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A B S T R A C T

Cross-platform User Alignment (UA) aims to identify accounts belonging to the same individual
across multiple social network platforms. This study seeks to enhance the performance of UA
tasks while reducing the required sample data. Previous research has focused excessively on
model design, lacking optimization throughout the entire process, making it challenging to
achieve performance without heavy reliance on labeled data. This paper proposes a semi-
supervised Multi-Granularity Attribute Similarity Model (MGASM). First, MGASM optimizes
the embedding process through multi-granularity modeling at the levels of characters, words,
articles, structures, and labels, and enhances missing data by leveraging adjacent text attributes.
Next, MGASM quantifies the correlation between attributes of the same granularity by construct-
ing Multi-Granularity Attribute Cosine Distance Distribution Vectors (MA-CDDVs). These vectors
form the basis for a binary classification similarity model trained to calculate similarity scores
for user pairs. Additionally, an attribute reappearance score correction (ARSC) mechanism is
introduced to further refine the ranking of candidate users. Extensive experiments on the Weibo-
Douban and DBLP17-DBLP19 datasets demonstrate that compared to state-of-the-art methods,
The hit-precision of the MGASM series has significantly improved by 68.15% and 27.02%,
almost reaching 100% precision. The F1 score has increased by 37.6% and 21.4%.

. Introduction

Individuals frequently engage with multiple social networking platforms in the contemporary digital landscape, each offering
unique array of necessary services. For instance, LinkedIn caters specifically to professional networking and job seeking, while

witter facilitates real-time news and discussions. In the Chinese context, Weibo has emerged as a microblogging platform similar
o Twitter for rapidly sharing text and media. Douban meets essential needs for user reviews and recommendations about cultural
roducts like books, music, and films. Different specialties around social connections, content sharing, messaging, and creative
utlets compel users to diversify across networks to meet routine needs. The proliferation of social media usage has brought to the
ore the significance of User Alignment (UA) tasks. The primary objective of UA is to predict individuals who may belong to the
ame natural person across different social networks, particularly in scenarios where explicit UA information is absent. UA is vital
or enhancing scientific applications like link prediction (Zhang, Yu, & Zhou, 2014), cross-network user tracking (Oberle, Berendt,
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Hotho, & Gonzalez, 2003; Ren et al., 2022), public opinion analysis (Liu & Wu, 2023), and cross-network recommendations (Singh,
N., L., Sanghavi, Vaghela, Manoharan, Hamdi, & Tunze, 2022; Zhao, Zhao, He, Zhang, & Fan). However, UA is challenged by data
heterogeneity, platform-specific user behaviors, and a lack of shared identifiers (email addresses, phone numbers, ID numbers, etc.).
These factors complicate user profile linkage, behavioral modeling, and limit supervised learning due to scarce labeled examples.
Specifically, these constraints pose two central obstacles that limit the performance of UA tasks:

• Hurdles in Attribute Information Extraction. For effective User Alignment (UA), a fundamental obstacle lies in extracting
meaningful features from complex and sparse user data. The heterogeneity of user profile attributes further complicates
the formulation of a standardized feature set that accurately represents users’ digital identities. This challenge presents a
dual aspect. Firstly, current methodologies encounter difficulties in adapting to various user profile attributes. For example,
‘‘car’’ and ‘‘engine’’ exhibit strong correlation in most scenarios. However, when these terms are used as user nicknames,
their semantic relationship should not be considered valid evidence for user alignment, as nickname correlations in the real
world are typically not manifested in word relationships. Therefore, different attributes may require handling with varying
semantic granularity in feature extraction. Secondly, isolating and leveraging additional evidence from user-generated text is
challenging. For example, user articles contain a wealth of information, but the current utilization of user articles remains
coarse-grained. Addressing these issues necessitates sophisticated feature extraction techniques capable of identifying and
utilizing subtle details in user data.

• Challenge of High Precision. Another major challenge in UA tasks is to improve matching accuracy under sparse data
conditions. Given the specificity of UA, precision should be of particular concern because inaccurate judgments can directly and
chainly impact downstream applications, leading to catastrophic consequences. Achieving high precision depends on advanced
algorithms. These algorithms need a lot of training data to capture users’ subtle behaviors across different platforms. However,
user data obtained from real social networks is often sparse, and the acquisition of pre-aligned users relies on manual efforts,
making it difficult to accumulate sufficient data. Additionally, social platforms typically have large user populations, including
individuals with overlapping attributes, making it challenging to differentiate users with similar profiles in the absence of
explicit distinguishing information.

In light of the aforementioned challenges, our research proposes a comprehensive solution called the Multi-Granularity Attribute
imilarity Model (MGASM): Firstly, we segment user texts into characters, words, articles, and labels based on user profiles and
btain the structural features of the users’ network through user relationship analysis. Optimal embedding methods are selected for
ach granularity to create vectors that accurately reflect language features. This feature extraction approach effectively addresses
he obstacles in attribute information extraction. Secondly, we calculate the cosine distance between pre-aligned user pairs for each
ranularity feature vector, quantifying the correlation between attributes of the same granularity, known as the Multi-Granularity
ttribute Cosine Distance Distribution Vector (MA-CDDV). Subsequently, we train a binary classifier using MA-CDDV. This enables

he model to learn the distribution characteristics of pre-aligned user correlations across five granularities: characters, words, articles,
abels, and structure. Similarity scores are generated for user vector pairs from different networks, where a score close to 1 indicates
hat the user accounts likely represent the same individual. Thirdly, we construct a BallTree (Dolatshah, Hadian, & Minaei-Bidgoli,
015) using the feature vectors of all users from one social platform as the point set, with the exponential decay value of the
imilarity score as the distance metric. Then, we perform a nearest neighbor search using the feature vectors from another social
latform to obtain a list of potential candidates. Lastly, through sampling surveys in real social network scenarios, we discovered
hat when a user’s character-granularity attribute appears in another user’s article-granularity attribute, it increases the likelihood
hat these two users represent the same natural person. We analyzed this correlation and identified two main reasons: (a) users
romote themselves across platforms, (b) character-granularity attributes related to a user’s interests or profession are likely to be
entioned again in article-granularity attributes on other social platforms. We refer to this phenomenon as Attribute Reappearance

AR) and have designed a correction factor to adjust the similarity scores of user pairs exhibiting AR, thereby optimizing the ranking
f potential candidates and further improving the accuracy of UA. We call this process Attribute Reappearance Score Correction
ARSC).

The major contributions of this paper can be summarized as follows:

• Comprehensive Granular Feature Extraction: We introduce a feature extraction method that classifies user attributes into
four levels of granularity, capturing a broad spectrum of user characteristics for enhanced user profile matching across social
platforms.

• Unsupervised Embedding Technique: Our approach utilizes unsupervised embedding for user attribute modeling, reducing
dependence on large-scale labeled data and enabling application in data sparse environment.

• Innovative Multi-granularity Attribute Cosine Distance Distribution Vector: This study introduces a novel vector (MA-
CDDV) for quantifying the correlation of users on attributes of the same granularity. Training a binary classification similarity
model with this vector can achieve outstanding performance while significantly reducing the required sample size.

• Attribute Reappearance Score Correction Mechanism: Introduced a score correction mechanism(ARSC), enhancing the
model’s ability to accurately identify in complex social network scenarios.

he remaining sections of this article are organized as follows. Section 2 reviews and summarizes relevant work. Section 3 formally
efines the research problem. Section 4 elaborates on the research objectives. Section 5 provides a detailed description of the
roposed model. Section 6 presents the experimental results. Section 7 describes the results of the experiments and their impact on
2

he task domain. Finally, Section 8 concludes and provides future perspectives on this work.
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2. Related work

UA is also known as user identity linkage, network alignment, or anchor link prediction. Its primary objective is to identify the
ame individual across different networks. This process is also referred to as ‘‘alignment’’. Aligned accounts are termed as aligned
ser pairs, serving as anchor points that connect various social networks. According to the different learning modes of UA methods,
hey can be categorized into three types: unsupervised learning, semi-supervised learning, and supervised learning.

Firstly, in the unsupervised learning mode, Zhou et al. (2020) proposed the NWUIL model, where the authors formulated the
ser identity linkage task as an optimal network transport problem. They introduced an unsupervised mapping process based on
etwork Wasserstein distance to reduce the reliance on anchored nodes. In the research by Zhou, Lim, Lee, Zhu and Cao (2020),
ser discrimination features and restoration embeddings were emphasized. By designing user discrimination features, they obtained
airs of similar user identities across online social networks (OSN). These pairs were then utilized to adjust the underlying user
mbeddings, improving the basic user embeddings of existing UIL methods. To reduce the reliance on profile configurations,
iang et al. (2021) proposed an alignment framework called LSNA. LSNA guides the embedding process by integrating topological
nformation and network relevance. Additionally, they addressed the scalability issue of large-scale network alignment problems
hrough network decomposition strategies. Zhou et al. (2022) introduced the Unsupervised Adversarial Network Alignment (UANA)
ethod. This framework combines Generative Adversarial Networks (GAN) and Reinforcement Learning (RL) techniques to address

ey challenges in network alignment. In the recent exploration of unsupervised methods, Lei, Feng, Jie, and Shu (2023) focused on
chieving a balance between accuracy and efficiency. They performed targeted optimizations in both the model training phase and
he network alignment phase, ensuring improved performance while reducing alignment time and memory requirements. Li et al.
2019) proposed the MC2 model to address the challenge of unsupervised alignment across multiple networks. The MC2 model first
esigned a matrix optimization to infer a common subspace from different social networks and developed an efficient alternating
lgorithm to solve the non-convex optimization problem.

Unfortunately, it is regrettable that the research in the domain of Unsupervised Alignment (UA) tasks is not abundant due to
he significant challenges it faces. On the contrary, Supervised Learning and Semi-Supervised Learning have garnered widespread
ttention for their outstanding performance. In recent studies, Duan, Long, Xiao, Wang, and Li (2024) and Wei, Zhou, An, Yang,
nd Xiao (2023) integrated UA tasks with e-commerce, providing targeted optimizations and extending the scope of UA scenarios.
uang, Zhao, Zhang, Xing, Wu, and Ma (2023) proposed a Semantic-Enhanced Social Network User Alignment algorithm (SENUA).
his algorithm aligns users using user attributes, User-Generated Contents (UGCs), and user check-ins. By leveraging semantic
eatures from these three factors, it effectively reduces noise interference and further enhances the algorithm’s adaptability to
oise. Additionally, Shao, Wang, Gao, Shi, Shen, and Cheng (2023) introduced a model for user alignment by matching asymmetric
nformation of geographic locations and text on two social platforms. They reduced the model’s dependence on labeled data by
xternally introducing text-location pairs. Li et al. (2023) argued that embedding identity as a deterministic vector into a shared
atent space cannot address the various uncertainties in real social networks. In their study, each social identity is represented as

Gaussian distribution in Wasserstein space to preserve the granularity of social profiles and the uncertainty of identity in the
odel. Similarly, Wang et al. (2022) also preserved structural information by embedding each node in the network as a Gaussian
istribution. In earlier research, Chen et al. (2022) conducted in-depth studies on UA tasks. They innovatively introduced the concept
f attribute hierarchy and improved UA performance through hierarchical embedding (Chen & Chen, 2022). In their subsequent
esearch, they further optimized this hierarchy, proposing sub-word attributes to enhance UA tasks (Yang, Chen, & Chen, 2022).
un et al. (2022) argue that most existing studies consider social networks as static, overlooking their inherent dynamics. Therefore,
hey first proposed a dynamic network alignment framework called DGA, which captures network evolution information and aligns
mbedding representations of the same individuals in a common subspace, thus addressing the dynamic network alignment problem.

With the development of graph-related research, many researchers have applied graph-related techniques to UA tasks (Li, Zhou,
hen & Zhao, 2023; Long, Chen, Du, & Wang, 2023; Park, Tran, Shin, & Cao, 2022b; Qi, Chen, Sun, Luan, & Tong, 2023). For
xample, Long et al. (2023) utilized a degree-aware graph neural network model to address the issue of long-tail user identity linkage
UIL). Similarly, Li, Zhou et al. (2023) applied Graph Convolutional Networks (GCN (Patnaik & Patgiri, 2023)) to UA problems
or exploring spatial proximity between user actions and check records. Zhang and Tong (2018) found in earlier research that
xisting network alignment methods can utilize node attribute similarity as part of prior alignment information, yet most methods
rimarily explore topological consistency without considering consistency among the underlying network attributes. Therefore, they
roposed a network alignment algorithm called FINAL, which leverages node/edge attribute information to guide the (topology-
ased) alignment process. Subsequently, the team continued to focus on research in the network alignment field and further
iscovered that assuming alignment consistency might lead to the problem of oversmoothing, making it difficult to distinguish
etween correct and misleading alignments, and existing methods lack a deep understanding and analysis of the trade-off between
lignment consistency and diversity. To address this, they introduced the NeXtAlign method (2021) (Zhang, Tong, Jin, Xia, & Guo,
021), which strives to maintain alignment consistency while reflecting alignment diversity, addressing the shortcomings of current
etwork alignment methods in this trade-off. Additionally, Yan, Zhang, and Tong (2021) recognized that methods optimized based
n attribute consistency are overly strict and unable to cope with the challenge of network heterogeneity, while methods based
n network embeddings, although not assuming consistency, suffer from embedding space disparities. Hence, they proposed the
RIGHT method, which utilizes random walk restarts to construct a unified embedding space from anchor nodes, avoiding the

imitations of consistency optimization methods and the issue of embedding space disparities. Similar findings were observed.
Furthermore, many methods for entity alignment tasks are also worth considering. For instance, Tang, Song, Huang, Gao, and
3

u (2024) recently observed the suboptimal performance of previous methods in low-resource language knowledge graphs. In
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response to this challenge, they generated pseudo-sentences based on relationship triplets, utilized pre-trained language models for
representation generation, and explored semantic information from connected relationships through graph neural networks. Zhu,
Bao, Liu, Han, Wang, and Peng (2023) focused on entity alignment in cross-lingual knowledge graphs. By integrating relationship
awareness and attribute participation, they aimed to enhance alignment accuracy and robustness. This brings new insights to cross-
lingual entity alignment. Li, Dong and Qin (2023) proposed a dual-view graph neural network model that encodes the graph from
two perspectives to achieve better entity alignment. Munne and Ichise (2023) utilized embedding representations of entity abstract
information and attribute information, combining them through weighted averaging to optimize the embedding process. Fanourakis,
Efthymiou, Kotzinos, and Christophides (2023) analyzed the performance, advantages, and disadvantages of various embedding
techniques in entity alignment tasks. Additionally, they discussed challenges in industrial datasets and proposed further research
questions. The method proposed by Zhao et al. (2020) for handling missing data and sparsity in heterogeneous information networks
has inspired us in addressing similar issues in UA tasks.

In addition to the aforementioned supervised and unsupervised methods, the recent work by Sun et al. (2023) is impressive.
hey proposed a deep reinforcement learning method called GroupAligner. Their work focuses on aligning social groups rather
han individual profiles. By using a cyclic domain adaptation method based on Wasserstein distance to transfer knowledge from the
ource social network, they modeled group discovery as a sequential decision process and used reinforcement learning to handle it.
his approach brings new insights into user alignment tasks.

These methods have significantly contributed to the development of UA but still exhibit shortcomings. The main issues include:
1) Feature embedding limitations, as they fail to fully capture the complex features of heterogeneous profiles. This leads to limited
epresentations of user text attributes due to suboptimal extraction processes. (2) Challenges in the prediction phase, characterized
y a lack of a preliminary quantification process for granularity attribute correlations and a failure to consider interactions between
ttributes across granularities. This results in difficulties balancing the contradiction between sample quantity and performance,
aking it challenging to achieve a leap in performance under sparse data conditions.

. Problem definition

This section outlines the UA challenge in social networks and the notations used in our study, detailed in Table 1. A social
etworks is modeled as undirected graph 𝐺 = (𝑉 ,𝐸,𝐴) with user accounts as vertices 𝑉 = {𝑣1, 𝑣2,… , 𝑣𝑛} and relational links

(e.g., friendships, follower relationships) as edges 𝐸 = {𝑒𝑖𝑗 = (𝑣𝑖, 𝑣𝑗 )|𝑣𝑖, 𝑣𝑗 ∈ 𝑉 }. Each user is associated with a set of attributes,
ncluding personal details (e.g., usernames, affiliations, interests) and user-generated content (e.g., posts, publications, comments).
hese attributes are represented as a set 𝐴 that can be categorized into four granularities: character-granularity attribute subset 𝐴𝑐ℎ,
ord-granularity attribute subset 𝐴𝑤𝑜, article-granularity attribute subset 𝐴𝑎𝑟, and label-granularity attribute subset 𝐴𝑙𝑎, allowing

or multi-resolution analysis.
The goal of the UA task is to match user accounts across different network platforms in the absence of explicit unique identifiers.

he formal description of this task is as follows:

efinition 1. Let 𝐺𝛼 = (𝑉 𝛼 , 𝐸𝛼 , 𝐴𝛼) and 𝐺𝛽 = (𝑉 𝛽 , 𝐸𝛽 , 𝐴𝛽 ) denote two disjoint social networks. Given a small seed set 𝑆 =
(𝑣𝑖, 𝑣𝑗 )|𝑣𝑖 ∈ 𝑉 𝛼 , 𝑣𝑗 ∈ 𝑉 𝛽} of pre-aligned user account pairs from 𝐺𝛼 and 𝐺𝛽 corresponding to the same underlying individual.
he User Alignment (UA) task involves extracting a set 𝐿 = {(𝑣𝑖, 𝑣𝑗 )|𝑣𝑖 ∈ 𝑉 𝛼 , 𝑣𝑗 ∈ 𝑉 𝛽 , (𝑣𝑖, 𝑣𝑗 ) ∉ 𝑆} of additional cross-network
ccount pairs mapping to the same real-world identity.

An example of UA task between two social networks 𝐺𝛼 and 𝐺𝛽 is presented in Fig. 1, where the solid black lines such as
𝑟1, 𝑟′1) within each network indicate existing user relationships, while dashed lines like (𝑟2, 𝑟′2) suggest potential, yet unconfirmed,
onnections. The blue solid lines across networks represent the user alignment challenge. The objective is to identify new matching
ser pairs in 𝐿 across 𝐺𝛼 and 𝐺𝛽 by exploiting attribute and connection similarities, using a limited set 𝑆 of known seed alignments
s supervision.

. Research objectives

The primary objective of this study is to explore the issue of user alignment under sparse data conditions and propose the
olution MGASM. Through theoretical analysis and empirical research, we aim to delve into the fundamental causes of this problem
nd strive to provide new insights for this field. The outcomes of this research are anticipated to contribute to the enhancement
f existing user alignment (UA) technologies. They will also offer valuable references for future studies. Specifically, our research
oals include:

• Analyzing Inherent Challenges: By thoroughly understanding the problem definition and application scenarios of User
Alignment (UA), we seek to identify inherent obstacles that impede the performance of UA. This analysis will set the tone
for our solution, laying the groundwork for addressing the challenges and providing a solid foundation for our proposed
approach.

• Analyzing Shortcomings of Existing Methods: Through a comprehensive examination of current user alignment methods,
we aim to gain a deeper understanding of the challenges they face in handling sparse data, heterogeneous information, and
cross-platform differences. This process will assist us in clarifying the challenges within the User Alignment (UA) domain and
4

provide guidance for our solution.
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Fig. 1. Illustration of the user alignment task. Purple nodes represent known aligned user pairs, orange nodes represent non-aligned user pairs, black solid lines
epresent known user connections, black dashed lines indicate potential but unconfirmed connections, and blue solid lines represent the user alignment task.
For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

able 1
otation description.
Notation Description

𝐺𝛼 = 𝐺𝛽 Social networks 𝛼 and 𝛽 that participate in alignment.
𝑉 Set of users in a social network.
𝐸 Set of edges in a social network.
𝐴 Set of user attributes in a social network.
R Set of real numbers.
𝐴𝑐ℎ , 𝑍𝑐ℎ , ⃖⃖⃖⃖⃗𝐳𝑐ℎ Character-granularity attribute set 𝐴𝑐ℎ, feature matrix 𝑍𝑐ℎ of 𝐴𝑐ℎ, and feature vectors ⃖⃖⃖⃖⃗𝐳𝑐ℎ composing 𝑍𝑐ℎ.
⃖⃖⃖⃖⃗𝐱𝑐ℎ, 𝑋𝑐ℎ Character frequency vector and character frequency matrix.
𝐴𝑤𝑜 , 𝑍𝑤𝑜 , ⃖⃖⃖⃖⃖⃗𝐳𝑤𝑜 Word-granularity attribute set 𝐴𝑤𝑜, feature matrix 𝑍𝑤𝑜 of 𝐴𝑤𝑜, and feature vectors ⃖⃖⃖⃖⃖⃗𝐳𝑤𝑜 composing 𝑍𝑤𝑜.
𝐴𝑎𝑟 , 𝑍𝑎𝑟 , ⃖⃖⃖⃖⃗𝐳𝑎𝑟 Article-granularity attribute set 𝐴𝑎𝑟, feature matrix 𝑍𝑎𝑟 of 𝐴𝑎𝑟, and feature vectors ⃖⃖⃖⃖⃗𝐳𝑎𝑟 composing 𝑍𝑎𝑟.
𝑍𝑠𝑡 , ⃖⃖⃖⃗𝐳𝑠𝑡 Structure feature matrix 𝑍𝑠𝑡 of a social network, and the feature vectors ⃖⃖⃖⃗𝐳𝑠𝑡 composing 𝑍𝑠𝑡.
𝐴𝑙𝑎 , 𝑍𝑙𝑎 , ⃖⃖⃖⃖⃗𝐳𝑙𝑎 Label-granularity attribute set 𝐴𝑙𝑎, feature matrix 𝑍𝑙𝑎 of 𝐴𝑙𝑎, and feature vectors ⃖⃖⃖⃖⃗𝐳𝑙𝑎 composing 𝑍𝑙𝑎.
𝑑𝑐ℎ , 𝑑𝑤𝑜 , 𝑑𝑎𝑟 , 𝑑𝑙𝑎 , 𝑑𝑠𝑡 Dimensions of character-granularity, word-granularity, article-granularity, label-granularity, and structure embedding, respectively.
𝑍, ⃖⃗𝐳 Overall feature matrix 𝑍 for all users and feature vectors ⃖⃗𝐳 composing the feature matrix 𝑍.
𝑑 Total dimension 𝑑 = 𝑑𝑐ℎ + 𝑑𝑤𝑜 + 𝑑𝑎𝑟 + 𝑑𝑠𝑡 + 𝑑𝑙𝑎
𝐸𝑝 , ⃖⃖⃗𝑒𝑝 Positive sample set 𝐸𝑝 and vectors ⃖⃖⃗𝑒𝑝 composing 𝐸𝑝.
𝐸𝑛 , ⃖⃖⃗𝑒𝑛 Negative sample set 𝐸𝑛 and vectors ⃖⃖⃗𝑒𝑛 composing 𝐸𝑛.
𝑀𝑑 ,𝑀𝑠 Distance matrix and similarity matrix

• Designing a Comprehensive Solution:Building upon a profound understanding of existing challenges, we will develop
a comprehensive User Alignment (UA) solution aimed at overcoming challenges such as data sparsity, heterogeneity, and
platform differences. Our objective is to deliver a high-performance, robust solution capable of adapting to diverse application
scenarios.

• Validating the Solution’s Effectiveness: Ultimately, our goal is to extensively test and validate the effectiveness and
practicality of our proposed solution using real-world datasets. We will compare our approach with existing methods to
demonstrate the significant performance advantages of our method across various application scenarios.

. Multi-granularity attribute similarity model

.1. Overview

This section delineates the architectural details underpinning the proposed Multi-Granularity Attribute Similarity Model
MGASM) for UA tasks. MGASM comprises three key components shown in Fig. 3:

• A multi-granularity attribute embedding modular that transforms user information of varying granularities, including charac-
ter, word, article, label, and structure, into high-dimensional vector representations capturing semantic meanings.

• A MA-CDDVs construction module obtains distances by calculating the Cosine distance between the feature vectors of user pairs
across two social networks with the same granularity attributes. The MA-CDDVs quantify the correlation between attributes
of the same granularity for user pairs.
5
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Fig. 2. An example of user attribute granularity division on the Sina Weibo website: the username is divided into character-granularity, the personal bio and
location are divided into word-granularity, the phone model and reward information are divided into character-granularity, and the published articles are divided
into article-granularity.

• A binary classification similarity model predicts the similarity score of user pairs based on the MA-CDDVs. This score is further
adjusted using ARSC to indicate the likelihood that two users represent the same entity.

This approach architecture enables jointly modeling the intricate correlations across heterogeneous user attributes and distinct social
networks. The main ideas of the three modules are described as follows.

Firstly, text-based user attributes from two social networks are classified into four granularities: characters (𝐴𝑐ℎ), words (𝐴𝑤𝑜),
articles (𝐴𝑎𝑟), and labels (𝐴𝑙𝑎). This classification principle is based on the different manifestations of the correlation of user
attributes. Specifically, the correlation of 𝐴𝑐ℎ for a pair of users is reflected by literal similarity, 𝐴𝑤𝑜 is reflected by word relationships,
and 𝐴𝑎𝑟 is reflected by semantic similarity. 𝐴𝑙𝑎 can limit the potential matching space. For example, taking the social network
platform Sina Weibo (Fig. 2), usernames conform to the 𝐴𝑐ℎ attribute classification principle. Personal introductions can be classified
as 𝐴𝑤𝑜 attributes. The content posted by users can be considered as 𝐴𝑎𝑟 attributes. 𝐴𝑙𝑎 attributes include device stars and other
website labels. Then, different embedding functions are applied to each granularity to obtain vector representations, namely ⃖⃖⃖⃖⃗𝐳𝑐ℎ,
⃖⃖⃖⃖⃖⃗𝐳𝑤𝑜, ⃖⃖⃖⃖⃗𝐳𝑎𝑟, and ⃖⃖⃖⃖⃗𝐳𝑙𝑎. Additionally, structural feature vectors ⃖⃖⃖⃗𝐳𝑠𝑡 of users are learned through graph embedding methods.

Secondly, MA-CDDVs are obtained by calculating the Cosine distance between pre-aligned user pairs in the vectors of the same
granularity attributes. This is done to quantify the correlation between attributes of the same granularity.

Thirdly, a lightweight binary classification similarity model is trained using MA-CDDVs. The model predicts similarity scores by
analyzing the distribution of similarity between a pair of users across different granularity attributes. Due to the low-dimensional
nature of MA-CDDVs (with the dimensionality equal to the number of attribute granularities), the model can quickly converge with
very few samples.

5.2. Multi-granularity attribute embedding

This subsection delineates the embedding process for user attributes derived from the two social networks 𝐺𝛼 and 𝐺𝛽 under
consideration for UA. We outline the attribute embedding process for a single social network, represented generically by the graph
𝐺 without loss of generality. The techniques described are applicable to the user attribute sets from either of the social networks
𝐺𝛼 or 𝐺𝛽 .

5.2.1. Character-granularity attribute embedding
In the context of character-granularity attributes 𝐴𝑐ℎ = {𝑎𝑐ℎ1 , 𝑎𝑐ℎ2 ,… , 𝑎𝑐ℎ𝑖 ,… , 𝑎𝑐ℎ𝑛 }, which include elements like usernames or

nicknames that lack rich semantic content, the focus is on capturing superficial string similarities rather than semantic meanings.
For instance, the attributes ‘‘apple’’ and ‘‘pear’’ with respect to the nicknames of two users exhibit the semantic similarity of fruits
yet convey limited meaning regarding user identity when used as semantics-devoid nicknames. Hence, for matching 𝐴𝑐ℎ, it is critical
to suppress semantic interpretations and instead prioritize superficial string similarities.
6
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Fig. 3. The overall architecture of the MGASM model is presented. The first and second sections explain the origins of various granular attributes. The third
section describes the construction process of MA-CDDVs, which are primarily used to quantify the correlation between attributes of the same granularity. These
are then used as inputs for the binary classification similarity model in the fourth section.

A character frequency-based embedding approach is used to encode 𝐴𝑐ℎ, transforming each attribute of a social network 𝐺
nto a frequency distribution vector that reflects stylistic patterns without considering explicit semantics. Formally, Let 𝐴𝑐ℎ =
𝑎𝑐ℎ1 , 𝑎𝑐ℎ2 ,… , 𝑎𝑐ℎ𝑖 ,… , 𝑎𝑐ℎ𝑛 } represent the set of character-granularity attributes for all users in network 𝐺 = (𝑉 ,𝐸,𝐴), with 𝑎𝑐ℎ𝑖 denoting
he attribute of each user 𝑣𝑖. The attribute set 𝐴𝑐ℎ can be decomposed into dictionary tokens 𝑐 = {𝑐1, 𝑐2,… , 𝑐𝑘} encompassing

characters, numbers, and Q-grams (Ukkonen, 1992). Each token is assigned a unique index. Further refinement, concerning a
particular attribute instance 𝑎𝑐ℎ𝑖 ∈ 𝐴𝑐ℎ belonging to user 𝑣𝑖, the attribute instance 𝑎𝑐ℎ𝑖 can be decomposed into 𝑚 ≤ 𝑘 constituent
tokens 𝑤 = {𝑤1, 𝑤2,… , 𝑤𝑚} that map to entries in the dictionary. Each user’s attribute 𝑎𝑐ℎ𝑖 can be represented as a 𝑘-dimensional

character frequency vector denoted by ⃖⃖⃖⃖⃖⃗𝐱𝑐ℎ𝑖 =
[

𝑥𝑐1 , 𝑥𝑐2 ,… , 𝑥𝑐𝑗 ,… , 𝑥𝑐𝑘
]𝑇

, where element 𝑥𝑐𝑗 corresponds to the occurrence count of
token 𝑐𝑗 in 𝑎𝑐ℎ𝑖 .

Taking the character attribute 𝑎𝑐ℎ = ‘‘Alfred V. Aho’’ as an example, the character frequency vector ⃖⃖⃖⃖⃖⃗𝐱𝑐ℎ𝑖 is constructed with
elements representing the count of each character in the attribute, such as [2, 0, 0,… , 1,…] for ‘a’, ‘b’, ‘c’, …, ‘o’, etc. Having
established the representation for a single user’s attributes, the character frequency matrix for the entire social network 𝐺 is denoted
as 𝑋𝑐ℎ =

{

⃖⃖⃖⃖⃖⃗𝐱𝑐ℎ1 , ⃖⃖⃖⃖⃖⃗𝐱𝑐ℎ2 ,… , ⃖⃖⃖⃖⃖⃗𝐱𝑐ℎ𝑛
}𝑇

∈ R𝑛×𝑘, where 𝑘 is the size of the dictionary. This matrix is high-dimensional and sparse due to the

sparsity of individual character frequency vectors ⃖⃖⃖⃖⃖⃗𝐱𝑐ℎ𝑖 and the nature of social networks.
To enhance computational efficiency, the sparse matrix 𝑋𝑐ℎ is condensed into a lower-dimensional dense matrix 𝑍𝑐ℎ using an

autoencoder (Zhai, Zhang, Chen, & He, 2018).
The encoder layer function is defined as:

𝑍𝑐ℎ = 𝑓 (𝑋𝑐ℎ) = 𝑋𝑐ℎ𝑊1 + 𝑏1 (1)

with 𝑊1 ∈ R(𝑘×𝑑𝑐ℎ) being the weight matrix reducing the dimensionality from 𝑘 to 𝑑𝑐ℎ, and 𝑏1 ∈ R(1×𝑑𝑐ℎ) being the bias vector that
aids in model fitting. This process yields a compressed hidden representation 𝑍𝑐ℎ ∈ R(𝑛×𝑑𝑐ℎ) from the original high-dimensional
input 𝑋𝑐ℎ ∈ R(𝑛×𝑘).

The decoder layer of the autoencoder is defined by the function:

𝑋′
𝑐ℎ = 𝑔(𝑍𝑐ℎ) = 𝑍𝑐ℎ𝑊2 + 𝑏2 (2)

where 𝑊2 ∈ R(𝑑𝑐ℎ×𝑘) is the weight matrix that expands the dimensionality of the hidden representation 𝑍𝑐ℎ back to the original size 𝑘,
and 𝑏2 ∈ R(1×𝑑𝑐ℎ) is a bias vector that contributes to the model’s fitting capacity. This layer reconstructs the original high-dimensional

(𝑛×𝑑𝑐ℎ) ′ (𝑛×𝑘)
7

input from the compressed hidden code 𝑍𝑐ℎ ∈ R , resulting in the matrix 𝑋𝑐ℎ ∈ R .
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The mean squared error (MSE) is used as the loss function for the autoencoder due to the matching dimensions of the original
atrix 𝑋𝑐ℎ and the reconstructed matrix 𝑋′

𝑐ℎ. The MSE loss (omitting subscripts 𝑐ℎ for simplicity) is calculated as

MSELoss(𝑋,𝑋′) = 1
𝑛𝑘

𝑛
∑

𝑖=1

𝑘
∑

𝑗=1
(𝑋′

𝑖𝑗 −𝑋𝑖𝑗 )2 (3)

After training, when the input 𝑋𝑐ℎ is provided, the autoencoder transforms 𝑋𝑐ℎ into a low-dimensional dense representation 𝑍𝑐ℎ
using Eq. (1). The embedding process of character-granularity attributes is summarized in Algorithm 1.

Algorithm 1 Character-granularity Attribute Embedding
Require: Character-granularity attribute set 𝐴𝑐ℎ and embedding dimension 𝑑𝑐ℎ
Ensure: Character-granularity feature matrix 𝑍𝑐ℎ
1: function characterEmbedding(𝐴𝑐ℎ, 𝑑𝑐ℎ)
2: Initialize 𝑋𝑐ℎ = []
3: tokens← charTokenize(𝐴𝑐ℎ)
4: tokensDict← createDictionary(tokens)
5: for 𝑎𝑐ℎ𝑖 in 𝐴𝑐ℎ do
6: chars← CharTokenize(𝑎𝑐ℎ𝑖 )
7: ⃖⃖⃖⃖⃗𝐱𝑐ℎ𝑖 ← CountVector(chars, tokensDict)
8: 𝑋𝑐ℎ.append( ⃖⃖⃖⃖⃗𝐱𝑐ℎ𝑖 )
9: end for

10: model← Autoencoder(hidden_dim = 𝑑𝑐ℎ)
11: repeat
12: train(model, 𝑋𝑐ℎ)
13: until Convergence
14: 𝑍𝑐ℎ ← model.encoder(𝑋𝑐ℎ)
15: return 𝑍𝑐ℎ
16: end function

5.2.2. Word-granularity attribute embedding
Word-granularity attributes, such as locations or educational backgrounds, necessitate the modeling of complex word relation-

hips. To learn semantic embeddings for these attributes, we utilize the word2vec (Guo, Huang, Dong, Zhang, & Xu, 2021) based on
he Continuous Bag-of-Words (CBOW) architecture (Mikolov, Chen, Corrado, & Dean, 2013), which captures syntactic and semantic
ord contexts. Formally, let 𝐴𝑤𝑜 = {𝑎𝑤𝑜

1 , 𝑎𝑤𝑜
2 ,… , 𝑎𝑤𝑜

𝑖 ,… , 𝑎𝑤𝑜
𝑛 } represent the set of word-granularity attributes for users in network

𝐺, with 𝑎𝑤𝑜
𝑖 being the word-granularity attribute for user 𝑣𝑖. These attributes are tokenized into unique words.

Building upon this, we combine the Wikipedia corpus with the word-granularity attributes of all users in 𝐺 to construct a
comprehensive corpus. Subsequently, we utilize this corpus to train a word2vec model. The vector representation for each sentence
is obtained by averaging the Word2Vec vectors of each word in the word-granularity attributes. Taking the affiliation of Turing
Award winner Alfred V. Aho in the DBLP dataset as an example, ‘‘Columbia University, New York City, USA’’, his word-granularity
feature vector would be the mean of the Word2Vec word vectors corresponding to ‘‘University’’, ‘‘Columbia’’, ‘‘New York’’, and
‘‘USA’’. Assuming ⃖⃖⃖⃖⃖⃗𝐳𝑤𝑜

𝑖 represents the word-granularity attribute vector of user 𝑣𝑖, the word-granularity vectors for all users in 𝐺 can
be represented as the matrix 𝑍𝑤𝑜 = [⃖⃖⃖⃖⃖⃗𝐳𝑤𝑜

1 , ⃖⃖⃖⃖⃖⃗𝐳𝑤𝑜
2 ,… , ⃖⃖⃖⃖⃖⃗𝐳𝑤𝑜

𝑖 ,… , ⃖⃖⃖⃖⃖⃗𝐳𝑤𝑜
𝑛 ] ∈ R𝑛×𝑑𝑤𝑜 .

To address the issue of missing or indistinguishable word-granularity attributes in UA analysis, we enhance user embeddings by
incorporating neighboring attribute information. The embedding ⃖⃖⃖⃖⃖⃗𝐳𝑤𝑜

𝑖 for each user 𝑣𝑖 is updated using a blend of their own attributes
and the average attributes of their neighbors, controlled by a tuning parameter 𝜆 ∈ [0, 1]:

⃖⃖⃖⃖⃖⃗𝐳𝑤𝑜
𝑖 = (1 − 𝜆)⃖⃖⃖⃖⃖⃗𝐳𝑤𝑜

𝑖 + 𝜆 1
𝑠𝑖

∑

𝑗∈𝑖

⃖⃖⃖⃖⃖⃗𝐳𝑤𝑜
𝑗 (4)

where, 𝑖 = {𝑣𝑗 | (𝑣𝑖, 𝑣𝑗 ) ∈ 𝐸} denotes the set of neighbors for user 𝑣𝑖, and 𝑠𝑖 = |𝑁𝑖| is the number of neighbors. In cases where 𝑣𝑖
as no word-granularity attributes, the embedding is solely based on the neighbors:

⃖⃖⃖⃖⃖⃗𝐳𝑤𝑜
𝑖 = 𝜆 1

𝑠𝑖

∑

𝑗∈𝑖

⃖⃖⃖⃖⃖⃗𝐳𝑤𝑜
𝑗 (5)

To mitigate the impact of missing attributes, we modify the approach to use the average of neighbors’ embeddings without
caling by 𝜆 when word-granularity attributes are absent:

⃖⃖⃖⃖⃖⃗𝐳𝑤𝑜
𝑖 = 1

𝑠𝑖

∑

𝑗∈𝑖

⃖⃖⃖⃖⃖⃗𝐳𝑤𝑜
𝑗 (6)

This adjustment ensures that the embeddings remain effective even when user attributes are missing. The process for embedding
word-granularity attributes is detailed in Algorithm 2.
8



Information Processing and Management 61 (2024) 103866Y. Peng et al.

1
1

1

2
2
2
2
2

e
d
a
c
m
c

(
c
u
r
t

s
w

Algorithm 2 Words-granularity attribute embedding
Require: Words-granularity attribute set 𝐴𝑤𝑜 and embedding dimension 𝑑𝑤𝑜
Ensure: Words-granularity feature matrix 𝐙𝑤𝑜
1: function wordsEmbedding(𝐴𝑤𝑜, 𝑑𝑤𝑜)
2: 𝐙′

𝑤𝑜 ← []
3: corpus ← buildCorpus(Wikipedia,𝐴𝑤𝑜)
4: model ← Word2Vec(corpus, 𝑑𝑤𝑜)
5: for 𝑎𝑤𝑜

𝑖 in 𝐴𝑤𝑜 do
6: 𝐰𝐨𝐫𝐝𝐬 ← wordsTokenize(𝑎𝑤𝑜

𝑖 )
7: 𝑛 ← len(𝐰𝐨𝐫𝐝𝐬)
8: ⃖⃖⃖⃖⃖⃗𝐳𝑤𝑜

𝑖 ← 1
𝑛

∑𝑛
𝑖=1 model.get(𝐰𝐨𝐫𝐝𝐬[𝑖])

9: 𝐙′
𝑤𝑜 ← 𝐙′

𝑤𝑜.append(⃖⃖⃖⃖⃖⃗𝐳𝑤𝑜
𝑖 )

0: end for
1: 𝐙𝑤𝑜 ← []

12: for ⃖⃖⃖⃖⃖⃗𝐳𝑤𝑜
𝑖 in 𝐙′

𝑤𝑜 do
3: 𝑖 ← getNeighborhood(𝑣𝑖)

14: ⃖⃖⃖⃖⃖⃖⃗𝐳𝑤𝑜∗
𝑖 ← 𝟎

15: for j in 𝑖 do
16: ⃖⃖⃖⃖⃖⃖⃗𝐳𝑤𝑜∗

𝑖 ← ⃖⃖⃖⃖⃖⃖⃗𝐳𝑤𝑜∗
𝑖 + 𝐙𝑤𝑜[𝑗]

17: end for
18: if 𝐳𝑤𝑜

𝑖 is not a zero-vector then
19: ⃖⃖⃖⃖⃖⃗𝐳𝑤𝑜

𝑖 ← (1 − 𝜆)⃖⃖⃖⃖⃖⃗𝐳𝑤𝑜
𝑖 + 𝜆

𝑠𝑖
⃖⃖⃖⃖⃖⃖⃗𝐳𝑤𝑜∗
𝑖

20: else
21: ⃖⃖⃖⃖⃖⃗𝐳𝑤𝑜

𝑖 ← 1
𝑠𝑖

∑

𝑗∈𝑖
⃖⃖⃖⃖⃖⃗𝐳𝑤𝑜
𝑗

2: end if
3: 𝐙𝑤𝑜 ← 𝐙𝑤𝑜.append(⃖⃖⃖⃖⃖⃗𝐳𝑤𝑜

𝑖 )
4: end for
5: return 𝐙𝑤𝑜
6: end function

5.2.3. Article-granularity attribute embedding
Article-granularity attributes, such as user-generated blogs, reviews, and publications, are rich in individual perspectives and

xpertise. Traditional similarity matching and word-granularity analysis are inadequate for processing such complex freeform text
ata. Our approach focuses on extracting advanced semantic features to identify consistent patterns in users’ content distribution
cross different networks. It is crucial to identify uniform patterns in how users’ article-granularity attributes are semantically
ategorized in UA tasks. Users often share content related to their interests, like sports enthusiasts posting sports-related content on
ultiple platforms, or academics sharing publications in their research areas across academic networks. Analyzing these semantic

ategory distributions can reveal meaningful correlations that transcend individual platforms.
Although unsupervised methods such as Probabilistic Latent Semantic Analysis (PLSA) (Hofmann, 2013), Correlated Topic Model

CTM) (Xun, Li, Zhao, Gao, & Zhang, 2017), and Latent Dirichlet Allocation (LDA) (Kim, Seo, Cho, & Kang, 2019) apply to text
lassification, contemporary deep pre-trained language models surpass these methods in capturing semantic nuances. Specifically, we
se chinese-electra model for Chinese text and electra-base-discriminator model for English text, both sourced from the huggingface
epository. These advanced models excel in semantic encoding and are benchmarked against LDA in our experiments to demonstrate
heir efficacy in mapping article-granularity attributes to category distributions.

To model article-granularity attributes in a social network 𝐺, we define 𝐴𝑎𝑟 = {𝑎𝑎𝑟1 , 𝑎𝑎𝑟2 ,… , 𝑎𝑎𝑟𝑖 ,…, 𝑎𝑎𝑟𝑛 } as the set of such attributes,
with 𝑎𝑎𝑟𝑖 representing the article attribute for user 𝑣𝑖. The matrix 𝑍𝑎𝑟 = [⃖⃖⃖⃖⃗𝐳𝑎𝑟1 , ⃖⃖⃖⃖⃗𝐳𝑎𝑟2 ,… , ⃖⃖⃖⃖⃗𝐳𝑎𝑟𝑖 ,… , ⃖⃖⃖⃖⃗𝐳𝑎𝑟𝑛 ] ∈ R𝑛×𝑑𝑎𝑟 , consisting of the vectors ⃖⃖⃖⃖⃗𝐳𝑎𝑟𝑖 ,
represents the article-granularity embeddings for all users in R𝑛×𝑑𝑎𝑟 , where 𝑑𝑎𝑟 is the embedding dimension. Each ⃖⃖⃖⃖⃗𝐳𝑎𝑟𝑖 captures the
semantic features of the corresponding article text, extracted using a pre-trained language model.

5.2.4. Label-granularity attribute embedding
Prior research (Chen & Chen, 2022) indicates that UA accuracy varies across platforms, with social networks like Facebook and

Weibo showing lower accuracy compared to academic sites like DBLP, due to the less reliable nature of user-generated content.
For example, user-generated content such as usernames and geolocations often lacks veracity. However, device-specific labels or
identifiers appended to user posts, such as ‘‘Posted from iPhone’’ or ‘‘Posted from Web’’ are consistent and reliable. Users seldom
conceal or alter their device identifiers and typically do not switch devices frequently within a short timeframe. These label-
granularity attributes are useful for UA tasks and can be embedded using techniques similar to those for character-granularity
attributes, resulting in a feature matrix 𝑍la ∈ R(𝑑la×𝑛). As label-granularity attributes offer distinct and complementary alignment
ignals, isolating label embeddings enables the model to appropriately weigh their contributions, enhancing the alignment process
ithout conflating different attribute signals.
9
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5.2.5. Relationship network structure embedding
The relational network of users contains valuable information about social ties, interests, and geographic locations. For example,

he same natural person usually has a similar circle of friends on different social media platforms. Structural similarities within
hese networks serve as robust indicators for the alignment of user accounts across different platforms.

The inherent graph-based structure of social networks necessitates formulating network embedding as a graph representation
earning problem. We employ the Node2Vec algorithm (Grover & Leskovec, 2016) to learn low-dimensional node embeddings
hat reflect the network’s structure. Node2Vec utilizes random walks to explore neighborhoods, then leverages a Word2Vec-style
ramework to embed nodes into a continuous vector space based on co-occurrence. A key benefit is the tunable walk randomness
hat trades off between breadth-first and depth-first searches, allowing customizable encapsulation of both structural equivalences
nd homophily. The obtained node embeddings have demonstrated effectiveness in node classification, link prediction, visualization,
nd other graph analytics tasks, by encoding useful semantic and contextual information. Node2Vec provides a flexible, scalable
raph embedding framework suited to represent the rich connectivity patterns in social networks.

We construct a feature matrix 𝑍st ∈ R(𝑑st×𝑛) from Node2Vec embeddings to represent the network structure, where 𝑛 is the
number of users and 𝑑st is the embedding dimensionality. Each row in 𝑍st is a Node2Vec feature vector that encodes a user’s
network context, providing a structured representation to aid in modeling user relationships.

5.2.6. Feature integration
Having completed the embedding process for attributes across four specified granularities and the network structure, we have

obtained a quintet of feature vectors for each user. These vectors, derived from four distinct embedding methodologies, correspond
to the following granularities: character ( ⃖⃖⃖⃖⃗𝐳𝑐ℎ), word (⃖⃖⃖⃖⃖⃗𝐳𝑤𝑜), article (⃖⃖⃖⃖⃗𝐳𝑎𝑟), label (⃖⃖⃖⃖⃗𝐳𝑙𝑎), and structural ( ⃖⃖⃖⃗𝐳𝑠𝑡). The aggregation of these
ectors for all users within the network yields matrices 𝑍𝑐ℎ, 𝑍𝑤𝑜, 𝑍𝑎𝑟, 𝑍𝑙𝑎, and 𝑍𝑠𝑡, respectively. For analytical expediency, we

denote the concatenated feature vectors of an individual user as ⃖⃗𝐳, and the comprehensive matrix representing the concatenated
vectors of all users as 𝑍 = { ⃖⃗𝑥1,… , ⃖⃗𝑥𝑛} ∈ R(𝑛×𝑑), where 𝑑 is the sum of the dimensions of the individual attribute and structural
embeddings, expressed as 𝑑 = 𝑑𝑐ℎ + 𝑑𝑤𝑜 + 𝑑𝑎𝑟 + 𝑑𝑙𝑎 + 𝑑𝑠𝑡.

5.3. Construction of multi-granularity attribute cosine distance distribution vector(MA-CDDV)

For any pair of users (𝑣𝛼𝑖 , 𝑣
𝛽
𝑗 ) from social networks 𝐺𝛼 and 𝐺𝛽 , assuming ⃖⃖⃖⃗𝐳𝛼 and ⃖⃖⃖⃗𝐳𝛽 respectively represent feature vectors of (𝑣𝛼𝑖 , 𝑣

𝛽
𝑗 )

t a certain granularity (determined by the superscript), the function 𝐶𝑜𝑠𝐷𝑖𝑠𝑡(⃖⃖⃖⃗𝐳𝛼 , ⃖⃖⃖⃗𝐳𝛽 ) calculates the Cosine distance between the two
ectors. The construction process of the MA-CDDV for the user pair (𝑣𝛼𝑖 , 𝑣

𝛽
𝑗 ) is as follows:

MA-CDDV =
[

𝐶𝑜𝑠𝐷𝑖𝑠𝑡( ⃖⃖⃖⃖⃗𝐳𝑐ℎ𝛼 , ⃖⃖⃖⃖⃗𝐳𝑐ℎ𝛽 )

, 𝐶𝑜𝑠𝐷𝑖𝑠𝑡(⃖⃖⃖⃖⃖⃗𝐳𝑤𝑜
𝛼 , ⃖⃖⃖⃖⃖⃗𝐳𝑤𝑜

𝛽 )

, 𝐶𝑜𝑠𝐷𝑖𝑠𝑡(⃖⃖⃖⃖⃗𝐳𝑎𝑟𝛼 , ⃖⃖⃖⃖⃗𝐳𝑎𝑟𝛽 )

, 𝐶𝑜𝑠𝐷𝑖𝑠𝑡(⃖⃖⃖⃖⃗𝐳𝑙𝑎𝛼 ,
⃖⃖⃖⃖⃗𝐳𝑙𝑎𝛽 )

, 𝐶𝑜𝑠𝐷𝑖𝑠𝑡( ⃖⃖⃖⃗𝐳𝑠𝑡𝛼 ,
⃖⃖⃖⃗𝐳𝑠𝑡𝛽 )

]⊺

∈ R𝑛×1

(7)

The formula for calculating cosine distance is as follows:

𝐶𝑜𝑠𝐷𝑖𝑠𝑡 = 1 −
∑𝑑

𝑖=1 ⃖⃖⃖⃖⃗𝐳𝛼𝑖 ⋅ ⃖⃖⃖⃖⃗𝐳𝛽𝑖
√

∑𝑑
𝑖=1 ⃖⃖⃖⃖⃗𝐳𝛼𝑖

2 ⋅
√

∑𝑑
𝑖=1 ⃖⃖⃖⃖⃗𝐳𝛽𝑖

2
(8)

The training dataset for the similarity model includes 𝑁𝑡𝑟 positive sample MA-CDDVs representing aligned pairs and 𝑁𝑡𝑟
2 negative

sample MA-CDDVs representing non-aligned pairs.
(1) Positive Samples:The MA-CDDV constructed from the feature vectors of pre-aligned user pairs, are denoted as 𝐸𝑝.
(2) Negative Samples: Negative samples consist of MA-CDDVs constructed from the feature vectors of non-aligned user pairs.

o generate non-aligned user pairs and minimize the chance of mistakenly selecting true matches as negative samples, we employ
he offset perturbation method. For each confirmed aligned user pair (𝑣𝛼𝑖 , 𝑣

𝛽
𝑗 ) from networks 𝐺𝛼 and 𝐺𝛽 , where 𝑖 and 𝑗 represent

their index positions in their respective social networks, we fix 𝑖 and perturb 𝑗 by an offset. This yields a new user pair (𝑣𝛼𝑖 , 𝑣
𝛽
𝑗+offset).

If the new index is within the valid user range of the network, (𝑣𝛼𝑖 , 𝑣
𝛽
𝑗+offset) is considered a non-aligned pair. This process is repeated

o generate 𝑁𝑛𝑒 negative sample MA-CDDVs, represented as the set 𝐸𝑛.
MA-CDDV quantifies the correlation between pre-aligned user pairs in the same granularity attributes and the distribution

haracteristics of correlation among different granularity attributes. It has extremely low dimensionality, equal to the number of
ivisions in granularity. Training a model using MA-CDDV can effectively reduce the learning burden of the model, achieving fast
onvergence. MA-CDDV benefits from its design of first quantifying and then concatenating, which provides excellent scalability.
he dimensions of the vector can be dynamically adjusted based on the richness or reduction of known information. Additionally,
A-CDDV can freely choose quantification functions as needed, including but not limited to Euclidean distance, Manhattan distance,
amming distance, and Wasserstein distance. For ease of subsequent description, we use the function 𝑔𝑟𝑎𝑛𝐶𝑜𝑠𝑑𝑖𝑠𝑡(⃖⃖⃖⃗𝐳𝛼 , ⃖⃖⃖⃗𝐳𝛽 ) to represent

he construction process of MA-CDDV.
10
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Fig. 4. The architecture of the binary classification similarity model begins by applying z-score normalization to the MA-CDDVs, which are then fed into a
linear layer with an output dimension of 196. After passing through a ReLU activation function, the output is passed to another linear layer with a single output
dimension. Finally, the similarity of the MA-CDDVs is obtained through a Sigmoid function.

Fig. 5. An example of constructing a BallTree. First, create a minimal bounding hypersphere to contain all data points, serving as the root node 𝑎. Next, find
the two farthest points 𝑝1 and 𝑝2 within the initial hypersphere, and divide the dataset into two new bounding hyperspheres based on the distances to 𝑝1 and
𝑝2, forming child nodes 𝑏 and 𝑐. Finally, recursively partition each child node until the number of points within each hypersphere reaches or falls below the
specified threshold.

5.4. Binary classification similarity model

5.4.1. Model design
The lack of extensive ground truth data is a significant challenge in UA research, making model performance in data

sparse settings a key evaluation metric. Our previous work has successfully utilized unsupervised learning to derive user feature
representations, using Cosine distance distribution vectors across multi-granularity attributes to measure inter-attribute relationships
at different scales. These comprehensive and effective preliminary steps can significantly reduce the model’s learning requirements.
The model needs to discern patterns in the attribute associations to assess the likelihood that two user profiles correspond to the
same individual. This method highlights the potential for an efficient predictive framework for UA in contexts with limited resources.

We have introduced a lightweight binary classification similarity model, consisting of a series of linear layers and activation
functions, as illustrated in Fig. 4. The architecture aims to identify distribution patterns of correlations between same-granularity
attributes in the MA-CDDV, without the need for complex feature engineering. Although it autonomously learns the importance
of different user attributes from the data on each social platform, avoiding reliance on preset formulas. Our empirical results
indicate that this approach effectively integrates cross-network alignment signals with adaptable similarity functions, achieving
top-tier results in user alignment tasks.

5.4.2. Prediction
To improve UA prediction, we introduce a BallTree (Dolatshah et al., 2015) data structure, which is adept at managing

distance-based queries within large datasets. BallTree organizes data by recursively dividing the metric space into nested hyper-
spheres, enabling rapid nearest-neighbor searches and reducing query times significantly compared to linear scans, particularly in
high-dimensional spaces.

Fig. 5 illustrates the BallTree construction process, which starts by enclosing all data points in a single hyper-sphere, then
recursively partitions the space into smaller hyper-spheres until each contains a manageable number of points. The BallTree
construction process of the example for organizing data points in a metric space involves three main steps:

• Initialization: A minimum bounding hypersphere is created to encompass all data points, establishing the root node of the
BallTree (node 𝑎).

• Partitioning: The two farthest points within the initial hypersphere, 𝑝1 and 𝑝2, are identified. The dataset is then partitioned
by calculating the distances from all other points to 𝑝1 and 𝑝2 using a distance metric (typically Cosine distance). This results
in two new bounding hyperspheres, each containing points closer to either 𝑝1 or 𝑝2, forming the child nodes 𝑏 and 𝑐 of the
root.
11
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• Recursive Division: The partitioning step is recursively applied to each child node, continuing until the number of points in
a hypersphere is at or below a set threshold (often 40 points) for computational efficiency.

ach node of the BallTree corresponds to a hypersphere defined by spatial parameters: center, radius, and the indices of the data
oints it contains. Nodes also have pointers to their left and right child subtrees, enabling efficient traversal and nearest neighbor
earches within the tree’s multidimensional space.

In this study, we address the challenge of efficiently organizing and indexing user data for UA across social networks by
onstructing a BallTree. We represent the attribute embeddings of users in networks 𝐺𝛼 and 𝐺𝛽 as 𝑍𝛼 = {⃖⃖⃖⃗𝐳𝛼1 , ⃖⃖⃖⃗𝐳

𝛼
2 ,… , ⃖⃖⃖⃖⃗𝐳𝛼𝑛𝛼 } and

𝛽 = {⃖⃖⃖⃗𝐳𝛽1 ,
⃖⃖⃖⃗𝐳𝛽2 ,… , ⃖⃖⃖⃖⃗𝐳𝛽𝑛𝛽 }, respectively, where 𝑛𝛼 and 𝑛𝛽 denote the number of users in each network. 𝑍𝛼 is applied as the base for

he BallTree construction. After building the BallTree, we create a matrix 𝑀𝑑 ∈ R(𝑛𝛽×𝑛𝛼 ) to store the distances between user pairs,
nitially filled with infinity. By iteratively taking 𝐳𝛽𝑖 from 𝑍𝛽 and finding the top 𝑘 nearest users from 𝑍𝛼 within the BallTree, we
opulate matrix 𝑀𝑑 with the computed distances, forming the distance matrix. The distance metric function, which is used for both
onstructing and querying the BallTree, is formally defined:

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝐸𝑥𝑝(−𝑚𝑜𝑑𝑒𝑙(𝑔𝑟𝑎𝑛𝐶𝑜𝑠𝑑𝑖𝑠𝑡(⃖⃖⃗𝐳𝑖, ⃖⃖⃗𝐳𝑗 ))) (9)

n this formular, ⃖⃖⃗𝐳𝑖 and ⃖⃖⃗𝐳𝑗 denote the feature vectors of two users. 𝑚𝑜𝑑𝑒𝑙 is the model described in Section 5.4.1, and the 𝑔𝑟𝑎𝑛𝐶𝑜𝑠𝑑𝑖𝑠𝑡()
unction is used to compute the MA-CDDV.

Analysis of user behaviors on two social platforms, 𝐺𝛼 and 𝐺𝛽 , revealed a notable pattern: the presence of a user’s character-
ranularity attributes 𝐴𝑐 (𝑣𝛼𝑖 ) in another user’s article-granularity attributes 𝐴𝑎(𝑣

𝛽
𝑗 ) increases the probability that both attributes

ertain to the same individual. This correlation is likely due to users promoting their presence across platforms within their
ontent and the persistence of character-granularity attributes, such as professional or personal interests, across related domains.
or instance, a username referencing a specific cartoon character suggests a consistent interest that may be reflected in the user’s
ontent on other platforms, making such attributes valuable for user alignment detection. Such reappearance phenomenon of
haracter-granularity attributes between two or more user accounts is termed Attribute Reappearance (AR) in our study.

To discern genuine connections, we set a threshold of 10 mentions to exclude the impact of high-frequency popular terms.
e introduce a correction coefficient 𝜆 to adjust the similarity scores for these user pairs, with 𝜆 assigned a value greater than 1

indicating a higher match likelihood). We use the following formula, which includes 𝜆, to transform the distances in the distance
atrix 𝑀𝑑 into similarities, thereby converting 𝑀𝑑 into a similarity matrix 𝑀𝑠.

𝑀𝑠 = 𝜆 ⋅ 𝐸𝑥𝑝(−𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) (10)

or clarity in further discussions, we refer to the process of adjusting similarity scores based on attribute reappearance as Attribute
eappearance Score Correction (ARSC), with 𝜆 representing the correction coefficient.

The effectiveness of the ‘‘ARSC’’ technique in enhancing UA is confirmed through empirical testing on real-world datasets, details
f which are forthcoming in the evaluation section. The training of the similarity model and the development of the custom distance
unction, which incorporates corrections for AR, are outlined in Algorithm 3 and Algorithm 4, respectively. These algorithms detail
he process of initially learning a classifier based on matched user embeddings and subsequently refining the similarity measurement
o account for the unique characteristics of academic and social platforms by adjusting the 𝜆 coefficient.

The effectiveness of the ‘‘ARSC’’ technique in enhancing UA has been confirmed through empirical testing on real-world datasets,
ith specific details to be presented in the evaluation section. The training of the similarity model and the development of the custom
istance function incorporating ARSC are outlined in Algorithm 3 and Algorithm 4.
Algorithm 3 Training of the Multi-granularity attribute Cosine distance similarity model
Require: The user feature matrix 𝑍, The size of the training set 𝑁𝑡𝑟.
Ensure: Similarity model based on the MA-CDDVs.
1: function getSimilarityModel(𝑍,𝑁𝑡𝑟)
2: userIndexTupleArray ← getPositivSamples(𝑁𝑡𝑟)
3: Initialize 𝐸𝑝 ←[]
4: Initialize 𝐸𝑛 ←[]
5: for each (i, j) in userIndexTupleArray do
6: ⃖⃖⃗𝐞𝑝 ← granCosdist(𝑍[i], 𝑍[j])
7: 𝐸𝑝.append( ⃖⃖⃗𝐞𝑝)
8: if 𝑙𝑒𝑛(𝐸𝑛) < 𝑁𝑡𝑟/2 then
9: j ← j + offset

10: ⃖⃖⃗𝐞𝑛 ← granCosdist(𝑍[i], 𝑍[j])
11: 𝐸𝑛.append( ⃖⃖⃗𝐞𝑛)
12: end if
13: end for
14: model ← SimilarityModel()
15: repeat
16: train(model, 𝐸𝑝, 𝐸𝑛)
17: until Convergence
18: return model
19: end function
12
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Algorithm 4 BallTree CustomMetric

Require: Two user feature vectors, ⃖⃖⃖⃗𝐳𝛼 and ⃖⃖⃖⃗𝐳𝛽 , each originating from two social networks 𝐺𝛼 and 𝐺𝛽 , The similarity model obtained by Algorithm
3.

nsure: The distance between feature vectors based on similarity.
1: function CustomMetric(⃖⃖⃖⃗𝐳𝛼 , ⃖⃖⃖⃗𝐳𝛽 , model)
2: 𝑒 ← granCosdist(⃖⃖⃖⃗𝐳𝛼 , ⃖⃖⃖⃗𝐳𝛽 )
3: distance ← model(𝑒)
4: return distance
5: end function

Table 2
The statistics of the datasets used in the experiments.

Datasets Networks #Users #Relations Min. degree Ave. degree Max. degree Ave. coeff #Matched pairs

Social networks Weibo 9714 117,218 2 12.1 607 0.112 1397

Douban 9526 120,245 2 12.6 608 0.101

Co-authorship networks DBLP17 9086 51,700 2 5.7 144 0.28 2832

DBLP19 9325 47,775 2 5.1 138 0.322

6. Experiments

This section systematically examines the datasets, baseline models, experimental configurations, and analysis pertinent to
alidating the proposed approach. It encompasses both comparative experiments and ablation studies.

.1. Datasets

To validate the proposed Multi-Granularity Attribute Similarity Model and compare it with existing methods, we utilize two
eal-world datasets as detailed by Yang et al. (2022): one from social networks and another from co-authorship networks.
Social Networks: The Weibo-Douban (WD) dataset is derived from two popular Chinese platforms: Sina Weibo and Douban. Sina

eibo is a microblogging service akin to Twitter, where users engage in social interactions through multimedia content. Douban,
n the other hand, focuses on cultural content sharing and discussions. The WD dataset is enriched by the diverse user interactions
nd content types on these platforms. A subset of Douban users who publicly link their Sina Weibo profiles provides a ground truth
or pre-aligned users, aiding in the integration of the two networks for analysis.
Co-authorship Networks: The Digital Bibliography & Library Project (DBLP) dataset is a well-known co-authorship network

ithin the computer science community, cataloging bibliographic information on academic publications. The DBLP network, with
ts unique author identifiers, facilitates the identification of pre-aligned users. For this study, we use snapshots of the DBLP network
rom December 1, 2017, and December 1, 2018, as target networks for alignment. Table 2 provides detailed statistics for both
atasets.

.2. Experimental settings

This section outlines the models included in the comparative experiments, the evaluation metrics used, the hardware specifica-
ions of the experimental setup, and the parameter configurations for each model.

.2.1. Baseline and other methods
MGASM is compared against a range of established baseline methods and state-of-the-art models to ensure a thorough evaluation

f its performance:

• NSBVUIL (Li et al., 2023): NSVUIL is a semi-supervised social network user matching framework that employs a hierarchical
attention mechanism, simultaneously considering user attributes and structural information.

• DeepDSA (Matrouk, Srikanth, Kumar, Bhadla, Sabirov, & Saadh, 2023): DeepDSA primarily focuses on user structure. It
transforms social network data into sequential input for a Transformer to address the oversmoothing problem in Graph Neural
Networks (GNNs). Additionally, it enhances matching accuracy by assigning weights to different users and network structures.

• GradAlign+ (Park et al., 2022b): The GradAlign+ method gradually discovers node pairs by computing similarities between
nodes. It builds upon GradAlign (Park, Tran, Shin, & Cao, 2022a) and introduces node attribute augmentation, improving the
model’s robustness.

• NeXtAlign (Zhang et al., 2021): A superior semi-supervised network alignment method, which employs a novel sampling
approach capable of handling alignment discrepancies during training, thereby effectively distinguishing between correct
alignments and misleading ones. Due to the differences in dataset structures, NeXtAlign in this paper only considers the network
13
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• JARUA (Yang et al., 2022): JARUA is a semi-supervised framework that introduces the concept of subwords while modeling
multi-level attributes and uses a graph attention network for alignment. JARUA performs the best on the dataset used in this
paper, and thus will serve as the primary benchmark for this study.

Two variants of MGASM are tested to evaluate the impact of different structures on performance, each variant utilizes ARSC:

• MGASM_LDA: This variant uses Latent Dirichlet Allocation (LDA) for article-granularity attribute embedding to compare the
performance against pre-trained language models in article feature extraction.

• MGASM_NL: By excluding label-granularity attribute embedding, this variant assesses the impact of label-granularity attributes
on the overall performance of MGASM.

6.2.2. Evaluation metric
The study utilizes precision, recall, and F1-score as standard metrics to evaluate the performance of the models. These metrics are

widely accepted in the field for assessing classification models. Precision measures the accuracy of positive predictions, indicating
he proportion of true positives among all predicted positives. Recall measures the model’s ability to identify all relevant instances,
ndicating the proportion of true positives among actual positives. F1 is the harmonic mean of precision and recall, providing a
alance between the two metrics.

For the specific task of UA, the study also employs the hit-precision metric (Mu, Zhu, Lim, Xiao, Wang, & Zhou, 2016), which is
uitable for ranking tasks where the goal is to find the correct match within the top 𝑘 candidates. The formula for hit-precision is:

ℎ(𝑥) =
𝑘 − (ℎ𝑖𝑡(𝑥) − 1)

𝑘
(11)

In this formula, ℎ𝑖𝑡(𝑥) denotes the rank position where the correct match is found within the top 𝑘 candidates. The overall
hit-precision is the average of individual scores for all successfully matched pairs:

Hit-Precision = 1
𝑛

𝑛
∑

𝑖=1
ℎ(𝑥𝑖) (12)

Typically, 𝑘 is set to 3 for calculating hit-precision, unless otherwise specified. This metric provides insight into the model’s
effectiveness at ranking true matches highly, which is essential for the practical application of UA in real-world scenarios.

6.2.3. Hardware devices and environment
The computational experiments conducted in this study are implemented using the Python 3.7 programming language. The

execution environment is based on a Windows 11 operating system. The hardware configuration includes a 12th Gen Intel(R)
Core(TM) i9-12900H processor, which provides robust computational capabilities. Additionally, the system is equipped with an
NVIDIA GeForce RTX 3080 Ti laptop GPU, featuring 8 GB of dedicated memory to facilitate efficient processing of machine learning
tasks.

6.2.4. Parameter configuration
The parameter configuration for the MGASM model is carefully designed to ensure consistency and reliability in the experimental

results. The key settings are represented as follows:

• Embedding Dimensions: The embedding dimensions for the various granularity attributes are uniformly set to 𝑑𝑐ℎ = 𝑑𝑤𝑜 =
𝑑𝑎𝑟 = 𝑑𝑠𝑡 = 𝑑𝑙𝑎 = 100, ensuring consistency across different attribute types.

• Training and Testing Sets: The number of matched user pairs for training (𝑁𝑡𝑟) and testing (𝑁𝑡𝑒) are determined through a
random selection process. The range for 𝑁𝑡𝑟 is between 5% and 30% of the total training set, while 𝑁𝑡𝑒 is set at 500 pairs for
evaluating hit-precision. For precision, recall, and F1 score assessments, 𝑁𝑡𝑒 consists of 250 positive samples and an additional
250 randomly generated non-matched user pairs (negative samples) for a balanced evaluation. To maintain consistency across
all models, 𝑁𝑡𝑟 is standardized at 20% of the total training set. It is critical to keep the training and testing datasets strictly
separate to avoid data leakage and ensure the validity of the evaluation.

• Repetition of Experiments: Each experimental run is conducted 10 times independently to account for variability in the
results. The average of these runs is used for performance analysis, providing a more robust and reliable measure of the
model’s effectiveness.

• Baseline Model Parameters: The parameter configurations for the baseline models used in the comparative analysis are taken
from the default settings reported in their original publications. This approach ensures that the comparison is fair and that the
baseline models are evaluated under conditions recommended by their creators.

These parameter settings are essential for replicating the experiments and for understanding the context in which the MGASM
model is evaluated. By adhering to these configurations, the study aims to provide a clear and accurate comparison of MGASM’s
performance against other models in the field.

6.3. Experimental analysis

This section provides a detailed comparison of the performance of the MGASM and its variants against established baseline
models on two real-world datasets: WD and DBLPs.
14
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Table 3
Precision of various UA methods on WD and DBLP datasets at different values of 𝑘.

Method Weibo-Douban DBLP17-DBLP19

k = 1 k = 3 k = 5 k = 1 k = 3 k = 5

NSVUIL 0.284 0.326 0.373 0.416 1 0.458 0.504
DeepDSA 0.271 0.299 0.332 0.541 0.601 0.667
Grad-Align+ 0.299 0.302 0.305 0.288 0.304 0.316
JARUA 0.416 0.448 0.464 0.821 0.845 0.858
NeXtAlign 0.183 0.247 0.282 0.377 0.530 0.602

MGASM 0.647 0.718 0.760 0.683 0.718 0.733
MGASM_NL 0.475 0.513 0.538 0.681 0.707 0.719
MGASM_LDA 0.641 0.716 0.758 0.882 0.912 0.928

Table 4
Precision, Recall, and F1 scores of different UA methods on Weibo-Douban and DBLP17-DBLP19 datasets at various values of 𝑘.

Method Weibo-Douban DBLP17-DBLP19

Pre. Rec. F1 Pre. Rec. F1

NSBVUIL 31.14% 75.25% 44.05% 53.77% 78.01% 63.66%
DeepDSA 41.12% 67.47% 51.10% 63.63% 71.11% 67.16%
Grad-Align+ 26.12% 82.47% 39.67% 43.36% 70.21% 53.61%
NeXtAlign 25.92% 81.14% 39.29% 42.10% 72.31% 53.22%

JARUA 41.23% 87.94% 56.14% 68.07% 88.29% 76.87%
MGASM 100% 62.93% 77.25% 99.61% 68.53% 81.20%
MGASM NL 99.39% 44.27% 61.26% 99.42% 67.53% 80.43%
MGASM LDA 100% 60.80% 75.62% 99.85% 87.60% 93.32%

6.3.1. Overall performance
The results summarized in Table 3 and Table 4 indicate that MGASM and its variants outperform the baseline models on the

ajority of metrics, showing significant improvement compared to the previously considered state-of-the-art JARUA method. The
ey observations are as follows:

• Dataset Quality: The quality of the datasets has a significant impact on the performance of the models. Earlier methods
struggled with social network datasets, but MGASM has managed to reduce this performance gap.

• Platform Characteristics: Academic and social platforms have different features, and a single mechanism may not necessarily
be applicable across all platforms.

• Benchmarking: JARUA serves as the primary benchmark due to its prior success, providing a reference point for evaluating
the improvements made by MGASM.

• Performance Gap: While the JARUA method was the most effective among earlier approaches, MGASM has shown to be more
effective, which is evident from the comparative results.

The tables referenced (Table 3 and Table 4) would typically contain detailed performance metrics such as hit-precision, precision,
recall, and F1-score, allowing for a quantitative assessment of each model’s ability to correctly align user identities across different
platforms.

Table 3 highlights the hit-precision of MGASM on two datasets. On the WD dataset, MGASM achieves a hit-precision of 0.718
at the top-candidates parameter 𝑘 = 3, surpassing JARUA’s 0.427 by 68.15%. MGASM_LDA slightly underperforms compared to

GASM, indicating that pre-trained language models may better capture article topics in social media contexts compared to LDA.
GASM_NL’s score decreases by at least 28.55% compared to MGASM, demonstrating the positive impact of introducing label

ranularity on the user alignment task. Despite this, MGASM_NL still outperforms JARUA by 20.14% in hit-precision, reaching
.513, confirming the advanced nature of the MGASM architecture.

Contrasting its performance with that in the WD dataset, MGASM_LDA outperforms MGASM in the DBLP dataset. MGASM_LDA
chieving a hit-precision of 0.912 at 𝑘 = 3. This represents a 20.95% improvement over the JARUA benchmark’s 0.754 and a

27.02% improvement over the base MGASM. This performance difference can be attributed to the unique composition of article-
granularity attributes within the DBLP datasets, which primarily consist of article titles rather than comprehensive article content.
Academic article titles are often laden with specialized terminology, including a plethora of proper nouns and abbreviations, making
it challenging to accurately predict topic distributions unless pre-trained models are specifically fine-tuned for such tasks. Here,
the statistical learning foundation of the LDA method proves more effective than pre-trained models not fine-tuned for academic
terminology.

MGASM and its variants outperform existing methods in hit-precision under the majority of conditions. Notably, the improve-
ments of MGASM are more significant on social media platforms than on academic platforms, demonstrating its potential in handling
non-standardized data.

MGASM and its variants outperform existing methods in hit-precision in most cases. Specifically, compared to DeepDSA and
15

NeXtAlign, which emphasize user network structural features, MGASM demonstrates remarkable unique advantages in handling
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Table 5
The impact of ARSC on hit-precision for MGASM and its variants across different datasets. The table illustrates the hit-precision performance before using ARSC
(BC), after using ARSC (AC), and the improvement (inc) achieved by incorporating ARSC.

Method Weibo-Douban

𝑘 = 1 𝑘 = 3 𝑘 = 5

BC AC inc.(%) BC AC inc.(%) BC AC inc.(%)

MGASM 0.614 0.647 5.33% 0.685 0.718 4.81% 0.729 0.760 4.17%
MGASM_NL 0.441 0.475 7.70% 0.490 0.513 4.72% 0.519 0.538 3.54%
MGASM_LDA 0.595 0.641 7.73% 0.676 0.716 5.98% 0.725 0.758 4.48%

Method DBLP17-DBLP19

𝑘 = 1 𝑘 = 3 𝑘 = 5

BC AC inc.(%) BC AC inc.(%) BC AC inc.(%)

MGASM 0.679 0.683 0.68% 0.699 0.718 2.70% 0.709 0.733 3.34%
MGASM_NL 0.667 0.681 2.05% 0.697 0.707 1.42% 0.711 0.719 1.17%
MGASM_LDA 0.859 0.882 2.64% 0.893 0.912 2.09% 0.914 0.928 1.62%

Table 6
The impact of ARSC on Precision, Recall, and F1 scores for MGASM and its variants across different datasets. Here, BC represents before using ARSC, AC
represents after using ARSC, and inc indicates the improvement after using ARSC compared to before its use.

Method Weibo-Douban

Pre. Rec. F1

BC AC inc.(%) BC AC inc.(%) BC AC inc.(%)

MGASM 0.998 1.000 0.22% 0.620 0.629 1.50% 0.765 0.772 1.01%
MGASM_NL 0.994 0.994 0.00% 0.437 0.443 1.23% 0.607 0.613 0.85%
MGASM_LDA 1.000 1.000 0.00% 0.601 0.608 1.16% 0.751 0.756 0.72%

Method DBLP17-DBLP19

Pre. Rec. F1

BC AC inc.(%) BC AC inc.(%) BC AC inc.(%)

MGASM 0.992 0.996 0.41% 0.681 0.685 0.59% 0.808 0.812 0.52%
MGASM_NL 0.992 0.994 0.22% 0.672 0.675 0.49% 0.801 0.804 0.38%
MGASM_LDA 1.000 0.999 −0.15% 0.871 0.876 0.54% 0.931 0.933 0.22%

network topology. However, these methods lack targeted processing of user attributes and user-generated content on content-rich
social platforms. Compared to the classic methods GradAlign+ and NSVUIL, which also consider user attributes and structural
information, GradAlign+ requires a higher amount of training data, limiting its application in scenarios with scarce pre-aligned
users. The NSVUIL algorithm is highly robust, with minimal impact from the quantity and quality of the training set, allowing it
to perform steadily in complex scenarios. However, it falls short in capturing fine-grained user features. Notably, MGASM shows
significantly greater improvements on social media platforms compared to academic platforms, demonstrating its potential in
handling non-standardized data.

Table 4 provides a detailed overview of MGASM’s performance across three evaluation metrics: precision, recall, and F1-score.
cross all datasets, MGASM and its variants demonstrate exceptional precision, with the main model MGASM achieving precision

evels of 100% and 99.96% on the WD and DBLPs datasets, respectively. Compared to JARUA’s 41.23% and 68.07%, this represents
significant increase of 142.54% and 46.85%, respectively, indicating MGASM’s extremely high accuracy in positive identifications.
his is particularly promising for UA tasks that require high precision. Conversely, the recall of MGASM and its variants is slightly

ower, possibly due to their methodology of using a single user as a reference and matching attribute distributions based on cosine
istances. In complex social network environments, this may result in true positives being misclassified as negatives, where a pair
f non-aligned users may exhibit a closer similarity to the feature of interest than the actual aligned users. JARUA and Grad-Align+
erformed exceptionally well on this metric, making them highly promising for scenarios where sensitivity to user alignment miss
ates is critical. MGASM demonstrated the best overall performance, as reflected in its F1 scores, which reached 77.25% on the WD
ataset and 81.20% on the DBLPs dataset. Compared to JARUA’s scores of 56.14% and 76.87%, these represent improvements of
7.6% and 5.63%, respectively.

Table 5 and Table 6 compare the performance metrics of MGASM and its variants before (BC) and after (AC) using ARSC across
wo datasets, Table 7 summarizes the average improvements on each metric after using ARSC. It can be observed that ARSC has
arying degrees of promoting effect on hit-precision, precision, recall, and F1 scores. Specifically, in the WD dataset, using ARSC at
= 3 resulted in an average increase of 5.17% in hit-precision, and an average increase of 0.07%, 1.3%, and 0.86% in precision,

ecall, and F1 scores, respectively. The impact of ARSC on precision, recall, and F1 scores mirrors the trend in hit-precision but
ith slightly smaller magnitudes. The situation in the DBLP dataset is similar to that of the WD dataset, with an average increase of
.07% in hit-precision, and an average increase of 0.16%, 0.54%, and 0.37% in precision, recall, and F1 scores, respectively. This
nderscores the importance of context-specific application of ARSC for optimizing user alignment methods.
16
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Table 7
The average impact of using ARSC on hit-precision, precision, recall, and F1 scores for MGASM across different datasets.
Dataset Hit-precision (k = 3) Pre. (%) Rec. F1

WD 5.17% 0.07% 1.30% 0.86%
DBLPs 2.07% 0.16% 0.54% 0.37%

Fig. 6. The hit-precision performance of the MGASM variant considering only a single attribute granularity as the training dataset size 𝑁𝑡𝑟 varies from 5% to
0%.

.3.2. Influence of the training dataset size on the results
Fig. 6 presents the performance of all models as the training dataset size (𝑁𝑡𝑟) increases from 5% to 30%. In the WD dataset

see Fig. 10(a)), MGASM and its variants demonstrate rapid convergence, with MGASM achieving a hit-precision of 0.718 with
nly 5% of the training set. This represents a remarkable improvement of 68.15% compared to JARUA’s hit-precision of 0.427.
owever, as 𝑁𝑡𝑟 increases, MGASM and its variants begin to oscillate around the maximum value after 𝑁𝑡𝑟 > 20%, with no further
erformance improvement. In contrast, other models continue to show improvement, albeit at a slower rate. Even at 𝑁𝑡𝑟 = 30%,
GASM maintains superior performance, with a hit-precision 59.6% higher than JARUA’s.

In parallel experiments on the DBLP dataset (see Fig. 10(b)), all models perform better with relatively standardized data, but the
verall trend is similar to that observed in the WD dataset. MGASM and its variants demonstrate significantly faster convergence.
mong them, MGASM_LDA consistently maintains a leading advantage. It is worth noting that JARUA begins to surpass MGASM
fter 𝑁𝑡𝑟 > 15%, indicating that JARUA can gain more benefits from the growth of the training set, while MGASM can exhibit
erformance surpassing or equal to mainstream advanced models with a smaller training set. NeXtAlign is also remarkable; although
t only considers network structure in this study, it still demonstrates outstanding performance. At 𝑁𝑡𝑟 = 30%, its performance is
quivalent to 85.27% of MGASM’s, indicating NeXtAlign’s superior ability in capturing network features. Although NeXtAlign only
onsiders network structure in this study, it still demonstrates outstanding performance. At 𝑁𝑡𝑟 = 30%, its performance is equivalent
o 85.27% of MGASM’s, indicating NeXtAlign’s superior ability in capturing network features.

Overall, as 𝑁𝑡𝑟 increases from 5% to 30%, the MGASM family and NSVUIL exhibit the least average gain from the training
ata, with increases of only 6.27% and 6.8%, respectively. This indicates that these two models are less dependent on the training
ataset and are better suited for scenarios with limited pre-aligned users. In contrast, NeXtAlign and Grad-Align+ show significant
mprovements of 50.7% and 354.68%, respectively, suggesting they have greater potential when the training dataset is more
ubstantial.

The notable performance of MGASM and MGASM_LDA in the WD and DBLP datasets, achieved with a modest 𝑁𝑡𝑟, is impressive.
t is important to recognize that increases in 𝑁𝑡𝑟 did not yield a linear rise in hit-precision, indicating a performance plateau. This
ay be due to the finite dimensionality of training samples, which is limited by the number of attribute granularities—five in the
atasets used. The observed plateau in performance gains with increasing 𝑁𝑡𝑟 can be linked to the dimensionality of training samples,
hich is bound by the number of attribute granularities. The datasets were divided into five granularities, facilitating rapid model

onvergence and robust performance with fewer samples. However, this approach also presents a constraint: the five-dimensional
ector has an inherent information ceiling, implying that the model’s performance might have approached the maximum potential
chievable with this data structure. To overcome this and enhance model performance, it is crucial to integrate more granular user
nformation, such as publication times, content details, browsing histories, bookmarking records, and liking activities. This would
rovide a richer information base for the model to learn from.
17
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Fig. 7. The hit-precision performance of all models when top-k varies between 1 and 100.

Fig. 8. Performance of MGASM and its variants on hit-precision (k = 3) before and after using ARSC on two datasets.

.3.3. Performance of the model under different top-k settings
By varying top-k between 1 and 100, we tested the range search capabilities of all models across various datasets.
In the WD dataset, as shown in Fig. 7(a), In terms of hit-precision, MGASM still demonstrates the best performance, achieving a

recision of 0.94 at top-k = 100, which is 47.8% higher than DeepDSA’s 0.636, the second-best performer. Additionally, NeXtAlign
hows impressive growth rates. As top-k increases from 1 to 100, NeXtAlign’s hit-precision improves by 134.97%, ranking first. In
ontrast, due to its initially high base, MGASM exhibits a relatively lower growth rate at only 45.28%.

In the DBLP dataset, as shown in Fig. 7(b), MGASM_LDA achieved the highest hit-precision, surpassing the second-place JARUA
y 5.78% at top-k = 100. NeXtAlign once again demonstrated the highest growth rate, reaching 119.63%. These results reveal the
recision and range search capabilities of each model, providing insights for UA tasks in different scenarios. Specifically, among all
he models compared, MGASM and its variant MGASM_LDA exhibit strong precision search capabilities, while NeXtAlign excels in
ange search capability.

Overall, one of MGASM’s key strengths lies in its exceptional precision search capabilities. Although MGASM maintains an
dvantage at top-k = 100, if the top-k range continues to expand, its hit-precision might be surpassed by DeepDSA and NeXtAlign.
his suggests that MGASM has relatively weaker fuzzy query capabilities, which aligns with the observation of its lower recall rate
entioned in Section 6.3.1.

.3.4. Contribution of various components to the effectiveness of MGASM
By examining the contribution of different components and ARSC across various datasets, the effectiveness of MGASM and its

ariants is assessed.
In the WD dataset, as illustrated in Fig. 8(a), the hit-precision performance of MGASM significantly surpasses MGASM_NL, with

n average improvement of 39.96%, emphasizing the importance of label granularity in enhancing model performance. MGASM
18

lightly outperforms MGASM_LDA, highlighting the effectiveness of pre-trained language models in social network text classification.
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Fig. 9. Performance of MGASM and its variants F1 score before and after using ARSC on two datasets.

ARSC further enhances the performance of MGASM, with an average improvement of 5.17%. In the DBLP dataset, as shown in
Fig. 8(b), MGASM_LDA emerges as the most effective, demonstrating an improvement in hit-precision of 27.02% compared to
MGASM, indicating that LDA is more suitable for classifying academic titles with a certain readability threshold. The use of ARSC
improves hit accuracy by an average of 2.07%.

Trends are confirmed through F1-score analysis in Fig. 9. In the WD dataset, MGASM’s F1 score is 26.1% higher than
MGASM_NL and 2.64% higher than MGASM_LDA, with ARSC improving performance by an average of 0.86%. In the DBLP dataset,
MGASM_LDA remains superior to MGASM and MGASM_NL, outperforming them by 14.93% and 16.02%, respectively, with ARSC
enhancing performance by an average of 0.37%. While the extent of performance improvement varies across different metrics, ARSC
consistently proves beneficial.

6.3.5. Experiment on the importance of attribute granularity
To evaluate the significance of attribute embeddings at different granularity levels within the MGASM model, we conducted

ablation experiments by testing the hit-precision performance when considering only a single attribute granularity. Specifically, we
examined the following variants: MGASM_C (character granularity), MGASM_W (word granularity), MGASM_L (label granularity),
MGASM_A (article granularity), and MGASM_S (structure granularity).

As illustrated in Fig. 10, the results on the WD dataset reveal that MGASM_C achieved the highest hit-precision of 0.415, followed
by MGASM_L. This suggests that character and label granularity attributes are particularly influential in user alignment within the
WD dataset. Conversely, in the DBLPs dataset, the article granularity attribute emerged as the most critical, with other granularities
also contributing significantly. When MGASM only considers a single granularity, MA-CDDVs can only quantify the relevance of
users with respect to attributes of that granularity. A binary similarity model also cannot effectively learn the correlation distribution
between different granularities of attributes. As a result, the performance of models considering only a single granularity attribute
in two datasets is significantly lower than that of the MGASM model, which considers multiple granularities. This advantage is
attributed to multi-view learning theory. Each view provides information on different aspects of the same object, and by combining
these views, a more comprehensive and accurate model can be obtained. This multi-view data learning approach offers stronger
generalization ability and higher robustness compared to single-view learning. Specifically, the advantages of multi-granularity
embedding arise from the following points:

• Complementarity Principle: Embeddings of different granularities contain information at different levels, which is inherently
complementary. By combining this complementary information, a richer representation of user features can be obtained,
thereby enhancing the model’s learning capability.

• Information Correction: Single-granularity embeddings might introduce certain inherent biases or shortcomings. For example,
character-level embeddings might ignore semantics, while document-level embeddings might overlook subtle differences in
vocabulary. Multi-view learning, by combining embeddings of multiple granularities, can effectively reduce these biases.

Therefore, through multi-granularity learning, the model can better capture the complex distribution of correlations between
ser attributes of different granularities across various network platforms. This makes the model more robust and generalizable
hen facing different types of data.

.3.6. Dimension sensitivity analysis
Dimension sensitivity analysis was performed to determine the effect of embedding dimensionality on MGASM’s performance,

xamining hit-precision, precision, recall, and F1-score against varying dimensions 𝐷.
From Fig. 11, it can be observed that there is a significant difference in the dimension sensitivity of MGASM and its variants

etween the WD and DBLP datasets. In the WD dataset, performance metrics initially improve with increased dimensions, indicating
19
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Fig. 10. he hit-precision performance of all models on both datasets as the training dataset size 𝑁𝑡𝑟 varies from 5% to 30%.

Fig. 11. The hit-precision performance of MGASM and its variants as the embedding dimension varies from 50 to 300.

hat higher dimensionality captures more detailed information, thereby enhancing accuracy. However, after reaching the peak
erformance, further increases in dimensionality lead to a plateau in performance. In contrast, the hit-precision of MGASM and
ts variants remains almost stable in the DBLP dataset. We attribute these results to the differing complexities of the WD and
BLP datasets. When the embedding dimensions cannot fully accommodate the various granularity attributes of users, the model
enefits from the increase in embedding dimensions. Conversely, when the embedding dimensions are sufficient to accommodate
he granularity attributes of users, the model exhibits extremely low dimension sensitivity.

. Results and impact

The empirical evaluations conducted on two real-world datasets clearly indicate that, even with a limited number of pre-aligned
sers available, MGASM outperforms existing baseline models and alternative methods. Specifically, on the Weibo-Douban dataset,
e have achieved a hit-precision of over 60% and nearly 100% precision for the first time. This advantage is overwhelming. These
reakthroughs enhance the reliability of various artificial intelligence applications, including but not limited to recommendation
ystems, search engines, information diffusion forecasting, network identity verification, and crime detection.

. Conclusion

In this paper, we propose a novel end-to-end semi-supervised solution, named MGASM, to address the problem of user alignment
cross social networks under sparse data conditions. To tackle the challenges posed by attribute heterogeneity and sparsity, the
20
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model integrates multi-granularity feature embeddings. Notably, it independently embeds label information such as user devices for
the first time to enhance the embedding process, significantly improving performance. MGASM appropriately utilizes neighboring
node information to smooth feature vectors. Additionally, we introduce a low-dimensional and efficient MA-CDDV vector, which,
when combined with a binary classification model, significantly reduces the model’s reliance on sample data. More innovatively,
we introduce the ARSC (Attribute Reappearance Score Correction) mechanism, which considers the interactions between individual
attributes across platforms, significantly enhancing various performance metrics and improving the model’s judgment ability for
similar users. However, this method still has limitations. While MA-CDDV provides the model with advantages such as rapid
convergence and high scalability, its relatively simple structural design means that the model cannot continuously benefit from the
expansion of the training set. This limitation may make it challenging to adapt to richer and more complex application scenarios
in the future. Based on the recall rate metrics and generalization search capability experiments where MGASM did not achieve
optimal performance, we recognize the potential value of exploring more complex combination strategies and will consider this as
a direction for our future work.
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