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Multi-label classification is an extension of single-label classification with generations of multi-

output for unseen instances. Label correlation is an essential component in constructing multi-label 
classifiers. How to optimize the representation of label correlation while preserving the semantics 
of label-specific remains an uncertain issue. Instead of estimating label correlation by a holistic 
feature representation, we present an augmented label correlation model by generating multi-

granularity label-specific features. Firstly, we devise a mixture distance measure to characterize 
the closeness of an instance by weighing the Pearson correlation coefficient with cosine similarity. 
Secondly, we explore the local label-specific relative discrimination by leveraging from both the 
instance-level and class-level correlation distribution within k nearest neighborhood. Finally, 
we conduct an information fusion strategy to comprehensively integrate the positive and the 
negative tendencies at the neighborhood level. Instances with salient positive tendency and 
compact neighborhood structure receive larger values while receiving smaller values with salient 
negative tendency and sparse neighborhood structure. With the concatenation of original features 
and augmented features, we examine the classification performance of the proposed granule 
correlation-based feature augmentation (GOFA) on well-established second-order multi-label 
classification methods. Extensive comparisons on thirteen benchmarks demonstrate the statistical 
superiority of GOFA over state-of-the-art multi-label classifications.

1. Introduction

Multi-label classification [44,28,17] attempts to determine the label association of instance-label pairs by learning a mapping from 
features to labels. It is an extension of the single-label case in both the fashion of outputs and the semantics of associations. For the 
fashion of outputs, the cardinality of average associated labels is much smaller than the total count of labels. Meanwhile, the associated 
label count varies for different instances. For the semantics of associations, the associated labels are different in composition, and 
such differences imply a particular state of the scene. Such phenomena are omnipresent in real applications involving emotion 
analysis [13], video annotation [50], and medical diagnosis [34].
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Label correlation is an essential component in regularizing effective feature representation. However, there are two issues with de-

veloping a robust multi-label classifier. Firstly, the composition of discriminative features is uncertain. Secondly, even if the desirable 
features are available, the relative importance of each label is uncertain as the composition of correlated labels is undetermined. For 
the first point, recent studies attempt to learn an optimal latent feature space. Zhang et al. [38] developed a bi-sparsity regularization 
by exploring underlying correlation in the label enrichment matrix. Zhang et al. [45] demonstrated explorations of relative implicit 
importance can boost the model’s generalization. Qin et al. [24] proposed a multi-label feature selection method with adaptive graph 
learning on label enhancement. For the second issue, many studies [9,16,46,3] conduct the label-specific learning with second-order 
or high-order label correlation assumption. With label-specific assumptions, instances with similar associated labels have similar 
weights on relevant features. For example, the co-existence of blue and yellow color may imply a pairwise relationship between sea
and beach, which yields a lower probability of other scenes such as buildings and traffic. However, multi-label annotations are not 
limited to specific representations on instances. Leveraging the fragmented information from different perspectives (e.g., similarity 
between instances, occlusion between objects) can potentially imply a robust correlation, which is conducive to correcting the bias 
from original features. Unfortunately, such a decision-making process is beyond the scope of the previous studies.

Granular computing (GrC) [8,23] is a structural cognitive methodology that simulates human processing of problems with un-

certainty. With information granulation, the underlying problem structure is approximately represented. Many scholars [47,22,1,31]

demonstrate the superiority of employing granular computing on multi-label classification. With granular computing, it is possible 
to determine the label association by integrating it with information from different granular layers. Particularly, the feature aug-

mentation technique [11,12] is competent for the granular layer transformation. To simulate the adaptive utilization of multifaceted 
information, we devise a multi-granulation feature augmentation model to explore the local intrinsic relationship within instances. 
With the refinement of granularity, the integrations of essential factors like the components of neighborhoods, the instance-level 
similarity, the positive and negative class distribution, and the compactness of neighborhoods boost the discrimination of labels. 
These high-level features can be regarded as supplementary to original features. Our contributions are enumerated below:

1. We construct a granular structure to enrich the feature representation of multi-label by exploiting both instance-level and class-

level correlation distribution. The augmented features are intuitive in semantics, revealing the strength of relative positive 
tendency locally.

2. The feature augmentation generation takes a double-quantitative viewpoint in measuring the positive and negative influential 
degree without introducing additional parameters. Accordingly, the contribution of each instance within k nearest neighborhood 
is automatically determined.

3. We present a novel model for multi-label classification called granule correlation-based feature augmentation (GOFA). The 
superiority of GOFA over state-of-the-art algorithms is demonstrated.

The remaining parts are organized as follows: Section 2 reviews the related work. Section 3 outlines the pipeline and explains 
model details. Section 4 presents experimental results on benchmarks. Finally, Section 5 concludes the paper.

2. Related work

2.1. Label correlation

The label correlations describe the statistical dependency information among the high-level concepts (i.e., labels), thus adjusting 
the feature weights via feature-label dependency. However, the scope and space for a trustworthy label correlation is previously 
unknown. To this challenge, many studies assume a particular order of label correlation. The solutions include first-order, second-

order, or high-order. Typically, the first-order (e.g., ML-kNN [42] and LIFT [43]) learns each label without considering correlations 
among labels, while the second-order (e.g., MGT-LEML [49] and FIGR_LC [35]) and high-order (e.g., MLR [21] and FL_MLC [2]) 
exploits pairwise or high-order fashion of label correlations. In contrast, the construction of appropriate feature space is the extension 
of feature selection and feature extraction for original and latent space, respectively. In particular, the embedding space works for 
noisy (e.g., PML-NI [32] and nEM [4]) or missing labels cases (e.g., C2ML [29] and MML-TLNM [30]).

2.2. Feature augmentation

Feature augmentation exploits the implicit relationships of instances from the explicit original features and is an informative 
component in developing a classifier. Recently, many multi-granularity-based feature augmentations have been examined in the 
single-label case. Gong et al. [6] constructed a local attention-guided network to integrate the information from both the most salient 
area of a person and the body parts for person re-identification. The body parts features were extracted by a region-interest-map 
generator and augmented by a residual structure. Guo et al. [7] developed a multiple granularity semantic learning network for the 
image-based scene classification of remote sensing. The multi-scale region features were extracted by a multiple granularity semantic 
learning module and enhanced via a granular mapping operator. Zhang et al. [39] formulated a feature enhancement network for small 
object detection. A multi-granular deformable convolution network was devised to capture and fuse the offset feature representation 
in different granularity. Xue et al. [33] proposed a multi-granularity relational augmentation network to optimize knowledge graph 
embedding. A relational augmentation convolution module preserved the distinctive relational properties and enriched the feature 
2

informativeness afterward.
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Table 1

Summary of notations.

Notations Meanings

𝐗 Original training set with 𝑛 instances and 𝑚 features

𝐘 Labelset of 𝐗 on 𝑞 labels

𝐷𝑖𝑠 (⋅, ⋅) Instance-based distance operator

𝜇 weight of cosine similarity and Pearson correlation coefficient in instance-based distance

𝑘 size of nearest neighbor ∀𝐱𝑏

(
𝐱𝑏
)

Indexes of k nearest neighborhood for 𝐱𝑏


𝐱𝑏
𝑗

Indicators of the nearest neighborhood with label association on the 𝑗th label for 𝐱𝑏


𝐱𝑏
𝑗

Indicators of the nearest neighborhood without label association on the 𝑗th label for 𝐱𝑏
𝐖𝐱𝑏 Instance weights of k nearest neighborhood for 𝐱𝑏
𝑟𝑖𝑝

𝐱𝑏
𝑗

Relative influential ratio of positive instances within neighborhood of 𝐱𝑏 based on distance

𝑟𝑖𝑛
𝐱𝑏
𝑗

Relative influential ratio of negative instances within neighborhood of 𝐱𝑏 based on distance

𝐫𝐢𝐩𝑗 Relative influential ratio of positive instances based on distance

𝐫𝐢𝐧𝑗 Relative influential ratio of negative instances based on distance

𝑊𝑆𝑃
𝐱𝑏
𝑗

Weighted score of positive tendency for instances in neighborhood of 𝐱𝑏 on label 𝑙𝑗
𝑊 𝑆𝑁

𝐱𝑏
𝑗

Weighted score of negative tendency for instances in neighborhood of 𝐱𝑏 on label 𝑙𝑗
𝐖𝐒𝐏𝑗 Weighted score vectors for positive tendency of instances on label 𝑙𝑗
𝐖𝐒𝐍𝑗 Weighted score vectors for negative tendency of instances on label 𝑙𝑗
𝐀𝐅𝑗 Augmented feature for label 𝑙𝑗
𝐗𝑎𝑢𝑔 Multigranularity features

𝐕 Embedding matrix for generation of multi-granularity features

𝐔 Weight matrix for multi-granularity features|| Instance count in benchmark

𝑑𝑖𝑚 () Feature dimensionality in benchmark

𝐿 () Label count in benchmark

𝐿𝐶𝑎𝑟𝑑 () Cardinality of average associated labels per instance

2.3. Granular computing

Granular computing provides an uncertainty-driven method for data processing by identifying and inferring the homogeneous/het-

erogeneous correlations among multifaceted granules. Relative values serve as prototypes of correlations and thus become an essential 
component in granulation. Zhao et al. [48] introduced a relation matrix to explore the relative information measure across granular-

ity. A unified framework describes the coarser-finer relation among granules, and the granularity itself is interpreted as the sum of 
the relative information measure of its atomic granules. Liang et al. [15] developed a group of relative-value-based loss functions for 
decision-theoretic rough sets. The ambiguous relative ratios between loss functions are determined via an analytic hierarchy process 
for pairwise misclassification cost. Li et al. [14] explored the acceleration of attribute reduction by defining the granularity space. 
With the unified representation of granularity space, a granularity search strategy is developed by focusing on relative significance 
variation instead of searching the core attributes. Huang et al. [10] developed a tournament selection operator-guided particle swarm 
optimization to address the linguistic information granulation for multi-attribute group decision-making. The relative importance of 
experts is obtained by balancing the pairwise similarity and group-based consensus on each attribute. Zhan et al. [37] investigated the 
triangular fuzzy number-based tripartition on an incomplete multiscale information system. With regret-rejoicing values measured 
by utility difference, the thresholds of three-way decision are relatively defined.

3. Proposed model

3.1. Notations

Given a multi-label dataset  = {
(
𝐱𝑖, 𝑌𝑖 |1 ⩽ 𝑖 ⩽ 𝑛

)
}, let 𝐗 =

[
𝐱1,𝐱2,… ,𝐱𝑛

]⊤ ∈ ℝ𝑛×𝑚 denote the 𝑛 instances with 𝑚-dimensional 
features and 𝐘 =

[
𝐲1,𝐲2,… ,𝐲𝑛

]⊤ ∈ {0, 1}𝑛×𝑞 denote the 𝑞-dimensional labels on 𝑛 instances, where 𝐲𝑖 =
[
𝑦𝑖1, 𝑦𝑖2,… , 𝑦𝑖𝑞

]⊤
. 𝑦𝑖𝑗 = 1 if 

𝑙𝑗 ∈ 𝑌𝑖 and 𝑦𝑖𝑗 = 0 otherwise. GOFA generates the label-specific features for each label from observable features. For readability, we 
enumerate major notations in Table 1.

3.2. Basic idea

We optimize the label-specific feature representations by learning discriminative but limited1 features. The granularity in our pro-

cedures refers to the hierarchy of feature structure. Given that the accurate classification on each label boosts the overall performance, 
we develop augmented features with 𝑞-dimensionality. As depicted in Fig. 1, the feature augmentation procedures are sequentially 
refined in a label-by-label manner. Without losing generality, we explain how to deduce the 𝑗th augmented feature 𝐀𝐅𝑗 ∈ℝ𝑛×1 for 
label 𝑙𝑗 . Concretely, starting with an appropriate instance similarity measure, the feature prototype of 𝑙𝑗 is automatically determined 
3

1 The phrase limited means the count of augmented features is much smaller than that of original feature dimensionality.
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Fig. 1. Framework of GOFA: The 𝑗-th augmented feature 𝐀𝐅𝑗 considers both the neighborhood and label association difference on 𝑙𝑗 , where 𝐱𝑎, 𝐱𝑏, 𝐱𝑐 are three 
arbitrary instances from Training/Testing set. The red and blue dots represent the positive and negative label association, while the dashed circles represent the 
k-nearest neighborhood.

via k-nearest neighborhood w.r.t. an arbitrary instance (see 𝐱𝑏 in Fig. 1). By combining the qualitative positive and negative instance 
distribution with the quantitative similar-aware weight of positive/negative instances, we refine the prototypes with the overall 
weighted scores for positive and negative, respectively (see 𝐖𝐒𝐏𝑗 and 𝐖𝐒𝐍𝑗 in Fig. 1). The two weighted scores are two prototypes 
for measuring relative class-dependent tendency, which is the implementation of granularity from different perspectives. Ultimately, 
the augmented features are a concatenation of fractions from all labels 𝑙𝑗 , 𝑗 = 1, 2, … , 𝑞, where each component is the fusion of positive 
and negative tendencies. Accordingly, we have a fine-grained representation of features by concatenating the augmented features.

3.3. Granular label-specific feature augmentation

3.3.1. k nearest neighborhood generation

The instance similarity measures how many degrees an instance contributes to the classifier. We introduce k-nearest neighborhood 
to characterize the local similarity between pairwise instances. For each instance 𝐱𝑏 , let 

(
𝐱𝑏
)
= {𝐱𝑟

|||𝐷𝑖𝑠(𝐱𝑏,𝐱𝑟) ∈𝐷𝑖𝑠𝑘
(
𝐱𝑏
)
} denote 

the set of indexes identified in k-nearest neighborhood of 𝐱𝑏 ∈𝐗, where 𝐷𝑖𝑠𝑘
(
𝐱𝑏
)

denotes the set of the 𝑘-smallest elements measured 
by the instance similarity operator 𝐷𝑖𝑠 (⋅, ⋅). 𝐷𝑖𝑠 (⋅, ⋅) is a mixture of Pearson correlation coefficient and cosine similarity.2

𝐷𝑖𝑠(𝐱𝑏,𝐱𝑟) = 𝜇

⎛⎜⎜⎜⎝
1 − 𝐶𝑜𝑣

(
𝐱𝑏,𝐱𝑟

)
𝜎𝐱𝑏 𝜎𝐱𝑟

2

⎞⎟⎟⎟⎠
+ (1 − 𝜇)

⎛⎜⎜⎝
1 − 𝐱𝑏𝐱𝑟‖‖𝐱𝑏‖‖‖‖𝐱𝑟‖‖

2

⎞⎟⎟⎠ (1)

Where 𝜇 ∈ [0,1], 𝐶𝑜𝑣
(
𝐱𝑏,𝐱𝑟

)
𝜎𝐱𝑏 𝜎𝐱𝑟

and 𝐱𝑏𝐱𝑟‖‖𝐱𝑏‖‖‖‖𝐱𝑟‖‖ represent Pearson correlation coefficient and cosine similarity, respectively, 𝜇 is a trade-

off factor that balances the contributions of the Pearson similarity coefficient and cosine similarity in the sense of distance. Since both 
𝐶𝑜𝑣

(
𝐱𝑏,𝐱𝑟

)
𝜎𝐱𝑏 𝜎𝐱𝑟

∈ [−1,1] and 𝐱𝑏𝐱𝑟‖‖𝐱𝑏‖‖‖‖𝐱𝑟‖‖ ∈ [−1,1] hold, it is straightforward to deduce that 𝐷𝑖𝑠 (⋅, ⋅) ∈ [0,1]. The smaller the value of 𝐷𝑖𝑠 (⋅, ⋅), 
the more similar the 𝐱𝑟 for the given 𝐱𝑏.

Example. Given a multi-label survey dataset on credit card issuance [1] in Table 2 with the instance count 𝑛 = 9 representing 
nine customers, feature dimensionality 𝑚 = 6 representing the relative values of spending power, risky preference, deposit, luxury 
consumption, card activity, and repayment cycle, and label count 𝑞 = 3 representing three financial products. The customer 𝐱𝑖 will 
purchase the 𝑗th product if 𝑦𝑖𝑗 = 1, otherwise 𝑦𝑖𝑗 = 0.

2 We consider the weighted form instead of applying a particular distance to accommodate data characteristics. Here, we focus on the relative contribution of linear 
4

correlation strength and direction consistency.
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Table 2

A multi-label user survey for product recommendation.

X 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑙1 𝑙2 𝑙3

𝑥1 0.8 0.1 0.1 0.5 0.2 0.3 1 0 1

𝑥2 0.3 0.5 0.2 0.8 0.1 0.1 1 0 0

𝑥3 0.2 0.2 0.6 0.7 0.3 0.2 0 0 1

𝑥4 0.6 0.3 0.1 0.2 0.5 0.3 1 0 1

𝑥5 0.3 0.4 0.3 0.3 0.6 0.1 0 1 0

𝑥6 0.2 0.3 0.5 0.3 0.5 0.2 1 0 0

𝑥7 0.3 0.3 0.4 0.2 0.6 0.2 0 1 1

𝑥8 0.3 0.4 0.3 0.1 0.4 0.5 0 1 0

𝑥9 0.3 0.2 0.5 0.4 0.4 0.2 1 0 0

Let 𝜇 = 0.5, 𝑘 = 5 then the distance operator 𝐷𝑖𝑠 (⋅, ⋅) is computed by Equ (1) as:

𝐷𝑖𝑠 (⋅, ⋅) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0000 0.2548 0.3499 0.1425 0.3963 0.5016 0.4294 0.4368 0.3399
0.2548 0.0000 0.1607 0.4175 0.3266 0.3882 0.4742 0.5502 0.3040
0.3499 0.1607 0.0000 0.5147 0.3064 0.1688 0.3217 0.5306 0.0672
0.1425 0.4175 0.5147 0.0000 0.1927 0.3749 0.2034 0.2155 0.3815
0.3963 0.3266 0.3064 0.1927 0.0000 0.0984 0.0462 0.3033 0.1883
0.5016 0.3882 0.1688 0.3749 0.0984 0.0000 0.0539 0.3008 0.0653
0.4294 0.4742 0.3217 0.2034 0.0462 0.0539 0.0000 0.2192 0.1475
0.4368 0.5502 0.5306 0.2155 0.3033 0.3008 0.2192 0.0000 0.4343
0.3399 0.3040 0.0672 0.3815 0.1883 0.0653 0.1475 0.4343 0.0000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

□

3.3.2. Label-specific tendency estimation

With well-defined k-nearest neighborhood structures, we can estimate the positive/negative tendency on an arbitrary label from 
both qualitative and quantitative perspectives. The positive/negative tendency estimation follows the following assumptions:

(a) (Qualitative assumption) The k-nearest neighborhood of 𝐱𝑏 exhibits stronger positive tendency on 𝑙𝑗 if there are more instances 
with label 𝑙𝑗 , and vice versa.

(b) (Quantitative assumption) The k-nearest neighborhood of 𝐱𝑏 exhibits stronger positive tendency on 𝑙𝑗 if the instances that are 
more similar to 𝐱𝑏 are with label 𝑙𝑗 , and vice versa.

We realize the qualitative assumption by calculating the instance count with positive/negative class on 𝑙𝑗 . Suppose the distance 
between 𝐱𝑏 and an arbitrary 𝐱𝑟 ranks in ascending order according to 𝐷𝑖𝑠 (⋅, ⋅), where 𝑟 = 1, 2, … , 𝑛. The indicators 𝐱𝑟

𝑗
and  𝐱𝑟

𝑗
are 

defined as:


𝐱𝑏
𝑗

=
(�

𝑦𝑟𝑗 = 1
�)

𝑘×1
(2)

where 𝐱𝑟 ∈ 
(
𝐱𝑏
)
, �𝜋� returns 1 if it holds and 0 otherwise. Similarly, we have:


𝐱𝑏
𝑗

=
(�

𝑦𝑟𝑗 = 0
�)

𝑘×1
(3)

where 𝐱𝑟 ∈ 
(
𝐱𝑏
)
, �𝜋� returns 1 if it holds and 0 otherwise.

For the quantitative assumption, we consider both instance similarity weight and relative influential ratio. The instance similarity 
weight measures how much percentage an instance 𝐱𝑏 will be represented by an arbitrary instance 𝐱𝑟. Formally, we devise a similar-

aware weight vector (i.e., 𝐖𝐱𝑏 ) in computing varying 
(
𝐱𝑏
)
.

𝐖𝐱𝑏 =
(√

1 −𝐷𝑖𝑠
(
𝐱𝑏,𝐱𝑟

))
𝑘×1

(4)

where 𝐱𝑟 ∈ 
(
𝐱𝑏
)
. It is straightforward to deduce the component 𝑤𝐱𝑏

𝑟 ∈ [0, 1], with the larger weight on 𝐱𝑟 than 𝐱𝑠 (𝑤
𝐱𝑏
𝑟 > 𝑤

𝐱𝑏
𝑠 ) if 

𝐱𝑟 is more similar to 𝐱𝑏 than 𝐱𝑠 and vice versa.3 In such settings, the instance weight is defined in a data-driven fashion for the 
neighborhood of 𝐱𝑏 (i.e., 

(
𝐱𝑏
)
) and 𝐱𝑐 (i.e., 

(
𝐱𝑐
)
). Typically, 𝑤𝐱𝑏

𝑟 reaches maximum value of 1 if the original features of 𝐱𝑏 and 
𝐱𝑟 are indistinguishable.

Example (Continued). For the survey dataset mentioned in Table 2, we obtain the similar-aware weight vector 𝐖 by firstly finding 
all weights as:
5

3 For generalization, the instance itself is excluded in the corresponding k nearest neighborhood.
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(√
1 −𝐷𝑖𝑠 (⋅, ⋅)

)
9×9

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 0.8632 0.8063 0.9260 0.7770 0.7060 0.7554 0.7505 0.8124
0.8632 1.0000 0.9161 0.7632 0.8206 0.7822 0.7251 0.6707 0.8342
0.8063 0.9161 1.0000 0.6966 0.8329 0.9117 0.8236 0.6851 0.9658
0.9260 0.7632 0.6966 1.0000 0.8985 0.7906 0.8925 0.8857 0.7864
0.7770 0.8206 0.8329 0.8985 1.0000 0.9495 0.9766 0.8347 0.9010
0.7060 0.7822 0.9117 0.7906 0.9495 1.0000 0.9727 0.8362 0.9668
0.7554 0.7251 0.8236 0.8925 0.9766 0.9727 1.0000 0.8836 0.9233
0.7505 0.6707 0.6851 0.8857 0.8347 0.8362 0.8836 1.0000 0.7521
0.8124 0.8342 0.9658 0.7864 0.9010 0.9668 0.9233 0.7521 1.0000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
By comparing the values of weights, we have the components of 𝐖 by following Equ (4) as:

𝐖9×5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.9260 0.8632 0.8124 0.8063 0.7770
0.9161 0.8632 0.8342 0.8206 0.7822
0.9658 0.9161 0.9117 0.8329 0.8236
0.9260 0.8985 0.8925 0.8857 0.7906
0.9766 0.9495 0.9010 0.8985 0.8347
0.9727 0.9668 0.9495 0.9117 0.8362
0.9766 0.9727 0.9233 0.8925 0.8836
0.8857 0.8836 0.8362 0.8347 0.7521
0.9668 0.9658 0.9233 0.9010 0.8342

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where the corresponding neighborhood  (𝐗) is:

 (𝐗)9×5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣


(
𝐱1

)

(
𝐱2

)

(
𝐱3

)

(
𝐱4

)

(
𝐱5

)

(
𝐱6

)

(
𝐱7

)

(
𝐱8

)

(
𝐱9

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐱4 𝐱2 𝐱9 𝐱3 𝐱5
𝐱3 𝐱1 𝐱9 𝐱5 𝐱6
𝐱9 𝐱2 𝐱6 𝐱5 𝐱7
𝐱1 𝐱5 𝐱7 𝐱8 𝐱6
𝐱7 𝐱6 𝐱9 𝐱4 𝐱8
𝐱7 𝐱9 𝐱5 𝐱3 𝐱8
𝐱5 𝐱6 𝐱9 𝐱4 𝐱8
𝐱4 𝐱7 𝐱6 𝐱5 𝐱9
𝐱6 𝐱3 𝐱7 𝐱5 𝐱2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Thus, the neighborhood-based label indicator  is computed by Equ (2) as:

9×3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣


𝐱1
1 

𝐱1
2 

𝐱1
3


𝐱2
1 

𝐱2
2 

𝐱2
3


𝐱3
1 

𝐱3
2 

𝐱3
3


𝐱4
1 

𝐱4
2 

𝐱4
3


𝐱5
1 

𝐱5
2 

𝐱5
3


𝐱6
1 

𝐱6
2 

𝐱6
3


𝐱7
1 

𝐱7
2 

𝐱7
3


𝐱8
1 

𝐱8
2 

𝐱8
3


𝐱9
1 

𝐱9
2 

𝐱9
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢


𝐱1
1


𝐱2
1


𝐱3
1


𝐱4
1


𝐱5
1


𝐱6
1


𝐱7
1


𝐱8
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

�𝑦41 = 1� �𝑦21 = 1� �𝑦91 = 1� �𝑦31 = 1� �𝑦51 = 1�
�𝑦31 = 1� �𝑦11 = 1� �𝑦91 = 1� �𝑦51 = 1� �𝑦61 = 1�
�𝑦91 = 1� �𝑦21 = 1� �𝑦61 = 1� �𝑦51 = 1� �𝑦71 = 1�
�𝑦11 = 1� �𝑦51 = 1� �𝑦71 = 1� �𝑦81 = 1� �𝑦61 = 1�
�𝑦71 = 1� �𝑦61 = 1� �𝑦91 = 1� �𝑦41 = 1� �𝑦81 = 1�
�𝑦71 = 1� �𝑦91 = 1� �𝑦51 = 1� �𝑦31 = 1� �𝑦81 = 1�
�𝑦51 = 1� �𝑦61 = 1� �𝑦91 = 1� �𝑦41 = 1� �𝑦81 = 1�
�𝑦41 = 1� �𝑦71 = 1� �𝑦61 = 1� �𝑦51 = 1� �𝑦91 = 1�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

1 1 1 0 0

0 1 1 0 1

1 1 1 0 0

1 0 0 0 1

0 1 1 1 0

0 1 0 0 0

0 1 1 1 0

1 0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

6

⎢⎣𝐱9
1

⎥⎦ ⎢⎣�𝑦61 = 1� �𝑦31 = 1� �𝑦71 = 1� �𝑦51 = 1� �𝑦21 = 1�⎥⎦ ⎢⎣1 0 0 0 1⎥⎦
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣


𝐱1
2


𝐱2
2


𝐱3
2


𝐱4
2


𝐱5
2


𝐱6
2


𝐱7
2


𝐱8
2


𝐱9
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�𝑦42 = 1� �𝑦22 = 1� �𝑦92 = 1� �𝑦32 = 1� �𝑦52 = 1�
�𝑦32 = 1� �𝑦12 = 1� �𝑦92 = 1� �𝑦52 = 1� �𝑦62 = 1�
�𝑦92 = 1� �𝑦22 = 1� �𝑦62 = 1� �𝑦52 = 1� �𝑦72 = 1�
�𝑦12 = 1� �𝑦52 = 1� �𝑦72 = 1� �𝑦82 = 1� �𝑦62 = 1�
�𝑦72 = 1� �𝑦62 = 1� �𝑦92 = 1� �𝑦42 = 1� �𝑦82 = 1�
�𝑦72 = 1� �𝑦92 = 1� �𝑦52 = 1� �𝑦32 = 1� �𝑦82 = 1�
�𝑦52 = 1� �𝑦62 = 1� �𝑦92 = 1� �𝑦42 = 1� �𝑦82 = 1�
�𝑦42 = 1� �𝑦72 = 1� �𝑦62 = 1� �𝑦52 = 1� �𝑦92 = 1�
�𝑦62 = 1� �𝑦32 = 1� �𝑦72 = 1� �𝑦52 = 1� �𝑦22 = 1�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 1 1 1 0
1 0 0 0 1
1 0 1 0 1
1 0 0 0 1
0 1 0 1 0
0 0 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣


𝐱1
3


𝐱2
3


𝐱3
3


𝐱4
3


𝐱5
3


𝐱6
3


𝐱7
3


𝐱8
3


𝐱9
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�𝑦43 = 1� �𝑦23 = 1� �𝑦93 = 1� �𝑦33 = 1� �𝑦53 = 1�
�𝑦33 = 1� �𝑦13 = 1� �𝑦93 = 1� �𝑦53 = 1� �𝑦63 = 1�
�𝑦93 = 1� �𝑦23 = 1� �𝑦63 = 1� �𝑦53 = 1� �𝑦73 = 1�
�𝑦13 = 1� �𝑦53 = 1� �𝑦73 = 1� �𝑦83 = 1� �𝑦63 = 1�
�𝑦73 = 1� �𝑦63 = 1� �𝑦93 = 1� �𝑦43 = 1� �𝑦83 = 1�
�𝑦73 = 1� �𝑦93 = 1� �𝑦53 = 1� �𝑦33 = 1� �𝑦83 = 1�
�𝑦53 = 1� �𝑦63 = 1� �𝑦93 = 1� �𝑦43 = 1� �𝑦83 = 1�
�𝑦43 = 1� �𝑦73 = 1� �𝑦63 = 1� �𝑦53 = 1� �𝑦93 = 1�
�𝑦63 = 1� �𝑦33 = 1� �𝑦73 = 1� �𝑦53 = 1� �𝑦23 = 1�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0
1 1 0 0 0
0 0 0 0 1
1 0 1 0 0
1 0 0 1 0
1 0 0 1 0
0 0 0 1 0
1 1 0 0 0
0 1 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Analogously, the neighborhood-based label indicator  is computed by Equ (3) as:

9×3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣


𝐱1
1 

𝐱1
2 

𝐱1
3


𝐱2
1 

𝐱2
2 

𝐱2
3


𝐱3
1 

𝐱3
2 

𝐱3
3


𝐱4
1 

𝐱4
2 

𝐱4
3


𝐱5
1 

𝐱5
2 

𝐱5
3


𝐱6
1 

𝐱6
2 

𝐱6
3


𝐱7
1 

𝐱7
2 

𝐱7
3


𝐱8
1 

𝐱8
2 

𝐱8
3


𝐱9
1 

𝐱9
2 

𝐱9
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣


𝐱1
1


𝐱2
1


𝐱3
1


𝐱4
1


𝐱5
1


𝐱6
1


𝐱7
1


𝐱8
1


𝐱9
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�𝑦41 = 0� �𝑦21 = 0� �𝑦91 = 0� �𝑦31 = 0� �𝑦51 = 0�
�𝑦31 = 0� �𝑦11 = 0� �𝑦91 = 0� �𝑦51 = 0� �𝑦61 = 0�
�𝑦91 = 0� �𝑦21 = 0� �𝑦61 = 0� �𝑦51 = 0� �𝑦71 = 0�
�𝑦11 = 0� �𝑦51 = 0� �𝑦71 = 0� �𝑦81 = 0� �𝑦61 = 0�
�𝑦71 = 0� �𝑦61 = 0� �𝑦91 = 0� �𝑦41 = 0� �𝑦81 = 0�
�𝑦71 = 0� �𝑦91 = 0� �𝑦51 = 0� �𝑦31 = 0� �𝑦81 = 0�
�𝑦51 = 0� �𝑦61 = 0� �𝑦91 = 0� �𝑦41 = 0� �𝑦81 = 0�
�𝑦41 = 0� �𝑦71 = 0� �𝑦61 = 0� �𝑦51 = 0� �𝑦91 = 0�
�𝑦61 = 0� �𝑦31 = 0� �𝑦71 = 0� �𝑦51 = 0� �𝑦21 = 0�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1
1 0 0 1 0
0 0 0 1 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 1
1 0 0 0 1
0 1 0 1 0
0 1 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢


𝐱1
2


𝐱2
2


𝐱3
2


𝐱4
2


𝐱5
2


𝐱6
2


𝐱7
2


𝐱8
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

�𝑦42 = 0� �𝑦22 = 0� �𝑦92 = 0� �𝑦32 = 0� �𝑦52 = 0�
�𝑦32 = 0� �𝑦12 = 0� �𝑦92 = 0� �𝑦52 = 0� �𝑦62 = 0�
�𝑦92 = 0� �𝑦22 = 0� �𝑦62 = 0� �𝑦52 = 0� �𝑦72 = 0�
�𝑦12 = 0� �𝑦52 = 0� �𝑦72 = 0� �𝑦82 = 0� �𝑦62 = 0�
�𝑦72 = 0� �𝑦62 = 0� �𝑦92 = 0� �𝑦42 = 0� �𝑦82 = 0�
�𝑦72 = 0� �𝑦92 = 0� �𝑦52 = 0� �𝑦32 = 0� �𝑦82 = 0�
�𝑦52 = 0� �𝑦62 = 0� �𝑦92 = 0� �𝑦42 = 0� �𝑦82 = 0�
�𝑦42 = 0� �𝑦72 = 0� �𝑦62 = 0� �𝑦52 = 0� �𝑦92 = 0�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

1 1 1 1 0
1 1 1 0 1
1 1 1 0 0
1 0 0 0 1
0 1 1 1 0
0 1 0 1 0
0 1 1 1 0
1 0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

7

⎢⎣ 𝐱9
2

⎥⎦ ⎢⎣�𝑦62 = 0� �𝑦32 = 0� �𝑦72 = 0� �𝑦52 = 0� �𝑦22 = 0�⎥⎦ ⎢⎣1 1 0 0 1⎥⎦
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣


𝐱1
3


𝐱2
3


𝐱3
3


𝐱4
3


𝐱5
3


𝐱6
3


𝐱7
3


𝐱8
3


𝐱9
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�𝑦43 = 0� �𝑦23 = 0� �𝑦93 = 0� �𝑦33 = 0� �𝑦53 = 0�
�𝑦33 = 0� �𝑦13 = 0� �𝑦93 = 0� �𝑦53 = 0� �𝑦63 = 0�
�𝑦93 = 0� �𝑦23 = 0� �𝑦63 = 0� �𝑦53 = 0� �𝑦73 = 0�
�𝑦13 = 0� �𝑦53 = 0� �𝑦73 = 0� �𝑦83 = 0� �𝑦63 = 0�
�𝑦73 = 0� �𝑦63 = 0� �𝑦93 = 0� �𝑦43 = 0� �𝑦83 = 0�
�𝑦73 = 0� �𝑦93 = 0� �𝑦53 = 0� �𝑦33 = 0� �𝑦81 = 0�
�𝑦53 = 0� �𝑦61 = 0� �𝑦93 = 0� �𝑦43 = 0� �𝑦83 = 0�
�𝑦43 = 0� �𝑦73 = 0� �𝑦63 = 0� �𝑦53 = 0� �𝑦93 = 0�
�𝑦63 = 0� �𝑦33 = 0� �𝑦73 = 0� �𝑦53 = 0� �𝑦23 = 0�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 1

0 0 1 1 1

1 1 1 1 0

0 1 0 1 1

0 1 1 0 1

0 1 1 0 1

1 1 1 0 1

0 0 1 1 1

1 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

□

In contrast, the relative influential ratio measures the degree of proximity of the sets composed of positive and negative class 
instances within the neighborhood to their respective optimal distributions. By referring to optimal class distribution, we mean the 
positive and negative classes distributed in the nearest neighbors have the same instance count. Formally, we define the relative 
influential ratio for a positive class within 𝐱𝑏 (i.e., 𝑟𝑖𝑝𝐱𝑏

𝑗
) as:

𝑟𝑖𝑝
𝐱𝑏
𝑗
=
⎧⎪⎨⎪⎩

𝐖𝐱𝑏 ⊤
𝐱𝑏
𝑗∑𝑃

𝑟=1𝑤
𝐱𝑏
𝑟

∃𝑦𝑟𝑗 = 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(5)

where 𝑃 =
∑
𝑠𝑔𝑛(𝐱𝑏

𝑗
), denotes the count of instances with label 𝑙𝑗 in the neighborhood of 𝐱𝑏. The semantics of relativeness in Equ 

(5) refers to the proportion of instances with positive class of 𝑙𝑗 in terms first 𝑃 weights if there are 𝑃 (𝑃 > 0) instances with positive 
class of 𝑙𝑗 in the neighborhood of 𝐱𝑏, and 0 if 𝑃 = 0. Consequently, the relative influential ratio for the positive class is defined as:

𝐫𝐢𝐩𝑗 =
(
𝑟𝑖𝑝

𝐱𝑏
𝑗

)
𝑛×1

(6)

Analogously, we define the relative influential ratio for the negative class within 𝐱𝑏 (i.e., 𝑟𝑖𝑛𝐱𝑏
𝑗

) as:

𝑟𝑖𝑛
𝐱𝑏
𝑗
=
⎧⎪⎨⎪⎩

𝐖𝐱𝑏 ⊤
𝐱𝑏
𝑗∑𝑁

𝑟=1𝑤
𝐱𝑏
𝑟

∃𝑦𝑟𝑗 = 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(7)

where 𝑁 =
∑
𝑠𝑔𝑛( 𝐱𝑏

𝑗
), denotes the count of instances without label 𝑙𝑗 in the neighborhood of 𝐱𝑏. The semantics of relativeness in 

Equ (7) refers to the proportion of instances with positive class of 𝑙𝑗 in terms first 𝑁 weights if there are 𝑁 (𝑁 > 0) instances with 
positive class of 𝑙𝑗 in the neighborhood of 𝐱𝑏, and 0 if 𝑁 = 0. Consequently, the relative influential ratio for the negative class is 
defined as:

𝐫𝐢𝐧𝑗 =
(
𝑟𝑖𝑛

𝐱𝑏
𝑗

)
𝑛×1

(8)

It is straightforward to deduce that both 𝑟𝑖𝑝𝐱𝑏
𝑗

∈ [0, 1] and 𝑟𝑖𝑛𝐱𝑏
𝑗

∈ [0, 1] hold. 𝑟𝑖𝑝𝐱𝑏
𝑗

∈ [0, 1] reaches the maximal value of 1 if the 
instance with label 𝑙𝑗 are the nearest neighbors of 𝐱𝑏, and reaches the minimum value of 0 if no positive association on 𝑙𝑗 occurs. 
Similar value variations also apply to the 𝑟𝑖𝑛𝐱𝑏

𝑗
∈ [0, 1].

Example (Continued). For the survey dataset mentioned in Table 2, we have the relative influential ratio for the positive class by Equ 
(5) as:

𝐫𝐢𝐩 =
[
𝐫𝐢𝐩1 𝐫𝐢𝐩2 𝐫𝐢𝐩3

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

𝑟𝑖𝑝
𝐱1
1 𝑟𝑖𝑝

𝐱1
2 𝑟𝑖𝑝

𝐱1
3

𝑟𝑖𝑝
𝐱2
1 𝑟𝑖𝑝

𝐱2
2 𝑟𝑖𝑝

𝐱2
3

𝑟𝑖𝑝
𝐱3
1 𝑟𝑖𝑝

𝐱3
2 𝑟𝑖𝑝

𝐱3
3

𝑟𝑖𝑝
𝐱4
1 𝑟𝑖𝑝

𝐱4
2 𝑟𝑖𝑝

𝐱4
3

𝑟𝑖𝑝
𝐱5
1 𝑟𝑖𝑝

𝐱5
2 𝑟𝑖𝑝

𝐱5
3

𝑟𝑖𝑝
𝐱6
1 𝑟𝑖𝑝

𝐱6
2 𝑟𝑖𝑝

𝐱6
3

𝑟𝑖𝑝
𝐱7
1 𝑟𝑖𝑝

𝐱7
2 𝑟𝑖𝑝

𝐱7
3

𝑟𝑖𝑝
𝐱8
1 𝑟𝑖𝑝

𝐱8
2 𝑟𝑖𝑝

𝐱8
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

8

⎢⎣𝑟𝑖𝑝𝐱91 𝑟𝑖𝑝
𝐱9
2 𝑟𝑖𝑝

𝐱9
3

⎥⎦
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=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.9260+0.8632+0.8124
0.9260+0.8632+0.8124

0.7770
0.9260

0.9260+0.8063
0.9260+0.8632

0.8632+0.8342+0.7822
0.9161+0.8632+0.8342

0.8206
0.9161

0.9161+0.8632
0.9161+0.8632

0.9658+0.9161+0.9117
0.9658+0.9161+0.9117

0.8329+0.8236
0.9658+0.9161

0.8236
0.9658

0.9260+0.7906
0.9260+0.8985

0.8985+0.8925+0.8857
0.9260+0.8985+0.8925

0.9260+0.8925
0.9260+0.8985

0.9495+0.9010+0.8985
0.9766+0.9495+0.9010

0.9766+0.8347
0.9766+0.9495

0.9766+0.8985
0.9766+0.9495

0.9668
0.9727

0.9727+0.9495+0.8362
0.9727+0.9668+0.9495

0.9727+0.9117
0.9727+0.9668

0.9727+0.9233+0.8925
0.9766+0.9727+0.9233

0.9766+0.8836
0.9766+0.9727

0.8925
0.9766

0.8857+0.8362+0.7521
0.8857+0.8836+0.8362

0.8836+0.8347
0.8857+0.8836

0.8857+0.8836
0.8857+0.8836

0.9668+0.8342
0.9668+0.9658

0.9233+0.9010
0.9668+0.9658

0.9658+0.9233
0.9668+0.9658

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 0.8391 0.9682

0.9488 0.8958 1.0000

1.0000 0.8802 0.8528

0.9409 0.9852 0.9967

0.9724 0.9404 0.9735

0.9939 0.9548 0.9716

0.9707 0.9543 0.9139

0.9495 0.9712 1.0000

0.9319 0.9440 0.9775

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Analogously, the relative influential ratio for the negative class by Equ (7) as:

𝐫𝐢𝐧 =
[
𝐫𝐢𝐧1 𝐫𝐢𝐧2 𝐫𝐢𝐧3

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑟𝑖𝑛
𝐱1
1 𝑟𝑖𝑛

𝐱1
2 𝑟𝑖𝑛

𝐱1
3

𝑟𝑖𝑛
𝐱2
1 𝑟𝑖𝑛

𝐱2
2 𝑟𝑖𝑛

𝐱2
3

𝑟𝑖𝑛
𝐱3
1 𝑟𝑖𝑛

𝐱3
2 𝑟𝑖𝑛

𝐱3
3

𝑟𝑖𝑛
𝐱4
1 𝑟𝑖𝑛

𝐱4
2 𝑟𝑖𝑛

𝐱4
3

𝑟𝑖𝑛
𝐱5
1 𝑟𝑖𝑛

𝐱5
2 𝑟𝑖𝑛

𝐱5
3

𝑟𝑖𝑛
𝐱6
1 𝑟𝑖𝑛

𝐱6
2 𝑟𝑖𝑛

𝐱6
3

𝑟𝑖𝑛
𝐱7
1 𝑟𝑖𝑛

𝐱7
2 𝑟𝑖𝑛

𝐱7
3

𝑟𝑖𝑛
𝐱8
1 𝑟𝑖𝑛

𝐱8
2 𝑟𝑖𝑛

𝐱8
3

𝑟𝑖𝑛
𝐱9
1 𝑟𝑖𝑛

𝐱9
2 𝑟𝑖𝑛

𝐱9
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.8063+0.7770
0.9260+0.8632

0.9260+0.8632+0.8124+0.8063
0.9260+0.8632+0.8124+0.8063

0.8632+0.8124+0.7770
0.9260+0.8632+0.8124

0.9161+0.8206
0.9161+0.8632

0.9161+0.8632+0.8342+0.7822
0.9161+0.8632+0.8342+0.8206

0.8342+0.8206+0.7822
0.9161+0.8632+0.8342

0.8329+0.8236
0.9658+0.9161

0.9658+0.9161+0.9117
0.9658+0.9161+0.9117

0.9658+0.9161+0.9117+0.8329
0.9658+0.9161+0.9117+0.8329

0.8985+0.8925+0.8857
0.9260+0.8985+0.8925

0.9260+0.7906
0.9260+0.8985

0.8985+0.8857+0.7906
0.9260+0.8985+0.8925

0.9766+0.8347
0.9766+0.9495

0.9495+0.9010+0.8985
0.9766+0.9495+0.9010

0.9495+0.9010+0.8347
0.9766+0.9495+0.9010

0.9727+0.9495+0.9117+0.8362
0.9727+0.9668+0.9495+0.9117

0.9668+0.9117
0.9727+0.9668

0.9668+0.9495+0.8362
0.9727+0.9668+0.9495

0.9766+0.8836
0.9766+0.9727

0.9727+0.9233+0.8925
0.9766+0.9727+0.9233

0.9766+0.9727+0.9233+0.8836
0.9766+0.9727+0.9233+0.8925

0.8836+0.8347
0.8857+0.8836

0.8857+0.8362+0.7521
0.8857+0.8836+0.8362

0.8836+0.8347+0.7521
0.8857+0.8836+0.8362

0.9658+0.9233+0.9010
0.9668+0.9658+0.9233

0.9668+0.9658+0.8342
0.9668+0.9658+0.9233

0.9668+0.9010+0.8342
0.9668+0.9658+0.9233

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.8849 1.0000 0.9427

0.9761 0.9888 0.9325

0.8802 1.0000 1.0000

0.9852 0.9409 0.9477

0.9404 0.9724 0.9498

0.9656 0.9685 0.9528

0.9543 0.9707 0.9976

0.9712 0.9495 0.9481

0.9770 0.9688 0.9461

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

□

The overall positive tendency and negative tendency can be estimated from the triple tuple (𝐱𝑏
𝑗
, 𝐖𝐱𝑏 , 𝑟𝑖𝑝𝐱𝑏

𝑗
) and ( 𝐱𝑏

𝑗
, 𝐖𝐱𝑏 , 𝑟𝑖𝑛𝐱𝑏

𝑗
), 

respectively. For 𝐱𝑏 on 𝑙𝑗 , the weighted score of positive class is:

𝑊𝑆𝑃
𝐱𝑏
𝑗
= 𝑟𝑖𝑝

𝐱𝑏
𝑗

⊤


𝐱𝑏
𝑗

(9)

Consequently, the collection of the weighted score of positive class on 𝑙𝑗 is defined as:

𝐖𝐒𝐏𝑗 =
(
𝑊𝑆𝑃

𝐱𝑏
𝑗

)
𝑛×1

(10)

Analogously, the weighted score of negative class for 𝐱𝑏 on 𝑙𝑗 is:

𝑊𝑆𝑁
𝐱𝑏
𝑗
= 𝑟𝑖𝑛

𝐱𝑏
𝑗

⊤


𝐱𝑏
𝑗

(11)

Consequently, the collection of negative score of positive class on 𝑙𝑗 is defined as:

𝐖𝐒𝐍𝑗 =
(
𝑊𝑆𝑁

𝐱𝑏
𝑗

)
𝑛×1

(12)

Example (Continued). For the survey dataset mentioned in Table 2, we have the weighted score of positive class by Equ (10) as:[ ]

9

𝐖𝐒𝐏 = 𝐖𝐒𝐏1 𝐖𝐒𝐏2 𝐖𝐒𝐏3
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=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 × 3 0.8391 × 1 0.9682 × 2
0.9488 × 3 0.8958 × 1 1.0000 × 2
1.0000 × 3 0.8802 × 2 0.8528 × 1
0.9409 × 2 0.9852 × 3 0.9967 × 2
0.9724 × 3 0.9404 × 2 0.9735 × 2
0.9939 × 1 0.9548 × 3 0.9716 × 2
0.9707 × 3 0.9543 × 2 0.9139 × 1
0.9495 × 3 0.9712 × 2 1.0000 × 2
0.9319 × 2 0.9440 × 2 0.9775 × 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.0000 0.8391 1.9364
2.8464 0.8958 2.0000
3.0000 1.7604 0.8528
1.8818 2.9556 1.9934
2.9172 1.9086 0.9139
0.9939 2.8644 1.9432
2.9121 1.9086 0.9139
2.8485 1.9424 2.0000
1.8638 1.8880 1.9550

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Analogously, we have the weighted score of negative class by Equ (12) as:

𝐖𝐒𝐍 =
[
𝐖𝐒𝐍1 𝐖𝐒𝐍2 𝐖𝐒𝐍3

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.8849 × 2 1.0000 × 4 0.9427 × 3
0.9761 × 2 0.9888 × 4 0.9325 × 3
0.8802 × 2 1.0000 × 3 1.0000 × 4
0.9852 × 3 0.9409 × 2 0.9477 × 3
0.9404 × 2 0.9724 × 3 0.9498 × 3
0.9656 × 4 0.9685 × 2 0.9528 × 3
0.9543 × 2 0.9707 × 3 0.9976 × 4
0.9712 × 2 0.9495 × 3 0.9481 × 3
0.9770 × 3 0.9688 × 3 0.9461 × 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.7698 4.0000 2.8281
1.9522 3.9552 2.7975
1.7604 3.0000 4.0000
2.9556 1.8818 2.8431
1.8808 2.9172 2.8494
3.8624 1.9370 2.8584
1.9086 2.9121 3.9904
1.9424 2.8485 2.8443
2.9310 2.9064 2.8383

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

□

3.3.3. Label-specific augmented features

Having completed the positive/negative tendency measure (i.e., 𝐖𝐒𝐏𝑗 and 𝐖𝐒𝐍𝑗 ), we can estimate the local relative discrim-

ination with available features. As evaluation metrics highlight the accuracy of positive classes, we devise a measure to encourage 
a larger value for the instances with salient positive tendency and compactness of the neighborhood and constrain a smaller value 
otherwise. For this sake, we define the following augmented feature for 𝑙𝑗 :

𝐀𝐅𝑗 =
𝐖𝐒𝐏𝑗 −𝐖𝐒𝐍𝑗

𝑀𝑒 (𝐖𝐱𝑏 )
(13)

where 𝑀𝑒 (⋅) denotes the median distance of the instances within the neighborhood. The term 𝐖𝐒𝐏𝑗 −𝐖𝐒𝐍𝑗 describes the saliency 
of the positive tendency to the negative tendency on label 𝑙𝑗 . The larger the difference is, the stronger the positive tendency becomes. 
In contrast, the term 𝑀𝑒 (𝐖𝐱𝑏 )4describes the compactness of k nearest neighborhood. The smaller the median value is, the more 
compact a k nearest neighborhood becomes. In this way, the larger the component in 𝐀𝐅𝑗 is, the more reliable positive tendency of 
a k nearest neighborhood becomes, and vice versa.

Example (Continued). For the survey dataset mentioned in Table 2, we have the augmented features by following Equ (13) as:

𝐀𝐅 =
[
𝐀𝐅1 𝐀𝐅2 𝐀𝐅3

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.0000−1.7698
0.8124

0.8391−4.0000
0.8124

1.9364−2.8281
0.8124

2.8464−1.9522
0.8342

0.8958−3.9552
0.8342

2.0000−2.7975
0.8342

3.0000−1.7604
0.9117

1.7604−3.0000
0.9117

0.8528−4.0000
0.9117

1.8818−2.9556
0.8925

2.9556−1.8818
0.8925

1.9934−2.8431
0.8925

2.9172−1.8808
0.9010

1.9086−2.9172
0.9010

0.9139−2.8494
0.9010

0.9939−3.8694
0.9495

2.8644−1.9370
0.9495

1.9432−2.8584
0.9495

2.9121−1.9086
0.9233

1.9086−2.9121
0.9233

0.9139−3.9904
0.9233

2.8485−1.9424
0.8362

1.9424−2.8485
0.8362

2.0000−2.8443
0.8362

1.8638−2.9310
0.9233

1.8880−2.9064
0.9233

1.9550−2.8383
0.9233

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.5143 −3.8908 −1.0976

1.0719 −3.6675 −0.9560

1.3597 −1.3597 −3.4520

−1.2031 1.2031 −0.9520

1.1503 −1.1194 −2.1482

−3.0284 0.9767 −0.9639

1.0869 −1.0869 −3.3321

1.0836 −1.0836 −1.0097

−1.1559 −1.1030 −0.9567

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

□

After generating augmented features for all labels, we deduce the multi-granularity feature 𝐗𝑎𝑢𝑔 as:

𝐗𝑎𝑢𝑔 =𝐗 ∪
(
𝑧
(
𝐀𝐅𝑗

))
𝑛×𝑞 (14)
10

4 We use the median instead of mean value of k nearest neighborhood to guarantee the stable estimation when the outlier is available.
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where 𝑗 = 1, 2, … , 𝑞 and 𝑧 (⋅) represents the z-score function. By z-score scaling, the bias incurred by absolute values of augmented 
features are reduced.

Example (Continued). For the user survey mentioned in Table 2, the representations after performing feature augmentation are shown 
in Table 3.

Table 3

A multi-label user survey for product recommendation.

X 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑧
(
𝐀𝐅1

)
𝑧
(
𝐀𝐅2

)
𝑧
(
𝐀𝐅3

)
𝑙1 𝑙2 𝑙3

𝑥1 0.8 0.1 0.1 0.5 0.2 0.3 0.8149 -1.5356 0.5239 1 0 1

𝑥2 0.3 0.5 0.2 0.8 0.1 0.1 0.5387 -1.4064 0.6577 1 0 0

𝑥3 0.2 0.2 0.6 0.7 0.3 0.2 0.7184 -0.0711 -1.7008 0 0 1

𝑥4 0.6 0.3 0.1 0.2 0.5 0.3 -0.8813 1.4117 0.6615 1 0 1

𝑥5 0.3 0.4 0.3 0.3 0.6 0.1 0.5877 0.0679 -0.4688 0 1 0

𝑥6 0.2 0.3 0.5 0.3 0.5 0.2 -2.0207 1.2807 0.6502 1 0 0

𝑥7 0.3 0.3 0.4 0.2 0.6 0.2 0.5481 0.0867 -1.5875 0 1 1

𝑥8 0.3 0.4 0.3 0.1 0.4 0.5 0.5461 0.0886 0.6069 0 1 0

𝑥9 0.3 0.2 0.5 0.4 0.4 0.2 -0.8519 0.0774 0.6570 1 0 0

□

3.4. Corresponding algorithm

Algorithm 1 summarizes the main procedures of the proposed GOFA model. Step 2 corresponds to instance-based neighborhood 
construction, which takes the complexity of 𝑂

(
𝑛2𝑚

)
. Step 4–Step 9 corresponds to the neighborhood-aware label-dependent feature 

augmentation procedure, which takes the complexity of 𝑂 (𝑛𝑘𝑞). Step 11 is the concatenation of augmented features, which takes the 
complexity of 𝑂 (𝑞). Since 𝑚 ≫ 𝑞 and 𝑚 > 𝑛 hold in most cases, the overall complexity of GOFA is 𝑂

(
𝑛2𝑚

)
.

Algorithm 1: Granule cOrrelation-based Feature Augmentation (GOFA).

Input: Training set 𝐗1 , ground-truth labels 𝐘1 , Testing set 𝐗2 Nearest neighborhood count 𝑘, balance factor 𝜇
Output: Augmented features 𝐗𝑎𝑢𝑔

1 for 𝑏 = 1 to 𝑛 do

2 Find the k nearest neighborhood w.r.t. 𝐱𝑏 from 𝐗1 based on Equ (1).

3 Compute the instance weight 𝐖𝐱𝑏 w.r.t. 𝐱𝑏 based on Equ (4).

4 for 𝑗 = 1 to 𝑞 do

5 Find the positive and negative class (i.e., 𝐱𝑏
𝑗

,  𝐱𝑏
𝑗

) based on Equ (2) and Equ (3).

6 Compute the relative influential ratio of positive and negative class (i.e., 𝐫𝐢𝐩𝑗 and 𝐫𝐢𝐧𝑗 ) based on Equ (6) and Equ (8).

7 Compute weighted score of positive and negative class (i.e., 𝐖𝐒𝐏𝑗 and 𝐖𝐒𝐍𝑗 ) based on Equ (10) and Equ (12).

8 Generate augmented feature 𝐀𝐅𝑗 based on Equ (13).

9 end

10 end

11 Output augmented features 𝐗𝑎𝑢𝑔 based on Equ (14).

4. Experiments

4.1. Datasets

Table 4 enumerates characteristics of thirteen datasets, including the instance count (|𝑆|), feature dimensionality (𝑑𝑖𝑚 (𝑆)), label 
count (𝐿 (𝑆)), the cardinality of average associated labels per instance (𝐿𝐶𝑎𝑟𝑑 (𝑆)), and domain (Domain). Among them, datasets 
birds, cal500, emotions, and scene come from Mulan,5 datasets art, business, computers, education, entertainment, health, recreation, 
science, and social come from Lamda.6

4.2. Experimental settings

To evaluate the effectiveness of GOFA, we adopt five widely used metrics [25], including Hamming Loss, One Error, Ranking Loss, 
Average Precision and Macro-averaging AUC. Except for the last two metrics that achieve better performance if the values are larger, 
the first three metrics achieve better performance if the values are smaller.

5 http://mulan .sourceforge .net /datasets -mlc .html.
11

6 https://www .lamda .nju .edu .cn /code _MDDM .ashx.

http://mulan.sourceforge.net/datasets-mlc.html
https://www.lamda.nju.edu.cn/code_MDDM.ashx
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Table 4

Dataset characteristics.

Data set || 𝑑𝑖𝑚 () 𝐿 () 𝐿𝐶𝑎𝑟𝑑 () Domain

art 5000 462 26 1.64 text

birds 645 260 19 1.014 audio

business 5000 438 30 1.59 text

cal500 502 68 174 26.044 music

computers 5000 681 33 1.51 text

education 5000 550 33 1.46 text

emotions 593 72 6 1.869 music

entertainment 5000 640 21 1.42 text

health 5000 612 32 1.66 text

recreation 5000 606 22 1.42 text

scene 2407 294 6 1.074 images

science 5000 743 40 1.45 text

social 5000 1047 39 1.28 text

We compare GOFA against eight state-of-the-art multi-label algorithms for performance evaluations. The configurations for these 
algorithms take the recommended values via five-fold cross-validation.

• WRAP [36]7: A label-specific multi-label classification which takes a wrapped approach w.r.t. each label8 [parameter configu-

rations: grid search for 𝜆1, 𝜆2 ∈ {0, 1, … , 10}. 𝜆3 ∈ {0.1, 1} and 𝛼 = 0.9].

• HOMI [27]9: A high-order label correlation learning with self-representation and local geometric structure [parameter configu-

rations: grid search for 𝛽, 𝜆, 𝛾 ∈ {10−5, 10−4, … , 1} and 𝑠 ∈ {5, 10}].

• SLOFS [26]10: A shared latent sublabel structure for adaptive feature selection [parameter configurations: grid search for 
𝛼, 𝜆1, 𝜆2, 𝛽, 𝛿 ∈ {0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 1}] The selected features are examined by the WRAP classifier.

• MDFS [40]11: An embedded feature selection with manifold regularization [parameter configurations: 𝛼 = 1, grid search for 
𝛽, 𝛾 ∈ {10−3, 10−2, … , 103}]. The selected features are examined by the WRAP classifier.

• TIFS [20]12: A latent topic-based instance and feature selection with global and local label correlation [parameter configurations: 
𝜆 = 0.5, 𝑘 = 10, 𝑠 = 50, grid search for 𝜏, 𝛿 ∈ {10−4, 10−3, … , 10−1}].

• RLFSCL [18]13: A low-rank feature and label representation learning [parameter configurations: 𝜌 = 1.1, grid search for 𝜆1, 𝜆2 ∈
{10−3, 10−2, … , 103}, 𝜇 ∈ {1, 101, … , 106}].

• GLFS [41]14: A group-preserving label-specific feature selection learning [parameter configurations: grid search for 𝛼, 𝜆 ∈
{0, 0.2, … , 1}, 𝛽, 𝛾 ∈ {10−3, 10−2, … , 103}, 𝐾 = 5, 𝑀 = 16]. The selected features are examined by the WRAP classifier.

• MC-GM [19]15: A group-specific feature selection with label-specific group selection [parameter configurations: grid search for 
𝜆, 𝛽 ∈ {10−4, 10−2, … , 1}, 𝛿, 𝛼 ∈ {10−2, 10−1, … , 102}, 𝑠 = 50].

The configurations of GOFA are as follows: The balance factor 𝜇 is searched in [0,1] at a step of 0.1. We stipulate 𝑘 = 10 for 
neighborhood construction if the instance count reaches 5000 and define 𝑘 = 5 otherwise. We assess the functionality of augmented 
features by employing the concatenation with reduced features on the WRAP classifier. In this way, we simulate the cognitive process-

ing of “data + relation” for multi-label classification. To be compatible with the feature dimensionality from WRAP, the embedding 
dimensionality 𝑑 follows the setting of WRAP and is determined as 𝑑 = ⌈𝛼min (𝑚,𝑞)⌉, where 𝛼 = 0.9. We take a grid search manner 
for trade-off 𝜆1, 𝜆2 ∈ {1, 2, … , 10}. The trade-off 𝜆3 is fixed as 𝜆3 = 1.

For fair comparisons, all experiments are executed via five-fold cross-validation and are implemented on a desktop with Matlab 
R2017b.

4.3. Results

Tables 5–9 show the detailed classification performance ranking information over thirteen benchmarks and eight comparing 
methods. From the metric view, GOFA ranks first at 100% cases. From the dataset view, GOFA ranks first at 70.8% 

(
46
65

)
, ranks 

second at 26.2% 
(
17
65

)
.

7 Code available at: https://palm .seu .edu .cn /zhangml /files /WRAP .rar.
8 For fair comparisons, we use the linear version instead of kernel version.
9 Code available at: https://github .com /Chongjie -Si /HOMI.

10 Code available at: https://github .com /zhongjingyu1 /SLOFS.
11 Code available at: https://github .com /jiazhang -ml /MDFS.
12 Code available at: https://github .com /JianghongMA /TIFS.
13 Code available at: https://github .com /JingChuanTang /RLFSCL.
14 Code available at: https://github .com /jiazhang -ml /GLFS.
12

15 Code available at: https://github .com /JianghongMA /MC -GM.

https://palm.seu.edu.cn/zhangml/files/WRAP.rar
https://github.com/Chongjie-Si/HOMI
https://github.com/zhongjingyu1/SLOFS
https://github.com/jiazhang-ml/MDFS
https://github.com/JianghongMA/TIFS
https://github.com/JingChuanTang/RLFSCL
https://github.com/jiazhang-ml/GLFS
https://github.com/JianghongMA/MC-GM
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Table 5

Comparisons (mean±std) on metric Hamming Loss ↓: The smaller the better.

Dataset
Hamming Loss ↓

GOFA WRAP HOMI SLOFS MDFS TIFS RLFSCL GLFS MC-GM

art 0.053±0.002 0.054±0.001 0.060±0.001 0.063±0.001 0.063±0.001 0.124±0.020 0.057±0.001 0.063±0.001 0.086±0.002

birds 0.049±0.008 0.050±0.005 0.056±0.008 0.053±0.004 0.054±0.004 0.057±0.004 0.046±0.004 0.053±0.006 0.075±0.004

business 0.025±0.002 0.025±0.001 0.026±0.001 0.029±0.001 0.028±0.001 0.044±0.006 0.026±0.000 0.028±0.002 0.032±0.002

cal500 0.136±0.001 0.137±0.003 0.137±0.002 0.137±0.003 0.137±0.001 0.211±0.003 0.137±0.003 0.137±0.005 0.138±0.001

computers 0.033±0.001 0.034±0.001 0.035±0.001 0.040±0.001 0.038±0.001 0.074±0.008 0.035±0.001 0.039±0.001 0.063±0.005

education 0.037±0.001 0.038±0.001 0.043±0.000 0.044±0.001 0.044±0.001 0.072±0.007 0.039±0.001 0.044±0.000 0.060±0.001

emotions 0.206±0.023 0.208±0.012 0.208±0.011 0.238±0.018 0.224±0.009 0.269±0.021 0.223±0.009 0.272±0.014 0.228±0.012

entertainment 0.051±0.001 0.052±0.001 0.063±0.002 0.068±0.001 0.067±0.001 0.112±0.008 0.055±0.001 0.067±0.001 0.087±0.004

health 0.035±0.001 0.035±0.001 0.036±0.001 0.050±0.001 0.036±0.001 0.044±0.001 0.032±0.001 0.047±0.001 0.048±0.002

recreation 0.054±0.001 0.054±0.001 0.062±0.001 0.065±0.001 0.065±0.001 0.124±0.014 0.056±0.001 0.065±0.001 0.098±0.007

scene 0.111±0.002 0.117±0.005 0.115±0.007 0.167±0.006 0.128±0.011 0.133±0.007 0.091±0.002 0.139±0.004 0.166±0.008

science 0.031±0.006 0.032±0.001 0.035±0.000 0.036±0.001 0.036±0.000 0.061±0.004 0.034±0.001 0.036±0.000 0.057±0.001

social 0.020±0.001 0.021±0.001 0.025±0.001 0.028±0.001 0.024±0.001 0.042±0.004 0.022±0.001 0.026±0.001 0.033±0.003

Avg rank 1.3462(1) 2.4231(2) 4.1154(4) 6.6154(7) 5.3077(5) 8.3846(9) 2.8077(3) 6.0769(6) 7.9231(8)

Table 6

Comparisons (mean±std) on metric Ranking Loss ↓: The smaller the better.

Dataset
Ranking Loss ↓

GOFA WRAP HOMI SLOFS MDFS TIFS RLFSCL GLFS MC-GM

art 0.132±0.005 0.133±0.006 0.124±0.006 0.176±0.004 0.172±0.002 0.189±0.018 0.135±0.006 0.174±0.003 0.156±0.006

birds 0.089±0.023 0.098±0.017 0.118±0.011 0.146±0.022 0.123±0.017 0.161±0.024 0.114±0.015 0.158±0.011 0.115±0.015

business 0.039±0.004 0.040±0.002 0.040±0.003 0.048±0.004 0.048±0.002 0.050±0.009 0.061±0.006 0.047±0.004 0.054±0.003

cal500 0.175±0.006 0.177±0.005 0.181±0.004 0.178±0.007 0.178±0.004 0.190±0.006 0.186±0.002 0.181±0.003 0.179±0.004

computers 0.090±0.007 0.094±0.008 0.102±0.008 0.096±0.005 0.095±0.001 0.136±0.013 0.097±0.004 0.094±0.004 0.127±0.010

education 0.105±0.006 0.107±0.007 0.093±0.003 0.108±0.004 0.106±0.003 0.128±0.011 0.097±0.006 0.108±0.003 0.127±0.010

emotions 0.154±0.026 0.161±0.014 0.180±0.016 0.215±0.027 0.197±0.012 0.217±0.013 0.185±0.017 0.251±0.017 0.198±0.025

entertainment 0.111±0.003 0.114±0.007 0.100±0.005 0.155±0.004 0.137±0.003 0.152±0.005 0.115±0.002 0.149±0.002 0.128±0.050

health 0.063±0.004 0.063±0.005 0.062±0.003 0.082±0.003 0.070±0.006 0.056±0.003 0.075±0.006 0.073±0.006 0.079±0.006

recreation 0.145±0.004 0.146±0.007 0.136±0.009 0.213±0.005 0.197±0.003 0.212±0.013 0.149±0.006 0.205±0.005 0.162±0.008

scene 0.081±0.008 0.090±0.009 0.109±0.007 0.179±0.023 0.095±0.018 0.107±0.064 0.081±0.005 0.101±0.007 0.100±0.012

science 0.129±0.002 0.131±0.007 0.119±0.006 0.153±0.002 0.149±0.005 0.152±0.009 0.133±0.006 0.149±0.002 0.138±0.006

social 0.079±0.006 0.082±0.003 0.065±0.003 0.078±0.004 0.078±0.002 0.091±0.004 0.084±0.007 0.078±0.005 0.095±0.008

Avg rank 2.0000(1) 3.1154(3) 3.0769(2) 6.9615(8) 4.9615(5) 7.6923(9) 4.8846(4) 6.0769(6) 6.2308(7)

Table 7

Comparisons (mean±std) on metric One Error ↓: The smaller the better.

Dataset
One Error ↓

GOFA WRAP HOMI SLOFS MDFS TIFS RLFSCL GLFS MC-GM

art 0.460±0.019 0.462±0.018 0.492±0.006 0.749±0.009 0.730±0.012 0.689±0.066 0.524±0.020 0.738±0.010 0.471±0.014

birds 0.665±0.009 0.673±0.032 0.732±0.032 0.816±0.049 0.771±0.024 0.389±0.054 0.671±0.020 0.842±0.036 0.721±0.045

business 0.111±0.008 0.113±0.008 0.114±0.016 0.135±0.011 0.135±0.004 0.293±0.054 0.115±0.007 0.135±0.008 0.127±0.018

cal500 0.116±0.019 0.118±0.020 0.116±0.019 0.116±0.021 0.115±0.035 0.386±0.043 0.122±0.033 0.115±0.023 0.123±0.027

computers 0.348±0.013 0.350±0.009 0.371±0.014 0.476±0.020 0.476±0.012 0.616±0.041 0.383±0.010 0.476±0.011 0.368±0.014

education 0.469±0.008 0.471±0.006 0.507±0.015 0.685±0.007 0.685±0.008 0.689±0.049 0.519±0.015 0.685±0.017 0.477±0.009

emotions 0.276±0.005 0.278±0.009 0.287±0.033 0.374±0.020 0.364±0.011 0.388±0.034 0.320±0.014 0.412±0.045 0.341±0.047

entertainment 0.398±0.012 0.403±0.015 0.436±0.022 0.715±0.009 0.650±0.009 0.608±0.031 0.459±0.010 0.700±0.025 0.404±0.007

health 0.263±0.017 0.270±0.013 0.283±0.011 0.493±0.016 0.289±0.013 0.364±0.020 0.254±0.008 0.448±0.021 0.324±0.024

recreation 0.449±0.008 0.459±0.021 0.488±0.022 0.805±0.012 0.750±0.024 0.691±0.027 0.521±0.017 0.799±0.011 0.469±0.018

scene 0.249±0.024 0.261±0.021 0.282±0.020 0.465±0.042 0.281±0.042 0.289±0.020 0.246±0.007 0.303±0.016 0.288±0.036

science 0.496±0.009 0.501±0.029 0.524±0.016 0.728±0.015 0.682±0.027 0.706±0.037 0.565±0.013 0.699±0.011 0.502±0.015

social 0.287±0.006 0.289±0.016 0.341±0.007 0.446±0.014 0.404±0.004 0.554±0.047 0.325±0.015 0.431±0.017 0.294±0.016

Avg rank 1.4615(1) 2.6154(2) 4.1538(3) 7.8462(9) 5.9615(6) 7.2308(7) 4.1538(4) 7.2692(8) 4.3077(5)

We employ Friedman test [5] to examine whether the statistical difference on relative performance hold for all metrics. Let 𝑁 , 𝑇
and 𝑟𝑗

𝑖
denote the comparing approaches count, the dataset count and the rank of the 𝑗-th algorithm on the 𝑖-th dataset, respectively. 

Given the average rank (i.e., 𝑅𝑗

𝑖
= 1

𝑇

∑𝑇

𝑖=1 𝑟
𝑗

𝑖
) information induced from Table 5 to Table 9, Friedman statistic 𝐹𝐹 follows the 𝐹 -

distribution under the null hypothesis that all algorithms are statistically indistinguishable on classification performance, with 𝑁 −1
13

numerator degrees of freedom and (𝑁 − 1) (𝑇 − 1) denominator degrees of freedom (see (15)).
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Table 8

Comparisons (mean±std) on metric Average Precision ↑: The bigger the better.

Dataset
Average Precision ↑

GOFA WRAP HOMI SLOFS MDFS TIFS RLFSCL GLFS MC-GM

art 0.585±0.008 0.583±0.009 0.573±0.013 0.419±0.005 0.429±0.006 0.441±0.047 0.555±0.013 0.424±0.004 0.572±0.011

birds 0.664±0.048 0.635±0.039 0.567±0.028 0.473±0.061 0.548±0.042 0.638±0.040 0.660±0.030 0.438±0.024 0.585±0.029

business 0.855±0.009 0.855±0.004 0.854±0.008 0.826±0.010 0.827±0.004 0.777±0.033 0.855±0.007 0.829±0.008 0.835±0.010

cal500 0.521±0.011 0.521±0.009 0.505±0.009 0.515±0.010 0.516±0.008 0.463±0.012 0.516±0.006 0.505±0.005 0.525±0.027

computers 0.695±0.014 0.690±0.008 0.683±0.011 0.587±0.017 0.590±0.007 0.510±0.033 0.671±0.006 0.588±0.011 0.660±0.010

education 0.623±0.007 0.623±0.006 0.602±0.009 0.479±0.004 0.485±0.002 0.457±0.038 0.607±0.009 0.481±0.012 0.612±0.011

emotions 0.829±0.003 0.824±0.007 0.813±0.012 0.771±0.011 0.785±0.008 0.735±0.016 0.802±0.144 0.735±0.019 0.789±0.019

entertainment 0.680±0.015 0.676±0.012 0.659±0.015 0.489±0.005 0.535±0.007 0.538±0.020 0.646±0.008 0.503±0.014 0.667±0.009

health 0.753±0.012 0.750±0.010 0.746±0.008 0.610±0.007 0.737±0.014 0.716±0.013 0.772±0.009 0.644±0.011 0.698±0.020

recreation 0.606±0.007 0.602±0.016 0.589±0.016 0.383±0.007 0.422±0.017 0.450±0.022 0.563±0.010 0.394±0.007 0.591±0.012

scene 0.855±0.011 0.845±0.012 0.826±0.011 0.717±0.026 0.836±0.026 0.823±0.010 0.858±0.006 0.824±0.009 0.830±0.019

science 0.566±0.006 0.560±0.018 0.547±0.009 0.388±0.007 0.425±0.013 0.422±0.028 0.528±0.012 0.406±0.003 0.553±0.011

social 0.719±0.011 0.717±0.009 0.702±0.009 0.616±0.014 0.640±0.005 0.585±0.028 0.709±0.008 0.625±0.014 0.697±0.015

Avg rank 1.3846(1) 2.3077(2) 4.4231(5) 8.2308(9) 6.0385(6) 7.3462(7) 3.5000(3) 7.6154(8) 4.1538(4)

Table 9

Comparisons (mean±std) on metric Macro-averaging AUC ↑: The bigger the better.

Dataset
Macro-averaging AUC ↑

GOFA WRAP HOMI SLOFS MDFS TIFS RLFSCL GLFS MC-GM

art 0.959±0.001 0.958±0.001 0.957±0.001 0.933±0.002 0.936±0.001 0.604±0.022 0.956±0.001 0.932±0.002 0.957±0.002

birds 0.959±0.007 0.953±0.011 0.949±0.008 0.948±0.014 0.957±0.003 0.697±0.030 0.959±0.004 0.957±0.003 0.948±0.011

business 0.960±0.001 0.959±0.001 0.959±0.001 0.933±0.007 0.925±0.002 0.562±0.013 0.957±0.001 0.917±0.008 0.956±0.001

cal500 0.852±0.005 0.848±0.006 0.831±0.001 0.847±0.004 0.845±0.005 0.521±0.009 0.846±0.004 0.826±0.008 0.850±0.005

computers 0.970±0.001 0.969±0.001 0.968±0.001 0.945±0.002 0.949±0.002 0.594±0.013 0.968±0.000 0.940±0.005 0.968±0.002

education 0.971±0.001 0.970±0.001 0.967±0.003 0.950±0.004 0.952±0.002 0.594±0.025 0.968±0.003 0.946±0.006 0.967±0.002

emotions 0.796±0.012 0.797±0.007 0.794±0.007 0.787±0.013 0.791±0.004 0.732±0.016 0.795±0.005 0.762±0.009 0.792±0.011

entertainment 0.957±0.002 0.957±0.001 0.956±0.001 0.926±0.002 0.942±0.001 0.637±0.014 0.956±0.001 0.930±0.010 0.956±0.002

health 0.967±0.001 0.965±0.002 0.965±0.001 0.954±0.007 0.965±0.002 0.591±0.006 0.966±0.001 0.961±0.000 0.965±0.001

recreation 0.959±0.007 0.958±0.002 0.958±0.002 0.931±0.002 0.940±0.002 0.623±0.013 0.956±0.001 0.933±0.001 0.957±0.001

scene 0.899±0.001 0.898±0.005 0.898±0.001 0.892±0.004 0.899±0.002 0.821±0.011 0.900±0.001 0.898±0.002 0.899±0.001

science 0.976±0.000 0.976±0.001 0.975±0.001 0.959±0.002 0.966±0.001 0.615±0.016 0.976±0.001 0.958±0.002 0.974±0.002

social 0.979±0.001 0.977±0.003 0.977±0.001 0.959±0.007 0.968±0.002 0.627±0.011 0.976±0.003 0.956±0.003 0.978±0.000

Avg rank 1.3846(1) 2.8846(2) 4.3077(5) 7.0385(7) 5.5385(6) 9.0000(9) 3.4231(3) 7.2692(8) 4.1538(4)

Table 10

Summary of the Friedman Statistics 𝐹𝐹 (𝑁 = 9, 𝑇 = 13) and 
the critical value at significance level 𝛼 = 0.05 in terms of 
each evaluation metric.

Evaluation metric 𝐹𝐹 Critical value

𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝐿𝑜𝑠𝑠 56.2063

𝑅𝑎𝑛𝑘𝑖𝑛𝑔 𝐿𝑜𝑠𝑠 12.0284

𝑂𝑛𝑒 𝐸𝑟𝑟𝑜𝑟 22.7310 2.0363

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 45.5047

𝑀𝑎𝑐𝑟𝑜− 𝑎𝑣𝑒𝑟𝑎𝑔𝑖𝑛𝑔 𝐴𝑈𝐶 42.6385

Table 10 summarizes the results for all considered five metrics, where 𝑁 = 9, 𝑇 = 13. Given critical value 𝛼 = 0.05, the null 
hypothesis of statistically indistinguishable performance among all considered algorithms is clearly rejected for all evaluations.

𝐹𝐹 =
(𝑇 − 1)𝜒2

𝐹

𝑇 (𝑁 − 1) − 𝜒2
𝐹

(15)

Where 𝜒2
𝐹
= 12𝑇

𝑁(𝑁+1)

[∑𝑁

𝑗=1𝑅
2
𝑗
− 𝑁(𝑁+1)2

4

]
.

To further analysis whether GOFA is significantly superior over the remaining algorithms on different metrics, we employ Holm’s 
procedure [5] as the post-hoc test by regarding GOFA as the control algorithm (denoted as 1). For the remaining 𝑁 − 1 comparing 
algorithms (denoted as 𝑗 , where 2 ⩽ 𝑗 ⩽𝑁), the one obtaining the 𝑗 − 1-th largest average rank over all datasets is denoted as 𝑗 . 
14

Then we have the test statistic for comparing 1 (i.e., GOFA) and 𝑗 in (16).
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Table 11

Comparisons of GOFA (control algorithm) against the remaining al-

gorithms on Hamming Loss.

𝑗 Algorithm 𝑧𝑗 𝑝𝑗 𝛼∕ (𝑘− 𝑗 + 1)

2 TIFS -6.552451 5.6600e-11 0.00625

3 MC-GM -6.122782 9.1955e-10 0.00714

4 SLOFS -4.905387 9.3243e-7 0.00833

5 GLFS -4.404106 1.0622e-5 0.01000

6 MDFS -3.687992 2.2603e-4 0.01250

7 HOMI -2.578014 0.009937 0.01667

8 RLFSCL -1.360618 0.173634 0.02500

9 WRAP -1.002561 0.316073 0.05000

Table 12

Comparisons of GOFA (control algorithm) against the remaining 
algorithms on Ranking Loss.

𝑗 Algorithm 𝑧𝑗 𝑝𝑗 𝛼∕ (𝑘− 𝑗 + 1)

2 TIFS -5.29925 1.1628e-7 0.00625

3 SLOFS -4.618941 3.857e-6 0.00714

4 MC-GM -3.938632 8.1948e-5 0.00833

5 GLFS -3.795409 1.474e-4 0.01000

6 MDFS -2.757042 0.005833 0.01250

7 RLFSCL -2.685431 0.007244 0.01667

8 WRAP -1.038367 0.299099 0.02500

9 HOMI -1.002561 0.316073 0.05000

Table 13

Comparisons of GOFA (control algorithm) against the remaining 
algorithms on One Error.

𝑗 Algorithm 𝑧𝑗 𝑝𝑗 𝛼∕ (𝑘− 𝑗 + 1)

2 SLOFS -5.943753 2.7857e-9 0.00625

3 GLFS -5.406667 6.4208e-8 0.00714

4 TIFS -5.370862 7.8361e-8 0.00833

5 MDFS -4.189272 2.7985e-5 0.01000

6 MC-GM -2.649625 0.008058 0.01250

7 HOMI -2.506402 0.012197 0.01667

8 RLFSCL -2.506402 0.012197 0.02500

9 WRAP -1.074172 0.282745 0.05000

Table 14

Comparisons of GOFA (control algorithm) against the remaining al-

gorithms on Average Precision.

𝑗 Algorithm 𝑧𝑗 𝑝𝑗 𝛼∕ (𝑘− 𝑗 + 1)

2 SLOFS -6.373422 1.8486e-10 0.00625

3 GLFS -5.80053 6.6106e-9 0.00714

4 TIFS -5.54989 2.8585e-8 0.00833

5 MDFS -4.332495 1.4743e-5 0.01000

6 HOMI -2.828654 0.004674 0.01250

7 MC-GM -2.578014 0.009937 0.01667

8 RLFSCL -1.969316 0.048917 0.02500

9 WRAP -0.859338 0.390154 0.05000

𝑧𝑗 =
(
𝑅1 −𝑅𝑗

)/√
𝑁 (𝑁 + 1)

6𝑇
(2 ⩽ 𝑗 ⩽𝑁) (16)

We stipulate 𝑝𝑗 as the 𝑝-value of 𝑧𝑗 under the normal distribution. Given the significance level 𝛼 = 0.05, the Holm’s procedure 
works by sequentially examining whether 𝑝𝑗 < 𝛼∕(𝑁 − 𝑗 + 1) holds in ascending order of 𝑗. Typically, the Holm’s procedure continues 
until the first 𝑗 (denoted as 𝑗∗) which suggests 𝑝𝑗 < 𝛼∕(𝑁 − 𝑗 + 1) does not hold.16 Consequently, GOFA is deemed to be significantly 
superior over 𝑗 with 𝑗 ∈ {2, … , 𝑗∗ − 1}.
15

16 𝑗∗ is set to be 𝑁 + 1 if 𝑝𝑗 < 𝛼∕(𝑁 − 𝑗 + 1) holds ∀𝑗.
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Table 15

Comparisons of GOFA (control algorithm) against the remaining al-

gorithms on Macro-averaging AUC.

𝑗 Algorithm 𝑧𝑗 𝑝𝑗 𝛼∕ (𝑘− 𝑗 + 1)

2 TIFS -7.089537 1.3456e-12 0.00625

3 GLFS -5.478279 4.2948e-8 0.00714

4 SLOFS -5.263444 1.4138e-7 0.00833

5 MDFS -3.86702 1.1017e-4 0.01000

6 HOMI -2.721237 0.006504 0.01250

7 MC-GM -2.578014 0.009937 0.01667

8 RLFSCL -1.897704 0.057735 0.02500

9 WRAP -1.396424 0.162587 0.05000

Tables 11–15 enumerate the results of Holm’s procedure. We can infer that GOFA is the most statistically superior at metric One 
Error. Additionally, it achieves statistical superior performance over TIFS, MC-GM, SLOFS, GLFS, MDFS on all five metrics, HOMI on 
all metrics except for Ranking Loss, RLFSCL on Ranking Loss and One Error.

4.4. Sensitivity analysis

To explore the performance fluctuations w.r.t. parameter settings, we conduct sensitivity analysis for GOFA on datasets cal500, 
computers, and scene over the parameters 𝜇 and k in Figs. 2–6. The parameter 𝜇 adjusts the relative importance between the Pearson 
correlation coefficient and cosine similarity and is searched from 0.1 to 0.9 at a step of 0.1. Meanwhile, the parameter k controls the 
size of the nearest neighborhood, and is searched from 3 to 12 at a step of 1.

The results clearly illustrate that the best performance is both dataset-dependent and metric-dependent. Typically, the results of 
cal500 become best if 𝜇 is medium while k is smaller; the results of computers become best if both 𝜇 and k are larger; the results of 
scene become best if 𝜇 is larger while k is smaller. It implies that Pearson correlation coefficient contributes more than cosine distance 
in measuring instance similarity, and a reasonable setting of k can consolidate the robustness of augmented features.

Fig. 2. Hamming Loss with varying parameters 𝜇 and 𝑘 on (a) cal500, (b) computers, and (c) scene.

Fig. 3. Ranking Loss with varying parameters 𝜇 and 𝑘 on (a) cal500, (b) computers, and (c) scene.
16
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Fig. 4. One Error with varying parameters 𝜇 and 𝑘 on (a) cal500, (b) computers, and (c) scene.

Fig. 5. Average Precision with varying parameters 𝜇 and 𝑘 on (a) cal500, (b) computers, and (c) scene.

Fig. 6. Macro-averaging AUC with varying parameters 𝜇 and 𝑘 on (a) cal500, (b) computers, and (c) scene.

5. Conclusions

We present a novel label-specific feature augmentation by constructing correlation-based granulation for multi-label classification. 
Unlike conventional multi-label classification solutions that emphasize discriminative feature learning merely from the raw data 
representation, we resort to the underlying instance-level and class-level correlation locally and refine the granularity of original 
features by feature concatenation. In this way, the discrimination differences between positive and negative classes across labels 
become explicit. We propose that these features bridge the information gap between low-level features and high-level concepts. The 
feature concatenation allows the classifier to automatically identify discriminative components. This process simulates the ability 
to handle uncertainty by leveraging various levels of granularity simultaneously. Extensive experiments validate the usefulness of 
augmented features. Specifically, we demonstrate that it is conducive to boosting the WRAP method if we incorporate the augmented 
features.

Despite the impressive classification performance, some open issues remain. In GOFA, we assume that all features contribute to the 
instance-based neighborhood construction. However, some features may contribute quite limited for a particular label, thus incurring 
the deformation of the nearest neighborhood structure. An alternative solution is to explore the neighborhood based on label-specific 
17

features. Furthermore, it is worth mentioning that GOFA depends on the quality of both ground-truth labels and the explicit features. 
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However, they may be degenerated in cases like noisy features and missing labels in practical applications. The biased tendency is 
two-fold. Firstly, the noisy features incur untrustworthy similarity among instances, which offers erroneous components and weights 
in the instance-based neighborhood. Secondly, the missing labels incur the indistinguishable positive and negative distribution among 
labels, which offers biased label correlation in classifier construction. The estimation of latent representation learning may be more 
desirable. We will consider the variation of GOFA to accommodate such cases in the future.
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