasets 
are shown in Table 2. The first dataset is from our example shown in Table 1. The second to the last are from UCI Machine 
Learning Repository [12]. About algorithms: The algorithm used to generate formal concept lattices is from [23]. Algo-
rithms 1 and 2 were applied to generate (α, β)-O3W concept lattices and (α, β)-A3W concept lattices. To generate fuzzy 
concept lattices, we adopted the method in [6] which is based on a lexicographic order.

According to the method in [6], the time complexity to generate a fuzzy concept lattice for a fuzzy context is O (|L||AT |)
where L is the truth-value set and AT is the attribute set of the fuzzy context. In the application, the truth-value set L
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〈(∅, ∅), AT 〉

〈(2, ∅), abce〉 〈(∅, 1), acf 〉 〈(1, ∅), bde〉 〈(3, ∅), bdf , 〉

〈(24, ∅), ab〉 〈(2, 1), ac〉 〈(13, ∅), bd〉〈(12, ∅), be〉 〈(1, 4), de〉 〈(3, 2), df 〉

〈(24, 13), a〉 〈(O  B, ∅), b〉 〈(12, 4), e〉 〈(13, 24), d〉 〈(3, 12), f 〉

〈(O  B, O  B), ∅〉

Fig. 4. (0.8,0.4)-A3W concept lattice.

Table 2
Datasets.

Name Object numbers Attribute numbers Missing values

Table 1 4 6 No
Breast Cancer Coimbra (BCC) 116 10 No
QCM 125 15 No
Speaker Accent Recognition (SAR) 329 12 No
Heart Failure Clinical Records (HFCR) 299 13 No

Table 3
The number of α-positive concepts.

Datasets
α

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Table 1 2 3 12 10 9 7 8 8 6 5
BBC 284 253 153 77 59 40 27 23 19 12
QCM 23 30 37 53 60 60 58 59 62 11
SAR 2816 2816 2944 983 340 195 111 55 24 12
HFCR 1179 1052 776 492 418 340 217 142 106 70

Table 4
Runtime with different α.

Datasets
α

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Table 1 0.0002 0.0002 0.0013 0.0013 0.0012 0.0009 0.0007 0.0006 0.0005 0.0004
BBC 0.5894 0.2558 0.1234 0.0727 0.0503 0.0391 0.0277 0.02515 0.0220 0.0172
QCM 0.2020 0.4104 0.3178 0.3370 0.2827 0.21662 0.2653 0.2383 0.2302 0.0253
SAR 29.1071 21.3583 11.0170 2.7607 0.9849 0.5330 0.3164 0.1770 0.0930 0.0614
HFCR 3.6456 2.4196 1.6124 1.0647 0.8920 0.6960 0.4406 0.3220 0.2736 0.2038

is generated by listing all different values that appear in an L-context. Therefore, when the dataset becomes larger, the 
base of L grows larger, and consequently, the time complexity is growing very high. With this in mind, we only conducted 
experiments on the first dataset in Table 2 to generate a fuzzy concept lattice. We found 224 fuzzy concepts, and the time 
to find all these concepts was 0.3611 seconds. In contrast, the number of concepts of each α-positive concept lattice for all 
datasets and the corresponding calculation time were listed in Tables 3 and 4, respectively. We set the initial value of α to 
0.1 and the step to 0.1. The results in Table 3 show that the number of concepts in an α-concept lattice is much less than 
that of a fuzzy concept lattice. In addition, important concepts can be found by setting α to a high threshold.

In order to verify our proposed method of generating (α, β)-O3W and (α, β)-A3W concept lattices, we conducted an-
other set of experiments. We set the initial values of α and β to 0.55 and 0.45, and the steps of α and β to 0.05 and 
-0.05, respectively. Table 5 shows the concept numbers of each kind of concept lattice. In order to show the trend of the 
concept numbers clearly, we first transformed each number in Table 5 with a logarithmic function with a base of 10, and 
then exhibited it in Fig. 5. The results illustrated that the number of concepts is decreasing with regard to α and increasing 
with regard to β , but not strictly monotonous.
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Table 5
The number of concepts.

(α,β) = (0.55,0.45) (0,60,0.40) (0.65,0.35) (0.70,0.30) (0.75,0.25) (0.80,0.20) (0.85,0.15) (0.90,0.10) (0.95,0.05)

Table 1 α-positive 7 7 8 8 8 6 6 5 5
β-negative 7 8 6 6 6 5 4 4 3
(α,β)-O3W 11 10 9 9 9 6 7 6 6
(α,β)-A3W 17 16 16 16 14 11 9 7 6

BBC α-positive 49 40 29 27 24 23 21 19 16
β-negative 264 302 270 246 240 175 100 66 36
(α,β)-O3W 1085 987 747 594 499 338 197 124 64
(α,β)-A3W 324 341 297 279 262 190 115 83 46

QCM α-positive 43 60 47 58 49 59 63 62 51
β-negative 287 186 127 75 75 53 41 43 44
(α,β)-O3W 623 548 387 337 297 292 183 103 88
(α,β)-A3W 672 410 328 209 227 151 116 120 137

SAR α-positive 247 195 133 111 66 55 41 24 14
β-negative 196 147 125 86 59 36 24 17 16
(α,β)-O3W 3076 2515 1465 819 324 188 101 48 30
(α,β)-A3W 435 295 220 164 104 71 49 29 19

HFCR α-positive 393 331 301 217 172 138 122 106 78
β-negative 1759 1831 1671 1579 1295 920 659 530 335
(α,β)-O3W 24341 22872 19686 14619 9634 6322 4001 3335 1975
(α,β)-A3W 2303 2256 2022 1768 1425 1011 724 589 357
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Fig. 5. The number of concepts.

7. Conclusion

The L-context refers to a formal context of which the relation is taking values on a truth-value structure L, usually 
a residuated lattice. Considering the disadvantages of L-concepts, we introduced two kinds of VP2W, namely, α-positive 
concept and β-negative concept, and two kinds of VP3W concepts, namely, (α, β)-O3W concept and (α, β)-A3W concept. 
The new model is more flexible in constructing different concepts with different thresholds. The family of α-positive concept 
(respectively, β-negative concept, (α, β)-O3W concept, and (α, β)-A3W concept) forms a complete lattice. We proved the 
equivalences between VP2W concepts and VP3W concepts and provided a way to generate (α, β)-O3W concept lattices and 
(α, β)-A3W concept lattices from α-positive concept lattices and β-negative concept lattices.

In order to have a clear understanding of variable-precision concepts, all examples are based on fuzzy contexts in this 
paper. From an application perspective, one may encounter different types of data; in this paper, the L-context is only an 
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general notion. In addition, there are eight different kinds of two-way concepts and three-way concepts [47,50]; we only 
proposed two kinds of VP2W concepts and two kinds of VP3W concepts in this paper. For future study, we will investigate 
other kinds of VP2W and VP3W concepts and analyze with special L-contexts, for example, interval-valued fuzzy contexts, 
intuitionistic fuzzy contexts.
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