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A B S T R A C T

Knowledge graph question answering (KGQA) aims to answer natural language questions from structured
knowledge graphs (KGs). Traditional KQGA methods are usually limited to single-hop queries and cannot
handle complex questions involving multi-hop reasoning well. To overcome this issue, multi-hop KGQA based
on reinforcement learning (RL) has been proposed. However, multi-hop KGQA based on RL still faces some
challenges. Firstly, due to the insufficient availability of latent environmental information during the reasoning
process, the agent finds it challenging to make coherent and correct decisions. Secondly, the agent only receives
rewards from the environment upon reaching the answer entity during the exploration, leading to slow or
even obstructed learning. To address these shortcomings, we construct multi-perspective information based
on the state of the environment, and integrate multi-perspective information with RL framework, thereby
creating the Multi-Perspective Information Fusion Reasoning Network (MPIFRN). MPIFRN achieves the goal
via three steps. (1) We construct three different views of information, i.e., expectation embedding, instruction-
guided embedding, and path-aware embedding. These environmental cues provide more reliable support for
decision-making. (2) We still adopt the method of mapping entities and relations into the knowledge graph
embedding space to answer multi-hop questions. At each step of reasoning, we use a scoring function to
measure the plausibility of each ‘‘triple’’ <topic entity, question, candidate entity> in the embedding space.
(3) Furthermore, we employ the asynchronous advantage actor-critic (A3C) algorithm to guide the agent in
selecting the most promising entities and to expand the reasoning paths in parallel by updating policy and value
network parameters, thereby facilitating multi-hop knowledge graph question answering. We conduct extensive
experiments on KGQA benchmark datasets, providing substantial evidence to demonstrate the effectiveness of
our approach.
1. Introduction

Knowledge graph question answering (KGQA) is a natural language
processing task that aims to utilize structured knowledge from knowl-
edge graphs (KGs) to answer natural questions posed by users. Previous
methods (Bast & Haussmann, 2015; Berant et al., 2013; Hao et al.,
2017) often consisted of multiple intricate and specialized processes, in-
cluding named entity recognition, entity linking, information retrieval,
and other manually designed pipelines. With the rapid development
of deep learning, neural networks have transformed it into an end-to-
end task, and have achieved remarkable progress, gradually becoming
a general paradigm for solving it. Recently, an increasing amount of re-
search has focused on more complex question answering patterns (Chen
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et al., 2023; Christmann et al., 2022; Jin et al., 2023; Vakulenko et al.,
2019), specifically those that require multiple hops of reasoning on a
KG to find the answer, known as multi-hop KGQA (Qin et al., 2020; Shi
et al., 2021; Wu et al., 2021). To answer multi-hop KGQA, such as ‘‘Who
is the director of the movies starring Jackie Chan?’’, we need to re-
trieve multiple potentially relevant triples from KG that contain a large
amount of information, e.g., ⟨Jackie Chan, starring, New Police Story⟩
and ⟨New Police Story, directed by, Chen Musheng⟩. Starting with the
topic entity ‘‘Jackie Chan’’, we continuously expand the most promising
relations, gradually forming the intermediate entity ‘‘New Police Story’’
and finally constructing a complete reasoning chain:⟨ Jackie Chan →

starring → New Police Story → directed by → Chen Musheng⟩. Through
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the association of entities, we ultimately obtain the answer entity ‘‘Chen
Musheng’’.

However, in large-scale KGs, as the path expands, the number of
candidate relations and entities increases exponentially, resulting in a
dramatically expanded search space, which places very high demands
on computational resources and efficiency. At the same time, during
the path expansion process, some noise or erroneous entities may
be introduced, and these incorrect entities can potentially propagate
further in the path expansion, ultimately leading to inaccurate answers.

Some works (Chen et al., 2019; Han et al., 2020; Lv et al., 2020; Zhu
et al., 2022) were inspired by human-like step-by-step reasoning and
proposed multi-stage interpretable KGQA models based on dynamic
relations. Although these methods have achieved some degree of effec-
tiveness, they still need to ‘‘label’’ the relations required for reasoning in
advance. For datasets with varying numbers of hops, these methods are
not flexible enough. Recent studies (Gardner et al., 2013; Kaiser et al.,
2021; Xiong et al., 2017) on multi-hop KGQA based on reinforcement
learning (RL) have been carried out. In this method, multi-hop KGQA
is modeled as a sequential decision-making task, where each reasoning
step corresponds to a decision. RL guides the model to explore different
action sequences in the KG through reward, facilitating the discovery
of potentially effective paths and answers. Additionally, RL involves a
well-defined action selection process at each decision step, enhancing
the interpretability of the model’s reasoning paths. Therefore, this
paper continues to follow this technical route and builds a multi-hop
KGQA model based on RL.

Although multi-hop KGQA based on RL has achieved promising
performance, it still faces various challenges. Due to the agent cannot
obtain sufficient information from the environment during the reason-
ing process, it is difficult to make coherent and correct decisions, and
the accumulated errors lead to the failure of subsequent reasoning.
Specifically, the agent based on policy learning usually only relies on
limited explicit state information to make simple decisions. Even if the
agent makes incorrect decisions, it cannot promptly acquire additional
information from the environment to correct its behavior, which to
some extent hinders the agent from effectively exploring the state space
and reduces the reliability of the strategy.

In addition, training data in multi-hop KGQA typically appear
in the form of question–answer pairs rather than reasoning chains,
i.e., ⟨question, reasoning paths, answer⟩. During the exploration process,
the agent can only rely on the sparse and delayed rewards received
after reaching the end entity for biased reasoning, but cannot fully
utilize the explicit information contained in the reasoning chain, which
further increases the difficulty of the agent exploration. Inspired by
reward shaping (Lin et al., 2018), some studies have proposed soft
reward and action pruning to improve the model’s biased reasoning.
However, most of these methods depend on complex and cumbersome
expert knowledge, and this problem has not yet been effectively solved.
Through in-depth analysis, we find that the model tends to generate
false and erroneous reasoning paths, which is due to the lack of
effective environmental information in the reasoning process.

Differing from previous studies, from the perspective of assisting
agent reasoning, we integrate multi-perspective information with RL
to build an interpretable multi-hop KGQA model, which we refer to
as Multi-Perspective Information Fusion Reasoning Network (MPIFRN).
Specifically, we construct different perspectives of information, i.e., ex-
pectation embedding, instruction-guided embedding, and path-aware
embedding. As for expectation embedding, we apply the knowledge
embedding-based question answering (KEQA) framework to compute
the probability distribution of candidate entities in the knowledge
graph embedding (KGE) space. Then, we perform a weighted average
of the embedding vectors of these candidate entities according to
the probability distribution to get the expectation embedding. Subse-
quently, expectation embedding is injected into the reasoning module
of the RL framework to alleviate the agent’s biased reasoning and

improve exploration efficiency and reasoning performance. Given that

2 
the question representation in multi-hop KGQA needs to change with
time during each hop reasoning process, we begin with the question
representation and construct a dynamic instruction-guided embedding
that can facilitate agent reasoning. Inspired by bidirectional search on
the graph (Xiong et al., 2017), we employ a depth-first search algorithm
to find paths from topic entity to answer entity and use the KGE method
to encode these paths to get path-aware embedding that is integrated
into reinforcement learning to improve reasoning ability. Finally, we
integrate expectation embedding, instruction-guided embedding, and
path-aware embedding with the multi-hop KGQA framework based
on RL, and continuously optimize the agent’s strategy through the
asynchronous advantage actor-critic (A3C) algorithm to complete the
multi-hop KGQA task.

In summary, the expectation embedding is a weighted average of
embedding vectors for all candidate entities, while the path-aware
embedding encodes the paths from the subject entity to the candidate
answer entities. These embeddings are derived from knowledge graph
embeddings, providing a static description of the agent’s environment
and serving as prior global supervision information. For instruction-
guided embedding, it focuses on specific parts of the question at
different stages of multi-hop question answering, acting as a dynamic
local guiding signal to track the reasoning state. This information,
viewed from multiple perspectives (static to dynamic, global to local),
not only accurately reflects the agent’s environment and reasoning state
but also serves as a basis for policy learning, guiding the agent to make
more informed decisions.

The main contributions of this paper can be summarized as fol-
lows: To enable the agent to make more reliable decisions in complex
environments, we construct three different types of information from
different perspectives, i.e., expectation embedding, instruction-guided
embedding, and path-aware embedding. This multi-perspective infor-
mation exhibits model-agnostic generality, allowing for flexible and
broad applicability across various KGQA models, thereby effectively
enhancing their performance in multi-hop KGQA tasks. Furthermore,
we integrate multi-perspective information into a meticulously de-
signed KEQA framework and combine it with the A3C policy learning
algorithm (Mnih et al., 2016). This integration not only enhances the
interpretability of the model’s reasoning paths but also mitigates biased
reasoning by the agent, improving its effective exploration of critical
paths.

To evaluate the effectiveness of the proposed method, we conduct
extensive experiments and detailed ablation studies on three bench-
mark datasets for multi-hop KGQA. We progressively integrate multi-
perspective information into the A3C reinforcement learning module,
which in turn enhances the interpretability of the model’s reasoning
to some extent. Experimental results demonstrate that not only does
the multi-perspective information enable MPIFRN to outperform most
KGQA models in Hits@1 score, but it also accelerates the convergence
speed of RL, thereby enhancing the exploration efficiency and reason-
ing performance of the agent. In addition, we also study the impact
of different ways of information fusion on model performance. The
experimental results demonstrate the effectiveness of our method in the
multi-hop KGQA task.

2. Related work

In this section, we briefly summarize the existing research on KGQA
and illustrate the connection and difference between our work and
existing studies. KGQA is a question answering technique based on KGs,
designed to extract structured information from large-scale KGs and
respond to users’ questions through querying and reasoning.

Based on the required length of the relation paths between the
topic entity in the question and the answer entity, KGQA can be
divided into three primary categories: single-hop QA (Cui et al., 2021;
Zhou et al., 2021), multi-hop QA (Cui, Peng, Bao et al., 2023; Qiu

et al., 2020), and complex QA (Shin & Lee, 2020; Yang, Lee et al.,
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2015; Zhang et al., 2018). In comparison to single-hop QA, multi-hop
KGQA poses a greater challenge. Multi-hop QA requires the question
answering system to have robust reasoning capabilities and be able
to perform complex reasoning across multiple relation paths. Due to
the incompleteness of the KG itself, the absence of critical triples
may hinder the question answering system to accurately pinpoint the
answer. Additionally, entities and relations in KG exhibit ambiguity and
polysemy, which also pose a significant challenge to multi-hop KGQA.
Further exacerbating the difficulty of the problem is that a large-scale
KG contains a large number of relations and entities, resulting in an
exponential growth of the search space for multi-hop KGQA, consuming
a large amount of computing resources.

Given the complexity of multi-hop KGQA, it has gradually become
a research hotspot. According to different routes, the research on
multi-hop KGQA can be divided into three main branches: embedding-
based multi-hop KGQA, path-based multi-hop KGQA, and logic-based
multi-hop KGQA. Embedding-based multi-hop KGQA generally applies
the KGE method to map entities and relations to semantic vectors in
the embedding space and calculates the plausibility of the ‘‘triple’’
⟨topic entity, question, candidate entities⟩ by defining a scoring function
to select the best candidate answer entity, thereby facilitating multi-
hop reasoning. For instance, methods that combine memory networks
and interactive reasoning mechanisms include MemNN (Sukhbaatar
et al., 2015), KVMemNN (Miller et al., 2016), and IRN (Zhou et al.,
2018), etc. Another category of methods utilizes graph neural networks
for multi-hop reasoning, with representative models such as Graft-
Net (Sun et al., 2018), SGReader (Xiong et al., 2019), PullNet (Sun
et al., 2019), 2HR-DR (Han et al., 2020), and HyperTransformer (Heo
et al., 2022). Additionally, there are typical semantic matching methods
such as EmbedKGQA (Saxena et al., 2020). These embedding-based
multi-hop KGQA methods can reduce the dependence on complex
rules and manually defined templates. At the same time, the KGE
method makes entities and relations have uncertain semantics, and
can well capture the semantic correlation between them. Therefore,
inspired by embedding-based multi-hop KGQA, we have designed a
KEQA framework that can adapt to different KGE models. Although
the embedding-based multi-hop KGQA model has end-to-end training
capabilities, its interpretability is relatively limited. To enhance the
interpretability of the multi-hop KGQA model, some research has in-
troduced path-based reasoning methods (Chen et al., 2019; Das et al.,
2018; Lee et al., 2021; Niu et al., 2021; Qiu et al., 2020; Zhou et al.,
2018). Due to the presence of misleading or irrelevant relations in the
KG, the model cannot actively correct these erroneous relations dur-
ing reasoning. These erroneous relations will be further accumulated
and propagated along with path extension, resulting in the failure of
reasoning. To alleviate the above issues, recent studies have applied
RL (Chen et al., 2019; Han et al., 2020; Lin et al., 2018; Lv et al.,
2020; Zhu et al., 2022) to the multi-hop KGQA, transforming it into a
Markov decision process. By constructing an RL agent that simulates the
dynamic interaction with the KG, a path selection strategy is learned.

However, RL still faces challenges in addressing multi-hop KGQA.
Firstly, the agent cannot acquire enough information from the envi-
ronment and only relies on the current limited state to make deci-
sions, which reduces the reliability of the strategy (Cui, Peng, Xiao
et al., 2023). Secondly, training data in multi-hop KGQA typically
appear in the form of ‘‘question–answer’’ pairs rather than an ex-
plicit path, i.e., ⟨question, reasoning paths, answer⟩, which makes the
model unable to reason deeply and solve complex problems and can
only answer questions through local entity matching. To enhance the
model’s reasoning capabilities, some research (He et al., 2021) has
proposed the construction of a teacher-student model that incorpo-
rates bidirectional reasoning to enhance the learning of intermediate
entity distributions, thereby providing supervision signals for multi-
hop KGQA. While these additional intermediate supervision signals
are beneficial for multi-hop KGQA, they are not sufficient to address

all its challenges. Consequently, we construct three different types c
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of information from multi-perspective, i.e., expectation embedding,
instruction-guided embedding, and path-aware embedding. Carefully
designed information can not only be integrated into a well-designed
KEQA framework as general knowledge, but can also be combined with
the A3C policy learning algorithm to provide a more reliable foundation
for the agent’s decision-making.

To the best of our knowledge, this is the first attempt to incorporate
multi-perspective information into an RL framework to solve complex
multi-hop KGQA.

3. Multi-perspective information fusion reasoning network

In this section, we first define the problem of KGQA and then
introduce our MPIFRN model. The MPIFRN model mainly consists of a
Knowledge Graph Embedding (KGE) module, a Knowledge Embedding-
based Question Answering (KEQA) module, a multi-perspective in-
formation module, and a Reinforcement Learning (RL) framework.
Among these components, the KEQA framework utilizes the embedding
vectors learned by the KGE module to evaluate the plausibility of
triples. Simultaneously, by constructing an RL framework that inte-
grates multi-perspective information with the RL agent, the agent can
dynamically interact with the knowledge graph, enhancing both the
model’s performance and interoperability.

3.1. Formal problem definition

A knowledge graph  = ( ,) is a structured data model that rep-
resents associations between entities, relations, and attributes, where 
is the set of entities, and  is the set of relations. The knowledge graph
 contains a large number of directed links , such as  ⊆  × ×  .
A triple can be represented as (𝑒ℎ, 𝑟, 𝑒𝑡) ∈ , with 𝑒ℎ, 𝑒𝑡 ∈  denoting
ubject and object entities respectively and 𝑟 ∈  the relation between
hem. A fundamental problem in the KGQA task involves taking a
atural language question 𝑞 and the subject entity or topic entity 𝑒ℎ ∈ 
entioned within it as the starting point for reasoning. The task of
EQA is to efficiently search on knowledge graph  to find an entity
𝑡 ∈  that can correctly answer the question 𝑞.

.2. Model overview

In this paper, our core idea is to incorporate carefully crafted multi-
erspective information into the RL framework to solve multi-hop
GQA. To achieve this, our model consists of four components, i.e.,
nowledge graph embedding (KGE) module, knowledge embedding-
ased question answering (KEQA) module, multi-perspective informa-
ion module, and reinforcement learning (RL) framework.

The KGE module is responsible for mapping entities and relations
o semantic vectors within the same embedding space. Then, the KEQA
ramework is utilized to estimate the plausibility of ‘‘triple’’ ⟨topic
ntity, question, answer entity⟩. The multi-perspective information mod-
le is mainly responsible for generating multi-perspective information,
ncluding expectation embedding, instruction-guided embedding, and
ath-aware embedding. Due to the reliance on RL for reasoning in
ulti-hop question answering, we construct an RL agent. By integrating

he multi-perspective fusion with RL framework, the agent can dy-
amically interact with the KG to learn the optimal strategy, thereby
nhancing the model’s interpretability. The overall workflow of our
roposed method is shown in Fig. 1, and we will elaborate on each

omponent in the following sections.
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Fig. 1. The model architecture of our proposed multi-perspective Information Fusion Reasoning Network. Firstly, we utilize the KGE method to map entities and relations to
distributed vectors within a low-dimensional vector space. Secondly, the KEQA framework is utilized to estimate the plausibility of ‘‘triple’’ ⟨topic entity, question, candidate entities⟩.
We treat this probability distribution as the weight distribution of candidate entities. Then, we perform a weighted average of embedding vectors for all candidate entities to obtain
the expectation embedding. Additionally, we also utilize an instruction reasoning module to generate instruction-guided embedding and construct path-aware embedding. Finally,
we incorporate multi-perspective information into an RL framework to guide the agent to explore different sequences of actions in order to find promising paths and answers.
3.3. Knowledge graph embedding

Knowledge Graph Embedding (KGE) method aims to map entities
and relations in KG into representations within a low-dimensional
vector space. The core purpose of this mapping process is to capture
the semantic associations between entities and relations, so that these
associations are preserved in the semantic vector space, thereby provid-
ing an effective tool for measuring the strength of relationships between
entities.

In this paper, we apply four KGE methods, i.e., ConvE, TuckER,
DistMult, and ComplEx. Among them, the plausibility of the ‘‘triple’’
(𝑒ℎ, 𝑟, 𝑒𝑡) is measured by the scoring function, and different KG embed-
ding methods use different scoring functions. This evaluation process
is crucial for relational reasoning and helps deepen our understanding
and application of KGE. Taking ComplEx as an example, it maps entities
and relations to the complex vector space, and can better capture the
4 
semantic relationship between entities and relations through complex
vector representation and complex dot product calculation. Specifically,
given 𝑒ℎ, 𝑒𝑡 ∈  and 𝑟 ∈ , 𝒆ℎ, 𝒓, 𝒆𝑡 ∈ C𝑑 are generated by ComplEx,
then, a ComplEx scoring function is defined as follows:

𝜙(𝑒ℎ, 𝑟, 𝑒𝑡) = Re
(

⟨𝒆ℎ, 𝒓, �̄�𝑡⟩
)

(1)

= Re(
𝑑
∑

𝑘=1
𝑒(𝑘)ℎ 𝑒(𝑘)𝑟 𝑒𝑡

(𝑘)) (2)

where Re() denotes the real part of the complex vector, and ⟨⟩ denotes
the inner product of complex vectors. As for model training, firstly, an
embedding vector is initialized for each entity and relation. Secondly,
for each correct triple (𝑒ℎ, 𝑟, 𝑒𝑡) ∈  and incorrect triple (𝑒′ℎ, 𝑟

′, 𝑒′𝑡) ∉
, the model assigns scores in a manner that 𝜙(𝑒ℎ, 𝑟, 𝑒𝑡) > 0 and
𝜙(𝑒′ℎ, 𝑟

′, 𝑒′𝑡) < 0, respectively. Finally, the model minimizes the bi-
nary cross-entropy loss using optimization algorithms such as gradient
descent to update the embedding vectors.
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3.4. Knowledge embedding based question answering

Since KEQA mainly utilizes KGE to solve multi-hop questions, we
first need to encode the question, and then measure the plausibility of
the ‘‘triple’’ ⟨topic entity, question, answer entity⟩ in the KG embedding
space. Specifically, an embedding layer first encodes the question 𝑞 to
obtain the word embedding. Then, the word embedding sequence is
fed into a Transformer encoder to obtain hidden states. Finally, a max-
pooling layer is applied to get the question representation 𝒉𝑞 ∈ R𝑑×1:

𝒉𝑞 = 𝑀𝑎𝑥 − 𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑇 𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 − 𝐸𝑛𝑐𝑜𝑑𝑒𝑟

(𝑊 𝑜𝑟𝑑 − 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑞)))
(3)

Furthermore, as described in Section 3.3, pre-trained KG embed-
dings are applied to initialize the answer entity {𝑒𝑎|𝑒𝑎 ∈ } and the
topic entity 𝑒ℎ ∈  within the question 𝑞, obtaining their respective
embedding representations as{𝐞𝑎𝑘}

||
𝑘=1 ∈ R𝑑 and 𝒆ℎ. Subsequently, the

plausibility of each candidate answer entity is evaluated using a scoring
function 𝜙(⋅):

𝑠𝑘 = 𝜙(𝒆ℎ,𝒉𝑞 , 𝒆𝑎𝑘 ) (4)

The KGE module is trained by minimizing the binary cross-entropy
loss, which is achieved by comparing the sigmoid of the scores with the
target labels.

3.4.1. Expectation embedding
In this part, we will introduce expectation embedding. The trained

KGE models are leveraged to calculate the probability distribution of
candidate entities through the ‘‘triple’’ ⟨topic entity, question, candidate
entities⟩, and we treat this probability distribution as the weight dis-
tribution of candidate entities. Then, we perform a weighted average
of embedding vectors for all candidate entities to obtain the expec-
tation embedding, denoted as 𝒉𝑒𝑥𝑝. At last, 𝒉𝑒𝑥𝑝 is injected into the

L framework as part of the basis for the agent’s decision-making.
he expectation embedding 𝒉𝑒𝑥𝑝 has the following advantages. First,
he potential candidate entity vectors are weighted as supervisory
nformation and combined with the reasoning process of RL, which
an enhance the learning of the policy network and improve the
xploration efficiency of the agent. Second, 𝒉𝑒𝑥𝑝 is derived through a
coring function, rendering it versatile and applicable to different KGE
ethods.

.4.2. Instruction-guided embedding
In this section, we will introduce a detailed explanation of the

rocess by which the instruction-guided embedding is generated. In-
uitively, we need to focus on specific parts of the question at dif-
erent stages of multi-hop question answering, and this process can
e controlled by the instruction reasoning module. The input of the
nstruction reasoning module includes a query embedding 𝒒 and the
nstruction-guided embedding 𝒉(𝑡−1)𝑖𝑛𝑠 generated from the previous rea-
oning step. The instruction-guided embedding 𝒉(0)𝑖𝑛𝑠 is initialized as

zero vector at the beginning of reasoning. Given a question 𝑞 =
𝑞1, 𝑞2, 𝑞3,… , 𝑞𝑛), where each token 𝑞𝑖 is initialized using pre-trained
loVe word embeddings. To capture richer semantic information, we
mploy a Transformer encoder to encode the GloVe-initialized question
nd obtain the hidden states of the query. After that, in order to reduce
he dimension, we use LSTM to encode the hidden states of the query
gain to get a set of hidden states

{

𝒉𝑖
}𝑙
𝑖=1, where 𝒉𝑖 ∈ R𝑑 and 𝑙 is

he length of the query. At the same time, we regard the last hidden
tate as the query representation, i.e., 𝒒 = 𝒉𝑙. Let 𝒉(𝑡)𝑖𝑛𝑠 ∈ R𝑑 denote the
nstruction-guided embedding at the 𝑡th step of reasoning. The 𝒉(𝑡)𝑖𝑛𝑠 is
earned using the following method:

(𝑡)
𝑖𝑛𝑠 =

𝑙
∑

𝑖=1
𝛼(𝑡)𝑖 𝒉𝑖 (5)

(𝑡) ( ( (𝑡) ) )
𝛼𝑖 = sof tmax𝑖 𝑾 𝑞 𝒒 ⊙ 𝒉𝑖 + 𝒃𝑞 (6)

5 
𝒒(𝑡) = 𝑾 (𝑡)
[

𝒉(𝑡−1)𝑖𝑛𝑠 ; 𝒒
]

+ 𝒃(𝑡), 𝒉(0)𝑖𝑛𝑠 = 𝟎, 𝑡 > 0 (7)

where 𝑾 (𝑡) ∈ R𝑑×2𝑑 and 𝑾 𝑞 ∈ R𝑑×𝑑 are parameters to learn. By
repeating the above process, after n steps of reasoning, we can obtain
a series of instruction-guided embedding

{

𝒉(𝑡)𝑖𝑛𝑠
}𝑛

𝑡=1
.

We can treat the instruction-guided embedding as a guiding signal
to track the state of multi-hop reasoning by dynamically capturing
query representations at different steps and combining it with the RL
framework to provide clues for the agent’s decision-making.

3.4.3. Path-aware embedding
In RL, the agent only receives delayed and sparse rewards from the

environment upon reaching terminal states, which not only reduces the
efficiency of exploration but also increases the risk of biased reasoning.
Inspired by the bidirectional search paths in graphs, we have devised
path supervision information. The agent can make wiser decisions at
each step of the reasoning process by integrating global path supervi-
sion information, rather than relying solely on sparse rewards at the
end of the reasoning process.

Specifically, inspired by a Bi-directional search for path verifica-
tion (Xiong et al., 2017), we apply a Depth-First Search (DFS) on the KG
 to find the path from the topic entity to the answer entity. Generally,
assuming 𝑃𝑎𝑡ℎ = (𝑒ℎ, 𝑟1, 𝑒1, 𝑟2, 𝑒2,… , 𝑟𝑇 , 𝑒𝑎), we extract relations from
𝑃𝑎𝑡ℎ to get 𝑟𝑝𝑎𝑡ℎ = (𝑟1, 𝑟2, 𝑟3,… , 𝑟𝑇 ). Then, we use pre-trained KG
embeddings obtained in Section 3.3 to encode these relations to obtain
𝒓𝑝𝑎𝑡ℎ =

{

𝒓𝑖
}𝑇
𝑖=1, where 𝒓𝑖 ∈ R𝑑 and 𝑇 is max number of hops. Due to

the max number of hops for multi-hop reasoning in this paper does
not exceed 3, we concat these relation embeddings to form 𝒓′𝑝𝑎𝑡ℎ =
[𝒓1; 𝒓2;… ; 𝒓𝑇 ] ∈ R𝑇×𝑑 . In order to be consistent with the dimensions
of 𝒉𝑒𝑥𝑝 and 𝒉𝑖𝑛𝑠, we stack the corresponding elements in 𝒓′𝑝𝑎𝑡ℎ along the
column axis and add them up to obtain Path-aware embedding 𝒉𝑝𝑎𝑡ℎ:

𝒉𝑝𝑎𝑡ℎ =
𝑇
∑

𝑘=0
𝑟′𝑝𝑎𝑡ℎ[𝑘, ∶] ∈ R𝑑 (8)

Through the above operation, 𝒉𝑝𝑎𝑡ℎ now contains path encoding infor-
mation. Treating 𝒉𝑝𝑎𝑡ℎ as global supervision and integrating it with the
RL framework can enhance the path selection ability of the intelligent
agent and mitigate biased reasoning.

3.5. Reinforcement learning formulation

The Markov Decision Process (MDP) provides powerful support for
modeling and solving sequential decision problems. Starting from the
source entity, the agent selects potential relations from the KG accord-
ing to the strategy and traverses to a new entity until reaching the
target entity. Naturally, path search is transformed into a reinforcement
learning process. Specifically, MDP is mainly composed of the following
parts.

States. The agent is currently in state 𝑠𝑡 = (𝑒𝑡, (𝑒𝑠, 𝑟𝑞)) ∈ , where
𝑒𝑡 denotes the entity visited at step 𝑡, and (𝑒𝑠, 𝑟𝑞) are the source entity
nd query relation. In multi-hop question answering, 𝑒𝑠 is also viewed
s a topic entity. The above simple state information is not enough, we
eed to introduce more information to describe the state of the agent.
ue to the rich state information, it can help the agent to make more

eliable decisions. In order to provide more reliable information for the
gent, we also construct multi-perspective information, including 𝒉𝑒𝑥𝑝,

𝒉𝑖𝑛𝑠, and 𝒉𝑝𝑎𝑡ℎ, which are described in detail in Sections 3.4.1, 3.4.2,
and 3.4.3, respectively. Meanwhile, we also track the search history
ℎ𝑡 which is derived from the historical sequence of decisions made by
the agent. The details of ℎ𝑡 are elaborated in Section 3.6. Then, the
state 𝑠𝑡 is expanded to (𝑒𝑡, (𝑒𝑠, 𝑟𝑞), ℎ𝑡,𝒉𝑒𝑥𝑝,𝒉

(𝑡)
𝑖𝑛𝑠,𝒉𝑝𝑎𝑡ℎ). We will integrate

multi-perspective state information with the subsequent policy network
and value network in RL framework to address the issues of biased

reasoning and low exploration efficiency in multi-hop KGQA.
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Actions. When the agent arrives at state 𝑠𝑡, it may choose the set
of actions 𝐴 ∈  that consists of the outgoing edges of 𝑒𝑡. Concretely,
action spaces 𝐴𝑡 = {(𝑟′, 𝑒′) ∣ (𝑒𝑡, 𝑟′, 𝑒′) ∈ }. To terminate the agent’s
exploration within a fixed time step 𝑇 , we consider adding a self-loop
relation (𝑟𝑙𝑜𝑜𝑝, 𝑒𝑡) viewed as a ‘‘stop’’ action to each set 𝐴𝑡. If the agent
selects the self-loop relation at time step 𝑡, it will remain at the current
entity 𝑒𝑡 and consider 𝑒𝑡 as the predicted answer, while the process of
path expansion terminates.

Transition. In RL, ‘‘State Transition’’ describes how the agent moves
from one state to another in the process of continuously taking actions
in the environment. A state transition function 𝛿 ∶ 𝑆 ×  → 𝑆
is defined as 𝛿(𝑠𝑡, 𝐴𝑡) = 𝛿(𝑒𝑡, (𝑒𝑠, 𝑟𝑞), ℎ𝑡,𝒉𝑒𝑥𝑝,𝒉

(𝑡)
𝑖𝑛𝑠,𝒉𝑝𝑎𝑡ℎ, 𝐴𝑡). Specifically,

in state 𝑠𝑡, after the agent selects an action 𝑎𝑡 = (𝑟𝑡, 𝑒𝑡) ∈ 𝐴𝑡, ac-
cording to the current optimal strategy, it arrives at the state 𝑠𝑡+1 =
(𝑒𝑡+1, (𝑒𝑠, 𝑟𝑞), ℎ𝑡+1,𝒉𝑒𝑥𝑝,𝒉

(𝑡+1)
𝑖𝑛𝑠 ,𝒉𝑝𝑎𝑡ℎ, 𝐴𝑡+1), where ℎ𝑡+1 = ℎ𝑡 ∩ {𝐴𝑡}. Note

that, 𝑒𝑠, 𝑟𝑞 ,𝒉𝑒𝑥𝑝 and 𝒉𝑝𝑎𝑡ℎ are global information shared by all states,
and will not change when a state transition occurs.

Rewards. If the agent arrives at a correct target entity at the end
of an episode, it will get a terminal reward of 1 and 0 otherwise.

𝑅𝑏(𝑠𝑇 ) = 1(𝒆𝑠, 𝒓𝑞 , 𝒆𝑇 ) ∈  (9)

This type of reward is delayed and sparse, thus significantly slowing
down the convergence speed of RL. In this paper, we still follow
previous work using a reward-shaping method (Lin et al., 2018) to give
the agent a soft reward based on a pre-trained KGE model. Formally,
the soft reward is defined as follows:

𝑅(𝑠𝑇 ) = 𝑅𝑏(𝑠𝑇 ) + (1 −𝑅𝑏(𝑠𝑇 ))𝜙(𝒆𝑠, 𝒓𝑞 , 𝒆𝑇 ) (10)

where 𝒆𝑠, 𝒓𝑞 and 𝒆𝑇 refer to the embeddings of the topic entity,
query relation, and predicted entity, respectively, and the state 𝑠𝑇 =
(𝑒𝑇 , (𝑒𝑠, 𝑟𝑞), ℎ𝑇 ,𝒉𝑒𝑥𝑝,𝒉

(𝑇 )
𝑖𝑛𝑠 ,𝒉𝑝𝑎𝑡ℎ, 𝐴𝑇 ) denotes the terminal state. If the pre-

dicted entity 𝑒𝑇 matches the answer entity, the agent will receive a
reward of 1, otherwise, it will be rewarded 𝜙(𝒆𝑠, 𝒓𝑞 , 𝒆𝑇 ) according to a
scoring function.

3.6. Policy network

In this section, we will elaborate in detail the integration of multi-
perspective information with the policy network in RL. The policy
network takes the state information of the agent as input and outputs a
probability distribution over candidate actions. Concretely, a question
𝑞 = (𝑞1, 𝑞2,… , 𝑞𝑛) is sequentially processed through pre-trained GloVe
word embeddings initialization and Transformer encoder encoding to
obtain the hidden states of 𝑞 which denotes as 𝒒 = (𝒒1, 𝒒2,… , 𝒒𝑛), where
𝒒𝑖 ∈ R𝑑 . Since we need to focus on different parts of 𝑞 at different
reasoning steps, a simple linear network is applied to dynamically
update 𝑞 to generate 𝒒(𝑡) ∈ R𝑑×𝑛:

𝒒(𝑡) = 𝐓𝐚𝐧𝐡(𝑾 (𝑡)
𝑞 ⋅ 𝒒 + 𝒃(𝑡)) (11)

where 𝑾 (𝑡)
𝑞 ∈ 𝑅𝑑×𝑑 and 𝒃(𝑡) ∈ 𝑅𝑑×1 are parameters to learn. 𝐓𝐚𝐧𝐡(⋅) is

the activation function.
Relation-augmented question representation At time step 𝑡, ac-

tion spaces 𝐴𝑡 = {(𝑟′, 𝑒′) ∣ (𝑒𝑡, 𝑟′, 𝑒′) ∈ }. To get relation-augmented
question representation �̂�(𝑡), we use an attention mechanism to align
the relation derived from each action 𝑎𝑡 = (𝑟𝑡, 𝑒𝑡) ∈ 𝐴𝑡 with question as
follows:

𝛽′𝑖 = 𝑾 𝑟𝑞 ⋅ (𝒓𝒕 ⊙ 𝒒(𝑡)𝑖 ) (12)

𝛼′𝑖 =
𝑒𝑥𝑝(𝛽

′
𝑖 )

∑𝑛
𝑗=1 𝑒𝑥𝑝

(𝛽′𝑗 )
(13)

̂ (𝑡) =
𝑛
∑

𝑖=1
𝛼′𝑖 ⋅ 𝒒

(𝑡)
𝑖 (14)

here 𝒓𝑡 is the vector embedding of relation 𝑟𝑡 through KGE, 𝒒(𝑡)𝑖 is
dynamic update representation of the query token 𝑞𝑖, and 𝑾 𝑟𝑞 are
arameters to learn.

6 
Integrating Multi-Perspective Information into Policy Network
very entity 𝑒𝑡 and relation 𝑟𝑡 in action 𝑎𝑡 = (𝑟𝑡, 𝑒𝑡) ∈ 𝐴𝑡 is assigned
dense vector embedding 𝒆𝑡 ∈ R𝑑 and 𝒓𝑡 ∈ R𝑑 through KGE. As a

esult, the action 𝑎𝑡 = (𝑟𝑡, 𝑒𝑡) is encoded into 𝒂𝑡 =
[

𝒓𝑡; 𝒆𝑡
]

∈ R2𝑑 that
enotes the concatenation of the relation embedding and the entity
mbedding. In addition, LSTM is utilized by us to encode the search
istory ℎ𝑡 = (𝑒𝑠, 𝑟1, 𝑒1,… , 𝑟𝑡, 𝑒𝑡) containing the sequence of observations
nd actions taken up to step 𝑡 to get search history embedding 𝒉𝑡:

𝒉𝑡 = 𝐋𝐒𝐓𝐌(𝒉𝑡−1,𝒂𝑡−1), 𝑡 > 0 (15)

𝒉0 = 𝐋𝐒𝐓𝐌(𝟎,𝒂0) (16)

0 =
[

𝒓0; 𝒆𝑠
]

(17)

here 𝒆𝑠 is the vector embedding of the topic entity and 𝒓0 is a special
tart relation connected with the topic entity. To further improve the
erformance of multi-hop question answering, we introduce a cross
ttention module to enhance the interaction among multi-perspective
nformation. First, the cross attention between 𝒉𝑒𝑥𝑝 and 𝒉𝑖𝑛𝑠 is computed
s:

𝑸 = 𝒉𝑒𝑥𝑝𝑾 𝑄 (18)

𝑲 = 𝒉𝑖𝑛𝑠𝑾 𝐾 (19)

𝑽 = 𝒉𝑖𝑛𝑠𝑾 𝑉 (20)

𝑟𝑜𝑠𝑠𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝒉𝑒𝑥𝑝,𝒉𝑖𝑛𝑠) = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑸,𝑲 ,𝑽 ) (21)

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑸,𝑲 ,𝑽 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑸𝑲𝑻
√

𝑑𝑘
)𝑽 (22)

econd, similarly, we calculate the cross attention among 𝒉𝑒𝑥𝑝, 𝒉𝑖𝑛𝑠, and
𝑝𝑎𝑡ℎ to get 𝒉𝑚𝑖𝑥𝑒𝑑 . Finally, we obtain 𝑨𝑡 ∈ R|𝐴𝑡|×2𝑑 by stacking the

embeddings of all actions in the action spaces 𝐴𝑡. Therefore, the policy
network is defined as:

𝜋𝜃(𝑎𝑡|𝑠𝑡) = 𝜎(𝑨𝑡 ⋅𝑾 2 ⋅ 𝑅𝑒𝐿𝑈 (𝑾 1 ⋅ [�̂�(𝑡);𝒉𝑡;𝒉𝑒𝑥𝑝;

𝒉𝑖𝑛𝑠;𝒉𝑝𝑎𝑡ℎ;𝒉𝑚𝑖𝑥𝑒𝑑 ])) (23)
𝒉𝑚𝑖𝑥𝑒𝑑 = 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛

(𝒉𝑒𝑥𝑝,𝒉𝑖𝑛𝑠),𝒉𝑝𝑎𝑡ℎ) (24)

here 𝑨𝑡 denotes the encoding of action spaces, [�̂�(𝑡);𝒉𝑡;𝒉𝑒𝑥𝑝;𝒉𝑖𝑛𝑠;
𝒉𝑝𝑎𝑡ℎ;𝒉𝑚𝑖𝑥𝑒𝑑 ] denotes the vector concatenation of relation-augmented
question representation, search history embedding, expectation em-
bedding, instruction-guided embedding, path-aware embedding, cross
attention among 𝒉𝑒𝑥𝑝, 𝒉𝑖𝑛𝑠, and 𝒉𝑝𝑎𝑡ℎ. 𝑾 1 and 𝑾 2 are parameters to
learn, 𝜎 is the softmax operator.

3.7. Optimization

Due to the difficulty of convergence in RL, the Asynchronous Ad-
vantage Actor-Critic (A3C) algorithm is introduced. By utilizing Actor-
Critic architecture and integrating policy gradient and value function
optimization, A3C helps to reduce variance during training and im-
prove stability. Furthermore, the parallel architecture of A3C enables
multiple agents or threads to interact with the environment simultane-
ously, thereby accelerating training. Hence, we employ A3C to optimize
both the policy network 𝜋(𝑎𝑡|𝑠𝑡; 𝜃) and the value network 𝑉 (𝑠𝑡; 𝜃𝑣). The
ptimization procedure is summarized in Algorithm Mnih et al. (2016).
irst, we initialize the parameter vectors 𝜃′ and 𝜃′𝑣 for each thread.
hen, we use the global shared parameter vectors 𝜃 and 𝜃𝑣 to synchro-

nize the thread-specific parameters. Subsequently, the agent observes
the current state 𝑠𝑡 and selects an action 𝑎𝑡 based on the policy function
(𝑎𝑡|𝑠𝑡; 𝜃′). After executing action 𝑎𝑡, the agent receives a reward 𝑟(𝑠𝑡)

from the environment and updates the state to 𝑠𝑡+1. The above process
is repeated until the agent reaches a terminal state 𝑠𝑡 or the maximum
number of hops 𝑇𝑚𝑎𝑥. The agent calculates the cumulative reward 𝑅(𝑠𝑡)
based on the delayed reward 𝑅(𝑠𝑇𝑚𝑎𝑥 ) according to Eqs. (26), (27). Next,

we introduce the advantage function 𝐴(𝑠𝑡, 𝑎𝑡) to estimate the advantage
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of action 𝑎𝑡 in state 𝑠𝑡 based on the cumulative reward 𝑅(𝑠𝑡). Then, we
calculate the accumulated gradients of the policy network and the value
network according to Eqs. (29), (30), and (31). Finally, we perform
asynchronous updates on the global shared parameter vectors 𝜃 and
𝑣. The optimization process terminates when all threads have executed
𝑚𝑎𝑥 epochs.

Specifically, we apply a simple fully connected layer to implement
he value network:
(𝑠𝑡; 𝜃𝑣) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑾 𝑣 ⋅ [𝒉𝑡;𝒉𝑒𝑥𝑝;𝒉𝑖𝑛𝑠;𝒉𝑝𝑎𝑡ℎ;

𝒉𝑚𝑖𝑥𝑒𝑑 ])
(25)

where 𝑾 𝑣 is a parameter to learn and [𝒉𝑡;𝒉𝑒𝑥𝑝;𝒉𝑖𝑛𝑠;𝒉𝑝𝑎𝑡ℎ;𝒉𝑚𝑖𝑥𝑒𝑑 ] de-
notes the vector concatenation of search history embedding, expecta-
tion embedding, instruction-guided embedding, path-aware embedding
and cross attention among 𝒉𝑒𝑥𝑝, 𝒉𝑖𝑛𝑠 and 𝒉𝑝𝑎𝑡ℎ. Since the agent only
receives a reward when it reaches the end of an episode, for inter-
mediate states, the agent can only obtain a reward of 0. Delayed and
sparse rewards can significantly slow down the convergence speed of
reinforcement learning. To address the above, we provide the agent
with a soft reward 𝑟(𝑠𝑡) in intermediate state 𝑠𝑡. Thus, in state 𝑠𝑡, the
cumulative reward 𝑅(𝑠𝑡) the agent gets is calculated as follows:

𝑟(𝑠𝑡) = 𝜙(𝒆𝑠, 𝒓𝑞 , 𝒆𝑡) (26)

𝑅(𝑠𝑡) = 𝑟(𝑠𝑡) + 𝛾𝑇−𝑡𝑅(𝑠𝑇 ) (27)

where 𝒆𝑠, 𝒓𝑞 , 𝒆𝑡 refer to embeddings of the topic entity, query relation,
and intermediate entity, respectively. 𝑟(𝑠𝑡) is the intermediate and soft
reward obtained by the agent in state 𝑠𝑡 through a scoring function
described in Section 3.5, 𝑅(𝑠𝑇 ) denotes the soft reward obtained by
the agent in the terminal state 𝑠𝑇 , 𝛾 is a discount factor, and 𝑇 is the
max number of hops. Moreover, an advantage function is introduced
to estimate the additional benefit of taking action 𝑎𝑡 relative to the
average reward that would be obtained by executing the default policy:

𝐴(𝑠𝑡, 𝑎𝑡) = 𝑅(𝑠𝑡) − 𝑉 (𝑠𝑡) (28)

In the A3C algorithm, the loss function is designed to simultaneously
optimize the policy network and the value function network. As a re-
sult, the loss function usually consists of two parts: policy loss and value
function loss. The policy loss applies a policy gradient-based method to
encourage the policy network to generate a better action distribution:

(𝜃) = E𝜏∼𝜋𝜃

𝑇
∑

𝑡=0
𝐴(𝑠𝑡, 𝑎𝑡) ⋅ 𝑙𝑜𝑔𝜋(𝑎𝑡|𝑠𝑡; 𝜃) (29)

where 𝜋(𝑎𝑡|𝑠𝑡; 𝜃) is the probability that the policy network generates
action 𝑎𝑡 in state 𝑠𝑡, and 𝐴(𝑠𝑡, 𝑎𝑡) is the advantage function that denotes
the advantage of taking action 𝑎𝑡 in state 𝑠𝑡. As for the value network,
the mean squared error (MSE) is usually used to optimize the value
network loss:

(𝜃𝑣) = E𝜏∼𝜋𝜃𝑣

[

1
2

𝑇
∑

𝑡=0
(𝑅(𝑠𝑡) − 𝑉 (𝑠𝑡; 𝜃𝑣))2

]

(30)

Finally, the total loss is defined as:

(𝜃, 𝜃𝑣) = (𝜃) + 𝜆(𝜃𝑣) + 𝛼 ⋅𝐻(𝜋(⋅|𝑠𝑡; 𝜃)) (31)

where 𝜆, 𝛼 are hyperparameters, and 𝐻() denotes the cross entropy of
strategy 𝜋(⋅|𝑠𝑡; 𝜃) which can improve exploration and avoid converging
to a suboptimal deterministic strategy.

4. Experiments

In this section, we outline the datasets used to evaluate our method,
then describe the experimental setup in detail and present the obtained

results.

7 
Algorithm 1 Application of the Asynchronous Advantage Actor-Critic
in Optimization Procedure
Input: Global shared parameter vectors 𝜃 and 𝜃𝑣; Thread-specific pa-

rameter vectors 𝜃′ and 𝜃′𝑣; Global shared counter 𝐶 = 0; Max
number of hops 𝑇𝑚𝑎𝑥; Maximum Iteration epochs 𝐶𝑚𝑎𝑥.

Output: Optimized parameters 𝜃 and 𝜃𝑣.
1: Initialize thread step counter 𝑡 ← 1
2: repeat
3: Reset gradients 𝑑𝜃 ← 0 and 𝑑𝜃𝑣 ← 0
4: Synchronize thread-specific parameters 𝜃′ ← 𝜃 and 𝜃′𝑣 ← 𝜃𝑣
5: 𝑡𝑠𝑡𝑎𝑟𝑡 = 𝑡
6: Get state 𝑠𝑡
7: repeat
8: Perform 𝑎𝑡 according to policy 𝜋(𝑎𝑡|𝑠𝑡; 𝜃′)
9: Receive reward 𝑟(𝑠𝑡) and new state 𝑠𝑡+1
0: 𝑡 ← 𝑡 + 1
1: until terminal 𝑠𝑡 or 𝑡 − 𝑡𝑠𝑡𝑎𝑟𝑡 == 𝑇𝑚𝑎𝑥
2: Get the delayed reward 𝑅(𝑠𝑇𝑚𝑎𝑥 )
3: for 𝑖 ∈ {𝑡 − 1, ..., 𝑡𝑠𝑡𝑎𝑟𝑡} do
4: Calculate the cumulative reward

𝑅(𝑠𝑖) ← 𝑟(𝑠𝑖) + 𝛾𝑇𝑚𝑎𝑥−𝑖𝑅(𝑠𝑇𝑚𝑎𝑥 )
5: Accumulate gradients w.r.t. 𝜃′:

𝑑𝜃 ← 𝑑𝜃+∇𝜃′ (𝑅(𝑠𝑖)−𝑉 (𝑠𝑖; 𝜃′𝑣))⋅𝑙𝑜𝑔𝜋(𝑎𝑖|𝑠𝑖; 𝜃
′)+𝛽 ⋅∇𝜃′𝐻(𝜋(⋅|𝑠𝑖; 𝜃′)

6: Accumulate gradients w.r.t. 𝜃′𝑣:
𝑑𝜃𝑣 ← 𝑑𝜃𝑣 + 𝜆 ⋅ ∇𝜃′𝑣 (𝑅(𝑠𝑖) − 𝑉 (𝑠𝑖; 𝜃′𝑣))

2

7: end for
8: Perform asynchronous updates of 𝜃 using 𝑑𝜃 and of 𝜃𝑣 using 𝑑𝜃𝑣.

9: 𝐶 ← 𝐶 + 1
0: until 𝐶 > 𝐶𝑚𝑎𝑥

4.1. Datasets

To evaluate the effectiveness of the proposed method, we conduct a
series of experiments on three benchmark datasets for the multi-hop
KBQA task, and the detailed statistics of the datasets are shown in
Table 1. PathQuestion (PQ) (Zhou et al., 2018) is composed of selecting
a set of entity pairs from two subsets of Freebase, and then using
relations in the knowledge graph to extract paths connecting these
entity pairs through the path extraction algorithm. Different question
types are included in the PQ dataset, namely 2-hop (PQ-2H) and 3-
hop (PQ-3H) questions. PQ-Mix is a mixed dataset that contains the
mix of all questions in the PQ dataset, which aims to provide a more
comprehensive and diverse dataset for evaluating the performance of
models on multi-hop KGQA tasks.

PathQuestion-Large (PQL) is an extended version of the PQ dataset,
which uses a larger knowledge graph but provides few training in-
stances. Likewise, the PQL dataset also contains two types of questions,
PQL-2H and PQL-3H. Among them, PQL-2H denotes the 2-hop ques-
tions, and PQL-3H denotes the 3-hop questions. PQL-Mix is a mixed
dataset of PQL.

As a comprehensive extension of WikiMovies, MetaQA (Zhang et al.,
2018) is an extensive KGQA dataset focusing on the movie domain.
It contains over 400k single and multi-hop questions covering 1-hop,
2-hop, and 3-hop.

4.2. Baselines

In order to better verify the effectiveness of the proposed method,
we extensively consider the following baselines for performance com-
parison: (1) reinforcement learning-based method: SRN (Qiu et al.,
2020); (2) graph neural network-based methods: GraftNet (Sun et al.,
2018), SGReader (Xiong et al., 2019), PullNet (Sun et al., 2019),
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Table 1
Information about three benchmark datasets.

PathQuestion PathQuestion-Large MetaQA

2H 3H Mix 2H 3H Mix 1H 2H 3H

Train 1528 4163 5691 1276 825 2101 96 106 118 980 114 196
Dev 189 515 704 158 102 260 9992 14 872 14 274
Test 191 520 711 160 104 264 9947 14 872 14 274
Entities 1056 1836 2256 5034 6505 6505 43 234 43 234 43 234
Relations 13 13 13 363 411 411 18 18 18
Triples 1211 2839 3377 4247 5597 5597 134 741 134 741 134 741
2HR-DR (Han et al., 2020), HyperTransformer (Heo et al., 2022); (3)
embedding-based methods: KVMemNN (Miller et al., 2016), Embed-
KGQA (Saxena et al., 2020); (4) comprehensive method that combines
reinforcement learning-based and embedding-base: ARN (Cui, Peng,
Xiao et al., 2023). We present a detailed description of these baselines
as follows:

∙ KVMemNN A dedicated retrieval memory table is applied by
KVMemNN to store important knowledge base facts in the form
of key–value pairs, allowing for the rapid access and utilization
of the stored information when confronted with tasks such as
question–answering, reasoning, or complex reasoning.

∙ SGReader proposes a QA model based on incomplete knowl-
edge base (KB) and text documents. It obtains question-related
knowledge-assisted entity encoding through the graph attention
mechanism and designs a gate mechanism to integrate entity
knowledge in KB when encoding text.

∙ GraftNet employs adaptive graph convolution technology to ef-
fectively link different pieces of information by traversing a va-
riety of complex dependencies within a heterogeneous graph,
enabling the accomplishment of intricate multi-hop logical rea-
soning tasks.

∙ PullNet strategically utilizes the shortest path as a form of super-
vision during the training phase to identify and select the most
direct and relevant connections within the graph. It employs its
newly acquired domain knowledge to perform complex multi-hop
reasoning on the selected subgraph.

∙ SRN Through a well-designed reinforcement learning framework,
SRN effectively extends its cognitive scope into a KB and ad-
dresses multi-hop question answering tasks by dynamically ex-
panding reasoning paths within the knowledge base, thereby
achieving more comprehensive and context-rich answers.

∙ EmbedKGQA resolves complex problems through multi-hop rea-
soning, which aligns question embeddings extracted from
RoBERTa with entity embeddings pre-trained on an extensive
knowledge base.

∙ 2HR-DR guides the subsequent reasoning process by iteratively
updating relationship representations and entity states, achieved
through the construction of a directed hypergraph convolutional
network specifically designed for knowledge retrieval.

∙ HyperTransformer systematically constructs a question hyper-
graph and a knowledge hypergraph that is query-aware, achiev-
ing reasoning for questions by encoding and understanding com-
plex associations spanning these two hypergraphs.

∙ ARN incorporates KGE as prior information into the RL frame-
work, which not only enhances model interpretability but also
improves the effect of multi-hop KGQA.

By comparing the above models, we are able to comprehensively
evaluate the performance of our proposed approach on multi-hop
KGQA tasks. During the validation process, we will consider ablation
studies to ensure a thorough assessment of the method.

4.3. Implementation details

Similar to our proposed model, SRN and ARN also incorporate RL.

Therefore, we refer to their experimental parameter settings throughout

8 
the experiment. Firstly, the pre-trained 300-dimensional Glove word
embeddings are applied to initialize the Word Embedding layer, which
also serves as the initial input of the question representation. Secondly,
we use a Transformer encoder with 4 layers and 4 attention heads to
further encode the question. For the entities and relations in the KG, we
employ off-the-shelf KGE methods to obtain the corresponding vector
representations.

In this paper, we set the dimension of the knowledge graph embed-
dings to 300. In addition, we also introduce a three-layer unidirectional
LSTM with a hidden dimension of 200 to encode the search history
information. In the experiment, some hyperparameters are vital and
need to be set. We set the discount factor 𝛾 to 0.98 and the entropy
coefficient 𝛼 to 0.02. The value loss coefficient 𝜆 is tuned according
to the performance of the model on the validation set, which can be
selected amongst {0.2, 0.5, 1.0}. The number of threads in the A3C will
be dynamically adjusted based on available GPU memory and could be
chosen from amongst {3, 4, 5}. We use the Adam optimizer to optimize
the model, where the batch size is set to 32 and the learning rate is
set to 0.0001. To avoid overfitting, we evaluate the Hits@1 score on
the validation set and stop training early accordingly. In beam search
inference, we set the beam size to 5 to generate multiple paths of
reasoning, aiming to achieve better results.

4.4. Experimental results and analysis

We use the Hits@1 score to evaluate the performance of the model.
Hits@1 score refers to the proportion of answers predicted by the model
that ranks highest among all queries. Table 2 summarizes experimental
results on three benchmarks. From the overall experimental results, our
proposed MPIFRN achieves good performance on the three datasets.
Even when faced with the challenging PQ-mix, PQL, and MetaQA-
3H, MPIFRN also shows expected results, which are attributed to
the well-designed multi-perspective information. We observe that for
Graph neural network-based methods, i.e., GraftNet and SGReader,
these models do not perform well on MetaQA-3H compared to MetaQA-
1H and MetaQA-2H. We hypothesize that this is due to the exponential
increase in the number of candidate relations and entities with the
increase in reasoning hops, leading to a drastic expansion of the search
space and making it difficult to find answer entities. However, our
proposed MPIFRN can keep a promising performance on the MetaQA
dataset, with the Hits@1 score even improving from MetaQA-2H to
MetaQA-3H. MPIFRN integrates information from multiple perspectives
in RL, enabling the agent to avoid the noise or erroneous information
introduced at path expansion and prevent decision failures due to the
increase in reasoning hops.

Furthermore, as for PullNet, it constructs heterogeneous subgraphs
related to a specific problem through a heuristic iterative process
and extracts answers from the constructed subgraphs using convolu-
tional networks. While achieving competitive results on MetaQA, this
approach heavily relies on heuristic algorithms. Our method models
multi-hop KGQA into a sequential decision-making task through the in-
troduction of an RL framework, achieving controllable reasoning, thus
yielding better results on MetaQA-3H compared to PullNet. In addition,
when it comes to HyperTransformer and 2HR-DR, they each introduce
hypergraphs and encode entities and relations using convolutional net-

works to facilitate complex problem reasoning. By comparison, except
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Table 2
Results (%Hits@1) on the test set of three benchmarks. The best result is emphasized in bold.

PathQuestion PathQuestion-Large MetaQA

2H 3H Mix 2H 3H Mix 1H 2H 3H

KVMemNN 91.50 79.40 85.20 70.50 63.40 68.60 93.50 84.30 53.80
SGReader – – – 71.90 89.30 – 96.70 80.70 61.00
GraftNet – – – 70.70 91.00 – 97.00 94.80 77.70
PullNet – – – – – – 97.00 99.90 91.40
ARN 98.95 90.58 93.67 97.50 97.12 98.48 97.12 94.92 97.06
EmbedKGQA – – – – – – 97.50 98.80 94.80
SRN 96.30 89.20 89.30 78.60 77.50 78.30 97.00 95.10 75.20
2HR-DR – – – 75.50 92.10 – 98.80 93.70 –
HyperTransformer 96.40 90.30 89.50 90.50 95.40 94.50 – – –
MPIFRN (ours) 99.47 92.50 96.91 98.12 98.08 99.62 97.13 96.19 97.20
for MetaQA-1H, our method outperforms the aforementioned two mod-
els, indicating the effectiveness of path-based reasoning approaches.
Graph neural network-based methods are only focused on finding
predicted answers and lack interpretability, whereas our approach
incorporates RL, enhancing interpretability.

We also observed that the performances of the model based on the
embedding method, i.e., KVMemNN, dropped particularly significantly
on PQL compared to PQ. Due to capacity limitations, key–value mem-
ories in KVMemNN cannot handle more triples that are derived from
PQL containing more complex relations and entities.

Compared to RL-based models, i.e., SRN, our model also achieves
better performance, especially in PQL and MetaQA-3H. This indicates
that integrating additional environmental information with RL can
significantly enhances the exploration efficiency of the agent, thereby
improving model performance.

As for the comprehensive model that combines reinforcement
learning-based and embedding-based approaches, i.e., ARN, our
model’s overall performance is also superior to ARN, which highlights
the effectiveness of multi-perspective information. Due to its utilization
of only anticipation information, ARN cannot effectively address the
issue of useless exploration. We combine rich multi-perspective infor-
mation with RL to enable the agent to better perceive the environment
and make more reasonable decisions, thereby avoiding getting trapped
in locally biased reasoning.

In short, the above comparative analysis of different methods
demonstrates that our method integrating multi-perspective informa-
tion with RL is an effective strategy for solving multi-hop KGQA.

4.5. Effectiveness of multi-perspective information

Since expectation embedding obtained by using ConvE (Dettmers
t al., 2018) as the KGE method has achieved better results than
istMult (Yang, Yih et al., 2015), ComplEx (Trouillon et al., 2016),
nd TuckER (Balazevic et al., 2019), our experiments mainly focus
n ConvE. In order to explore the effectiveness of multi-perspective
nformation, we add multi-perspective information to the MPIFRN base
odel step by step.

As shown in Table 3, Exp-e, Ig-e, and Path-e refer to expectation
mbedding 𝒉𝑒𝑥𝑝, instruction-guided embedding 𝒉𝑖𝑛𝑠, and path-aware

embedding 𝒉𝑝𝑎𝑡ℎ, respectively. For the MPIFRN base, we only use search
history embedding 𝒉𝒕 which is reflected in Eqs. (23) and (25), thus
the policy network and value network can be respectively denoted as
𝜋𝜃(𝑎𝑡|𝑠𝑡) = 𝜎(𝑨𝑡 ⋅𝑾 ′

2 ⋅𝑅𝑒𝐿𝑈 (𝑾 ′
1 ⋅ [�̂�

(𝑡);𝒉𝑡])) and 𝑉 (𝑠𝑡; 𝜃𝑣) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑾 ′
𝑣 ⋅

[𝒉𝑡]). Similarly, ‘‘w/ Exp-e’’ denotes adding expectation embedding 𝒉𝑒𝑥𝑝
to the policy network and value network to get [𝒉𝑡;𝒉𝑒𝑥𝑝]. ‘‘w/ Exp-e,
w/Ig-e’’ denotes continuing to add instruction-guided embedding 𝒉𝑖𝑛𝑠 to
the policy network and value network to obtain [𝒉𝑡;𝒉𝑒𝑥𝑝;𝒉𝑖𝑛𝑠]. ‘‘w/ Exp-
e, w/ Ig-e, w/ Path-e’’ means continuing to add path-aware embedding
𝒉𝑝𝑎𝑡ℎ to the policy and value network to get [𝒉𝑡;𝒉𝑒𝑥𝑝;𝒉𝑖𝑛𝑠]. Due to
the concatenation of these embeddings into different dimensions, it
is necessary to introduce learnable parameters for each type of joint
encoding. Therefore, the policy network and value network can be
9 
uniformly denoted as 𝜋𝜃(𝑎𝑡|𝑠𝑡) = 𝜎(𝑨𝑡 ⋅ 𝑾 ′
2 ⋅ 𝑅𝑒𝐿𝑈 (𝑾 ′

1 ⋅ [; ])) and
𝑉 (𝑠𝑡; 𝜃𝑣) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑾 ′

𝑣 ⋅ [; ]), respectively, where 𝑾 ′
1 and 𝑾 ′

2 denote
the learnable parameters, and [;] denotes vector concatenation. As
shown in Table 3, the model with Exp-e improves the Hits@1 score
over the plain MPIFRN base model by an average of 0.55 points on
all datasets. This reveals that it is useful to incorporate the global KGE
as expectation embedding into RL framework, which can reduce the
agent’s aimless exploration to a certain extent. By continuing to add
instruction-guided embedding, i.e., ‘‘w/ Exp-e, w/ Ig-e’’, the Hits@1
score also increases by an average of 0.95 points. This illustrates that
it is essential to utilize instruction-guided embedding as a guiding
signal to track the state of multi-hop reasoning. The improvement in
model performance benefits from the agent easing biased reasoning
by dynamically capturing query representations based on attention
mechanism at different steps.

By further including path-aware embedding, i.e., ‘‘w/ Exp-e, w/ Ig-
e’’, w/ Path-e, the Hits@1 score increases by 0.42 points. This indicates
that the addition of path-aware embedding is helpful. However, as the
number of hops increases, noise may also be introduced, i.e., erroneous
relations will be further accumulated and propagated along with path
expansion, thus only leading to limited improvement.

4.6. Effectiveness of different KGE methods

To integrate KGE information into RL, we design the KEQA frame-
work. By measuring the plausibility of the ‘‘triple’’ ⟨𝑡𝑜𝑝𝑖𝑐 𝑒𝑛𝑡𝑖𝑡𝑦,
𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛, 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠⟩ in the KGE space, the final weighted can-
didate entity vector is obtained as expectation embedding. This pro-
cess is described in Section 3.4.1. In order to study the impact of
different KGE methods, we choose four off-the-shelf KGE models,
i.e., ComplEx (Trouillon et al., 2016), DistMult (Yang, Yih et al., 2015),
TuckER (Balazevic et al., 2019), and ConvE (Dettmers et al., 2018) to
apply to the KEQA framework, and evaluate them on three datasets.
For simplicity, we choose the setting of MPIFRN-base with ‘‘w/ Exp-e,
w/ Ig-e, w/ path-e’’ in Table 3.

As shown in Table 4, our proposed KEQA framework achieves good
performance on multiple datasets, e.g., the Hits@1 scores of ConvE are
97.10%, 98.67%, and 99.21% on PQL-3H, PQL-mix, and PQ-2H, respec-
tively, indicating the effectiveness of our framework. Meanwhile, we
also find that different KGE methods are suitable for different datasets,
e.g., DistMult performs relatively well on PQ-2H and MetaQA, but does
not meet expectations on PQ-3H and PQ-mix. For the PQ datasets, we
notice a significant decline in the model’s performance with an increase
in the number of reasoning hops, e.g., the Hits@1 score of ComplEx
drops from 96.73% to 88.27%, and the Hits@1 score of DistMult
drops from 97.78% to 83.66%. This indicates that KGE methods are
sensitive to the number of reasoning hops. We hypothesize that this is
due to the fact that as the number of hops increases, the number of
candidate relations and entities increases exponentially, and the search
space expands dramatically, making answer prediction difficult. Despite
the above shortcomings, expectation embedding applied in the KEQA
framework, as a form of global supervision information, can fully take
into account the distribution of candidate entities and provide more
reliable exploration for agent in RL.
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Table 3
Ablation studies (%Hits@1) on the effectiveness of multi-perspective information.

Model PathQuestion PathQuestion-Large MetaQA Avg.

2H 3H Mix 2H 3H Mix 1H 2H 3H

MPIFRN base 97.88 89.49 93.68 94.38 94.87 97.22 95.67 93.86 95.69 94.75
w/ Exp-e 98.43 90.19 94.45 95.32 95.19 97.73 96.07 94.24 96.12 95.30

w/ Exp-e
w/ Ig-e

98.95 90.64 94.80 96.57 96.15 98.23 96.42 95.33 96.78 96.25

w/ Exp-e
w/ Ig-e
w/ Path-e

99.21 92.05 95.92 97.03 97.10 98.67 97.04 96.03 96.96 96.67
Table 4
Experimental results (%Hits@1) on different KGE methods utilized in KEQA framework. The best score is in bold.

PathQuestion PathQuestion-Large MetaQA

2H 3H Mix 2H 3H Mix 1H 2H 3H

DistMult 97.78 83.66 86.64 92.08 91.35 91.92 96.96 93.31 95.48
ComplEx 96.73 88.27 92.26 93.63 93.27 95.46 96.98 94.59 94.75
TuckER 98.43 90.51 91.98 96.25 96.64 97.85 96.99 93.26 96.70
ConvE 99.21 92.05 95.92 97.03 97.10 98.67 97.04 96.03 96.96
Table 5
Experimental results (%Hits@1) about cross attention on multi-perspective information.

Model PathQuestion PathQuestion-Large MetaQA Avg.

2H 3H Mix 2H 3H Mix 1H 2H 3H

MPIFRN base 97.88 89.49 93.68 94.38 94.87 97.22 95.67 93.86 95.69 94.75
w/ Exp-e, Ig-e, Path-e 99.21 92.05 95.92 97.03 97.10 98.67 97.04 96.03 96.96 96.67
w/ Exp-e, Ig-e, Path-e, w/ Cross attention 99.47 92.50 96.91 98.12 98.08 99.62 97.13 96.19 97.20 97.16
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4.7. The impact of multi-perspective information on reinforcement learning

Due to the integration of multi-perspective information in RL to
guide the decision-making of the agent, we conduct a series of ex-
periments to observe the impact of multi-perspective information on
RL. We randomly select four datasets, i.e., PQ-3H, PQ-mix, PQL-mix,
and MetaQA-3H, and continuously add multi-perspective information
to the base model. We observe the change in the Hits@1 score on the
validation set as the training episodes increase. An episode denotes that
one of the sub-threads has completed training on a batch of data.

Through observation, the results are shown in Fig. 2, we find
that, firstly, for all the datasets, models with the integration of multi-
perspective information are able to rapidly achieve Hits@1 score that
surpasses the model without multi-perspective information in the early
stages of training. Secondly, models with the incorporation of all per-
spectives can converge to the highest Hits@1 score on the validation
set. This indicates that the introduction of multi-perspective informa-
tion can enhance the exploration efficiency and performance of the
agent. We believe that the main reason is that this multi-perspective
information can provide the agent with a certain prior environmental
understanding. When combined with policy learning, it enables the
agent to avoid getting stuck in local optima and reduces ineffective
exploration.

4.8. Cross attention on multi-perspective information

In this section, we will explore the impact of interactions between
multi-perspective information on model performance. We calculate
the cross-attention on multi-perspective information to obtain 𝒉𝑚𝑖𝑥𝑒𝑑
according to Eq. (24). As shown in Table 5, compared to without
cross attention, the model with cross attention, i.e., w/ Cross attention,
improves by an average of 0.5 percentage points across all datasets,
which demonstrates the effectiveness of cross attention. Specifically,
compared with PQ and MetaQA, despite PQL-large providing fewer
training instances, the cross-attention mechanism enables the model
to achieve an average improvement of 1.0 on PQL-large, whereas PQ

and MetaQA only saw increases of 0.3 and 0.2, respectively. This also
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indicates from another view that the interaction of information from
different perspectives can enhance the model’s performance.

4.9. Effect of the hyper-parameter

In the experiment, we find that the hyperparameter 𝜆, as described
in Eq. (31), which adjusts the ratio between policy loss and value
loss, has a different impact on the experimental results. Consequently,
we fine-tune 𝜆 within the range of {0.2, 0.5, 1.0} based on the model’s
erformance on the validation set. We randomly select two datasets,
.e., PQL-mix and MetaQA-2H, to study the impact of different 𝜆 on
he model’s performance. As shown in Fig. 3, as the training episodes
ncrease, the Hits@1 score of the model on the validation set changes.
n episode denotes that one of the sub-threads has completed training
n a batch of data. As for PQL-mix, we observe that its Hits@1 score
mproves rapidly with an increase in training episodes, owing to the
imited number of training instances it contains. When the value of 𝜆
s set to 1.0, the training process tends to be stable, and the Hits@1
core on the PQL-mix is significantly higher than the value of other
yperparameters. Therefore, the optimal value of 𝜆 should be set to 1.0.

For MetaQA-2H, when 𝜆 is set to 0.5 and the training process stabilizes,
it converges to the highest Hits@1 score.

4.10. Case study

As illustrated in Fig. 4, we utilize beam search on the KG to
generate multiple reasoning paths at the testing stage, e.g., given
the question ‘‘What is the film casting director of Cult Comedies’s
titles?’’, the topic entity is Cult Comedies. Starting from the topic entity
Cult Comedies, through different linked relations, the agent reaches
different entities, forming an initial set of action spaces, i.e., (self-
loop, Cult Comedies), (genre__titles, Heathers), (genre__titles, Jack-
ass_Number_Two) and (genre__titles, Cry-Baby). The policy network
outputs the probabilities for each action in the action space, and then
the top-𝑁 actions (𝑁 is the beam size and is set to 3) are selected
ased on their scores. Subsequently, the agent executes the top-𝑁

actions and reaches new entities, i.e., Heathers, Jackass_Number_Two,



C. Gong et al.

Fig. 2. The impact of multi-perspective information on the convergence rate of reinforcement learning, i.e., the change of validation Hits@1 score with the increase of training
episodes.

Fig. 3. The impact of the hyper-parameter, i.e., the change of Hits@1 scores obtained by MPIFRN as the number of training episodes increases, with respect to different value
loss coefficient 𝜆 values, evaluated on the validation set.
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Fig. 4. A case from PQL-2H dataset.
and Cry-Baby. Similarly, in the second step, the current action space
contains the relations derived from the top-N candidate entities in
the previous step. The policy network again outputs the probability
distribution of the actions and selects the top-N actions based on
scores to execution. Finally, the tail entity with the highest score,
Sally_Dennison, is considered as the predicted answer.

5. Conclusion and future work

In this work, we introduce Multi-Perspective Information Fusion
Reasoning Network (MPIFRN), a new approach for multi-hop KGQA.
Given that the agent in multi-hop KGQA based on RL cannot obtain suf-
ficient information from the environment during the reasoning process,
it hinders the agent’s effective exploration of the state space to a certain
extent and reduces the reliability of the strategy. Our MPIFRN model
constructs three types of state information from different perspec-
tives, i.e., expectation embedding, instruction-guided embedding, and
path-aware embedding. These general multi-perspective pieces of in-
formation are model-agnostic and have been integrated into a carefully
designed KEQA framework, which is combined with policy learning in
A3C. Detailed experimental results show that our proposed MPIFRN
outperforms most KGQA models in Hits@1 scores. In particular, the
combination of multi-perspective information with A3C policy learning
not only accelerates the convergence speed of reinforcement learning
but also enhances the agent’s efficiency in exploring critical paths, pro-
viding clearer interpretability of reasoning paths. At present, the KEQA
framework and the policy selection module are trained independently,
and future work includes studying the interaction between the KGQA
framework and policy selection module, as well as joint training, to
further enhance the performance of multi-hop KGQA.
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