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Preface

This volume comprises the papers selected for presentation at IJCRS 2024, the 2024
International Joint Conference on Rough Sets, held at Saint Mary’s University in Hali-
fax, Canada, on May 17–20, 2024. The annual IJCRS series conferences combine four
distinct conferences linking rough sets to various paradigms: RSCTC (data analysis),
RSFDGrC (granular computing), RSKT (knowledge technology), and RSEISP (intel-
ligent systems). The first Joint Rough Set Symposium took place in Toronto, Canada,
in 2007; followed by Symposiums in Chengdu, China (2012); Halifax, Canada (2013);
Granada and Madrid, Spain (2014); Tianjin, China (2015), where the acronym IJCRS
was proposed; and subsequent conferences IJCRS 2016 in Santiago, Chile; IJCRS 2017
in Olsztyn, Poland; IJCRS 2018 in Quy Nhon, Vietnam; IJCRS 2019 in Debrecen, Hun-
gary; IJCRS 2020 in La Habana, Cuba (online); IJCRS 2021 in Bratislava, Slovakia
(hybrid); IJCRS 2022 in Suzhou, China (hybrid); and IJCRS 2023 in Kraków, Poland
(hybrid).

IJCRS 2024 continued to receive significant attention from researchers in the rough
sets community. We received 56 full-length paper submissions, which went through a
rigorous single-blind reviewing process. Each submission was reviewed by at least three
domain experts. Some authors were requested to make revisions, which were further
reviewed before the final decisionwasmade.As a result, 43 top-quality submissionswere
accepted as full-length papers. The camera-ready versions underwent further review by
the Program Committee Chairs and General Conference Chairs. The scientific discourse
at IJCRS 2024was complemented by ten extended abstracts, describing ongoingwork or
research published elsewhere in the past year. These extended abstracts were rigorously
reviewed by the ProgramCommitteeChairs and compiled into aBook ofAbstracts edited
by the Publication Chair, Xiaodong Yue, and his PhD student Zihao Li. The success of
the conference owes much to the contributions of the authors, reviewers, and Program
Committee Members.

The IJCRS 2024 program featured eight invited talks, including two presentations by
former presidents of the International Rough Set Society, Duoqian Miao and Wojciech
Ziarko, and six keynote talks by renowned researchers in the field, Lipika Dey, Jimmy
X. Huang, Ryszard Janicki, Eric T. Matson, Jesús Medina, and Jarosław Wąs. We are
grateful to all the invited speakers for their visionary talks on research related to rough
sets. IJRCS 2024 also hosted two workshops on “Uncertainty, Three-Way Decision, and
Explainable Artificial Intelligence” and “Applications of Deep Learning and Soft Com-
puting” and two special sessions on “General Rough Set Perspectives on Foundations
of AI and Machine Learning” and “Formal Concept Analysis, General Operators and
Related Topics”. Our gratitude is extended to all the workshop and special session chairs,
Duoqian Miao, Jianfeng Xu, Chuanlei Zhang, Ying Yu, Hong Yu, Raavee Kadam, A.
Mani, Stefania Boffa, Davide Ciucci, Jesús Medina, M. Eugenia Cornejo, and Eloísa
Ramírez-Poussa.



vi Preface

The IJCRS 2024 program was further augmented by a Rough Set School and Tuto-
rials. We are grateful to the chairs, Piotr Artiemjew and Zaineb Chelly Dagdia, and
the tutorial speakers, Stefania Boffa, James F. Peters, Usman Qamar, Andrzej Skowron,
Dominik ŚlĘzak, Arkadiusz Wojna, and Yiyu Yao. IJCRS 2024 also hosted a Data Min-
ingCompetition, sponsored by Southwest Properties.Wewould like to extend our thanks
to the chairs Yasushi Akiyama and Andrzej Janusz, the judges Chris Cornelis, Dun Liu,
Kanngi Mahajan, Dan Penny, Jiju Poovvancheri, Sanjeevi Ramachandran, Trishla Shah,
and Yiyu Yao, as well as the participants.

We appreciate the sponsorship from Springer for the two Best Student Paper Awards.
The awards were assigned based on a competitive process, considering scientific excel-
lence and clarity of both articles and presentations.With a competition among 29 eligible
papers, the two awards were presented to Qiaoyi Li, from the University of Regina in
Canada under the supervision of Yiyu Yao, for the paper entitled “Granular Approxi-
mations of Partially-Known Concepts”, and Hajime Okawa, from the Muroran Institute
of Technology in Japan under the supervision of Yasuo Kudo, for the paper entitled “A
Vector Is a Granule: A Novel Extension of the Variable Precision Rough Set Model”.
We are also grateful to Jimmy X. Huang and IEEE for their sponsorship through the
IEEE TCII Fund.

IJCRS 2024 would not have been successful without the support of many people and
organizations. We are grateful to the Program Committee Members for their effort and
engagement in providing a rich and rigorous scientific program.Wegreatly appreciate the
cooperation, support, and sponsorship from the MSc in Computing and Data Analytics
(MCDA) program at Saint Mary’s University and the International Rough Set Society.
We acknowledge the use of the EasyChair conference system for paper submission and
review. We are also grateful to Springer for publishing the proceedings as two volumes
of LNCS/LNAI.

Lastly, thanks are extended to Raavee Kadam, Neelam Pal, Vrushali Prajapati,
and other members in the local organizational team for their logistical, technical, and
administrative support, without which IJCRS 2024 would not have been possible.

May 2024 Mengjun Hu
Chris Cornelis

Yan Zhang
Pawan Lingras

Dominik Ślęzak
JingTao Yao
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Abstract. Three-way decisions (3WDs) based on decision-theoretic
rough set (DTRS), as a crucial theory in the field of granular computing,
have received extensive attention. Meanwhile, visualization technologies
have gained popularity, particularly for their intuitiveness and explain-
ability. In order to understand the basic theory of 3WD more intuitively
and enhance the interpretability analysis of threshold, this paper pro-
poses the visual analysis of 3WD based on DTRS using the perspective
of fusing two-way decision (2WD) pair. Firstly, the p-r space is defined
via the geometric interpretations of the Bayesian decision procedure.
Secondly, we propose a pair of 2WDs, i.e., the 2WD with acceptance
and non-acceptance and the 2WD with rejection and non-rejection. And
their geometrical interpretations are discussed in p-r space. Then, a fus-
ing of the 2WD pair is proposed, and the geometric relations between
its threshold and loss function are analyzed in p-r space. Finally, degen-
eration in the 2WD pair into the 3WD is obtained via the special loss
function, which is employed to get the geometric interpretations for the
threshold and loss function of single-evaluation-based 3WDs in p-r space.
The method proposed in this paper uses the p-r space to obtain more
intuitive explainability, which is more easily interpreted and reasoned of
3WD and has greater potential for generalization.

Keywords: Three-way decision · Decision-theoretic rough set ·
Geometric interpretation · Two-way decision pair
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1 Introduction

Rough sets, introduced by Pawlak, are an essential tool for processing uncer-
tain and incomplete data in data mining [1–3]. The decision-theoretic rough
set (DTRS), as an expansion of probabilistic in algebraic rough set theory, was
proposed to address inadequate fault tolerances of classical rough set theory
[4–6]. As the influential theory of studying knowledge discovery and addressing
uncertain problems, three-way decisions (3WDs) based on DTRS have attracted
widespread attention [7–10]. Thus far, research results of 3WD have been pro-
ductive and further applied in many fields [11–17].

The determination of thresholds in the 3WD model with DTRS poses a
challenge and has attracted significant attention from researchers. Specifically, as
the positive, negative, and boundary rules generated by their respective regions
are utilized for decision-making regarding acceptance, rejection, and deferred
decisions, classification risk arises. Hence, the literature [18] proposed utilizing
loss functions to assess risks from the perspective of loss. Following Bayesian
decision rules, loss functions are utilized to infer thresholds in the 3WD model
with DTRS. The threshold pair can be systematically computed by minimizing
the overall ternary classification cost. Based on this theory, an algebraic method
for solving thresholds in 3WD based on DTRS has been proposed by Yao [19].
This algebraic method has been widely studied and applied.

When researching and employing any theory, it is vital to pay attention to
abstract theoretical representation and specific physical explanations [20–23].
Visual decision-making is a scientific tool that employs an interaction of visual
interfaces to facilitate physical explanations and implement decisions [24–26].
It integrates data presentation and modeling analysis, interactivity, analytical
tools, and visualization techniques to support decision-making and problem-
solving. Currently, it is extensively applied in big data analysis, medical health
care, bio-medicine, and other fields [27–29]. Excellent visual decision techniques
not only visualize abstract data and theories but also enhance valid communi-
cation among decision-makers. In the field of 3WD research, many researchers
have utilized visualization techniques to describe 3WD concepts and the analysis
of experimental results [30,31].

In order to enhance the interpretability analysis of the threshold and more
intuitively understand 3WD concepts, this paper proposes the visual analysis of
3WD based on DTRS employing the perspective of fusing a two-way decision
(2WD) pair. Specifically, the definition of the p-r space is proposed. Then, in
p-r space, the 2WD with acceptance and non-acceptance and the 2WD with
rejection and non-rejection are proposed as a pair of 2WDs. Subsequently, the
fusion of this pair of 2WDs is performed, and the geometric relations between
its threshold and loss function are analyzed in p-r space. Finally, degeneration in
the 2WD pair into the 3WD is obtained by a specific loss function and employed
to visualize the relationship between the threshold and loss function in single-
evaluation-based 3WD.
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2 The Visual Bayesian Decision Procedure of Three-Way
Decision Combing a Pair of Two-Way Decisions

2.1 The Geometric Interpretations for Bayesian Decision Procedure
with Liner Cost Function

To unify symbols, let U be an object set, C ∈ U be a target concept, C be the
complement of C, [x] be the equivalence class of object x ∈ U , and A be an action
set. When the decision-maker takes an action a ∈ A, Pr(C|[x]) = |C ⋃

[x]|
|[x]| and

Pr(C|[x]) are the probability of [x] ∈ C and [x] ∈ C, respectively; λ(a|C) and
λ(a|C) are the corresponding action losses of [x] ∈ C and [x] ∈ C, respectively.
In Bayes decision processor, the cost of taking action a ∈ A via Bayes theory
can be denoted as a cost function below:

R(a|[x]) = λ(a|C) Pr(C|[x]) + λ(a|C) Pr(C|[x]). (1)

Since Pr(C|[x]) = 1 − Pr(C|[x]), substituting this into Eq. (1) results in the
cost function R(a|[x]) can be expressed as follows.

R(a|[x]) = (λ(a|C) − λ(a|C)) Pr(C|[x]) + λ(a|C). (2)

According to the linear function in Eq. (2) for Pr(C|[x]), we display the
relations between the cost and probability by a line Ra in the p-r space, depicted
in Fig. 1.

Fig. 1. Visualization of the liner cost function with action a ∈ A based on Bayes theory

In Fig. 1, p-r space is a space defined by two independent coordinate axes,
where the x-axis is the probability p = Pr(C|[x]) and the y-axis is the corre-
sponding costs of taking action a ∈ A, that is r = R(a|[x]). It can be seen that



6 J. Tu et al.

when Pr(C|[x]) = 0, R(a|[x]) = λ(a|C); while Pr(C|[x]) = 1, R(a|[x]) = λ(a|C).
λ(a|C)−λ(a|C) is the slope of line Ra in p-r space. If λ(a|C) < λ(a|C), R(a|[x])
decreases monotonically with Pr(C|[x]); if λ(a|C) > λ(a|C), R(a|[x]) increases
monotonically with Pr(C|[x]).

2.2 The Geometric Interpretations for Acceptance and Rejection
Procedure

With regard to 2WD, we can use acceptance or rejection procedures to analyze
its Bayesian decision procedure. Based on it, we can obtain a pair of 2WDs,
i.e., the 2WD with acceptance and non-acceptance and the 2WD with rejection
and non-rejection, which can be expressed as the following conceptual model,
respectively.

(1) (P,¬P ) model with liner cost functions represents the 2WD with accep-
tance and non-acceptance. It denotes that in the Bayes decision processor when
the decision-maker takes actions of aP and aP̄ , if [x] ∈ C, the corresponding
action losses are λPP and λ¬PP , respectively; if [x] ∈ C, the corresponding action
losses are λPN and λ¬PN , respectively. Hence, the corresponding costs of diverse
actions can be respectively denoted as follows:

R(aP |[x]) = λPP Pr(C|[x]) + λPN Pr(C|[x])
= (λPP − λPN ) Pr(C|[x]) + λPN ,

R(aP̄ |[x]) = λ¬PP Pr(C|[x]) + λ¬PN Pr(C|[x])
= (λ¬PP − λ¬PN ) Pr(C|[x]) + λ¬PN . (3)

According to the two linear functions in Eq. (3) for Pr(C|[x]), when taking
actions aP and aP̄ , we can display the relation between the corresponding costs
and probability Pr(C|[x]) using the lines RP and R¬P in p-r space, depicted in
Fig. 2a.

Fig. 2. Visualizations for 2WDs

As seen from Fig. 2a, in the p-r space, when Pr(C|[x]) = 1, R(aP |[x]) = λPP

and R(aP̄ |[x]) = λ¬PP ; when Pr(C|[x]) = 0, R(aP |[x]) = λPN and R(aP̄ |[x]) =
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λ¬PN . The slopes of lines RP and R¬P are λPN −λPP and λ¬PP −λ¬PN , respec-
tively. When λPN > λPP , R(aP |[x]) decreases monotonically with Pr(C|[x]);
when λPN < λPP , R(aP |[x]) increases monotonically with Pr(C|[x]). Similarly,
when λ¬PP > λ¬PN , R(aP̄ |[x]) increases monotonically with Pr(C|[x]); when
λ¬PP < λ¬PN , R(aP̄ |[x]) decreases monotonically with Pr(C|[x]).

To simply the discussion for (P,¬P ) model, we have the below assumptions
with respect to the loss function:

(c1) λPP < λ¬PP , λ¬PN < λPN ;
(c2) λPP < λPN , λ¬PN < λ¬PP .

The interpretations of the above assumptions are as follows: (c1) is consistent
with the principle of the minimum loss of correct decisions; (c2) denotes there
must be an intersection point between lines RP and R¬P , whose abscissa is
denoted as γ′, it’s formula can be obtained, as shown in Eq. (4):

γ′ =
λPN − λ¬PN

(λPN − λ¬PN ) + (λ¬PP − λPP )
. (4)

Hence, under assumptions (c1)-(c2), we can see from Fig. 2a that when
Pr(C|[x]) > γ′, we make a decision with acceptance; when Pr(C|[x]) < γ′, we
make a decision with non-acceptance.

(2) (N,¬N) model with liner cost functions denotes the 2WD with rejection
and non-rejection. It represents that in the Bayes decision processor, when taking
actions of aN and aN̄ , if [x] ∈ C, the corresponding action losses are λNP and
λ¬NP , respectively; if [x] ∈ C, the corresponding action losses are λNN and
λ¬NN , respectively. Hence, the corresponding costs of diverse actions can be
respectively denoted as follows:

R(aN |[x]) = λNP Pr(C|[x]) + λNN Pr(C|[x])
= (λNP − λNN ) Pr(C|[x]) + λNN ,

R(aN̄ |[x]) = λ¬NP Pr(C|[x]) + λ¬NN Pr(C|[x])
= (λ¬NP − λ¬NN ) Pr(C|[x]) + λ¬NN . (5)

According to the two linear functions in Eq. (5) for Pr(C|[x]), when taking
actions aN , and aN̄ , we can display the relation between the corresponding costs
and probability Pr(C|[x]) using the lines RN and R¬N in p-r space, depicted in
Fig. 2b.

As seen from Fig. 2b, in the p-r space, when Pr(C|[x]) = 1, R(aN |[x]) = λNP

and R(aN̄ |[x]) = λ¬NP ; when Pr(C|[x]) = 0, R(aN |[x]) = λNN and R(aN̄ |[x]) =
λ¬NN . The slopes of lines RN and R¬N are λNP −λNN and λ¬NN −λ¬NP , respec-
tively. When λNP > λNN , R(aN |[x]) increases monotonically with Pr(C|[x]);
when λNP < λNN , R(aN |[x]) decreases monotonically with Pr(C|[x]). Similarly,
when λ¬NN > λ¬NP , R(aN̄ |[x]) decreases monotonically with Pr(C|[x]); when
λ¬NN < λ¬NP , R(aN̄ |[x]) increases monotonically with Pr(C|[x]).
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For (N,¬N) model, we also have the below assumptions to simplify discus-
sion:

(c3) λNN < λ¬NN , λ¬NP < λNP ;
(c4) λNN < λNP , λ¬NP < λ¬NN .

The interpretation of (c3) is similar to that of (c1). (c4) denotes there must
be an intersection point between lines RN and R¬N , whose abscissa is denoted
as γ′′. Hence, the formula of γ′′ can be obtained, as shown in Eq. (6):

γ′′ =
λ¬NN − λNN

(λ¬NN − λNN ) + (λNP − λ¬NP )
. (6)

Under assumptions (c3)–(c4), we can see from Fig. 2b that when Pr(C|[x]) <
γ′′, we make a decision with rejection; when Pr(C|[x]) > γ′′, we make a decision
with non-rejection.

2.3 The Geometric Interpretations for Three-Way Decision
Combing a Pair of Two-Way Decisions

According to the geometric interpretations for a pair of 2WDs, we consider fusing
a pair of 2WDs in p-r space. In a pair of two-way classifications, when the
decision-maker takes actions aP , aP̄ , aN̄ , and aN , the corresponding costs can
be denoted in Eq. (7):

R(aP |[x]) = (λPP − λPN ) Pr(C|[x]) + λPN ,

R(aP̄ |[x]) = (λ¬PP − λ¬PN ) Pr(C|[x]) + λ¬PN ,

R(aN̄ |[x]) = (λ¬NP − λ¬NN ) Pr(C|[x]) + λ¬NN ,

R(aN |[x]) = (λNP − λNN ) Pr(C|[x]) + λNN . (7)

In p-r space, we can draw four lines via the four linear functions in Eq. (7)
to display their relationship, as shown in Fig. 3.

In Fig. 3, the four lines have typical geometrical morphology in p-r space,
which could be seen as a fusion of 2WD with acceptance and non-acceptance
in Fig. 2a and 2WD with rejection and non-rejection in Fig. 2b. Therefore, the
definitions of γ′ and γ′′ remain the same.

In combination with assumptions (c1)–(c4), we make the below assumption
to simplify discussion:

(C1) λPP < λ¬NP ≤ λ¬PP < λNP ,

λNN < λ¬PN ≤ λ¬NN < λPN .
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Fig. 3. The 3WD combing a pair of 2WDs

According to Fig. 3, assumption (C1) represents if Pr(C|[x]) = 1 or 0, the
corresponding costs of actions aP , aP̄ , aN̄ , and aN need to satisfy these condi-
tions. It is consistent with the principle of the minimum loss of correct decisions
and makes the four lines intersect in pairs.

Under the assumption (C1), we cannot infer the relation between γ′ and γ′′.
To this end, we added an additional assumption:

(C2)
λ¬PP − λPP

λPN − λ¬PN
<

λNP − λ¬NP

λ¬NN − λNN
.

Under assumptions (C1) and (C2), the relation between γ′ and γ′′ can be
given as γ′′ < γ′. Based on it, we can see from Fig. 3 that when Pr(C|[x]) ≤
γ′′, we decide with rejection; when γ′′ < Pr(C|[x]) < γ′, we decide with non-
command; when Pr(C|[x]) ≥ γ′, we decide with acceptance. It is consistent with
the idea of the 3WD.

3 The Geometric Interpretations of Degeneration
in Two-Way Decision Pair into the Three-Way Decision

Based on a special loss function, i.e., λBN = λ¬PN = λ¬NN and λBP = λ¬NP =
λ¬PP , the line connecting λ¬PN and λ¬PP coincides with the line connecting
λ¬NN and λ¬NP . Hence, degeneration in a pair of 2WDs into the 3WD is
obtained, which could be regarded as a single-evaluation-based 3WDs, as shown
in Fig. 4.
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p

r
r′

10

λNN

λBN = λ¬NN = λ¬PN

λPN

λPP

λBP = λ¬PP = λ¬NP

λNP

α = γ′β = γ′′

Fig. 4. The visualization of a single-evaluation-based 3WDs

In Fig. 4, we can get three linear functions in p-r space, as follows in Eq. (8):

R(aP |[x]) = (λPP − λPN ) Pr(C|[x]) + λPN ,

R(aN |[x]) = (λNP − λNN ) Pr(C|[x]) + λNN ,

R(aB|[x]) = (λBP − λBN ) Pr(C|[x]) + λBN . (8)

Based on the Bayes decision processor, the above three linear functions can
represent the costs of taking the corresponding actions of aP , aN , and aB . Among
them, when taking these actions, if [x] ∈ C, λPP , λNP , and λBP are respectively
the corresponding losses; if [x] ∈ C, λPN , λNN , and λBN are respectively the
corresponding losses.

To make the three lines intersect in pairs, we make the below assumptions:

(C3) λPP ≤ λBP = λ¬PP = λ¬NP < λNP ,

λNN ≤ λBN = λ¬NN = λ¬PN < λPN .

For assumption (C3), its interpretation is similar to the case of assumption
(C1). Based on Fig. 4, it can be seen that the abscissa of the intersection of the
line connecting λBP and λBN with the line connecting λPN and λPP and the line
connecting λNN and λNP are α and β, respectively. Hence, the formulas of α
and β can be obtained, as shown in Eq. (9):

α =
λPN − λBN

(λPN − λBN ) + (λBP − λPP )
,

β =
λBN − λNN

(λBN − λNN ) + (λNP − λBP )
. (9)

Compared with Fig. 3 and Eqs. (4, 6), it can be found β = γ′′ and α = γ′.
To infer the relation between α and β, ensure that α > β, we further add an
assumption, which is similar to assumption (C2):

(C4)
λNP − λBP

λBN − λNN
>

λBP − λPP

λPN − λBN
.
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Under assumptions (C3)-(C4), we can see from Fig. 4 that when Pr(C|[x]) ≤
β = γ′′, we decide with rejection; when Pr(C|[x]) ≥ α = γ′, we decide with
acceptance; when β < Pr(C|[x]) < α, we decide with non-command.

In conclusion, we can use a pair of 2WDs to obtain the geometric explanation
of 3WD based on DTRS, which is consistent with the concept of classical 3WD.

4 Conclusion and Prospect

3WD based on DTRS is a significant achievement in the field of granular com-
puting, which can effectively deal with uncertain problems. Meanwhile, visu-
alization technology has received extensive attention in various fields for its
importance in solving problems and achieving explainability. From the novel
perspective of fusing 2WD pair, this paper discusses the visualization analysis
of 3WD based on DTRS. The study uses the p-r space to provide a visual and
intuitive understanding of 3WD, which can help us better explain the loss func-
tion and threshold and understand the relationship between cost and probability.
This method not only employs an interaction of visual interfaces to have better
interpretability and facilitate decision-making, but also can effectively ease the
difficulty of 3WD reasoning. Therefore, it has great potential for application in
more complex studies of 3WD and can be widely promoted. However, this paper
only discusses the monotonicity of the linear cost function. In real life, the non-
monotonic cost situation exists in the delayed decision. The use of linear cost
function has some limitations in delayed decision behavior. Therefore, nonlinear
cost functions deserve a more in-depth study.
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Abstract. The triangular fuzzy number intuitionistic fuzzy set, as an
extension and generalization of intuitionistic fuzzy set, has more advan-
tages than the single value representation of membership degree and
non-membership degree and interval number representation of intuition-
istic fuzzy set. In this paper, the triangular fuzzy number intuitionistic
fuzzy set and rough set are fused, and the triangular fuzzy number intu-
itionistic fuzzy rough set model is constructed based on the intuition-
istic fuzzy approximation relation of triangle fuzzy number. Firstly, the
approximate operators, correlation properties and three-way regions are
discussed and verified by numerical examples. Furthermore, combined
with the covering rough set, the triangular fuzzy number intuitionistic
covering rough set is constructed, which can be used for multi-attribute
decision making. Then, combined with the covering rough set, the trian-
gular fuzzy number intuitionistic fuzzy covering rough set is constructed,
which can be used for multi-attribute decision making. Finally, the multi-
attribute decision making is carried out with an example considering the
expert weight. The results show that the triangular fuzzy number intu-
itionistic fuzzy covering rough set become novel and effective for multi-
attribute decision making. This study provides an in-depth insight into
decision making from model and method.

Keywords: Triangular fuzzy number intuitionistic fuzzy set ·
Triangular fuzzy number intuitionistic fuzzy rough set · Three-way
decision · Covering rough set · Multi-attribute decision making

1 Introduction

Rough set (RS) is a mathematical method introduced by Pawlak [15] to han-
dle imprecision, uncertainty, and fuzziness in data analysis. It has been widely
applied in many research fields such as pattern recognition [20,29], data mining
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[5,28], and machine learning [9,18]. The Pawlak rough set model is designed to
deal with qualitative data, but it is not effective for real value data. To solve this
problem, a large number of researchers strive to generalize and improve clas-
sical fuzzy sets to compensate for the rigidity of Pawlak rough set conditions.
Among them, the fuzzy set (FS) theory proposed by Zadeh [26] is one of the
methods to solve such problems and has been widely applied. Dubois and Prade
[8] combined fuzzy set models with rough set models to generate fuzzy rough
sets and rough fuzzy sets. By establishing equivalent knowledge and different
frameworks of fuzzy knowledge, they can effectively solve knowledge reasoning
and decision-making problems for fuzzy data.

The intuitionistic fuzzy set (IFS) proposed by Atanassov [3] is also an exten-
sion of Zadeh’s fuzzy set theory. Compared with classical fuzzy sets, IFS compre-
hensively considers the information of membership, non-membership, and hesi-
tancy, and can describe and characterize the essence of fuzziness in the objective
world in detail. Therefore, it has been favored and further studied by many
scholars. Singh and Som [16] further proposed the basic concepts, properties,
topological structure, logical operators, approximation operators, and similarity
relationships of intuitionistic fuzzy rough sets (IFRSs), and conducted in-depth
research on several extensions of IFRSs and their integration with other extended
RS theories. Liu et al. [12] used the idea of intuitionistic fuzzy similarity to define
conflict distance, and combined it with variable precision rough sets (VPRSs) to
establish a variable precision intuitionistic fuzzy rough sets (VPIFRSs) model.
And studied the properties of VPIFRS and proposed an attribute reduction
algorithm based on VPIFRSs. Zhang [30] combines the classic Pawlak RS the-
ory with interval valued intuitionistic fuzzy sets (IVIFSs) theory to propose an
interval valued intuitionistic fuzzy rough sets (IVIFRSs) model, and studies in
detail the relevant properties of interval valued intuitionistic fuzzy rough approx-
imation operators. Sun et al. [17] proposed interval valued information system
as an extension of classical real valued information system, defining interval
dominance relationships of conditional attributes on interval valued information
systems, and further establishing rough set models and attribute reductions.
By introducing IVIFSs into three-way decisions, Ye et al. [25] provide a new
description of the loss function, and further propose a model of interval-valued
intuitionistic fuzzy decision-theoretic rough set (IVIFDTRS). In addition, there
is a large amount of research and application based on the background of IFSs,
mainly involving model expansion [2,4], measurement construction [6,10], and
corresponding attribute reduction [1,14].

The three-way decision (3WD) theory was originally proposed by Yao [23,24],
which means that we divide a whole into three parts, and take actions according
to the three parts to achieve the desired result. The three options of accept-
ing, rejecting and delaying in the decision-making process correspond to the
three parts, respectively. In recent years, as uncertainty and complexity have
increased, the 3WD theory has been applied in many fields, among which the
fusion research of the 3WD theory and IFSs have also received widespread atten-
tion [7,21]. Furthermore, some scholars have extended the membership values of
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FSs to triangular fuzzy numbers and trapezoidal fuzzy numbers based on FSs,
IFSs, and IVIFSs. Zhang et al. [27] introduced triangular fuzzy numbers into
IFSs, proposed triangular fuzzy number intuitionistic fuzzy sets (TFNIFSs), and
studied their system stability. Xu [22] defines some basic operations of TFNIFSs
and obtains some very important properties, laying a solid foundation for the
aggregation of intuitionistic fuzzy information and decision-making applications
of triangular fuzzy numbers.

Based on the above discussions, there still a lack of further research and dis-
cussion on the fusion and expansion construction of TFNIFSs and RSs. There-
fore, we consider integrating TFNIFSs and RSs to construct a triangular fuzzy
number intuitionistic fuzzy rough set (TFNIFRS), and then further generalize
the fuzzy covering to establish a triangular fuzzy number intuitionistic fuzzy
β-covering rough set. The contributions are briefly summarized as follows:

(1) From the perspective of model construction, the membership degree and
non-membership degree in TFNIFSs were respectively modified into tri-
angular fuzzy numbers, and then RS was fused to construct a TFNIFRS,
and the relevant properties on it were discussed. Moreover, we further con-
structed a triangular fuzzy number intuitionistic fuzzy β-covering rough set
by introducing β-covering [13] into TFNIFRS.

(2) From the perspective of model application, triangular fuzzy number intu-
itionistic fuzzy β-covering rough set model can be well applied to multi-
attribute group decision-making. For this purpose, we verified through
examples and also considered expert weights, and the results showed the
effectiveness of the model.

The remainder of this paper is structured as follows. In Sect. 2, some pre-
liminary definitions are introduced. In Sect. 3, we constructed TFNIFRS model
and discussed its related properties. By introducing β-covering into TFNIFRS,
a triangular fuzzy number intuitionistic fuzzy β-covering rough set model is con-
structed, and the application of the established model in multi-attribute group
decision-making was validated in Sect. 4. We conclude the paper in Sect. 5.

2 Preliminaries

In this section, we review some basic concepts related to triangular fuzzy number,
IFS, TFNIFS, score function, and exact function, which will be needed in the
following analysis.

Definition 1 ([19]). Let I = [0, 1], ã = [a−, a, a+] ∈ F (I) is called a triangular
fuzzy number, where a−, a, a+ ∈ I and 0 ≤ a− ≤ a ≤ a+ ≤ 1.

Definition 2 ([11]). Suppose ã = [a−, a, a+], b̃ = [b−, b, b+] ∈ F (I) be any two
triangular fuzzy numbers, the following ordinal relations and basic operations for
two triangular fuzzy numbers can derive:
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(1) ã ⊆ b̃ ⇔ a− ≤ b− ∧ a ≤ b ∧ a+ ≤ b+;
(2) ã = b̃ ⇔ a− = b− ∧ a = b ∧ a+ = b+;
(3) ã ∩ b̃ ⇔ a− < b− ∧ a < b ∧ a+ < b+, therefore ã ⊇ ã ∩ b̃, b̃ ⊇ ã ∩ b̃;
(4) ã ∪ b̃ ⇔ a− > b− ∧ a > b ∧ a+ > b+, therefore ã ⊆ ã ∪ b̃, b̃ ⊆ ã ∪ b̃.

Definition 3 ([3]). Let U be a nonempty finite universe, an intuitionistic fuzzy
set (IFS) A on U is defined as:

A = {〈x, μA(x), νA(x)〉|x ∈ U}, (1)

where μA : U → [0, 1], νA : U → [0, 1] are two functions on A, respectively,
and μA(x), νA(x) are called membership degree and non-membership degree of x
belonging to A, respectively. Moreover, μA(x), νA(x) satisfy the follow relation:

0 ≤ μA(x) + νA(x) ≤ 1,∀x ∈ U, (2)

and we call A(x) = 〈μA(x), νA(x)〉 an intuitive fuzzy number.

Definition 4 ([11]). Let U be a nonempty finite universe, then the triangular
fuzzy number intuitionistic fuzzy set (TFNIFS) M is defined as:

M = {〈x, μ̃M (x), ν̃M (x)〉|x ∈ U}, (3)

where,

μ̃M (x) = [μ−
M (x), μM (x), μ+

M (x)],
ν̃M (x) = [ν−

M (x), νM (x), ν+
M (x)],

and we call M(x) = 〈μ̃M (x), ν̃M (x)〉 (μ+
M (x) + ν+

M (x) ≤ 1) a triangular fuzzy
number intuitionistic fuzzy number. For any α1, α2 is a triangular fuzzy number
intuitionistic fuzzy number, i.e.,

α1 = 〈μ̃1, ν̃1〉 = 〈[μ−
1 , μ1, μ

+
1 ], [ν

−
1 , ν1, ν

+
1 ]〉,

α2 = 〈μ̃2, ν̃2〉 = 〈[μ−
2 , μ2, μ

+
2 ], [ν

−
2 , ν2, ν

+
2 ]〉,

then we can get:

(1) if α1 � α2 then μ̃1 ⊆ μ̃2 ∧ ν̃1 ⊇ ν̃2;
(2) if α1 � α2 then μ̃1 ⊇ μ̃2 ∧ ν̃1 ⊆ ν̃2.

Furthermore, for ∀M,N ∈ Ω (Ω is the set of all TFNIFSs), then the normal-
ized Hamming distance between M and N is defined as:

D(M,N) = 1
8 [|μ−

M (x) − μ−
N (x)| + 2|μM (x) − μN (x)| + |μ+

M (x) − μ+
N (x)|

+ |ν−
M (x) − ν−

N (x)| + 2|νM (x) − νN (x)| + |ν+
M (x) − ν+

N (x)|].
Definition 5 ([11]). For any M,N ∈ Ω, i.e.,

M ={〈x, [μ−
M (x), μM (x), μ+

M (x)], [ν−
M (x), νM (x), ν+

M (x)]〉|x ∈ U},

N ={〈x, [μ−
N (x), μN (x), μ+

N (x)], [ν−
N (x), νN (x), ν+

N (x)]〉|x ∈ U},

then it has the following basic operations:
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(1) M ⊆ N ⇔ μ̃M (x) ⊆ μ̃N (x) ∧ ν̃M (x) ⊇ ν̃N (x),∀x∈U ;
(2) M = N ⇔ μ̃M (x) = μ̃N (x) ∧ ν̃M (x) = ν̃N (x),∀x∈U ;
(3) ∼ M = {〈x, ν̃M (x), μ̃M (x)〉|x ∈ U};
(4) M∩N = {〈x, [μ−

M (x) ∧ μ−
N (x), μM (x) ∧ μN (x), μ+

M (x) ∧ μ+
N (x)], [ν−

M (x) ∨
ν−

N (x), νM (x) ∨ νN (x), ν+
M (x) ∨ ν+

N (x)]〉|x ∈ U};
(5) M∪N = {〈x, [μ−

M (x) ∨ μ−
N (x), μM (x) ∨ μN (x), μ+

M (x) ∨ μ+
N (x)], [ν−

M (x) ∧
ν−

N (x), νM (x) ∧ νN (x), ν+
M (x) ∧ ν+

N (x)]〉|x ∈ U};
(6) M

⊕
N =

{〈x, [μ−
M (x)+μ−

N (x)−μ−
M (x)μ−

N (x), μM (x)+μN (x)−μM (x)μN (x), μ+
M (x)+

μ+
N (x) − μ+

M (x)μ+
N (x)], [ν−

M (x)ν−
N (x), νM (x)νN (x), ν+

M (x)ν+
N (x)]〉|x ∈ U}.

Definition 6 ([19]). For a triangular fuzzy number intuitionistic fuzzy number
α = 〈[μ−, μ, μ+], [ν−, ν, ν+]〉, the score function S and the exact function H of
α are defined as follows:

S(α) =
1
4
[(μ− − ν−) + 2(μ − ν) + (μ+ − ν+)], (4)

H(α) =
μ− + 2μ + μ+

4
+

ν− + 2ν + ν+

4
. (5)

If α = 〈[1, 1, 1], [0, 0, 0]〉, then S(α) = 1; if α = 〈[0, 0, 0], [1, 1, 1]〉, then S(α) =
−1, and hence S(α) ∈ [−1, 1]. Based on the above functions, the ordering law for
two triangular fuzzy number intuitionistic fuzzy numbers α1, α2 are as follows:

(1) If S(α1) < S(α2), then α1 < α2;
(2) If S(α1) < S(α2), when H(α1) < H(α2), then α1 < α2; when H(α1) =

H(α2), then α1 = α2.

3 TFNIFRSs Model and Related Properties

In this section, the TFNIFRSs model is constructed by fusing TFNIFSs and
RSs. Firstly, we give the relevant definitions, operators, and three-way regions,
and then relevant properties are investigated. Finally, relevant properties and
conclusions are verified by an example.

3.1 TFNIFRSs

Definition 7. Let U and V be two finite nonempty universes and D = [0, 1], the
subset of triangular fuzzy number intuitionistic fuzzy defined on U×V is called
the triangular fuzzy number intuitionistic fuzzy approximation relation between
U and V . Denoted as:

R = {〈(x, y), μ̃R(x, y), ν̃R(x, y)〉|(x, y)∈U×V }, (6)

where μ̃R : U × V → F (D) and ν̃R : U × V → F (D). Meanwhile, we call the
triplet (U, V,R) as a triangular fuzzy number intuitionistic fuzzy approximate
space. In particular, when U = V , we abbreviate (U, V,R) as (U,R).
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Definition 8. Given a triangular fuzzy number intuitionistic fuzzy approxima-
tion space (U, V,R), R is a triangular fuzzy number intuitionistic fuzzy approx-
imation relation on U × V . For A ∈ Ω, the lower and upper approximations of
A about (U, V,R) are respectively

R(A) = {〈x, μ̃R(A)(x), ν̃R(A)(x)〉|x ∈ U}
= {〈x, inf

y∈V
{μ̃A(y) ∨ ν̃R(x, y)}, sup

y∈V
{ν̃A(y) ∧ μ̃R(x, y)}〉|x ∈ U},

R(A) = {〈x, μ̃R(A)(x), ν̃R(A)(x)〉|x ∈ U}
= {〈x, sup

y∈V
{μ̃R(x, y) ∧ μ̃A(y)}, inf

y∈V
{ν̃A(y) ∨ ν̃R(x, y)}〉|x ∈ U}.

(7)

The sequential pair (R(A), R(A)) is called the TFNIFRS. Further, the corre-
sponding three-way regions (i.e., positive, negative, and boundary regions) are:
POSR(A) = R(A), NEGR(A) = U − R(A), BNDR(A) = R(A) − R(A), where
the three-way regions form a division of U corresponding to the implementation
of acceptance, rejection, and delayed decisions.

Definition 9. For a triangular fuzzy number intuitionistic fuzzy relation R on
U and ∀x ∈ U , then we define

(1) R is self-inverse, when μ̃R(x, x) = [1, 1, 1] := 1̃ and ν̃R(x, x) = [0, 0, 0] := 0̃;
(2) R is symmetrical, when μ̃R(x, y) = μ̃R(y, x) and ν̃R(x, y) = ν̃R(y, x).

Furthermore, when R is self-inverse, we call R a triangular fuzzy number intu-
itionistic fuzzy approximate relation; when R is self-inverse and symmetrical, we
call R a triangular fuzzy number intuitionistic fuzzy similarity relation.

Theorem 1. Let (U,R) be a triangular fuzzy number intuitionistic fuzzy approx-
imation space, where R is an approximate relation, then the lower and upper
approximation of A have the following properties:

(1) (Pinchability) R(A) ⊆ A ⊆ R(A);
(2) (Bipolarity) R(∅) = R(∅) = ∅, R(U) = R(U) = U ;
(3) (Monotonicity) A ⊆ B ⇒ R(A) ⊆ R(B), R(A) ⊆ R(B);
(4) R(A ∪ B) = R(A) ∪ R(B), R(A ∩ B) = R(A) ∩ R(B);
(5) R(A) ∪ R(B) ⊆ R(A ∪ B), R(A ∩ B) ⊆ R(A) ∩ R(B).

Proof. (1) For ∀x ∈ U and self-inverse R, we have

μ̃R = [1, 1, 1] := 1̃, ν̃R(x, x) = [0, 0, 0] := 0̃,

thus, we an get

μ̃R(A)(x) = inf
y∈V

{μ̃A(y) ∨ ν̃R(x, y)} ⊆ μ̃A(x) ∨ ν̃R(x, x) = μ̃A(x) ∨ 0̃ = μ̃A(x),∀y ∈ U,

ν̃R(A)(x) = sup
y∈V

{ν̃A(y) ∧ μ̃R(x, y)} ⊇ ν̃A(x) ∧ μ̃R(x, x) = 1̃ ∧ ν̃A(x) = ν̃A(x),∀y ∈ U,

i.e., R(A) ⊆ A. A ⊆ R(A) similarly certifiable. Therefore R ⊆ A ⊆ R is proved.
Moreover, the proofs of Properties (2)–(5) are obvious by Definitions 5, 8 and 9.
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3.2 TFNIFRSs Model Example

In this subsection, the above properties of the TFNIFRSs model (on the pincha-
bility, monotonicity, and concurrency relations) are demonstrated by an example.

Example 1. Let U = {x1, x2, x3, x4}, the triangular fuzzy number intuitionistic
fuzzy similarity relation R provided in Table 1. Take TFNIFSs A ⊆ B as follows:

A = {〈x1, [0.2, 0.4, 0.5], [0.4, 0.45, 0.5]〉, 〈x2[0.3, 0.43, 0.5], [0.3, 0.37, 0.5]〉,
〈x3, [0.4, 0.5, 0.6], [0.2, 0.25, 0.3]〉, 〈x4, [0.4, 0.6, 0.7], [0.0, 0.1, 0.2]〉},

B = {〈x1, [0.3, 0.4, 0.6], [0.3, 0.4, 0.4]〉, 〈x2[0.55, 0.6, 0.7], [0.1, 0.2, 0.4]〉,
〈x3, [0.6, 0.6, 0.7], [0.1, 0.2, 0.2]〉, 〈x4, [0.5, 0.7, 0.8], [0.0, 0.1, 0.1]〉}.

Table 1. Triangular fuzzy number intuitionistic fuzzy relationship R

U/U x1 x2 x3 x4

x1 {[1.00, 1.00, 1.00], {[0.56, 0.60, 0.70], {[0.36, 0.40, 0.55], {[0.28, 0.30, 0.55],
[0.00, 0.00, 0.00]} [0.10, 0.20, 0.30]} [0.20, 0.30, 0.40]} [0.10, 0.30, 0.40]}

x2 {[0.56, 0.60, 0.70], {[1.00, 1.00, 1.00], {[0.50, 0.60, 0.70], {[0.30, 0.44, 0.50],
[0.10, 0.20, 0.30]} [0.00, 0.00, 0.00]} [0.20, 0.20, 0.30]} [0.25, 0.30, 0.40]}

x3 {[0.36, 0.40, 0.55], {[0.50, 0.60, 0.70], {[1.00, 1.00, 1.00], {[0.70, 0.80, 0.80],
[0.20, 0.30, 0.40]} [0.20, 0.20, 0.30]} [0.00, 0.00, 0.00]} [0.10, 0.15, 0.20]}

x4 {[0.28, 0.30, 0.55], {[0.30, 0.40, 0.50], {[0.70, 0.80, 0.80], {[1.00, 1.00, 1.00],
[0.10, 0.30, 0.40]} [0.25, 0.30, 0.40]} [0.10, 0.15, 0.20]} [0.00, 0.00, 0.00]}

As an example, the computation of the sample x1 is provided here. By Defi-
nition 8, we have:

μ̃R(A)(x1) = inf
xi∈U

[μ̃A(xi) ∨ ν̃R(x1, xi)]

= inf{[0.20, 0.40, 0.50] ∨ [0.00, 0.00, 0.00], [0.30, 0.43, 0.50] ∨ [0.10, 0.20, 0.30],

[0.40, 0.50, 0.60] ∨ [0.20, 0.30, 0.40], [0.40, 0.60, 0.70] ∨ [0.10, 0.30, 0.40]}
= inf{[0.20, 0.40, 0.50], [0.30, 0.43, 0.50], [0.45, 0.50, 0.60], [0.40, 0.60, 0.70]}
= [0.20, 0.40, 0.50],

ν̃R(A)(x1) = sup
xi∈U

[μ̃R(x1, xi) ∧ ν̃A(xi)]

= sup{[1.00, 1.00, 1.00] ∧ [0.40, 0.45, 0.50], [0.56, 0.60, 0.70] ∧ [0.30, 0.37, 0.50],

[0.36, 0.40, 0.55] ∧ [0.20, 0.25, 0.30], [0.28, 0.30, 0.55] ∧ [0.00, 0.10, 0.20]}
= sup{[0.40, 0.45, 0.50], [0.30, 0.37, 0.50], [0.20, 0.25, 0.30], [0.00, 0.10, 0.20]}
= [0.40, 0.45, 0.50].

Therefore, the lower and upper approximation for x1 can be obtained as:

R(A)(x1) = {〈[0.20, 0.40, 0.50], [0.40, 0.45, 0.50]〉},

R(A)(x1) = {〈[0.36, 0.43, 0.55], [0.10, 0.30, 0.40]〉}.
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Similarly, it can be inferred that the upper and lower approximations of A
and B by x1 are respectively:

R(B)(x1) = {〈x1, [0.30, 0.40, 0.60], [0.30, 0.40, 0.40]〉},

R(B)(x1) = {〈x1, [0.50, 0.60, 0.70], [0.10, 0.20, 0.30]〉},

R(A) ∩ R(B)(x1) = {〈x1, [0.20, 0.40, 0.50], [0.40, 0.45, 0.50]〉},

R(A ∩ B)(x1) = {〈x1, [0.20, 0.40, 0.50], [0.40, 0.45, 0.50]〉},

R(A) ∪ R(B)(x1) = {〈x1, [0.50, 0.60, 0.70], [0.10, 0.20, 0.30]〉},

R(A ∪ B)(x1) = {〈x1, [0.50, 0.60, 0.70], [0.10, 0.20, 0.30]〉}.

According to the result of Example 1, the approximation set of the TFNIFS is
still an TFNIFS. From the subset relation of Definition 5, we can obtain R(A) ⊆
A ⊆ R(A), R(A) ⊆ R(B), R(A) ⊆ R(B), R(A ∩ B) = R(A) ∩ R(B), R(A ∪ B) =
R(A) ∪ R(B). The numerical results above can support and verify Theorem 1.

4 Triangular Fuzzy Number Intuitionistic Fuzzy
β-Covering Rough Sets Model and Application

In this section, we give the definition of triangular fuzzy number intuitionistic
fuzzy β-covering and the neighborhood system based on covering sets to build the
rough sets model. Then we combine it with multi-attribute decision making to
carry out practical examples in decision making under triangular fuzzy number
intuitionistic fuzzy information system.

4.1 Triangular Fuzzy Number Intuitionistic Fuzzy β-Covering
Rough Sets

Definition 10. Let C = {C1, · · · , Cm}, where Ci(i = 1, · · · ,m) is a triangu-
lar fuzzy number intuitionistic fuzzy number. β = 〈β1, β2〉 is a triangular fuzzy
number intuitionistic fuzzy number, and C is called a triangular fuzzy number

intuitionistic fuzzy β-covering on U , if (
m⋃

i=1

Ci)(xi) � β. Moreover, (U,C) is

called the triangular fuzzy number intuitionistic fuzzy covering approximation
space.

Definition 11. Let (U,C) be the triangular fuzzy number intuitionistic fuzzy
covering approximation space, β = 〈β1, β2〉 is a triangular fuzzy number intu-
itionistic fuzzy number, C = {C1, · · · , Cm} is the triangular fuzzy number
intuitionistic fuzzy β-covering. N̂β

x = ∩{Cj ∈ C|Cj � β, j = 1, · · · ,m}
is the triangular fuzzy number intuitionistic fuzzy β-neighborhood of x, and
Ñβ

C = {〈y, N̂β
x (y)〉|y ∈ U} is a triangular fuzzy number intuitionistic fuzzy β-

neighborhood system induced by the triangular fuzzy number intuitionistic fuzzy
β-covering.
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Definition 12. Let (U,C) be the triangular fuzzy number intuitionistic fuzzy
covering approximation space, β = 〈β1, β2〉 is a triangular fuzzy number intu-
itionistic fuzzy number, C = {C1, · · · , Cm} is the triangular fuzzy number intu-
itionistic fuzzy β-covering, for any A is a TFNIFS, the upper and lower approx-
imations and of A under the triangular fuzzy number intuitionistic fuzzy β-
neighborhood system Ñβ

C are defined as follows:

Ñβ
C(A) = {〈x, N̂β

C(A)(x)〉|x ∈ U}
= {〈x, inf

y∈V
{μ̃A(y) ∨ ν̃N̂β

x
(y)}, sup

y∈V
{ν̃A(y) ∧ μ̃N̂β

x
(y)}〉|x ∈ U},

Ñβ
C(A) = {〈x, N̂β

C(A)(x)〉|x ∈ U}
= {〈x, sup

y∈V
{μ̃N̂β

x
(y) ∧ μ̃A(y)}, inf

y∈V
{ν̃N̂β

x
(y) ∨ ν̃A(y)}〉|x ∈ U}.

(8)

Moreover, the sequential pair (Ñβ
C(A), Ñβ

C(A)) is called the triangular fuzzy
number intuitionistic fuzzy β-covering rough sets, and the corresponding three-
way regions (i.e., positive, negative, and boundary regions) are: POSÑβ

C
(A) =

Ñβ
C(A), NEGÑβ

C
(A) = U − Ñβ

C(A), BNDÑβ
C
(A) = Ñβ

C(A) − Ñβ
C(A), where the

three-way regions form a division of U corresponding to the implementation of
acceptance, rejection, and delayed decisions.

4.2 Model Application

Let U = {x1, · · · , xn} be the set of n recruitment objects, C = {C1, · · · , Cm}
be the description of evaluation criteria for each recruitment object, d =
{d1, · · · , dt} be the t experts involved in the evaluation, and ω = {ω1, · · · , ωt}
be the weight of each expert, ωk ≥ 0 and satisfies

∑t
k=1 ωk = 1. The steps for

determining the expert weights are given below.

Definition 13. The consistency measure of expert dk on xi is defined:

CMk(xi) =
∑

r �=k

m∑

j=1

D(Cr
j (xi), Ck

j (xi)), (9)

and the consistency measure of expert dk about triangular fuzzy number intu-
itionistic fuzzy decision matrix M(K) = {Ck

j (xi)}(n×m) is defined:

CMk =
n∑

i=1

CMk(xi) =
∑

r �=k

n∑

i=1

m∑

j=1

D(Cr
j (xi), Ck

j (xi)). (10)

Assuming that ω = {ω1, · · · , ωt} is the experts’ weight vector, we get:

ωk =
CMk

∑t
r=1 CMr

. (11)

Clearly, 0 ≤ ωk ≤ 1 and
∑t

k=1 ωk = 1.
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4.3 Multi-attribute Decision-Making Algorithm Based
on Triangular Fuzzy Number Intuitionistic Fuzzy β-Covering
Rough Sets

In this subsection, we propose a multi-attribute decision-making algorithm based
on the triangular fuzzy number intuitionistic fuzzy β-covering rough sets, where
U = {x1, · · · , xn}, and there are m TFNIFSs on U constituting the triangular
fuzzy number intuitionistic fuzzy decision matrix C.

Algorithm 1. The optimal object is selected by using triangular fuzzy number
intuitionistic fuzzy β-covering rough sets
Input: Multi-attribute triangular fuzzy number intuitionistic fuzzy decision-making
information system (U, C, A) and β.
Output: Sorting results for all objects in U .
1: Import experts’ evaluation data;
2: Compute the β-neighborhood system Ñβ

C ;
3: Compute the upper and lower approximations Ñβ

C(A) and Ñβ
C(A) of A;

4: Calculate the score function Si(Ñ
β
C(A)

⊕
Ñβ

C(A))(x) for each expert;
5: Calculate the total score function value SU (xi) according to the experts’ weights,

sort by function value size.

Fig. 1. Algorithm 1’s flows chart on objects sorting

Algorithm 1 calculates and sorts for objects in U by using triangular fuzzy
number intuitionistic fuzzy β covering rough set, which follows the follows the
flow chart of Fig 1. The total time complexity of Algorithm 1 is O(|U |3 × |V |).
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4.4 Example Illustration

A company in September 2023 for the vacancy of a certain position to go to
each high school to recruitment of talents, set U = {x1, · · · , x5} represents
the demand collected by the initial review of the five project applications. The
project applications are collected on demand, from which one or two outstanding
recruits are selected. In order to ensure the scientific nature of the evaluation,
denotes 3 experts in the field hired by the company to evaluate these 5 recruit-
ment targets, d = {d1, d2, d3} denotes the weight of each expert and gives 6 job
criteria C = {C1, · · · , C6}, i.e., specialized knowledge ability (C1), practicality of
theories and applications (C2), innovativeness (C3), inquisitiveness (C4), insight-
fulness (C5), and foresight (C6). The 3 experts give the value of 5 recruitment
targets xi under the job criteria Cj , denoted as Cj(xi) = 〈[μ̃ij , ν̃ij ]〉 respectively.
Where μ̃ij denotes the set of triangular fuzzy numbers for which xi satisfies the
job criterion Cj , and ν̃ij denotes the set of triangular fuzzy numbers for which
xi does not satisfy the job criterion Cj . These values form the triangular fuzzy
number intuitionistic fuzzy decision matrix as shown in Table 2 below. At the
same time, the company according to its own preference to use the triangular
intuitionistic fuzzy number to evaluate each recruitment target, denoted by A.

A = {〈x1, [0.3, 0.3, 0.4], [0.5, 0.55, 0.6]〉, 〈x2, [0.6, 0.7, 0.8], [0.1, 0.1, 0.2]〉,
〈x3, [0.5, 0.7, 0.8], [0.1, 0.2, 0.2]〉, 〈x4, [0.65, 0.7, 0.8], [0.1, 0.2, 0.2]〉,
〈x5, [0.4, 0.5, 0.6], [0.2, 0.3, 0.4]〉}.

Let β = 〈[0.4, 0.44, 0.5], [0.2, 0.3, 0.55]〉, from Definition 10, C = {C1, · · · , C6}
constitutes a triangular fuzzy number intuitionistic fuzzy β-covering of U . Taking
expert 1 as an example, we can get Ĥβ

x1
= C2 ∩ C3 ∩ C4 ∩ C5 ∩ C6, Ĥ

β
x2

=
C2 ∩ C5 ∩ C6, Ĥ

β
x3

= C3 ∩ C4 ∩ C6, Ĥ
β
x4

= C1 ∩ C2 ∩ C6, Ĥ
β
x5

= C1 ∩ C2 ∩ C5 ∩ C6

by Definition 11, and the results of β-neighbor systems are presented in Table 3.
To avoid tedious length, only the upper and lower approximation of Ñβ

1C(A)

are given below. By Definition 12, H̃β
C(A) and H̃β

C(A) are calculated as follows:

Ñβ
1C(A) = {〈x1, [0.3, 0.3, 0.4], [0.5, 0.5, 0.6]〉, 〈x2, [0.3, 0.3, 0.4], [0.5, 0.5, 0.6]〉,

〈x3, [0.3, 0.3, 0.4], [0.5, 0.5, 0.6]〉, 〈x4, [0.4, 0.5, 0.5], [0.3, 0.4, 0.5]〉,
〈x5, [0.4, 0.5, 0.5], [0.3, 0.4, 0.5]〉},

Ñβ
1C(A) = {〈x1, [0.4, 0.5, 0.6], [0.3, 0.3, 0.4]〉, 〈x2, [0.5, 0.6, 0.7], [0.1, 0.2, 0.3]〉,

〈x3, [0.4, 0.6, 0.7], [0.1, 0.2, 0.3]〉, 〈x4, [0.5, 0.6, 0.7], [0.2, 0.2, 0.3]〉,
〈x5, [0.5, 0.6, 0.6], [0.2, 0.3, 0.4]〉}.
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Table 2. Evaluation values of the guidelines given by experts 1–3

U/C C1 C2 C3 C4 C5 C6

x1 {[0.3, 0.4, 0.5], {[0.6, 0.7, 0.8], {[0.6, 0.6, 0.7], {[0.5, 0.6, 0.7], {[0.6, 0.6, 0.7], {[0.5, 0.5, 0.6],

[0.4, 0.5, 0.5]} [0.1, 0.1, 0.2]} [0.2, 0.2, 0.3]} [0.1, 0.2, 0.2]} [0.1, 0.2, 0.5]} [0.2, 0.2, 0.3]}
x2 {[0.4, 0.5, 0.6], {[0.5, 0.6, 0.6], {[0.4, 0.5, 0.6], {[0.2, 0.3, 0.4], {[0.4, 0.6, 0.7], {[0.6, 0.6, 0.8],

[0.2, 0.3, 0.4]} [0.1, 0.2, 0.3]} [0.2, 0.3, 0.4]} [0.4, 0.5, 0.6]} [0.1, 0.2, 0.2]} [0.1, 0.1, 0.2]}
x3 {[0.2, 0.3, 0.4], {[0.4, 0.5, 0.6], {[0.7, 0.8, 0.9], {[0.5, 0.6, 0.8], {[0.5, 0.5, 0.6], {[0.4, 0.6, 0.7],

[0.4, 0.5, 0.6]} [0.3, 0.3, 0.4]} [0.1, 0.1, 0.1]} [0.1, 0.2, 0.2]} [0.3, 0.3, 0.4]} [0.1, 0.2, 0.3]}
x4 {[0.5, 0.6, 0.7], {[0.5, 0.8, 0.8], {[0.5, 0.6, 0.6], {[0.4, 0.5, 0.6], {[0.6, 0.6, 0.7], {[0.5, 0.6, 0.7],

[0.1, 0.2, 0.2]} [0.1, 0.1, 0.2]} [0.2, 0.3, 0.4]} [0.3, 0.4, 0.4]} [0.1, 0.3, 0.4]} [0.2, 0.2, 0.3]}
x5 {[0.7, 0.7, 0.8], {[0.5, 0.5, 0.5], {[0.7, 0.7, 0.7], {[0.4, 0.5, 0.6], {[0.5, 0.5, 0.7], {[0.4, 0.6, 0.6],

[0.1, 0.1, 0.2]} [0.2, 0.3, 0.4]} [0.1, 0.1, 0.2]} [0.3, 0.3, 0.4]} [0.2, 0.3, 0.3]} [0.1, 0.1, 0.2]}
x1 {[0.3, 0.4, 0.4], {[0.5, 0.6, 0.7], {[0.5, 0.5, 0.6], {[0.4, 0.5, 0.6], {[0.4, 0.6, 0.6], {[0.5, 0.6, 0.7],

[0.2, 0.3, 0.4]} [0.1, 0.1, 0.1]} [0.1, 0.1, 0.2]} [0.1, 0.2, 0.4]} [0.2, 0.2, 0.2]} [0.1, 0.2, 0.3]}
x2 {[0.4, 0.5, 0.5], {[0.5, 0.5, 0.6], {[0.4, 0.5, 0.5], {[0.6, 0.7, 0.7], {[0.5, 0.6, 0.7], {[0.4, 0.5, 0.5],

[0.1, 0.2, 0.3]} [0.2, 0.2, 0.4]} [0.1, 0.2, 0.2]} [0.1, 0.1, 0.3]} [0.1, 0.3, 0.3]} [0.1, 0.2, 0.4]}
x3 {[0.5, 0.6, 0.7], {[0.4, 0.5, 0.6], {[0.4, 0.6, 0.6], {[0.5, 0.5, 0.6], {[0.4, 0.5, 0.5], {[0.5, 0.6, 0.7],

[0.1, 0.1, 0.3]} [0.2, 0.2, 0.3]} [0.2, 0.2, 0.4]} [0.2, 0.3, 0.3]} [0.3, 0.3, 0.4]} [0.1, 0.1, 0.2]}
x4 {[0.4, 0.5, 0.7], {[0.5, 0.6, 0.6], {[0.5, 0.6, 0.6], {[0.6, 0.6, 0.7], {[0.6, 0.6, 0.6], {[0.5, 0.6, 0.6],

[0.1, 0.1, 0.2]} [0.1, 0.2, 0.3]} [0.2, 0.3, 0.4]} [0.1, 0.1, 0.2]} [0.2, 0.2, 0.3]} [0.1, 0.3, 0.3]}
x5 {[0.4, 0.5, 0.5], {[0.6, 0.6, 0.7], {[0.5, 0.6, 0.7], {[0.7, 0.7, 0.8], {[0.4, 0.5, 0.5], {[0.6, 0.6, 0.7],

[0.2, 0.3, 0.5]} [0.1, 0.3, 0.3]} [0.2, 0.3, 0.3]} [0.1, 0.1, 0.1]} [0.2, 0.3, 0.4]} [0.1, 0.2, 0.2]}
x1 {[0.4, 0.5, 0.6], {[0.6, 0.7, 0.7], {[0.4, 0.5, 0.6], {[0.6, 0.6, 0.7], {[0.5, 0.5, 0.6], {[0.5, 0.5, 0.7],

[0.2, 0.3, 0.4]} [0.1, 0.2, 0.3]} [0.3, 0.3, 0.4]} [0.1, 0.2, 0.3]} [0.1, 0.2, 0.3]} [0.1, 0.2, 0.2]}
x2 {[0.4, 0.4, 0.5], {[0.5, 0.5, 0.6], {[0.5, 0.6, 0.7], {[0.5, 0.6, 0.6], {[0.5, 0.6, 0.6], {[0.6, 0.7, 0.8],

[0.2, 0.3, 0.3]} [0.1, 0.3, 0.3]} [0.2, 0.2, 0.3]} [0.1, 0.2, 0.2]} [0.2, 0.2, 0.3]} [0.1, 0.2, 0.2]}
x3 {[0.5, 0.5, 0.6], {[0.5, 0.6, 0.7], {[0.5, 0.5, 0.6], {[0.6, 0.6, 0.8], {[0.6, 0.6, 0.7], {[0.4, 0.5, 0.6],

[0.1, 0.3, 0.3]} [0.2, 0.2, 0.2]} [0.1, 0.2, 0.4]} [0.1, 0.1, 0.2]} [0.1, 0.2, 0.2]} [0.2, 0.3, 0.4]}
x4 {[0.6, 0.6, 0.7], {[0.6, 0.6, 0.8], {[0.6, 0.6, 0.7], {[0.4, 0.5, 0.6], {[0.4, 0.4, 0.6], {[0.6, 0.7, 0.7],

[0.2, 0.3, 0.3]} [0.1, 0.1, 0.1]} [0.1, 0.1, 0.2]} [0.1, 0.2, 0.3]} [0.2, 0.3, 0.4]} [0.1, 0.1, 0.2]}
x5 {[0.5, 0.5, 0.6], {[0.5, 0.5, 0.5], {[0.4, 0.4, 0.5], {[0.6, 0.7, 0.8], {[0.5, 0.6, 0.6], {[0.4, 0.5, 0.6],

[0.2, 0.2, 0.3]} [0.2, 0.2, 0.4]} [0.2, 0.2, 0.4]} [0.1, 0.2, 0.4]} [0.1, 0.3, 0.3]} [0.2, 0.2, 0.4]}

Moreover, according to Definition 6, the score functions for the three experts
are calculated as follows:

S1(Ñ
β
1C(A)

⊕
Ñβ

1C(A))(x)

= {〈x1, 0.4875〉, 〈x2, 0.62〉, 〈x3, 0.6025〉, 〈x4, 0.695〉, 〈x5, 0.65〉},

S2(Ñ
β
2C(A)

⊕
Ñβ

2C(A))(x)

= {〈x1, 0.5575〉, 〈x2, 0.5625〉, 〈x3, 0.5825〉, 〈x4, 0.555〉, 〈x5, 0.5825〉},

S3(Ñ
β
3C(A)

⊕
Ñβ

3C(A))(x)

= {〈x1, 0.5325〉, 〈x2, 0.5375〉, 〈x3, 0.5375〉, 〈x4, 0.52〉, 〈x5, 0.5475〉}.

Then, the three experts’ weights are calculated as: ω1 = 0.3483, ω2 =
0.3327, ω3 = 0.3189 by Definition 13, and the total score function values as
follows:
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Table 3. Triangular fuzzy number intuitionistic fuzzy β-neighborhood systems for
experts 1–3

H̃β
C x1 x2 x3 x4 x5

Ĥβ
x1 {[0.5, 0.5, 0.6], {[0.2, 0.3, 0.4], {[0.4, 0.5, 0.6], {[0.4, 0.5, 0.6], {[0.4, 0.5, 0.5],

[0.2, 0.2, 0.3]} [0.4, 0.5, 0.6]} [0.3, 0.3, 0.4]} [0.3, 0.4, 0.4]} [0.3, 0.4, 0.4]}
Ĥβ

x2 {[0.5, 0.5, 0.6], {[0.4, 0.6, 0.6], {[0.4, 0.5, 0.6], {[0.5, 0.6, 0.7], {[0.4, 0.5, 0.5],
[0.2, 0.2, 0.3]} [0.1, 0.2, 0.3]} [0.3, 0.3, 0.4]} [0.2, 0.3, 0.4]} [0.2, 0.3, 0.4]}

Ĥβ
x3 {[0.5, 0.5, 0.6], {[0.2, 0.3, 0.4], {[0.4, 0.6, 0.7], {[0.4, 0.5, 0.6], {[0.4, 0.5, 0.6],

[0.2, 0.2, 0.3]} [0.4, 0.5, 0.6]} [0.1, 0.2, 0.3]} [0.3, 0.4, 0.4]} [0.3, 0.4, 0.4]}
Ĥβ

x4 {[0.3, 0.4, 0.5], {[0.4, 0.5, 0.6], {[0.2, 0.3, 0.4], {[0.5, 0.6, 0.7], {[0.4, 0.5, 0.5],
[0.4, 0.5, 0.5]} [0.2, 0.3, 0.4]} [0.4, 0.5, 0.6]} [0.2, 0.2, 0.3]} [0.2, 0.3, 0.4]}

Ĥβ
x5 {[0.3, 0.4, 0.5], {[0.4, 0.5, 0.6], {[0.2, 0.3, 0.4], {[0.5, 0.6, 0.6], {[0.4, 0.5, 0.6],

[0.4, 0.5, 0.5]} [0.2, 0.3, 0.4]} [0.4, 0.5, 0.6]} [0.2, 0.3, 0.4]} [0.2, 0.3, 0.3]}
Ĥβ

x1 {[0.4, 0.5, 0.6], {[0.4, 0.5, 0.5], {[0.4, 0.5, 0.5], {[0.5, 0.6, 0.6], {[0.4, 0.5, 0.5],
[0.2, 0.2, 0.3]} [0.2, 0.3, 0.4]} [0.3, 0.3, 0.4]} [0.2, 0.3, 0.4]} [0.2, 0.3, 0.4]}

Ĥβ
x2 {[0.3, 0.4, 0.4], {[0.4, 0.5, 0.5], {[0.4, 0.5, 0.5], {[0.4, 0.5, 0.6], {[0.4, 0.5, 0.5],

[0.2, 0.3, 0.4]} [0.1, 0.3, 0.3]} [0.3, 0.3, 0.4]} [0.2, 0.3, 0.4]} [0.2, 0.3, 0.5]}
Ĥβ

x3 {[0.3, 0.4, 0.4], {[0.4, 0.5, 0.5], {[0.4, 0.5, 0.6], {[0.4, 0.5, 0.6], {[0.4, 0.5, 0.6],
[0.2, 0.3, 0.4]} [0.2, 0.2, 0.4]} [0.2, 0.3, 0.3]} [0.1, 0.3, 0.3]} [0.2, 0.3, 0.5]}

Ĥβ
x4 {[0.3, 0.4, 0.4], {[0.4, 0.5, 0.5], {[0.4, 0.5, 0.5], {[0.4, 0.5, 0.6], {[0.4, 0.5, 0.5],

[0.2, 0.3, 0.4]} [0.2, 0.3, 0.4]} [0.3, 0.3, 0.4]} [0.2, 0.3, 0.3]} [0.2, 0.3, 0.5]}
Ĥβ

x5 {[0.4, 0.5, 0.6], {[0.4, 0.5, 0.5], {[0.4, 0.5, 0.6], {[0.4, 0.5, 0.6], {[0.5, 0.6, 0.7],
[0.1, 0.2, 0.4]} [0.2, 0.2, 0.4]} [0.2, 0.3, 0.4]} [0.2, 0.3, 0.3]} [0.2, 0.3, 0.3]}

Ĥβ
x1 {[0.5, 0.5, 0.6], {[0.5, 0.5, 0.6], {[0.4, 0.5, 0.6], {[0.4, 0.4, 0.6], {[0.4, 0.5, 0.5],

[0.1, 0.2, 0.3]} [0.2, 0.3, 0.3]} [0.2, 0.3, 0.4]} [0.2, 0.3, 0.4]} [0.2, 0.3, 0.4]}
Ĥβ

x2 {[0.4, 0.5, 0.6], {[0.5, 0.5, 0.6], {[0.4, 0.5, 0.6], {[0.4, 0.4, 0.6], {[0.4, 0.4, 0.5],
[0.3, 0.3, 0.4]} [0.2, 0.3, 0.3]} [0.2, 0.3, 0.4]} [0.2, 0.3, 0.4]} [0.2, 0.3, 0.4]}

Ĥβ
x3 {[0.4, 0.5, 0.6], {[0.4, 0.4, 0.5], {[0.5, 0.5, 0.6], {[0.4, 0.4, 0.6], {[0.5, 0.5, 0.5],

[0.2, 0.3, 0.4]} [0.2, 0.3, 0.3]} [0.2, 0.3, 0.3]} [0.2, 0.3, 0.4]} [0.2, 0.3, 0.4]}
Ĥβ

x4 {[0.4, 0.5, 0.6], {[0.4, 0.4, 0.5], {[0.4, 0.5, 0.6], {[0.4, 0.5, 0.6], {[0.4, 0.4, 0.5],
[0.3, 0.3, 0.4]} [0.2, 0.3, 0.3]} [0.2, 0.3, 0.4]} [0.2, 0.3, 0.3]} [0.2, 0.2, 0.4]}

Ĥβ
x5 {[0.4, 0.5, 0.6], {[0.4, 0.4, 0.5], {[0.5, 0.5, 0.6], {[0.4, 0.4, 0.6], {[0.5, 0.5, 0.6],

[0.4, 0.5, 0.6]} [0.2, 0.3, 0.3]} [0.1, 0.3, 0.3]} [0.2, 0.3, 0.4]} [0.2, 0.3, 0.3]}

SU = {〈x1, 0.5251〉, 〈x2, 0.5745〉, 〈x3, 0.5751〉, 〈x4, 0.5925〉, 〈x5, 0.5948〉}. (12)

Based on the above calculations, the 5 recruitment targets were ranked by the
comparison method of Definition 6. From Eq. (12), it can be seen that the score
function values ranked in the first two recruitment targets are x5, x4. Therefore,
the most suitable employees for the company are the 5th recruitment target and
the 4th recruitment target, and the other cases can be analyzed in an analogous
way. Similar analysis can be done for other cases.
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5 Conclusion

In this paper, the TFNIFRS model is established by fusing the TFNIFS with
RS, and using the intuitionistic fuzzy approximation relation of triangular fuzzy
numbers. At the same time, the corresponding approximation operators, corre-
lation properties, three-way regions, and the numerical calculation are studied
and verified. Secondly, based on TFNIFS and covering rough set, the concepts
of triangular fuzzy number intuitionistic fuzzy β-coverage and neighborhood
are proposed, and the triangular fuzzy number intuitionistic fuzzy β-covering
rough set is establish, which is applicable to multi-attribute decision-making and
enhances the management of fuzzy information as well as the analysis of uncer-
tainty. Finally, the feasibility and effectiveness of the triangular fuzzy number
intuitionistic fuzzy β-covering rough set for multi-attribute decision making are
verified by an example. Based on TFNIFRSs, related measurement construc-
tion, attribute reduction and rule extraction become our next research target. In
addition, more multi-attribute decision making methods and their corresponding
comparative analysis are worthy of further study.

Acknowledgements. The work was supported by National Natural Science Founda-
tion of China (62206228), Natural Science Foundation of Sichuan Province of China
(24NSFSC1487, 2022NSFSC0929), Sichuan Science and Technology Program of China
(2022ZYD0001), and Humanities and Social Sciences Project of the Ministry of Edu-
cation of China (23YJA630114).

Disclosure of Interests. The authors declare that they have no conflicts of interest
to this work.

References

1. Anh, P.V., Thuy, N.N., Thi, V.D., Giang, N.L.: On distance-based attribute reduc-
tion with α, β-level intuitionistic fuzzy sets. IEEE Access 11, 138095–138107 (2023)

2. Atanassov, K.T.: Circular intuitionistic fuzzy sets. J. Intell. Fuzzy. Syst. 39(5),
5981–5986 (2022)

3. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy. Set. Syst. 20(1), 87–96 (1986)
4. Atanassov, K., Vassilev, P.: Intuitionistic fuzzy sets and other fuzzy sets extensions

representable by them. J. Intell. Fuzzy. Syst. 318(1), 525–530 (2020)
5. Chen, H., Li, T., Luo, C., Horng, S.-J., Wang, G.: A decision-theoretic rough set

approach for dynamic data mining. IEEE. Trans. Fuzzy Syst. 23(6), 1958–1970
(2015)

6. Chen, Z.C., Liu, P.H.: Intuitionistic fuzzy value similarity measures for intuition-
istic fuzzy sets. Comput. Appl. Math. 41(1), 45 (2022)

7. Dai, J.H., Chen, T., Zhang, K.: The intuitionistic fuzzy concept-oriented three-way
decision model. Inf. Sci. 619, 52–83 (2023)

8. Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. Int. J. Gener. Syst.
17(2), 191–209 (1990)

9. Gangadhari, R.K., Khanzode, V., Murthy, S.: Application of rough set theory
and machine learning algorithms in predicting accident outcomes in the Indian
petroleum industry. Concurr. Comput.-Pract. 34(26), e7277 (2022)



28 Z. Bai et al.

10. He, X.X., Li, Y.F., Du, L.M., Qin, K.Y.: Two computational formulae for similarity
measures on intuitionistic fuzzy sets based on intuitionistic fuzzy equivalencies. J.
Intell. Fuzzy. Syst. 37(5), 7073–7086 (2019)

11. Liu, F., Yuan, X.H.: Fuzzy number intuitionistic fuzzy set. Fuzzy Set. Syst. 21(1),
88–91 (2007)

12. Liu, Y., Lin, Y., Zhao, H.H.: Variable precision intuitionistic fuzzy rough set model
and applications based on conflict distance. Expert. Syst. 32(2), 220–227 (2015)

13. Ma, L.W.: Two fuzzy covering rough set models and their generalizations over
fuzzy lattices. Fuzzy Set. Syst. 294, 1–17 (2016)

14. Ma, X.Q., Qin, H.W., Abawajy, J.H.: Interval-valued intuitionistic fuzzy soft sets
based decision-making and parameter reduction. IEEE. Trans. Knowl. Data. Eng.
30(2), 357–369 (2022)

15. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)
16. Singh, S., Som, T.: Intuitionistic fuzzy rough sets: theory to practice. Math. Com-

put. Sci. Eng. 91–133 (2022)
17. Sun, B.Z., Ma, W.M., Gong, Z.T.: Dominance-based rough set theory over interval-

valued information systems. Expert. Syst. 31(2), 185–197 (2014)
18. Tiew, S.T., et al.: A fragrance prediction model for molecules using rough set-based

machine learning. Chem. Ing. Tech. 95(3), 438–446 (2023)
19. Verma, R.: Generalized Bonferroni mean operator for fuzzy number intuitionistic

fuzzy sets and its application to multiattribute decision making. Int. J. Intell. Syst.
30(5), 499–519 (2015)

20. Xia, S.Y., et al.: GRRS: accurate and efficient neighborhood rough set for feature
selection. IEEE Trans. Knowl. Data Eng. 35(9), 9281–9294 (2022)

21. Xue, Z.A., Sun, B.X., Hou, H.D., Pang, W.L., Zhang, Y.N.: Three-way decision
models based on multi-granulation rough intuitionistic hesitant fuzzy Sets. Cogn.
Comput. 14(6), 1859–1880 (2022)

22. Xu, Y.J.: Some new operations on triangular fuzzy number intuitionistic fuzzy set.
In: 2019 Chinese Control and Decision Conference (CCDC), Nanchang, China, pp.
3760–3763 (2019)

23. Yao, Y.: Three-way decision: an interpretation of rules in rough set theory. In:
Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds.) RSKT 2009.
LNCS (LNAI), vol. 5589, pp. 642–649. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-02962-2_81

24. Yao, Y.Y.: Three-way decisions with probabilistic rough sets. Inf. Sci. 180(3), 341–
353 (2010)

25. Ye, D.Y., Liang, D.C., Hu, P.: Three-way decisions with interval-valued intuitionis-
tic fuzzy decision-theoretic rough sets in group decision-making. Symmetry-Basel.
10(7), 281 (2018)

26. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
27. Zhang, Q.L., Liu, F., Fan, C.Q., Xie, W.H.: Fuzzy numbers intuitionistic fuzzy

descriptor systems. Inf. Sci. 469, 44–59 (2018)
28. Zhang, X., He, Z.Q., Yang, Y.Y.: A fuzzy rough set-based undersampling approach

for imbalanced data. Int. J. Mach. Learn. Cybern. 1–12 (2024)
29. Zhang, X.Y., Fan, Y.R., Yao, Y.S., Yang, J.L.: Class-specific attribute reducts

based on neighborhood rough sets. J. Intell. Fuzzy. Syst. 43(6), 7891–7910 (2022)
30. Zhang, Z.M.: An interval-valued intuitionistic fuzzy rough set model. Fund. Inform.

97(4), 471–498 (2009)

https://doi.org/10.1007/978-3-642-02962-2_81
https://doi.org/10.1007/978-3-642-02962-2_81


Three-Way Decision of Granular-Ball
Rough Sets Based on Fuzziness

Zhuangzhuang Liu1, Taihua Xu1(B), Jie Yang2, and Shuyin Xia3

1 School of Computer, Jiangsu University of Science and Technology,
Zhenjiang 212100, Jiangsu, China

xth19890410@163.com
2 School of Physics and Electronic Science, Zunyi Normal University,

Zunyi 563002, China
3 Chongqing Key Laboratory of Computational Intelligence,

Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Abstract. Granular-ball computing (GBC) proposed by Xia adap-
tively generates a different neighborhood for each object, resulting in
greater generality and flexibility. Moreover, GBC greatly improves the
efficiency by replacing point input with granular-ball. However, tradi-
tional granular-ball classifiers may lead to risky classification on uncer-
tain cases. In this paper, we introduce three-way decision (3WD) into
GBC to construct a novel three-way decision of granular-ball rough sets
(3WD-GBRS) from the perspective of uncertainty. This helps to con-
struct reasonable multi-granularity spaces for handling complex decision
problems with uncertainty. 3WD-GBRS is constructed in a data-driven
method based on fuzziness, which avoids the subjective definition of cer-
tain risk parameters when calculating the threshold pairs. We further
analyze the fuzziness loss of multilevel decision result in 3WD-GBRS.
Extensive comparative experiments are conducted with 3 state-of-the-
art GB-based classifiers and 1 classical machine learning classifiers on 6
public benchmark datasets. The results show that 3WD-GBRS almost
outperforms other comparison methods in term of effectiveness and effi-
ciency.

Keywords: granular-ball rough sets · three-way decision · fuzziness

1 Introduction

Granular computing (GrC) [1–4] is about formation, processing and commu-
nicating information granules, which provides solutions to simulate the human
cognitive thinking to solve complex problems. From diverse perspectives, rough
sets [5], fuzzy sets [6], and quotient spaces [7] are three main models of GrC.
Rough sets are widely used to measure the uncertainty and incompleteness of
information systems. Classical rough sets exploit an equivalence relation to divide
the universe, separating an information system into an upper approximation set
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and a lower approximation set. To process continuous data, neighborhood rough
sets (NRS) [8] utilize the neighborhood granulation to convert the equivalence
relation into the covering relation in neighborhood space. In addition, numerous
extended GrC-based classifiers [9] are designed to employ the information gran-
ule as the fundamental computing unit, significantly enhancing the efficiency
for knowledge discovery. Nevertheless, the majority of these classifiers treat the
granules as a preliminary feature procession method, without modifying the
mathematical model or enhancing the primary performance of the classifiers
themselves.

Based on the idea of GrC, granular-ball computing (GBC) [10,11] proposed
by Xia is a novel method to process data and represent knowledge by replacing
traditional information granule input with granular-ball (GB), which follows the
rule of ’global topology precedence’ [12]. After several years of development, GBC
is constantly being improved in terms of methods and applications. Chen [13]
introduced a GB-based attribute selector, resulting in better classification per-
formance based on the obtained reduction. Recently, granular-ball neighborhood
rough sets (GBNRS), as a novel NRS model, is proposed by Xia et al. [14]. Com-
pared with traditional NRS methods, GBNRS is a multi-granularity learning tool
with greater robustness and efficiency by replacing neighborhood granule with
granular-ball. However, current works of GBC focus on the traditional two-way
classification, which may result in misclassification on uncertain cases. As well
known, three-way decision (3WD) [15–17] theory proposed by Yao is an emerg-
ing approach to address the complex problem with uncertainty. The basic prin-
ciple of 3WD refers to dividing a universe into three distinct regions and each
region corresponds to a decision action. As a generalization of the traditional
two-way decision model, 3WD further incorporates a third option, which pro-
vides a trisecting-and-acting way for decision-making. Currently, 3WD has been
widely applied in different fields. Yao [18] further proposed the sequential three-
way decisions (S3WD) by introducing the idea of GrC. In essence, S3WD is a
progressive computing method with granularity being finer. This means that the
same problem can be handled in a multi-granularity spaces. In term of the advan-
tage of 3WD, we introduce 3WD into GBC to construct the three-way decision
of granular-ball rough sets (3WD-GBRS). The delayed decision action reduces
decision-making risk to a greater extent by considering the cost or uncertainty of
problem-solving. This contributes to establish the reasonable multi-granularity
structures to address the complex problem with uncertain and insufficient infor-
mation. The most works of 3WD focuses on calculating thresholds by utilizing
the given risk parameters from the perspective of misclassification cost. However,
in real applications, it is difficult to accurately obtain the risk parameters based
on the expert experience. To address the above issue, it is beneficial to introduce
fuzziness into 3WD-GBRS, which provides an objective method to calculate the
threshold pairs from perspective of uncertainty.

The following sections of this paper are structured with the subsequent man-
ner. In Sect. 2 is a review of related preliminary definitions. In Sect. 3, a 3WD-
GBRS is constructed by maintaining the fuzziness invariance. Then, the relevant
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experiments for the verification of the viability and rationality of our models are
shown in Sect. 4. Finally, Sect. 5 summarizes the conclusions.

2 Preliminaries

In this section, to facilitate the framework of this paper, we review some neces-
sary definitions related to 3WD and granular-ball rough set.

Definition 1. (Granular-ball [10]) Let U = {x1, x2, . . . , xn} be a non-empty
finite set. ∀x ∈ U , a granular ball gbi is defined as:

gbi = {x ∈ U | d(x, ci) ≤ ri} (1)

Here, ci and ri represent the center and radius of gbi respectively, and d(xi, ci)
represents the distance from xi to ci.

Definition 2. (The Center and Radius of Granular-ball [10])
Let gb be a Granular-ball from definition 1, which contains m objects

x1, x2, ..., xm, the center of gb, c, is the gravity of the m objects, where m is
the size of gb. The radius of gb, r, is the average distance from all objects in GB
to c. They are computed as (2) and (3), respectively:

c =
1
m

m∑

i=1

xi (2)

r =
1
m

m∑

i=1

‖xi − c‖ (3)

where ‖xi − c‖ represents the distance from xi to c.

Definition 3. (Indiscernible granular-ball relation) Let S = (U,AT ∪ D,V, f)
be a decision system, where U is a nonempty finite set, and an element x ∈ U is
called an object; AT is the set of conditional attributes, a ∈ AT is an attribute,
and D is the decision attribute; V = VAT ∪ VD, where VAT =

⋃
a∈AT Va is

the range of values for AT and Va is the range of values for the conditional
attribute a;VD = {l1, l2, . . . , lz} is the range of values for D or the label set;
f : U × (AT ∪ {D}) → V is a mapping function such that f(x, a) ∈ Va and
f(x,D) ∈ VD. ∀x1, x2 ∈ U and B1 ⊆ AT , the indiscernible granular ball relation
INDGB(B1) of the attribute subset B1 is defined as:

INDGB(B1) = {(x1, x2) ∈ U2|f(x1, a) = f(x2, a) = gb,∀a ∈ B} (4)

If (x1, x2) ∈ INDGB(B1), the relationship between x1 and x2 is denoted as
x1 : x2. In granular-ball rough set, INDGB(B1) denotes an equivalence relation
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on U , which can create a granular-ball space of U , denoted as U/GB(B1), that
is, U/GB(B1) = [x]GB1 = {gb11, gb12, . . . , gb1m}.

Let S = (U,AT ∪ D,V, f) be a decision system, B1, B2 ⊆ AT . [x]GB1 =
{gb11, gb12, . . . , gb1m} and [x]GB2 = {gb21, gb22, . . . , gb2l } denote two granular-ball
spaces induced by INDGB(B1) and INDGB(B2), respectively.
If ∀gb2i ∈U/GB(B2) (∃gb1k∈U/GB(B1) (gb2i ⊆ gb1k)) then [x]GB1 is finer than [x]GB2 ,
denoted as [x]GB2 
 [x]GB1 . If ∀gb2i ∈U/GB(B2) (∃gb1k∈U/GB(B1) (gb2i ⊂ gb1k)),then
[x]GB1 is strictly finer than [x]GB2 , denoted as [x]GB2 ≺ [x]GB1 .

Definition 4. (Granular-ball rough set [14]) Let S = (U,AT ∪ D,V, f) be a
decision system, B1 ⊆ AT .X denotes a target fuzzy subset on U , [x]GB1 =
{gb11, gb12, . . . , gb1m} is a granular-ball space on U . The definition of the upper
and lower approximation sets of X based on B are represented by:

GBRB1(X) =
⋃

{gb1i ∈ [x]GB1 | gb1i ∩ X �= ∅}
GBRB1(X) =

⋃
{gb1i ∈ [x]GB1 | gb1i ⊆ X}

(5)

Definition 5. (Step-fuzzy set) Let U = {x1, x2, . . . , xn} be a non-empty finite
set. B1 ⊆ AT .X denotes a target fuzzy subset on U , [x]GB1 = {gb11, gb12, . . . , gb1m}
is a granular-ball space on U, where gb1i = {xi1, xi2, . . . , xi|gb1i |} (i = 1, 2, . . . , m).
If μX(xi1) = μX(xi2) = . . . = μX(xi|gb1i |) = εi (0 ≤ εi ≤ 1, i = 1, 2, . . . ,m),
then X is a step-fuzzy set of granular-ball.

Definition 6. (Average granular-ball fuzzy sets) Let U = {x1, x2, . . . , xn} be a
non-empty finite set. GBR is a corresponding equivalence relation, X denotes
a fuzzy set on U , [x]GB1 = {gb11, gb12, . . . , gb1m} is a granular-ball space on U ,

where gb1i = {xi1, xi2, . . . , xi|gb1i |} (i = 1, 2, . . . ,m). μ(gb1i ) =

∑

x∈gb1
i

μ(x)

|gb1i | is called
the average membership degree of granular-ball gb1i , μ(x) denotes the membership
of an object x, where x ∈ gb1i , and |gb1i | is the cardinality of the set gb1i . we refer
to XJ

GB1
as the average fuzzy set of X

XJ
GB1

=
μ̄

(
gb11

)

gb11
+

μ̄
(
gb12

)

gb12
+ · · · + μ̄

(
gb1m

)

gb1m
(6)

In Definition 5, μ(gb1i ) can be understood as the probability that granular-ball
gb1i belongs to the target concept X, which is more general than rough membership
degree [19].

According to the formula of average fuzziness FX = 4
|U |

∑
x∈U

μ(x)(1 − μ(x))

[20] where X denotes a target subset on U , we define the average granular-ball
fuzziness as follows:

Definition 7. (Average granular-ball fuzziness) Let S = (U,AT ∪ D,V, f) be
a decision system, B1 ⊆ AT .X denotes a target fuzzy subset on U , [x]GB1 =
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{gb11, gb12, . . . , gb1m} is a granular-ball space on U . The average granular-ball fuzzi-
ness is defined as follows:

FXJ
GB1

=
4

|U |
m∑

i=1

h(gb1i ) (7)

where, h(gb1i ) = μ(gb1i )(1 − μ(gb1i )).

The uncertainty of granular-ball rough set comes from three regions: positive
region, negative region, and boundary region, that is to say,

FXJ
GB1

=
4

|U |
∑

gb∈POS(XJ
GB1

)

μ(gb)(1 − μ(gb))

+
4

|U |
∑

gb∈BND(XJ
GB1

)

μ(gb)(1 − μ(gb))

+
4

|U |
∑

gb∈NEG(XJ
GB1

)

μ(gb)(1 − μ(gb))

= F (POS(XJ
GB1

)) + F (BND(XJ
GB1

)) + F (NEG(XJ
GB1

))

3 Three-Way Decision of Granular-Ball Rough Sets
Based on Fuzziness Loss

In the process of generating granular-balls, Algorithm 1 shows the detailed pro-
cess of generating GBs, which utilizes the distributional characteristics. Whether
the GB is further split is primarily influenced by the number of objects within it
(i.e., the size of the GB). When the count of objects is sufficiently small, it can
be ensured that the majority of objects encompassed belong to the same class.
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Algorithm 1: Generate-GB_list [21]
Input: D: the dataset
Output: GB_list:the set of granular balls

1 Initializing: n = |D|, gb = D, GB_list = ∅; Add gb to an empty queue Q;
2 while Q is not empty do
3 Get the first element gb from Q and delete it from Q; if the size of gb is

larger than
√
n then

4 Employ 2-means algorithm to divide gb into two sub-balls Sub1 and
Sub2;

5 Add Sub1 and Sub2 to the tail of Q;
6 end
7 if the size of gb is less than or equal to

√
n then

8 Compute the center c and radius r of gb according to Eq. 2-3;
9 GB_list = GB_list ∪ gb;

10 end
11 end
12 Return GB_list;

In the general 3WD framework [15], the current 3WD can be summarized
into three aspects: minimum distance, minimum cost, and uncertainty invari-
ance. Fuzziness, as an uncertainty measure, is able to describe the uncertain
information of granular-ball space. Fuzziness loss is objectively to describe the
variations of uncertain information. For example, the change from fuzzy sets to
average granular-ball fuzzy sets may generate the fuzziness loss. Therefore, we
introduce fuzziness into three-way decision of granular-ball rough sets (3WD-
GBRS), which provides a new way for 3WD-GBRS from a different perspec-
tive. In this section, 3WD-GBRS is established based on fuzziness loss, and the
relevant theories are presented. This paper proposes a 3WD-GBRS based on
fuzziness loss by constructing the shadowed map. This is easy to obtain clearer
decision rules and represent uncertain information, which avoids the need for
priori expert knowledge. More specifically, the granular-ball with average mem-
bership degree below α and above β will be assigned to shadowed areas. That is,
the range of average membership degree is extended to an uncertain area [β, α],
which is defined as follows:

Definition 8. (Shadowed map) Let S = (U,AT ∪D,V, f) be a decision system,
B1 ⊆ AT .X denotes a target fuzzy subset on U , [x]GB1 = {gb11, gb12, . . . , gb1m}.Let
a mapping M : XJ

GB1
→ {0, [β, α], 1}, which is from XJ

GB1
to the set {0, [β, α], 1},

and M is denoted by:

M(XJ
GB1

) =

⎧
⎪⎨

⎪⎩

0 μ(gb1i ) ≤ β

[β, α] β < μ(gb1i ) < α

1 μ(gb1i ) ≥ α

(8)

where (i = 1, 2, . . . ,m).
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The three regions divided according to thresholds ensure the minimum fuzzi-
ness loss of 3WD-GBRS. Corresponding to any average membership degree of
granular-ball, 3WD-GBRS is established to approximately characterize the fuzzy
target concept as follows:

1. If the average membership degree μ̄(gb1i ) is below or equal to β, μ̄(gb1i ) is
reduced to 0. This indicates that allocating granular-ball gb1i to the negative
region will minimize the fuzziness loss.

2. If the average membership degree μ̄(gb1i ) is above or equal to α, μ̄(gb1i ) is
elevated to 1. This indicates that allocating granular-ball gb1i to the positive
region will minimize the fuzziness loss.

3. If the average membership degree μ̄(gb1i ) is below α and above β, μ̄(gb1i ) is
transformed into [β, α]. This indicates that allocating granular-ball gb1i to the
boundary region will minimize the fuzziness loss.

From Definition 8, F (POS(M(XJ
GB1

))) = F (NEG(M(XJ
GB1

))) = 0. There-
fore, the total fuzziness can be calculated as follows:

FM(XJ
GB1

)

= FM(XJ
GB1

)(BND(M(XJ
GB1

)))

=
4

|U |
m∑

i=1

∣∣{x |x ∈ gb1i ∧ β < μ̄(gb1i ) < α}∣∣
∫ α

β
t(1 − t) dt

α − β

(9)

According to the shadowed map, the 3WD-GBRS presented can be defined
as follows:

Definition 9. (3WD-GBRS) Let S = (U,AT ∪ D,V, f) be a decision system,
B1 ⊆ AT .X denotes a target fuzzy subset on U , [x]GB1 = {gb11, gb12, . . . , gb1m}. α,
β denotes a pair of thresholds. The positive region, negative region and boundary
region are represented by:

POS(XJ
GB1

) = {x ∈ U | μ̄(gb1i ) ≥ α},

BND(XJ
GB1

) = {x ∈ U |β < μ̄(gb1i ) < α},

NEG(XJ
GB1

) = {x ∈ U | μ̄(gb1i ) ≤ β}.

(10)

where, μ̄(gb1i ) denotes the average membership degree of gb1i .

Fuzziness loss is able to objectively characterize the change of uncertain infor-
mation without expert experience. To maintain the fuzziness invariance, the
objective function is proposed to obtain the optimal threshold pair (β, α).

argmin
0≤β≤α≤1

∣∣∣FM(XJ
GB1

) − FXJ
GB1

∣∣∣ (11)

where
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FM(XJ
GB1

) − FXJ
GB1

=
4

|U |
m∑

i=1

(∣∣{x |x ∈ gb1i ∧ β < μ̄(gb1i ) < α}∣∣
∫ α

β
t(1 − t)dt

α − β
− μ̄(gb1i )(1 − μ̄(gb1i ))

)
(12)

Firstly, the optimal thresholds are acquired by minimizing the fuzziness loss
between average granular-ball fuzzy sets XJ

GB1
and its shadowed map M(XJ

GB1
)

based on objective function. Then, the granular-balls in GBRS are divided to
establish the three regions to make a decision according to the thresholds. The
granular-balls with μ̄(gb1i ) greater than α are considered to belong to the positive
region. The granular-balls with μ̄(gb1i ) less than β are considered to belong to the
negative region. The granular-balls with μ̄(gb1i ) between β and α are considered
to belong to the boundary region. The actual fuzziness of the granular-ball space
is characterized by average granular-ball fuzzy sets, then a shadowed map is
constructed to provide thresholds for 3WD-GBRS by minimizing the fuzziness
loss.

For the 3WD-GBRS model, we perform fuzzy loss analysis on the average
granular fuzzy set from the perspective of fuzzy loss. In 3WD-GBRS model,
the uncertainty typically originates three regions at each granular-ball space,
because the granular-balls of positive and negative region are uncertain; namely,
the average membership degree of these granular-balls may be not completely
equal to 0 or 1. With the finer granular-ball space, the granular-balls of positive
and negative region may be reclassified and the three disjoint regions will change.
As a result, the uncertainty loss at each granular-ball space in 3WD-GBRS model
will be changed accordingly. In the next section, we continue our analysis of the
changing patterns of uncertainty loss in 3WD-GBRS.

Theorem 1. Let S = (U,AT ∪ D,V, f) be a decision system, Seq_GBS =
([x]GB1 , [x]GB2 , . . . , [x]GBN

) and X be a target fuzzy subset on U . Then,
F(XJ

GBj+1
) ≤ F(XJ

GBj
) holds.

Proof. Suppose [x]GBj
= {gbj

1, gbj
2, . . . , gbj

m} and [x]GBj+1 = {gbj+1
1 , gbj+1

2 , . . . ,

gbj+1
l } are two granular-ball spaces in Seq_GBS, respectively. Because

[x]GBj+1 ⊆ [x]GBj
, to simplify the proof, suppose that only a granular ball

gbj
1 is subdivided into gbj+1

1 and gbj+1
2 from [x]GBj

to [x]GBj+1 , while no
change in other granular balls (more complex situations can be translated into
this case, so no more repeat here). Based on the above assumptions, we have
gbj

1 = gbj+1
1 ∪gbj+1

2 , gbj
2 = gbj+1

3 , gbj
3 = gbj+1

4 , . . . , gbj
m = gbj+1

l (l = m+1). That
is, [x]GBj

= {gbj+1
1 , gbj+1

2 , gbj
2, gbj

3, . . . , gbj
m}.
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F(XJ
GBj+1

) − F(XJ
GBj

)

=
4

|U |
(
h(gbj

1) − h(gbj+1
1 ) − h(gbj+1

2 )
)

=
4

|U |
(
μ̄(gbj

1)(1 − μ̄(gbj
1)) − μ̄(gbj+1

1 )(1 − μ̄(gbj+1
1 ))

− μ̄(gbj+1
2 )(1 − μ̄(gbj+1

2 ))
)

(13)

Because gbj
1 = gbj+1

1 ∪gbj+1
2 , then μ̄(gbj

1) =
|gbj+1

1 |
|gbj1| μ̄(gbj+1

1 )+ |gbj+1
2 |

|gbj1| μ̄(gbj+1
2 ),

we have

F(XJ
GBj+1

) − F(XJ
GBj

)

= 4
|gbj+1

1 ||gbj+1
2 |

|U ||gbj
1|

(μ̄(gbj+1
1 ) − μ̄(gbj+1

2 ))2 ≥ 0
(14)

Therefore, F(XJ
GBj+1

) ≤ F(XJ
GBj

).

From Theorem 1, the fuzziness monotonically decreases with the granularity
refinement in 3WD-GBRS. When [x]GBj+1 in Theorem 1 reaches the finest
granular-ball space [x]GBN

, Corollary 1 can be obtained:

Corollary 1. Let S = (U,AT ∪ D,V, f) be a decision system, Seq_GBS =
([x]GB1 , [x]GB2 , . . . , [x]GBN

) and X be a target fuzzy subset on U . Then,
F(XJ

GBj
) ≥ F(XJ

GBN
) holds.

Theorem 2. Let S = (U,AT ∪ D,V, f) be a decision system, Seq_GBS =
([x]GB1 , [x]GB2 , . . . , [x]GBN

) and X be a target fuzzy subset on U . Then,
|FXJ

GBj+1
− FXJ

GBN

| ≤ |FXJ
GBj

− FXJ
GBN

| holds.

Proof. From Corollary 1, FXJ
GBj

≥ FXJ
GBN

holds. Then, we have

|FXJ
GBj+1

− FXJ
GBN

| − |FXJ
GBj

− FXJ
GBN

| = FXJ
GBj+1

− FXJ
GBj

(15)

Obviously, according to Theorem 1, |FXJ
GBj+1

− FXJ
GBN

| ≤ |FXJ
GBj

− FXJ
GBN

|
holds.

From Theorem 2, the fuzziness loss between the arbitrary granular-ball space
and the finest granular-ball space [x]GBN

in 3WD-GBRS monotonically decreases
with the granularity refinement in 3WD-GBRS.

It is well known that calculating the fuzziness of the three decision regions
is important for decision making in the 3WD theory. However, the fuzziness of
each decision region may not monotonically decrease as the granular-ball space
is refined in 3WD-GBRS. For simplicity, we only analyze the three situations of
fuzziness in the boundary region.
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4 Experiment

In this section, we meticulously outline the experimental setup, encompassing
validation procedures, evaluation metrics and comparison methods. Initially, we
present the findings pertaining to the uncertainty exhibited by 3WD-GBRS.
Subsequently, we conduct an ablation study to demonstrate the effectiveness of
our proposed approach. Finally, we provide a comprehensive assessment of the
performance of 3WD-GBRS in terms of effectiveness and efficiency.

Datasets: Experiments are performed based on six UCI datasets, which are
shown in Table 1.

Table 1. The information of experimental datasets.

No. Datasets Characteristics Instances Attributes

1 Raisin Integer, Real 900 7
2 Steel Plates Faults(SPF) Integer, Real 1941 27
3 Wifi_Localization(Wifi_Loc) Real 2000 7
4 Rice Real 3810 7
5 Twonorm Integer, Real 7400 20
6 Dry Bean Integer, Real 13611 16

4.1 General Settings

Validation Procedures and Evaluation Metrics: To mitigate the poten-
tial false performance resulting from overfitting, we utilize the 10-fold cross-
validation technique in each subsection of Sect. 4 to accurately assess the true
generalizability of our proposed method.

For the experiment, the performance of 3WD-GBRS is validated, includ-
ing accuracy, time cost. Furthermore, we employ the Wilcoxon rank-sum test
to ascertain the presence of any substantial differences between the compared
classifiers.

4.2 An Analysis of Uncertainty for 3WD-GBRS

As shown in Fig. 1, the x-coordinate represents four granularity levels, ranging
from the coarsest (level-4) to the finest (level-1), while the y-coordinate focuses
on individual values of fuzziness. We can note the following points:
– The uncertainty is mainly derived from boundary region at each granularity

layer in 3WD-GBRS.
– From the coarser to finer levels in 3WD-GBRS, the total uncertainty FXJ

GB1

monotonously decrease, while the uncertainty with respect to three regions
exhibit a non-monotonicity.

– The difference between FM(XJ
GB1

) and FXJ
GB1

is very small on each granularity.
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Fig. 1. The change of uncertainty for 3WD-GBRS.

This is easily understood because several GBs containing in different regions
are probably subdivided into numerous finer GBs with granularity being finer,
leading to an increased or decreased uncertainty in the three regions simultane-
ously. Moreover, the total increment of decreased uncertainty is greater than or
equal to the total increment of increased uncertainty, since the total uncertainty
in the 3WD-GBRS decreases with granularity being finer, which is consistent
with Theorem 1.

4.3 3WD-GBRS VS Other Classifiers

Effectiveness: The comparison experiment includes 4 different classification
algorithms, including 3WD-NRS, GBKNN, GBKNN++ and ACC-GBKNN, etc.
Table 2 presents four evaluation metrics, namely Accuracy, Precision, Recall
and F1. Accuracy is determined by two variables, Rtest and Utest, which repre-
sent the ratio of correctly predicted test samples to the total number of test sam-
ples. Precision quantifies the proportion of elements accurately predicted as pos-
itive. Specifically, let tp denote the total number of correctly predicted positive
elements, fp the total number of false positives. The formulas for Accuracy,and
Precision,are as follows:

Accuracy =
Rtest

Utest
(16)

Precision =
tp

tp + fp
(17)
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Subsequently, statistical analysis is performed on the results, including Fried-
man test, Wilcoxon rank-sum test, and mean ranking analysis. Win/Loss repre-
sents the win-loss ratio following pairwise comparisons between 3WD-GBRS and
the comparison algorithms. p−value reflects the difference between 3WD-GBRS
and the comparison algorithms. If p−value < 0.05, it indicates a significant dif-
ference between 3WD-GBRS and the comparison algorithms; otherwise, there
is no statistical difference. Rank represents the average ranking. A higher rank
value indicates a more effective algorithm. As shown in Table 2, in terms of
Win/Loss, 3WD-GBRS wins 89 times out of 96 total comparison times against
other algorithms. In terms of p − value, 3WD-GBRS shows significant differ-
ences with the comparison algorithms. Regarding rank, 3WD-GBRS obtains
the highest overall score, followed by GBKNN and GBKNN++.

The superior performance of 3WD-GBRS in terms of effectiveness can be
attributed to the following reasons: (1) Compared to the traditional classifiers
including 3WD-NRS, 3WD-GBRS inherits the advantages of granular-balls-
based classifiers. That is, on one hand, granular-balls are more suitable for
describing datasets with spherical distributions and exhibit robustness to noisy
data. (2) Compared to the GB-based classifiers including GBKNN, GBKNN++
and ACC-GBKNN, the idea of 3WD enhances uncertainty handling, which
improves the classification performance to a great extent.

Efficiency: Figure 2 shows the time required for 3WD-GBRS and comparison
methods on each dataset. For all classifiers, the average execution time of each
classifier on each data is processed by taking the logarithm. With the increase
in dataset size, the time required for classification by 3WD-NRS significantly
increases. It is obviously that the time required for 3WD-GBRS is not significantly
different from that of GBKNN++, GBKNN, ACC-GBKNN. This implies that
the time required by 3WD-GBRS is not significantly different from that of other
GB-based methods. Due to the acquirement of thresholds in 3WD introduced,
3WD-GBRS incurs slightly more time compared to the other GB-based methods.
However, this increase of time cost is entirely acceptable. Overall, 3WD-GBRS
provides a classification solution with relatively low time complexity.

5 Conclusion

Considering the shortcomings of the existing GB-based classifier, this paper
introduce the three-way decision theory into GBC to construct a novel three-
way decision of granular-ball rough sets (3WD-GBRS) from the perspective of
uncertainty. According to the experiment, the performance of 3WD-GBRS is
validated, that is, 3WD-GBRS almost outperforms other comparison methods
in term of effectiveness, and efficiency. This comprehensive comparison encom-
passed 3 state-of-the-art GB-based classifiers and 1 classical machine learning
classifiers, on 6 public benchmark datasets. Consequently, our work establishes
a robust foundation for future endeavors in granular-ball computing, aiming
for enhanced robustness and generality. Notably, our efforts are exploratory in
nature and inevitably carry certain limitations.
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Table 2. The statistical analysis of various algorithms.

No. Metrics GBKNN GBKNN++ ACC-GBKNN 3WD-NRS 3WD-GBRS

1 Accuracy 0.8489 0.8522 0.8033 0.5114 0.8790
F1 0.8438 0.8513 0.8025 0.6767 0.8693
Recall 0.8659 0.8156 0.8333 1.0000 0.9048
Precision 0.8267 0.8811 0.7889 0.5114 0.8406

2 Accuracy 0.9043 0.8643 0.8663 0.4818 0.9829
F1 0.8458 0.8513 0.8524 0.6503 0.9859
Recall 0.8048 0.9777 0.9677 1.0000 0.9863
Precision 0.9455 0.7794 0.7797 0.4818 0.9871

3 Accuracy 0.9745 0.9660 0.9640 0.6408 0.9806
F1 0.9743 0.9660 0.9639 0.7811 0.9791
Recall 0.9769 0.9690 0.9670 1.0000 0.9853
Precision 0.9730 0.9647 0.9631 0.6408 0.9744

4 Accuracy 0.9202 0.9050 0.8858 0.8040 0.9419
F1 0.9061 0.9028 0.8838 0.8914 0.9314
Recall 0.9092 0.8859 0.8840 1.0000 0.9344
Precision 0.9043 0.8924 0.8557 0.8040 0.9293

5 Accuracy 0.9708 0.9561 0.9473 0.7857 0.9827
F1 0.9708 0.9561 0.9473 0.8800 0.9825
Recall 0.9709 0.9613 0.9527 1.0000 0.9862
Precision 0.9708 0.9513 0.9426 0.7857 0.9789

6 Accuracy 0.9597 0.9439 0.9536 0.8446 0.9843
F1 0.8749 0.9066 0.9168 0.9158 0.9324
Recall 0.8612 0.9032 0.9096 1.0000 0.9717
Precision 0.8958 0.8175 0.8284 0.8446 0.9077

Statistics win/loss 24/0 23/1 24/0 18/6 89/7
p− vlaue 0.0017 0.0010 0.0006 0.0069
rank 3.2500(2) 2.6667(3) 2.1667 2.2083 4.7083(1)

Acknowledgment. This work was supported by the National Science Foundation of
China (Grant number 62066049).

References

1. Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality
in human reasoning and fuzzy logic. Fuzzy Sets Syst. 90(2), 111–127 (1997)

2. Pedrycz, W., Homenda, W.: Building the fundamentals of granular computing: a
principle of justifiable granularity. Appl. Soft Comput. 13(10), 4209–4218 (2013)

3. Wang, G.Y., Yang, J., Xu, J.: Granular computing: from granularity optimization
to multi-granularity joint problem solving. Granular Comput. 2, 105–120 (2017)

4. Yao, Y.Y.: Three-way granular computing, rough sets, and formal concept analysis.
Int. J. Approximate Reasoning 116, 106–125 (2020)



42 Z. Liu et al.

Fig. 2. Execution time on datasets.

5. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)
6. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
7. Zhang, L., Zhang, B.: The quotient space theory of problem solving. Fund. Inform.

59(2–3), 287–298 (2004)
8. Hu, Q.H., Yu, D.R., Xie, Z.X.: Neighborhood classifiers. Expert Syst. Appl. 34(2),

866–876 (2008)
9. Fu, C., Yang, J.H.: Granular classification for imbalanced datasets: a Minkowski

distance-based method. Algorithms 14(2), 54 (2021)
10. Xia, S.Y., Liu, Y.S., Ding, X., Wang, G.Y., Yu, H., Luo, Y.G.: Granular ball

computing classifiers for efficient, scalable and robust learning. Inf. Sci. 483, 136–
152 (2019)

11. Xia, S.Y., et al.: An efficient and accurate rough set for feature selection, clas-
sification, and knowledge representation. IEEE Trans. Knowl. Data Eng. 35(4),
5319–5331 (2024)

12. Xie, Q., et al.: GBG++: a fast and stable granular ball generation method for
classification. IEEE Trans. Emerg. Top. Comput. Intell. 8(2), 2022–2036 (2024)

13. Chen, Y., Wang, P.X., Yang, X.B., Mi, J.S., Liu, D.: Granular ball guided selector
for attribute reduction. Knowl.-Based Syst. 229, 107326 (2021)

14. Xia, S., Zhang, H., Li, W., Wang, G., Giem, E., Chen, Z.: GBNRS: a novel rough
set algorithm for fast adaptive attribute reduction in classification. IEEE Trans.
Knowl. Data Eng. 34(3), 1231–1242 (2020)

15. Yao, Y.Y.: The superiority of three-way decisions in probabilistic rough set models.
Inf. Sci. 181(6), 1080–1096 (2011)

16. Yao, Y.Y.: Three-way decision and granular computing. Int. J. Approximate Rea-
soning 103, 107–123 (2018)



Three-Way Decision of Granular-Ball Rough Sets Based on Fuzziness 43

17. Chen, J., Chen, Y., He, Y., Xu, Y., Zhao, S., Zhang, Y.: A classified feature repre-
sentation three-way decision model for sentiment analysis. Appl. Intell. 52, 7995–
8007 (2021). https://doi.org/10.1007/s10489-021-02809-1

18. Yang, X., Li, T.R., Fujita, H., Liu, D., Yao, Y.Y.: A unified model of sequen-
tial three-way decisions and multilevel incremental processing. Knowl.-Based Syst.
134, 172–188 (2017)

19. Zhang, Q.H., Wang, J., Wang, G.Y.: The approximate representation of rough-
fuzzy sets. Chin. J. Comput. Jisuanji Xuebao 38(7), 1484–1496 (2015)

20. Yang, J., Wang, X.Q., Wang, G.Y., Xia, D.Y.: Constructing three-way decision of
rough fuzzy sets from the perspective of uncertainties. Cogn. Comput. 1–17 (2023)

21. Cheng, D.D., Li, Y., Xia, S.Y., Wang, G.Y., Huang, J.L., Zhang, S.L.: A fast
granular-ball-based density peaks clustering algorithm for large-scale data. IEEE
Trans. Neural Netw. Learn. Syst. (2023)

https://doi.org/10.1007/s10489-021-02809-1


Three-Way Decision in Data Analytics



Three-Way Cost-Performance
Approximate Attribute Reduction

Jialin Hou(B) and Yiyu Yao

Department of Computer Science, University of Regina, Regina, SK S4S 0A2, Canada
{jhv842,Yiyu.Yao}@uregina.ca

Abstract. An attribute reduct is a minimum subset of attributes that
satisfies certain requirements with respect to the entire set of attributes.
We consider two basic properties of a reduct. One is the cost of the reduct
(i.e., the cost of using the attributes in the reduct), and the other is the
performance of the reduct. A cost-performance reduct is a reduct with a
cost constraint and a performance requirement. An approximate reduct
considers a trade-off or balance of cost and performance. In this paper,
we propose a model of three-way cost-performance approximate attribute
reduction. The model uses two pairs of (cost, performance) parameters
to construct a pair of reducts with a low-error/high-performance and
high-cost reduct and a high-error/low-performance and low-cost reduct.
The trade-off between performance and cost gives users more flexibility
in choosing different reducts in different situations.

Keywords: Three-way decision, attribute reduction · approximate
reduction · cost-sensitive reduction · cost-performance approximate
reduction

1 Introduction

An attribute reduct is a minimum subset of attributes that satisfies certain
requirements of properties compared to the entire set of attributes [1]. The basic
properties which have been studied most are performance and cost [2–7]. From
the performance view, a reduct is a minimum subset of attributes that satisfies
the performance requirement, in comparison with the entire set of attributes
[1]. Cost can be interpreted by various units, such as time, money, volume, etc.,
and categories, such as computation cost, test cost, and so on [8,9]. Test cost,
also known as attribute cost, is a measurement cost used to evaluate the cost
of using an attribute [8,10]. Cost-sensitive reduction is to find a reduct with
a cost constraint [5]. The classical way to get reducts from the performance
perspective is based on Pawlak rough sets [11]. Yao and Zhao [3] consider the
attribute reduction based on different classification measures in the decision-
theoretic rough sets model. Zhang and Yao [4] proposed a tri-level reduction in
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rough set theory, which does the object-specific reduction from the micro-bottom
level. Based on local attribute significance, Yu et al. [7] proposed a variable
precision rough set attribute reduction algorithm. Min et al. [12] proposed a
test-cost-sensitive reduction model, which can obtain a reduct with a minimum
test cost. Liu [9] introduced a total-cost-sensitive model that considers both
process cost and result cost.

However, all these studies only consider one type of the properties. Approx-
imate attribute reduction, introduced by Slezak [13,14], can accommodate a
certain level of error by relaxing the measure criterion [15]. By the idea of approx-
imate attribute reduction, a concept of cost-performance approximate attribute
reduction has been proposed in this paper. We consider the trade-off between
error and cost in this approximate reduction. Three-way decision, proposed by
Yao [16,17], gives us a novel view to look at the process of reduction. By the
philosophy of thinking in three [16,18–23], we utilize two pairs of (cost, perfor-
mance) parameters to construct different levels of cost-performance approximate
reduction which can satisfy the users’ needs in different situations.

More specifically, we propose a model of three-way cost-performance approx-
imate attribute reduction, which can trisect the attribute set based on the dif-
ferent levels of performance with a cost constraint. Two pairs of parameters have
been used to achieve a high-performance/low-error and high-cost (HPHC) reduct
Rhphc and a low-performance/high-error and low-cost (LPLC) reduct Rlplc. The
HPHC reduct Rhphc is an approximate reduct with high performance and high
cost. In certain scenarios, users may prioritize cost considerations. In such cases,
an LPLC reduct Rlplc can be attained by exploring within the HPHC reduct
while imposing stricter constraints on both performance and cost. The trade-off
between performance and cost gives users more flexibility in choosing reduct in
different situations.

Other sections of this paper are structured as follows. Section 2 reviews
attribute reduction in a decision table. Our model is presented in Sect. 3, and
Sect. 4 gives the conclusion and the future work direction.

2 Attribute Reduction in a Decision Table

In this section, we will review some concepts of attribute reduction in a decision
table [4]. A decision table is a tuple:

L = (OB,AT = C ∪ D, {Va | a ∈ AT}, {Ia : OB → Va | a ∈ AT}), (1)

where OB is a finite set of objects organized as rows, AT is a finite set of
attributes organized as columns, C is a set of condition attributes, D is a set
of decision attributes, and C ∩ D = ∅. Va is a domain that defines the possible
values for an attribute a ∈ AT , Ia : OB → VA is an information function that
assigns a value from Va to each object of OB for the given attribute a ∈ AT . If
no ambiguity arises, the decision table can be simplified as:
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L = (OB,AT = C ∪ D). (2)

There are two kinds of equivalence relations in a decision table. One is based on
the condition attributes, the other is based on the decision attributes. Theoreti-
cally, the objects in a decision table have been partitioned by these two types of
equivalence relations. Let L = (OB,AT = C ∪ D) denotes a decision table, and
A is a subset of condition attributes, the equivalence relation EA on a decision
table L can be defined as [4]:

EA = {(x, y) ∈ OB × OB | ∀a ∈ A (Ia(x) = Ia(y))}. (3)

Based on the equivalence relation EA defined in Eq. (3), the partition OB/EA

can be given as follows:

OB/EA = {[x]EA
| x ∈ OB}, (4)

which can also be denoted as:

OB/EA = {X1,X2, ...,Xn}, (5)

where n = |OB/EA| is the set of partition’ cardinality. Similarly, the equivalence
relation based on the decision attributes can be defined as:

ED = {(x, y) ∈ OB × OB | ∀d ∈ D (Id(x) = Id(y))}. (6)

The decision classification based on equivalence relation ED can be defined as:

OB/ED = {[x]ED
| x ∈ OB}, (7)

which can also be denoted as:

OB/ED = {Y1, Y2, ..., Ym}, (8)

where m = |OB/ED| is the number of decision classes.
Consider the two types of classifications in Eq. (5) and (8), we have [2]: for

Y ∈ OB/ED

apr(Y |A) =
⋃

{X ∈ OB/EA | X ⊆ Y } = POS(Y |A),

apr(Y |A) =
⋃

{X ∈ OB/EA | X ∩ Y 	= ∅}.
(9)

Equation (9) presents the lower and upper approximations of a decision class
Y based on the subset of attributes A. The lower approximation of Y given A
is the partition of OB/EA within Y . The upper approximation of Y given A is
the partition of OB/EA intersecting with Y , where the intersection part is not
empty.

Accuracy, also known as the degree of partial dependency, is an important
indicator to show the performance preserved by a subset of condition attributes.
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Given a subset of condition attribute A, the positive region of a decision classi-
fication OB/ED induced by A is given by:

POS(OB/ED|A) =
⋃

{POS(Y |A) | Y ∈ U/ED}
= POS(Y1|A) ∪ POS(Y2|A) ∪ ... ∪ POS(Ym|A).

(10)

Then the accuracy can be defined as follows [9]:

γ(A → D) =
|POS(OB/ED|A)|

|OB| . (11)

Table 1. A Decision Table

Object a1 a2 a3 a4 a5 class

O1 1 1 1 2 0 d1

O2 0 0 0 0 0 d2

O3 0 0 0 0 0 d2

O4 0 0 0 0 0 d2

O5 0 1 0 1 0 d3

O6 0 1 0 1 0 d3

O7 0 1 0 1 0 d3

O8 1 1 2 0 3 d4

O9 1 1 0 0 3 d4

O10 1 0 0 0 0 d5

Example 1. In Table 1, suppose A1 = {a1, a2, a3, a4, a5} and D = {class},
we have OB/EA1 = {{O1}, {O2, O3, O4}, {O5, O6, O7}, {O8}, {O9}, {O10}}, and
OB/ED = {{O1}, {O2, O3, O4}, {O5, O6, O7}, {O8, O9}, {O10}}. According to
Eq. (9), the POS(d1|A1) = {O1}, POS(d2|A1) = {O2, O3, O4}, POS(d3|A1) =
{O5, O6, O7}, POS(d4|A1) = {O8, O9}, POS(d5|A1) = {O10}. Finally, we have:

γ(A1 → D) =
|POS(OB/ED|A1)|

|OB|
=

|POS(d1|A1) ∪ POS(d2|A1) ∪ POS(d3|A1) ∪ POS(d4|A1) ∪ POS(d5|A1)|
|OB|

=
|{O1} ∪ {O2, O3, O4} ∪ {O5, O6, O7} ∪ {O8, O9} ∪ {O10}|

|{O1, O2, O3, O4, O5, O6, O7, O8, O9, O10}|
=

10
10

= 1.

Example 2. In Table 1, suppose A2 = {a1, a4} and D = {class}, we have
OB/EA2 = {{O1}, {O2, O3, O4}, {O5, O6, O7}, {O8, O9, O10}}, and OB/ED =
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{{O1}, {O2, O3, O4}, {O5, O6, O7}, {O8, O9}, {O10}}. According to Eq. (9), the
POS(d1|A2) = {O1}, POS(d2|A2) = {O2, O3, O4}, POS(d3|A2) = {O5, O6,
O7}, POS(d4|A2) = {∅}, POS(d5|A2) = {∅}. Finally, we have:

γ(A → D) =
|POS(OB/ED|A2)|

|OB|
=

|POS(d1|A2) ∪ POS(d2|A2) ∪ POS(d3|A2) ∪ POS(d4|A2) ∪ POS(d5|A2)|
|OB|

=
|{O1} ∪ {O2, O3, O4} ∪ {O5, O6, O7} ∪ {∅} ∪ {∅}|

|{O1, O2, O3, O4, O5, O6, O7, O8, O9, O10}|
=

7
10

= 0.7.

Example 1 shows the accuracy can be get up to 1 if all the condition attributes
are used. In Example 2, the accuracy is 0.7 based on only a1 and a4 two
attributes. Actually, the range of accuracy is [0, 1]. The following monotonic
property holds:

A ⊆ B =⇒ γ(A → D) ≤ γ(B → D). (12)

That means if A is a subset of B, the accuracy induced by A is no more than
B. If a subset of the condition attributes R can achieve the same accuracy as
the entire condition attribute set C while keeping the minimum condition, then
this subset R is a relative attribute reduct of C.

Definition 1. Given a decision table L = (OB,AT = C ∪ D), let γ denote a
measure of dependency. A subset R ⊆ C is called a relative reduct of C with
respect to D, if and only if the following conditions are satisfied:

(1) γ(R → D) = γ(C → D),
(2) ∀R′ ⊂ R,¬(γ(R′ → D) = γ(C → D)).

(13)

The first condition in the Definition 1 maintains the sufficiency condition,
which means the reduct R keeps the same accuracy as the entire condition
attribute set. The second condition shows R is the minimum subset that can
preserve the performance in condition 1.

Example 3. In Table 1, suppose we have a subset of condition attribute
R = {a1, a2, a4} and a decision class D = {class}. Then we have
OB/ER = {{O1}, {O2, O3, O4}, {O5, O6, O7}, {O8, O9},{O10}}, and OB/ED =
{{O1}, {O2, O3, O4}, {O5, O6, O7}, {O8, O9}, {O10}}. According to Eq. (9), the
POS(d1|R) = {O1}, POS(d2|R) = {O2, O3, O4}, POS(d3|R) = {O5, O6, O7},
POS(d4|R) = {O8, O9}, POS(d5|R) = {O10}. Then, we have:
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γ(R → D) =
|POS(OB/ED|R)|

|OB|
=

|POS(d1|R) ∪ POS(d2|R) ∪ POS(d3|R) ∪ POS(d4|R) ∪ POS(d5|R)|
|OB|

=
|{O1} ∪ {O2, O3, O4} ∪ {O5, O6, O7} ∪ {O8, O9} ∪ {O10}|

|{O1, O2, O3, O4, O5, O6, O7, O8, O9, O10}|
=

10

10
= 1.

From Example 1, we can get that the accuracy based on the entire condition
attribute set is 1. It follows γ(R → D) = γ(C → D). After exploring every
subset R′ ⊂ R, we couldn’t find any R′ that satisfies γ(R′ → D) = γ(C → D),
demonstrating that R is the smallest. Another reduct R′′ = {a1, a2, a5} can be
found similarly.

3 Three-Way Cost-Performance Approximate Attribute
Reduction

In Sect. 3.1, we introduce the cost-sensitive attribute reduction. In Sect. 3.2, we
give a review of approximate attribute reduction. Then we present the cost-
performance approximate attribute reduction in Sect. 3.3. Finally, in Sect. 3.4, we
propose our model of three-way cost-performance approximate attribute reduc-
tion.

3.1 Cost-Sensitive Attribute Reduction

A cost-independent decision table is a decision table with a cost function c, which
is used to measure the cost of condition attributes. Cost-independent means that
the costs associated with different attributes have no relation to each other [12].

Definition 2. [12] A cost-independent decision table is a six-tuple:

LC = (OB,AT = (C ∪ D), {Va | a ∈ AT}, {Ia : OB → Va | a ∈ AT}, c), (14)

where the meaning of OB,AT,C,D, {Va}, {Ia} are same as we defined in a deci-
sion table. c : C −→ R+ ∪ {0} is an attribute cost function, where R+ denotes
the set of positive real numbers, and R+∪{0} means the cost of attribute is non-
negative. For simplicity, the cost-independent decision table can be shortened as:

LC = (OB,AT = (C ∪ D), c). (15)

We can also straightforwardly represent the attribute cost by a vector:

c = (c(a1), c(a2), ..., c(a|C|)). (16)



Three-Way Cost-Performance Approximate Attribute Reduction 53

Table 2. A Cost Vector

Attribute a1 a2 a3 a4 a5

c 1 10 5 1 15

Example 4. Table 2 denotes a cost vector. Table 1 and Table 2 together repre-
sent a cost-independent decision table.

Then we discuss the computation of the cost of a subset of condition
attributes. The cost function for a subset of the condition attributes is defined
by:

c∗ : 2A −→ R+ ∪ {0}, (17)

where c∗ maps the subset of the condition attributes A to a non-negative real
number. Similarly, c∗ can be represented by a vector [12]:

c∗ = (c∗(∅), c∗({a1}), c∗({a2}), ..., c∗({a1}, {a2}), ..., c∗(R)). (18)

The length of c∗ is 2|A|. If a subset is empty:

c∗(∅) = 0. (19)

For any individual attribute a ∈ A, we have:

c∗({a}) = c(a). (20)

Since the cost of each attribute is independent, the total cost of a subset of
condition attributes can be given by [12]:

c∗(A) =
∑

a∈R

c∗({a}) =
∑

a∈R

c(a), (21)

where A ⊆ C and A 	= ∅.
Given a cost-independent decision table, the cost-sensitive attribute reduc-

tion not only satisfies the sufficiency condition and minimum condition as shown
in Definition 1 but also has to satisfy the cost constraint condition.

Definition 3. Let LC = (OB, (AT = C ∪ D), c) denotes a cost-independent
decision table, and γ denotes a measure of dependency. A subset R ⊆ C is called
an δ cost-sensitive relative attribute reduct, if and only if the following conditions
hold:

(1) γ(R → D) = γ(C → D),
(2) ∀R′ ⊂ R,¬(γ(R′ → D) = γ(C → D)),
(3) c∗(R) ≤ δ · c∗(C),

(22)

where c∗(R) =
∑

a∈R c(a) and c∗(C) =
∑

b∈C c(b).

The third condition is the cost constraint condition. That means the maximum
cost of the reduct R can not exceed the δ percentage of the cost of the entire
conditional set C.
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Example 5. We continue the Example 3. Suppose we have a decision table as
shown in Table 1 and a cost table as shown in Table 2. From the Example 3, we
can get two reducts R = {a1, a2, a4} and R′ = {a1, a2, a5}. The cost of reduct R is
c∗(R) =

∑
a∈R c(a) = 12, and the cost of reduct R′ is c∗(R′) =

∑
a∈R′ c(a) = 26.

The cost of the entire condition attributes is c∗(C) =
∑

a∈C c(a) = 32. Let’s set
δ = 0.8, which means the cost of the reduct defined by Definition 3 should be no
more than 80% of the cost of the entire condition attribute. But c∗(R′) = 26 >
c∗(C)×80% = 32×0.8 = 25.6, that means R′ can not satisfy the cost constraint
condition. c∗(R) = 12 < c∗(C)× 80% = 32× 0.8 = 25.6, which shows R satisfies
the cost constraint condition. Finally, the δ cost-sensitive reduct with δ = 0.8 is
R = {a1, a2, a4}.

3.2 Approximate Attribute Reduction

In some situations, it is hard to preserve the same performance as the entire
attribute set because of the efficiency or other constraints [1]. The users might be
willing to tolerate some degree of error in the outcome [13–15]. An approximate
reduct can be defined by Definition 4, in which we put a tolerance degree on the
first condition.

Definition 4. Given a decision table L = (OB,AT = C ∪ D), and γ denotes
a measure of dependency. A subset R ⊆ C is called an α-approximate relative
attribute reduct, if and only if the following conditions hold:

(1) γ(R → D) ≥ α · γ(C → D),
(2) ∀R′ ⊂ R,¬(γ(R′ → D) ≥ α · γ(C → D)).

(23)

The parameter α in Definition 4 is used to determine whether the perfor-
mance of the approximate reduct is acceptable. The first condition is the suffi-
ciency condition, which requires the accuracy of the result reduct at least to be
kept at α percent accuracy of the entire attribute set. The second condition is the
minimum condition, which makes sure that R is the minimum subset satisfying
the first condition.

Example 6. Given a decision table as shown in Table 1, and let α = 0.9.
Based on Example 3, we have two reducts that satisfy the Definition 4. One
is R = {a1, a2, a4}, the other one is R′ = {a1, a2, a5}. Both of these two reducts’
accuracy is 1, which shows they satisfy the performance condition. After testing
every possible subset of R and R′, we can not find a subset that satisfies the
performance condition, which shows they are the minimum subsets.

Example 7. Given a decision table as shown in Table 1, let’s set α = 0.8. Except
for the two reducts we find in Example 6, another reduct R′′ = {a1, a3, a4} can
also satisfy the Definition 4. The accuracy of R′′ is γ(R′′ −→ D) = 0.8, and no
subset in R′′ can satisfy the performance condition after we test every possible
subset of R′′. Finally, we can get three reducts that satisfy the α-approximate
relative attribute reduction with α = 0.8, and they are R = {a1, a2, a4}, R′ =
{a1, a2, a5}, and R′′ = {a1, a3, a4}.
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3.3 Cost-Performance Approximate Attribute Reduction

In some situations, a certain level of performance is sufficient since the users may
be more sensitive to the cost of the condition attributes. This entails the necessity
of maintaining specific performance requirements within cost constraints, leading
us to define the concept of cost-performance approximate attribute reduction.

Definition 5. Given a cost-independent decision table LC = (OB, (AT = C ∪
D), c), and γ denotes a measure of dependency. A subset R ⊆ C is called an
(δ, α)-cost-performance approximate attribute reduct, if and only if the following
conditions hold:

(1) γ(R → D) ≥ α · γ(C → D),
(2) ∀R′ ⊂ R,¬(γ(R′ → D) ≥ α · γ(C → D)),
(3) c(R) ≤ δ · c(C).

(24)

Definition 5 outlines the specific criteria for a (δ, α)-cost-performance approx-
imate attribute reduct. The initial requirement is the sufficiency condition, which
necessitates that the reduct R achieve at least α percent of the performance
attained by the entire set of condition attributes. The second condition is the
minimum condition, which means the reduct R is the minimum subset to main-
tain the first condition. Lastly, the cost constraint condition stipulates that the
cost of the reduct R should not exceed δ percent of the cost of the entire set of
condition attributes.

Example 8. Given a decision table as shown in Table 1, let δ = 0.8 and α = 0.9.
Based on Examples 5 and 6, we can observe that the reduct R = {a1, a2, a4} sat-
isfies both the sufficiency and cost constraint conditions while also maintaining
the minimum requirement. Then the result of (δ, α)-cost-performance approxi-
mate attribute reduct with δ = 0.8 and α = 0.9 is R = {a1, a2, a4}.

3.4 Three-Way Cost-Performance Approximate Attribute
Reduction

The philosophy of thinking in three presents a novel view of cost-performance
approximate attribute reduction. Instead of utilizing a single pair of parameters
(δ, α), we introduce two pairs of parameters [(δl, αl), (δh, αh)], where δl < δh
and αl < αh. This approach leads to a pair of cost-performance approximate
attribute reducts (Rlplc, Rhphc). Two pairs of parameters represent two differ-
ent levels of users’ needs. A three-way cost-performance approximate attribute
reduction is given by Definition 6.

Definition 6. Given a cost-independent decision table LC = (OB, (AT = C ∪
D), c), and two pairs of parameters [(δl, αl), (δh, αh)] with δl < δh, and αl < αh.
A pair of subsets (Rlplc, Rhphc) is called a three-way cost-performance approxi-
mate attribute reducts if Rlplc ⊆ Rhphc, where Rlplc is a (δl, αl)-cost-performance
approximate attribute reduct, and Rhphc is a (δh, αh)-cost-performance approxi-
mate attribute reduct.
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The output of our model is a pair of reducts (Rlplc, Rhphc) with Rlplc ⊆
Rhphc. Rhphc can be viewed as a high-performance-high-cost reduct obtained
through a higher level of requirements, which is determined by a larger pair of
parameters (δh, αh). Rlplc can be viewed as a low-performance-low-cost reduct
obtained through a lower level of requirements, which is determined by a smaller
pair of parameters (δl, αl). We can obtain Rlplc by searching inside of Rhphc.
According to the Definition 5, the attributes in reduct Rhphc can preserve a
better performance than Rlplc since the sufficiency parameter αh is higher than
αl. Nevertheless, the cost produced by Rlplc is lower than Rhphc since it has
fewer attributes and the cost constraint parameter δl is lower than δh. The entire
condition attribute set can be tri-partitioned by the reduct pair (Rlplc, Rhphc)
as shown below:

NECE = Rlplc,

IMPR = Rhphc − Rlplc,

REDU = Rc
hphc,

where NECE denotes the necessary attributes, IMPR denotes the performance-
improved attributes, and REDU denotes the redundant attributes. The
attributes in NECE are essential for the users to meet basic sufficiency require-
ments. Selecting both the NECE and IMPR attribute sets simultaneously will
lead to an improvement in performance to a higher level. However, a higher
level of performance will bring a higher cost. The user may make the trade-off
between performance and cost. The attributes in REDU are redundant, which
means the user can directly remove the superfluous attributes in REDU. Finally,
the union of the three pair-wise disjoint subsets is composed of the entire con-
dition attribute set C.

Example 9. Given a decision table as shown in Table 1 and a cost table as
shown in Table 2, let’s set the two pair of parameters as [(δl = 0.2, αl = 0.7),
(δh = 0.8, αh = 0.9)]. We first explore the subset of entire condition attributes
to get the (δh = 0.8, αh = 0.9)-cost-performance approximate attribute reduct.
That is our HPHC reduct Rhphc. From the results in Example 8, we can directly
get Rhphc = {a1, a2, a4}. Then we explore all the subsets of Rhphc, we can have
R′ = {a1, a4} and R′′ = {a1, a2} with the accuracy of 0.7, which satisfies the
lower performance requirement. The cost for R′ is c∗(R′) = 2, and the cost for
R′′ is c∗(R′′) = 11. The cost constraint is c∗(C)×δl = 32×0.2 = 6.4. Obviously,
R′ satisfies the requirement of LPLC reduct, and Rlplc = R′ = {a1, a4}. Finally,
we have:

Rlplc = {a1, a4} ⊆ Rhphc = {a1, a2, a4}.

The tri-partition over OB is:

NECE = Rlplc = {a1, a4},

IMPR = Rhphc − Rlplc = {a2},

SUPF = Rc
hphc = {a3, a5}.



Three-Way Cost-Performance Approximate Attribute Reduction 57

4 Conclusion

Three-way decision provides a novel view to look at attribute reduction. In this
research, a model of three-way cost-performance approximate attribute reduction
is proposed. We utilize two pairs of parameters, [(δl, αl), (δh, αh)], with δl < δh
and αl < αh to obtain a pair of reducts, (Rlplc, Rhphc), where Rlplc ⊆ Rhphc.
Here, Rhphc represents an HPHC reduct, while Rlplc signifies an LPLC reduct.
We can first get the HPHC reduct Rhphc by the pair of constriction parameters
(δh, αh), then we search inside of the Rhphc to get the LPLC reduct Rlplc which
satisfies lower constriction requirement (δl, αl).

The proposed model aims to achieve a three-way cost-performance approxi-
mate attribute reduct by employing two pairs of parameters, [(δl, αl), (δh, αh)].
This process results in obtaining a pair of reducts, (Rlplc, Rhphc), where Rlplc ⊆
Rhphc. These reducts are designed to satisfy various levels of performance require-
ments while considering the corresponding costs. One future research direction
is how to select the two pairs of parameters to get a pair of reducts which can
mostly benefit the users. Another future work is to do some comparative analysis
based on actual experiments. Since this paper primarily focuses on theoretical
analyses, additional experiments should be done to compare theory and actual-
ity. Finally, how to quickly search for a possible candidate is also important. In
this research, we exhaustively test every subset to find the pair of reducts which
is a time-consuming process. A more efficient algorithm should be designed in
the future.

References

1. Shi, C., Wang, Z., Wei, L., Yao, Y.: Three-way approximate criterion reduction in
multi-criteria decision analysis. In: Yao, J., Fujita, H., Yue, X., Miao, D., Grzymala-
Busse, J., Li, F. (eds.) IJCRS 2022. LNCS, vol. 13633, pp. 289–303. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-21244-4_22

2. Yao, Y.Y., Zhang, X.Y.: Class-specific attribute reducts in rough set theory. Inf.
Sci. 418, 601–618 (2017)

3. Yao, Y.Y., Zhao, Y.: Attribute reduction in decision-theoretic rough set models.
Inf. Sci. 178, 3356–3373 (2008)

4. Zhang, X.Y., Yao, Y.Y.: Tri-level attribute reduction in rough set theory. Expert
Syst. Appl. 190, 116187 (2022)

5. He, H.P., Min, F., Zhu, W.: Attribute reduction in test-cost-sensitive decision sys-
tems with common-test-costs. In: Proceedings of the 3rd International Conference
on Machine Learning and Computing, pp. 432–436 (2011)

6. Bazan, J.G., Skowron, A., Synak, P.: Dynamic reducts as a tool for extracting laws
from decisions tables. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1994. LNCS,
vol. 869, pp. 346–355. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
58495-1_35

7. Yu, B., Hu, Y., Kang, Y., Cai, M.J.: A novel variable precision rough set attribute
reduction algorithm based on local attribute significance. Int. J. Approximate Rea-
soning 157, 88–104 (2023)

https://doi.org/10.1007/978-3-031-21244-4_22
https://doi.org/10.1007/3-540-58495-1_35
https://doi.org/10.1007/3-540-58495-1_35


58 J. Hou and Y. Yao

8. Turney, P.D.: Types of cost in inductive concept learning. arXiv preprint
arXiv:cs/0212034 (2002)

9. Liu, K.F.: A study of cost-sensitive attribute reducts. Master’s thesis, University
of Regina (2015)

10. Fang, Y., Gao, C., Yao, Y.Y.: Granularity-driven sequential three-way decisions: a
cost-sensitive approach to classification. Inf. Sci. 507, 644–664 (2020)

11. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)
12. Min, F., He, H.P., Qian, Y.H., Zhu, W.: Test-cost-sensitive attribute reduction.

Inf. Sci. 181, 4928–4942 (2011)
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Abstract. The theory of rough sets concerns approximating a concept,
represented by a set of objects as its instances, with a pair of lower and
upper approximations. In some situations, we do not have complete knowl-
edge of the set of instances of a concept, resulting in the need to study
a partially-known concept. There are two ways to represent a partially-
known concept. A triplet representation consists of a set of objects known
to be instances, a set of objects known to be non-instances, and the rest
objects of the concept. An interval set representation includes all possi-
ble sets that fall within a pair of a lower bound and an upper bound. In
this paper, we systematically investigate rough set approximations of a
partially-known concept under the two presentations. By approximating
a partially-known concept, we can divide the universe into either seven or
five regions. The analysis using seven regions or five regions can provide
detailed analytics of a partially-known concept.

Keywords: Interval set · Rough set · Three-way decision · Granular
computing · Partially-known concept

1 Introduction

A concept is typically understood as a pair of a set of objects and a set of
attributes, known as the extension and intension of the concept respectively. In
rough sets theory [19], given a concept, it is assumed that we know exactly its
extension as a subset of objects. However, this subset may not necessarily be
described by using available attributes. Such a concept is called an undefinable
concept. The main task of rough sets theory is to approximate undefinable con-
cepts by a pair of definable concepts called lower and upper approximations or
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by the positive, negative, and boundary regions [19]. The three-region formula-
tion has led to the introduction of a theory of three-way decision that involves
thinking, problem-solving, and information processing with triads [29]. Three-
way decision has become an important theory covering many research topics and
a wide range of applications [4,5,10–12,21,22,30,33].

In real-world scenarios, some concepts have only some objects whose belong-
ings can be determined. Such concepts are referred to as partially-known
concepts. Various studies exist in developing theories of partially-known con-
cepts [9,15,20]. There are two ways to represent a partially-known concept: a
triplet of sets and an interval set. A triplet representation is inherent in the
nature of partially-known concepts. It contains three disjoint sets, respectively
representing the set of objects that are known to be instances of the concept,
the set of objects that are known to be non-instances of the concept, and the
set of unknown objects. An interval set representation, introduced by Yao [23],
consists of a family of subsets that fall within the range between a lower bound
and an upper bound. Each of the subsets may be the actual extension of the
concept, if the information was complete. Many existing studies use interval sets
to represent incomplete information [14,16–18]. It may be commented that both
the triplet and the interval set representations can be equivalently expressed in
terms of the notion of an orthopair (i.e., a pair of disjoint sets) introduced by
Ciucci [1,2].

The sets in the triplet representation and interval set representation of a
partially-known concept may be undefinable. This motivates a study on the
approximation of the partially-known concepts in light of Pawlak rough sets.
Zhang et al. [31,32] investigated the approximation of an interval set within
the Pawlak approximation space. They introduced the lower and upper approx-
imations of an interval set and considered the optimal approximations of rough
sets based on similarity measure [13] for finding the optimal approximations of
the interval set. Greco and Słowiński [8] represented a partially-known concept
by an orthopair and studied approximations of the orthopair. They showed that
approximations of partially-known sets are related to the notion of a seven-valued
logic within the Pawlak-Brouwer-Zadeh lattice, which offers a new methodology
for the analysis of the approximations of partially-known concepts. In these stud-
ies, approximations of a partially-known concept are given in terms of sets of
objects. On the other hand, combining rough sets with granular computing pro-
vides a new way to approximate concepts in terms of sets of granules [3,6,24].
Bryniarski [3] considered a representation of the lower and upper approximations
by families of equivalence classes. Yao and Yang [27,28] interpreted equivalence
classes as granular objects in the quotient space induced by an equivalence rela-
tion and introduced the notion of granular rough sets that approximate a concept
by sets of granular objects. Granular approximation offers a more structured
interpretation and enhances the semantic understanding of approximation.

Based on these studies, the main objective of this paper is to introduce the
notion of granular approximation of partially-known concepts by comparing and
integrating the two representations within the framework of granular approxima-
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tion. Rough sets deal with a kind of uncertainty due to the inability to define a
concept precisely by using a finite set of attributes, although we know exactly the
extension of the concept. Partially-known concepts are caused by another type
of uncertainty due to our partial knowledge of all instances of a concept, that is,
we only know the instance/non-instance states of some, but not all objects. The
notion of granular approximation of partially-known concepts can deal with the
two types of uncertainty simultaneously.

The rest of the paper is organized as follows. The two representations of a
partially-known concept are provided in Sect. 2 and the granular approximations
of concepts under two representations are presented in Sect. 3. Section 4 offers two
ways, respectively based on seven regions derived from a triplet representation
and five regions derived from an orthopair representation, to analyze partially-
known concepts and provide illustrative examples for these analyses. The last
section summarizes the findings of this paper.

2 Partially-Known Concepts

A concept is a pair consisting of a set of objects and a set of attributes, where
the set of objects is referred to as the extension of the concept, and the set of
attributes is referred to as the intension of the concept. A concept is exactly
known if, for any object in the universe, the object is known to be either an
instance or not an instance of the concept; and a concept is partially-known if
there exist some objects that cannot be determined whether they are or are not
instances of the concept [25]. There are two forms to represent a partially-known
concept, namely, the triplet representation and the interval set representation.

Definition 1. Let U be a non-empty finite universe. A triplet representation of
a partially-known concept is defined as follows.

X = 〈X+,X−,X?〉,

where X+ is the set of objects known to be instances, X− is the set of objects
known to be non-instances, and X? is the set of rest objects. The three sets
X+,X−,X? ⊆ U are pairwise disjoint and their union is the universe U , i.e.,
X+ ∪ X− ∪ X? = U .

The triplet representation may be simplified based on the notion of an
orthopair consisting of two disjoint sets [1,7]. For example, a partially-known
concept can be equivalently represented by one of the three orthorpairs
(X+,X?), (X+,X−), and (X−,X?). We explicitly use three sets to show the
connection between partially-known concepts and three-way decision [26]. In
other words, the uncertainty represented by partially-known concepts naturally
leads to three-way decision.

An interval set representation can be shown by a pair of sets, which respec-
tively represent the lower bound and the upper bound, in a closed interval [25].
An intuitive way of interpreting the lower bound and upper bound is through the
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possible-world semantics [16], where the lower bound is the set that includes all
‘sure’ instances and the upper bound is the set that includes all ‘sure or possible’
instances. Every set in between, including the two bounds, is one possibility of
the partially-known concept.

Definition 2. [25] Let U be a finite non-empty universe. An interval set repre-
sentation of a partially-known concept is defined as follows:

X = [X∗,X∗] = {X ⊆ U | X∗ ⊆ X ⊆ X∗},

where X∗ represents the lower bound, X∗ represents the upper bound, and X∗ ⊆
X∗ ⊆ U .

A close relationship exists between the triplet and the interval set represen-
tations of a partially-known concept:

X∗ = X+, X∗ = X+ ∪ X?;
X+ = X∗, X− = (X∗)c, X? = X∗ − X∗. (1)

This enables the transformation between the two representations of a partially-
known concept. Both representations obtain a distinct view of the partially-
known concept; we may selectively use them for different purposes.

3 Granular Approximations of Concepts
and Partially-Known Concepts

Depending on the representations of a partially-known concept, a granular
approximation provides information from different perspectives. In this section,
the granular approximations of a partially-known concept under the triplet and
the interval set representations are introduced.

3.1 Granular Approximations of Concepts

The granular approximation of concepts is built on top of partitions. A partition
of a given universe splits the universe into several non-empty disjoint parts called
blocks.

Definition 3. Let U be a finite non-empty universe. A family of subsets of U ,
π, is a partition of U if it satisfies the following conditions:

(1) ∀B ∈ π,B �= ∅,

(2)
⋃

B∈π

B = U,

(3) ∀B,B′ ∈ π,B ∩ B′ = ∅.
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In an approximation space apr = (U, π), U is the universe set representing the
ground space and π is a partition of universe representing the quotient space [27,
28]. Each individual in a ground space is an object, whereas in the quotient space
is a granular object. A granular object B can be viewed as a block of a partition,
i.e. B ∈ π, and also can be viewed as a set of elements, i.e. B ⊆ U . The granular
lower and upper approximations of a concept describe the concept by a collection
of granular objects.

Definition 4. [27] In an approximation space apr = (U, π), the granular lower
and upper approximations of set X ⊆ U are defined as follows:

apr(X|π) = {B ∈ π | B ⊆ X},

apr(X|π) = {B ∈ π | B ∩ X �= ∅}.

The pair of sets:

apr(X|π) = 〈apr(X|π), apr(X|π)〉,

is called a granular approximation of X in the quotient space π.

Based on the definition, we can easily prove that rough set approximations
have some interesting properties summarized in the next proposition.

Proposition 1. The granular lower and upper approximations hold the follow-
ing properties:

(L0) apr(U |π) = π,

(U0) apr(U |π) = π,

(L1) apr(∅|π) = ∅,

(U1) apr(∅|π) = ∅,

(L2) (apr(X|π))c = apr(Xc|π),
(U2) (apr(X|π))c = apr(Xc|π),
(L3) X ⊆ X ′ ⊆ U =⇒ apr(X|π) ⊆ apr(X ′|π),
(U3) X ⊆ X ′ ⊆ U =⇒ apr(X|π) ⊆ apr(X ′|π),
(L4) apr(X ∩ X ′|π) = apr(X|π) ∩ apr(X ′|π),
(U4) apr(X ∪ X ′|π) = apr(X|π) ∪ apr(X ′|π).

In (L2) and (U3), the complement of X is defined in the ground space, namely,
Xc = U − X; the complements of the granular lower and upper approximations
are defined in the quotient space, for example, (apr(X|π))c = π − apr(X|π).
They state the duality of granular approximations with respect to two spaces U
and π. The other properties correspond to Pawlak rough set approximations.
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3.2 Granular Approximations of Partially-Known Concepts Under
Triplet Representation

The granular approximation of a partially-known concept under triplet repre-
sentation takes granular approximations of X+,X−, and X?. By Definition 4,
the granular approximations of three sets can be simply formed. Based on these
granular approximations, we give the following definition.

Definition 5. In an approximation space apr = (U, π), the granular approxima-
tion of a partially-known concept under triplet representation X = 〈X+,X?,X−〉
is defined by:

apr(X|π) = 〈apr(X+|π), apr(X?|π), apr(X−|π)〉.

We may also express the granular approximation by a pair of triplets of granular
lower and upper approximations:

apr(X|π) = 〈apr(X|π), apr(X|π)〉
= 〈〈apr(X+|π), apr(X?|π), apr(X−|π)〉,

〈apr(X+|π), apr(X?|π), apr(X−|π)〉〉.

Although the two different representations are equivalent mathematically,
they provide complementary views for interpreting granular approximations.
Together, they provide a deeper understanding.

3.3 Granular Approximations of Partially-Known Concepts Under
Interval Set Representation

An interval set representation of a partially-known concept includes all possible
sets in between the lower and upper bounds. However, not every possible set
can be presented by a set of granular objects. Therefore, a granular approxi-
mation of a partially-known concept under interval set representation should be
approached by approximating each possible set within the interval set.

Definition 6. In an approximation space apr = (U, π), the granular approxima-
tion of a partially-known concept under interval set representation X = [X∗,X∗]
is defined by:

apr(X|π) = {apr(X|π) | X∗ ⊆ X ⊆ X∗}
= {〈apr(X|π), apr(X|π)〉 | X∗ ⊆ X ⊆ X∗}.

We may also represent the granular approximation as a pair of sets:

apr(X|π) = 〈apr(X|π), apr(X|π)〉
= 〈{apr(X|π) | X∗ ⊆ X ⊆ X∗}, {apr(X|π) | X∗ ⊆ X ⊆ X∗}〉.

These two representations of the granular approximation of an interval set are
equivalent mathematically.
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An interval set exhibits different properties in different spaces. In a ground
space, an interval set collects sets of objects; whereas in a quotient space, an
interval set collects sets of granular objects.

Definition 7. In an approximation space apr = (U, π), an interval set in a
quotient space is defined as follows:

Y = [Y∗, Y ∗]π = {S ⊆ π | Y∗ ⊆ S ⊆ Y ∗},

where Y∗, Y ∗ ⊆ π are respectively called the granular lower and upper bounds,
and Y∗ ⊆ Y ∗.

To distinguish an interval set in different spaces, we use the footnote π to
represent an interval set in the quotient space. For example, [A∗, A∗] shows an
interval set in the ground space, whereas [B∗, B∗]π shows an interval set in the
quotient space. It is important to note that a partially-known concept under
interval set representation is an interval set in the ground space.

Theorem 1. In an approximation space apr = (U, π), given a partially-known
concept under interval set representation X = [X∗,X∗], the granular lower and
upper approximations of the partially-known concept are two interval sets in the
quotient space:

(1) apr(X|π) = [apr(X∗|π), apr(X∗|π)]π,

(2) apr(X|π) = [apr(X∗|π), apr(X∗|π)]π.

Proof. (1) The inclusion apr(X|π) ⊆ [apr(X∗|π), apr(X∗|π)]π can be proved
as follows. Assume Y ∈ apr(X|π), by Definition 2, there must exist a
X ∈ [X∗,X∗] such that Y = apr(X|π). By Proposition 1(L3), we have
apr(X∗|π) ⊆ apr(X|π) ⊆ apr(X∗|π). It follows that Y = apr(X|π) ∈
[apr(X∗|π), apr(X∗|π)]π.

The inclusion [apr(X∗|π), apr(X∗|π)]π ⊆ apr(X|π) is proved as follows. Sup-
pose S ∈ [apr(X∗|π), apr(X∗|π)]π. We construct X = X∗ ∪ (

⋃
S) ⊆ U . Obvi-

ously, X ∈ [X∗,X∗]. We show that apr(X|π) = S, namely, S ∈ apr(X|π).
The inclusion S ⊆ apr(X|π) easily follows the properties of approximation,

that is, by
⋃

S ⊆ X, we can conclude S = apr(
⋃

S) ⊆ apr(X|π). The other
direction of inclusion can be shown as follows. Assume that B ∈ apr(X|π) =
apr(X∗ ∪ (

⋃
S)). By definition, B ⊆ X∗ ∪ (

⋃
S). We can show that B ∈ S by

contradiction. Assume that B �∈ S. By the properties of the partition π and the
structure of S, it follows that B∩(

⋃
S) = ∅. From B ⊆ X∗∪(

⋃
S), we must have

B ⊆ X∗. On the other hand, B ⊆ X∗ implies B ∈ apr(X∗|π) ⊆ S, contradicting
the assumption B �∈ S. Therefore, we must have B ∈ S.

By summarizing the results, we have apr(X|π) = S. We can prove (2) by
following the same argument. �

Theorem 1 shows that the granular approximation of a partially-known con-
cept results in two interval sets in the quotient space. The lower approximation
shows the range of necessity as it takes the largest set of granular objects that
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are contained by both bounds, and the upper approximation shows the range
of possibility as it takes the smallest set of granular objects that intersects with
both bounds. One may use them to extract information for different purposes.

3.4 Transformation Between Two Granular Approximations

Similar to the transformation between interval set and triplet representations of
a partailly-known concept, there exists a transformation between the granular
lower and upper approximations of it under two representations.

Proposition 2. The following properties hold:

(LL) apr(X∗|π) = apr(X+|π),
(UL) apr(X∗|π) = apr(X+|π),
(LU) apr(X∗|π) = (apr(X−|π))c,
(UU) apr(X∗|π) = (apr(X−|π))c,
(LN) apr(X−|π) = (apr(X∗|π))c,
(UN) apr(X−|π) = (apr(X∗|π))c,
(LB) apr(X?|π) = apr(X∗|π) − apr(X∗|π),
(UB) apr(X?|π) = apr(X∗|π) − apr(X∗|π).

Proof. (LL) By definition, X∗ = X+ =⇒ apr(X∗|π) = apr(X+|π).
(UL) We can use a similar procedure as (LL) to prove (UL).
(LU) By Proposition 1 (L2) and (L3), X∗ = (X−)c =⇒ apr(X∗|π) =

apr((X−)c|π) =⇒ apr(X∗|π) = (apr(X−|π))c.
(UU) We can use a similar procedure as (LU) to prove (UU).
(LN) By taking the complement of both sides in (LU), we can get (LN).
(UN) By taking the complement of both sides in (UU), we can get (UN).
(LB) By the properties of the partition π and the structure of apr(X∗|π)

and apr(X∗|π), ∀B ∈ apr(X∗|π), we have B ⊆ X∗ or B ∩ X∗ = ∅. According
to definition and Eq. (1), apr(X?|π) = apr(X∗ − X∗|π) = {B ∈ π | B ⊆
X∗ ∧ B ∩ X∗ = ∅} = apr(X∗|π) − apr(X∗|π).

(UB) We can use a similar procedure as (LB) to prove (UB). �

Proposition 2 enables transformations between the granular approximations
of a partially-known concept under two representations, meaning that there is
no difference between acquiring the granular lower and upper approximations of
X∗,X∗ and X+,X?,X−.

4 Analysis of the Granular Approximations
of Partially-Known Concepts

Through the granular approximation of a partially-known concept, one may
have two ways to analyze it, through either a 7-region analysis or a 5-region
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analysis. As the granular approximation of a partially-known concept under
two representations can be transformed into each other by Proposition 2, we
uniformly use the triplet representation in this section for convenience.

Example 1. We use an example to illustrate the two analyses. Consider a
partially-known concept as shown in Fig. 1a where the solid rectangle box rep-
resents the universe. The smaller peanut shape, which is surrounded by a solid
line, represents the lower bound of an interval set representation of a partially-
known concept; and the larger peanut shape, which is surrounded by a dashed
line, represents the upper bound of it. As the partially-known concept under
two representations can be transformed, we get that the region within the solid
peanut shows X+, the region between the solid peanut and the dashed peanut
shows X?, and the region in between the dashed peanut and the solid rectangle
shows X−. There are some shared lines at the left bottom of two peanut shapes.

Fig. 1. A Partially-Known Concept Example

The grid shown in Fig. 1b represents a partition of the universe, where each
grid cell represents a block of the partition. To better distinguish among blocks,
we use locations, i.e. (column, row), as the footnote of the block to identify them.
The column number is in ascending order from left to right and the row number
is in ascending order from bottom to top, both ranging from 0 to 4. For example,
B(2,3) represents the block that is located in the third column and the fourth
row.

4.1 The 7-Region Analysis

Greco and Słowiński [8] constructed seven disjoint regions based on rough set
approximations of a partially-known concept within a Pawlak-Brouwer-Zadeh
lattice. We here show the seven disjoint regions from the perspective of a granular
approximation of a partially-known concept. In the triplet representation, the
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upper approximations of X+, X−, and X? normally have non-empty overlaps,
which allow us to use them to represent their lower approximations as follows:

apr(X+|π) = apr(X+|π) ∩ (apr(X?|π))c ∩ (apr(X−|π))c,
apr(X?|π) = apr(X?|π) ∩ (apr(X+|π))c ∩ (apr(X−|π))c,
apr(X−|π) = apr(X−|π) ∩ (apr(X?|π))c ∩ (apr(X+|π))c.

By using the three upper approximations, we can construct 23 = 8 combinations
as follows:

Non(X) = (apr(X+|π))c ∩ (apr(X?|π))c ∩ (apr(X−|π))c = ∅,

UniP(X) = apr(X+|π) ∩ (apr(X?|π))c ∩ (apr(X−|π))c = apr(X+|π),
UniB(X) = (apr(X+|π))c ∩ apr(X?|π) ∩ (apr(X−|π))c = apr(X?|π),
UniN(X) = (apr(X+|π))c ∩ (apr(X?|π))c ∩ apr(X−|π) = apr(X−|π),
BiPN(X) = apr(X+|π) ∩ (apr(X?|π))c ∩ apr(X−|π),
BiBP(X) = apr(X+|π) ∩ apr(X?|π) ∩ (apr(X−|π))c,
BiBN(X) = (apr(X+|π))c ∩ apr(X?|π) ∩ apr(X−|π),

Tri(X) = apr(X+|π) ∩ apr(X?|π) ∩ apr(X−|π).
A block in π must be in at least one of the three upper approximations. This
means that Non(X) is always the empty set. Therefore, we only have the 7
regions potentially non-empty and pairwise disjoint regions. Figure 2 visualizes
these seven regions in a Venn diagram. The Venn diagram represents the inter-
sections among three upper approximations, where the rectangle in the Venn
diagram is the universe, the top-left circle shows the upper approximation of
X+, the top-right circle shows the upper approximation of X−, and the bottom
circle shows the upper approximation of X?.

Fig. 2. Seven Regions of a Partially-Known Concept

These seven regions are formed by managing the blocks of the partition based
on the number of upper approximations they intersect with. A block intersects
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only with the upper approximation of X+ should be in the region UniP(X); a
block intersects only with the upper approximation of X? should be in the region
UniB(X); a block intersects only with the upper approximation of X− should
be in the region UniN(X); a block intersects with both upper approximations
of X+ and X? but not intersects with the upper approximation of X− should
be in the region BiBP(X); a block intersects with both upper approximations
of X− and X? but not intersects with the upper approximation of X+ should
be in the region BiBN(X); a block intersects with both upper approximations of
X+ and X− but not intersects with the upper approximation of X? should be
in the region BiPN(X); and a block intersects with all upper approximations of
X+, X? and X− should be in the region Tri(X).

Example 2. Recall Example 1. By using the naming as given in Example 1, we
give the seven regions as follows:

UniN(X) = {B(0,0), B(0,1), B(0,2), B(0,3), B(0,4), B(4,0), B(4,1)},

UniP(X) = {B(2,1)},

UniB(X) = {B(3,3)},

UniPN(X) = {B(1,0), B(1,1), B(2,0)},

UniBN(X) = {B(1,4), B(2,4), B(3,4), B(4,2), B(4,3), B(4,4)},

UniBP(X) = {B(2,3)},

Tri(X) = {B(1,2), B(1,3), B(2,2), B(3,0), B(3,1), B(3,2)}.

4.2 The 5-region Analysis

In some situations, we may only focus on the sets X+ and X− as the set X?

lacks information. The union of upper approximations of X+ and X− is a proper
subset of the universe, i.e. X+ ∪ X− ⊂ U , meaning that we cannot represent
the lower approximations of X+ and X− by using their upper approximations.
By having their granular lower and upper approximations, we can form the five
regions as follows:

P(X) = apr(X+|π) = UniP(X),

N(X) = apr(X−|π) = UniN(X),

PN(X) = apr(X+|π) ∩ apr(X−|π) = BiPN(X) ∪ Tri(X),
BP(X) = apr(X+|π) − (PN(X) ∪ P(X)) = BiBP(X),
BN(X) = apr(X−|π) − (PN(X) ∪ N(X)) = BiBN(X).

Figure 3 shows the 5 regions formed from a granular approximation of a
partially-known concept, where the rectangle is the universe, the left big cir-
cle shows the upper approximation of X+, the left small circle shows the lower
approximation of X+, the right big circle shows the upper approximation of X−,
and the right small circle shows the lower approximation of X−.
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The five regions are formed by the intersections between the blocks of π
and the four approximation sets. A block should be in the region P(X), if it is
contained by the lower approximation of X+; a block is in the region N(X), if it
is contained by the lower approximation of X−; a block is in the region PN(X),
if it interacts with both the upper approximations of X+ and X−; a block is in
the region BP(X), if it interacts with the upper approximations of X+ but is not
contained by the lower approximations of X+ and not interacts with the upper
approximation of X−; and a block is in the region BN(X), if it interacts within
the upper approximation of X− but is not contained by the lower approximation
of X− and not interacts the upper approximation of X+.

Fig. 3. Five Regions of a Partially-Known Concept

Example 3. Recall Example 1. By using the naming method as discussed in
Example 1, we give the five regions as follows:

N(X) = {B(0,0), B(0,1), B(0,2), B(0,3), B(0,4), B(4,0), B(4,1)},

P(X) = {B(2,1)},

PN(X) = {B(1,0), B(1,1), B(1,2), B(1,3), B(2,0), B(2,2), B(3,0), B(3,1), B(3,2)},

BN(X) = {B(1,4), B(2,4), B(3,4), B(4,2), B(4,3), B(4,4)},

BP(X) = {B(2,3)}.

5 Conclusion

In this paper, we made an attempt to combine two kinds of uncertainty. The
notion of a triplet of sets or an interval set (i.e., a family of sets) models a
partially-known concept due to incomplete or partial information. That is, we
represent a partially-known concept by three sets or an interval set. These two
representations give two distinct semantics. A triplet represents the concept by
three disjoint sets, and the interval set represents the concept by a family of pos-
sible concepts between a pair of lower and upper bounds. The notion of rough
sets concerns approximations of a concept that cannot be precisely defined in
terms of a set of finite attributes. In particular, the notion of granular approxima-
tions provides a better interpretation and semantic understanding of undefinable
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concepts. By extending the idea of approximating a concept to approximating a
partially-known concept, we introduced the notion of the granular approximation
of partially-known concepts, which combines both types of uncertainty.

We have shown the granular approximations of a partially-known concept
under both representations and also shown that a transformation exists between
these granular approximations. The granular approximation of a partially-known
concept provides two ways to analyze the concept, respectively named as, the 7-
region analysis and the 5-region analysis. These analyses may serve as guidance
for implementing varied strategies for processing partially-known concepts.

We have examined both the separation and integration of two kinds of uncer-
tainty. Uncertainty due to incomplete information results in partially-known
concepts, in comparison with concepts under complete information. Uncertainty
due to the use of a finite number of attributes results in undefinable concepts
and approximations of undefinable concepts by definable concepts. A clear sep-
aration of the two types of uncertainty enables us to see clearly the different
semantics of various notions used. On the other hand, the integration gives us a
common framework in which both kinds of uncertainty are used simultaneously.
This separation-integration methodology may be applicable to study other types
of uncertainty. Based on the results of the paper, it is possible to expand further
explorations.
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Abstract. Tracking moving targets in satellite videos has lately gained
popularity. However, the growth of target tracking in satellite videos
is slower than in general videos due to the following factors. Satellite
video tracking faces challenges stemming from low frame rates, causing
significant object movement between frames and impacting prediction
accuracy, while high-resolution footage exacerbates tracking difficulties
by requiring extensive search regions for targets occupying a minimal
percentage of the total pixel count. In overall, the level of uncertainty
surrounding the target in the satellite footage is excessive. To address
the above problems, we propose a novel DiMP-based tracker and intro-
duce SES to stabilize the estimation of target motion in satellite videos.
Furthermore, we introduce an uncertainty measure, which is included
into network outputs and a loss function to remove unreliable samples
from the training set. Extensive experiments have demonstrated that our
technique can track targets with the highest precision score and success
rate on both the SatSOT and SV248S datasets, achieving state-of-the-art
status.

Keywords: Object Tracking · Satellite Videos · Uncertainty ·
Correlation Filters

1 Introduction

In computer vision and remote sensing, object tracking is a popular topic. Gen-
erally, it uses a bounding box that locks onto the region of interest (ROI) when
the target’s initial state (in a video frame) is all that is available [1,2]. Many
satellites with sophisticated onboard cameras have been deployed to collect very
high resolution (VHR) satellite movies for military and civilian applications,
owing to the advancements in satellite imaging technology [3]. Satellite video
object tracking (SVOT) is a growing topic in the remote sensing field, with
applications ranging from traffic control to ocean monitoring [4] and smart city
construction [5].

Traditional video-based target tracking has garnered more attention recently,
as evidenced by the several algorithms that have been suggested for precise
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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tracking in computer vision. There are two types of methods that make use
of either discriminant models [6–9]or generative models [10–12]. Discriminant
models view object tracking as a binary classification problem and have received
a lot of attention for their efficiency and robustness [13,14]. In contrast, the
generative model-based target tracking can be viewed as a search problem, in
which the object area in the current frame is modeled and the most similar
region is picked as the anticipated location in the next frame [15,16].

Object tracking tasks are usually divided into three components: feature
extraction [17], target location, and target scale estimate [18]. Discriminative
Correlation Filter (DCF) and Siamese tracking techniques are the dominant
tracking pipelines for target localization solutions available today. Correlation
filters are first introduced into tracking in 2010 [19], and correlation filter tracking
methods remain popular to this day. Initially, researchers employed hand-crafted
features such as color histogram [20], CN (Color Names) [21,22], gray [23], and
HOG (Histogram of Oriented Gradient) [24] as target features. Since that a sin-
gle feature is insufficient to address a wide range of complicated scene problems,
some scholars attempted to combine many hand-crafted features to characterize
the target [25,26]. With the rise of deep learning, a few researchers attempted
to replace standard features with deep features [27,28], however the tracking
results were not competitive when compared to popular correlation filter track-
ers that used traditional features. Some trackers [29,30] considered hand-crafted
features (HOG and CN) to be shallow features, and used the deep convolutional
neural networks such as ResNet [31] and VGG-Net [32] as deep feature extrac-
tor framework for adaptive weighted fusion. In 2016, SiamFC [33] suggested
an accepted Siamese network architecture that only used the target template
feature of the first frame and did not have an online updating mechanism. As
a result, some Siamese network tracking methods based on SiamFC appeared
one after another [16,34–36]. Though the tracking speed of the above-mentioned
siamese tracking methods are quite rapid, the robustness and accuracy is still
needed to be improved.

Given only the initial object location of a moving object in a satellite video
sequence, SVOT algorithms attempt to automatically predict the trajectory of
the target object throughout the sequence. Although generic object tracking
technology has made significant development in recent years, the majority of
available tracking frameworks are developed for traditional videos captured by
fixed optical cameras. When compared to conventional object tracking jobs or
aerial image tracking utilizing unmanned aerial vehicles (UAVs), satellite video
tracking has encountered a number of challenges due to the distinct character-
istics of remote sensing images. For instance, the frame rate of satellite video is
usually low due to onboard hardware restrictions, which causes significant move-
ment of the object targets between frames and further affects tracking prediction
and model update. Current tracking systems are prone to missing targets that
are suddenly stopped, concealed, or relocated. In addition, high-resolution satel-
lite footage typically has widths and heights of more than 2000 pixels, yet the
target of interest only occupies 0.01% or less of the total number of pixels in the
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video frame. While diminishing tracking performance, the large-size background
increases the searching region of traditional tracking algorithms. Trackers are
more likely to be deceived and drift to the interfering objects when multiple
highly SOs are packed surrounding the tracked target, as most moving objects
in satellite films have the shape of points and lines.

Based on the above-mentioned reasons, it can be considered that the uncer-
tainty of targets in satellite videos is stronger, creating more obstacles for track-
ing. We contend that uncertainty can also be used to direct the network’s con-
stituent parts. In order to tackle uncertainty and improve the robustness of
object tracking in satellite videos, we propose an uncertainty-adjusted sampling
strategy for the online learning of object trackers. Motivated by the character-
istic of motion smoothness of the satellite targets, in this paper, we combine a
spatial-temporal regularized correlation filter and motion smoothness require-
ment to build a high-efficiency SVOT technique. In order to properly screen out
noisy samples and increase the robustness of the branch, our tracker models the
uncertainty contained in frame samples that are sent to the classification branch
of the model. To the best of our knowledge, this is the first instance of end-to-end
training and uncertainty estimation being integrated into the sample selection
process in the field of SVOT.

Our main contributions in this paper are summarized as follows:

(1) We propose a trajectory prediction technique based on SES method, which
stabilizes the estimation of target motion in satellite videos, thereby enhanc-
ing target localization accuracy.

(2) We introduce a separate regression branch to handle target uncertainty more
effectively. This branch assesses target shape and is trained to compute the
Intersection Over Union (IOU) with proposed bounding boxes. Addition-
ally, the paper introduces a measure of uncertainty, which is incorporated
into network outputs and loss function to filter unreliable samples from the
training set.

(3) We propose a novel DiMP-based satellite videos object tracking method.
Numerous experiments have proven that our method can track targets with
the best precision score and success rate on both the SatSOT and SV248S
datasets, achieving the state-of-the-art level.

2 Related Work

2.1 CF-Based Object Tracking

Beginning with the Bolme et al. [19] minimum output sum of square error
(MOSSE) algorithm, the CF paradigm has been successfully integrated into
the field of visual object tracking. The kernelized CF (KCF) tracker gained a
lot of traction because of how easily it could be expanded. CF-based tracking
has been implemented extensively in recent years using deep features that are
collected from convolutional neural networks (CNNs) [18,37]. Many CF-based
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trackers currently in use [27,29,38,39] combine jointly created and deep features
to provide strong feature representation.

By resolving ridge regression in the Fourier domain, the discriminative corre-
lation filter (DCF) offers an attractively efficient solution to the visual tracking
problem [25,28,40–43]. These techniques usually aim to develop a discriminative
convolution kernel and then convolve with the search region in order to obtain
a response map. ATOM [44] used an optimization approach based on Gauss-
Newton and conjugate gradient to speed up the kernel learning rate, allowing
for quick online training. The learnt convolution kernel in an end-to-end tracking
architecture gained more discriminative strength as a result of the recent DiMP
[45], which was further upgraded from the standpoint of probabilistic regression
[46].

2.2 Object Tracking in Satellite Videos

In recent years, there has been a growing interest in moving object tracking in
satellite videos. Du et al. [47] combined the previously mentioned KCF tracker
with a three-frame-difference technique. Shao et al. [48] also used KCF as the
foundation and two supplementary features, optical flow (OF) and HOG, to
improve the filter’s object representation capabilities. To address the target
occlusion problem, Li et al. [49] integrated STRCF with an interacting mul-
tiple model (IMM). In order to achieve more accurate tracking, some research
[50–52] have combined the Kalman filter (KF) with the CF framework, taking
into account that motion limitations can assist reduce tracking failures. In order
to monitor small objects more reliably, Yang et al. [53] most recently proposed
a SiamMDM network that fuses several response maps and takes advantage
of spatiotemporal restrictions. The tracking drift problem can also be partially
addressed by the SiamMDM tracker with the use of a score-guided motion model.

2.3 Uncertainty Estimation

Errors could originate from a wide range of potential sources in complex situa-
tions containing a lot of data and variables, especially in the searching field of
computer vision. For this reason, it’s very important to quantify this uncertainty
and appropriately weigh intermediate forecasts. The field of computer vision lit-
erature had a long association with uncertainty estimation. In the context of 3D
target detection, MonoPair [54] suggested a prediction module for uncertainty
perception. In pedestrian placement, Monoloco [55] assessed and illustrates the
uncertainty of azimuth prediction. Gaussian-YOLO v3 [56] used loss function
reconstruction and Gaussian modeling to determine the uncertainty of bound-
ing box (bbox) prediction values.
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3 Proposed Tracker

3.1 General Architecture

Since the majority of the traffic objects in the satellite videos are seen from
above, most of them go along predetermined routes (such as cars on the road
or trains on the rail), exhibiting clear regularity. As a result, the trajectory of a
moving object in frames that follow an initial one frequently exhibits a certain
regularity, and the motion data from those frames can be regarded as an essential
cue to help with target localization. In our investigation, the motion trajectory
of a point target in satellite videos may always be finished with a straight line,
indicating a linear stationary time series. In order to prevent modeling instability
and slow down the rate of convergence, we introduces a simplified but effective
SES method [57], which performs motion estimation while assuming smoothness
constraints.

Considering the current stage of development of the tracking field, our
proposed approach is based on the DiMP tracker [45], which consists of two
branches: target classification and target localization. The categorization branch
is an online learning network capable of identifying rough places. These coarse
positions are then sent into the target localization branch to estimate the pre-
cise target position. We suggest a number of enhancements that should help the
model track uncertainty more effectively and increase its resilience. The archi-
tecture of our proposed tracker is shown as Fig. 1. The detailed process of the
innovative proposed tracking method may be summed up as follows: 1) Feature
Extractor; 2) Model Predictor; 3) Uncertainty Online Learning.

Below, we go over the architecture and training approach for our entire model,
including all of our advancements. Since the Model Predictor module we utilized
is exactly the same as DiMP tracker, it will not be described in detail in this
article.

Fig. 1. An architecture of our tracking framework.
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3.2 Feature Extractor

Similar to DiMP tracker, our final tracking architecture has two branches: a
testing frame branch and a training set branch. Firstly, we extract deep features
of testing frame and training set by a common backbone network. Then, we
utilize SES Forecasting Mehod to optimize the potential for point target tracking.
The determined position of the i frame is defined as pi, 0 < i < X, where X is
the total number of frames in the current video sequence. The translation vector
δt denotes the translation of the target between t − 1 frame and t frame. As a
result, the translation vector δt could be calculated by

δt = pt − pt−1 (1)

We define the p̂ as the position that estimated by SES forecating method. And
the estimated translation vector δ̂t could be calculated by

δ̂t = p̂t − pt−1 = αδt−1 + (1− α)δ̂t−1, (2)

where α is a smoothing constant ranging from 0 to 1.
Since universal baseline trackers always employ the determined position of the

previous frame to obtain the search region, they are susceptible to interference
caused by SOs surrounding the target. However, in our suggested method, the
coarse position determined by SES is used to place the tracked object in the
middle of the search region to reduce background noise and the uncertainty of
the object.

3.3 Uncertainty Online Learning

On top of the core online learning classification branch, our tracker includes a
separate regression branch that assesses the shape of the target and is trained
to calculate the target’s Intersection Over Union (IOU) with any bounding box
proposal. In order to augment the classification branch and further reduce the
uncertainty of the target, we introduce uncertainty prediction and use this mea-
sure of uncertainty to determine which frames are sent to the online learning
regression branch during testing.

Our regression branch takes in a proposal bounding box and returns a real
number estimating the IOU between the target and the bbox proposal. We fur-
ther extend the network to incorporate a measure of uncertainty γ. Therefore,
the output is shown as following:

IOUΘ(B) = (y, γ) (3)

where the Θ indicates the weights of the neural network. The γ means the
aleatoric uncertainty associated with the IOU prediction y returned by the net-
work IOU. Then we utilize the following loss function to train the network using
the ground truth IOU determined by the labels:

L(θ) =
∑

i

[
1
2
exp(−γi)||yi − ŷi||2 + 1

2
γi] (4)
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The loss function directs γ to take a high value when the error ||yi − ŷi||2 is
substantial. Thus, learned simultaneously with the predictions yi and our specific
loss function, γ can estimate the noise of the input data, allowing us to filter
away unreliable samples from the training set sent to the online learning branch.

4 Experiments

4.1 Implementation Details

Our proposed apporach is implemented in Python ustilizing PyTorch on a Nvidia
GTX 1080ti GPU with 24GB memory. Our tracker was implemented based on
the DiMP architecture by using ResNet50 as backbone.

4.2 Datasets and Evaluation Metrics

SV248S Dataset. The 248 video sequences in the SV248S dataset [58] have a
duration of 20–30.12 s with a frame rate of 25 frames per second. The sequences
range in length from 500 to 753 frames. Over 90% of the targets in this dataset
are autos since the dataset’s focus is on the tracking challenges posed by small
targets in remote sensing satellite video tracking.

SatSOT Dataset. Jilin-1, Skybox, and Carbonite-2 are the three commercial
satellites that provide spaceborne imagery of SatSOT Dataset [59]. The image
frames in this dataset are cropped from the original photos, and it comprises
105 satellite video sequences totaling 27 664 frames.

Evaluation Metrics. In this work, the concepts of precision and success rate
from one-pass evaluation (OPE) are applied to the quantitative assessment. The
center localization error (CLE), which is the Euclidean distance between the
target GT’s center and its anticipated bounding box, is used to calculate the
tracking precision.

4.3 Results Comparison

For comparison, the following 12 trackers are utilized in this experimental
study: MOSSE, CSK, KCF, Staple, ECO, SiamFC, SiamRPN, SiamRPN++,
SiamMask, DiMP, ToMP and TCTrack. As demonstrated in Table 1, we could
find that the performance of our tracker is better than other state-of-the-art
trackers. In the SV248S Dataset, our tracker achieves 44.6% in success rate and
2.2% higher than the best tracker SiamRPN++. In the SatSOT Dataset, our
proposed method gets 1.9% higher than SiamRPN++. To sum up, we can draw
the following conclusion: the tracker we proposed can effectively improve the
tracking effect of targets in satellite videos.
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Table 1. Comparison with state-of-the-art trackers on the SatSOT and SV248S in
terms of precision and success rate.

Trackers Source SV248S SatSOT
Prec Succ Prec Succ

MOSSE CVPR2010 16.6 7.8 24.2 26.9
CSK ECCV2012 8.9 5.0 23.7 24.7
KCF TPAMI2014 43.6 19.6 52.1 39.3
Staple CVPR2016 34.3 14.7 46.2 38.2
ECO ICCV2017 67.7 40.6 54.9 38.7
SiamFC ECCV2016 63.4 39.4 49.8 41.3
SiamRPN CVPR2018 34.0 14.5 50.0 38.5
SiamRPN++ CVPR2019 67.3 42.4 54.0 40.0
SiamMask CVPR2019 56.5 22.1 55.2 39.8
DiMP ICCV2019 59.6 36.0 51.8 42.0
ToMP CVPR2022 38.8 16.5 49.3 38.9
TCTrack CVPR2022 32.5 13.0 45.7 32.9
Ours – 68.5 44.6 57.1 46.8

5 Conclusion

This paper proposes a novel DiMP-based tracking technique for performing
object tracking tasks in satellite videos. To reduce the uncertainty of the tar-
get and improve tracking performance, two novel modules are introduced to the
DiMP architecture. Particularly, in order to maximize the potential for point tar-
get tracking, we employ the SES Forecasting Method. And we propose an uncer-
tainty online learning module to measure the uncertainty of tracking objects.
A comprehensive set of experiments has shown that, in terms of tracking accu-
racy and success rate, the suggested strategy can outperform the most advanced
techniques. To summarise, the accuracy, robustness, and efficiency of the sug-
gested tracking method make it very ideal for tracking moving objects in satellite
movies.
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Abstract. Imbalanced data is prevalent in various fields, including dis-
ease diagnosis. Effective imbalanced learning methods are crucial for
improving supervised learning algorithms. Existing preprocessing meth-
ods of imbalanced learning still suffer from blurred class boundaries,
weak robustness, and high time costs. In this paper, a three-way hybrid
sampling method using granular balls (TWHGBS) for imbalanced binary
classification is proposed. First, an overlap-based granular ball generation
(OGBG) method is proposed using k-division. Second, undersampling
and oversampling methods are concatenated to give a new hybrid sam-
pling method. Specifically, based on the overlap relation between granular
balls (GBs), an undersampling method is proposed to identify borderline
samples. An oversampling method is proposed for synthesizing minority
samples within GB based on overlap degrees adaptively. Experimental
results demonstrate that the TWHGBS-based classifiers exhibit superior
effectiveness and robustness in terms of G − mean when compared with
the existing GB-based undersampling method (GBU) and two conven-
tional hybrid methods, namely, SMOTE-Tomek Links method (STomek)
and SMOTE-ENN method (SENN).

Keywords: Imbalanced datasets · Hybrid sampling · Granular
computing · Three-way decisions · Imbalanced classification

1 Introduction

Learning from an imbalanced dataset which is with skewed class distribution,
referred to as imbalanced learning, is a challenge in the field of machine learn-
ing [10]. Various real-world datasets exhibit inherent skew, such as the patient
dataset containing far more normal individuals than sick individuals. Directly
training machine learning models on such an imbalanced dataset often leads to
the overfitting of majority samples and underfitting of minority samples. After
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decades of development, diverse imbalanced learning methods have emerged,
falling into three main categories: algorithm-level approaches, cost-sensitive
learning, and preprocessing approaches.

Algorithm-level approaches balance the impact of skewed class distribution
of datasets by proposing specific machine learning models, including ensem-
ble learning [6,11]. Cost-sensitive learning balances the impact of class skew
by giving different penalty weights to different misclassifications to increase
the importance of minority samples, including the cost-based boosting models
[8,13]. Besides, [21] proposes an evolutionary cost-sensitive deep belief network
for imbalanced classification. However, the above-mentioned imbalanced learn-
ing methods are all coupled with machine learning models. The preprocessing
approaches decouple the imbalanced learning mechanism from the machine learn-
ing models, which makes these approaches portable. They balance skewed class
distribution by preprocessing datasets, including oversampling methods [7,9],
undersampling methods [1,15], and hybrid sampling methods [2,3]. However,
there are still some limitations that require further improvement, such as the
existing undersampling methods may remove important borderline samples; the
existing oversampling methods might blur class boundaries; the oversampling
and undersampling both cannot handle highly imbalanced datasets; the existing
hybrid sampling methods exhibit high time complexity and are unsatisfactory
in processing label noise datasets.

Granular computing (GrC) [20] is a new computing paradigm that can greatly
improve computing efficiency by granulating complex datasets and using infor-
mation granules (IGs) instead of samples as the basic computing unit. After
decades of development, GrC has been combined with various machine learn-
ing models to improve the performance of data mining [14,22]. For instance,
a long-term prediction method based on the back-propagation neural network
using IGs as input is given [14]. Notably, some studies have introduced GrC to
imbalanced learning. For instance, a novel rough-granular computing method
is proposed to synthesize new samples in specific regions of feature space [5].
Besides, [18] proposes the GBU, which uses IGs represented by balls to describe
the original dataset. Thus, the distribution of the sampled dataset based on GBs
remains consistent with the original dataset. The time complexity of GBU is lin-
ear. However, GBU, being an undersampling method, has limitations for highly
imbalanced datasets. In addition, GBU implements uniform sampling across all
GBs, leading to redundancy in the sampled dataset for classification.

Three-way decisions [19], a branch of GrC, advocates understanding and pro-
cessing complex issues through three different and related parts, that is, conquer-
ing by three. The three-way decisions has been combined with numerous excel-
lent machine learning models to improve the performance and efficiency of data
mining. For instance, [12] proposes a novel image recognition algorithm based on
sequential three-way decisions introduced to speed up the inference in a convo-
lutional neural network. Therefore, a three-way hybrid sampling method using
GBs for imbalanced binary classification is proposed in this paper to address the
aforementioned limitations. The main contributions of this paper are as follows.
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– The proposal of the undersampling method based on the overlap relation
between GBs enables the identification of samples on class boundaries;

– The proposal of the oversampling method based on the overlap degree of
heterogeneous GBs allows adaptively synthesis of new minority samples
within GB to balance skewed class distribution while alleviating blurring class
boundaries;

– The proposed TWHGBS is characterized by robustness, low time complexity,
and the ability to handle highly imbalanced datasets.

The remainder of this paper is organized as follows. Section 2 reviews related
works on the preprocessing approaches of imbalanced learning and the GB-based
undersampling method. In Sect. 3, the TWHGBS is introduced in detail. The
performance of the proposed method is demonstrated in Sect. 4. Finally, the
conclusion and further work are presented in Sect. 5.

2 Related Work

2.1 Notations

Let D(D = {(x1, y1), (x2, y2), · · · , (xN , yN )}) be a binary dataset with N
samples and p features, where xi ∈ χ ⊆ Rp represents the feature vector,
yi ∈ Y = {l1, l2} denotes corresponding classes, and i = 1, 2, · · · , N . The major-
ity class of D is denoted as D′, and the minority class is denoted as D′′. The
imbalance ratio IR is IR = |D′|/|D′′|, where | • | represents the cardinality of
set •. And, G is a set of GBs generated on D, where G = {gb1, gb2, · · · , gbm}.
The majority GB set in G is denoted as G′, and the minority one is denoted
as G′′. Samples with the same label are called homogeneous samples; otherwise,
they are called heterogeneous samples. The same goes for GBs.

2.2 Preprocessing Approaches

Undersampling Methods remove some majority samples so that the sam-
ple size of each class is close to balance. The representative methods include
Tomek Links (Tomek) [1] and Edited Nearest Neighbor (ENN) [15]. The Tomek
aims to balance the class distribution by removing majority or both majority
and minority samples that form Tomek links. A Tomek link refers to a pair
of samples formed by two different class samples, with each being the nearest
neighbor of the other. Notably, the samples forming the Tomek link often are
noisy samples or borderline samples. The ENN removes majority samples that
exhibit significant differences from minority samples to balance the class distri-
bution. Specifically, the ENN employs the kNN method to identify the k nearest
neighbors for all majority samples. Subsequently, for each majority sample, it
identifies the minority samples among its k nearest neighbors. If the number of
minority samples exceeds k/2, the corresponding majority sample is removed.
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Oversampling Methods eliminate skewed class distribution by increasing the
size of the minority class. The representative method is the synthetic minority
over-sampling technique (SMOTE) [7]. SMOTE oversamples by synthesizing new
samples near minority samples. Specifically, given a binary dataset D and its
imbalance ratio IR, the number SN of synthetic samples for each minority
sample based on IR can be determined first. Second, for each minority sample,
find its k nearest neighbor minority samples. Third, among these k samples, new
minority samples are generated by random interpolation. Repeat SN times to
obtain SN synthetic minority samples.

Hybrid Sampling Methods are a group of combination methods combining
the oversampling and undersampling methods. Representative methods include
STomek [3] and SENN [2]. SENN first applies the SMOTE to oversample the
minority class. Subsequently, the ENN is employed to undersample the majority
class in the oversampled dataset. STomek replaces the undersampling method
of ENN with the Tomek Link. It is worth noting that the STomek only deletes
the majority samples which form Tomek Links.

2.3 GB-Based Undersampling Method

The GB-based undersampling method is a two-stage learning method, which
includes the granular ball generation (GBG) stage and the undersampling stage.
The core idea of the GBG method is to cover a dataset with a set of balls, where
a ball is called a GB which is indeed an IG. Additionally, the granulation process
of the GBG method can be briefly described as follows. First, the whole training
dataset is initialized as the initial GB. Second, k-means [17] or k-division [16] is
employed to split the GB into k finer GBs whose centers and radii are determined
using Definition 1. Notably, for a dataset with k classes, using k-division, there
would be k clusters with randomly selected k heterogeneous samples as centers,
and a sample in a cluster has a smaller distance to its center than that to the
center of the other cluster. The quality of the GB is measured using the purity
defined in Definition 2. The closer the purity is to 1.0, the closer the distribution
characteristics of GBs are to the original dataset. Iteratively split each GB until
the purity of all GB reaches the threshold.

Definition 1. Given a dataset D, suppose G is a set of GBs generated on D.
For ∀gbi ∈ G, it is generated on Di(Di ⊆ D), and the center ci and radius ri of
gbi are respectively defined as follows,

ci =
1

|Di|
∑

(x,y)∈Di

x, (1)

ri =
1

|Di|
∑

(x,y)∈Di

�(x, ci), (2)

where �(·, �) denotes the distance function. And, without losing generality, all
distances in this paper refer to Euclidean distances.
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Definition 2. Given a dataset D, suppose G is a set of GBs generated on D.
For ∀gbi ∈ G, it is generated on Di(Di ⊆ D), its label and purity are defined
respectively as follows,

li = argmax
lj∈Li

|{(x, y) ∈ Di|y = lj}|, (3)

pi =
|{(x, y) ∈ Di|y = li}|

|Di| , (4)

where Li represents the class set of Di.
The core idea of the GB-based undersampling method can be briefly

described as follows. Given a binary dataset D, a GB set G can be obtained
using any GBG method. First, for each gb ∈ G that covers samples less than
or equal to 2 ∗ p, all the covered samples are put into the sampled dataset. Sec-
ond, for each minority gb ∈ G that covers more than 2 ∗ p samples, the covered
minority samples are merged into the sampled dataset. Third, for each majority
gb ∈ G that covers more than 2 ∗ p samples, 2 ∗ p majority samples are put into
the sampled dataset, where 2 ∗ p samples are the nearest to the GB’s surface
in each feature dimension. Finally, if the class distribution is still skewed, more
majority samples are randomly selected and merged into the sampled dataset.

3 Approach

3.1 Framework

In this section, the proposed TWHGBS will be introduced in detail. Its frame-
work is shown in Fig. 1, including the OGBG method and a novel three-way
hybrid sampling method.

As shown in Module 1 of Fig. 1, the proposed OGBG method first treats
the entire training dataset as the initial cluster. It then iteratively performs k-
division on every cluster that does not reach the purity threshold until the purity
of all clusters reaches the given threshold.

As shown in Module 2 of Fig. 1, for the sampling stage, the TWHGBS
includes two parts: undersampling based on GBs and oversampling based on
these undersampled GBs. From the perspective of three-way decisions, consider-
ing the overlap relation between the majority GBs and the minority GBs, all the
GBs are divided and conquered: unsampled GBs, undersampled GBs, and over-
sampled GBs. First, take the GB as the basic computing unit, and by judging the
overlap relation between the GBs, any heterogeneous GB pair with an overlap
relation is obtained as the undersampled result, representing the delayed deci-
sion region for oversampling later. The remaining GBs are put into the rejection
region and will not be processed anymore. Second, determine the class distribu-
tion of samples covered by all the GBs in the delayed decision region, put the
majority samples into the hybrid sampled dataset, and the majority GBs are
regarded as objects belonging to the acceptance region correspondingly. Third,
new samples are adaptively synthesized within each GB in the update delayed
decision region. Finally, the GBs in the delayed decision region are all put into the
accepted region; these samples covered are put into the hybrid sampled dataset.
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Fig. 1. Architecture of TWHGBS.

3.2 Generation of Granular Balls

For the sampling task to obtain borderline samples, it was hoped that there
would be an overlap relation between the borderline GBs. Therefore, the criteria
of GBG can be reduced to two basic ones: first, the samples covered by the GB
set should be as consistent as possible with the original dataset; second, the
samples belonging to any GB should be within or on the ball in terms of feature
space. Thus, the GB is redefined as follows,

Definition 3. Given a dataset D, suppose G is a set of GBs generated on D.
For ∀gbi ∈ G, it is defined as gbi = (ci, ri, li, Oi) and generated on Oi(Oi ⊆ D),
and the radius ri of gbi is defined as follows,

ri = max{�(x, ci) | (x, y) ∈ Oi}, (5)

where center ci is defined as Definition 1, label li is defined as Definition 2.

In addition, inspired by the previous work [16], the k-division method can
quickly divide a cluster into k smaller clusters, where k represents the number
of classes in the cluster. Therefore, the OGBG method is proposed.

Given a dataset D, the working process of the OGBG method is as follows.
As shown in Step 1 of Module 1 in Fig. 1, the whole dataset D is initialized as
the initial cluster Oi(Oi = D), i = 1. Generally, the purity threshold should be
greater than the purity of the initial cluster. As shown in Step 2, k-division is
performed on any Oi to obtain a set of finer clusters E =

⋃k′

j=1{Oj}. Notably, if a
cluster contains only one sample, the sample is an outlier and needs to be deleted;
thus, k′ <= k. As shown in Step 3, if pj < P , then Oj returns to Step 2, where P
is the given purity threshold and the purity pj of Oj is obtained using the Eq. 4;
otherwise, as shown in Step 4, a new GB will be put into the GB set, where
the GB is generated on Oj using Definition 3. Repeat steps 2–4 above until all
clusters reach the purity threshold. Finally, the GB set G = {gb1, gb2, · · · , gbm}
can be obtained. Algorithm 1 shows the complete process of the OGBG method.
The time complexity of Algorithm 1 is O((tk − t+ 1)N), where t is the number
of iterations, and k = 2 for the binary dataset. Compared with the GBG method
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[16], Algorithm 1 has no global division, which can further accelerate the process
of GBG.

Algorithm 1: OGBG Method.
Input : Dataset D, purity threshold P .
Output: The GB set G.

1 Treat the entire D as the initial cluster Oi(i = 1);
2 G ← ∅ � initialize GB set;
3 E ← {O1} � initialize cluster set;
4 repeat
5 for each cluster Oi ∈ E do
6 Calculate purity pi by Eq. 4 ;
7 if pi < P then
8 split Oi into E′(E′ =

⋃k′
j=1 Oj) using k-division ;

9 if |E′| == 1 and |Oi| == |Oj | then
10 Construct GB gb = (c, r, l, O) on Oj by Definition 3;
11 Delete samples in Oj that are inconsistent with l;
12 G ← G + {gb};
13 E ← E − {Oi};

14 else
15 E ← E + E′;
16 E ← E − {Oi};

17 else
18 Construct GB gb = (c, r, l, O) on Oi by Definition 3;
19 G ← G + {gb};
20 E ← E − {Oi};

21 until E == ∅;
22 Return G.

3.3 GB-Based Borderline Undersampling Method

For classification tasks, borderline samples are key samples, and the same applies
when dealing with imbalanced datasets. The samples within each GB essentially
form a cluster, and the overlap relation between GBs can reflect the distance and
similarity of the corresponding clusters. If there is an overlap relation between
any two heterogeneous GBs, the overlap region represents samples from differ-
ent classes. That is, these GBs and the within samples lie on class boundaries.
Therefore, by analyzing the overlap relation among GBs in the feature space
to study data distribution, a GB-based undersampling method is proposed to
obtain borderline GBs and the borderline samples approximately.

As shown in Step 1 of Module 2 in Fig. 1, according to Sect. 3.2, a GB set
G = G′ +G′′ that covers the original dataset can be obtained. As shown in Step
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2, detect heterogeneous GBs with the overlap relation. Specifically, for each
gb′ ∈ G′, calculate the distance between it and each gb′′ ∈ G′′ using Eq. 6.

d(gb′, gb′′) = �(c′, c′′) − (r′ + r′′). (6)

Then, for ∀gb ∈ G, count the heterogeneous overlap number ON(gb) by Eq. 7,
where ON(gb) represents the number of heterogeneous GBs that overlap with
gb.

ON(gb) =
∑

gb�∈G,l �=l�

f(gb, gb�), (7)

f(gb, gb�) =

{
1 if d(gb, gb�) < 0
0 if d(gb, gb�) >= 0

, (8)

where gb = (c, r, l, O), gb� = (c� , r�, l�, O�). If ON(gb) >= 1, gb is consid-
ered as a borderline GB that needs to be put into the undersampled GB set
B =

⋃m′

i=1{gbi}, m′ <= m. And, S = {(x, y) | (x, y) ∈ O, gb ∈ B} is the
corresponding undersampled dataset.

Given a binary dataset includes 57 majority samples marked blue points and
24 minority samples marked orange points. Using the OGBG method, several
GBs are generated, including 4 majority GBs {gb1, gb2, gb3, gb4} marked blue
circles and 3 minority GBs {gb5, gb6, gb7} marked orange circles as shown in
Fig. 2(a). Using Eq. 7, since ON(gb1) < 1, it is not distributed on the class
boundary, and ON(gbi) >= 1, i = 2, 3, · · · , 7, then the borderline GB set is
B = {gbi | i = 2, 3, · · · , 7}, the undersampled dataset is S = {(x, y) | (x, y) ∈
O, gb ∈ B} shown in Fig. 2(b).

Lines 3–7 of Algorithm 2 show the detailed steps of the proposed undersam-
pling method. Assume that Algorithm 1 constructs m1 majority GBs and m2

minority GBs on the dataset D. Then, the time complexity of the GB-based
undersampling method is O(m1 ∗ m2).

3.4 GB-Based Oversampling Method

For the imbalanced dataset, the problem caused by the severe shortage of minor-
ity samples can be alleviated by increasing the number of minority samples. As
shown in Module 2 of Fig. 1, by undersampling on the original dataset, the num-
ber of majority samples will be reduced, and the imbalance ratio will be reduced
to a certain extent, but oversampling may still be required.

In the feature space, the samples contained in the GB represent the typical
characteristics of the class corresponding to the ball. Therefore, an oversampling
method for synthesizing new samples in each minority GB is proposed. Consid-
ering that the borderline GBs are obtained from the proposed undersampling
method in Sect. 3.3, the overlap area indicates that the majority samples are
indistinguishable from minority samples. Therefore, the overlap information is
considered to determine the number of synthetic samples within each GB and
the synthesis rules for each new sample.
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Fig. 2. Sampling process using TWHGBS. (Color figure online)

According to Sect. 3.3, there is an undersampled dataset S, which includes
N1 majority samples and N2 minority samples. And, B = B′ + B′′ is the cor-
responding undersampled GB set, including a set of majority GB B′ and a set
of minority GB B′′. First, calculate the imbalance number IN, IN = N1 − N2,
representing the difference in the number of majority and minority samples. Sec-
ond, according to Eq. 9, for each gb ∈ B′′, calculate the synthetic sample number
SN(gb). Third, synthesize new samples using Eq. 10 and put them into S.

SN(gb) =

⌊
ON(gb)∑

gb�∈B′′ON(gb�)
∗ IN

⌋
. (9)

Any synthetic sample within gb = (c, r, l, O) can be expressed as follows,

(x, y) = (c + x′ ∗ r ∗ 1
ON(gb)

, l), (10)

where x′ represents a randomly generated p-dimensional unit vector.
According to Eq. 10, the larger the ON(gb), the closer the new sample gen-

erated within gb is to the center of the GB, thereby maximizing the quality
of the synthetic samples while reducing the possibility of blurring class bound-
aries. In summary, nearly N1+N2+ IN samples are sampled with the proposed
oversampling method compared with the undersampled N1+N2 samples; nearly
N1+N2+IN samples are sampled with the proposed hybrid sampling compared
with the original N samples, and the imbalance ratio is close to 1.
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According to the undersampled GB set B and the undersampled dataset S
shown in Fig. 2(b), since the number of blue points is greater than in orange, that
is N1 = 35, N2 = 24, then the imbalance number IN = 11, there are the majority
GBs B′ = {gb2, gb3, gb4} and the minority GBs B′′ = {gb5, gb6, gb7}. Since
ON(gb5) = 3, ON(gb6) = 1, ON(gb7) = 1, then SN(gb5) = 6, SN(gb6) = 2,
SN(gb7) = 2. Then, for gb5, 6 new samples need to be synthesized. The new
samples are distributed on the concentric hypersphere with gb5, whose radius is
1/3∗r5. Similarly, gb6 and gb7 randomly generate two new samples, respectively,
as shown in Fig. 2(c). Figure 2(d) shows the hybrid sampled dataset. As a result,
the size of the majority class and minority class are 35 and 34, respectively.

Lines 8–13 of Algorithm 2 show the detailed steps of the proposed oversam-
pling method. Assume that the undersampled dataset contains N1 majority and
N2 minority samples. Then, the time complexity of the GB-based oversampling
method is O(N1 − N2). Thus, the time complexity of the proposed TWHGBS
is O((tk − t + 1)N + m1 ∗ m2 + N1 − N2). In addition, the time complexity of
STomek and SENN is O(N2 ∗ N + α ∗ N2 + (N1 + (1 + α)N2)2), where α is the
sampling multiple of SMOTE. In summary, the time complexity of TWHGBS is
linear, while STomek and SENN are both square.

Algorithm 2: TWHGBS method.
Input : Dataset D, purity threshold P .
Output: Sampled dataset S.

1 B ← ∅ � initialize borderline GB set;
2 Generate a GB set G = {gb1, gb2, · · · , gbp} on D by Algorithm 1;
3 for gb ∈ G do
4 Obtain the heterogeneous overlap number ON(gb) using Eq.7;
5 if ON(gb) >= 1 then
6 B ← B + {gb};
7 S ← S + O � gb = (c, r, l, O);

8 Obtain the majority GB set B′ and minority GB set B′′ on B;
9 Obtain the imbalance number IN on all samples covered by B;

10 for gb ∈ B′′ do
11 Obtain the synthetic sample number SN(gb) based on Eq. 9;
12 Randomly synthesise a set of new samples

⋃SN(gb)
i=1 {(xi, y)} using Eq. 10 � y

is the minority class;
13 S ← S +

⋃SN(gb)
i=1 {(xi, y)};

14 Return S.

4 Experimental Results and Analysis

4.1 Experimental Settings

Ten benchmark imbalanced datasets are used in this section, with detailed infor-
mation shown in Table 1. The smallest imbalance ratio of these datasets is 1.86,
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and the largest is 53.07. For binary imbalanced classification, G − mean [4] is a
widely used metric that simultaneously measures the performance of classifiers
for majority and minority examples. The G − mean is defined as follows.

G − mean =
√

sensitivity ∗ specificity, (11)

where sensitivity = TP/(TP + FN) represents the accuracy of majority sam-
ples, and specificity = TN/(TN + FP ) represents the accuracy of minority
samples. The value range of G − mean is [0, 1]. The larger the value, the better
the classification performance.

Table 1. Details of datasets.

Dataset Samples Minority Features IR

wisconsin 683 239 9 1.86
ecoli-0_vs_1 (ecoli) 220 77 7 1.86
yeast1 1484 429 8 2.46
newthyroid2 215 35 5 5.14
page-blocks-1-3_vs_4 (page-blocks) 472 28 10 15.86
dermatology-6 358 20 34 16.9
car-good 1728 69 6 24.04
yeast5 1484 44 8 32.73
winequality-white-3_vs_7 (winequality) 900 20 11 44
kr-vs-k-zero_vs_eight (kr-vs-k) 1460 27 6 53.07

The TWHGBS is validated with GBU, STomek, and SENN on two sample
classifiers: Support Vector Machine (SVM) and Logistic Regression (LR). GBU
is a representative GB-based undersampling method, and STomek and SENN
are representative hybrid sampling methods. To reduce the risk of overfitting,
a five-fold cross-validation method is employed. Considering the randomness of
TWHGBS and GBU, the TWHGBS-based classifier and GBU-based classifier
repeatedly performed ten times five-fold cross-validation. Additionally, for stan-
dard datasets, the purity thresholds of TWHGBS and GBU are set to 1.0. For
label noise datasets, the purity thresholds of TWHGBS and GBU are traversed
in steps of 0.01 in the [β, 1], where β represents the purity of the initial cluster
for TWHGBS or the initial GB for GBU. In addition, the parameters of STomek
and SENN are consistent with the default parameters in imblearn, and that of
SVM and LR are consistent with the default parameters in scikit-learn. Both
imblearn and scikit-learn are open-source Python libraries.

4.2 Effectiveness

In this section, the effectiveness of TWHGBS is demonstrated. Columns 2–6 of
Table 2 respectively represent the average test G − mean on TWHGBS-based
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SVM, GBU-based SVM, STomek-based SVM, SENN-based SVM, and SVM on
each dataset. Table 3 shows the results on LR. The best score is in bold in this
paper.

As shown in Table 2, the TWHGBS-based SVM is better than the STomek-
based SVM and SENN-based SVM on most datasets and is better than the GBU-
based SVM on all datasets. The performance of SVM directly using the original
dataset is worse than that of all the sampling-based SVM. Similar conclusions
can also be obtained in Table 3.

There are three reasons why TWHGBS has such outstanding performance.
First, compared to GBU, an undersampling method, TWHGBS is a hybrid
sampling method focusing on borderline samples to avoid interference by non-
borderline samples, so TWHGBS generally performs better than GBU, not only
on highly imbalanced datasets. Second, the SMOTE exhibits shortcomings, such
as blurring class boundaries, redundant synthetic samples, and an inability to
handle datasets with an extremely high imbalance ratio. STomek and SENN
first employ SMOTE for oversampling and then undersample based on the over-
sampled dataset. Thus, they inherit the shortcomings of SMOTE. In addition,
STomek and SENN do not focus on the class boundaries, which may remove
necessary borderline samples. Therefore, TWHGBS outperforms STomek and
SENN on most datasets. Third, for imbalanced datasets, directly training the
classifier on the original dataset might result in underfitting for minority classes
and overfitting for majority classes. Therefore, the performance of classifiers that
consider imbalanced learning is better than those that do not.

Table 2. Comparison on test G − mean of SVM.

Dataset TWHGBS GBU STomek SENN Original

wisconsin 0.9745 0.9666 0.9707 0.9739 0.9666
ecoli 0.9720 0.9457 0.9624 0.9624 0.9463
yeast1 0.7001 0.2489 0.6990 0.6610 0.2453
newthyroid2 0.9703 0.6952 0.9490 0.9611 0.6952
page-blocks 0.8277 0.1428 0.7965 0.7953 0.0000
dermatology-6 1.0000 0.9119 1.0000 1.0000 0.8878
car-good 0.9354 0.0000 0.9303 0.9281 0.0000
yeast5 0.9597 0.0000 0.9617 0.9610 0.0000
winequality 0.5978 0.0000 0.6287 0.6428 0.0000
kr-vs-k 0.9719 0.0000 0.9731 0.9727 0.0000
Average 0.8910 0.3911 0.8871 0.8858 0.3741

4.3 Robustness

To verify the robustness of the TWHGBS, label noise datasets with sample
proportions of 10% and 30% are randomly constructed manually on all datasets
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Table 3. Comparison on test G − mean of LR.

Dataset TWHGBS GBU STomek SENN Original

wisconsin 0.9732 0.9613 0.9708 0.9729 0.9613
ecoli 0.9636 0.9504 0.9597 0.9560 0.9463
yeast1 0.7038 0.4685 0.7008 0.6807 0.4737
newthyroid2 0.9726 0.7568 0.9639 0.9639 0.6509
page-blocks 0.8151 0.4996 0.8125 0.8113 0.3778
dermatology-6 1.0000 0.9232 1.0000 1.0000 0.9146
car-good 0.8566 0.0105 0.8566 0.8588 0.0000
yeast5 0.9632 0.0141 0.9661 0.9625 0.0667
winequality 0.6305 0.0000 0.5800 0.5954 0.0000
kr-vs-k 0.9318 0.0476 0.9021 0.9007 0.0000
Average 0.8810 0.4632 0.8712 0.8702 0.4391

listed in Table 1. Specifically, samples are selected randomly on each dataset, and
the labels of these samples are changed. Table 4 shows the results on the datasets
with a label noise ratio of 10%. Expressly, columns 2–3 represent the average
test G−mean of TWHGBS-based SVM and GBU-based SVM with the optimal
purity threshold on each dataset, and columns 7–8 respectively correspond to the
optimal thresholds for TWHGBS and GBU simultaneously. Notably, − means
that the average test G − mean of the GBU-based SVM is the same under
any given purity threshold. Moreover, columns 4–6 represent the average test
G−mean of STomek-based SVM, SENN-based SVM, and SVM on each dataset,
respectively. Table 5 shows the results on datasets with a label noise ratio of 30%.

According to Table 4 and Table 5, the classification results of TWHGBS-
based SVM on most datasets are better than that of GBU-based SVM, STomek-
based SVM, SENN-based SVM, and SVM. There are three reasons why the
TWHGBS has such outstanding robustness. First, the GBG method is noise-
tolerant, in which the majority of samples within GB determine the label of GB.
Thus, GB-based sampling methods also inherit this property. Second, the GBG
method of TWHGBS focuses on the borderline samples to avoid some noisy sam-
ples, which makes TWHGBS have better noise resistance than GBU, STomek,
and SENN. Third, STomek and SENN employ SMOTE, so the synthesized new
samples are highly affected by noisy samples, and even undersampling methods
such as Tomek Links and ENN cannot eliminate the influence completely.

4.4 Parameter Sensitivity Analysis

The impact of the purity threshold on TWHGBS is verified in this section.
Figure 3 shows the average test G − mean of TWHGBS-based LR with the
purity threshold traversed in steps of 0.01 within [0.85, 1] on several standard
datasets, such as page-blocks and ecoli.
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Table 4. Comparison on test G − mean of SVM(Noise rate:10%).

Dataset TWHGBS GBU STomek SENN Original Best purity
TWHGBS GBU

wisconsin 0.8630 0.8612 0.8580 0.8620 0.8511 0.9 0.98
ecoli 0.8586 0.8415 0.8471 0.8403 0.8408 0.71 0.99
yeast1 0.6556 0.2874 0.6522 0.5567 0.1187 0.81 0.7
newthyroid2 0.7219 0.5006 0.6754 0.7472 0.4163 0.84 0.85
page-blocks 0.4910 0.0000 0.3200 0.4060 0.0000 0.91 –
dermatology-6 0.6110 0.4832 0.6013 0.4634 0.4100 0.96 0.87
car-good 0.6199 0.0000 0.6264 0.5765 0.0000 0.91 –
yeast5 0.5299 0.0000 0.5163 0.1425 0.0000 0.92 –
winequality 0.4902 0.0000 0.4937 0.0000 0.0000 0.9 –
kr-vs-k 0.5194 0.0000 0.5099 0.3989 0.0000 0.91 –
Average 0.6361 0.2974 0.6100 0.4993 0.2637 – –

Table 5. Comparison on test G − mean of SVM(Noise rate:30%).

Dataset TWHGBS GBU STomek SENN Original Best purity
TWHGBS GBU

wisconsin 0.6745 0.6734 0.6706 0.6689 0.6719 0.8 0.77
ecoli 0.6605 0.6535 0.6613 0.6753 0.6498 0.7 0.78
yeast1 0.5608 0.0000 0.5177 0.2366 0.0000 0.62 –
newthyroid2 0.4835 0.3480 0.5238 0.0538 0.1000 0.64 0.68
page-blocks 0.4378 0.0000 0.4350 0.2056 0.0000 0.71 –
dermatology-6 0.4777 0.0000 0.4444 0.1364 0.0000 0.71 –
car-good 0.5130 0.0000 0.4927 0.1495 0.0000 0.76 –
yeast5 0.4863 0.0000 0.5090 0.0000 0.0000 0.7 –
winequality 0.4630 0.0000 0.4620 0.0000 0.0000 0.71 –
kr-vs-k 0.4747 0.0000 0.4718 0.0647 0.0000 0.77 –
Average 0.5232 0.1675 0.5188 0.2191 0.1422 – –

From Fig. 3, it can be observed that as the purity threshold increases, the
performance of TWHGBS-based LR is better. The reason is that as the purity
of the GB increases, the constructed GBs using any GBG method describe the
original dataset more accurately, similar to the GBG of GBU. Therefore, it is rea-
sonable to set the threshold for GB-based sampling methods, namely TWHGBS
and GBU, to 1.0 on the standard dataset.

Notably, for the page-blocks, it can be observed that when the purity thresh-
old is between 0.94 and 0.95, the performance of TWHGBS-based LR is sig-
nificantly improved. The reason is that the page-blocks contains 444 majority
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Fig. 3. Impact of purity threshold on test G − mean of TWHGBS-based LR.

samples and 28 minority samples. According to the OGBG method, the purity
of the initial cluster is 0.9407. Therefore, TWHGBS only takes effect when the
purity threshold exceeds 0.9407.

5 Conclusion

Effective solutions to the class imbalanced problem are crucial for improving
performance across applications like disease diagnosis. This paper proposes an
alternative hybrid sampling method to tackle the prevalent challenge of learning
from imbalanced binary datasets. The proposed TWHGBS integrates undersam-
pling and oversampling methods using GBs generated by the proposed OGBG
method. Extensive experiments on 10 public imbalanced binary datasets demon-
strate that TWHGBS achieves superior performance and robustness compared
to an existing GB-based undersampling method and conventional hybrid sam-
pling methods like STomek. Notably, TWHGBS maintains effectiveness even
on highly skewed datasets and exhibits strong robustness against label noise
datasets. Moreover, a more general method to deal with imbalanced multi-class
datasets will be studied for our future work.
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Abstract. The concept lattice plays a fundamental role in formal con-
cept analysis (FCA) and finds widespread application across various
fields. However, the presence of a large number of nodes in the concept
lattice can pose challenges when it comes to comprehending the acquired
conceptual knowledge. The size of the concept lattice is a significant con-
cern in FCA, and obtaining an appropriately sized lattice is of utmost
importance. To address this issue, this paper introduces a novel model
for identifying important concepts in the concept lattice. The proposed
model leverages concept indices and complex network analysis techniques
to reduce the size of the lattice and enhance the understanding of concep-
tual knowledge. To derive the most valuable concepts, concept indices
are first proposed by both node attribute information and structural
information. Second, to fuse the attribute and structural information
of concepts, an information system for concept indices is developed. In
addition, the K-means method is employed to comprehensively evaluate
all concept indices and obtain important concept identification results.
Finally, an empirical study and comparative analyze demonstrate that
the proposed model can effectively identify important concepts in the
concept lattice.

Keywords: Formal concept analysis · Concept lattice · Concept
stability

1 Introduction

Formal concept analysis (FCA) [14] is a theoretical framework for knowledge
discovery that operates on formal contexts, utilizing the concept lattice as a
fundamental mathematical theory to effectively unveil the hierarchical struc-
ture of concepts within the formal context. The concept lattice has found
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widespread applications in diverse fields, including concept-cognitive learning
[16], autonomous learning [5], and linguistic information processing [4,13].

FCA acknowledges that in real-world scenarios, formal contexts can fre-
quently be extensive, leading to the emergence of complex concept lattices. The
number of nodes in the concept lattice increases exponentially as the size of the
formal context expands. Consequently, this exponential growth poses challenges
in effectively handling and analyzing the concept lattice. In response to this
challenge, researchers have dedicated significant efforts to developing methods
for simplifying concept lattices [2,10,18]. Among these studies, Mi et al. [10]
utilized conceptual clustering for concept learning, aiming to enhance concept
classification performance. Dias et al. [2] conducted an analysis of concept lat-
tice reduction by leveraging appropriate implication sets to maintain both the
original and simplified structures. While these methods have proven to be highly
effective, they do not fully consider the inherent characteristics of the concept
itself and the structural information within the concept lattice.

To address this issue, we can consider two aspects of information:

1. Node attribute information of concept lattice: Existing methods for concept
lattice reduction often incorporate interest measures or concept indices to
ensure the quality of the lattice [3,8,11]. Therefore, utilizing interest measures
as node attribute information in the concept lattice can be beneficial.

2. Structural information of concept lattice: Complex network analysis offers a
range of methods for analyzing the overall structure and node attributes of
complex networks. Various research approaches have been developed to iden-
tify key nodes in complex networks [12,17]. Since a concept lattice can be
viewed as a type of network, analyzing its topological structure and over-
all properties can provide insights into the relationships between concepts.
Interestingly, complex network analysis has not been extensively applied to
concept lattices. Hence, exploring attribute analysis techniques from complex
networks can be a valuable approach for studying the structural information
of concept lattices.

Building upon the previous discussion, this paper introduces a novel model
for identifying important concepts in concept lattices by leveraging complex
network analysis and concept indices. The proposed model takes into account
both the structural information and node attribute information of the concept
lattice. Through an empirical study and comparative analysis, the effectiveness
of the proposed model in identifying important concepts within the concept
lattice is demonstrated.

The key innovations of this research can be summarized as follows:

– Integration of Complex Network Analysis: The research introduces the appli-
cation of complex network analysis techniques to concept lattices. By treating
the concept lattice as a network, the study leverages the tools and method-
ologies from complex network analysis to gain insights into the structural
properties and relationships between concepts.
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– Consideration of Node Attribute Information: The research incorporates node
attribute information, specifically concept indices, as an additional factor in
identifying important concepts within the lattice. By considering both the
structural information and node attribute information, a more comprehensive
and accurate identification of significant concepts is achieved.

– Synthesis of Node Attribute Features and Structural Features: The research
utilizes the K-means method to synthesize node attribute features and struc-
tural features. By combining these two types of features, the research auto-
matically obtains important concepts in the concept lattice.

These innovations contribute to advancing the field of concept lattice by
providing a novel model that integrates complex network analysis, considers node
attribute information, and employs the K-means method to identify important
concepts. This comprehensive model enhances the effectiveness and accuracy of
concept identification in concept lattices, facilitating knowledge discovery and
understanding within complex datasets.

The subsequent sections of this study are structured as follows. Section 2
revisits foundational concepts and notions of FCA. Section 3 provides concept
indices from the perspective of attribute information and structural information.
Section 4 constructs an important concept identification model and gives the
corresponding algorithm. Section 5 provides an empirical study with comparative
analysis. Finally, we wrap up the paper with a summarization and a glimpse into
potential future research directions, as detailed in Sect. 6.

2 Preliminaries

This section reviews the fundamental concepts associated with FCA.

2.1 FCA

Definition 1 [14]. A formal context is a triple (G,M, I), where G= {g1, g2, · · · ,
gm} is a set of objects, M= {m1,m2, · · · ,mn} is a set of attributes, and I ⊆
G × M is a binary relation between G and M . For gi ∈ G and mj ∈ M ,
(gi,mj) ∈ I means that the object gi has the attribute mj.

Definition 2 [14]. Let (G,M, I) be a formal context. For X ⊆ G and B ⊆ M ,
two operators “↑” and “↓” can be defined as follows:

(•)↑ : 2G → 2M ,

X↑ = {m|m ∈ M, ∀g ∈ X, (g,m) ∈ I} , (1)

(•)↓ : 2M → 2G,

B↓ = {g|g ∈ G, ∀m ∈ B, (g,m) ∈ I} . (2)

Definition 3 [14]. Let (G,M, I) be a formal context, for X ⊆ G and B ⊆ M ,
if there exist X↑ = B and X = B↓, then a pair (X,B) is called a concept
of (G,M, I). X and B are called the extent and intent of the concept (X,B),
respectively.
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3 Concept Indices

This section presents an analysis of the concept indices from two perspectives:
the attribute information and the topology of the concept.

3.1 Concept Attribute Features

The concept attribute features, which serve as indices for evaluating the quality
of concepts, are described as follows.

Support. Support is a crucial index utilized in data mining for discovering fre-
quent itemsets [1]. Within the concept lattice, the support of a concept signifies
its frequency of occurrence.

Definition 4. Let (G,M, I) be a formal context and L(G,M, I) be the set of all
concepts. For C = (X,B) ∈ L(G,M, I), the support of (X,B) is defined as

Sup(C) =
|B|
|M | . (3)

The quality of a concept is evaluated by the number of attributes in its intent,
denoted as Sup(C). Concepts are selected based on their Sup(C) values, subject
to a minimum support threshold, minSup(C).

Stability. The stability of a concept [7] can be examined from two perspectives:
intensional stability and extensional stability.

Definition 5. Let (G,M, I) be a formal context and L(G,M, I) be the set of
all concepts. For C = (X,B) ∈ L(G,M, I), the intensional stability of (X,B) is
defined as

σi(X,B) =
|{Y ⊆ X|Y ↑ = B}|

2|X| , (4)

and the extensional stability of (X,B) is defined in the dual way

σe(X,B) =
|{Z ⊆ B|Z↓ = X}|

2|B| . (5)

The concept of stability is robust against noise. It is necessary to extract
concepts with high stability.

Separation. The Separation index [6] quantifies the significance of the distinc-
tion between the objects encompassed by a concept and other objects, as well
as between its attributes and other attributes.

Definition 6. Let (G,M, I) be a formal context and L(G,M, I) be the set of all
concepts. For C = (X,B) ∈ L(G,M, I), the separation of (X,B) is defined as

Sep(C) =
|X||B|

∑
g∈X |g↑| + ∑

m∈B |m↓| − |X||B| . (6)
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Shannon Entropy. The computation of concept weights can be accomplished
using Shannon entropy [15]. The selection of an appropriate granularity facili-
tates the effective identification of important concepts.
Definition 7. Let (G,M, I) be a formal context and L(G,M, I) be the set of all
concepts. For any mi ∈ A, the weight of mi is defined as

w(mi) =
E(mi)∑n
i=1 E(mi)

, (7)

where E(mi) represents the information entropy of attribute mi, i.e.

E(mi) = −|m↓
i |

|G| log2
|m↓

i |
|G| . (8)

The concept weights can be obtained by calculating the information entropy
of each attribute.
Definition 8. Let (G,M, I) be a formal context and L(G,M, I) be the set of
all concepts. For any (X,B) ∈ L(G,M, I) and mj ∈ B, the weight of (X,B) is
defined as

w(X,B) =

∑
j w(mj)
|B| . (9)

3.2 Concept Structural Features

A concept lattice can be represented as G = (N,E), where N = {c1, c2, · · · , co}
denotes a set of concepts, E = {e1, e2, · · · , ep} represents a set of edges con-
necting concepts, and o and p indicate the number of concepts and edges in the
concept lattice, respectively. The top and bottom elements of the concept lattice
are not taken into consideration.

Drawing inspiration from complex network analysis, we introduce methods
from degree centrality, closeness centrality, eigenvector centrality, and clustering
coefficient to identify and determine significant nodes within complex networks
within the framework of FCA. These methods capture the concept structural
features of the concept lattice.

Degree Centrality. Concepts that possess a substantial degree hold greater
significance within the concept lattice compared to other concepts, making them
worthy of consideration as important concepts. Such concepts commonly exhibit
stronger connections to other concepts.
Definition 9. Let (G,M, I) be a formal context and G = (N,E) be a concept
lattice. For any ci ∈ N , the degree centrality of ci is defined as

DC(ci) =

∑
j eij

o − 1
, (10)

where eij denotes the edge between concepts ci and cj, cj denotes any concept
other than ci, and o denotes the total number of concepts in the concept lattice.
The value of eij is “1” if an edge exists between ci and cj, otherwise, its value is
“0”.
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Closeness Centrality. Closeness centrality leverages the structural character-
istics of the complete concept lattice, specifically the positioning of a concept
within the lattice.

Closeness centrality assesses the proximity of a concept to all other concepts.
A concept’s closeness centrality increases as the average shortest distance to
reach other concepts in the lattice decreases.

Definition 10. Let (G,M, I) be a formal context and G = (N,E) be a concept
lattice. For any ci ∈ N , the closeness centrality of ci is defined as

CC(ci) = [Da(ci)]−1, (11)

where Da(ci) denotes the average distance of ci to all other concepts in the
concept lattice, i.e.

Da(ci) =

∑o
j �=i dij

o − 1
, (12)

where o denotes the total number of concepts in the concept lattice, dij denotes
the shortest path between ci and cj.

Eigenvector Centrality. The significance of a concept within a concept lat-
tice can be inferred from the quantity and significance of the generalized and
specialized concepts linked to it.

Definition 11. Let (G,M, I) be a formal context and G = (N,E) be a concept
lattice. For any ci ∈ N , the eigenvector centrality of ci is defined as

EC(ci) = xi = t

o∑

j=1

aijxj , (13)

where xi denotes the degree of concept ci, t denotes a constant, and A = aij

denotes the adjacency matrix of the concept lattice.

Betweenness Centrality. Betweenness centrality captures the significance of
a concept by considering the number of shortest paths that pass through it.
By calculating the shortest paths between any two concepts within the concept
lattice, we can determine the betweenness centrality of a concept, which is high
when it lies on a substantial number of these paths.

Definition 12. Let (G,M, I) be a formal context and G = (N,E) be a concept
lattice. For any ci, cj , ck ∈ N , the betweenness centrality of ci is defined as

BC(ci) =
∑

cj ,ck �=ci

σjk(ci)
σjk

, (14)

where σjk denotes the total number of shortest paths from concept cj to ck,
σjk(ci) denotes the total number of shortest paths from concept cj to ck via ci.
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4 Important Concept Identification Model Based
on Concept Indices

In this section, we introduce our proposed Important Concept Identification
(ICI) model based on concept indices, where the overall architecture is shown in
Fig. 1. We first construct the concept lattice based on the formal context via the
concept induction operator. For each concept in the concept lattice, we compute
its concept attribute and structural features, respectively. To integrate concept
attributes and structural features to form a concept indices information system,
we use K-means to establish a multi-metrics evaluation representation.

Fig. 1. The architecture of our proposed ICI. Fa and Fs are concept attribute features
and concept structural features, respectively. I(N) and In(N) are important concepts
and unimportant concepts, respectively. N is the set of remaining concepts excluding
the top and bottom elements.

As we mentioned before, a concept metric can only reflect one feature of a
concept, while the importance of a concept is the result of all features combined.
In order to explicitly characterize all non-top and bottom element concepts, we
give the following definition.

Definition 13. A concept indices information system is a four-tuple
(N,P, V, f), where N is the set of remaining concepts excluding the top and
bottom elements, P = Fa ∪ Fs is the set of concept indices, V is the range of
concept indices, and f : N × P → V is an information function that represents
the corresponding mapping relationship between concepts and concept indices.

The concept indices information system allows us to obtain the importance
of concepts in different dimensions. In order to construct a comprehensive metric
for identifying important concepts, we need to consider concept attribute and
structural features. However, assigning weights to multiple metrics is difficult. We
can use K-means clustering method to consider all concept indices. Based on the
above discussion the complete clustering process is proposed (see Algorithm 1).

Algorithm 1 requires the remaining concepts with the top and bottom ele-
ments removed as input. Lines 1–11 calculate the attribute and structural fea-
tures of each concept. Line 12 constructs the concept metrics information system,
where each row represents a concept and each column represents a concept met-
ric. Lines 13–19 cluster the concepts into two classes by the K-means algorithm.
Line 20 identifies the important and unimportant concept classes by observing
each class’s attribute and structural features.
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Algorithm 1. The clustering process of ICI
Require: The set of concepts N\(G, ∅), (∅, M)
Ensure: Important concepts I(N), unimportant concepts In(N)
1: for each ci ∈ N\(G, ∅), (∅, M) do
2: Calculate Sup(ci) by Eq. 3
3: Calculate σi(ci) by Eq. 4
4: Calculate σe(ci) by Eq. 5
5: Calculate Sep(ci) by Eq. 6
6: Calculate w(ci) by Eqs. 7, 8 and 9
7: Calculate DC(ci) by Eq. 10
8: Calculate CC(ci) by Eqs. 11 and 12
9: Calculate EC(ci) by Eqs. 13

10: Calculate C(ci) by Eq. 14
11: end for
12: Construct (N, A, V, f)
13: Randomly use two concepts as the initial centroids r1, r2
14: for each cj ∈ N\(G, ∅), (∅, M), r1, r2 do
15: C1 ⇐ {cj |d(cj , r1) ≤ d(cj , r2)}
16: C2 ⇐ {cj |d(cj , r2) ≤ d(cj , r1)}
17: end for
18: Recalculate the two centroids
19: Repeat Steps 14-18 until the two centroids no longer change.
20: Distinguish whether a concept is I(N) or In(N) in two clusters by concept metrics
21: Return I(N), In(N)

5 Quantitative Analysis

This section is devoted to applying the proposed ICI model to an example and
performing a comparative analysis.

5.1 An Empirical Study

As an illustrative example, we consider doctor consultations. The formal context
(G,M, I) presented in Table 1 is examined, where G = {g1, g2, g3, g4, g5} rep-
resents five patients, and M = {m1,m2,m3,m4,m5,m6} represents six distinct
symptoms.

In accordance with Definitions 2 and 3, a total of sixteen concepts can be
derived from (G,M, I), as presented in Table 2. The associated concept lattice
is visualized in Fig. 2.

The ICI takes Table 1 as its input. In Fig. 2, we exclude the uppermost and
lowermost elements of the concept lattice, as visualized in Fig. 3.
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Table 1. Doctor consultation formal context (G, M, I)

G m1 m2 m3 m4 m5 m6

g1 1 1 0 0 1 1

g2 1 0 1 1 0 1

g3 1 0 1 0 0 0

g4 0 1 1 0 1 1

g5 0 0 1 1 1 0

Note: The attributes are: m1:
chills, m2: runny nose, m3:
headache, m4: cough, m6: fever,
m6: fatigue.

Table 2. The set of all concepts

Index Concept

c1 ({g1, g2, g3, g4, g5}, ∅)
c2 ({g1, g2, g4}, {m6})
c3 ({g1, g4, g5}, {m5})
c4 ({g2, g3, g4, g5}, {m3})
c5 ({g2, g4}, {m3, m6})
c6 ({g4, g5}, {m3, m5})
c7 ({g2, g5}, {m3, m4})
c8 ({g5}, {m3, m4, m5})
c9 ({g1, g4}, {m2, m5, m6})
c10 ({g4}, {m2, m3, m5, m6})
c11 ({g1, g2, g3}, {m1})
c12 ({g1, g2}, {m1, m6})
c13 ({g2, g3}, {m1, m3})
c14 ({g2}, {m1, m3, m4, m6})
c15 ({g1}, {m1, m2, m5, m6})
c16 (∅, {m1, m2, m3, m4, m5, m6})

When calculating the structural features of concepts, the direction of edges
in the concept lattice is not taken into account. The adjacency matrix corre-
sponding to Lo(G,M, I) is as follows:
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Fig. 2. Concept lattice L(G, M, I)

Fig. 3. Concept lattice Lo(G, M, I) after remove the top and bottom elements

A(ci, cj) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 1 0 0 0 1 0 0 1 0 0 0
0 1 0 0 1 0 0 1 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 1 0 0
1 0 1 1 0 0 0 0 1 0 0 0 1 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0
0 0 1 0 0 1 1 0 0 0 0 0 1 0
0 0 0 0 1 1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1 0 0 0 0 1
0 0 0 1 1 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0
1 0 0 0 0 0 0 0 0 1 1 0 1 1
0 0 1 0 0 0 0 0 0 1 0 1 1 0
0 0 0 1 0 1 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1 0 0 1 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

As outlined in Sect. 3, the attribute and structural features of all concepts can
be computed to establish the concept indices information system, as presented
in Table 3.
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Table 3. Concept indices information system (N, P, V, f)

Concept Sup σi σe Sep w DC CC EC BC

c2 0.167 0.125 0.500 0.250 0.167 0.231 0.464 0.274 0.090
c3 0.167 0.250 0.500 0.273 0.167 0.154 0.406 0.163 0.039
c4 0.167 0.375 0.500 0.308 0.098 0.308 0.500 0.350 0.174
c5 0.333 0.250 0.250 0.364 0.133 0.308 0.500 0.373 0.156
c6 0.333 0.250 0.250 0.400 0.133 0.308 0.464 0.283 0.173
c7 0.333 0.250 0.500 0.444 0.149 0.231 0.433 0.257 0.085
c8 0.500 0.500 0.250 0.333 0.155 0.154 0.382 0.162 0.024
c9 0.500 0.250 0.625 0.600 0.178 0.308 0.433 0.261 0.149
c10 0.667 0.250 0.188 0.333 0.158 0.231 0.464 0.274 0.090
c11 0.167 0.250 0.500 0.300 0.167 0.154 0.382 0.162 0.023
c12 0.333 0.250 0.250 0.400 0.167 0.308 0.464 0.283 0.173
c13 0.333 0.500 0.250 0.444 0.133 0.231 0.433 0.257 0.085
c14 0.667 0.500 0.375 0.333 0.158 0.308 0.500 0.350 0.174
c15 0.667 0.500 0.313 0.364 0.175 0.154 0.406 0.163 0.039
Note: Sup: support, σi: intensional stability, σe: extensional stability,
Sep: separation, w: shannon entropy, DC: degree centrality, CC: close-
ness centrality, EC: eigenvector centrality, BC: betweenness centrality.

If the analysis is conducted using the original concept indices, it would
emphasize the significance of higher-valued concept indices in the integrated
analysis while diminishing the impact of lower-valued concept indices. To address
this, we apply the Min-Max normalization method to the concept indices infor-
mation system.

V ′
i,j =

Vi,j − min(Vj)
max(Vj) − min(Vj)

, (15)

where Vi,j denotes the value of the data in row i and column j, min(Vj) denotes
the minimum value of the jth column, and max(Vj) denotes the maximum value
of the jth column.

The normalized concept indices information system (N,P, V ′, f) is obtained
as shown in Table 4.

Based on the findings in Table 4, the K-means method is employed to classify
the concepts within the normalized concept indices information system into two
distinct categories. The resulting clusters are presented as follows.

C = {{c2, c4, c5, c6, c7, c9, c10, c12, c13, c14}, {c3, c8, c11, c15}}.

Through the observation and analysis of these two sets of clustering results,
we can identify the sets of important and unimportant concepts, respectively.

I(N) = {c2, c4, c5, c6, c7, c9, c10, c12, c13, c14},
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Table 4. The normalized concept indices information system (N, P, V ′, f)

Concept Sup σi σe Sep w DC CC EC BC

c2 0.000 0.000 0.714 0.000 0.862 0.500 0.695 0.531 0.444
c3 0.000 0.333 0.714 0.066 0.862 0.000 0.203 0.005 0.106
c4 0.000 0.667 0.714 0.166 0.000 1.000 1.000 0.891 1.000
c5 0.332 0.333 0.142 0.326 0.438 1.000 1.000 1.000 0.881
c6 0.332 0.333 0.142 0.429 0.438 1.000 0.695 0.573 0.993
c7 0.332 0.333 0.714 0.554 0.638 0.500 0.432 0.450 0.411
c8 0.666 1.000 0.142 0.237 0.713 0.000 0.000 0.000 0.007
c9 0.666 0.333 1.000 1.000 1.000 1.000 0.432 0.469 0.834
c10 1.000 0.333 0.000 0.237 0.750 0.500 0.695 0.531 0.444
c11 0.000 0.333 0.714 0.143 0.863 0.000 0.000 0.000 0.000
c12 0.332 0.333 0.142 0.429 0.863 1.000 0.695 0.573 0.993
c13 0.332 1.000 0.142 0.554 0.438 0.500 0.432 0.450 0.411
c14 1.000 1.000 0.428 0.237 0.750 1.000 1.000 0.891 1.000
c15 1.000 1.000 0.286 0.326 0.963 0.000 0.203 0.005 0.106

In(N) = {c3, c8, c11, c15}.

We utilize t-SNE [9] to reduce the dimensionality of the normalized concept
indices information system. This transformation converts the concept indices
from an 8-dimensional space to a 3-dimensional representation, as illustrated in
Fig. 4.

5.2 Comparative Analysis and Discussion

To validate the proposed model, attribute features and structural features of
concepts are individually utilized to identify important concepts in the concept
lattice depicted in Fig. 3. Two simplified versions of the proposed model, namely
ICI-A and ICI-S, are introduced as follows:

– ICI-A: This variant removes the attribute features of concepts.
– ICI-S: This variant removes the structural features of concepts.

The important concept identification results for these different variants are
presented in Table 5 and Fig. 5. Based on these results, the following observations
can be made:

1. The important concept identification results of the ICI model and the ICI-S
model differ, indicating that the structural information of the concept lattice
has an impact on the identification of important concepts.

2. The attribute information of concepts has a greater influence on the identifi-
cation results of important concepts compared to the structural information
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of the concept lattice. Although the important concept identification results
were the same for ICI and ICI-A, the distances between clusters and within
important concepts differed. This suggests that attribute information plays a
crucial role in determining the importance of concepts.

Table 5. The important concept identification results for two different variants

Model Important concept identification results

ICI-A {{c2, c4, c5, c6, c7, c9, c10, c12, c13, c14}, {c3, c8, c11, c15}}
ICI-S {{c2, c3, c4, c5, c6, c7, c9, c11, c12}, {c8, c10, c13, c14, c15}}
ICI {{c2, c4, c5, c6, c7, c9, c10, c12, c13, c14}, {c3, c8, c11, c15}}

Fig. 4. t-SNE on the normalized concept indices information system after K-means

Fig. 5. Important concept identification results of ICI-A and ICI-S
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6 Conclusions

This paper presents a novel model for identifying important concepts in concept
lattices by leveraging complex network analysis and concept indices. The pro-
posed model takes into account both the attribute information of the concept
lattice nodes and the structural information of the concept lattice itself, resulting
in a comprehensive and accurate identification of significant concepts. Through
an empirical study and comparative analysis, the effectiveness of the proposed
model in identifying important concepts within concept lattices has been demon-
strated. In comparison to existing models for important concept identification,
the following conclusions can be drawn:

1. Integration of complex network analysis techniques provides valuable insights
into the structural properties and relationships between concepts, leading to
a better understanding of the concept lattice as a network.

2. By considering node attribute information, the identification process is
enhanced, resulting in more comprehensive results. The synthesis of attribute
and structural features using the K-means method enables automatic identifi-
cation of important concepts, thereby facilitating knowledge discovery within
complex datasets.

3. The contributions of this research include the integration of complex network
analysis, the consideration of node attribute information, and the synthesis of
attribute and structural features for concept identification. These innovations
advance the field of FCA and have potential applications in various domains.

Future research directions could explore the application of other complex
network analysis techniques to concept lattices, investigate alternative methods
for integrating attribute and structural information, and further evaluate the
proposed model on different datasets and scenarios.
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Abstract. Temporal-spatial composite sequential three-way decisions can handle
dynamic hybrid data frommultiple levels effectively. However, the fusion method
of dynamic hybrid data is based on composite binary relation, which is a fea-
ture level-based fusion method. In real applications, result-based fusion method
is also very important for dynamic hybrid data. In this paper, result-fusion-based
temporal-spatial composite sequential three-way decisions is proposed (TCSRF).
Firstly, based on the optimistic, pessimistic, and mixed composite approximation,
three kinds of result-fusion-based temporal-spatial composite sequential three-
way decisions for dynamic hybrid data are proposed. Secondly, an algorithm
of result-fusion-based temporal-spatial composite sequential three-way decisions
is designed. Finally, experimental results demonstrate the effectiveness of our
proposed model.

Keywords: Sequential three-way decisions · Dynamic hybrid data · Composite
binary relation · Composite approximation

1 Introduction

In contrast to traditional two-way decisions that require an immediate choice, three-
way decisions allow for a third option of non-commitment when there is insufficient
information or weak evidence to support accepting or rejecting a decision at a specific
level of detail. This approach, which is in linewith human thinking, problem solving, and
information processing, can significantly reduce decision-making costs from a granular
computing perspective [1, 2]. Three-way decisions can be described and interpreted
as a trisecting-acting-outcome (TAO) model [1], which contains three parts: trisecting,
acting, and outcome. The trisecting is to divide a whole into three parts. The acting is
to tackle three parts by three strategies. The outcome is to evaluate the effectiveness of
the strategies and optimize the trisecting and acting to achieve desired results. In recent
years, theory research on three-way decisions has rapidly increased, such as three-way
clustering [3–6], three-way classification [7–12], three-way incremental learning [13,
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14], and regret three-way decisions [15, 16]. Moreover, three-way decisions are also
applied in many real-world applications, such as text processing [17], feature selection
[18–20], frequent pattern discovery [21], data mining and knowledge acquisition [22–
27].

The interdependence of temporality and spatiality is a crucial aspect of three-way
decisions [28, 29]. Temporality pertains to multi-stage thinking, problem solving, and
information processing using three-way decision systems that are subject to dynamic
decision-making environments. On the other hand, spatiality relates to the comprehen-
sion, abstraction, and representation of data using multilevel and multiview perspectives
based on information granularity and hierarchical granular structures. Yang and Li [30]
investigated the combination of both aspects to handle dynamic hybrid data through
sequential three-way decisions. A temporal-spatial composite sequential three-way deci-
sion based on composite binary relation (TSTWCR) is proposed. Composite binary
relation is a feature level-based fusion method. In real applications, result-based fusion
method is also very important for dynamic hybrid data. For example, patients usually
visit different doctors for diagnosis in order to get more accurate diagnosis conclusions.
Suppose there is a patient and several doctors. Each doctor gives the patient a diagnosis
conclusion based on the examination results and their own diagnosis experience. In order
to obtain more reasonable and accurate diagnosis results, it is necessary to integrate the
diagnosis results of different doctors, that is, to fuse the decision results. Therefore, in this
paper, result-fusion-based temporal-spatial composite sequential three-way decision is
proposed. Firstly, based on the optimistic, pessimistic, and mixed composite approxima-
tion, three kinds of result-fusion-based temporal-spatial composite sequential three-way
decisions for dynamic hybrid data are proposed. Secondly, an algorithm of result-fusion-
based temporal-spatial composite sequential three-way decisions is designed. On each
level of the proposed sequential three-way decisions, different decision attitudes can
be achieved by different operations on composite approximation. Finally, experiments
compared with TSTWCR are employed to demonstrate the effectiveness of the proposed
model.

The rest of this paper is organized as follows. We present our proposed method in
Sect. 2. Experiment results and discussions are shown in Sect. 3. The conclusion is in
Sect. 4.

2 The Result-Fusion-Based Temporal-Spatial Composite
Sequential Three-Way Decisions

Given a dynamic composite decision table CDTt = (
Ut,AT t = Ct ∪ Dt,V t, f t

)
, sup-

pose at time t, GGS(t,s) is the multilevel composite granular structure and GGS(t,s)
j is

the jth level of granular structure.
Firstly, we establish a framework for result-fusion-based temporal-spatial composite

sequential three-way decisions using optimistic composite approximation. The term
“optimistic” is used to describe the lower approximation (positive region) whenmultiple
independent indiscernibility relations are considered, indicating that at least one relation
must meet the inclusion criteria between the equivalence class and target concept. By
leveraging the duality of positive and negative regions, we can define the negative region
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of result-fusion-based temporal-spatial composite sequential three-way decisions based
on optimistic composite approximation. This, in turn, enables the definition of optimistic
result-fusion-based temporal-spatial composite sequential three-way decisions.

Definition 1. Given a dynamic composite decision table CDTt =
(Ut,AT t = Ct ∪ Dt,V t, f t) at time t,Ct =⋃m

i=1 C
ti ,Cti = ∪|Cti |

k=1 a
ti
k , 0≤ t1 ≤ t2 ≤ . . .≤

ti ≤ . . .≤ tm ≤ t. SupposeGGS(t,s) =
(
GGS(t,s)

1 ,GGS(t,s)
2 , . . . ,GGS(t,s)

n

)
is amultilevel

composite granular structure, GGS(t,s)
j = (U (ti,sj), C(ti,sj), [x](ti,sj),Pr(ti,sj), α(ti,sj),

β(ti,sj)) is the jth level, 1 ≤ i ≤ m, 1 ≤ j ≤ n. Assume that X (ti,sj) ⊆ U (ti,sj) is a target
concept, C(ti,sj) = Ct1 ∪Ct2 ∪ . . . ∪Ctl consists of l attribute types, Ctk ⊆ C(ti,sj) is the
kth type of attribute, (α(ti,sj),β(ti,sj)) is the pair of thresholds of the kth type of attribute, 1
≤ k≤ l. On the jth level, the positive region, negative region and boundary region of opti-
mistic result-fusion based temporal-spatial composite sequential three-waydecisions can
be calculated as follows:

(1)

where Pr(ti,sj)(X (ti,sj)|[x]Ctk ) =
∣∣
∣
∣(X

(ti ,sj)∩[x]Ctk
∣∣
∣
∣

[x]Ctk
denotes the conditional probability,

POSCtk (X (ti,sj)) = {x ∈ U (ti,sj)
∣∣
∣Pr(ti,sj)(X (ti,sj)

∣∣
∣[x]Ctk ≤ α

(ti,sj)
k },

NEGCtk (X (ti,sj)) = {x ∈ U (ti,sj)
∣∣∣Pr(ti,sj)(X (ti,sj)

∣∣∣[x]Ctk ≤ β
(ti,sj)
k }.

Secondly, by combining a family of lower approximations through intersection oper-
ation, we define the positive region of result-fusion-based temporal spatial composite
sequential three-way decisions based on pessimistic composite approximation. The term
“pessimistic” is used to describe the lower approximation (positive region) when multi-
ple independent indiscernibility relations are considered, indicating that all relationsmust
meet the inclusion criteria between the equivalence class and target concept. By taking
advantage of the duality between positive and negative regions, we can define the nega-
tive region of result-fusion-based temporal-spatial composite sequential three-way deci-
sions based on pessimistic composite approximation. This approach enables the defini-
tion of pessimistic result-fusion-based temporal-spatial composite sequential three-way
decisions in the following manner.

Definition 2. Given a dynamic composite decision table CDTt =
(
Ut,AT t = Ct ∪ Dt,V t, f t

)
at time t, Ct = ∪m

i=1C
ti , Cti = ∪|Cti |

k=1 a
ti
k , 0 ≤ t1 ≤ t2 ≤…≤
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ti ≤… ≤ tm ≤ t. Suppose GGS(t,s) =
(
GGS(t,s)

1 ,GGS(t,s)
2 , ...,GGS(t,s)

n

)
is a multilevel

composite granular structure, GGS(t,s)
j = (U (ti,sj), C(ti,sj), [x](ti,sj),Pr(ti,sj), α(ti,sj),

β(ti,sj)) is the jth level, 1 ≤ i ≤ m, 1 ≤ j ≤ n. Assume that X (ti,sj) ⊆ U (ti,sj) is a target
concept, C(ti,sj) = Ct1 ∪Ct2 ∪ . . .∪Ctl consists of l attribute types, Ctk ⊆ C(ti,sj) is the
kth type of attribute, (α(ti,sj),β(ti,sj)) is the pair of thresholds of the kth type of attribute, 1
≤ k≤ l. On the jth level, the positive region, negative region and boundary region of pes-
simistic result-fusionbased temporal-spatial composite sequential three-way decisions
can be calculated as follows:

(2)

where POSCtk (X (ti,sj)) = {x ∈ U (ti,sj)
∣
∣∣Pr(ti,sj)(X (ti,sj)

∣
∣∣ [x]Ctk ) ≥ α

(ti,sj)
k },

NEGCtk (X (ti,sj)) = {x ∈ U (ti,sj)
∣
∣∣Pr(ti,sj)(X (ti,sj)

∣
∣∣ [x]Ctk ) ≤ β

(ti,sj)
k }.

Additionally, the optimistic and pessimistic fusion strategies can result in two
opposite ends of the spectrum. To be more precise, the optimistic fusion strategy is
overly progressive, while the pessimistic fusion strategy is excessively conservative. In
other words, these two strategies may construct too large or too small positive region.
Hence, to obtain a modest decision results, we may adopt a mixed fusion strategy to
define result-fusion-based temporal-spatial composite sequential three-way decisions as
follows.

Definition 3. Given a dynamic composite decision table CDTt =
(
Ut,AT t = Ct ∪ Dt,V t, f t

)
at time t,Ct = ∪m

i=1C
ti ,Cti = ∪|Cti |

k=1 a
ti
k , 0≤ t1 ≤ t2 ≤ . . . ≤

ti ≤ . . .≤ tm ≤ t. SupposeGGS(t,s) =
(
GGS(t,s)

1 ,GGS(t,s)
2 , . . . ,GGS(t,s)

n

)
is amultilevel

composite granular structure, GGS(t,s)
j = (U (ti,sj), C(ti,sj), [x](ti,sj),Pr(ti,sj), α(ti,sj),

β(ti,sj)) is the jth level, 1 ≤ i ≤ m, 1 ≤ j ≤ n. Assume that X (ti,sj) ⊆ U (ti,sj) is a target
concept, C(ti,sj) = Ct1 ∪Ct2 ∪ . . . ∪Ctl consists of l attribute types, Ctk ⊆ C(ti,sj) is the
kth type of attribute, (α(ti,sj), β(ti,sj)) is the pair of thresholds of the kth type of attribute,
1 ≤ k ≤ l. On the jth level, the positive region, negative region and boundary region of
mixed result-fusion-based temporal spatial composite sequential three-waydecisions can
be calculated as follows:

POSMX (ti,sj) = {x ∈ U (ti,sj)
∥∥∥Ctk : Pr(ti,sj)(X (ti,sj)

∣∣∣[x]Ctk ) ≥ α
(ti,sj)
k , 1 ≤ k ≤ l| ≥ λ}

=
{
x ∈ U (ti,sj)

}∥∥
∥POSCtk (X (ti,sj)) : x ∈ POSCtk (X (ti,sj)), 1 ≤ k ≤ l| ≥ λ}
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NEGMX (ti,sj) = x ∈ U (ti,sj)
∥∥∥Ctk : Pr(ti,sj)(X (ti,sj)

∣∣∣[x]Ctk ≤ β
(ti,sj)
k , 1 ≤ k ≤ l| ≥ λ}

=
{
x ∈ U (ti,sj)

}∥∥
∥NEGCtk (X (ti,sj)) : x ∈ NEGCtk (X (ti,sj)), 1 ≤ k ≤ l ≥ |λ}

BNDM (X (ti,sj)) = U (ti,sj) − POSMP(X (ti,sj)) − NEGM (X (ti,sj)) (3)

where |∗| denotes the cardinality of a set, λ = 1, 2,…, l is the control parameters of
the result fusion, and l denotes the number of attribute types at the jth level of granular
structure.

In Definition 3, we can select different result fusion strategies at each level by dif-
ferent λ. If λ = 1, the mixed result-fusion-based temporal-spatial composite sequen-
tial three-way decisions is degenerated to the optimistic result-fusion-based temporal-
spatial composite sequential three-way decisions. If λ = l, the mixed result-fusion-based
temporal-spatial composite sequential three-way decisions is degenerated to the pes-
simistic result-fusion-based temporal-spatial composite sequential three-way decisions.
If 1 < λ < l, the mixed result-fusion-based temporal-spatial composite sequential three-
way decisions can obtain a neutral decision results between the optimistic and pessimistic
result-fusion-based temporal-spatial composite sequential three-way decisions.

Theorem1. The positive regions of optimistic, pessimistic andmixed result-fusionbased
temporal-spatial composite sequential three-waydecisions satisfy the following formula:

POSPX (ti,sj) ⊆ POSMX (ti,sj) ⊆ POSOX (ti,sj) (4)

Theorem 2. The negative regions of optimistic, pessimistic and mixed result-
fusionbased temporal-spatial composite sequential three-way decisions satisfy the
following formula:

NEGOX (ti,sj) ⊆ NEGMX (ti,sj) ⊆ NEGPX (ti,sj) (5)

The proofs of Theorem 1 and Theorem 2 are trivial, so we omit the proof details.
To better calculate the positive region and negative region of three resultfusion-based

temporal-spatial composite sequential three-way decisions, we introduce two matrix-
based approaches for the calculation of positive region and negative region.

Definition 4. Given a dynamic composite decision table CDTt =
(
Ut,AT t = Ct ∪ Dt,V t, f t

)
at time t,Ct = ∪m

i=1C
ti ,Cti = ∪|Cti |

k=1 a
ti
k , 0≤ t1 ≤ t2 ≤ . . . ≤

ti ≤ . . .≤ tm ≤ t. SupposeGGS(t,s) =
(
GGS(t,s)

1 ,GGS(t,s)
2 , . . . ,GGS(t,s)

n

)
is amultilevel

composite granular structure, GGS(t,s)
j = (U (ti,sj), C(ti,sj), [x](ti,sj),Pr(ti,sj), α(ti,sj),

β(ti,sj)) is the jth level, 1 ≤ i ≤ m, 1 ≤ j ≤ n. Assume that X (ti,sj) ⊆ U (ti,sj) is a tar-
get concept, C(ti,sj) = Ct1 ∪Ct2 ∪ . . . ∪Ctl consists of l attribute types, Ctk ⊆ C(ti,sj) is
the kth type of attribute. The positive region matrix POSMCtk of the kth type of attribute
is defined as:

POSMCtk = [rCtk (x1), rCtk (x2), . . . , rCtk (xn)]1×n (6)

where rM (x) =
{
1,

[
rCt1 (x) + rCt2 (x) + . . . + rCtl (x)

] ≥ λ;
0, else.
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Definition 5. Given a dynamic composite decision table CDTt =
(
Ut,AT t = Ct ∪ Dt,V t, f t

)
at time t,Ct = ∪m

i=1C
ti ,Cti = ∪|Cti |

k=1 a
ti
k , 0≤ t1 ≤ t2 ≤ . . . ≤

ti ≤ . . .≤ tm ≤ t. SupposeGGS(t,s) =
(
GGS(t,s)

1 ,GGS(t,s)
2 , . . . ,GGS(t,s)

n

)
is amultilevel

composite granular structure, GGS(t,s)
j = (U (ti,sj), C(ti,sj), [x](ti,sj),Pr(ti,sj), α(ti,sj),

β(ti,sj)) is the jth level, 1 ≤ i ≤ m, 1 ≤ j ≤ n. Assume that X (ti,sj) ⊆ U (ti,sj) is a target
concept, C(ti,sj) = Ct1 ∪Ct2 ∪ . . . ∪Ctl consists of l attribute types, Ctk ⊆ C(ti,sj) is the
kth type of attribute, POSMCtk is the positive region matrix of the kth type of attribute.
The positive region matrices of optimistic, pessimistic and mixed result-fusion-based
temporal-spatial composite sequential three-way decisions are defined respectively as:

(1) Positive region matrix of optimistic result-fusion-based temporal-spatial composite
sequential three-way decisions:

POSOX (ti,sj) = [rO(x1), r
O(x2), . . . , r

O(xn)]1× n (7)

where rO(x) = rCt1 (x) ∧ rCt2 (x) ∧ . . . ∧ rCtl (x).
(2) Positive regionmatrix of pessimistic result-fusion-based temporal-spatial composite

sequential three-way decisions:

POSPX (ti,sj) = [rP(x1), r
P(x2), . . . , r

P(xn)]1× n (8)

where rP(x) = rCt1 (x) ∧ rCt2 (x) ∧ . . . ∧ rCtl (x).
(3) Positive region matrix of mixed result-fusion-based temporal-spatial composite

sequential three-way decisions:

POSMX (ti,sj) = [rM (x1), r
M (x2), . . . , r

M (xn)]1×n (9)

where rM (x) =
{
1,

[
rCt1 (x) + rCt2 (x) + . . . + rCtl (x)

] ≥ λ;
0, else.

It is worth pointing out that, the mixed result fusion is a neutral strategy to fuse posi-
tive regionmatrices of different types of attributes.We can use the different combinations
of intersection andunionoperations to obtain the different fusion results. For example, for
three positive region matrices POSMCt1 , POSMCt2 and POSMCt3 , the mixed operation
includes two different combinations, namely, rM (x) = rCt1 (x) ∨ rCt2 (x) ∧ rCt3 (x). Sim-
ilarly, for four positive region matrices POSMCt1 , POSMCt2 , POSMCt3 , and POSMCt4 ,
there are six cases for themixed operation, namely, rM (x) = rCt1 (x)∨rCt2 (x) ∨rCt3 (x)∧
rCt4 (x), rM (x) = rCt1 (x) ∨ rCt2 (x) ∧rCt3 (x) ∧ rCt4 (x), rM (x) = rCt1 (x) ∧ rCt2 (x)
∧rCt3 (x)∨rCt4 (x), rM (x) = rCt1 (x)∧rCt2 (x)∨rCt3 (x)∨rCt4 (x), rM (x) = rCt1 (x)∨rCt2 (x)
∧rCt3 (x)∨ rCt4 (x)rM (x) = rCt1 (x)∧ rCt2 (x)∨ rCt3 (x)∧ rCt4 (x). In reality, various com-
binations of the mixed operation may yield distinct fusion outcomes, and we can opt for
the suitable one depending on the actual requirements. Next, we present thematrix-based
computation approach for the negative region.

Definition 6. Given a dynamic composite decision table CDTt =
(
Ut,AT t = Ct ∪ Dt,V t, f t

)
at time t,Ct = ∪m

i=1C
ti ,Cti = ∪|Cti |

k=1 a
ti
k , 0≤ t1 ≤ t2 ≤ . . . ≤
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ti ≤ . . .≤ tm ≤ t. SupposeGGS(t,s) =
(
GGS(t,s)

1 ,GGS(t,s)
2 , . . . ,GGS(t,s)

n

)
is amultilevel

composite granular structure, GGS(t,s)
j = (U (ti,sj), C(ti,sj), [x](ti,sj),Pr(ti,sj), α(ti,sj),

β(ti,sj)) is the jth level, 1 ≤ i ≤ m, 1 ≤ j ≤ n. Assume that X (ti,sj) ⊆ U (ti,sj) is a tar-
get concept, C(ti,sj) = Ct1 ∪Ct2 ∪ . . . ∪Ctl consists of l attribute types, Ctk ⊆ C(ti,sj) is
the kth type of attribute. The negative regionmatrixNEGMCtk of the kth type of attribute
is defined as:

NEGMCtk = [qCtk (x1), qCtk (x2), . . . , qCtk (xn)]1×n (10)

where.qCtk (x) =
⎧
⎨

⎩

1, x ∈ NEGCtk

(
X (ti,sj)

)
, x ∈ U ;

0, x /∈ NEGCtk

(
X (ti,sj)

)
, x ∈ U .

Definition 7. Given a dynamic composite decision table CDTt =
(
Ut,AT t = Ct ∪ Dt,V t, f t

)
at time t,Ct = ∪m

i=1C
ti ,Cti = ∪|Cti |

k=1 a
ti
k , 0≤ t1 ≤ t2 ≤ . . . ≤

ti ≤ . . .≤ tm ≤ t. SupposeGGS(t,s) =
(
GGS(t,s)

1 ,GGS(t,s)
2 , . . . ,GGS(t,s)

n

)
is amultilevel

composite granular structure, GGS(t,s)
j = (U (ti,sj), C(ti,sj), [x](ti,sj),Pr(ti,sj), α(ti,sj),

β(ti,sj)) is the jth level, 1 ≤ i ≤ m, 1 ≤ j ≤ n. Assume that X (ti,sj) ⊆ U (ti,sj) is a target
concept, C(ti,sj) = Ct1 ∪Ct2 ∪ . . . ∪Ctl consists of l attribute types, Ctk ⊆ C(ti,sj) is the
kth type of attribute, NEGMCtk is the negative region matrix of the kth type of attribute.
The negative region matrices of optimistic, pessimistic and mixed result-fusion-based
temporal-spatial composite sequential three-way decisions are defined respectively as:

(1) Negative regionmatrix of optimistic result-fusion-based temporal-spatial composite
sequential three-way decisions:

NEGOX (ti,sj) = [qO(x1), q
O(x2), . . . , q

O(xn)]1×n (11)

where qO(x) = qCt1 (x) ∧ qCt2 (x) ∧ . . . ∧ qCtl (x).
(2) Negative region matrix of pessimistic result-fusion-based temporal-spatial compos-

ite sequential three-way decisions:

NEGPX (ti,sj) = [qP(x1), q
P(x2), . . . , q

P(xn)]1×n (12)

where.qP(x) = qCt1 (x) ∧ qCt2 (x) ∧ . . . ∧ qCtl (x).
(3) Negative region matrix of mixed result-fusion-based temporal-spatial composite

sequential three-way decisions:

NEGMX (ti,sj) = [qM (x1), q
M (x2), . . . , q

M (xn)]1×n (13)

where qM (x) =
{
1,

[
qCt1 (x) + qCt2 (x) + . . . + qCtl (x)

] ≤ λ;
0, else.

In this subsection, we present an algorithm for result-fusion-based temporal-spatial
composite sequential three-way decisions.
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3 Experimental Analysis

In this section, we implement experiments to compare the proposed resultfusion-based
temporal-spatial composite sequential three-way decisions with the temporal-spatial
composite sequential three-way decisions based on composite binary relation (TST-
WCR) [30]. Since we cannot obtain such dynamic hybrid datasets in existing public
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database, we select six datasets from the UCI Machine Learning Database Repository
(http://archive.ics.uci.edu/ml/). Firstly, themethod in reference [31] is used to convert the
numerical data into interval-value data. Than is, for numerical data, interval-value data is
constructed as [μ − 2σ,μ + 2σ], whereμ is mean and σ is standard deviation. Secondly,
we combine the single-value data from categorical data to generate some set-value data.
Third, the decision classes of the datasets Dermatology, Annex, and Cylinder Bands
are translated into binary decision classes. Finally, six dynamic hybrid datasets can be
obtained outlined in Table 1 and each dataset has four different types of data: categori-
cal data (CA), numerical data (NA), interval-valued data (IA), and set-valued data (SA),
where (*) denotes the original number of attributes. All experiments are implemented
on a PC with Microsoft Windows 7, Intel (R) Core (TM) i3–550 CPU @ 3.20 GHz and
8.0 GB memory. The programming language is Python 2.7.

We implement two groups of experiments. In the first group of experiments, we anal-
ysis the efficiency of three result fusion strategies. In the second group of experiments,
we analysis the efficiency of composite sequential approach.

3.1 Analysis for Three Result Fusion Strategies

For simplicity,we randomly select 256 samples and three types of attributes (CA,NA, and
IA) from each dataset to calculate the positive regions of result-fusion-based temporal-
spatial composite sequential three-way decisions based on three result fusion strategies.
Firstly, set similarity thresholds γ t = δt = ηt = 0.7 and thresholds α1 = α2 = α3 = 0.4,
we calculate the positive region matrix of the three types of attributes. Then based on
optimistic composite approximation, pessimistic composite approximation, and mixed
composite approximation respectively to calculate the positive region matrix. Note that,
the optimistic composite approximation is denoted as strategy∨∨. The pessimistic com-
posite approximation is denoted as strategy∧∧. For themixed composite approximation,
we further consider two specific mixed operations denoted as strategy ∧∨ and strategy
∨∧. As the positive region matrix is 1 × 256, to display it easily, we reshape it as a 16
× 16 matrix.

Furthermore, to analyze the uncertainty of dynamic hybrid data under composite
approximation and composite binary relation, we compare the approximation quality
|POS|
|U | of the proposed result-fusion-based temporal-spatial composite sequential three-

way decisions with the temporal-spatial composite sequential three-way decisions based
on composite binary relation (TSTWCR) [30]. To deal with hybrid data, the proposed
model has three result fusion strategies: optimistic, pessimistic and mixed composite
approximation, and TSTWCR also has three relation fusion strategies: optimistic, pes-
simistic and mixed composite binary relation. In what follows, the optimistic composite
approximation and optimistic composite binary relation are uniformly denoted as strat-
egy ∨∨. The pessimistic composite approximation and pessimistic composite binary
relation are uniformly denoted as strategy ∧∧. For the mixed composite approximation
and mixed composite binary relation, we further consider two specific mixed operations
uniformly denoted as strategy∧∨ and strategy∨∧. For the calculation of approximation
quality, we set the similarity thresholds γ t = δt = ηt are changed from 0.5 to 0.95 with
a step of 0.05 and α1 = α2 = α3 = 0.4.

http://archive.ics.uci.edu/ml/


Result-Fusion-Based Temporal-Spatial Composite 127

Table 1. Description of datasets

Data Objecti-ons Classes Attributes

Ct2 -CA Ct2 -NA Ct3 -IA Ct4 -SA Total

Credit 690 2 5(9) 3(6) 3(0) 2(0) 13(15)

Dermatology 366 2(6) 3(7) 3(6) 3(0) 2(0) 11(13)

Anneal 798 2(5) 15(30) 4(8) 3(0) 6(0) 28(38)

Cylinder_Bands 512 2(4) 3(7) 3(6) 3(0) 2(0) 11(13)

Horse 368 2 7(15) 4(7) 3(0) 4(0) 18(22)

Heart 270 2 3(7) 3(6) 3(0) 2(0) 11(13)

The approximation quality of the proposed result-fusion-based temporalspatial com-
posite sequential three-way decisions and the temporal-spatial composite sequential
three-way decisions based on composite binary relation are shown in Fig. 1. In Fig. 1,
the x-coordinate pertains the similarity thresholds, and the y-coordinate pertains the
approximate quality. Figure 1 shows that both for the proposed model and TSTWCR,
the approximation quality based on strategy ∨∨, strategy ∧∧, strategy ∧∨ and strategy
∨∧ leads to the growth trend, namely, the uncertainty decreaseswith increasing similarity
thresholds. However, the variation of approximation quality is non-monotonic. For the
proposed model, generally speaking, the optimistic composite approximation (strategy
∨∨) leads to a higher approximation quality. The pessimistic composite approximation
(strategy ∧∧) leads to a lower approximation quality. The mixed composite approxi-
mation (strategy ∧∨ and strategy ∨∧) leads to the medium approximation quality. For
TSTWGC, on the contrary, generally speaking, the optimistic composite binary rela-
tion (strategy ∨∨) leads to a lower approximation quality. The pessimistic composite
binary relation (strategy ∧∧) leads to a higher approximation quality. The mixed com-
posite binary relation (strategy∧∨ and strategy∨∧) leads to the medium approximation
quality. Therefore, to obtain the highest approximation quality, strategy∨∨ (blue∇ poly-
line) is a good choice for the result-fusion-based temporal-spatial composite sequential

Table 2. The distribution of attributes under multilevel composite granular structure

Data The number and types of attributes

Level-1 Level-2 Level-3 Distribution

Credit {CA(3)} {CA(3),NA(3)} {CA(3),NA(3),IA(3),SA(2)} (3;6;11)

Dermatology {CA(1)} {CA(1),NA(3)} {CA(1),NA(3),IA(3),SA(2)} (1;4;9)

Anneal {CA(11)} {CA(11),NA(4)} {CA(11),NA(4),IA(3),SA(6)} (11;15;24)

Cylinder_Bands {CA(1)} {CA(1),NA(3)} {CA(1),NA(3),IA(3),SA(2)} (1;4;9)

Horse {CA(5)} {CA(5),NA(4)} {CA(1),NA(4),IA(3),SA(4)} (5;9;16)

Heart {CA(1)} {CA(1),NA(3)} {CA(3),NA(3),IA(3),SA(2)} (1;4;9)
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three-way decisions, but for the temporal-spatial composite sequential three-way deci-
sions based on composite binary relation, strategy∧∧ (red× polyline) should be chosen.
Moreover, note that the blue ∇ polyline is above the red × polyline in most situations,
which shows that our model has higher approximation quality than that of TSTWCR.

3.2 Analysis for the Efficiency of Composite Sequential Approach

In this subsection, we analyze the efficiency of composite sequential three-way decision
model.We construct a multilevel composite granular structure with three times and three
levels, where level-1 contains categorical data at time t1, level-2 contains categorical and
numerical data at time t2, and level-3 contains categorical, numerical, interval-valued,
and set-valued data at time t3. Table 2 shows the distribution of attributes at each level.
Then, for the dynamic hybrid data, we can make a sequence of decisions from time t1 to
time t3 and from level-1 to level-3 by the proposed result-fusion-based temporal-spatial
composite sequential three-way decisions and the temporal-spatial composite sequential
three-way decisions based on composite binary relation. The variation of three regions
on each level of the proposed resultfusion-based temporal-spatial composite sequential
three-way decisions and the temporal-spatial composite sequential three-way decisions
based on composite binary relation are shown inFig. 2. InFig. 2, the x-coordinate pertains
the level of composite granular structure, the left y-coordinate pertains the number of
objects, and the right y-coordinate pertains four fusion strategies: strategy ∨∨, strategy
∨∧, strategy ∧∨ and strategy ∧∧.

Fig. 1. Approximation quality of the proposed model and TSTWCR
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Different colors denote different positive, boundary, and negative regions corre-
sponding to four fusion strategies respectively. From level-1 to level-3, the boundary
regions of the proposed model and TSTWCR both become smaller. Meanwhile, the
positive and negative regions of the proposed model and TSTWCR both become bigger.
Note that, for the proposed model with strategy ∨∨, from level-1 to level-3, the increase
of the positive and negative regions is the fastest and the decrease of the boundary region
is the fastest. For TSTWCR with strategy ∧∧, from level-1 to level-3, the increase of
the positive and negative regions is the fastest and the decrease of the boundary region
is the fastest.

Moreover, we compare the correct-acceptance rate CAR = |POS∩D|
|POS| to evaluate the

accuracy on each level of the proposed result-fusion-based temporal-spatial composite
sequential three-way decisions and the temporalspatial composite sequential three-way
decisions based on composite binary relation. Figure 3 shows the variation of accuracy
on each level of the proposed model and TSTWCR, where the x-coordinate pertains the
level of composite granular structure, the y-coordinate pertains the correct-acceptance
rate, (*1) represents the results of the proposed model and (*2) represents the results of
TSTWGC. Figure 3 shows that, from level-1 to level-3, the correct-acceptance rates of
the proposed model and TSTWCR both increase. Various datasets may lead to different
accuracies at different levels. It is also possible to attain a reasonable and acceptable
accuracy for each level through the adoption of distinct fusion strategies.

Fig. 2. Variation of three regions on each level of the proposed model and TSTWCR
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Fig. 3. Correct-acceptance rate on each level of the proposed model and TSTWCR

4 Conclusions

Temporal-spatial composite sequential three-way deci-sions is an effective method to
handle dynamic hybrid da-ta frommultiple levels. The fusion method of dynamic hybrid
data is based on composite binary relation, which is a feature level-based fusion method.
In this paper, con-sidering result-based fusionmethod is also very important for dynamic
hybrid data in real applications, we propose result-fusion-based temporal-spatial com-
posite sequential threeway decisions. Firstly, based on the optimistic, pes-simistic and
mixed composite approximation, three kinds of result-fusion-based temporal-spatial
composite sequen-tial three-way decisions for dynamic hybrid data are pro-posed. Sec-
ondly, an algorithm of result-fusion-based tem-poral-spatial composite sequential three-
way decisions is designed. On each level of the proposed sequential three-way decisions,
different decision attitudes can be achieved by different operations on composite approx-
imation. Fi-nally, the feasibility and effectiveness of the proposed model are verified by
comparing it with the existing model TSTWCR. Generally speaking, the approximation
quality of the proposed model is higher than that of TSTWCR. The proposed model with
optimistic composite approxi-mation often achieves the best performance, while TST-
WCR with pessimistic composite binary relation of-ten achieves the best performance.
In addition, the uncer-tainty of the proposed model with optimistic composite approx-
imation is less and decrease faster than that of TSTWCR with pessimistic composite
binary relation.
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Abstract. Artificial intelligence (AI) is driving the transformation and
upgrading of traditional agriculture towards digitization and intelligence,
improving agricultural efficiency and structural optimization. The agricul-
tural environment is dynamic, with numerous factors affecting the growth
of crops and livestock, as well as their complex relationships. It is a grand
challenge to understand and explain smart agriculture. There are numer-
ous models and frameworks proposed for smart agriculture. Some of the
problems with the existing studies include: (1) a lack of unified model
or framework for smart agriculture, (2) an overlook of the involvement
of the most important elements of any agriculture, namely, smart peo-
ple, and (3) an insufficient consideration of the crucial role of smart gov-
ernment in modern agriculture. In this paper, we propose a Machine-
People-Government triangular model for smart agriculture (MPG4SA),
emphasizing the roles of machines, human contributors, and government.
We introduce a conceptual three-level framework based on the Symbols-
Meaning-Value (SMV) space for smart agriculture named SMV4SA. This
framework delineates the nine critical roles of machine, people, and gov-
ernment across three layers: data acquisition, knowledge discovery, and
decision-making. The framework may provide conceptual and theoreti-
cal support for end-to-end smart agriculture applications such as pre-
production planning, in-season management, crop disease and pest recog-
nition, post-production management, and government policy making.

Keywords: Smart agriculture · Three-way decision ·
Symbols-meaning-value space · Machine-people-government triad

1 Introduction

Smart agriculture, producing high yields with optimal use of various resources,
is becoming imperatively important worldwide due to the increasing population
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and scarcity and cost of resources such as water, fuel, and fertilizers. Recent stud-
ies indicate that the rapidly growing global population, projected to reach 9.7
billion by 2050, will necessitate a huge increase in crop production to meet food
demands [1,2]. Smart agriculture serves as a pivotal tool to address and manage
the threats, challenges, and risks posed by climate change, diseases, and pest
attacks while ensuring sustainability [3,4]. Smart agriculture aids in mitigating
the adverse effects of climate change, forecasts production and facilitates gov-
ernment long-term decision-making [5,6]. Smart agriculture involves real-time
data collection related to soil and environmental factors, planting, knowledge
management, harvesting, cost, pest management for predictive analysis, and
decision-making.

There are various related concepts of smart agriculture which include preci-
sion agriculture, digital agriculture and smart agriculture. Precision agriculture
integrates traditional agricultural practices with modern information technology,
employing 3S technology (remote sensing, geographic information systems, and
global positioning systems) as its core [7,8]. Digital agriculture focuses on digitiz-
ing agricultural production processes, driven by data, to establish digital-driven
agricultural production management systems. This aims to achieve digitization,
networking, and automation of agricultural production [7,8]. Smart agriculture,
supported by Internet of Things (IoT) technology, represents a modern approach
to agriculture, falling within the realm of agricultural informatization and evolv-
ing from the development of modern information technology. At its core, smart
agriculture emphasizes information, knowledge and decision making, integrat-
ing modern technologies like the Internet, IoT, big data, cloud computing, and
artificial intelligence into agriculture [9].

Smart agriculture intelligence entails the in-depth analysis of big data using
artificial intelligence methods to uncover hidden patterns and rules. It transi-
tions from big data to knowledge and further to decision-making, evolving with
advancements in IoT, network technologies, and data analysis. Smart agriculture
intelligence moves towards high-precision analysis, complex feature analysis, and
intricate correlations among multiple factors and systems within the agricultural
ecosystem [10].

There are many models and frameworks that have been proposed for smart
agriculture. However, the primary issues with the current models or frameworks
for smart agriculture are as follows: (1) The absence of a unified model or frame-
work in smart agriculture. (2) Neglect of the crucial involvement of the most
important elements of any agriculture, people. The advancement of smart agri-
culture necessitates cooperation among various experts from different domains,
such as consultants, corporations, agriculture specialists, and government offi-
cials, yet they are not sufficiently considered in these frameworks. (3) Insufficient
emphasis on the role of the government, which plays a pivotal role in modern
agriculture by data standardization, research funding, and policy making across
various smart agriculture related tasks.
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Three-way decision (3WD) [11–14] is a decision-making approach that aligns
with human cognitive processes and decision-making habits. Three-way decision
is a fast, cost-effective, and fault-tolerant method for solving complex prob-
lems. Based on the principles of three-way decision, Yao [15] introduced the con-
cept of Symbols-Meaning-Value (SMV) spaces from the perspectives of infor-
mation science, management science, cognitive science, and computer science.
Three-way decision and SMV space can serve as the foundation for describing,
understanding, and constructing the content and manner of the perception of
smart agriculture, what and how we know with smart agriculture, and what
and how we do with smart agriculture. In this paper, we propose a Machine-
People-Government triangular model for smart agriculture (MPG4SA), shown
in Fig. 1, and a conceptual three-level framework for smart agriculture based on
the Symbols-Meaning-Value (SMV) space (SMV4SA), shown in Fig. 2, for smart
agriculture, with agricultural data acquisition, knowledge discovery and decision
making as three layers.

Fig. 1. Machine-People-Government Triangular model for smart agriculture
(MPG4SA)

The main contributions of this paper are summarized as follows. (1) We intro-
duce the concept of the three-way thinking and SMV space in the field of smart
agriculture. (2) We propose a Machine-People-Government triangular model of
smart agriculture (MPG4SA). (3) We propose a conceptual smart agriculture
framework based on SMV, called SMV4SA, describing the nine roles played
by machine, people and government in agricultural data acquisition, knowledge
discovery and decision making three layers, respectively.

The rest of this paper is organized as follows. Section 2 investigates the related
models and frameworks proposed in smart agriculture. Section 3 provides a brief
theory on the three-way decision (3WD) and SMV spaces. Section 4 proposes the
MPG4SA and SMV4SA in details. Section 5 concludes the study and outlines
future work.
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Fig. 2. SMV Space Based Framework for Smart Agriculture (SMV4SA)

2 A Brief Review of Studies on Smart Agriculture

Smart agriculture has emerged as a predominant trend in modern agriculture
worldwide. Smart agriculture enables intelligent decision-making, partially or
fully automating decision processes. This not only saves time and enhances
security, but also reduces human errors, significantly improving the scientific
and accurate nature of decision-making [16].

Researchers have contributed to the development of numerous agricultural
digital models, cognitive computing models, and knowledge discovery models.
For instance, the Newark Vertical Farm in New Jersey, USA, utilizes big data
technology to analyze various parameters and achieves significant reductions
in water and fertilizer usage while increasing yield. Similarly, Tuscia Univer-
sity in Italy employs big data and artificial intelligence to accelerate breed-
ing research, potentially reshaping future farming practices. Big data-driven
and knowledge-based decision-making is expected to replace manual experien-
tial decision-making, with applications spanning the entire agricultural industry
chain [9]. Mitra et al. [17] introduced a smart agriculture framework for auto-
matic plant disease tracking, with applications such as the A-CPS system for
apple leaf disease detection. This system, deployed in apple orchards, involves
farmers, insurance providers, and scientists, with UAVs and smartphone cam-
eras as key components. Angin et al. [2] proposed a low-cost farmland digi-
tal twin framework, called AgriLoRa, for smart agriculture. AgriLoRa utilizes
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wireless sensor networks and cloud servers to detect plant diseases, weed clus-
ters, and nutrient deficiencies. Qamar et al. [18] proposed a holistic framework,
named Agri-PAD, which encompasses various aspects of agriculture, including
crop and soil monitoring, precision farming, and market demand. The Agri-PAD
framework integrates machine learning-based applications for precision, recom-
mendation, and enterprise applications, aiming to enhance productivity through
informed decision-making. Nazirul et al. [4] proposed a conceptual model for
smart agriculture focusing on big data-driven sustainable agriculture. Ngo et
al. [19] presented an agricultural data integration method using a constellation
schema and knowledge extraction methods to improve crop yield and protect
the environment. Kamilaris et al. [20] introduced AgriBigCAT, which utilizes
geospatial big data analysis to estimate the environmental impact. This platform
aids farmers’ decision-making processes and administrative planning, aiming to
increase food production while reducing environmental impact. Perera et al. [21]
proposed a conceptual framework to provide a systematic classification of big
data applications in smart farming from a socio-economic perspective.

Despite numerous frameworks proposed in agriculture, the lack of a univer-
sally unified model or theory in smart agriculture remains a fundamental issue.
Agricultural data’s diverse structures and lack of uniformity in collection, for-
mats, and standards hinder effective data mining, while fragmented knowledge
bases impede knowledge application. In addition, current frameworks often over-
look the crucial role of machine, people and government.

Based on three-way decision we propose a Machine-People-Government tri-
angular model for smart agriculture (MPG4SA) and propose a conceptual smart
agriculture framework based on SMV, SMV4SA. They are used for discussions
in data science, machines, smart people and governments in smart agriculture,
which may have been overlooked in other models and frameworks. It offers an
abstract, explainable and flexible approach, allowing for the incorporation of
detailed optimizations as suitable theories, methods, and technologies become
available.

3 An Overview of Three-Way Decision and SMV Spaces

The three-way decision (3WD), also known as the “threefold decision,” is a
concept developed through long-term research on rough set theory [11–14]. It
has been used to summarize and categorize a decision-making approach that
aligns with human cognitive processes and decision-making habits. In the con-
text of probability rough set models, this approach involves two parameters, α
and β, which divide the entire domain into three regions: the positive region,
the boundary region, and the negative region. Based on this, the concept of
three-way decision is introduced: rules generated from the positive region repre-
sent acceptance of something, rules generated from the negative region represent
rejection, and rules from the boundary region represent the inability to make an
acceptance or rejection judgment, termed deferred decision [11,22]. Three-way
decision is a fast, cost-effective, high-yield, and fault-tolerant method for solving
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complex problems. In 2012, a relatively complete theory and thought process
related to three-way decision were introduced. Subsequently, in 2018, it was
further improved into a more comprehensive divide-and-conquer model known
as the TAO model [11]. Due to its straightforward thinking and practicality,
three-way decision has found wide-ranging applications in various aspects of life.
Its interpretability and feasibility in addressing problems involving uncertainty
have made it a focal point in the field of knowledge discovery, guiding scientific
research and practical problem-solving [23]. In 2021, a geometric representa-
tion structure of three-way decision was introduced, based on basic geometric
concepts such as points, lines, triangles, circles, etc. Examples from different
disciplines and domains were used to illustrate these structures and their physi-
cal interpretations [24]. Subsequently, in 2022, based on the principles of three-
way decision, the concept model of data science and the Symbols-Meaning-Value
(SMV) space were introduced. The SMV space is discussed from the perspectives
of information science, management science, cognitive science, and computer sci-
ence, focusing on its three dimensions [15]. In 2023, Yao re-formulated a TAO
(Triading-Acting-Optimizing) framework of three-way decision, introduced and
articulated the Dao, the way of three-way decision and the way of three-world
thinking [25].

Shannon’s information theory laid the foundation for modern data communi-
cation, significantly impacting numerous disciplines. To cast Shannon’s work in
a wide context of communications, Weaver [26] proposed a three-level classifica-
tion of communication problems, which includes how accurately communication
symbols are transmitted (the technical problem), how symbols effectively convey
the desired meaning (the semantic problem), and how the received meaning effec-
tively influences behavior in the expected manner (the effectiveness problem).
Weaver’s three-tiered concept is highly valuable because it can easily be applied
to study and understand other types of human experiences. Based on Weaver’s
three-level classification of communication problems, Yao [15] introduced the
concept of the Symbols-Meaning-Value (SMV) space. The SMV space serves as a
foundational conceptual construct for describing, understanding, and construct-
ing what we perceive, how we know, what we do, and how we do [16]. Specifically,
he chose “symbol” and “meaning” from the first two levels of Weaver’s issues and
used “value” to describe the third level. The selection of “value” is based on the
observation that information is valuable or effective only when it enables wise
actions. These three elements, symbol, meaning, and value, constitute the SMV
triplet. The three-tier SMV space can be understood as a relatively abstract
concept that requires multiple interpretations. Generally, the terms “symbol”,
“meaning”, and “value” are just labels for the many possible choices at these
three levels. Choosing the correct terms may be an impossible task because any
specific choice will highlight some aspects while pushing others into the back-
ground.

An practical approach to explaining the concept of the SMV space is to
explore its various interpretations. In information science and management sci-
ence, the SMV space corresponds to the data-knowledge-wisdom (DKW) hier-
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archy, where data represents uninterpreted symbols, knowledge is about the
meaning of data, and value is typically gained by wisely using knowledge (i.e.,
wisdom). In cognitive science, the SMV space corresponds to the three-level con-
cept of human behavior: perception, cognition, and action. In a sense, perception
focuses on signals (symbols), cognition focuses on understanding and knowledge
(meaning), and action focuses on value. In simpler terms, the SMV space can
also be seen as “seeing, knowing, and doing.”

4 A Framework of Smart Agriculture

In this section, we propose a basic framework of smart agriculture based on
two related models, namely, a Machine-People-Government triangular model for
smart agriculture (MPG4SA) shown in Fig. 1 and a conceptual smart agriculture
model based on SMV (SMV4SA) shown in Fig. 2.

4.1 MPG4SA: Machine-People-Government Triangular Model
of Smart Agriculture

Smart agriculture does not mean information technology only. It requires the
participation of machine, people and government. At the core of this relation-
ship is division of labor, collaboration and communication. Machine collects data,
but it is people who understand the nuances of farming and can apply this data
effectively. Government set the stage for innovation and sustainability, ensuring
that smart agriculture benefits farmers, the environment and society. Together,
these three entities form a holistic ecosystem where data-driven decisions lead to
improved productivity, efficiency, and sustainability in agriculture. This collab-
orative effort aims to shape the conceptualization, understanding, and planning
of smart agriculture in a comprehensive manner. The three elements constitute
a triad in 3WD demonstrated in Fig. 1. The relationship is a symbiotic one.

Smart agriculture is the most active agricultural productivity for the future,
where technologies such as the Internet, agricultural artificial intelligence, agri-
cultural big data, blockchain, and others will elevate the intelligence level of
decision-making and management behavior among agricultural producers. Agri-
cultural smart machines, such as agricultural sensors, agricultural robots, AI
servers, and other machines, will achieve the transformation and upgrade tradi-
tional agricultural production tools. The research and application development
of agricultural smart equipment in countries such as the United States, Germany,
the United Kingdom, and Japan are progressing rapidly. Major agricultural
production operations (including grafting, transplanting, spraying, harvesting
of fruits and vegetables, feeding, cleaning, milking of livestock, poultry, online
grading, labeling, packaging of agricultural products, etc.) have already realized
or are in the process of realizing machine replacement or unmanned operation,
significantly increasing labor productivity and agricultural resource utilization
efficiency [27].
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For smart agriculture to be truly effective, it must embody characteristics
such as creativity, sustainability, and livability. The development of smart agri-
culture necessitates collaboration among various individuals, including farmers,
consultants, corporations, agriculture specialists, and officials. Farmers and agri-
cultural workers play important roles in the MPG4SA model. They are responsi-
ble for deploying, maintaining, and calibrating data-gathering machinery. Agri-
cultural scientists, researchers, and agronomists contribute domain expertise and
specialized knowledge to work alongside machines in interpreting and validating
insights generated by AI models. Within the smart agriculture ecosystem, farm-
ers and farm managers are crucial decision-makers. They utilize insights provided
by AI models and data collected by machines to make informed and strategic
decisions about their farming operations. Farmers rely on AI-generated recom-
mendations for crop planting schedules, fertilizer applications, and pest control
measures to optimize yields and reduce costs.

During the development of smart agriculture, the government coordinates
various resources, strengthens government support, and breaks through some
core technologies of smart agriculture. The government could initiate a number
of major projects in smart agriculture, summarizing replicable and scalable mod-
els and experiences. At the same time, the government should formulate relevant
subsidy policies, providing policy subsidies for the research and application of
smart agricultural technology, exempting enterprises with smart agriculture as
their core business from taxes, and reducing internet access and data transmis-
sion communication costs in rural areas. Furthermore, the government needs to
establish smart agricultural technology standards and share data resources, espe-
cially focusing on the formulation of data standards, product standards, market
access standards, and other standards. Additionally, government departments
should open up agricultural data within a certain scope and establish a sharing
mechanism.

4.2 SMV4SA: SMV Space Based Model for Smart Agriculture

One objective of this research is to develop a conceptual framework, named
SMV4SA, which is a SMV based three-level framework for smart agriculture.
The framework encompasses three layers which are data (Symbols), knowledge
(Meaning) and decision (Value). In each layer, machine, people and government
play different roles, which constitute a 3× 3 matrix tasks. The nine tasks are
1) Data Collecting, 2) Data Processing and Analyzing, 3) Operational Decisions
Executing, 4) Data-gathering Machinery Management, 5) Interpreting and Vali-
dating Knowledge, 6) Strategic Decisions Making, 7) Data Standards Establish-
ing, 8) Research Funding, Education, and Extension Services, 9) Policy-making
Regulation and Support Programs.

(1) Data Collecting
Machines play a crucial role in modern agriculture, providing efficiency, pre-
cision, and productivity enhancements across various tasks. In the data layer
of SMV4SA, machines serve a pivotal role by collecting an extensive range of
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agricultural data. Equipped with an array of sensors, drones, and IoT devices,
these machines capture real-time information from the field. Sensors are strate-
gically deployed in soil, on plants, and within machinery to monitor critical
parameters such as soil moisture, temperature, nutrient levels, and crop health
indicators. Drones, equipped with high-resolution cameras and multi-spectral
sensors, provide aerial imaging and monitoring capabilities, capturing detailed
pictures of fields to assess crop health, detect pest infestations, and identify areas
of stress.The data amassed by these machines is both vast and continuous, offer-
ing farmers a comprehensive view of their fields. For instance, soil sensors can
detect variations in moisture levels across different sections of a field, enabling
farmers to implement precise irrigation strategies. Similarly, drones can identify
areas that exhibit reduced vegetation vigor, signaling potential pest or disease
outbreaks and prompting targeted interventions [8].

(2) Data Processing and Analyzing
In the knowledge layer of SMV4SA, machines are tasked with processing and
analyzing the vast datasets collected in the data layer. Artificial Intelligence
(AI) algorithms and machine learning models are employed to extract meaning-
ful knowledge and patterns from the raw data. These algorithms can identify
correlations between various data points, detect anomalies, and predict future
trends in crop growth, pest outbreaks, or soil health. For instance, AI algorithms
can analyze historical weather data, soil moisture levels, and crop yield data to
create predictive models for optimal planting schedules. These models provide
farmers with advice on the best planting windows to maximize yield potential
based on historical trends and weather forecasts. Additionally, machine learning
algorithms are utilized for image recognition in drone-captured images. They can
discern subtle changes in plant color or texture indicative of pests or diseases.
By analyzing these images, machines can alert farmers to potential issues before
they escalate, enabling targeted interventions [9].

(3) Operational Decisions Executing
In the decision layer of SMV4SA, machines are responsible for executing opera-
tional decisions based on insights and recommendations generated in the knowl-
edge layer. Automated systems and robotic machinery are deployed in the field
to perform a range of tasks, from precise planting and fertilizing to targeted pest
management. For example, automated irrigation systems, guided by AI models
and real-time sensor data, adjust water flow rates and distribution patterns to
ensure optimal soil moisture levels. Robotic weeders equipped with computer
vision systems can identify and selectively remove weeds without the need for
chemical herbicides, thus reducing environmental impact. Autonomous drones
and unmanned ground vehicles (UGVs) are also integral to the decision layer,
performing tasks such as crop scouting and monitoring. These machines patrol
fields, identify areas of stress or disease, and relay this information back to farm-
ers for timely intervention [10].
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(4) Data-gathering Machinery Management
Farmers and agricultural workers are pivotal contributors in the data layer of
SMV4SA. They are tasked with the deployment, maintenance, and calibration
of data-gathering machinery. Before the planting season commences, farmers
install sensors in the soil and configure drones for routine flyovers. They metic-
ulously ensure that sensors are accurately calibrated to provide precise readings
and that drones are programmed to capture specific areas of interest. Addition-
ally, farmers actively participate in data collection through manual observations
and input. They record field observations regarding crop growth stages, pest
sightings, or weather conditions. Although this data isn’t machine-collected, it
holds immense value for validating the accuracy of sensor readings and refining
predictive models. Farmers also serve as interpreters of the data generated by
machines, leveraging their knowledge and experience to derive insights. They
integrate data from various sources, such as soil moisture readings and weather
forecasts, to make informed decisions about irrigation scheduling, pest manage-
ment strategies, and crop rotation plans. Thus, farmers act as the vital link
between the raw data collected by machines and the actionable insights crucial
for optimizing agricultural practices [20].

(5) Interpreting and Validating Knowledge
Agricultural scientists, researchers, and agronomists play a crucial role in the
knowledge layer of SMV4SA. They bring domain expertise and specialized
knowledge to collaborate with machines in interpreting and validating the
insights generated by AI models. These experts work closely with data scien-
tists and engineers to develop and refine algorithms that can accurately predict
crop behavior, disease patterns, and optimal management practices. Farmers
actively engage with the knowledge layer by utilizing insights from AI models
to make informed decisions. They rely on the expertise of agricultural scientists
to comprehend the implications of the data and recommendations. For instance,
a farmer may receive a recommendation from an AI model to adjust irrigation
levels based on predicted weather patterns and soil moisture data. The farmer,
with guidance from experts, decides whether to implement the recommendation
based on their knowledge of local conditions and crop requirements. Moreover,
farmers and agricultural experts contribute to the knowledge layer by validat-
ing and improving predictive models. They provide feedback on the accuracy of
predictions and suggest adjustments to algorithms based on real-world observa-
tions. This iterative collaboration between humans and machines leads to more
robust and reliable predictive models [28].

(6) Strategic Decisions Making
Farmers and farm managers serve as key decision-makers in the smart agricul-
ture ecosystem. They leverage outputs provided by AI models and data collected
by machines to make informed and strategic decisions about their farming oper-
ations. Farmers use AI-generated recommendations on crop planting schedules,
fertilizer applications, and pest control measures to optimize yields and reduce
costs. Human expertise is invaluable in interpreting and contextualizing recom-
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mendations generated by machines. Farmers consider factors such as market
demands, local weather conditions, and soil characteristics when implementing
AI-driven decisions. For instance, a farmer may receive a recommendation from
an AI model to adjust fertilizer application rates based on soil nutrient data.
The farmer, drawing on their knowledge of the field’s history and conditions,
decides whether to follow the recommendation or make adjustments. Farmers
also play a critical role in monitoring and evaluating the effectiveness of AI-
driven decisions. They observe crop growth, pest levels, and overall field health,
providing feedback on the outcomes of implemented strategies. This feedback
loop allows farmers to refine their practices over time, continuously improving
the decision-making process [28].

(7) Data Standards Establishing
Governments assume a supportive role in the data layer of SMV4SA, concen-
trating on standardization, data access, and infrastructure development. They
establish standards for data collection and sharing, ensuring interoperability
and data quality across diverse agricultural operations. For instance, govern-
ments may define protocols for sensor calibration or data transmission formats
to facilitate seamless integration of data from varied sources. Moreover, govern-
ment agencies contribute to data collection on a broader scale for monitoring and
policy-making endeavors. They oversee networks of weather stations and environ-
mental monitoring systems, amassing regional or national-level data on climate
conditions, water availability, and environmental quality. This aggregated data
is invaluable for evaluating the overall state of agriculture, identifying trends,
and formulating informed policies. In terms of infrastructure, governments invest
in the development of rural broadband networks and communication systems.
These infrastructural advancements are indispensable for enabling the seamless
transmission of data from remote agricultural locations to central databases. By
enhancing connectivity, governments ensure that farmers have access to requi-
site technologies and data services essential for participating in smart agriculture
initiatives [29].

(8) Research Funding, Education, and Extension Services
Governments contribute to the knowledge layer of SMV4SA through research
funding, education, and extension services. They invest in research and develop-
ment projects focused on advancing AI algorithms and machine learning tech-
niques for agriculture. By funding research initiatives, governments support the
development of innovative solutions to complex agricultural challenges. Agricul-
tural extension services, often supported by government agencies, play a crucial
role in translating research findings into practical knowledge for farmers. Exten-
sion agents work directly with farmers, providing training, workshops, and edu-
cational materials on the use of AI-driven technologies. They help farmers under-
stand how to interpret the advice generated by AI models and apply them to
their specific farming operations. Governments also facilitate knowledge sharing
and collaboration within the agricultural community. They organize conferences,
seminars, and workshop events where farmers, researchers, and industry profes-
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sionals can exchange ideas and best practices. By fostering a culture of learning
and knowledge sharing, governments enable the broader adoption of smart agri-
culture practices across the agricultural sectors [9,10].
(9) Policy-making, Regulation and Support Programs
Governments contribute to the decision layer of SMV4SA through policy-
making, regulation, and support programs. They create policies that encour-
age the adoption of AI-driven technologies and sustainable farming practices.
For example, governments may offer subsidies or tax incentives for farmers who
invest in precision agriculture equipment or participate in data-sharing initia-
tives. Regulations related to data privacy, cybersecurity, and ethical AI use also
fall within the government’s purview. Governments establish guidelines to ensure
that data collected by machines is securely stored, transmitted, and used. They
set standards for data anonymization and protection to safeguard farmers’ sensi-
tive information. Government support programs provide financial assistance and
technical expertise to farmers adopting smart agriculture practices. These pro-
grams may include funding for the purchase of AI-enabled machinery, training
workshops on data interpretation, and access to agronomic experts for person-
alized advice. Moreover, governments monitor and evaluate the impact of smart
agriculture on a broader scale. They assess the environmental, social, and eco-
nomic outcomes of AI-driven practices to inform future policies and investments.
By evaluating the effectiveness of smart agriculture initiatives, governments can
ensure sustainable and equitable growth in the agricultural sector [9,10].

5 Conclusion

Smart agriculture is still in its early stages of development. There is currently
no universally unified model or framework for the field. This paper presents
a critical examination of existing models and frameworks for smart agricul-
ture, highlighting several shortcomings such as the lack of a unified model, the
oversight of the crucial role of smart people (including farmers and agricul-
ture specialists), and the limited focus on government involvement. In response
to these issues, the paper proposes a Machine-People-Government triangular
model for smart agriculture (MPG4SA) and a conceptual three-level framework
based on the Symbols-Meaning-Value (SMV) space (SMV4SA). The MPG4SA
model takes into account the three essential components of smart agriculture:
machines, smart people, and government. By integrating these elements, the
model aims to provide a more comprehensive understanding of smart agricul-
ture and its dynamics. Additionally, the SMV4SA framework describes the roles
of machines, people, and government in agricultural data acquisition, knowledge
discovery, and decision-making across three layers. The proposed model and
framework offer a structured approach to addressing the complexities of modern
agriculture, with implications for various stages of agricultural operations includ-
ing pre-production planning, in-season management, harvest operations, post-
production management, and government policy making. By emphasizing the
roles and interactions of machines, smart people, and government, this research
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provides a foundation for advancing the efficiency, sustainability, and effective-
ness of smart agriculture practices.

The results of this paper have several practical implications for smart agri-
culture. The Machine-People-Government triangular model for smart agricul-
ture (MPG4SA) and the Symbols-Meaning-Value (SMV) space-based framework
(SMV4SA) can serve as a guide for future research and the development of end-
to-end smart agriculture applications, ultimately facilitating the transformation
and optimization of traditional agriculture through digitization and intelligence.
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Abstract. A theory of three-way decision concerns triadic thinking, tri-
adic approaches to problem-solving, and triadic methods of computing.
This paper applies the philosophy, principles, and methodology of three-
way decision to the problem of conducting, constructing, and organizing
a literature review in a field of study. First, we introduce the concept of a
three-way literature review. Second, we consider the philosophy-theory-
application triad for the literature review. We discuss three structures
of the philosophy-theory-application triad from a geometric perspective
that are useful for understanding the literature review. Third, we con-
sider the who-what-when triad for the literature review. We apply a 3×3
method and propose a corresponding model of the literature review. The
first 3 is the topic-author-time triad, which attempts to answer the fun-
damental question of “who did what when”. The second 3 represents a
three-level analysis of each of the first three: (1) categorizing topics into
the three levels of the core topics, emerging topics, and to-be-explored
topics, (2) classifying authors into the three levels of active authors,
frequent authors, and occasional authors, and (3) dividing articles into
the three levels of initial investigations, further developments, and most
recent studies. Finally, we use the 3×3 model to analyze papers published
on three-way conflict analysis. The 3×3 model may help researchers con-
duct a literature review systematically, as well as guide the design and
implementation of intelligent systems for supporting literature review.

Keywords: Three-way decision · Triadic thinking · Three-way
literature review · 3 × 3 method · Three-way bibliometrics analytics

1 Introduction

A theory of three-way decision, proposed by Yao [33,35,37–40], consists mainly
of the philosophy of thinking in threes, the methodology of problem-solving in
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threes, and the mechanism of computing in threes. It utilizes three elements,
three parts, or three perspectives to explore, understand, and describe com-
plex problems. From the cognitive, evolutionary, and cultural bases, Yao [40]
explained the motivations, reasonable, and benefits of three-way decision. In
recent years, three-way decision has been applied in various fields by virtue of
its simplicity, practicality, and utility, for example, three-way classification [6,12,
42], three-way clustering [1,24,41], three-way concept analysis [10,26,47], three-
way conflict analysis [8,11,15,21,30], three-way approximations of fuzzy sets
and shadowed sets [31,45], three-way recommendation systems [13,44], three-
way attribute reduction [16,25,46], and so on. Motivated by these successful
applications, in this paper, we explore a new application of three-way decision
for organizing and structuring a literature review, opening up a new avenue of
research for three-way decision.

A literature review plays an important role in any kind of scientific
research [18,20]. More often than not, a good literature review increases the
probability of success of any research programs and projects. By following the
principles of three-way decision, we introduce the philosophy-theory-application
triad and the who-what-when triad for understanding, organizing, and formu-
lating a literature review, which is called a three-way literature review. For the
philosophy-theory-application triad, we discuss three types of triadic structures:
the trilevel hierarchy, triangular structure, and tripod structure. These three tri-
adic structures provide not only a geometric structure for the philosophy-theory-
application triad but also a useful understanding for the literature review. For
the who-what-when triad, we propose a 3×3 model by applying the 3×3 method
and the evaluation-based model. The key to the 3× 3 model is how to construct
and interpret two 3’s. We construct and interpret the first 3 by using the topic-
author-time triad. We use a three-level analysis for each part of the first 3 to
construct the second 3. More specifically, we categorize topics into three levels:
core topics, emerging topics, and to-be-explored topics. We classify authors into
three levels: active authors, frequent authors, and occasional authors. We trisect
articles into three levels: initial investigations, further developments, and most
recent studies. The 3 × 3 model attempts to answer the fundamental question
of who did what when characterized by the who-what-when triad. As a case
study, we use the 3 × 3 model to analyze papers published on three-way conflict
analysis. The results help us gain a deeper understanding of three-way conflict
analysis.

The rest of the paper is organized as follows. Section 2 introduces the con-
cept of a three-way literature review. Section 3 discusses three structures of the
philosophy-theory-application triad used to construct the literature review (a
trilevel hierarchy, triangular, and tripod). Section 4 explores the literature review
with the who-what-when triad. We present a 3 × 3 model for bibliometrics ana-
lytics for supporting literature review. Section 5 conducts bibliometrics analytics
of papers on three-way conflict analysis by using the 3×3 model. Section 6 sum-
marizes the main results and comments on future research. The results of the
paper have two applications, namely, helping a researcher in conducting litera-
ture review and building a system that supports literature review.
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2 Three-Way Literature Review

A literature review is both a research task and a form of academic writing
that systematically compiles, summarizes, and evaluates existing research, ideas,
and results in a field of study [5,18,20,23,27]. It usually includes a review of
relevant research, an analysis of the methodology and results of the research, and
identification of shortcomings in existing research or recommendations for future
research. A literature review is intended to provide readers with a comprehensive
understanding of the research that has been done on a particular topic or field
and to offer a foundation of theory and methodology for their own research.
For example, Snyder [20] discussed literature reviews as a method of conducting
research and outlined the different types of reviews, such as narrative, systematic,
or integrative reviews. Palmatier et al. [18] explored the importance of literature
reviews in terms of purpose, process, and structure. They pointed out that a
review of existing research in a particular field can be useful for the scientific
advancement of the field.

Three-way decision is a theory of triadic thinking, triadic methodology, and
triadic computing [35,37,40]. A triad is an essential concept of three-way deci-
sion, which is a group of three things, items, or entities [40]. A triad offers a
structural way of understanding and representing a whole by focusing on three
main components or elements. There are multiple interpretations of a triad in
different contexts and applications, such as three elements, three parts, three
levels, three dimensions, three steps, three types, three sides, three granularities,
and many others [37,38]. The triplet threeness-oneness-structuredness captures
the three basic properties of a triad [40]. From the threeness, the triad is a con-
ceptualization of the whole through three ingredients, which allows for solving
more complex problems by considering the three basic components, parts, or
elements. From the oneness, the triad is a unification and fusion of the three,
which ensures that the three individual components, parts, or elements work
together to describe and reflect the whole. From the structuredness, the three
elements of a triad are usually linked to each other in a structured way to form a
triadic structure, which combines the threeness and oneness of a triad. In other
words, a triad is a set of three objects with a structure.

By collecting evidence from many disciplines and fields, Yao [35,37–40] has
demonstrated that a tripartite theory, model, or explanation is normally simple-
to-understand, easy-to-remember, and practical-to-use. It may be argued that a
literature review based on a triadic structure shares the same advantages. In fact,
many survey and review papers use various triadic schemes or organizations,
for example, past-present-future, arts-science-application, results-perspectives-
challenges, qualitative-quantitative-mixed, and others. We introduce the term
“three-way literature review” to label and characterize the type of literature
reviews that use triadic structures.

As examples of illustration, we take a look at several comprehensive liter-
ature reviews on three-way decision. Yang and Li [28] used complex networks
to analyze articles on three-way decision and revealed the relationship between
authors, papers, and keywords. Zhan et al. [43] reviewed the progress of three-
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way behavioral decision-making with hesitant fuzzy information systems from
the past, present, and future perspectives. Yang et al. [32] presented a uni-
fied framework for three-way multi-granularity learning by reviewing sequential
three-way decision and multi-granularity learning. Wang et al. [24] reviewed
the historical development of three-way clustering and noted some challenges
and future research topics. The title of their paper explicitly contains the triad,
foundations-survey-challenges. Ding et al. [2] reviewed the research progress of
three-way decision methods in a generalized intuitionistic fuzzy environment
and discussed challenges and future research directions. These review papers
explore a triad of three relationships, namely, author-author, author-keyword,
and keyword-keyword relation. They contribute greatly to the development of
the field of three-way decision.

In the rest of the paper, we further explain the main ideas of three-way
literature review by using the philosophy-theory-application triad and the who-
what-when triad.

3 Literature Review with the Philosophy-Theory-
Application Triad

We adopt the philosophy-theory-application triad, from a triarchic theory of
granular computing [34] and the triangle of three-way decision [38], as a basic
structure for understanding, organizing, and formulating a theory. We may inter-
pret liberally the labels of the three components, for example, by using the
philosophy/foundation-theory/methodology-application/practice triad. A liter-
ature review based on the philosophy-theory-application triad focuses on each
of the three components and their interactions and relationships. Based on a
study of many geometric structures, graphical representations, and semantics
interpretations of a triad [38], we discuss three structures of the philosophy-
theory-application triad for structuring a literature review.

Fig. 1. Three triadic understandings of literature review

The first is a trilevel hierarchy of the literature review, which is shown in
Fig. 1(a). A trilevel hierarchy is an important and useful mode for three-way
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decision, which gives rise to trilevel thinking [37,38,40]. A trilevel approach
deals with a complex whole from three comparatively simple and purposeful
levels. As seen in Fig. 1(a), the application is at the bottom level, the theory is
at the middle level, and the philosophy is at the top level. The top level is directly
related to the middle level and indirectly related to the bottom level through the
middle level. There is generally a control-support relationship between levels, i.e.,
top-down control and bottom-up support. Separation and integration are two
important features of the trilevel hierarchy. With separation, each level focuses
only on specific aspects of the whole, uses a different language for description and
denotation, and provides an analysis and understanding of the whole. Separation
allows us to concentrate on a particular level without the distraction or hindrance
of others. With integration, a synthesis of the studies at three levels may offer
a comprehensive analysis and understanding of the whole. Separating the whole
into three levels simplifies the complexity of exploring the whole; integrating the
outcomes from the three levels provides valuable insights into the whole.

The second is a triangular structure of the literature review, as shown in
Fig. 1(b). The triangle suggests triangular thinking [38,40]. The triangle stands
for a whole, the three vertices represent the three elements of a triad, and the
three edges indicate the relationships between the three elements. In the tri-
angular structure, each element is connected to the other two elements. The
relationship between two elements may be interpreted in many different ways,
such as dependencies, supports, associations, and others. In addition, implicit
information about the relationship between elements can be seen by considering
different edge numbers. One is that if we consider only one edge, we see the
relationship between the two elements. The second is that if we consider any
two edges simultaneously, we see the shared element in direct relation to two
unshared elements, but not two unshared elements in direct relation to each
other. The third is that if we consider all three edges, then each of the three
corners occurs precisely twice. There are two types of relationship, a direct rela-
tionship given by an edge and an indirect relationship given by two edges through
a third element.

The third is a tripod structure of the literature review (LR), which is shown in
Fig. 1(c). The tripod has three supporting legs, which provides a great metaphor
for model construction. It is well known for its stability, strength, balance,
beauty, harmony, and completeness. In Fig. 1(c), the circle at the top represents
the entire literature. The three solid circles at the bottom stand for philosophy,
theory, and application. The three lines describe the relationship between whole
and parts. From the top down, the whole is divided into three parts. From the
bottom up, these three parts support the whole. The different parts are inter-
connected through their association with the whole. For example, philosophy
and theory are related through the entire literature, while the tripod connects
the three parts by the whole. A good argument is constructed and supported
by using three pieces of evidence, three reasons, or three examples. Using the
tripod metaphor, we may argue that a literature review is supported by three
aspects of philosophy, theory, and application.
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4 Literature Review with the Who-What-When Triad

Bibliometrics analytics is a statistical method for analyzing the distribution and
characteristics of publications [17]. In this section, based on the who-what-when
triad, we apply the 3× 3 method and evaluation-based model to propose a 3× 3
model for bibliometrics analytics for supporting literature review.

4.1 The 3×3 Method

Triadic thinking reflects the universal habits of human cognition and is a common
way of thinking when we recognize, understand, and solve problems. However,
when confronted with complex and multiple problems, a single triadic thinking
style may be insufficient in terms of comprehension and in-depth. To solve this
problem, Suo et al. [22] introduced the concept of double triadic thinking based
on the idea of three-way decision. Double triadic thinking is a method or model
that utilizes triadic thinking twice.

The notion of double triadic thinking uses different triadic structures, lead-
ing to a variety of 3 × 3 methods and structures. Suo et al. [22] proposed two
particular 3 × 3 methods by combining trilevel hierarchical thinking and trian-
gular thinking. One is the application of trilevel thinking at each of the three
vertices of a triangle, which is called a (3-angle)×(3-level) method. The other is
the application of triangular thinking at each of the three levels of a hierarchy,
which is called a (3-level)×(3-angle) method.

Fig. 2. A (3-angle)×(3-level) structure of literature review

The 3 × 3 method allows us to think, analyze, and solve problems from
nine different perspectives or dimensions. For example, Yao [40] suggested a
3×3 structure framework for the explanation of explainable artificial intelligence
based on the symbols-meaning-value space. Yang et al. [29] proposed a lattice-
theoretic model of three-way conflict analysis by using the idea of the 3 × 3
method. We use the (3-angle)×(3-level) method to construct a 3 × 3 model of
literature review, as shown in Fig. 2. The key to the 3 × 3 model is how to
construct and interpret two 3’s. For the literature review, we first construct
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a topic-author-time triad to form the first 3. The first 3 is characterized by
the what-who-when triad, which attempts to answer the basic question of who
did what when. The topic-author-time triad is an important indicator when it
comes to gaining insights into a field. Topics reflect the direction and focus of
the research, authors generate scholarly contributions, and the time captures
a history of development. Therefore, an insightful analysis of the topic-author-
time triad can give a better understanding of a field. For the construction of the
second 3, we draw results from an evaluation-based three-way decision model.

For trisecting a whole, Yao [33] proposed an evaluation-based model. Let U
be a finite nonempty set of objects and e : U −→ R be an evaluation function
on U . For x ∈ U , e(x) is evaluation value of x. Given a pair of low and high
thresholds (l, h) with l < h, we trisect U into three parts based on the evaluation
e as follows:

H(l,h)(e) ={x ∈ U | e(x) ≥ h},
M(l,h)(e) ={x ∈ U | l < e(x) < h},
L(l,h)(e) ={x ∈ U | e(x) ≤ l},

(1)

where H, M, and L represent the set of objects with high, medium, and low
evaluation values, respectively, and the subscripts (l, h) denote the construction
of three parts based on a pair of thresholds (l, h).

4.2 A 3×3 Model of Literature Review

By following the principles of the (3-angle)×(3-level) method, we describe the
first 3 by the topic-author-time triad and adopt the evaluation-based method
to each part of the first 3 to form the second 3. There are two key points when
applying the evaluation-based model. One is to construct an evaluation function.
The other is to find a pair of appropriate thresholds. There are many ways to
choose thresholds, including statistical analysis [4], expert opinion [14], empirical
adjustment, and so on. In the 3 × 3 model, we choose a pair of thresholds based
on the characteristics of the data set.

For topic-based analysis, we define an evaluation function on a set of topics
T as follows:

f(t) = the number of times that the topic t appears in the database. (2)

For t ∈ T , f(t) is frequency of t. Since the data set is constructed from a specific
topic “X”, the value of f(t) is, in fact, a co-occurrence topic t with X. The next
step is to set a pair of thresholds (r, c) with r < c. According to f and a pair
of thresholds (r, c), we trisect the set of topics T into the core topics, emerging
topics, and to-be-explored topics as follows:

Core topics(r,c)(f) = {t ∈ T | f(t) ≥ c},
Emerging topics(r,c)(f) = {t ∈ T | r < f(t) < c},

To-be-explored topics(r,c)(f) = {t ∈ T | f(t) ≤ r}.
(3)
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The core topics represent well-established research, which contributes to under-
standing the frontier problems and research highlights in the field. The emerg-
ing topics stand for rapidly growing research, which helps us to know the latest
trends in the field. The to-be-explored topics denote possible new research, which
provides us with possible future research directions in the field.

For author-based analysis, we define an evaluation function on a set of authors
A as follows:

n(a) = the number of articles by an author a in the database. (4)

We set a pair of thresholds (o, i) with o < i. By the evaluation function n and a
pair of thresholds (o, i), we trisect the set of authors A into the active authors,
frequent authors, and occasional authors as follows:

Active authors(o,i)(n) = {a ∈ A | n(a) ≥ i},
Frequent authors(o,i)(n) = {a ∈ A | o < n(a) < i},

Occasional authors(o,i)(n) = {a ∈ A | n(a) ≤ o}.
(5)

The active authors represent authors who published a large number of papers
in a particular field. The frequent authors stand for authors who publish a large
number of research papers in a relatively short period of time. The occasional
authors denote occasional or new scholars involved in the field. By focusing on
occasional authors we can get a more comprehensive view of researchers in the
field, which prompts wider collaboration and communication.

For time-based analysis, we use the same idea to categorize articles into the
initial investigations, further developments, and most recent studies. The initial
investigations reflect the historical evolution of the particular field and offer the
foundational knowledge for future research. The further developments help in
understanding the latest discoveries and trends in a particular field. The most
recent studies contribute to understanding the frontier issues in a specific field
and provide robust clues for future research. The 3 × 3 model enables us to
understand the evolution of a specific area and provides insights into emerging
fields within the area.

5 A Literature Review of Three-Way Conflict Analysis
Based on the 3×3 Model

In 1998, Pawlak [19] introduced a simple model of conflict analysis based on
a three-valued rating by a set of agents on a set of issues. Three-way conflict
analysis combines ideas of three-way decision and Pawlak conflict analysis. As a
case study, this section conducts bibliometrics analytics of the field of three-way
conflict analysis by using the 3 × 3 model. We use the Web of Science database
to collect data related to three-way conflict analysis. By searching for the phrase
“three-way decision” for the period from January 2009 to February 2024, we
produce a dataset of 1, 833 papers. Out of these papers, we manually identify 43
papers on three-way conflict analysis.
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For topics, we select 75 topics from 43 papers and denote the set of topics
by T . By Eq.(2), we construct an evaluation function f(t). Since our dataset is
constructed by using the phrase “three-way conflict analysis”, the value of f(t) is,
in fact, co-occurrence topic t with three-way conflict analysis. According to the
characteristics of the dataset, we choose a pair of thresholds (r, c) = (1, 5). After
that, we obtain 7 core topics for 9.33%, 20 emerging topics for 26.67%, and 48
to-be-explored topics for 64% of three-way conflict analysis based on Eq.(3). To
have an intuitive understanding of the results, we use the open-source software
package Gephi to produce a visualization as shown in Fig. 3.

Fig. 3. Trilevel hierarchy of topics related to three-way conflict analysis

Figure 3 displays the trilevel hierarchy of topics by using concentric circles
for representing the core topics, emerging topics, and to-be-explored topics. The
figure consists of 75 nodes, and the node size represents the frequency of topics in
three regions. In Fig. 3, the inner circle indicates the core topics, the middle circle
signifies the emerging topics, and the outer circle represents the to-be-explored
topics. From a hierarchical standpoint, Fig. 3 is a three-layer circle characterized
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by an inner layer, a middle layer, and an outer layer. Such a hierarchy metaphor-
ically suggests that the core topics support the emerging topics and the emerging
topics support the to-be-explored topics. Conversely, the to-be-explored topics
are established on the emerging topics, which in turn are established on the core
topics. This structure helps us to gain insights into three-way conflict analysis.
Taking the core topics as an example, there are topics such as decision-theoretic
rough set, rough set, fuzzy set, conflict resolution, decision making, Pythagorean
fuzzy set, and information systems. These topics constitute the cornerstone of
three-way conflict analysis, providing a theoretical foundation and methodolog-
ical guidance for in-depth research.

There are two possible routes for beginners who want to learn about the field
of three-way conflict analysis. One is learning from the inside out and the other
is learning from the outside in. More specifically, beginners should initially find
a few articles within the core topics to grasp the core concepts and foundations.
Then, it will turn to the emerging topics to understand the cutting-edge issues
in three-way conflict analysis, which helps to determine the direction of research.
Subsequently, attention turns to the to-be-explored topics, exploring potential
new research in three-way conflict analysis. Once the direction of research is
ascertained, it becomes necessary to learn from the outside in to acquire more
details. The trilevel hierarchy of topics reveals the current status and trend of
three-way conflict analysis research. This trend not only highlights the growing
importance of three-way conflict analysis but also reflects the expanding interest
and involvement of scholars in the field. Additionally, it provides useful hints for
future research in three-way conflict analysis.

For authors, we select 86 authors from 43 papers and denote the set of authors
by A. From Eq.(4), we construct an evaluation function n(a). We set a pair
of thresholds (o, i) = (1, 3) based on the characteristics of the dataset. Subse-
quently, we obtain 9 active authors for 10.47%, 15 frequent authors for 17.44%,
and 62 occasional authors for 72.09% of three-way conflict analysis based on
Eq.(5). Likewise, we use the Gephi to visualize the results as depicted in Fig. 4.

Figure 4 shows the trilevel organization of authors by using concentric cir-
cles to indicate the active authors, frequent authors, and occasional authors. It
consists of 86 nodes, and the node size stands for the number of articles pub-
lished by authors in three regions. In Fig. 4, the inner circle represents the active
authors, the middle circle indicates the frequent authors, and the outer circle
signifies the occasional authors. This trilevel structure not only provides a dis-
tribution of authors but also serves as a framework for understanding trends in
three-way conflict analysis. For example, the inner circle consists of nine authors,
Lang Guangming, Yao Yiyu, Miao Duoqian, Li Xiaonan, Sun Bingzhen, Yang
Hai-Long, Hu Mengjun, Yi Huangjian, and Wang Tianxing. They contribute
to three-way conflict analysis by laying the groundwork for and motivating the
study of three-way conflict analysis. For researchers and scholars, understanding
this distribution can be essential for networking, collaboration, and literature
review. By identifying the active authors, it is possible to gain insights into the
core theories and methods that currently dominate three-way conflict analysis.
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Fig. 4. Trilevel organization of authors related to three-way conflict analysis

Attention to the work of frequent authors offers an understanding into the ongo-
ing development and a broader view of three-way conflict analysis. Meanwhile,
exploring the work of occasional authors can reveal emerging trends and diverse
perspectives.

Finally, we categorize the articles into the initial investigations, further devel-
opments, and most recent studies based on time. This one constitutes the three
research periods of three-way conflict analysis, as illustrated in Fig. 5. Within
each period, we construct networks showing author-topic and author-author rela-
tionships. Such a network not only answers the question of “who did what when”,
but also unveils a collaborative relationship between authors. By adopting this
temporal categorization, we can gain a clearer picture of the research progress
of three-way conflict analysis at different stages.

Figure 5(a) represents the initial investigations, covering the years 2017 to
2019. There are four articles in this group. Lang et al. [7,9] and Fan et al. [3]
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Fig. 5. Three periods of development of three-way conflict analysis

started a new research direction on combining three-way decision and Pawlak
conflict analysis. They did not explicitly introduce the term “three-way con-
flict analysis”. Yao [36] introduced the term for modeling three levels of strong
conflict, weak conflict, and non-conflict. These four papers initiated the study
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on three-way conflict analysis. As seen in Fig. 5(a), the initial investigations are
composed of three research groups, one consisting of Yao Yiyu, the second com-
prising of Lang Guangming, Miao Duoqian, Cai Mingjie, Zhang Zhifei, and Yao
Ning, and the third consisting of Qi Jianjun, Wei Ling, and Fan Yan. This net-
work consists of a total of 16 nodes and 32 edges, where 9 nodes represent authors
and 7 nodes stand for topics. It tells us information about what topics authors
research and with whom they collaborate. For example, Lang Guangming, Miao
Duoqian, and Cai Mingjie are connected to decision-theoretic rough set and
dynamic information systems by edges, respectively, which suggests that these
three authors investigated these two topics. Additionally, these three authors are
connected by edges, which implies a collaborative relationship between them.
Over time, three-way conflict analysis moved from the initial investigations to
further developments. Figure 5(b) depicts the further developments, covering 15
articles published in the years 2020 to 2021. It consists of a total of 69 nodes
and 189 edges, where 36 nodes indicate authors and 33 nodes denote topics. By
comparing this period with the previous one, we find that this period not only
joined new research groups but also merged some of the research groups from
the previous period to form new research groups. For example, two new research
groups have been joined, one consisting of Qi Jianjun, Zhi Huilai, Qin Keyun,
Qian Ting, Ren Ruisi, and Yang Han, and the other consisting of Wang Tianxing,
Li Huaxiong, Zhang Libo, and Hu Wenting. Figure 5(c) shows the most recent
studies, covering 24 articles published in the years 2022 to 2024. It consists of a
total of 110 nodes and 276 edges, where 59 nodes represent authors and 51 nodes
indicate topics. As seen in Fig. 5(c), the three research groups have expanded to
seven research groups, which illustrates that the three-way conflict analysis has
attracted the interest of many scholars and achieved excellent results.

Through the above discussion, the 3 × 3 model helps us to gain insights into
three-way conflict analysis. It reveals the current status of research, development
trends, and cutting-edge issues in this field from the topic-author-time triad,
which provides a valuable reference for researchers.

6 Conclusion

Guided by the philosophy, principles, and methodology of three-way decision,
we have introduced the concept of a three-way literature review. We summarize
the main contributions of the paper as follows. First, we have examined three
structures of the philosophy-theory-application triad for the literature review,
namely, a trilevel hierarchy, a triangular structure, and a tripod structure. These
triadic structures provide a deep understanding of a framework for the literature
review. Second, we have studied the who-what-when triad for organizing the
literature review. In particular, we have proposed a 3 × 3 model by combining
the 3 × 3 method and an evaluation-based model of three-way decision. In the
3 × 3 model, the first 3 represents the topic-author-time triad, and the second 3
signifies a three-level analysis of each of the first 3. The 3× 3 model answers the
basic question of who did what when characterized by the what-who-when triad.
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Finally, we have used the 3 × 3 model to analyze papers on three-way conflict
analysis, which results in a deeper understanding of three-way conflict analysis.

The paper provides a new framework for building a literature review by
applying the principles, methodology, and tools of three-way decision theory to
the organization and construction of the literature review. The 3×3 model offers
a structured and comprehensive approach, enhancing the systematic analysis
of existing research within a field. In future research, we will proceed in the
following three directions: (1) the use of the number of citations and the impact
factor for defining an evaluation function for trisection; (2) the study of the
developmental changes in a field in terms of time; and (3) new methods that
combine the 3 × 3 model with the existing bibliometrics analytics methods.
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Abstract. This study explores the problem of criterion reduction in a
specific class of multi-criteria decision-making problems known as trilevel
rankings. A trilevel ranking trisects alternatives into three levels to rep-
resent the high, middle, and low, which can be viewed as a practice of
three-way decision. By analyzing the trilevel structure, we present a for-
mal definition of approximate criterion reduct. To construct an approx-
imate criterion reduct, we introduce two measures for assessing the dif-
ference between trilevel rankings. The first one is a distance-based mea-
sure calculated by quantifying consistent, contradictory, and compatible
pairs with respect to the two trilevel rankings. The second measure is
built on a cost matrix that covers nine potential placements of alterna-
tives, each with its associated cost. We design two heuristic algorithms
for computing optimal approximate criterion reducts. These algorithms
can be applied by using either of the proposed measures, offering flexibil-
ity and adaptability across a range of decision-making scenarios. Finally,
we demonstrate the effectiveness of these algorithms through a series of
experiments on real-world datasets.
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Attribute reduction is a fundamental topic in rough sets theory and has been
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conditions should be satisfied by an approximate criterion reduct, namely, the
sufficiency condition and the minimization condition. The sufficiency condition
demands that the ranking produced by the reduct should be similar enough to
the ranking produced by the entire criteria set. The minimization requires that
no proper subset of the reduct satisfies the sufficiency condition. An approxi-
mate criterion reduct enables decision-makers to achieve close alternative rank-
ings from a reduced set of criteria. This reduces the complexity and improves
the efficiency of decision-making processes, while maintaining approximate effec-
tiveness.

This work further investigates the approximate criterion reduction in a spe-
cial but significant case of MCDM, where trilevel rankings of alternatives are
considered. Trilevel ranking problems can be regarded as practical uses and
applications of trilevel thinking [27], which follows the philosophy of three-way
decision theory [28]. As the name suggests, a trilevel ranking assigns decision
alternatives into three ordered levels. The usefulness of trilevel rankings is sup-
ported by a number of studies in the literature. Bradford’s law [3] was proposed
for the purpose of sorting references into three groups with a ratio of 1 : n : n2.
Shenton and Hay-Gibson [19] visualized the distribution of Bradford’s law by
three distinct regions: a core zone, an intermediate area, and an outlying ter-
ritory, with an implied ordering of core � intermediate � outlying, where �
means ‘is preferred to’. In the field of inventory management, Flores and Why-
bark [9,10] proposed ABC analysis for categorizing items based on their signifi-
cance and consumption value. ‘A’, ‘B’, and ‘C’ items are considered to be highly
important, moderately important, and marginally important, respectively. This
approach aligns with a trilevel ranking of A � B � C. Many research efforts have
been made on the topic of multi-criteria ABC analysis [4,5,7,16,33]. Addition-
ally, the theory of three-way decision has provided valuable insights into trilevel
ranking problems [8,14,25,29,32,34,35].

A primary characteristic of trilevel rankings is that they do not necessitate
the local preferences between alternatives at the same level, but rather the global
preferences across levels. Therefore, the heuristic function used by Shi et al. [20]
may not adequately reflect the difference between trilevel rankings. We develop
two measures to address this issue. The first measure adopts the distance func-
tion between two orderings proposed by Kemeny and Snell [13] and used by
Yao [26] in information retrieval systems. Pair-wise distances are summed up to
define the distance between two rankings. The second measure is cost-based and
inspired by decision-theoretic rough set (DTRS) models [30,31]. A cost matrix is
used to represent the costs associated with the placement of alternatives in two
trilevel rankings. These measures provide a more robust and fitting approach
to quantifying the difference between trilevel rankings. They are integrated into
heuristic algorithms that compute approximate criterion reducts.

The rest of the paper is organized as follows. Section 2 defines the notion of
approximate criterion reduction in trilevel rankings. Section 3 presents a distance
measure and a cost-sensitive measure to evaluate the difference between trilevel
rankings. By utilizing these difference measures, we develop the deletion and
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addition algorithms to generate approximate criterion reducts. Section 4 details
the experimental validation, where the proposed algorithms are applied to five
real-world datasets and the outcomes are visualized for comparison. Finally,
Sect. 5 summarizes the main contributions of this research.

2 Approximate Criterion Reduction in Trilevel Rankings

A criterion reduct is defined on multi-criteria decision-making table, which con-
tains all information about decision alternatives. This table is characterized as
follows [21].

Definition 1. A multi-criteria decision-making table (MCDMT) is a triplet
〈A,C, p〉, where A = {a1, . . . , an} is a finite and non-empty set of n alternatives,
C = {c1, . . . , cm} is a finite and non-empty set of m criteria, and p : A×C −→ �
is a function that maps a decision alternative ai and a criterion cj into a value
p(ai, cj) in the set of real numbers �.

Example 1. Table 1 takes nine cities and six criteria from an example on city
ranking. The following ranking is generated by TOPSIS using all criteria:

a9 � a7 � a2 � a3 � a8 � a5 � a6 � a1 � a4.

Table 1. An MCDMT

A C
c1 c2 c3 c4 c5 c6

a1 70.46 19.07 51.01 86.16 31.87 76.45
a2 81.89 49.70 82.86 34.31 76.77 24.22
a3 82.43 54.30 75.00 85.59 60.28 21.35
a4 65.18 11.25 44.44 83.45 8.61 85.70
a5 78.12 32.91 67.49 78.07 43.89 33.22
a6 71.91 22.91 59.55 30.55 40.51 44.53
a7 80.74 51.24 84.85 18.40 83.76 16.67
a8 84.52 80.72 36.66 82.08 77.13 30.21
a9 86.00 63.28 88.43 43.08 90.08 15.34

The ranking in Example 1 shows a complete ranking of individual alterna-
tives. By considering sets of alternatives instead, we may derive multilevel rank-
ings. Particularly, trilevel rankings consider three levels that are associated with
high, middle, and low ranks. Accordingly, we present the following definition of
a trilevel ranking.
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Definition 2. Suppose C ′ ⊆ C is a set of criteria in an MCDMT. A trilevel
ranking derived by C ′ is represented by a triplet as:

TC′ = 〈H,M,L〉, (1)

where H, M , and L are the sets of high-ranked, middle-ranked, and low-ranked
alternatives, respectively.

In Definition 2, the triplet TC′ is made up of three levels with inherent orders,
namely, High-Rank level, Middle-Rank level, and Low-Rank level. Figure 1
describes a general structure of trilevel rankings. Specifically, the alternatives
located at a higher level are considered to be ranked ahead of, or more preferred
to, those positioned at a lower level.

Fig. 1. The structure of a trilevel ranking

A trilevel ranking can be constructed from a complete ranking of individual
alternatives computed by any classical MCDM model. Specifically, the alterna-
tives are trisected into three ordered sets based on the complete ranking. The
following Example 2 shows one of the many possible ways to trisect the alterna-
tives.

Example 2. As an illustration, we adopt one of the most commonly used schemes
of ABC analysis, where A, B, and C class respectively occupy 20%, 30%, and
50% of decision alternatives. Given the outcome ranking in Example 1, we can
derive the following trilevel ranking TC :

TC = 〈H = {a7, a9},M = {a2, a3, a8}, L = {a1, a4, a5, a6}〉.
Intuitively, an approximate criterion reduction of C is a minimal subset of C

that derives a trilevel ranking close to TC .

Definition 3. Given an MCDMT, suppose that T is the set of trilevel rankings
of A. Let Sim : T × T −→ � be a similarity measure, where � is the set of real
numbers. A subset R ⊆ C is called an α-approximate criterion reduct, if and
only if, the following conditions are satisfied:

1. Sufficiency: Sim(TR, TC) � α;
2. Minimization: ∀R′

� R,Sim(TR′ , TC) < α.
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Definition 3 modifies the notion of an approximate criterion reduct for rank-
ings [20] to the special case of trilevel rankings. The Sim function can be achieved
by using Spearman’s Rank Correlation Coefficient (SRCC), which is robust to
handle tied ranks. The modification retains the introduction of threshold α,
which determines whether an outcome trilevel ranking is acceptable or not.
There are two crucial conditions to identify a reduct R: sufficiency and mini-
mization. The sufficiency condition requires that the trilevel ranking TR must
be acceptable for the decision-maker, that is, TR must be sufficiently approxi-
mate to TC . The minimization condition ensures that R is the minimal subset
of criteria producing an acceptable trilevel ranking.

3 Constructing Approximate Criterion Reducts
in Trilevel Rankings

This section explores methods to construct approximate criterion reducts in
trilevel rankings. We introduce two specific measures to evaluate the difference
between trilevel rankings. These measures are integrated into heuristic algo-
rithms to construct an optimal approximate criterion reduct.

3.1 A Distance-Based Difference Measure

Kemeny and Snell [13] proposed a distance function to quantify the difference
between two rankings. This function was used by Yao [26] in the field of informa-
tion retrieval to evaluate system performance in ranking the results. We adopt
the idea and define a distance-based measure.

The distance method is based on pair-wise comparisons. For an alternative
pair (a, a′) ∈ A × A, there are three possibilities of the pair-wise comparison:
(1) a is better than a′, (2) a is equally good as a′, and (3) a is worse than a′.
Accordingly, we may define three binary relations on A to formulate these three
cases.

Definition 4. Given a trilevel ranking T = 〈H,M,L〉, we derive the follow-
ing (strict)1 preference relation �T , indifference relation ∼T , and dispreference
relation ≺T :

�T = {(a, a′) ∈ A × A | (a ∈ H ∧ a′ ∈ M) ∨ (a ∈ H ∧ a′ ∈ L) ∨ (a ∈ M ∧ a′ ∈ L)}
= (H × M) ∪ (H × L) ∪ (M × L),

∼T = {(a, a′) ∈ A × A | (a ∈ H ∧ a′ ∈ H) ∨ (a ∈ M ∧ a′ ∈ M) ∨ (a ∈ L ∧ a′ ∈ L)}
= (H × H) ∪ (M × M) ∪ (L × L),

≺T = {(a, a′) ∈ A × A | (a ∈ M ∧ a′ ∈ H) ∨ (a ∈ L ∧ a′ ∈ H) ∨ (a ∈ L ∧ a′ ∈ M)}
= (M × H) ∪ (L × H) ∪ (L × M). (2)

1 It should be noted that �T is a strict preference relation that does not include the
indifference case. As weak preference relations are not considered in our work, we
omit ‘strict’ in our discussions for simplicity.
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Figure 2 illustrates the three relations. Reading along the arrow directions,
the solid lines indicate that the starting alternatives at a higher level are pre-
ferred to the ending alternatives at a lower level; the dotted lines represent the
indifference between alternatives at the same level; and the dashed lines mean
that the starting alternatives at a lower level are dispreferred to the ending
alternatives at a higher level.

Fig. 2. An illustration of the preference, indifference, and dispreference relations

A few properties of the three relations can be easily verified.

Theorem 1. The relations �T , ∼T , and ≺T satisfy the following properties:

(P1) �T and ≺T are weak orders. ∼T is an equivalence relation.
(P2) �T and ≺T are converse relations to each other, that is, �c

T=≺T and
�T=≺c

T , where c represents a converse relation. The converse of ∼T is itself,
that is, ∼c

T=∼T .
(P3) The three relations trisect A×A into three pair-wise disjoint parts, that
is:

�T ∪ ∼T ∪ ≺T = A × A;
�T ∩ ∼T = ∅,�T ∩ ≺T = ∅,∼T ∩ ≺T = ∅.

To measure the distance between two trilevel rankings, we compare them
regarding every alternative pair. This is formally carried out by looking at the
overlaps between the preference, indifference, and dispreference relations derived
from them. Given two trilevel rankings T1 and T2, we have the following cases:

(1) consistent pairs: T1 and T2 are consistent on ranking the two alternatives.
(2) contradictory pairs: T1 and T2 prefer different alternatives.
(3) compatible pairs: one of T1 and T2 ranks the two alternatives as indifferent

in the same level, while the other ranks them into different levels.
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Definition 5. Given two trilevel rankings T1 and T2, the sets of consistent Q+,
contradictory Q−, and compatible Q0 alternative pairs are defined as:

Q+ =(�T1 ∩ �T2) ∪ (∼T1 ∩ ∼T2) ∪ (≺T1 ∩ ≺T2),

Q− =(�T1 ∩ ≺T2) ∪ (≺T1 ∩ �T2),

Q0 =(∼T1 ∩ �T2) ∪ (∼T1 ∩ ≺T2) ∪ (≺T1 ∩ ∼T2) ∪ (�T1 ∩ ∼T2). (3)

The three sets Q+, Q−, and Q0 trisect the family of alternative pairs A × A
into three pair-wise disjoint parts. By the property (P2) in Theorem 1, we have:

≺T1 ∩ ≺T2 = (≺c
T1

∩ ≺c
T2
)c = (�T1 ∩ �T2)

c,

≺T1 ∩ �T2 = (≺c
T1

∩ �c
T2
)c = (�T1 ∩ ≺T2)

c,

∼T1 ∩ ≺T2 = (∼c
T1

∩ ≺c
T2
)c = (∼T1 ∩ �T2)

c,

≺T1 ∩ ∼T2 = (≺c
T1

∩ ∼c
T2
)c = (�T1 ∩ ∼T2)

c,

where all superscripts c represent a converse relation.
Accordingly, we have the following theorem.

Theorem 2. Given two trilevel ranking T1 and T2, the sets of consistent, con-
tradictory, and compatible alternative pairs can be defined as:

Q+ =(�T1 ∩ �T2) ∪ (∼T1 ∩ ∼T2) ∪ (�T1 ∩ �T2)
c,

Q− =(�T1 ∩ ≺T2) ∪ (�T1 ∩ ≺T2)
c,

Q0 =(∼T1 ∩ �T2) ∪ (∼T1 ∩ �T2)
c ∪ (≺T1 ∩ ∼T2) ∪ (≺T1 ∩ ∼T2)

c. (4)

Adopting the ideas of Kemeny and Snell [13], we calculate the distance on
consistent pairs as 0, compatible pairs as 1, and contradictory pairs as 2. Then
we get the following distance measure between two trilevel rankings.

Definition 6. Given two trilevel rankings T1 and T2, the distance-based measure
is computed as:

dis(T1, T2) = 2|Q−| + |Q0|
= 4| �T1 ∩ ≺T2 | + 2| ∼T1 ∩ �T2 | + 2| ≺T1 ∩ ∼T2 |. (5)

This distance-based measure is symmetric, that is, we have dis(T1, T2) =
dis(T2, T1).

Example 3. Suppose we have the following two trilevel rankings:

T1 =〈H1 = {a1},M1 = {a2, a3}, L1 = {a4, a5}〉,
T2 =〈H2 = {a2},M2 = {a1, a4}, L2 = {a3, a5}〉.

Their preference, indifference, and dispreference relations as:

�T1 = (H1 × M1) ∪ (H1 × L1) ∪ (M1 × L1)

= {(a1, a2), (a1, a3), (a1, a4), (a1, a5), (a2, a4), (a2, a5), (a3, a4), (a3, a5)},

∼T1 = (H1 × H1) ∪ (M1 × M1) ∪ (L1 × L1)

= {(a1, a1), (a2, a2), (a2, a3), (a3, a2), (a3, a3), (a4, a4), (a4, a5), (a5, a4), (a5, a5)},

≺T1 = (M1 × H1) ∪ (L1 × H1) ∪ (L1 × M1)

= {(a2, a1), (a3, a1), (a4, a1), (a5, a1), (a4, a2), (a4, a3), (a5, a2), (a5, a3)};
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�T2 = (H2 × M2) ∪ (H2 × L2) ∪ (M2 × L2)

= {(a2, a1), (a2, a4), (a2, a3), (a2, a5), (a1, a3), (a1, a5), (a4, a3), (a4, a5)},

∼T2 = (H2 × H2) ∪ (M2 × M2) ∪ (L2 × L2)

= {(a2, a2), (a1, a1), (a1, a4), (a4, a1), (a4, a4), (a3, a3), (a3, a5), (a5, a3), (a5, a5)},

≺T2 = (M2 × H2) ∪ (L2 × H2) ∪ (L2 × M2)

= {(a1, a2), (a4, a2), (a3, a2), (a5, a2), (a3, a1), (a3, a4), (a5, a1), (a5, a4)}.

Then, the three groups of pairs are calculated by Eq. (3) as:

Q+ = (�T1 ∩ �T2) ∪ (∼T2 ∩ ∼T2) ∪ (�T1 ∩ �T2)
c

= {(a2, a4), (a2, a5), (a1, a3), (a1, a5), (a1, a1), (a2, a2), (a3, a3), (a4, a4),
(a5, a5), (a4, a2), (a5, a2), (a3, a1), (a5, a1)},

Q− = (�T1 ∩ ≺T2) ∪ (�T1 ∩ ≺T2)
c

= {(a1, a2), (a3, a4), (a2, a1), (a4, a3)},

Q0 = (∼T1 ∩ �T2) ∪ (∼T1 ∩ �T2)
c ∪ (≺T1 ∩ ∼T2) ∪ (≺T1 ∩ ∼T2)

c

= {(a1, a4), (a3, a5), (a2, a3), (a4, a5), (a4, a1), (a5, a3), (a3, a2), (a5, a4)}.

Therefore, the distance between T1 and T2 is:

dis(T1, T2) = 2|Q−| + |Q0| = 2 ∗ 4 + 8 = 16.

3.2 A Cost-Sensitive Difference Measure

Another applicable measurement is motivated by DTRS models [30,31]. For a
better understanding, we translate the terms of DTRS to fit the case of trilevel
ranking. The costs in DTRS are induced by taking a particular action or making
a decision, while the costs in trilevel rankings are produced by placements of
alternatives. For example, given two trilevel rankings T1 and T2, we consider T2

as a reorganization or rearrangement of T1. Figure 3 and Table 2 jointly illustrate
all of the nine cases in a rearrangement and the associated costs.

Fig. 3. The rearrangement of a trilevel ranking T1 to T2



Approximate Criterion Reduction in Multi-criteria Trilevel Ranking Analysis 173

The three solid arrow lines in Fig. 3 indicate that the alternatives in H1 are
placed to H2, M2, and L2, respectively. Similarly, the dashed and dotted lines
represent the corresponding placements. In Table 2, the rows denote the trilevel
ranking T1 and the columns represent the placements by T2. For example, if
an alternative a is placed in H1 by T1 and rearranged to M2 by T2, then it
corresponds to the solid line from H1 to M2 in Fig. 3 and the relevant cost is
λHM in Table 2.

Table 2. A cost matrix

T1 T2

H2 M2 L2

H1 λHH λHM λHL

M1 λMH λMM λML

L1 λLH λLM λLL

With a given cost matrix, we define the cost-sensitive difference measure as
the total cost of all the cases. The costs λHH, λMM, and λLL are assumed to 0,
as they correspond to the scenarios where no difference exists. Thus, we define
the cost-sensitive measure as follows.

Definition 7. Given two trilevel rankings T1 = 〈H1,M1, L1〉 and T2 =
〈H2,M2, L2〉, the cost-sensitive measure is defined as:

csm(T1, T2) =λHM|H1 ∩ M2| + λHL|H1 ∩ L2|
+ λMH|M1 ∩ H2| + λML|M1 ∩ L2|
+ λLH|L1 ∩ H2| + λLM|L1 ∩ M2|.

(6)

The cost-sensitive measures involves directions in the rearrangement, as
shown in Fig. 3. Thus, it is not symmetric, that is, we may not have csm(T1, T2) =
csm(T2, T1).

Example 4. We reuse the two trilevel rankings T1 and T2 given in Example 3.
Suppose the cost matrix is given as:

cost =

⎡
⎣
0 5 9
3 0 3
7 4 0

⎤
⎦ .

Then the cost-sensitive measure is computed as:

csm(T1, T2) =5|{a1} ∩ {a1, a4}| + 9|{a1} ∩ {a3, a5}|
+ 3|{a2, a3} ∩ {a2}| + 3|{a2, a3} ∩ {a3, a5}|
+ 7|{a4, a5} ∩ {a2}| + 4|{a4, a5} ∩ {a1, a4}|

=5 + 0 + 3 + 3 + 0 + 4
=15.



174 C. Shi et al.

3.3 Heuristic Algorithms

We design two heuristic algorithms including a forward addition strategy and a
backward deletion strategy. These algorithms can be operated by using either
the distance-based measure or the cost-sensitive measure, depending on the spe-
cific requirements of the decision-maker. The step-by-step procedures of the two
algorithms are described in Algorithms 1 and 2, respectively.

Algorithm 1. A deletion algorithm to compute approximate criterion reduct
Input: A multi-criteria decision-making table MCDMT = {A, C, p};

A trilevel ranking TC ;
A threshold α.

Output: An approximate reduct R.
1: let R = C;
2: while True do
3: for c ∈ R do
4: Calculate the difference between TC and TR−{c};
5: Select a criterion copt that causes the minimum difference;
6: end for
7: if Sim(TR−{copt}, TC) � α then
8: let R = R − {copt};
9: else

10: break;
11: end if
12: end while
13: return an approximate reduct R.

Algorithm 2. An addition algorithm to compute approximate criterion reduct
Input: A multi-criteria decision-making table MCDMT = {A, C, p};

A trilevel ranking TC ;
A threshold α.

Output: An approximate reduct R.
1: let R = {};
2: while Sim(TR, TC) < α do
3: for c ∈ (C − R) do
4: Calculate the difference between TC and TR∪{c};
5: Select a criterion copt that attains the minimum difference;
6: end for
7: let R = R ∪ {copt};
8: end while
9: return an approximate reduct R.

In deletion algorithm, we start R with the criterion set C and delete crite-
ria. During each pass of the loop, we look for an optimal criterion in R whose
removal will cause minimum difference. We recursively find out and remove such
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an optimal criterion copt from R until it cannot be reduced anymore, that is,
further reduction of a single criterion will break the sufficiency condition. The
addition algorithm is a reversed procedure, where R begins with an empty set.
The algorithm continually adds an optimal criterion copt, whose addition into R
attains the minimal difference from the ranking given by C. The process repeats
until the reduct satisfies decision-maker’s requirement.

4 Experimental Results

We examine the two algorithms with five practical datasets (taken from [1,2,
6]). Table 3 summarises the features of the five datasets, including the name of
dataset and the number of criteria and alternatives.

Table 3. The descriptions of datasets

Dataset ID Name Number of criteria Number of alternatives

D1 Quake 4 2178
D2 City-Ranking 6 216
D3 Winequality-Red 11 1599
D4 Winequality-White 11 4898
D5 Pollution 16 60

Table 4 shows the final results obtained from the experiments of both the
addition and deletion algorithms, utilizing both the distance-based measure and
the cost-sensitive measure. For the cost-sensitive measure, we opt for the follow-
ing three cost matrices:

cost1 =

⎡
⎣

0 200 3500
1000 0 200
3000 200 0

⎤
⎦ , cost2 =

⎡
⎣

0 150 200
250 0 100
300 2000 0

⎤
⎦ , cost3 =

⎡
⎣
0 52 401
16 0 1737
13 25 0

⎤
⎦ .

We choose 20%/30%/50% as the ratio of three levels and set a threshold
of α = 0.85 for these experiments. Table 4 records the size of each approxi-
mate criterion reduct, as well as its final SRCC. This coefficient is calculated
by comparing TR to TC . These results provide a relatively comprehensive view
of the performance and effectiveness of the proposed algorithms and measures
under various conditions. The experiments of the two algorithms produce differ-
ent reducts, indicating the distinct nature of each approach. For example, when
employing the deletion strategy with the distance measure in Dataset D5, the
final reduct contains 10 criteria. In contrast, the addition strategy with the same
distance function leads to a reduct consisting of only 3 criteria. When applying
the algorithms with cost-sensitive measure, different cost matrices produce dif-
ferent sizes of reducts, such as 11 and 10 for deletion and 3, 4, and 5 for addition.
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Table 4. The performance of proposed algorithms (〈2 : 3 : 5〉, α = 0.85)

Dataset ID Deletion Algorithm Addition Algorithm
dis csm 1 csm 2 csm 3 dis csm 1 csm 2 csm 3
Size SRCC Size SRCC Size SRCC Size SRCC Size SRCC Size SRCC Size SRCC Size SRCC

D1 3 0.8725 3 0.8725 3 0.8725 3 0.8725 3 0.8725 3 0.8725 3 0.8725 3 0.8725
D2 5 0.9247 5 0.9247 5 0.9247 5 0.9247 5 0.8578 5 0.8578 5 0.8532 5 0.8532
D3 8 0.8744 8 0.8715 8 0.8744 8 0.8744 6 0.8561 6 0.8561 9 0.8509 7 0.8801
D4 7 0.8805 7 0.8805 7 0.8805 7 0.8805 7 0.8805 7 0.8805 7 0.8805 7 0.8805
D5 10 0.8708 11 0.9238 10 0.8708 10 0.8708 3 0.8560 3 0.8560 4 0.8792 5 0.8560

To further show the performance of proposed methods, we visualize their
applications on datasets D3 and D4. For both datasets, we execute the deletion
and addition algorithms for five iterations. The intermediate results at each
iteration step are illustrated in Fig. 4 for Dataset D3 and in Fig. 5 for Dataset D4.

Fig. 4. Iterative process in Dataset D3
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Fig. 5. Iterative process in Dataset D4

Figure 4 and 5 present insightful trends in both strategies. In the deletion
strategy, we observe that as the distance or cost increases, there is a correspond-
ing decrease in SRCC. On the other hand, an inverse trend is evident in the
addition algorithm. These visualizations provide a clear view of the iterative
progression and comparative effectiveness of the different measures and strate-
gies utilized in our study.

In addition, we expand our analysis by appending three combinations of
ratios for the three levels and thresholds. These combinations are designed to
assess how different distributions of decision alternatives and threshold levels
affect the performance and robustness of our models. As detailed in the follow-
ing, Table 5 presents the results for a ratio of 2:3:5 with a threshold α of 0.75,
Table 6 displays findings for a ratio of 1:2:7 and α = 0.80, and Table 7 shows
the results when the ratio is set to 2:2:6 and the threshold is 0.75. These addi-
tional experiments demonstrate the adaptability of our proposed methods under
different trilevel rankings and thresholds.
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Table 5. The performance of proposed algorithms (〈2 : 3 : 5〉, α = 0.75)

Dataset ID Deletion Algorithm Addition Algorithm
dis csm 1 csm 2 csm 3 dis csm 1 csm 2 csm 3
Size SRCC Size SRCC Size SRCC Size SRCC Size SRCC Size SRCC Size SRCC Size SRCC

D1 3 0.8725 3 0.8725 3 0.8725 3 0.8725 3 0.8725 3 0.8725 3 0.8725 3 0.8725
D2 3 0.8096 3 0.8096 3 0.8096 3 0.8096 3 0.7991 3 0.7678 3 0.7991 3 0.7991
D3 4 0.7506 5 0.8335 4 0.7506 5 0.7537 4 0.7506 5 0.8335 6 0.7827 5 0.7800
D4 5 0.7916 5 0.7916 5 0.7916 5 0.7916 5 0.7916 5 0.7916 5 0.7916 5 0.7916
D5 5 0.8476 3 0.7500 5 0.8476 9 0.8321 2 0.8024 2 0.7645 3 0.8411 2 0.8024

Table 6. The performance of proposed algorithms (〈1 : 2 : 7〉, α = 0.80)

Dataset ID Deletion Algorithm Addition Algorithm
dis csm 1 csm 2 csm 3 dis csm 1 csm 2 csm 3
Size SRCC Size SRCC Size SRCC Size SRCC Size SRCC Size SRCC Size SRCC Size SRCC

D1 3 0.8250 4 1.0000 3 0.8250 3 0.8250 3 0.8250 4 1.0000 4 1.0000 3 0.8250
D2 4 0.8021 4 0.8021 4 0.8021 4 0.8021 4 0.8192 4 0.8192 4 0.8114 4 0.8114
D3 8 0.8476 5 0.8086 7 0.8091 7 0.8091 5 0.8086 5 0.8086 7 0.8247 5 0.8086
D4 6 0.8337 6 0.8337 6 0.8370 6 0.8370 6 0.8337 6 0.8054 6 0.8337 6 0.8370
D5 8 0.9236 5 0.8056 8 0.9236 8 0.9236 4 0.8750 5 0.8056 5 0.8333 3 0.8056

Table 7. The performance of proposed algorithms (〈2 : 2 : 6〉, α = 0.75)

Dataset ID Deletion Algorithm Addition Algorithm
dis csm 1 csm 2 csm 3 dis csm 1 csm 2 csm 3
Size SRCC Size SRCC Size SRCC Size SRCC Size SRCC Size SRCC Size SRCC Size SRCC

D1 3 0.8603 3 0.8603 3 0.8603 3 0.8603 3 0.8603 3 0.8603 3 0.7576 3 0.8603
D2 4 0.8198 4 0.8198 4 0.8198 4 0.7933 3 0.7907 3 0.7907 4 0.8079 3 0.7907
D3 4 0.7816 4 0.7816 4 0.7816 5 0.7507 4 0.7816 4 0.7679 6 0.7972 6 0.7972
D4 4 0.7512 4 0.7512 4 0.7512 4 0.7512 4 0.7512 4 0.7512 5 0.7881 4 0.7512
D5 3 0.7500 3 0.7604 8 0.7917 9 0.8854 4 0.7500 3 0.7604 3 0.8021 3 0.7917

5 Conclusion

This paper studies the approximate criterion reduction in MCDM problems with
trilevel rankings. Trilevel rankings ignore the preferences among alternatives at
the same level and emphasize the orderings across levels. Taking this feature into
consideration, we propose a formal definition of approximate criterion reducts
in trilevel rankings. To concretize approximate criterion reducts, we present a
distance-based measure and a cost-sensitive measure to evaluate the difference
between two trilevel rankings. Subsequently, two heuristic algorithms of deletion
and addition are developed by adopting either measure as the heuristic function.
Finally, we conduct a series of experiments, including testing different combina-
tions of strategies, heuristic functions, and cost matrices. The outcomes demon-
strate that these measures effectively serve for finding the optimal approximate
criterion reducts in trilevel rankings.
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Future research will focus on exploring additional difference measures for
trilevel rankings. There may be a potential in integrating our proposed measures
with machine learning techniques. Such an integration may be developed as new
approaches to deriving trilevel rankings.
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Abstract. Conflict is widespread in society, and trisecting an agent set is a cru-
cial research direction in three-way conflict analysis. In practice, the varying risk
preferences among decision-makers lead to diverse trisections of an agent set
in similar circumstances. In this paper, we consider decision-makers’ risk pref-
erences and propose novel models of three-way conflict. Initially, we divide a
set of issues into two disjoint subsets and utilize information entropy to com-
pute issues’ weights. Then, we design alliance measures regarding an individual
issue through the transition probability function. Based on the issues’ weights and
alliance measures, we propose alliance probabilities between two agents. Addi-
tionally, we present risk-preferred, risk-averse, and risk-neutral decisions with
the relative utility function. Finally, we design an algorithm to derive rules for
three-way conflict analysis and demonstrate how to utilize the proposed model
for decision-making through an example.

Keywords: Decision-theoretic rough sets · Three-way conflict analysis ·
Three-way decisions · Ranking

1 Introduction

Three-way decisions was introduced by Yao [1] in 2010. It divides a set into three
mutually exclusive regions using certain strategies, and provides effective tools for
addressing uncertainty problems. This theory has garnered increasing attention from
scholars and has been widely investigated in both theoretical and applied aspects such
as three-way clustering [2], sequential three-way decisions [3,4], three-way decisions
with decision-theoretic rough sets (DTRSs) [5–10], three-way decisions with con-
cept analysis [11,12]. Among them, three-way decisions with DTRSs is an important
research direction, which calculates two thresholds by minimizing decision costs based
on Bayesian theory, and partitions objects into positive regions, negative regions, and
boundary regions. Recently, Xu et al. [13] provided the concepts of ranking and ref-
erence tuples for two-valued information table, and divided a set of objects into three
disjoint parts based on matching functions regarding multiple attributes. Xu et al. [14]
introduced a generalized three-way decisions model based on ranking and reference
tuples.

Conflict is prevalent in society. How to study the nature of conflict and how to
resolve conflicts are crucial topics in social life. Initially, Pawlak [15] established
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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alliance, neutrality, and conflict relations between two agents with auxiliary functions,
and investigated the conflict problems with rough set theory and graph theory. Subse-
quently, conflict analysis has attracted increasing attention from scholars. Some stud-
ies [16–24] have integrated conflict analysis with three-way decisions. For instance,
Lang et al. [17] used decision-theoretic rough sets to calculate two thresholds for con-
flict analysis and discussed how to construct probabilistic conflict sets, neutral sets, and
alliance sets in dynamic three-valued situation tables. Liu et al. [22] introduced alliance
and conflict measures by considering weights of issues, and developed models of three-
way conflict analysis with ideas of rankings and reference tuples.

In three-way conflict analysis, the loss function and conditional probability are two
crucial topics to study conflict problems. The loss function is typically used to mea-
sure risk, and quantifies the losses incurred by agents assigned to alliance, neutral, or
conflict sets. However, in some situations, decision-makers prioritize the utility derived
from decision actions. Hence, some studies [25,26] used utility functions instead of
loss functions. Recently, Zhan et al. [27] introduced the concept of relative utility func-
tion and provided a formula of calculating the relative utility value. The relative utility
function can decrease errors during the decision-making process. Inspired by this point,
we propose a new relative utility function that simultaneously takes into account the
risk preferences of experts. In practical situations, decision-makers with different risk
preferences may make different decisions in the same context, and a three-way conflict
model must consider various risk preferences. There are several methods [28–30,32]
for calculating the conditional probabilities. For example, Liang et al. [29] adopted the
relative closenesses of the TOPSIS (Technique for Order Preference by Similarity to
Ideal Solution) method to replace the conditional probabilities. Liang et al. [30] utilized
measures of dual hesitant fuzzy entropy and cross-entropy to determine conditional
probability. Based on the concept of ranking and reference tuples, we propose a novel
approach to computing conditional probability. By utilizing the concepts of ranking and
reference tuples, we aim to partition issues into two disjoint subsets based on their pri-
orities. Subsequently, we calculate the conditional probability by the product of alliance
measures regarding two issue subsets. This approach enables us to examine the relation-
ship between two agents from two different perspectives. The contributions are briefly
summarized as follows.

(1) We divide a set of issues into two disjoint subsets and introduce a novel method
to compute issues’ weights by employing information entropy. Then, we introduce
alliance measures regarding an individual issue through a transition probability
function. Based on the issues’ weights and alliance measures, we propose alliance
probabilities for three-way conflict analysis.

(2) We introduce a novel relative utility function, and determine two thresholds by
maximizing the relative utility under decision-making behavior. Based on decision-
makers with different risk preferences, we propose risk-preferred, risk-averse, and
risk-neutral decisions for three-way conflict analysis.

(3) We design an algorithm to derive rules for three-way conflict analysis and demon-
strate how to utilize the proposed model for decision-making through an example.

The rest of this paper is organized as follows: in Sect. 2, we review the fundamen-
tal concepts of three-way decisions with ranking and reference tuples, as well as the
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concept of three-way decisions with decision-theoretic rough sets. Section 3 develops
new three-way conflict models based on decision-theoretic rough sets. Section 4 demon-
strates how to apply the proposed model to derive decision rules. Finally, Sect. 5 sum-
marizes the work presented in this paper.

2 Preliminaries

In this section, we recall three-way decisions with ranking and references, and decision-
theoretic rough sets.

2.1 Three-Way Decisions with Ranking and References

Definition 1. (Pawlak [15], 1984) Let S = (U,C,V, f ) be an information table, where
U = {x1, x2, . . . , xn} is a non-empty finite set of objects, C = {c1, c2, . . . , cm} is a non-
empty finite set of attributes, V =

⋃{Vc | c ∈ C}. Here, Vc represents the set of values of
attribute c on all objects, and f is a function from U ×C to V.

We term information tables containing two attribute values as two-valued informa-
tion tables, and most three-way decision models with ranking and reference tuples are
typically designed for two-valued information tables.

Definition 2. (Xu et al. [14], 2022) Let C represents a non-empty finite set of attributes.
A ranking order ≺r over C divides C into two disjoint subsets C′ and C′′, where C =
{C′,C′′} and C′ ≺r C′′. Here, C′ and C′′ denote the attribute sets in rank 1 and rank 2,
respectively.

We can partition a set of attributes into two disjoint subsets based on their rank-
ing order, the ranking order is determined based on the importance of attributes or the
preferences of decision-makers.

Definition 3. (Xu et al. [14], 2022) Let C = {c1, c2, . . . , cm} and ≺r be a ranking order
of C. An m-tuple xr = ( f (xr, c1), f (xr, c2), . . . , f (xr, cm)) is a reference tuple and it
satisfies: (1) f (xr, ck) ∈ {0, 1}; (2) f (xr, ci) = f (xr, c j) when ci ∈ C′ ∧ c j ∈ C′ or
ci ∈ C′′ ∧ c j ∈ C′′, where k, i, j ∈ {1, 2, . . . ,m}.
Definition 4. (Xu et al. [14], 2022) Let S = (U,C,V, f ) be an information table, a
ranking order ≺r divides the set C into two disjoint subsets C′ and C′′, a reference
tuple xr = ( f (xr, c1), f (xr, c2), . . . , f (xr, cm)). Then the positive, negative and boundary
regions with respect to ≺r and xr are defined by:

POS (α,β)(U) = {x ∈ U | MC′ (x, xr) ≥ α ∧ MC′′ (x, xr) > β}, (1)

NEG(α,β)(U) = {x ∈ U | MC′ (x, xr) < α ∧ MC′′ (x, xr) ≤ β}, (2)

BND(α,β)(U) = {x ∈ U | MC′ (x, xr) ≥ α ∧ MC′′ (x, xr) ≤ β}
∨ {x ∈ U | MC′ (x, xr) < α ∧ MC′′ (x, xr) > β}, (3)
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where

MC′ (x, xr) =

∑
ci∈C′ mci (x, xr)

|C′| , (4)

MC′′ (x, xr) =

∑
ci∈C′′ mci (x, xr)

|C′′| , (5)

mci (x, xr) =

⎧
⎪⎪⎨
⎪⎪⎩

1, if f (x, ci) = f (xr, ci),

0, if f (x, ci) � f (xr, ci).
(6)

The value of MC′ (x, xr) denotes a matching degree between x ∈ U and xr in rank 1,
while the value of MC′′ (x, xr) denotes a matching degree between x and xr in rank 2.

2.2 Three-Way Decisions with Decision-Theoretic Rough Sets

Definition 5. (Yao [31], 2008) Let S = (U, A) be an information system, where 0 ≤
β ≤ α ≤ 1. The probabilistic positive, boundary, and negative regions POS (α,β)(X),
BND(α,β)(X), and NEG(α,β)(X) of X ⊆ U are defined by:

POS (α,β)(X) = {x ∈ U | P(X | [x]) ≥ α},
BND(α,β)(X) = {x ∈ U | β < P(X | [x]) < α},
NEG(α,β)(X) = {x ∈ U | P(X | [x]) ≤ β}.

(7)

Hence, decision-theoretic rough set model was used to determine the thresholds α
and β. This model involves two states Ω = {X,¬X} and three actions A = {aP, aB, aN},
where X and ¬X denote an object’s presence and absence from set X, respectively.
The actions aP, aB, and aN classify an object x into the positive, boundary, and neg-
ative regions POS(α,β)(X), BND(α,β)(X), and NEG(α,β)(X) respectively. λPP, λBP, and
λNP represent the losses incurred when taking actions aP, aB, and aN , respectively, for
an object belonging to X, while λPN , λBN , and λNN represent the losses when taking
actions aP, aB, and aN , respectively, for an object not belonging to X.

The expected losses R (aP | [x]), R (aB | [x]), and R (aN | [x]) associated with each
individual action for an object x are as follows:

R (aP | [x]) = λPPP(X | [x]) + λPNP(¬X | [x]),

R (aB | [x]) = λBPP(X | [x]) + λBNP(¬X | [x]),

R (aN | [x]) = λNPP(X | [x]) + λNNP(¬X | [x]).

(8)

The Bayesian decision procedure suggests the following minimum-cost decision
rules:

Rule 1 : If R (aP | [x]) ≤ R (aB | [x]) and R (aP | [x]) ≤ R (aN | [x]), then x ∈
POS (α,β)(X),

Rule 2 : If R (aB | [x]) ≤ R (aP | [x]) and R (aB | [x]) ≤ R (aN | [x]), then x ∈
BND(α,β)(X),

Rule 3 : If R (aN | [x]) ≤ R (aP | [x]) and R (aN | [x]) ≤ R (aB | [x]), then x ∈
NEG(α,β)(X).
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Assuming λPP ≤ λBP ≤ λNP and λNN ≤ λBN ≤ λPN , and considering the fact that
P(X | [x])+P(¬X | [x]) = 1, the Rule 1, Rule 2, and Rule 3 can be simplified as follows:

Rule 1 : If P(X | [x]) ≥ α and P(X | [x]) ≥ γ, then x ∈ POS(α,β)(X),
Rule 2 : If P(X | [x]) < α and P(X | [x]) > β, then x ∈ BND(α,β)(X),
Rule 3 : If P(X | [x]) ≤ β and P(X | [x]) ≤ γ, then x ∈ NEG(α,β)(X), where

α =
λPN − λBN

λPN − λBN + λBP − λPP ,

β =
λBN − λNN

λBN − λNN + λNP − λBP ,

γ =
λPN − λNN

λPN − λNN + λNP − λPP .

(9)

3 New Models of Three-Way Conflict Analysis Based
on Decision-Theoretic Rough Sets

In this section, we provide three-way conflict analysis models based on decision-
theoretic rough sets.

Definition 6. (Pawlak [33], 1988) Let S = (A, I, r) be a three-valued situation table,
where A = {a1, a2, . . . , an} is a non-empty finite set of agents, I = {i1, i2, . . . , im} is a
non-empty finite set of issues, the function r : A × I −→ {−1, 0,+1}, where r(a, i) = +1
means that the agent a is positive on the issue i, r(a, i) = −1 means that the agent a is
negative on the issue i, r(a, i) = 0 means that the agent a is neutral on the issue i.

Definition 7. Let S = (A, I, r) be a three-valued situation table, a ranking order ≺r over
I divides I into two disjoint subsets I′ and I′′ such that I = I′ ∪ I′′, and ω#

i represents
the weight of issue i such that

∑
i∈I# ω#

i = 1 and 0 ≤ ω#
i ≤ 1 for I# ∈ {I′, I′′}. The weight

ω#
i is defined as follows:

ω#
i =

H(i)
∑

i∈I#H(i)
, (10)

where
H(i) = −

∑

h∈{+1,0,−1}
[P(r(a, i) = h) · log2 P(r(a, i) = h)]. (11)

The value P(r(a, i) = +1) represents the probability of an agent a that takes the
positive attitude +1 on issue i, while the value P(r(a, i) = 0) represents the probability
of an agent a that takes the neutral attitude 0 on issue i, and the value P(r(a, i) = −1)
represents the probability of an agent a that takes the negative attitude −1 on issue i.
Here, H(i) denotes the entropy of issue i, which measures the uncertainty of agents’
attitudes on issue i.

Definition 8. Let S = (A, I, r) be a three-valued situation table, where a ranking order
≺r over I divides I into two disjoint subsets I′ and I′′ such that I = I′ ∪ I′′. For any
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ai, a j ∈ A, the alliance measure M
′
(ai, a j) between agents ai and a j in rank 1 and the

alliance measure M
′′
(ai, a j) in rank 2 are defined as follows:

M
′
(ai, a j) =

∑

i∈I′
[ω

′
i · m(ai, a j)], (12)

M
′′
(ai, a j) =

∑

i∈I′′
[ω

′′
i · m(ai, a j)], (13)

where

m(ai, a j) = 1 −
∣∣∣r(ai, i) − r(a j, i)

∣∣∣

2
. (14)

The values of M
′
(ai, a j) and M

′′
(ai, a j) fall within the range of [0, 1]. We define

M(ai, a j) = M
′
(ai, a j) · M′′

(ai, a j), which represents the likelihood of agents ai and a j.
That is, a larger value of M(ai, a j) implies a higher alliance probability between ai and
a j, while a smaller value suggests a lower alliance probability between them.

Definition 9. Let S = (A, I, r) be a three-valued situation table. For any ai, a j ∈A, the
alliance probability P(ai, a j) between ai and a j is defined as follows:

P(ai, a j) =
ln (R · M(ai, a j) + 1)

ln (R + 1)
, (15)

where the values of M(ai, a j) fall within the range of [0, 1], the values of P(ai, a j) ranges
from 0 to 1. The parameter R is adjustable, and appropriate probability levels can be
explored by varying R ∈ [1,∞) in different scenarios, thereby avoiding situations where
M(ai, a j) values are too small and ensuring meaningful probability values.

Definition 10. Suppose S = (A, I, r) is a three-valued situation table, the relative utility
functions ũAA, ũNA, ũCA, ũCC , ũNC ,and ũAC are defined by:

ũAA = uAA − uCA, (16)

ũNA = uNA − uCA, (17)

ũCA = uCA − uCA = 0, (18)

ũAC = uAC − uAC = 0, (19)

ũNC = uNC − uAC , (20)

ũCC = uCC − uAC . (21)
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Assume ũNA = kũAA, ũNC = kũCC , and k ∈ [0, 1], then α̃, β̃, and γ̃ can be represented
as:

α̃ =
kũCC

kũCC + ũAA − kũAA
=

kũCC
kũCC + (1 − k)ũAA

, (22)

β̃ =
ũCC − kũCC

ũCC − kũCC + kũAA
=

(1 − k)ũCC
(1 − k)ũCC + kũAA

, (23)

γ̃ =
ũCC

ũCC + ũAA
, (24)

where k ∈ [0, 1] serves as a utility pursuit coefficient, and indicates decision-makers’
preference for non-deterministic choices. Based on the study [27], it can be inferred
that α̃, β̃, and γ̃ satisfy α̃ > γ̃ > β̃ when k ∈ (0.5, 1]. Furthermore, the thresholds
derived from the relative utility functions in Table 2 are equivalent to those obtained
from the utility functions in Table 1. In Table 1, bC , bN , and bA denote three actions in
classifying agent a j into CO(ai), NE(ai), and AL(ai), respectively; uCC , uNC , and uAC
represent the utility of taking actions bC , bN , and bA, respectively, when the agent a j

belongs to CO(ai)(¬T(C)); uCA, uNA, and uAA represent the utility of taking actions bC ,
bN , and bA, respectively, when the agent a j belongs to AL(ai)(T(A)).

Table 1. Utility Functions

T(A) ¬T(C)

bA uAA uAC
bN uNA uNC
bC uCA uCC

Table 2. Relative Utility Functions

T(A) ¬T(C)

bA ũAA 0

bN ũNA ũNC
bC 0 ũCC

Definition 11. Let S = (A, I, r) be a three-valued situation table. The formulas for the
relative utility function ũAA associated with adopting behavior bA in the state T (A), and
the relative utility function ũCC linked to the adoption of behavior bC in the state ¬T (C),
can be formulated as follows:

ũAA =
1 − e−θδAA
θ

, (25)

ũCC =
1 − e−θδCC
θ

, (26)

where θ ∈ (0, 1) stands for a risk aversion coefficient, the variable δAA and δCC represent
the evaluation values of adopting behaviors bA and bC in the state T (A) and ¬T (C),
respectively.
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The values of α̃, β̃, and γ̃ are determined solely by k, ũAA, and ũCC . Due to the inverse
relationship between the risk aversion coefficient θ and the utility pursuit coefficient k,
we set k = 1 − θ2 , where k ∈ (0.5, 1). By substituting Formulas (25)-(26), along with
k = 1 − θ2 , into Formulas (22)-(23), we obtain:

α̃ =
1

1 + θ
2−θ · 1−e−θδAA

1−e−θδCC
, (27)

β̃ =
1

1 + 2−θ
θ
· 1−e−θδAA

1−e−θδCC
. (28)

From Formulas (27)-(28), it’s apparent that the values of α̃ and β̃ are linked to θ,
along with the given constants δAA and δCC . Thus, they can be regarded as dependent
solely on θ. Experts exhibit different types of risk preferences, which can be categorized
into risk preference, risk aversion, and risk neutrality. Different types of experts with
varying risk aversion coefficients result in different thresholds, and lead to the following
three decision types.

(1) For risk-preferred decision, the risk aversion coefficient θp is relatively small, risk-
averse decision rules are listed as follows:

If P(ai, a j) ≥ α̃p, then a j ∈ ALαβ (ai),
If β̃p < P(ai, a j) < α̃p, then a j ∈ NEαβ (ai),

If P(ai, a j) ≤ β̃p, then a j ∈ COαβ (ai).
(2) For risk-averse decision, the risk aversion coefficient θa is relatively large, risk-

averse decision rules are listed as follows:

If P(ai, a j) ≥ α̃a, then a j ∈ ALαβ (ai),
If β̃a < P(ai, a j) < α̃a, then a j ∈ NEαβ (ai),

If P(ai, a j) ≤ β̃a, then a j ∈ COαβ (ai).
(3) For risk-neutral decision, the risk aversion coefficient θn is relatively medium, risk-

averse decision rules are listed as follows:

If P(ai, a j) ≥ α̃n, then a j ∈ ALαβ (ai),
If β̃n < P(ai, a j) < α̃n, then a j ∈ NEαβ (ai),

If P(ai, a j) ≤ β̃n, then a j ∈ COαβ (ai).
The set ALαβ (ai) contains the agents allied with ai, the set NEαβ (ai) contains agents

being neutral with ai, and the set COαβ (ai) includes agents that are in conflict with ai.
Then, we explore the size relationship between α̃∗ and β̃∗(∗ ∈ {a, p, n}) in different

risk preference decisions. The relationship of α̃∗ , β̃∗, and θ∗ is depicted in Fig 1, where
δAA = 1, δCC = 2, x-axis, and y-axis are α̃∗ (β̃∗), and θ∗ respectively. In Fig 1, it shows
that the threshold α∗ decreases and the threshold β̃∗ increases with the increase of θ∗.
Because θp < θn < θa, it follows that α̃p > α̃n > α̃a, and β̃p < β̃n < β̃a.
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Fig. 1. Curved line of α̃∗ and β̃∗ with regard to θ∗

Based on Definition 9 for P(ai, a j) and Definition 11 for relative utility functions,
we calculate the expected utility values U

(
b• | a j

)
, • ∈ {A,N,C} as follows:

U
(
bA | a j

)
= ũAAP(ai, a j) + ũAC(1 − P(ai, a j)), (29)

U
(
bN | a j

)
= ũNAP(ai, a j) + ũNC(1 − P(ai, a j)), (30)

U
(
bC | a j

)
= ũCAP(ai, a j) + ũCC(1 − P(ai, a j)). (31)

In accordance with the Bayesian procedure, the action with the maximum expected
utility value should be chosen. Therefore, for each agent aj, we can derive the following
three decision rules:

(1) Rule 1 : i f U
(
bA|a j

)
> U
(
bN |a j

)
and U

(
bA|a j

)
> U
(
bC |a j

)
, then a j ∈ ALαβ (ai),

(2) Rule 2 : i f U
(
bN |a j

)
> U
(
bA|a j

)
and U

(
bN |a j

)
> U
(
bC |a j

)
, then a j ∈ NEαβ (ai),

(3) Rule 3 : i f U
(
bC |a j

)
> U
(
bA|a j

)
and U

(
bC |a j

)
> U
(
bN |a j

)
, then a j ∈ COαβ (ai).

Assuming ũAA > ũNA > ũCA and ũCC > ũNC > ũAC , and considering the fact that
P(ai, a j) + (1 − P(ai, a j)) = 1, then the Rule 1, Rule 2, and Rule 3 can be equivalently
expressed as the following rules:

(1) Rule 1 : i f P(ai, a j) ≥ α̃ and P(ai, a j) ≥ γ̃, then a j ∈ ALαβ (ai),
(2) Rule 2 : i f P(ai, a j) ≤ α̃ and P(ai, a j) ≥ β̃, then a j ∈ NEαβ (ai),

(3) Rule 3 : i f P(ai, a j) ≤ γ̃ and P(ai, a j) ≤ β̃, then a j ∈ COαβ (ai).
When k ∈ (0.5, 1], ũAA, ũCC > 0, α̃, β̃, and γ̃ satisfy α̃ > γ̃ > β̃, then Rule 1, Rule 2,

and Rule 3 can be simplified as follows:

(1) Rule 1
′
: i f P(ai, a j) ≥ α̃, then a j ∈ ALαβ (ai),

(2) Rule 2
′
: i f β̃ < P(ai, a j) < α̃, then a j ∈ NEαβ (ai),

(3) Rule 3
′
: i f P(ai, a j) ≤ β̃, then a j ∈ COαβ (ai).
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Next, we provide Algorithm 1 for obtaining decision rules. The time complexity of
Step 4 is O(m2n), where |A| = m and |I| = n, and the time complexity of Step 7 is O(n2).
Therefore, the time complexity of Algorithm 1 is O(m2n + n2).

Algorithm 1. The algorithm of constructing decision rules for three-valued situation
tables.
Input: S = (A, I, r), R, δAA, δCC , θ;
Output: ALαβ (ai), NEαβ (ai), CO

α
β (ai);

1: Input a three-valued situation table S = (A, I, r);
2: Divide I into two disjoint subsets I′ and I′′;
3: Calculate weights ωi for i ∈ I according to Definition 7;
4: Compute alliance measure M

′
(ai, aj) of agents ai and aj in rank 1 and the alliance measure

M
′′
(ai, aj) in rank 2 according to Definition 8;

5: Compute the alliance probability P(ai, aj) according to Definitions 8 and 9;
6: Calculate α̃ and β̃ using Formulas (27)-(28);
7: Construct ALαβ (ai), NEαβ (ai), and COαβ (ai);
8: Output ALαβ (ai), NEαβ (ai), and COαβ (ai);

4 An Illustrative Example

We employ an example to illustrate that how to use the model of three-way
conflict analysis based on decision-theoretic rough sets. The example pertains to
the development plan for Gansu Province [34]. In Gansu Province, there are
fourteen main cities, namely, Lanzhou−a1, Jinchang−a2, Baiyin−a3, Tianshui−a4,
Jiayuguan−a5, Wuwei-a6, Zhangye−a7, Pingliang−a8, Jiuquan−a9, Qingyang−a10,
Dingxi−a11, Longnan−a12, Linxia−a13, and Gannan−a14. When the government of
Gansu Province makes a development plan for the next year, eleven issues, namely,
Construction of Roads−i1, Factories−i2, Entertainment−i3, Educational Institutions−i4,
Total Population of Residence−i5, Ecology Environment−i6, Number of Senior
Intellectuals−i7, Traffic Capacity−i8, Mineral Resources−i9, Sustainable Development
Capacity−i10, and Water Resource Carrying Capacity−i11, are involved among the four-
teen cities. Due to variations in economic situations, environmental conditions, and
development needs among the fourteen cities, they exhibit varying attitudes toward var-
ious development issues. The attitudes of the fourteen cities on the eleven issues are
shown in Table 3, where +1 means that the city supports this issue, 0 means that the
city is neutral on this issue, and -1 means that the city is against this issue.

First, by Definition 7, we obtain the weight for each issue i of Table 3 as follows:

ωi1 = 0.212, ωi2 = 0.217, ωi3 = 0.133, ωi4 = 0.221, ωi5 = 0.217,

ωi6 = 0.149, ωi7 = 0.160, ωi8 = 0.160, ωi9 = 0.184, ωi10 = 0.189,

ωi11 = 0.158.

By Definitions 8 and 9, we obtain the alliance probability between agents as shown
in Table 4. According to Formulas (27)–(28), we obtain thresholds for three types of
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Table 3. The attitudes of fourteen cities on eleven issues

A i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11

a1 +1 −1 0 −1 +1 −1 0 −1 +1 −1 +1

a2 0 +1 −1 0 0 +1 −1 0 0 +1 −1

a3 −1 0 −1 −1 −1 +1 +1 −1 −1 0 0

a4 0 0 −1 +1 +1 −1 −1 +1 0 −1 −1

a5 −1 +1 −1 0 −1 +1 0 0 −1 +1 +1

a6 0 +1 0 −1 −1 −1 −1 −1 0 +1 −1

a7 +1 +1 0 +1 0 +1 0 +1 +1 +1 0

a8 −1 0 −1 +1 −1 0 +1 +1 −1 0 +1

a9 +1 +1 0 −1 +1 +1 −1 −1 +1 +1 −1

a10 −1 −1 −1 0 +1 −1 +1 0 −1 −1 +1

a11 −1 0 −1 −1 −1 −1 −1 −1 −1 0 −1

a12 0 +1 0 −1 +1 +1 +1 −1 0 +1 0

a13 −1 0 −1 +1 0 0 0 +1 −1 0 +1

a14 −1 −1 −1 0 −1 −1 −1 0 −1 −1 −1

Table 4. Alliance probabilities between two agents

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14

a1 1 0.26 0.38 0.50 0.20 0.46 0.42 0.21 0.59 0.65 0.47 0.53 0.34 0.43

a2 0.26 1 0.54 0.65 0.75 0.77 0.72 0.43 0.74 0.35 0.64 0.72 0.54 0.58

a3 0.38 0.54 1 0.31 0.75 0.56 0.34 0.76 0.42 0.60 0.75 0.66 0.66 0.60

a4 0.50 0.65 0.31 1 0.30 0.50 0.50 0.54 0.44 0.60 0.60 0.37 0.65 0.63

a5 0.20 0.75 0.75 0.30 1 0.57 0.59 0.75 0.43 0.59 0.52 0.59 0.74 0.59

a6 0.46 0.77 0.56 0.50 0.57 1 0.50 0.32 0.74 0.25 0.83 0.72 0.33 0.58

a7 0.42 0.72 0.34 0.50 0.59 0.50 1 0.50 0.70 0.20 0.26 0.63 0.61 0.20

a8 0.21 0.43 0.76 0.54 0.75 0.32 0.50 1 0.10 0.67 0.53 0.34 0.92 0.60

a9 0.59 0.74 0.42 0.44 0.43 0.74 0.70 0.10 1 0.10 0.52 0.80 0.20 0.20

a10 0.65 0.35 0.60 0.60 0.59 0.25 0.20 0.67 0.10 1 0.48 0.44 0.70 0.76

a11 0.47 0.64 0.75 0.60 0.52 0.83 0.26 0.53 0.52 0.48 1 0.51 0.55 0.78

a12 0.53 0.72 0.66 0.37 0.59 0.72 0.63 0.34 0.80 0.44 0.51 1 0.38 0.20

a13 0.34 0.54 0.66 0.65 0.74 0.33 0.61 0.92 0.20 0.70 0.55 0.38 1 0.60

a14 0.43 0.58 0.60 0.63 0.59 0.58 0.20 0.60 0.20 0.76 0.78 0.20 0.60 1

decisions. We assume risk aversion coefficients of θa = 0.9, θn = 0.6, and θp = 0.2.
According to Formulas (25)–(26), we obtain α̃a = 0.54, β̃a = 0.44, α̃n = 0.69, β̃n =
0.29, α̃p = 0.89, and β̃p = 0.09 with δAA = 6 and δCC = 5. Based on the decision
rules for risk-averse, risk-neutral, and risk-preferred decisions, we derive the alliance,
neutral, and conflict sets for each agent, as depicted in Tables 5, 6, and 7, respectively.
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Table 5. Alliance, Neutral, and Conflict Sets for Risk-Averse Decision Maker

A ALαβ (ai) NEαβ (ai) COαβ (ai)

a1 {a1, a9, a10} {a4, a6, a11, a12} {a2, a3, a5, a7, a8, a13, a14}
a2 {a2, a4, a5, a6, a7, a9, a11} {a3, a12, a13, a14} {a1, a8, a10}
a3 {a3, a5, a6, a8, a10, a11, a12, a13, a14} {a2} {a1, a4, a7, a9}
a4 {a2, a4, a10, a11, a13, a14} {a1, a6, a7, a8, a9} {a3, a5, a12}
a5 {a2, a3, a5, a6, a7, a8, a10, a12, a13, a14} {a11} {a1, a4, a9}
a6 {a2, a3, a5, a6, a9, a11, a12, a14} {a1, a4, a7} {a8, a10, a13}
a7 {a2, a5, a7, a9, a12, a13} {a4, a6, a8} {a1, a3, a10, a11, a14}
a8 {a3, a5, a8, a10, a13} {a4, a7, a11, a14} {a1, a2, a6, a9, a12}
a9 {a1, a2, a6, a7, a9, a12} {a4, a11} {a3, a5, a8, a10, a13, a14}
a10 {a1, a3, a4, a5, a8, a10, a13, a14} {a11, a12} {a2, a6, a7, a9}
a11 {a2, a3, a4, a6, a11, a13, a14} {a1, a5, a8, a9, a10, a12} {a7}
a12 {a2, a3, a5, a6, a7, a9, a12} {a1, a10, a11} {a4, a8, a13, a14}
a13 {a3, a4, a5, a7, a8, a10, a11, a13, a14} {a2} {a1, a6, a9, a12}
a14 {a2, a3, a4, a5, a6, a8, a10, a11, a13, a14} {φ} {a1, a7, a9, a12}

Table 6. Alliance, Neutral, and Conflict Sets for Risk-Neutral Decision Maker

A ALαβ (ai) NEαβ (ai) COαβ (ai)

a1 {a1} {a2, a5, a8} {a3, a4, a6, a7, a9, a10, a11, a12, a13, a14}
a2 {a2, a5, a8, a9, a12} {a1} {a3, a4, a6, a7, a10, a11, a13, a14}
a3 {a3, a5, a8, a11} {φ } {a1, a2, a4, a6, a7, a9, a10, a12, a13, a14}
a4 {a4} {φ } {a1, a2, a3, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14}
a5 {a2, a3, a5, a8, a13} {a1} {a4, a6, a7, a9, a10, a11, a12, a14}
a6 {a2, a6, a9, a11, a12} {a10} {a1, a3, a4, a5, a7, a8, a13, a14}
a7 {a2, a7, a9} {a10, a11, a14} {a1, a3, a4, a5, a6, a8, a12, a13}
a8 {a3, a5, a8, a13} {a1, a9} {a2, a4, a6, a7, a10, a11, a12, a14}
a9 {a2, a6, a7, a9, a12} {a8, a10, a13, a14} {a1, a3, a4, a5, a8, a11}
a10 {a10, a13, a14} {a6, a7, a9} {a1, a2, a3, a4, a5, a8, a11, a12}
a11 {a3, a6, a11, a14} {a7} {a1, a2, a4, a5, a8, a9, a10, a12, a13}
a12 {a2, a6, a9, a12} {a14} {a1, a3, a4, a5, a7, a8, a10, a11, a13}
a13 {a5, a8, a10, a13} {a9} {a1, a2, a3, a4, a6, a7, a11, a12, a14}
a14 {a10, a11, a14} {a7, a9, a12} {a1, a2, a3, a4, a5, a6, a8, a13}

By analyzing the alliance set, neutral set, and conflict set of each city in Gansu
Province, we can gain a better understanding of the interests and trade-offs involved in
formulating urban development plans. Simultaneously, the three types of decision rules
based on different risk preferences provide a comprehensive description of decision-
making diversity, rather than merely a singular types of decision rules. This compre-
hensive analysis helps deepen our understanding of the potential impacts that the devel-
opment plan for Gansu Province may have on each city, and provides valuable insights
for policy makers and stakeholders.
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Table 7. Alliance, Neutral, and Conflict Sets for Risk-Preferred Decision Maker

A ALαβ (ai) NEαβ (ai) COαβ (ai)

a1 {a1} {a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14} {φ }
a2 {a2} {a1, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14} {φ }
a3 {a3} {a1, a2, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14} {φ }
a4 {a4} {a1, a2, a3, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14} {φ }
a5 {a5} {a1, a2, a3, a4, a6, a7, a8, a9, a10, a11, a12, a13, a14} {φ }
a6 {a6} {a1, a2, a3, a4, a5, a7, a8, a9, a10, a11, a12, a13, a14} {φ }
a7 {a7} {a1, a2, a3, a4, a5, a6, a8, a9, a10, a11, a12, a13, a14} {φ }
a8 {a8, a13} {a1, a2, a3, a4, a5, a6, a7, a9, a10, a11, a12, a14} {φ }
a9 {a9} {a1, a2, a3, a4, a5, a6, a7, a8, a10, a11, a12, a13, a14} {φ }
a10 {a10} {a1, a2, a3, a4, a5, a6, a7, a8, a9, a11, a12, a13, a14} {φ }
a11 {a11} {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a12, a13, a14} {φ }
a12 {a12} {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a13, a14} {φ }
a13 {a8, a13} {a1, a2, a3, a4, a5, a6, a7, a9, a10, a11, a12, a14} {φ }
a14 {a14} {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13} {φ }

5 Conclusion

In this paper, we introduced novel three-way conflict analysis models based on decision-
theoretic rough sets. First, we employed a ranking approach to partition a set of issues
into two distinct subsets. Subsequently, we introduced alliance measures for individ-
ual issue using a transition probability function. By leveraging the computed issue
weights and alliance measures, we derived alliance probabilities. Additionally, we pre-
sented risk-preferred, risk-averse, and risk-neutral decision rules using the relative util-
ity function. The proposed decision model realistically reflects the diversity of decisions
under different risk preferences and provides a practical explanation and illustration
of decision-making for various risk preferences. However, there are still some limita-
tions to consider. This model involves manually assigned parameters when calculating
alliance probabilities and utility functions based on evaluation values, and have a certain
level of subjectivity.

In the future, we plan to explore complex information systems related to conflicts,
such as incomplete information systems and fuzzy information systems. Moreover, we
intend to develop effective algorithms to compute conflict, neutral, and alliance sets in
these complex information systems, and aim to enhance the relationships among agents.
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Abstract. Conflict often arises when individuals have different opin-
ions. Owing to the ubiquity of conflict, conflict analysis is always widely
discussed. Recently, the three-way conflict analysis proposed by Yao has
attracted much attention. In Yao’s framework, each three-way conflict
model consists of the whole, trisections, and final results. However, the
final results are induced once a trisection is given. In other words, the
model cannot correct the final results. Therefore, we provide a new con-
flict analysis framework with negative feedback. This way, we can deliver
better results, even when we are not given proper thresholds in advance.
In addition, we provide three algorithms for three-way conflict models
with negative feedback in this paper after showing the new framework.
In the third algorithm, we focus on coalitions instead of trisections while
improving thresholds, which distinguishes greatly from previous models.

Keywords: Conflict analysis · Three-way decision · Thresholds
selection · Negative feedback

1 Introduction

Since conflict is everywhere in real life, conflict analysis is always a widely dis-
cussed topic. Many conflict analysis models have been proposed, among which
Pawlak’s model has recently attracted a lot of attention. Pawlak firstly considers
conflict analysis from a viewpoint of rough set theory in [1,2].

The models of Pawlak are based on information systems S = (U,A), where
those sets U are sets of agents and A are sets of issues (attributes). In the
system, each pair of agent x ∈ U and issue a ∈ A is mapped to one of the three
values −1, 0, 1 which are usually written as +, 0 and − for convenience. The
values +, 0 and − denote the agent x having a positive, neutral and negative
attitude to issue a respectively. With the information system, Pawlak focuses on
the relation between agents in single and multiple issues. Based on given sets
of issues, relations between agents are trisected into allied, neutral and conflict
relations. Finally, the models output groups of coalitions, and each coalition is
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a set of agents in allied relation. Based on Pawlak’s models, a series of improved
models are presented using many math tools, such as lattice concept [4], game
theory [5], fuzzy set theory [6,7] and fuzzy numbers ranking [8]. And there also
are some works done with application [9,10]. Among these improved models,
three-way conflict models are in a vital position.

Considering three-way decision [11,12] is also about trisection, Yao proposed
three-way conflict analysis [13,14] which added a decision-making part after
getting the trisections. In the three-way conflict analysis, there are several kinds
of trisection models, and the dominant ones are models of agents and models of
pairs of agents. In Yao’s framework, Pawlak’s models belong to models of pairs
of agents. For now, much work has been done with three-way conflict analysis.
Some authors focus on improving models of agents by changing measures [15],
some consider models of pairs of agents [16], some improve the thresholds [17,18]
and some changing the information systems [19,20]. To summarize, Yao defined
new trisection models and, most importantly, offered a new framework of conflict
analysis concerning trisecting and decision-making.

However, there is a problem in the existing framework. The problem is that
the trisection is induced without negative feedback, which means that the model
would deliver wrong results once the inputs, especially the thresholds, are not
proper at the beginning. Therefore, to obtain more proper results, we provide a
new framework of conflict analysis with negative feedback in this paper. Besides
a new framework, there are other two contributions of this study. First, we give
a new algorithm for models of agents to obtain final trisections and do not need
to know the thresholds in advance. Second, in the models of pairs with negative
feedback, the coalitions instead of the trisection results are considered to be the
feedback, which can be seen in Fig. 2.

2 Classical Three-Way Conflict Analysis

The classical three-way conflict analysis is proposed by Yao in [13]. In the study,
there are two main kinds of three-way conflict models involved: the models of
agents and the models of pairs of agents.

A classical three-way conflict model consists of three components: Informa-
tion tables as inputs, trisections induced and outcomes computed with the tri-
sections, which is shown in Fig. 1. It should be noticed that we add the trisection
model as a component in Fig. 1. This is for better display in Fig. 2.

Fig. 1. A Classical Three-way Conflict Model

The difference between three-way conflict models of agents and three-way
conflict models of pairs of agents exists in their trisection models. In Sects. 2.1
and 2.2, we show their trisection models respectively.
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2.1 Trisection Models of Agents

The classical three-way conflict analysis is on the basis of information tables
defined in Definition 1.

Definition 1. [13] An information table is a triplet S = (U,A, r), where U
is a finite nonempty set of agents, A is a finite nonempty set of issues, and
r : U × A → V is a function that maps a pair of an agent and an issue to a
value in a value set V .

If V equals to {−1, 0,+1}, then the table is called a three-valued (information)
table. In detail, +1, 0 and −1 denote positive, neutral and negative attitude
respectively. And if V equals to [−1,+1], then the table is called a many-valued
(information) table. Information tables are equivalent to information systems
most of the time. In this paper, we do not distinguish them from each other as
that doesn’t affect much.

In [13], there are several three-way conflict models of agents. However, we
there only consider the most general and popular one of them which is shown in
Definition 2.

Definition 2. [13] For an information table S = (U,A, r), an aggregated rating
of an agent x ∈ U on non-empty subset of issues J ⊆ A is given by r (x, J) =
1

|J|
∑

i∈J r (x, i). With a pair of thresholds (α, β), −1 ≤ β < 0 < α ≤ +1, a
trisection of the set of agents is given by:

U
[α,1]
J = {x ∈ U | r (x, J) ≥ α} ,

U
(β,α)
J = {x ∈ U | β < r (x, J) < α} ,

U
[−1,β]
J = {x ∈ U | r (x, J) ≤ β} .

The three sets U
[α,1]
J , U

(β,α)
J and U

[−1,0]
J are explained as sets of agents who

have positive, neutral and negative attitude respectively.
Since the original paper [13] was proposed, a lot of improvements have been

done with the aggregation operator, i.e. r in Definition 2. Considering all these
models that only vary in aggregation operators, we define the classical trisection
model of agents in Definition 3.

Definition 3. For an information table S = (U,A, r), f : x × J �→ [−1, 1] is an
aggregation operator of an agent x ∈ U on a non-empty subset of issues J ⊆ A.
With a pair of thresholds (α, β), −1 ≤ β < 0 < α ≤ +1, a trisection of the set
of agents is given by:

U
[α,1]
J = {x ∈ U | f (x, J) ≥ α} ,

U
(β,α)
J = {x ∈ U | β < f (x, J) < α} ,

U
[−1,β]
J = {x ∈ U | f (x, J) ≤ β} .
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2.2 Trisection Models of Pairs of Agents

As is the case with the models of agents, the paper [13] also contains several mod-
els of pairs of agents. Still, only the most general and popular one is presented
in Definition 4.

Definition 4. [13] For an information table S = (U,A, r), ca : U ×U → [0, 1] is
a function defined on the set of agents concerning an issue a ∈ A. For a subset
of issues J ⊆ A, we define a conflict function cJ : U × U → [0, 1] as follows:
for x, y ∈ U , cJ (x, y) = 1

|J|
∑

a∈J ca (x, y). With a pair of thresholds (α, β),
−1 ≤ β < 0 < α ≤ +1, a trisection of the set of all pairs of agents is given by:

R
[α,1]
J = {(x, y) ∈ U × U | cJ (x, y) ≥ α} ,

R
(β,α)
J = {(x, y) ∈ U × U | β < cJ (x, y) < α} ,

R
[0,β]
J = {(x, y) ∈ U × U | cJ (x, y) ≤ β} .

In the models of pairs, the Cartesian product U × U is trisected, while the
model of agents trisects the agent set U . The elements in U × U are called pairs
of agents. And the pairs in R

[α,1]
J , R

(β,α)
J and R

[0,β]
J are considered to be in allied,

neutral and conflict relation respectively. In contrast with the model of agents
where agents in U

[α,1]
J take positive attitude, allied pairs are in R

[0,β]
J .

Then we give the definition of the classical trisection model of pairs of agents
in Definition 5. The model in Definition 5 does not only contain the original
model in [13] but also consists of many other trisection models that only differ
from the original one in the conflict functions. (e.g. [17])

Definition 5. For an information table S = (U,A, r), g : x× y ×J �→ [0, 1] is a
conflict operator of for x, y ∈ U on a non-empty subset of issues J ⊆ A. With a
pair of thresholds (α, β), 0 ≤ β < 0.5 < α ≤ 1, a trisection of the set of all pairs
of agents is given by:

R
[α,1]
J = {(x, y) ∈ U × U | g (x, y, J) ≥ α} ,

R
(β,α)
J = {(x, y) ∈ U × U | β < g (x, y, J) < α} ,

R
[0,β]
J = {(x, y) ∈ U × U | g (x, y, J) ≤ β} .

Remark 1. Suppose that S = (U,A, r) is an information table and J is a sub-
set of A. In the existing works of conflict analysis, final results can be obtained
immediately once the thresholds are given. However, owing to the lack of nega-
tive feedback, the thresholds are usually computed subjectively and experimen-
tally. This also makes it impossible for these models to get correct outcomes
once the thresholds are not given properly at the beginning. Hence in Sect. 3,
we attempt to give a methodology for three-way conflict models adding nega-
tive feedback, and thus the trisection models could be constantly improved by
analyzing the results they delivered and finally achieving ideal outcomes rather
than completely relying on getting proper thresholds at the very beginning.
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3 Three-Way Conflict Models of Agents with Negative
Feedback

A comparison of the classical three-way conflict model and the one with negative
feedback can be seen in Fig. 2.

Fig. 2. A comparison between classical conflict model and the one with feedback.

As stated in Remark 1, to get more ideal outcomes, we attempt to add
negative feedback in three-way conflict analysis. Since the outcomes of three-
way conflict models are coalitions, we take the evaluation of coalitions to be the
feedback. And in this study, the evaluation of a coalition refers to two parts:
the sum of distance for any two agents in the coalition, and the sum of distance
for two agents one of which is in the coalition and the other not. An illustrative
figure is shown in Fig. 3. Then we consider a coalition to be superior when it has
a lower value in the first part and a higher sum in the second part. In addition,
we should notice that the trisection is the group of coalitions for the models of
agents. Then we have to define the two parts of evaluation for each coalition in
Definitions 6, 7 and 8.

Fig. 3. Two parts concerns the coalition evaluation.
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For an information table S = (U,A, r), f : x × J �→ [−1, 1] is an aggregation
operator of an agent x ∈ U on a non-empty subset of issues J ⊆ A. Let x =
f(x, J), y = f(y, J) and distance function F : [−1, 1] × [−1, 1] → [0, 1], where
for all x,y ∈ [−1, 1], F (x,y) = F (y,x).

Definition 6. h11 : (0, 1] → [0,∞), h12 : (0, 1] → [0,∞).

h11 (α) :=
x�=y∑

x,y∈U
[α,1]
J

F (x,y) , h12 (α) :=
x∈U

[α,1]
J∑

y/∈U
[α,1]
J

F (x,y) ,

Definition 7. h21 : [−1, 0) × (0,+1] → [0,∞), h22 : [−1, 0) × (0,+1] → [0,∞).

h21 (α, β) :=
x�=y∑

x,y∈U
(β,α)
J

F (x,y) , h22 (α, β) :=
x∈U

(β,α)
J∑

y/∈U
(β,α)
J

F (x,y) ,

Definition 8. h31 : [−1, 0) → [0,∞), h32 : [−1, 0) → [0,∞).

h31 (β) :=
x�=y∑

x,y∈U
[−1,β]
J

F (x,y) , h32 (β) :=
x∈U

[−1,β]
J∑

y/∈U
[−1,β]
J

F (x,y) .

Then the thresholds can be obtained by solving a multi-objective program-
ming problem in the following.

(P1)

⎧
⎨

⎩

min f(α, β) = (f1(α, β),−f2 (α, β))
s.t. 0 < α ≤ 1

0 > β ≥ −1

where
f1(α, β) : = h11 (α) + h31 (β) ,+h21 (α, β)
f2(α, β) : = h12 (α) + h32 (β) + h22 (α, β) ,

and h11, h12, h21, h22, h31, h32 are defined in Definitions 6, 7 and 8.
To solve (P1), we transform (P1) to (P ′

1)

(P ′
1)

⎧
⎪⎪⎨

⎪⎪⎩

min λ1f1(α, β) − λ2f2 (α, β)
s.t. λ1 + λ2 = 1

0 < α ≤ 1, 0 > β ≥ −1
λ1 ≥ 0, λ2 ≥ ‘0

Proposition 1. Let 0 < α ≤ 1 and 0 > β ≥ −1. Then

f1(α, β) +
1
2
f2 (α, β) =

x�=y∑

x,y∈U

F (x,y)
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Then we define (P ′′
1 ) and (P ′′

1 ), and (P ′
1), (P ′′

1 ) and (P ′′′
1 ) are equivalent to

each other.

(P ′′
1 )

⎧
⎨

⎩

min f1 (α, β)
s.t. 0 < α ≤ 1

0 > β ≥ −1
(P ′′′

1 )

⎧
⎨

⎩

min −f2 (α, β)
s.t. 0 < α ≤ 1

0 > β ≥ −1

Although (P ′′
1 ) and (P ′′′

1 ) are equivalent, we only give an algorithm for the
models of agents with negative feedback based on (P ′′

1 ) in Algorithm 1.

Algorithm 1: An algorithm of models of agents
Input: Information system S = (U, A, r), a set J ⊆ A, operators

f : U × 2A → [−1, 1] and F : [−1, 1] × [−1, 1] → [0, 1]
1 Step 1 Build a matrix Q ∈ Rn×1 that stores the values of all f(xi, J), xi ∈ U in

descending order, and the original position i is stored in the corresponding row
of matrix K ∈ Rn×1;

2 Step 2 Create a matrix P ∈ Rn×n, n = |U |. Let xi, xj ∈ U , xi = f (xi, J),
xj = f (xj , J). If i = j, then P (i, j) = 0; otherwise, P (i, j) = F

(
xK(i),xK(j)

)
;

3 Step 3 Trisection and improving with negative feedback;
4 min =

∑n
u=1

∑n
v=1 P (u, v), α = 1, β = 0;

5 for i = 1 : |Q| do
6 If i is not the largest j such that Q(j) == Q(i), j = 1, 2, · · · |Q|, then we

skip to the next iteration of the loop;
7 for j = i + 1 : |Q| do
8 If i is not the smallest j such that Q(j) == Q(i), j = 1, 2, · · · |Q|, then

we skip to the next iteration of the loop;
9 if Q(i) > 0 ∧ Q(j) < 0∨ then

10 Compute hi1(Q(i)), i = 1, 2, 3;
11 Compute f1 (Q(i), Q(j)) = h11(Q(i)) + h31(Q(j)) + h21(Q(i), Q(j));
12 if f1 (Q(i), Q(j)) < min then
13 min = f1 (Q(i), Q(j)), α = Q(i), β = Q(j);
14 end

15 end

16 end

17 end
18 Step 4 Compute the final trisection with obtained α and β;

Output: The final trisection

4 Three-Way Conflict Models of Pairs with Negative
Feedback

In three-way models of agents, the final results are trisection results. And if
we consider the trisection of pairs to be the final results, then we can get an
algorithm for similarly trisecting the pairs of agents by changing Algorithm 1
slightly. This algorithm is given in Algorithm 2.
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Algorithm 2: An algorithm of models of pairs
Input: Information system S = (U, A, r), a set J ⊆ A, operators

g : U × U × 2A → [0, 1] and F : [0, 1] × [0, 1] → [0, 1]
1 Step 1 Build a matrix Q ∈ Rm×1, m = n2, n = |U |2 which stores all the values

of g(xp, xq, J), xi ∈ U , xj ∈ U in descending order, and the original position
i = n(p − 1) + q is stored in the corresponding row of matrix K ∈ Rm×1;

2 Step 2 Create a matrix P ∈ Rm×m. Let xp, xq ∈ U , and ri = g (xp, xq, J),
where i = n(p − 1) + q. If i = j or i = n (p − 1) + p or j = n (p − 1) + p,
p = 1, · · · , n, then P (i, j) = 0; otherwise, P (i, j) = F

(
rK(i), rK(j)

)
;

3 Step 3 Except for min =
∑m

u=1

∑m
v=1 P (u, v), others are the same with the

Step 3 in Algorithm 1;
4 Step 4 Compute the final trisection with obtained α and β, and thus get final

coalitions;
Output: The final coalitions

In the following, we consider groups of coalitions that are not trisections, and
we discuss the algorithm with coalition evaluation being negative feedback for
models of pairs. First, we give a definition of coalitions in our study.

Definition 9. For an information table S = (U,A, r), if sets Vi, i = 1, · · · ,m
are coalitions of agents, then

1.
⋃m

i=1 Vs = U ;
2. for all i 	= j, Vi ∩ Vj = ∅;
3. Vi 	= ∅, i = 1, · · · ,m.

In the following, we give the definition of the two parts of evaluation for
all coalitions in Definition 10. For an information table S = (U,A, r), f : x ×
J �→ [−1, 1] is an aggregation operator of an agent x ∈ U on a non-empty
subset of issues J ⊆ A. Let x = f(x, J), y = f(y, J) and distance function
F : [−1, 1] × [−1, 1] → [0, 1], where for all x,y ∈ [−1, 1], F (x,y) = F (y,x).

Definition 10. hi,j : (0.5, 1] × [0, 0.5) → [0,∞), i = 1, · · · ,m, j = 1, 2.

hi,1 (α, β) =
x�=y∑

x,y∈Vi

F (x,y), hi,2 (α, β) =
y/∈Vi∑

x∈Vi

F (x,y),

hi,3 (α, β) = |U | − |Vi| ,

where hi,3 is a penalty function. For a coalition Vi, i = 1, · · · ,m, |Vi| is inversely
proportional to hi,3, which reveals a preference for coalitions with more agents.
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Then the thresholds are obtained by solving a multi-objective programming
problem in the following.

(P2)

⎧
⎨

⎩

min f(α, β) = (f1(α, β),−f2 (α, β) , f3 (α, β))
s.t. 0 < α ≤ 1

0 > β ≥ −1

where

fj(α, β) :=
m∑

i=1

hi,j (α, β) ,

where j = 1, 2, 3.
To solve (P2), we transform (P2) to (P ′

2), and (P ′
1), (P ′′

1 ) and (P ′′′
1 ) are

equivalent to each other.

(P ′
2)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min λ1f1(α, β) − λ2f2 (α, β) + λ3f3 (α, β)
s.t. λ1 + λ2 + λ3 = 1,

0.5 < α ≤ 1, 0.5 > β ≥ 0,
λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0,
λ3 < 1.

Proposition 2. Let 0.5 < α ≤ 1 and 0.5 > β ≥ 0. Then

f1(α, β) +
1
2
f2 (α, β) =

x�=y∑

x,y∈U

F (x,y)

Then we define (P ′′
2 ) and (P ′′

2 ).

(P ′′
2 )

⎧
⎪⎪⎨

⎪⎪⎩

min f1 (α, β) + λf3 (α, β)
s.t. 0.5 < α ≤ 1,

0.5 > β ≥ 0,
λ > 0.

(P ′′′
2 )

⎧
⎪⎪⎨

⎪⎪⎩

min −f2 (α, β) + λf3 (α, β)
s.t. 0.5 < α ≤ 1,

0.5 > β ≥ 0,
λ > 0.

Still, we only give an algorithm for the models of agents with negative feed-
back based on (P ′′

2 ) in Algorithm 3.

5 An Illustrative Example

In this section, we give an example to illustrate the three algorithms with an
information table S = (U,A, r) for the Middle East conflict in Table 1. This is a
classical information system from Pawlak [1].

The agent set U consists of six agents which are six countries. In detail, the six
countries are: Israel, Egypt, Palestinians, Jordan, Syria and Saudi Arabia. And
there are five issues in the issue set A, such as “Israeli military outpost along the
Jordan River”, “Israeli retains East Jerusalem” and “Israeli military outposts on
the Golan Heights”. In addition, the function r maps agents and issues to values
of attitude, and the attitude values are in corresponding entries in Table 1. As
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Algorithm 3: An algorithm of models of pairs with coalition evaluation
being negative feedback
Input: Information system S = (U, A, r), a set J ⊆ A, operator

g : U × U × 2A → [0, 1] and a preference parameter λ.
1 Step 1 Create a matrix P ∈ Rn×n, n = |U |. Let xi, xj ∈ U . If i = j, then

P (i, i) = 0; otherwise, P (i, j) = g (xi, xj , J);

2 Step 2 Build a matrix Q ∈ Rn2×1 that stores the values of all g(xi.xj , J),
xi, xj ∈ U in descending order;

3 Step 3 Trisection and improving with negative feedback;
4 min =

∑n
u=1

∑n
v=1 P (u, v) + n ∗ λ(n − 1), α = 1, β = 0;

5 for i = 1 : |Q| do
6 If i is not the largest j such that Q(j) == Q(i), j = 1, 2, · · · |Q|, then we

skip to the next iteration of the loop;
7 for j = i + 1 : |Q| do
8 If i is not the smallest j such that Q(j) == Q(i), j = 1, 2, · · · |Q|, then

we skip to the next iteration of the loop;
9 if Q(i) > 0.5 ∧ Q(j) < 0.5 then

10 Create coalitions Vs, s = 1, · · · , m;
11 hs1(Q(i), Q(j)) =

∑
xu,xv∈Vs

P (u, v) , s = 1, · · · , m;

12 hs3(Q(i), Q(j)) = n − |Vi|, s = 1, · · · , m;
13 Compute f� (Q(i), Q(j)) =

∑m
s=1 hs� (Q(i), Q(j)), � = 1, 3;

14 eval = f1 (Q(i), Q(j)) + λf3 (Q(i), Q(j));
15 if eval < min then
16 min = f1 (Q(i), Q(j)), α = Q(i), β = Q(j), ;
17 end

18 end

19 end

20 end
21 Step 4 Compute the final coalitions with obtained α and β;

Output: The final coalitions

given the definition of information table in Definition 1, the attitude values +,
−, 0 present positive, negative and neutral attitude respectively. For instance,
the (1, 1)th entry of Table Table 1 reveals that Israel x1 is opposed to a1, i.e.,
“autonomous Palestinian state on the West Bank and Gaza”.

Table 1. An information system for the Middle East conflict.

U a1 a2 a3 a4 a5

x1 – + + + +

x2 + 0 – – –

x3 + – – – 0

x4 0 – – 0 –

x5 + – – + –

x6 0 + – 0 +
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5.1 The Algorithm for Models of Agents

Input Information system S = (U,A, r) in Table 1, a set J = A ⊆ A, operators
f : x × J �→ 1

5r(x, i), x ∈ U and F (x,y) = 1
2 |x − y|, x,y ∈ [−1, 1].

Step 1 Build Q = [0.6, 0.2,−0.2,−0.4,−0.4,−0.6]� and K = [1, 6, 5, 2, 3, 4]�

Step 2 Create a matrix P ∈ Rn×n, n = |U | = 6. Let xi, xj ∈ U , xi = f (xi, J),
xj = f (xj , J). If i = j, then P (i, j) = 0; otherwise, P (i, j) = F

(
xK(i),xK(j)

)

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0 0.2 0.4 0.5 0.5 0.6
0.2 0.0 0.2 0.3 0.3 0.4
0.4 0.2 0.0 0.1 0.1 0.2
0.5 0.3 0.1 0.0 0.0 0.1
0.5 0.3 0.1 0.0 0.0 0.1
0.6 0.4 0.2 0.1 0.1 0.0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Step 3 Trisection and improving with negative feedback
min =

∑n
u=1

∑n
v=1 P (u, v) = 9, α = 1, β = 0

Round 1 i = 1, i < |Q| = 6, Q(i) 	= Q(i + 1).
j = 2: Since Q(j) > 0, nothing is performed.
j = 3: With Q(i) = 0.6 > 0, Q(j) = −0.2 < 0, we have that

h11 (0.6) =
1∑

k=1

1∑

�=1

P (k, �) = 0, h31 (−0.2) =
6∑

k=3

6∑

�=3

P (k, �) = 1.2,

h21 (0.6,−0.2) =
2∑

k=2

2∑

�=2

P (k, �) = 0.

Then, f1 (0.6,−0.2) = 1.2 such that f1 (0.6,−0.2) < min = 9. Now, min = 1.2,
α = 0.6, β = −0.2.

j = 4: f1 (0.6,−0.4) = 0 + 0.4 + 0.4 = 0.8 < min = 1.2. Now, min = 0.8,
α = 0.6, β = −0.4.

j = 5: Q(j) = Q(5) = −0.4 = Q(4) = Q(j − 1), then nothing is performed.
j = 6: f1 (0.6,−0.6) = 0 + 2 + 0 = 2.6 > min = 1.2.
Round 2 i=2 · · ·

...
Round 6 i=6 · · ·
All the possible values of f1 are shown in Table 2 where the ∗ means nothing

there is performed.
Therefore, (Q(1), Q(4)) = (0.6,−0.4) and (Q(2), Q(4)) = (0.2,−0.4),

(Q(2), Q(6)) = (0.2,−0.6) are the best thresholds.
In Step 1 and Step 2, we get an adjacency matrix P whose (i, j)th entry

stores the difference degree between the two corresponding agents. And the two
agents’ scores there, computed by f for computing the (i, j)th entry, are the ith
and jth highest respectively. Algorithm 1 finally gives three groups of coalitions
as final outputs, and the three ones are shown in Table 3 with their corresponding
thresholds.
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Table 2. Corresponding values of f1.

i\j 1 2 3 4 5 6

1 * * 1.2 0.8 * 2.6

2 * * 1.6 0.8 * 0.8

3 * * * * * *
...

...
...

...
...

...
...

6 * * * * * *

Table 3. Best thresholds and the trisections induced for models of agents.

α β U
[α,1]
A U

[−1,β]
A U

(β,α)
A

0.6 −0.4 {x1} {x4, x6} {x2, x3, , x5}
0.2 −0.4 {x1, x6} {x4} {x2, x3, , x5}
0.2 −0.6 {x1, x6} {x2, x3, x4} {x5}

5.2 The Algorithm for Models of Pairs

Since Algorithm 2 is similar to 1, we only discuss Algorithm 3 here.
Input. Information system S = (U,A, r) in Table 1, a set J = A ⊆ A, operator
g : x× y ×J �→ 1

2|J|
∑

a∈J |r(x, a) − r(y, a)| and a preference parameter λ = 0.5.
Step 1. Create a matrix P ∈ Rn×n, n = |U |. Let xi, xj ∈ U . If i = j, then
P (i, j) = 0; otherwise, P (i, j) = g (xi, xj , J).

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0.9 0.9 0.8 0.8 0.4
0.9 0 0.2 0.3 0.3 0.5
0.9 0.2 0 0.3 0.3 0.5
0.8 0.3 0.3 0 0.2 0.4
0.8 0.3 0.3 0.2 0 0.6
0.4 0.5 0.5 0.4 0.6 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Step 2. Build a matrix Q ∈ Rn2×1 that stores the values of all g(xi.xj , J),
xi, xj ∈ U in descending order.

Q = [0.9, 0.9, 0.9, 0.9, 0.8, 0.8, 0.8, 0.8, 0.6, 0.6, 0.5, 0.5, 0.5, 0.5, 0.4, 0.4, 0.4,

0.4, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.2, 0.2, 0.2, 0.2, 1, 1, 1, 1, 1, 1]�

Step 3. Trisection and improving with negative feedback.
min =

∑n
u=1

∑n
v=1 P (u, v) + n ∗ λ(n − 1) = 14.8 + 15 = 29.8, α = 1, β = 0

Round 1 to 3 i = 1, · · · , 3: Since Q(i) = Q(i + 1), nothing is performed
Round 4 i = 4: When j = 5, · · · , 14, Q(j) ≥ 0.5.
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j = 15: α = 0.9, β = 0.4. Then V1 = {x1, x6}, V2={x2, x3, x4, x5}.
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1 x2 x3 x4 x5 x6

x1

x2 0.9
x3 0.9 0.2
x4 0.8 0.3 0.3
x5 0.8 0.3 0.3 0.2
x6 0.4 0.5 0.5 0.4 0.6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→
⎡

⎣
x1 {x1, x6} {x2, x3, x4, x5}

{x1, x6} 0.4
{x2, x3, x4, x5} 0.675 0.267

⎤

⎦

In this case, f1(0.8, 0.4) = 0.8 + 3.2 = 4, f3 = λ(6 − 2) + λ(6 − 4) = 3, we
have eval = 7 < min = 29.8. Then min = 4, α = 0.8, β = 0.4 (Tables 4 and 5).

Table 4. Corresponding values of eval.

i(α)\j(β) 15(0.4) 19(0.3) 27(0.2) 31(0)

4(0.9) 7 9.2 9.8 15

8(0.8) 7 9.2 9.8 15

10(0.6) 7 9.2 9.8 15

Table 5. Evaluation of coalitions and corresponding β.

β eval coalitions

0.4 7 {x1, x6} , {x2, x3, x4, x5}
0.3 9.2 {x1} , {x6} , {x2, x3, x4, x5}
0.2 9.8 {x1} , {x6} , {x2, x3} , {x4, x5}
0 15 {x1} , {x2} , {x3} , {x4} , {x5} , {x6}

Therefore, the final coalition is {x1, x6} , {x2, x3, x4, x5}. For the third algo-
rithm, it should be mentioned that the final coalitions only concern β, as the
coalition creation approach we use there only refer to allied relations.

6 Conclusion

In this study, we propose a new framework of three-way conflict analysis by
adding negative feedback which is the evaluation of coalitions. For the models of
agents, the coalitions are the sets in trisections, while the coalitions in the models
of pairs are agent sets computed by relations, and they are not sets in trisections.
In conclusion, three-way conflict analysis with negative feedback is significant
and has much prospect. And the three-way conflict analysis corresponding to
other decisions is waiting for further discussion.
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Abstract. Halifax’s rental sector faces significant challenges, including
affordability issues and regulatory inefficiencies. The lack of a central-
ized, data-driven platform further complicates strategic decision-making
for property managers and policymakers. Our paper introduces Estate
360◦, a comprehensive digital solution designed to transform the Halifax
rental market by integrating advanced data analytics, automated data
collection, and user-friendly interfaces. This platform enhances stake-
holder decision-making by providing real-time insights and predictive
analytics, enabling swift, informed responses to market dynamics. Our
solution not only promises to streamline operations and reduce reliance
on outdated data collection methods but also equips users with the tools
necessary to stay competitive and strategically aligned with evolving
market conditions.

Keywords: Real Estate · Machine Learning · Data Analysis · Web
Scraping · Automation · XGBoost · Tableau

1 Introduction

1.1 Background

Halifax’s rental market is currently facing significant challenges driven by a lack
of affordable housing options and sufficient regulatory measures to stabilize rising
costs. Despite government interventions, including a 2% rent cap and measures
to restrict “renovictions,” the rental landscape remains troubled, with many res-
idents expressing financial distress and dissatisfaction through public protests
and social media [7,10]. This situation is compounded by demographic changes
and economic shifts that influence housing demand and rental rates, making the
need for effective responsiveness more critical than ever [3]. Additionally, manual
data collection leads to inefficiencies, as property managers often depend on out-
dated methods that slow down their responses. The lack of a centralized platform
for accessing and analyzing real-time market rental rates results in infrequent
dashboard updates, which do not reflect current market conditions. This reliance
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on human labor not only increases the risk of errors but also hinders effective
decision-making [14].

The absence of a unified platform for analyzing market rental rates severely
undermines decision-making and competitiveness in Halifax’s rental market.
Without a comprehensive system to manage crucial data such as vacancy rates
and average rents provided by entities like the Canadian Mortgage and Housing
Corporation (CMHC) [8,17], stakeholders lack the tools necessary for strategic
planning. This deficiency prevents property managers and policymakers from
aligning rental prices with market conditions and enhancing property value
assessments systematically [21]. Industry survey emphasizes the need for inte-
grated data analysis tools and technology that can support informed decisions
and adapt to market changes. These studies show that accurately assessing rental
rates requires an understanding of various factors, including property features,
market demand, and comparable property rents [13,19,24].

1.2 Research Objective

The objective of this research is to design and implement a comprehensive cen-
tralized data analysis platform specifically tailored for the Halifax rental market.
This platform will facilitate the aggregation, analysis, and visualization of up-to-
date rental data, including vacancy rates, average rents, and market trends. By
integrating diverse data sources, the system aims to give property managers and
policymakers real-time insights and predictive analytics for strategic decision-
making. The goals of the research are listed below.

Data Integration. Develop a robust system that consolidates data from mul-
tiple sources, including local government databases and private rental listings,
to create a comprehensive overview of the market landscape.

Analytical Tools Development. Create advanced analytical tools within the
platform that allow users to identify patterns, predict market trends, and assess
the impact of economic and demographic changes on rental prices and availability.

User-Friendly Interface. Design an intuitive, user-friendly interface that
enables easy access to complex data analyses, making it practical for stake-
holders with varying levels of technical expertise.

Market Responsiveness. Enhance the ability of property managers to
respond to market changes effectively by providing them with tools to adjust
rental prices accurately and swiftly, thereby increasing market competitiveness.
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1.3 Scope of Study

The scope of this study centers on the development of a centralized data analysis
platform for the Halifax Regional Municipality rental market, with a strong focus
on leveraging data collected from multiple online sources. The aim is to enhance
decision-making capabilities through advanced data integration and real-time
analytics.

Data Collection and Integration: The platform aggregated data from
approximately 20 rental websites (Refer to Table 1) to ensure a broad and
comprehensive dataset. The websites targeted for data scraping include:

Table 1. Targeted Rental Websites

Hotpads RentFaster Zumper Kijiji Rentals

Happipad Rent Seeker 444 Rent Dexel JDE
Werkliv West22 Killam Westwood Capriet
Templeton NorthPoint HappyPlace Ansell Prop Olympus

2 Literature Review

The research conducted on the rental market has consistently highlighted the
critical role of factors such as location, property characteristics, and market
dynamics in influencing rental prices and property valuations. For example, stud-
ies show that proximity to amenities such as shops and schools, along with
attributes like property size and condition, significantly impact rental rates
[2,13]. This understanding underscores the need for advanced data analytics
in real estate to capture and analyze these influences accurately [22].

Building on the foundational knowledge of market influences, web scraping
emerges as a pivotal technology in real estate, enhancing the depth and accuracy
of data collection. Studies suggest that by automating the extraction of property
details from various online sources, web scraping strengthens market analysis
and predictive analytics [5,6,15,16,20,27]. This method ensures the real-time
accuracy of listings, which is crucial for strategic decision-making and optimiz-
ing property management [12,25]. It provides a comprehensive database that
includes off-market properties and new listings, thus effectively identifying mar-
ket trends and opportunities [11,26]. Through its ability to maintain updated
and detailed property information, web scraping has become an indispensable
tool in modern real estate analytics.

Additionally, integrating machine learning techniques in real estate valuation
marks a significant shift, improving property market analysis through advanced
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technology [4,23]. Research has demonstrated that ML models such as Random
Forest, Decision Trees, and Support Vector Machines are highly effective for pre-
dicting property prices and rents by examining complex interactions among the
various factors that influence real estate values [1,9,24]. These models facilitate
the integration of a vast array of data points-from physical property attributes to
economic indicators-thereby improving the accuracy and reliability of property
appraisals.

This seamless transition from the analysis of market dynamics to the applica-
tion of web scraping and machine learning illustrates how technological advance-
ments are intricately linked to enhancing the efficacy and efficiency of real estate
market analyses.

There are several platforms in the market that offer similar data analysis
capabilities for the real estate sector. Our application, while conceptually similar
to others, incorporates a unique combination of features not commonly found
in the current market. Following is the group of top applications in this domain
being compared with our application on certain parameters in Table 2.

Table 2. Estate 360 vs Current Market Solutions

Features Estate360 Attom Slns DealPath CBRE

Data Coverage Halifax US US Global
Customization High Moderate Limited No
Predictive Analytics Advanced Basic Advanced Advanced
Real-Time Data Yes No No No
User Interface User-Friendly Complex Complex Complex

3 Proposed System

To address the current challenges in real estate, this paper proposes “Estate
360◦”, a comprehensive digital solution aimed at transforming the property rental
market. This system dynamically accesses market data through advanced data
analytics and user-friendly dashboards, designed to simplify data aggregation,
streamline processing, and enhance decision-making with predictive analytics
and real-time insights. It automates data collection via web scraping from var-
ious property management and rental websites, displaying the data on dash-
boards that provide insights into market trends, competitive positioning, and
pricing strategies. Furthermore, this data is used to train a machine-learning
model that predicts rental prices, thereby improving the platform’s responsive-
ness to market changes.



Estate 360: AI-Driven Centralized Real Estate Platform 217

Our solution is built on an automated data collection system that uses
advanced web scraping and API integration technologies to continuously gather
the latest rental data. This ensures the accuracy of our market analyses. At the
heart of the platform is a sophisticated machine-learning model powered by finely
tuned XGBoost Model, which process large datasets to predict rental prices and
market trends in real-time. This approach not only enhances the precision of pre-
dictions but also minimizes manual data analysis, boosting operational efficiency
significantly.

3.1 Automated Data Collection

The proposed solution automates data collection by using advanced web scraping
and API integration to gather important property data from various real estate
websites. This includes details such as the number of bedrooms and bathrooms,
property size, utilities, amenities, and parking availability. The system reduces
the need for manual labor and minimizes errors by ensuring that data collection
scripts run daily.

Fig. 1. Automated Data Collection Process

Figure 1 illustrates the automated data collection process utilized in our solu-
tion. A Lambda function triggers an EC2 instance at 10 AM daily for data
collection. Tools like Scrapy, Selenium, and Postman are used to gather data,
which is then saved in CSV format and stored in an S3 bucket. At 10:30 AM,
another EC2 instance merges these CSV files to create a unified dataset ready for
analysis. This setup enhances data handling efficiency and ensures our database
consistently reflects up-to-date market conditions.

3.2 Real-Time Dashboards

The platform provides multiple user-friendly, interactive dashboards that display
processed data in a visually intuitive format.
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Overview Dashboard. The dashboard (Refer to Fig 2) offers insights into
the rental market within the HRM area. A heat map indicates the density of
rent prices per square foot, with warmer colors showing higher prices. A rent
distribution graph provides a visual representation of the number of listings
across different rent ranges within major regions like Dartmouth, Bedford, and
the Halifax Peninsula. The sidebar allows filtering by minor regions, adjusting
the display of listings on the map and charts. Lastly, a bar chart compares the
average rent per bedroom size, showing a progressive increase in rent as the
number of bedrooms increases.

Fig. 2. Snapshot of the Overview Dashboard

Parking Dashboard. This dashboard (Refer to Fig. 3) offers provides a
detailed layout of parking costs within the HRM area. It includes a map that
spatially represents the distribution of free and paid parking spots, depicted by
colored dots. Key figures presented are the counts of free parking (208) and paid
parking (413), alongside the average parking cost calculated. The table offers
a granular view of average parking costs by major and minor regions. At the
bottom, a legend classifies the parking types, including free parking and paid
parking, both with and without cost associated.

Available Listings Dashboard. This dashboard (Refer to Fig. 4) displays
data on available real estate listings. It features a map that illustrates the loca-
tion of listings within the area. Additional filters allow viewers to sort listings
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by the number of bedrooms and bathrooms, as well as the availability of water,
heat, and electricity. Parking types are also categorized, including free parking
and both paid parking options.

Fig. 3. Snapshot of the Parking Dashboard

Competitor Analysis Dashboard. The dashboard (Refer to Fig. 6) fea-
tures several distinct sections that outline property management data. Firstly,
there is a map visualization that graphically displays the geographical layout of
properties with color-coded dots, indicating their distribution. Additionally, the
dashboard presents an overview of rental increments over the years, specifically
detailing the annual increases. Another component is the detailed breakdown of
rental increments by region, which lists both major and minor regions such as
Bedford Basin and Clayton Park, among others. Lastly, the dashboard includes
a comparative bar chart of yearly rental increments, comparing the performance
of Southwest Properties against that of Universal Groups and Northpoint Prop-
erties.

Upcoming Projects Dashboard. The Upcoming Projects Dashboard (Refer
to Fig. 7) showcases the locations on a map, along with the number of builders
involved. The bar chart on the dashboard illustrates the status of the properties,
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Fig. 4. Snapshot of the Available Listings Dashboard

categorizing them as completed, upcoming projects, or under construction. Addi-
tionally, there’s an option to filter the displayed data by specific builders. The
color-coded dots on the map correspond to different statuses of the properties
for an at-a-glance spatial analysis.

Fig. 5. Model Pipeline
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3.3 Insightful Rental Forecast

A key feature of the platform is its advanced predictive analytics, which enables
accurate forecasting of rent prices based on geographical data. This capabil-
ity allows users to make informed decisions on setting competitive rental prices.
This foresight enhances property management strategies, enabling more dynamic
market responsiveness and improved operational decisions.

Based on Fig. 5, we have setup a Model pipeline, which fetches data from
the database, and processes data for it to feed it into the ML Model. The ML
Model is then trained on the data, once the model is trained, it is then deployed
on sagemaker reference.

3.4 In-House Developed APIs

By using custom-built APIs designed for this platform, we eliminate reliance on
unreliable third-party APIs. This improves the platform’s reliability and secu-
rity, ensuring that proprietary data and functions are securely managed by plat-
form administrators and users. This approach protects sensitive information and
enhances system performance. All our APIs are developed InHouse, ensuring that
our system does not have any dependencies on any external platforms.

Fig. 6. Snapshot of the Competitor Analysis Dashboard
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Fig. 7. Snapshot of the Upcoming Projects Dashboard

Walk Score API. The Walk Score API calculates scores based on the proximity
of necessary amenities within walking distance of a given location. By inputting
latitude and longitude coordinates, users receive a score reflecting how easy it is
to complete daily errands on foot. This API enhances user understanding of a
property’s location desirability based on walkability.

Bike Score API. This API provides scores based on the number of essential
services within biking distance from a specific location. Users input geographical
coordinates to receive a bike score, which helps assess the bike-friendliness of
that area.

Transit Score API. The Transit Score API evaluates the accessibility of pub-
lic transport from a particular location, using the number of bus stops within
walking distance as a parameter. By submitting latitude and longitude, the API
returns a score indicating the convenience of public transit.

Upcoming Project Alerts API. The system features automated alerts that
notify users about new project developments promptly. These alerts keep users
informed in real-time, enabling them to respond quickly to market changes and
opportunities.
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4 Methodology

4.1 Data Processing and Augmentation

Before diving into the specifics of model training, it is crucial to outline the state
of our dataset and the preprocessing steps undertaken. The original dataset con-
sisted of 1403 data rows, each with 30 features. Upon processing, the shape of
the dataset was altered to 1032 entries with an expanded feature set due to
one-hot encoding, resulting in 52 features. The processed dataset was then split
into two subsets at an 80%-20% ratio to facilitate model training and testing.
The training set consisted of 825 data rows, while the testing set consisted of
207 data rows. Table 3 depicts all the necessary features that have been used for
Model Training.

To further enhance the model’s learning capacity, data augmentation tech-
niques were employed, doubling the dataset size to 2064 entries. This expanded
dataset underwent a similar division, allocating 1651 entries for training and 413
for testing.

Table 3. Model Features

Address MajorRegion MinorRegion Latitude Longitude

Type PropertyType Size Bedrooms Bathrooms
Heat Water Hydro Furnished Pet
Smoking Gym Parking AC Appliance
Storage Transit Walk Bike Crime
Grocery Recreation Education Emergency Listing Rent

Model Selection and Training. Now, based on our train, test split, various
ML Algorithms such as Ridge Regression, Random Forest, Decision Tree, Light-
GBM, ElasticNet, XGBoost. Etc were trained. Table 4 depicts the various model
results on the test set. Despite an MAE of 207.90 by the Random Forest Regres-
sor, The XGBoost Model was selected for further fine-tuning due to a better R2
of 0.73 and a balanced combination of MAE and RMSE i.e. 217.07 and 304.32.

4.2 Model Parameter Tuning

The optimization of our XGBoost model’s hyperparameters was a critical step
towards enhancing its predictive performance. A range of hyperparameters was
meticulously selected for tuning, Table 6 shows the hyperparameters that were
used to fine-tune the XGBoost Model. Further fine-tuning of the XGBoost model,
helped the results increase drastically, getting a MAE Score of 132.62 and R2 of
0.88. Table 5 shows the fine-tuned model results on the test set.
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Table 4. Baseline Model Results

Model Name MAE RMSE R2

Ridge Regression 261.68 362.83 0.62
Random Forest 207.90 316.44 0.71
SVR 438.58 597.59 –0.04
LightGBM 223.60 315.61 0.71
ElasticNet 273.31 386.45 0.57
K-NN 279.23 404.88 0.52
Decision Tree 317.24 483.76 0.32
XgBoost 217.07 304.32 0.73

Table 5. Fine-tuned ML Model Results

Model Name MAE RMSE R2

Fine-Tuned XGBoost 132.62 195.91 0.88

Table 6. XGBoost Hyperparameters

Parameters Values

N Estimators 200
Max Depth 5
Learning Rate 0.01
Subsample 0.7
Colsample Bytree 0.9
Min Child Weight 2
Gamma 0.1
Reg Alpha 0.1
Reg Lambda 0.01

4.3 Model Validation

On applying 5-Fold Cross Validation on the fine-tuned XGBoost Model, the
results were quite robust. The model achieved a low average Mean Absolute Error
(MAE) of 140.85, indicating the proximity of the predictions to the actual values.
Consistency in model performance is evident with a low standard deviation in
MAE (±4.97). A high average R-squared value of 0.83 suggests that the model
explains 83% of the variance in the data, providing a strong fit. The Root Mean
Squared Error (RMSE), another key metric reflecting average error magnitudes,
stands at an average of 222.59 with low variability (±20.63) (Table 7).
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Table 7. Summary of Model Evaluation Metrics Across Folds

Metrics Fold1 Fold2 Fold3 Fold4 Fold5 Average

MAE 139.3 138.4 136.8 150.6 138.9 140.85 ± 4.97
RSME 203.1 207.2 217.5 261.1 223.7 222.59 ± 20.63
R2 0.86 0.84 0.85 0.81 0.78 0.83 ± 0.03

4.4 Model Visualization

In order to interpret the model, and understand the importance of various fea-
tures on the Model, a SHAPELY graph was plotted. In Fig 8, it clearly shows that
features like bedroomCount, listingSizeSquareFeet and bathroomCount have the
highest impact on the model whereas features like listingType and listingMi-
norRegion seem to have less impact on the model, with most SHAPY values
clustered around zero.

4.5 Architecture

Figure 9 outlines the architecture of our solution. For our Automated Scraping
Solution, we have a Lambda Function setup which gets triggered daily to initiate
our EC2 Instance where all our scraping scripts gets executed, these scripts are
based on Selenium, Scrapy, and Python. Once all the data is scraped, all the
data gets stored in our s3 bucket, and all the processed and structured data is
then sent to our AWS RDS Database.

Once we have structured data in our Database, this data is then used for
our real-time dashboards using Tableau and ML Model Training. We have setup
a ML Model Training pipeline, which will fetch data from the database, apply
feature engineering on it, train our models, and finally deploy the model to AWS
Sagemaker Inference. These Dashboards and Models are then integrated with our
application where the application’s back-end is based on Flask and the front-end
is based on ReactJS. An SMTP server is also setup on our EC2 Instance, which
focuses on sending automated alerts to business basis on any new and significant
developments.
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Fig. 8. SHAPELY Visualization
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Fig. 9. Architecture Diagram

5 Conclusion and Future Scope

The proposed platform, Estate 360◦, offers a transformative solution to the chal-
lenges in the Halifax rental market. With its advanced data analytics, automated
data collection, and user-friendly interfaces, Estate 360◦ enhances decision mak-
ing for property managers and policymakers. By integrating real-time data with
predictive analytics, the platform allows stakeholders to quickly and accurately
respond to market dynamics, ensuring competitiveness and strategic alignment.
The implementation of Estate 360◦ aims to streamline operations, reduce man-
ual data collection, minimize errors, and boost operational efficiency. Its ability
to provide insights into market trends, competitor analysis, and rent predictions
gives users a competitive advantage, effectively positioning them to seize market
opportunities. The future development of the solution will focus on several key
areas to further enhance its capabilities and reach within the market.

Expansion to Additional Markets. While currently focused on Halifax, there
is potential to adapt and expand the platform to other regions, accommodating
different market dynamics and regulatory environments. This scalability could
make our platform a valuable tool for a broader range of users across various
geographical locations.
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Enhanced Machine Learning Models. As the platform collects more data
over time, there will be opportunities to refine the predictive analytics capabil-
ities. Implementing more sophisticated machine learning models could improve
the accuracy of predictions regarding rent prices and market trends.
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Abstract. Considering the growing demands for efficient information retrieval
from house rental markets by non-professional users, we develop a comprehen-
sive framework for house information management, visualization, and prediction
based on the CatBoost algorithm. We aim to promote the digital transformation of
house rental market management and drive innovation in management methods.
The conception and ideas of the Housing Rental Information Management and
Prediction System are initially proposed, with subsequent application in Halifax,
Canada. Integrating the Tableau server, database, and prediction model, we build
a seamless web system to harmonize management, visualization, and prediction
functionalities for rental house data. The details and effects of the application of the
CatBoost algorithm within this system are emphasized, highlighting its precision,
adaptability, and business viability in forecasting the house rental market.

Keywords: CatBoost Algorithm · House Price Prediction · Information
Management and Prediction System

1 Introduction

Price prediction of rental houses is crucial for effective housing administration [1].
Despite market fluctuations, house prices are mainly influenced by factors such as loca-
tion, amenities, and convenience [2]. Reliable house price forecasts based on these
parameters can enhance housing market management, maximizing total surplus. Vari-
ousmodels have been developed for forecasting house prices. Park andBae [3] developed
a housing price prediction model based on machine learning algorithms such as C4.5,
RIPPER, Naive Bayesian and AdaBoost, and compared their classification accuracy
performance. Sharma et al. [4] employed the XGBoost algorithm for house price pre-
diction, while Zhang et al. [5] used regression methods and algorithms based on textual
description data.

Given the instability of rental house data, the choice of prediction model is critical.
Among popular algorithms, CatBoost stands out as a Gradient Boosting Decision Trees
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(GBDT) framework based on oblivious trees, offering strong support for categorical
features and requiring less data [6]. Jabeur et al. [7] demonstrated the adaptability of
CatBoost in corporate failure prediction and house price prediction. Similar tree boosting
methods have been applied to house price prediction [8], with Sharma et al. [4] reporting
the development of an optimal house price prediction model based on XGBoost.

Different from previous work, this paper explores the potential of the CatBoost
algorithm for real estate price prediction. We develop a new system integrating manage-
ment, visualization, and prediction functions for data of rental houses, with the prediction
module based on CatBoost. We specifically apply our system to Halifax (Nova Scotia,
Canada), addressing the demands of potential users by providing a platform to gather
relevant information, train and deploy the CatBoost prediction model, and offer easy
interaction with both the prediction and visualization modules. Our platform provides a
pragmatic approach for house management in Halifax and demonstrates the significant
competence of the CatBoost algorithm in pricing analysis of rental houses.

In Sect. 2, we introduce the CatBoost algorithm and the Housing Rental Information
Management and Prediction System (HRMPS). Section 3 explains how we apply the
CatBoost model to our case. Section 4 demonstrates the final effects of HRMPS applied
in Halifax, based on current housing market data. Finally, in Sect. 5, we discuss the
conclusion and evaluation of our work.

2 Principles of HRMPS Based on CatBoost Algorithm

2.1 Principle of the CatBoost Model

The concept of ensemble modeling involves combining several weak learners using
a specific strategy to collectively accomplish a task. A specific combination strategy
can help the ensemble model reduce prediction bias or variance. Common strategies for
ensemblemodeling include bagging, stacking, and boosting.GradientBoostingDecision
Trees (GBDT) stands out as a remarkable method in boosting models, where the Kth
tree is used to fit the residuals left by the previous K-1 trees, continuously reducing the
overall model error [9].

CatBoost, along with LightGBM and XGBoost, are collectively known as the three
major methods under GBDT. They are all improvements implemented under the GBDT
algorithm. Initially designed to handle categorical features more effectively, CatBoost
also introduces better solutions for gradient bias and prediction shift issues, enhancing
the algorithm’s accuracy and generalization ability [10].
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In supervised learning, the loss function is usually as follows:

L(f (x), y) =
∑

i
ω · l(f (xi), yi) + J (f ) (1)

where,

– l(f (x), y) is the value of the loss function at the point (x, y),
– ωi is the weight of the i-th object,
– J (f ) is the regularization term.

CatBoost use multiple decision trees f t to build the model FT , with trees constructed
sequentially, each aimed at fitting the negative gradient gi of the loss function L in the
current model [11].

FT =
∑T

t=1
f t (2)

gi = − ∂i
(
a,yi

)

∂a

∣∣∣∣∣
a=FT−1(xi)

(3)

The quality of fitting the negative gradient gi of the loss function by each decision
tree is measured by a score function.

CatBoost’s default score function is Cosine, but it allows users to choose other score
functions, including L2, Newton, Cosine, and NewtonL2, whichmeans users can choose
first-order or second-order gradient calculations. It’s important to note that when training
on CPU, only Cosine and L2 scoring functions are supported [9].

Cosine =
∑

ωi · ai · gi√∑
ωia2i ·

√∑
ωig2i

(4)

where,

– ai is the prediction of candidate tree f t for the i-th object xi,
– ωi is the weight of the i-th object.

Efficient handling of categorical features is a key feature of CatBoost. For low-
cardinality features, CatBoost typically uses the one-hot encoding method to convert
features into numerical values. Unlike many models, CatBoost performs one-hot encod-
ing not during data preprocessing but during model training, which is a more efficient
method. However, for high-cardinality categorical features, one-hot encoding may lead
to the curse of dimensionality. In such cases, CatBoost uses the Target Statistics method
to convert categorical features into numerical values. An effective approach is theGreedy
TS with prior distribution added [12].
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x
∧i
k =

∑n
j=1I

{
xij = xik

}
· yj + αp

∑n
j=1I

{
xij = xik

}
+ α

(5)

where,

– i indicates category i,
– k indicates sample k,

– I

{
xij = xik

}
is to determine whether the current sample j belongs to the same category

i as sample k, with 1 indicating a match and 0 indicating otherwise,
– p is the prior probability, which is the average of all target values in the dataset,
– α is the weight controlling the involvement of the prior in encoding.
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In addition, by utilizing Ordered Boosting, CatBoost overcomes gradient bias and
prediction shift issues [13]. Traditional GBDTmethods use all dataset information when
calculating the residuals for each data point, which can lead to overfitting. To prevent
target leakage, CatBoost uses a strategy where each sample is estimated with a separate
model trained on other samples to calculate its gradient. This change from biased to
unbiased estimation helps CatBoost better address gradient bias issues. The description
of building a tree in CatBoost can be found in Algorithm 1.

Another significant difference between CatBoost and other models is its use of obliv-
ious trees as basic predictors [12]. In each step, the leaves of the previous tree are split
using the same conditions, selecting the feature split with the lowest loss and applying it
to all levels of nodes. This balanced tree structure aids in efficient CPU implementation,
reducing prediction time, and serves as regularization to prevent overfitting. Also, this
allows themodel use histogram-basedmethods to search for the best split, distinguishing
it fromXGBoost and LightGBM, which rely on atomic operations and are more efficient
for GPU calculations.

2.2 System Constructure and Data Connection

Our system achieves the fivemajor functions of data mining, analysis, prediction, visual-
ization, and web integration through the collaborative coordination of multiple modules.
We will introduce the principles and contents of these modules. Specific applications
will be demonstrated in the second part (Fig. 1).

Fig. 1. Data Flow Chart of HRMPS
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In general, our system integrates five major modules, including data crawling, data
analysis, data prediction, data visualization andweb integration, to comprehensively and
efficiently connect data from rental websites to the user end [14].

Data Crawling. Based on Python, we crawl data from several rental websites and filter
relevant house rental information, transforming it into usable data types.

Data Analysis. Employing the MySQL database, we establish a connection between
the crawled data and the database, storing the data within [15]. Additionally, by setting
up further patterns, the database is programmed to drive the corresponding data crawling
process at regular intervals, ensuring updates to existing data.

DataPrediction. Leveraging theCatBoost decisionmodel based on Python,we process
the database data into feature data of the corresponding format and train multiple gen-
erations to obtain a predictive model. If necessary, the predictive model can be updated
as the data in the database is updated.

Data Visualization. Utilizing Tableau’s cloud service feature, we connect it with our
MySQL database to import and visualize the data, incorporating various functions such
as data filtering. Furthermore, employing Tableau’s data refreshing feature ensures that
the visualized images are updated as the database data changes [16].

Web Integration. We deploy our predictive model and data visualization modules in
the server, which is connected to web, enabling users from any region to access our
system via URL and operate as needed [17].

3 CatBoost Prediction Model Based on Halifax House Rental
Dataset

3.1 Data Preparation and Pre-processing

The data set used in this paper is the data of house for rent in Halifax, Nova Scotia from
March 24, 2024 to May 9, 2024 that crawled from the online house rental website. The
raw dataset in Table 1 includes the house rent price and the property characteristics of
the rental house.

Database Connection Configuration and Data Acquisition. First, we configure the
database connection for the dataset, including parameters such as host address, port
number, username, password, and database name. By creating the database connection
string db_url, we connect to the MySQL database and execute the SQL query SELECT
* FROM rental_data_analysis to load the query results into the “dataframe” form [18].

Data Cleaning and Processing. In the data preprocessing phase, we address the
numeric substitution of “Studio” and “5 + ” in the “Bedroom” feature, converting them
to float64. Additionally, we standardize the “Type” feature by replacing “Apartments”
with “Apartment”. The “Bathroom”, “Parking Included”, and “Size_sqft” features are
also converted to float64. For the feature “Move_In_Date”, we first convert it to datetime
format. Then, we calculate the number of days from today until the house is available to
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move in. For entries where the date is “Not Available,” the number of days is positive,
indicating availability in the future. For entries with available dates, the number of days
is negative, representing the days since the availability date.

To ensure data accuracy and completeness,we remove rowswhere the “Price” feature
is listed as “Please Contact” and the “Size_sqft” feature is marked as “Not Available”.
Furthermore, we convert the data type of “Price”, “Bedroom”, “Bathroom”, “Parking
Included”, and “Size_sqft” features to float64 for numerical calculations and analysis.

Table 1. Halifax House Rent Dataset Features

Features Detailed introduction Variable type

Price The price of the house (USD) Float

Bedroom The number of bedrooms Float

Bathroom The number of bathrooms Float

Size_sqft The size of the house (sqft) Float

Type The type of the house is apartment, condo, house,
townhouse, duplex/triplex or basement

String

Latitude The latitude of the house Float

Longitude The longitude of the house Float

Utilities_Included Whether hydro, heat and water are provided String

Wi_Fi_and_More Whether Wi-Fi and TV cable are included String

Parking_Included The number of parking Float

Agreement_Type Whether the agreement type is 1 year or
month-to-month

String

Move_In_Date The day when the house is available String

Pet_Friendly Whether pets can be kept in the house String

Furnished Whether the house contains furniture String

Appliances Whether laundry and Dishwasher is provided String

Air_Conditioning Whether air conditioning is included String

Personal_Outdoor_Space Whether yard and balcony are included String

Smoking_Permitted Whether smoking is permitted in the house String

By calculating the mean (2129.75) and standard deviation (28.30) of the “Price”
feature, we determine the outlier threshold using a 3σ approach. Subsequently, we gen-
erate a histogram of the “Price” variable for visual inspection. Outliers are identified and
excluded based on the criterion of retaining data within the range of the mean plus or
minus 3 times the standard deviation (2044.85 ≤ Price ≤ 2214.65) (Fig. 2).
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Fig. 2. Price Histogram before and after Removing Outliers

3.2 Exploratory Data Analysis

Descriptive Statistical Analysis. While performing the data analysis, we analyze the
basic statistics of the dataset, including mean, standard deviation, minimum, maximum,
etc., in order to gain insight into the distribution and characteristics of the data. At the
same time, the distribution of each feature is described, which helps us to understand
the overall characteristics and rules of the data (Table 2).

Table 2. Descriptive Statistical of Halifax House Rental Dataset

Feature Latitude Longitude Bedroom Bathroom Parking
Included

Move-In
Date

Size_sqft

Count 1,776 1,776 1,776 1,776 1,776 1,684 1,776

Mean 44.67 −63.62 1.85 1.36 0.76 −3.55 1,020.99

Std 0.06 0.30 0.99 0.60 0.82 60.37 1,151.99

Min 44.48 −75.48 0.00 1.00 0.00 −
1,286.00

1.00

25% 44.64 −63.64 1.00 1.00 0.00 −25.00 611.50

50% 44.65 −63.59 2.00 1.00 1.00 −9.00 900.00

75% 44.68 −63.58 2.50 2.00 1.00 22.00 1,209.25

Max 45.36 −63.01 5.00 4.00 3.00 144.00 41,252.00

Longitude and Latitude Distribution. The latitude mean in the dataset is 44.67 with a
standard deviation of 0.06, and the longitude mean is -63.62 with a standard deviation
of 0.30. This indicates that the data points are mainly concentrated around these mean
values with a small range of variation.

Number of Bedrooms and Bathrooms. Bedroom has a mean of 1.85 with a standard
deviation of 0.99, and Bathroom has a mean of 1.36 with a standard deviation of 0.60.
Most listings have 1 to 2 bedrooms and 1 to 2 bathrooms.
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Parking Included. Parking included has a mean of 0.76 and a standard deviation of 0.82.
Most listings provide parking, but some do not.

Move-In Date. The mean of move-in date is − 3.55 with a standard deviation of 60.37.
This means that more than half of the homes are now ready for occupancy.

House Size. The average value of house size (Size_sqft) is 1020.99, and the standard
deviation is 1151.99. Listings with sizes between 611.50 and 1209.25 aremore common,
but larger listings also exist, with a maximum value of 41252.00.

Based on the above analysis, the listings in the dataset are mainly concentrated in a
certain range, andmost of the listings have 1 to 2 bedrooms and 1 to 2 bathrooms, provide
parking Spaces, and the house size is at a medium level. In addition, we observe that
there are some missing values in the “Move-In Date” feature, but the CatBoost model
can handle this effectively.

Distribution of Specific Categorical Variables. To understand the housing rental sit-
uation in the Halifax market, we also examine the distribution of different types of rental
houses (Fig. 3).

Fig. 3. Percentage of Feature - Type
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Apartments dominate the housing rental market in Halifax, with houses and condos
following as the next popular choices. Other housing types, including duplexes/triplexes,
basements, and townhouses, have smaller market shares, indicating relatively lower
demand.

Correlation Analysis for Numerical Variables. In the correlation analysis, we care-
fully investigate the relationships between each feature to identify strong correlations
with the target variable. This analysis provides valuable insights into how different
features, such as house size and price, interact and contribute to the target variable.

In Fig. 4, We observe that the number of bedrooms and bathrooms has a relatively
strong correlation with the price, while the correlation between parking included and
price is relatively low. Surprisingly, the correlation between size_sqft and price is the
lowest, presenting a departure from established paradigms. This incongruity implies
that purchasers assign greater value tometiculously designed and functionally optimized
spatial arrangements, evenwithinmore compact real estate holdings, thereby augmenting
their perceived worth and consequentially elevating transaction prices.

Fig. 4. Heat Map for Numerical Variables
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3.3 Model Training

Dataset Splitting. During model training, the dataset is split into a training set and a
test set, where the training set is 80% and the test set is 20%. This means that 80% of the
data is used to train the model while 20% of the data is used to evaluate the performance
of the model. By splitting in this way, it can be helpful to use the test set to tune the
hyperparameters of the model to improve the performance of the model.

Model Parameter Settings. The parameters selected for themodel, such as the number
of iterations, learning rate, tree depth, loss function, evaluation metric, random seed,
and overfitting detection settings, are crucial for enhancing prediction accuracy and
generalization capabilities.

By setting the number of iterations to 500, the model can learn dataset patterns and
features more effectively. A learning rate of 0.13 balances training speed and accuracy,
while a tree depth of 11 allows for learning complex patterns without risking overfitting.
The RMSE loss function optimizes model training by reducing errors between predicted
and true values. Consistency between the RMSE loss function and evaluation metric
ensures accurate model assessment. A random seed of 99 aids results reproducibility,
while overfitting detection settings prevent model overfitting.

K-fold Cross-Validation Process and Results (K = 5). We adopted a k-fold (5-fold)
cross-validation approach, where the dataset is divided into 5 subsets, and training and
validation are performed alternately on each subset to evaluate the generalization ability
and stability of themodel. By analyzing the cross-validation results, we select the optimal
model parameters and performance metrics to ensure that the model performs stably and
has good generalization ability on different datasets.

3.4 Model Evaluation and Performance

Feature Importance Calculation and Visualization. Feature Weights: During train-
ing, the model assigns a weight to each feature based on information gain and Gini
coefficient. These weights indicate the importance the model places on each feature.
Higher weights suggest that the feature has a greater impact on the model’s predictions,
making them a key component of feature importance analysis.

Through the analysis of feature importance, we can discover that the number of
bedrooms, the size of the house, and other intrinsic attributes of the house has higher
importance, while additional features such as “furnished” and “air conditioning” have
relatively lower importance (Fig. 5).
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Fig. 5. Feature Importance

Model Performance Analysis. Interpretable R-squared of 0.77, taking into account
the number of independent variables used in themodel, provides amore accuratemeasure
of model fit, indicating that the model can explain approximately 77% of the variance
in the dependent variable. A mean absolute error (MAE) of 196.03 reflects the average
absolute difference between predicted and actual values, with a lower MAE indicating
more accurate predictions. The mean squared error (MSE) of 100072.66, representing
the average squared difference between predicted and actual values, also suggests more
accurate predictions by the model (Table 3).

Table 3. Model Performance Metrics

Interpretable R2 mean absolute error (MAE) mean square error (MSE)

0.77 196.03 100072.66

These data demonstrate that our use of the CatBoost model for house price prediction
in Halifax is relatively accurate and can provide effective assistance to house rental
professionals (Fig. 6).

The model is accurate for most of the price predictions, but has relatively poor
prediction accuracy for values that are far from the mean. We look forward to proposing
new methods to produce better performance in future study.
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Fig. 6. Comparison of True and Predicted Values

4 Application of HRMPS in Halifax Region

In the case ofHalifax, HRMPS is presented on thewebpage inHTML language. Through
the integrated connection of thewebpage, server, and data source byAxios [19] andNode
[20], we can easily ensure that the information on the webpage remains up-to-date [21].
Our webpage consists of two main subpages: the visualization page and the prediction
page.

Within the visualization page, users can utilize sliders above the tableau module [22]
to filter the desired property types based on price and area [23]. Additional filters and

Fig. 7. Visualization of the Halifax dataset on Tableau
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options can be selected from specific perspectives on the right sidebar. Detailed infor-
mation about each specific location, including a link to the official website of the house,
is provided. The housing listings and search modules are located on the right side of
the visualization page, allowing users to access house information by entering keywords
in the search box or scrolling through the list. The download buttons for downloading
house data and the prediction module are located at the top of the visualization page
(Figs. 7 and 8).

Fig. 8. Visualization of the Halifax dataset on Web Site

Users can navigate to the prediction page by clicking on the “prediction” button. In
this page, users can interactively input or select specific information to make predic-
tions according to their requirements. Notably, for latitude and longitude input, we have
integrated the Google Maps API, enabling users to select a point on the map instead of
manually entering coordinates [24]. The server-side program will automatically use the
latitude and longitude of the selected point as input for price prediction. Upon comple-
tion of the form and clicking the “Submit” button, the predicted price will be returned
(Fig. 9).



244 S. Shao et al.

Fig. 9. Prediction Features Input Form on Web Site

5 Conclusions

In conclusion, the Housing Rental Information Management and Prediction System
based on CatBoost Algorithm (HRMPS) not only features a comprehensive structure,
extensive functionality, and strong practicality but also possesses significant adaptability
and commercial prospects, bringing new perspectives and opportunities to the house
rental information management field.

The system exhibits a comprehensive structure and functionality, providing a holistic
solution for house rental information management. By integrating five major functions
including data mining, analysis, prediction, visualization, and web integration, users are
able to complete the entire process from data processing to decision support within a
single platform. This comprehensiveness not only enhances the practical value of the
system but also improves user experience, enabling more effective responses to the
complexities of the house rental market environment. Additionally, the system’s data
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refreshing feature based on databases and Tableau enables automatic updates, signifi-
cantly reducing the workload for data maintenance and enhancing the timeliness and
accuracy of information.

The system’s practicality is demonstrated by its ability to address real-world prob-
lems. Using the application in the Halifax region as an example, the system not only
conducts data analysis and prediction for specific issues but,more importantly, itsmodels
are built based on actual demands, ensuring high authenticity and reliability. In contrast,
many theoretical models often struggle to be directly applicable in practical contexts,
whereas our system can directly confront and solve real-world problems, ensuring its
feasibility and effectiveness in practice.

Finally, the adaptability and commercial prospects of the systemadd long-termvalue.
The system can easily adapt to various regional house rental information management
needs, and based on its fundamental model approach, with appropriate upgrades and
adjustments, can achieve initial commercial development. For instance, by enhancing
data security, optimizing user interfaces, and providing customized services, our system
can attract more commercial clients and generate broader applications and value in the
house rental industry and related fields. This commercial prospect not only enhances the
system’s sustainability but also brings broader development opportunities and returns
for users and investors.
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Abstract. This research paper presents a novel approach to Rental Market Anal-
ysis for Property Management Firms using Large Language Models (LLMs) and
Machine Learning techniques. The proposed system leverages LLM-based web
scraping to extract data from dynamic websites, enabling the automated collec-
tion of relevant market information. By employing LLMs, the system generates
insightful comparisons between property management firms and their listed prop-
erties, providing a comprehensive understanding of the competitive landscape.
Additionally, an ensembledmachine learning approach, utilizingmultiplemodels,
is developed to accurately predict rental prices. The integration of these cutting-
edge technologies empowers property management firms with a dashboard that
offers insightful analytics, predictive capabilities, and generated insights for data-
driven decision-making. The system’s architecture combines Python, ReactJS,
AWS, PowerBI, PostgreSQL and OpenAI APIs to create a user-friendly inter-
face that facilitates seamless data interaction and enhances insight generation. By
automating data collection, analysis, and insight generation, this novel approach
revolutionizes traditional rentalmarket analysis processes, enabling propertyman-
agement firms to stay competitive andoptimize their business strategies in dynamic
rental markets.

Keywords: Rental Market Analysis · Property Management · Large Language
Models ·Machine Learning ·Web Scraping · Predictive Analytics · Ensembled
Models · Automated Data Collection

1 Introduction

1.1 Background

Rental Market Analysis is essential for the success of Property Management Firms,
enabling them to optimize pricing strategies andmaintain a competitive edge. Traditional
methods, however, are manual and time-consuming, hindering the firms’ ability to adapt
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quickly to market dynamics [1]. The emergence of Large Language Models (LLMs)
and Machine Learning techniques offers a transformative potential for Rental Market
Analysis [2].

Property Management Firms often struggle with the manual collection and process-
ing of data, leading to outdated or incomplete information, which complicates decision-
making. Moreover, the lack of automated tools and real-time analytics further limits
their capability to derive actionable insights from the data [3].

To address these challenges, we propose NS-Rentals, a novel system utilizing LLMs
and machine learning to automate data collection, cleaning, analysis, and insight gener-
ation. NS-Rentals integrates technologies such as LLM-based web scraping, ensembled
machine learning, and dynamic user interfaces, offering a comprehensive solution that
provides real-time insights into the rental market [4]. This system is designed to enhance
predictive analytics, automate data management, and enable quick responses to market
changes, significantly reducing the time and resources required for effective market
analysis.

The primary objective of this research is to evaluate the efficacy of NS-Rentals
in revolutionizing Rental Market Analysis, empowering Property Management Firms
with the ability to make informed, data-driven decisions [5]. The significance of this
research lies in its potential to streamline processes, enhance strategic decision-making,
and provide firms with a competitive advantage in a rapidly evolving market.

2 Related Works

Recent advancements in machine learning (ML) and large language models (LLMs)
have provided significant insights into various analytical domains, including rental
market analysis. Several researchers have contributed to this field by integrating these
technologies for data collection, analysis, and prediction.

Liu et al. (2023) explore the use of pre-trained language models for various datasets,
highlighting theversatility ofLLMs indata-driven scenarios, includingpropertymanage-
ment and rental predictions. This work demonstrates the effectiveness of reinforcement
learning models combined with LLMs for enhancing prediction accuracy in dynamic
markets like real estate [6]. Biderman et al. (2023) provide a comprehensive analysis of
large language models across different scales. They emphasize the correlation between
model size and performance, suggesting that larger models exhibit enhanced capabili-
ties in capturing market nuances, crucial for rental market predictions [7]. Ziems et al.
(2024) discuss the potential of LLMs in computational social science, which can be
applied to analyze real estate markets by understanding market trends and consumer
behavior through language processing tools [8]. Rae et al. (2021) investigates the use
of ensembled ML models in prediction tasks, demonstrating that combining multiple
models often results in improved accuracy and robustness against varying data qualities.
This approach is beneficial for predicting rental prices where market conditions fluctuate
frequently [9]. Gao et al. (2023) introduce Program-aided Language models (PAL) that
leverage the capabilities of LLMs to read and interpret market data, providing a novel
approach for comparative analysis in the property sector [10].

Teubner et al. (2023) discuss the increasing prominence of LLMs in generating
actionable insights from large data sets. Their study emphasizes how LLMs streamline
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web scraping processes, making them more efficient and less prone to errors typically
associated with traditional scraping techniques. This application directly supports use
cases in competitive market analyses such as the rental sector [11]. Fellman, Tyo, and
Lipton (2024) present advances in web data mining, highlighting the integration of
multimodal data extraction methods enhanced by LLMs. Their research outlines the
potential for thesemodels to offer deeper insights by analyzing diverse data types, crucial
for understanding nuanced market dynamics [12]. Lei, Docherty, and Cooper (2024)
explore how LLMs can generate significant insights through automated web scraping,
specifically focusing on their application in materials science. While their domain focus
is different, the techniques discussed are applicable to rental market analysis, where
diverse data sources are prevalent [13].

These studies collectively underscore the transformative impact of LLMs and ML
techniques in rental market analysis. They offer a roadmap for property management
firms to leverage cutting-edge technologies for data-driven decision-making and strate-
gic planning. By automating the collection, analysis, and prediction processes, these
approaches significantly enhance operational efficiency and market responsiveness for
property management firms.

3 Methodology

3.1 System Architecture

Fig. 1. Architecture

The proposed system (Fig. 1), NS-Rentals, employs a modular architecture designed
to optimize the rental market analysis process through advanced technologies and frame-
works. This system is hosted on AmazonWeb Services (AWS) to leverage its scalability
and reliability, ensuring efficient deployment and operation.
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• Data Acquisition: Utilizes Python scripts on AWS EC2 instances, scheduled to run
as cron jobs twice daily. These scripts scrape data from multiple sources includ-
ing competitor data, public rental listings, and regional data from Halifax Regional
Municipality (HRM).

• Data Processing and Storage: Scraped data undergoes cleaning and processing to
ensure quality before storage in a PostgreSQL database. An incremental load strategy
minimizes redundancy, focusing only on new or updated listings.

• Backend Server: Powered by FastAPI, this layer facilitates robust and efficient API
management, connecting the data backend with the frontend application.

• Frontend Application: Developed using ReactJS, the frontend provides a dynamic
and interactive user interface, enabling users to seamlessly explore and analyze data.

3.2 Dataset

The research utilizes a comprehensive dataset comprising various data streams (Fig. 2)
to offer a holistic view of the rental market:

Fig. 2. Data Collection and Preparation

Competitor (Builders) Data
Extracted using advanced LLM-based web scraping techniques, capturing essential
market offerings.

Public Rental Listings
Includes data from online platforms specific to the Halifax region.

Commercial Parking Data
Details parking facilities’ data, impacting rental property desirability.

Halifax Regional Municipality (HRM) Data
Includes building permits and zoning changes to forecast market supply.

Location and Proximity Data via Google API
Uses Google API for accurate property geolocation and proximity to essential services.
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3.3 Feature Engineering/Selection

In this study, feature engineering plays a pivotal role in transforming raw data into a
structured and analyzable format, specifically for predicting the monthly rent of apart-
ments and houses. Unstructured text from real estate listings is converted into structured
data using Large Language Models (LLMs), which systematically process and organize
textual descriptions into JSON formats suitable for database storage and analysis, as
demonstrated by Radford et al. (2019) [15]. Additionally, categorical data such as prop-
erty types and zoning classifications are numerically encoded through label encoding to
avoid the high dimensionality associated with one-hot encoding, a technique highlighted
for its effectiveness by Harris et al. (2020) [16].

Numerical attributes like rates and square footage undergo logarithmic transforma-
tions to normalize distributions and reduce skewness, enhancing model accuracy and
stability, a method supported by Osborne (2010) [17]. Furthermore, continuous data
such as apartment sizes are categorized into distinct bins (‘unit_size_buckets’), which
simplifies analysis by highlighting non-linear relationships, as discussed by Liu et al.
(2018) [18]. The integration of geographic data using theGoogleAPI enriches the dataset
by providing distances to essential services, thereby influencing rental desirability and
pricing, a technique validated by Zhang et al. (2021). These engineered features are
essential for the subsequent machine learning analysis, ensuring that the models are fed
data that accurately reflects the complexities of the rental market.

Engineered Features
We engineered several attributes to provide a clearer picture of what each rental prop-
erty offers. These attributes are directly derived from textual descriptions using Large
Language Models (LLMs) which parse and organize data into structured formats:

• Utility Inclusions: Attributes such as utility_water, utility_heat, utility_electricity,
and wifi_included clarify what utilities and services are included in the rental price,
a crucial consideration for renters.

• Furnishings: The is_furnished attribute specifies the furnishing status of the property,
which significantly impacts rental desirability and pricing.

• Parking: The parking_availability attribute details the specifics of parking facilities,
another important factor for potential renters.

• Pet Policy: The pet_friendly attribute indicates whether pets are allowed, affecting
the suitability of the property for pet owners.

• Location Coordinates: Attributes add_lat and add_long provide precise geographical
coordinates of the properties, derived from the address.

Derived Features via Google API
Utilizing the Google API, we enriched the dataset with geographical distances from each
property to key locations, which can significantly influence rental decisions:

• Proximity Features: Attributes like dist_school, dist_restaurant, dist_downtown,
dist_busstop, and distances to notable areas such as Rockingham, Clayton Park, Larry
Uteck area, and central Halifax provide insights into the property’s accessibility and
neighborhood desirability.
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Final Feature Set
After thorough exploratory data analysis and feature engineering, the final set of features
used for modeling includes:

• Basic Information: building_name, apartment_number, address, add_lat, add_long,
company_name, property_type.

• Unit Specifications: bedroom_count, bathroom_count, is_furnished.
• Utility and Amenities: utility_water, utility_heat, utility_electricity, wifi_included.
• Parking Details: parking_availability, parking_slots, parking_rates,

parking_distance, parking_address.
• Pet Policy: pet_friendly.
• Additional Attributes: unit_size, included_appliances, lease_duration, availabil-

ity_status.
• Proximity Measures: dist_hospital, dist_school,

dist_restaurant, dist_downtown, dist_busstop, dist_rockingham, dist_clayton_park,
dist_larry_uteck_area, dist_central_halifax.

3.4 AI and ML Methodology

Ensemble ML Model for Prediction
In our analysis of the Halifax rental market, we employed a systematic approach to

predict rental prices, beginning with an extensive data cleaning and preparation phase.
The initial dataset comprised 2,275 records with 47 features, which were refined through
geographic enrichment using Google API for precise location data and parking data
integration to enhance listings. Outliers with unrealistically low rents were removed
to maintain data integrity, and non-essential attributes such as building names were
excluded to focus on variables directly impacting rental prices. Missing values were
meticulously handled by imputing with median or mode values based on the feature
type.

Following data preparation, exploratory data analysis (EDA) was conducted to
uncover key insights and correlations between property features and rental prices. This
phase included correlation analysis to identify strong predictors and outlier management
to normalize distributions of key variables like monthly rent and apartment size. New
categorical features based on proximity to essential amenities were created and encoded
to refine the predictive model’s accuracy. Feature engineering also played a crucial role
in transforming raw data into structured formats that are more amenable to modeling.

The finalmodeling phase (Fig. 3) employed an ensemble learning approach, integrat-
ing several machine learning models to leverage their collective strengths and mitigate
individual weaknesses. Models such as Random Forest [25], Gradient Boosting [26],
XGBoost [27], CatBoost [28], and Lasso [29] to leverage their collective strengths and
mitigate individual weaknesses. These models were selected after exploring 9 different
ML models including Artificial Neural Networks, with hyperparameter tuning facili-
tated by the Optuna framework [30] and k-fold cross-validation. The ensemble model
was weighted according to performance metrics from the validation dataset, focusing on
minimizing the rootmean square error (RMSE) andmaximizing theR-square value. This
comprehensive methodology ensured the development of a robust predictive model that
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Fig. 3. Ensemble Learning

effectively captures the dynamics of the rental market, providing accurate and actionable
insights for property management and investment strategies.

Nearest Neighbors (NN) for Competitive Analysis
The Nearest Neighbors (NN) algorithm plays a pivotal role in our strategy to position
property management firms competitively in the real estate market. By employing the
NN algorithm, specifically optimizedwith the ‘ball_tree’method, we effectively identify
the top five listings that most closely match each competitor’s property.

The training of the Nearest Neighbors model was meticulously carried out on pre-
processed data, focusing on features that define competitive attributes of properties.
We fine-tuned the model by adjusting the number of neighbors and distance metrics
to ensure that the model does not overly restrict or dilute the recommendations. After
various experiments, the model was set to identify ten nearest neighbors, striking a bal-
ance that provides diverse and relevant comparisons across the competitive landscape.
The choice of the ‘ball_tree’ algorithm was crucial for managing the high-dimensional
data efficiently, significantly speeding up the query times for nearest neighbors searches
compared to brute-force methods [20, 21].

This analytical capability equips property management firms with the intelligence
to refine their marketing and pricing strategies effectively. By understanding the finer
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nuances of how their properties compare to competitors, they can make informed
decisions that help their offerings stand out in a dynamic market.

LLM-Based Web Scrapping
In this study, we employ advanced web scraping techniques powered by Large Language
Models (LLMs) to collect data from dynamic websites. The scraping process utilizes
Python scripts that leverage tools such as BeautifulSoup, Selenium, and Scrapy to extract
HTML content from targeted websites. The extracted content undergoes post-processing
to retain only the relevant information. To enhance the accuracy and efficiency of the
data extraction process, the system employs a technique called Chain of Thoughts (CoT)
in conjunction with the OpenAI GPT-4-Turbo model. CoT is an iterative approach that
guides the LLM to extract listings based on a predefined database schema. By providing
the model with a one-shot prompting technique, where an example input and output are
used as a reference, the system ensures consistent and valid data extraction from theweb-
sites. Chain-of-thought prompting is a powerful method that enhances the performance
of LLMs by encouraging them to mimic human reasoning processes. By incorporating
instructions into the input prompt, the model is directed to explain its reasoning step
by step, providing not only the final answer but also the intermediate steps leading to
that conclusion. This technique has proven effective in improving model performance
on complex tasks that require logical thinking, calculations, and decision-making [22,
23].

LLM Generated Insights
Our system generates two types of LLM-powered insights to aid in the comparative
analysis of property management offerings. The first type of insight involves comparing
two property management firms. When a comparison is initiated, relevant data about
the selected properties is retrieved and passed to the GPT-4-Turbo model using a one-
shot prompting technique. This method allows the model to understand the specifics
of the required insights, enabling it to generate detailed comparisons that highlight the
strengths and weaknesses of each firm. Similarly, the second type of insight focuses on
comparing individual properties. Utilizing the same one-shot prompting technique, the
GPT-4 model processes the provided data to produce insights that evaluate factors like
location, amenities, and pricing, thereby aiding potential renters or investors in making
informed decisions.

The one-shot prompting approach is crucial in both scenarios, as it equips the LLM to
quickly adapt to the specific analysis task, ensuring that the insights generated are not only
relevant and informative but also directly applicable to the user’s needs. This technique
underscores the potential of LLMs to transform data into actionable intelligence, thus
providing NS-Rentals with a significant advantage in the competitive real estate market
[15, 24].

4 Results and Validation

4.1 Ensemble-Based ML Rent Prediction Model Results

For a comprehensive understanding of the model’s predictive capability, two primary
metrics were employed:
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• RMSE (Root Mean Square Error): This quantifies the average deviation between the
model’s predictions and the actual rental values, providing a measure of prediction
error.

• R-Square (Coefficient of Determination): This reflects the proportion of the variance
in rental prices that is predictable from the model’s features.

The RMSE for various regression models are below (Fig. 4).

Fig. 4. Root Mean Square Error (RMSE) for various regression models

After exporting various predictive models using training data. The selection criteria
hinged on:

• The strengths of each algorithm and its suitability for the dataset were considered
based on their RMSE.

• Prioritywas given tomodels likeXGBoost, CatBoost, RandomForest for their ensem-
ble techniques which have proven beneficial in reducing overfitting and enhancing
generalization in structured datasets [14] (Table 1).

Table 1. Various Model used for Ensemble Learning

Model Interpretation RMSE Ensemble Model

ANN ANN model has the highest
RMSE, suggesting that it might
be overfitting to the training
data

1746.375 N/A N/A

SVM The SVM’s RMSE is lower
than the ANN, indicating better
performance. This may be due
to its ability to find a
hyperplane that best separates
the data points

504.122 N/A N/A

(continued)
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Table 1. (continued)

Model Interpretation RMSE Ensemble Model

Bayesian
Ridge

This model introduces
Bayesian inference to the ridge
regression, which could explain
the lower RMSE due to its
probabilistic approach that can
handle uncertainty and prevent
overfitting

257.869 N/A N/A

Lasso
Regression

Lasso introduces L1
regularization, which can zero
out less important features,
leading to simpler and more
interpretable models that
performed relatively well in
validation

252.184 1/252.184 0.1540.154

Gradient
Boosting

Shows a significant
improvement and lower RMSE.
Its iterative approach to
minimizing errors can be
attributed to its strong
performance

185.215 1/185.215 0.21

Random
Forest

As an ensemble of decision
trees, it naturally handles
non-linear data well. Its good
performance might stem from
its ability to average out biases
and reduce variance

181.253 1/181.253 0.215

CatBoost Tailored to handle categorical
variables effectively, its lower
RMSE could be due to its
ability to prevent overfitting on
the training dataset, which can
be quite common with gradient
boosting methods

186.419 1 / 186.419 0.209

XGBoost It generally performs well on
structured data and its low
RMSE here suggests that it
effectively captured the
patterns in the dataset, possibly
due to its sophisticated
regularization which improves
model generalizability

186.289 1/186.289 0.209

Final Model Predictive Performance: The culmination of the model training process
was an ensemble approach, wherein individual model predictions were weighted and
normalized. The key performance indicators were:
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• RMSE:Achieved a value of 182.02, suggesting the predictions arewithin a reasonable
margin of error.

• R-Square: An impressive 0.85, denoting that the model accounts for 85% of the
variability in rental prices (Fig. 5).

Fig. 5. A scatter plot of actual vs. predicted rents

The scatter plot analysis of actual versus predicted rents demonstrates strong model
accuracy, particularly within the median price range, indicating reliable predictions
where data is densest. However, there is noticeable variability at the pricing extremes,
pointing to less precision for properties with very low or high rents. Isolated data points,
especially at higher rental values, suggest potential outliers or unique property features
that are not fully captured by the model. Overall, the ensemble model effectively reflects
Halifax’s rental market dynamics and supports pricing strategies.

4.2 Nearest Neighbor Results

To validate the model’s effectiveness, the silhouette score was computed for the cluster
formed by the target property and its nearest neighbors against the rest of the properties.
For a given set of properties, we treated the target southwest property and its nearest
neighbors (competitor property) as a “cluster” and computed the silhouette score with
respect to this and other properties.A silhouette score of 0.4103441791255was achieved,
indicating a moderate to good level of separation between the target property’s cluster
and other properties. This score suggests that the nearest neighbors identified share more
similarity with the target southwest property than with properties outside of this cluster,
validating the model’s capability in generating relevant property recommendations.
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4.3 Validation and Evaluation of LLM BASED Insights Generation

In the results and validation section of our study, we utilized the GPT-4 Preview model
to assess the quality of insights generated by the Language Learning Model (LLM). To
facilitate this evaluation, the GPT-4 Preview was prompted to act in the capacity of a
property management expert, tasked with assessing the insights based on parameters
such as Consistency, Insight Utility, and Correctness (Figs. 6 and 7).

Fig. 6. LLM Based Insights Generated by GPT-4

Fig. 7. Validation of LLM Based Insights by GPT-4-Preview

To conduct this evaluation, detailed descriptions and relevant information about each
propertywere provided to theGPT-4Previewmodel. Following this, themodelwas asked
to generate comparative insights, mimicking the real-world decision-making process of
property management professionals. The comparison results from the GPT-4 Preview
were then used as a benchmark to evaluate the insights generated by the LLM.
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The insights generated by the LLM were scored based on how well they aligned
with the benchmark insights from the GPT-4 Preview model. This comparative analysis
yielded scores for each evaluation parameter, which demonstrated the LLM’s capability
in providing accurate and useful insights for property management (Table 2).

Table 2. LLM Evaluation Results

Metrices Score percentage

Consistency Rate 89

Insight Utility 87

Correctness 85

This method of validation not only confirms the efficacy of the LLM in generating
actionable insights but also highlights the advanced capabilities of GPT-4 Preview in
performing as an expert evaluator within this domain.

5 Conclusion

This research presents NS-Rentals, a novel system leveraging Large Language Models
(LLMs) and machine learning to revolutionize rental market analysis for property man-
agement firms. By automating data collection from dynamic websites using LLM-based
web scraping, NS-Rentals provides a comprehensive and up-to-date view of the com-
petitive landscape. The system’s ensembled machine learning approach offers accurate
rental price predictions, empowering firms to optimize pricing strategies. Furthermore,
the integration of LLMs enables the generation of insightful comparisons between both
property management firms and individual properties, offering a deeper understanding
of market dynamics.

NS-Rentals, through its user-friendly dashboard, facilitates seamless data interaction
and empowers data-driven decision-making. The system’s architecture, built upon a com-
bination of Python, ReactJS, AWS, PowerBI, PostgreSQL, and OpenAI APIs, ensures
scalability, reliability, and efficient deployment. This research demonstrates the signifi-
cant potential of LLMs andmachine learning to transform traditional rental market anal-
ysis, providing propertymanagement firmswith the tools and insights necessary to thrive
in a dynamic market. Future work will explore incorporating additional data sources,
refining LLM-generated insights, and developing personalized recommendations based
on user preferences and market trends.
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Abstract. Liver disease accounts for 4% of all deaths worldwide. Exist-
ing research on liver disease with rough set mostly studied from the per-
spective of clinical diagnosis, but has not yet been studied from the per-
spective of clinical medical test decision-making. To address the problem,
this paper first converts the clinical diagnosis problem of liver disease into
the clinical medical test decision-making problem of liver disease. Then
the rough set variant of granular-ball rough set can be used to reduce
the attributes of clinical medical test decision-making tasks of liver dis-
ease. Next, the clinical medical test decision-making problem is simplified
to a classification task. Finally, the proposed method is experimentally
verified on the processed liver disease dataset.

Keywords: rough set · granular-ball · clinical medical test ·
decision-making

1 Introduction

Liver disease accounts for over two million deaths annually and accounts for 4%
of all deaths worldwide (1 out of every 25 deaths) [4]. The WHO has called on
countries to eliminate viral hepatitis, which is one of the liver disease, as a public
health threat by 2030 [15,24]. In the clinical diagnosis process of liver disease,
doctors comprehensively analyze the patient’s physical signs and marker test
results to determine whether the patient has liver disease. Before determining
that the patient has a certain liver disease, doctors will comprehensively consider
the patient’s clinical physical signs, and then decide which clinical medical tests
the patient should undergo [5]. The issue of clinical medical test decision-making
can be abstracted from clinical diagnosis decision-making for liver disease, see
Fig. 1. This issue can be specifically formulated as: without prior knowledge, from
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Fig. 1. Clinical diagnosis decision-making vs. Clinical medical test decision-making.

a data-driven perspective, assuming that doctors have determined the specific
clinical physical signs of patients with liver disease, what test decisions should
doctors make about clinical medical tests?

Rough set is a typical data analysis method, and it has had many applications
in liver disease diagnosis. Rough set is initially introduced by Pawlak [17]. Yahia
et al. merged the rough set with neural networks to do medical diagnosis task
[25]. Kaya and Uyar proposed a hybrid medical decision support system based on
rough set and extreme learning machine to do the diagnosis of hepatitis disease
[13]. Acharjya and Ahmed using the bat algorithm to select attributes and using
rough set to generate decision rules [2]. Kumari and Acharjya proposed a decision
support system based on the rough set and the artificial fish swarm algorithm for
diagnosis of hepatitis disease [14]. The targets of all these methods are all clinical
diagnostic problems of liver disease. Then a natural problem can be raised, since
rough set can be used for clinical diagnosis of liver diseases, can rough set also
be used for clinical medical test decision-making of liver disease?

The classic rough set proposed by Pawlak is only applicable to discrete data
[23]. In the attributes of clinical physical signs of liver disease, there is a mix-
ture of discrete and continuous data. Neighborhood rough set [21] is a common
rough set variant used for continuous data, but it loses the ability to represent
knowledge with equivalence classes [23]. Combining the advantages of classi-
cal rough set in discrete data and neighborhood rough set in continuous data,
and inspired by granular cognitive computing proposed by Wang [9], Xia et al.
proposed granular-ball rough set, which can process both discrete data and con-
tinuous data. Compared with the classical rough set, is granular-ball rough set
more suitable for clinical medical test decision-making that mix discrete data
and continuous data? The main contributions of this paper are as follows:

1) Converting the clinical diagnosis decision-making problem of liver disease
into the clinical medical test decision-making problem of liver disease.

2) Taking advantage of that granular-ball rough set can handle both discrete
data and continuous data simultaneously, granular-ball rough set is better to do
attribute reduction on clinical physical attributes than classical rough set.

3) After attribute reduction, the selected attributes are used to do exper-
imental verification by the classifier to prove the effectiveness of granular-ball
rough set for clinical medical test decision-making problem.
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2 What Is the Clinical Medical Test Decision-Making
in Liver Disease?

Figure 1 shows the comparison between the clinical medical test decision-making
problem and the clinical diagnosis decision-making problem. To elaborate what
is the clinical medical test decision-making in liver disease, this paper extract
several real samples from the datasets of [28,29] as example table, then using this
example table to explain how to transform the clinical diagnosis decision-making
problem of liver disease into a clinical medical test decision-making problem.

Fig. 2. Clinical diagnosis decision-making in liver disease.

Fig. 3. Clinical medical test results convert to clinical medical test decisions.

Figure 2 shows the example table. The first column represents the patient
sample that selected from [28,29]. Taking the representation of ‘1(C.14)’ as an
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example. ‘1’ represents the ID of the patient sample in this example table, ‘C’
represents the dataset of [29], ‘14’ represents the corresponding sample ID in
the corresponding dataset. 7 samples have been selected in this example table,
4 samples from [29], 3 samples from [28]. The ‘clinical physical signs’ in Fig. 2
represent the patient’s clinical physical signs before clinical medical test. In the
clinical physical signs, ‘Y’ indicates that this phenomenon of the attribute exists,
‘N’ indicates the opposite. The ‘clinical medical test results’ in Fig. 2 represent
the patient’s clinical medical test results which doctor choose to do. Items with
value indicate that the patient has undergone the corresponding clinical medical
test, and items without value indicate the opposite. The ‘liver disease diagnosis’
in Fig. 2 represent the patient’s clinical diagnosis of liver disease. ‘Y’ indicates
that this patient has the corresponding liver disease, and ‘N’ indicates the oppo-
site.

Fig. 4. Clinical medical test decision-making in liver disease.

In the clinical medical test results in Fig. 2, some items have values and some
items have no values. Assuming that the item without value means that doctors
think this clinical medical test is not necessary. Then the clinical medical test
results in Fig. 2 can be converted into the clinical medical test decisions in Fig. 3.
‘1-0’ means that the doctor thinks this medical test should be done or not.

Because the problem of this paper is to decide which clinical medical test
items to do based on the clinical physical signs in patients, the final diagnosis
of liver disease is not within the scope of discussion. Therefore, the final clinical
medical test decision-making in liver disease can be seen in Fig. 4.
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3 Rough Set Theory and Granular-Ball Rough Set

3.1 Rough Set Theory

Rough Set Theory(RS) [17] was proposed by Professor Pawlak in 1982, it has
been widely used in many fields such as machine learning, data mining, and
artificial neural networks [1,8,12]. RS mainly use an information system as the
research object to study the dependencies between attributes [11]. Formally, the
information system can be expressed as the 4-tuple [18]: S = 〈U,A, V, f〉. The
detailed definition of information system refer to Definition 1.

Definition 1. Let S = 〈U,A, V, f〉, A = C∪D, represent an information system.
U represents a finite nonempty set of objects. U is also called the universe. R
represents a finite nonempty set of attributes, the subsets C and D are called con-
dition attribute set and decision attribute set, respectively. V = ∪a∈AVa denotes
the set of all attribute values, where Va denotes the set of values of attribute a.
f : U × A → V denotes a mapping function: ∀xi ∈ U, a ∈ A, f(xi, a) ∈ Va .

When the set of attributes in the information system satisfies A = C∪D,C∩
D = ∅,D 
= ∅, the information system is called a decision system 〈U,C,D〉, where
C is the condition attribute set and D is the decision attribute set.

Definition 2. Let S = 〈U,A, V, f〉, A = C ∪ D, be an information system.
∀x, y ∈ U and B ⊆ A, the indiscernible relation IND(B) of the attribute subset
B is defined as:

IND(B) = {(x, y) ∈ U × U |f(x, a) = f(y, a),∀a ∈ B}. (1)

In RS, f(x, a) represents the attribute value of a in the sample x. f(x, a) =
f(y, a) represents that the sample x and the sample y have the same value
in attribute a. If the sample x and the sample y both have the same value
under the attribute subset B, the sample x and the sample y are indiscernible.
The partition according to the indiscernible relation IND(B) can be formed in
Definition 3.

Definition 3. Let S = 〈U,A, V, f〉, A = C ∪ D, be an information system.
∀B ⊆ A, IND(B) is an equivalence relation on U . IND(B) creates a parti-
tion of U , denoted as U/IND(B), abbreviated as U/B. Suppose that U/B =
{X1,X2, · · · ,Xk}, if Xi,Xj ⊆ U,Xi ∩ Xj = ∅(i 
= j),∪k

i=1Xi = U , the equiva-
lence class of an sample x can be defined as:

[x]IND(B) = {y ∈ U |(x, y) ∈ IND(B)}. (2)

[x]IND(B) can be simply as [x]B or [x], if no confusion arises.

When the partition formed by indiscernible relation is used to describe a
subset of universe, two sets can naturally be used to describe the relationship
between the partition formed by indiscernible relation and the subset of universe.
See Definition 4 and Definition 5 for details. Definition 4 describe one subset of
universe, Definition 5 describe multiple subsets of universe.
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Definition 4. Let S = 〈U,A, V, f〉, A = C∪D, be an information system. ∀B ⊆
A, there is a corresponding indiscernible relation RB on U . For a subset X ⊆ U ,
its lower and upper approximation sets with respect to B are defined as follows:

RB(X) = {x ∈ U |[x]B ∩ X 
= ∅}, (3)

RB(X) = {x ∈ U |[x]B ⊆ X}, (4)

where [x]B denotes the equivalence class of x.

Definition 5. Let S = 〈U,C,D〉 be a decision system. Denoting the partition of
the universe U by the decision attribute set D into k equivalence class by U/D =
{X1,X2, · · · ,Xk}. ∀B ⊆ C, there is a corresponding indiscernible relation RB

on U . The upper and the lower approximations of D with respect to B are defined
as follows:

RB(D) = ∪k
i=1RB(Xi), (5)

RB(D) = ∪k
i=1RB(Xi). (6)

According to the upper and the lower approximation sets, the universe can be
divided into three disjoint regions, namely, the positive, boundary and negative
regions. See Definition 6 for details.

Definition 6. Let S = 〈U,C,D〉 be a decision system. ∀B ⊆ C, the positive
region, the boundary region and the negative region of D with respect to B are
defined as follows:

POSB(D) = RB(D), (7)

BNDB(D) = RB(D) − RB(D), (8)

NEGB(D) = U − RB(D). (9)

3.2 Granular-Ball Rough Set

Granular-ball rough set(GBRS) is based on granular-ball computing(GBC) [23].
The core idea of granular-ball computing is to use granular balls(GB) to fully
or partially cover the sample space [22]. GBC is used to adaptively generate
many GBs with different radii, and propose replacing the input points with the
granular ball to do the classifier task. The quality of a granular ball is measured
by the purity of the ball, which is defined as the majority of samples with unified
labels in one granular ball. In GBRS, the purity threshold is setting as 1.

In a rough set, all samples in the universe must be covered. Thus, the objec-
tive function of GBRS can be described as covering all samples with the minimum
number of stable granular balls [23]. The objective function also need to meet
two constraint conditions: 1) purity(GBj) = 1 and 2) no overlap between the
granular balls. See [23] for details.
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Definition 7. Let S = 〈U,A, V, f〉, A = C ∪ D, be an information system.
∀x, y ∈ U and B ⊆ A, the indiscernible granular-ball relation INDGB(B) of
the attribute subset B is defined as:

INDGB(B) = {(x, y) ∈ U × U |f(x, a) = f(y, a) = GB,∀a ∈ B}. (10)

In the GBRS, f(x, a) = GB represents that x belong to the granular ball GB.
f(x, a) = f(y, a) = GB represents that x and y belong to the same granular ball
under the attribute set a. The partition according to the indiscernible granular-
ball relation INDGB(B) can be formed in Definition 8.

Definition 8. Let S = 〈U,A, V, f〉, A = C ∪ D, be an information system.
∀B ⊆ A, INDGB(B) is an equivalence relation on U , INDGB(B) can create a
partition of U , denoted as U/INDGB(B). The equivalence class in U/INDGB(B)
is defined as:

[x]INDGB(B) = {y ∈ U |(x, y) ∈ INDGB(B)}. (11)

The partition formed by indiscernible granular-ball relation is used to
describe a subset of universe. Definition 9 for one subset of universe, Defini-
tion 10 for multiple subsets of universe. Definition 11 for three disjoint regions.

Definition 9. Let S = 〈U,A, V, f〉, A = C ∪ D, be an information system.
∀B ⊆ A, there is a corresponding indiscernible relation INDGB(B) on U , this
equivalence relation is abbreviated as GBRB. For a subset X ⊆ U , its lower and
upper approximation sets with respect to B are defined as follows:

GBRB(X) = {x ∈ U |[x]INDGB(B) ∩ X 
= ∅}, (12)

GBRB(X) = {x ∈ U |[x]INDGB(B) ⊆ X}. (13)

Definition 10. Let S = 〈U,C,D〉 be a decision system. Denoting the partition
of the universe U by the decision attribute set D into k equivalence class by
U/D = {X1,X2, · · · ,Xk}. ∀B ⊆ C, there is a corresponding indiscernible rela-
tion GBRB on U . The upper and the lower approximations of D with respect to
B are defined as follows:

GBRB(D) = ∪k
i=1GBRB(Xi), (14)

GBRB(D) = ∪k
i=1GBRB(Xi). (15)

Definition 11. Let S = 〈U,C,D〉 be a decision system. ∀B ⊆ C, there is a cor-
responding indiscernible relation GBRB on U . The positive region, the boundary
region and the negative region of D with respect to B are defined as follows:

POSB(D) = GBRB(D), (16)

BNDB(D) = GBRB(D) − GBRB(D), (17)

NEGB(D) = U − GBRB(D). (18)
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4 Methodology

The difference between GBRS and RS mainly lies in the generation method of the
positive region. GBRS can simultaneously generate equivalence classes on mixed
attributes, and thus have advantages in the generation of the positive region. This
paper use GBRS to select the clinical physical sign attributes. The attribute
reduction of GBRS is mainly divided into two parts, one is the generation of
granular balls, the other is the selection method of attribute reduction [23].

Algorithm 1. Generation of Granular Balls in the GBRS
Input: A dataset 〈U,A〉, N samples: U = {x1, x2, · · · , xn}, with K attributes: A =
{a1, a2, · · · , ak}; the lower bound of the size of the granular-ball LBS;
Output: the granular balls with a purity equal to 1 belong to the positive region
NOLGBs;
1: the current granular-ball set: CGBs ← U ;
2: the granular-ball set in the next iteration: NGBs ← ∅;
3: // If the granular-ball does not produce a new split, it will stop.
4: repeat
5: for each GBi ∈ CGBs do
6: if purity(GBi) < 1 and |GBi| > LBS then
7: Split GBi into m sub-granular-balls {GB

′
j , j = 1, ...,m}, where m denotes

the number of different labels in GBi;
8: NGBs = NGBs + {GB

′
j};

9: else
10: NGBs = NGBs + {GBi};
11: end if
12: end for
13: CGBs = NGBs;
14: NGBs = ∅;
15: until |NGBs| == |CGBs|;
16:
17: the overlap granular-balls set: OLGBs = ∅;
18: the no overlap granular-balls set: NOLGBs = ∅;
19: //Remove the overlap between heterogeneous granular-balls.
20: repeat
21: for each GBi ∈ CGBs do
22: if there is overlap between GBi and GBj , GBj ∈ CGBs which has a different

label then
23: Split the larger granular-ball and add the sub-granular-balls into OLGBs;
24: else
25: NOLGBs = NOLGBs + {GBi};
26: end if
27: end for
28: CGBs = OLGBs
29: until |OLGBs| == 0
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Algorithm 1 is the generation method of granular balls [23]. This algorithm
consists of two parts. The first part is to generate granular balls that meet the
conditions until the granular balls cannot be split. The second part is to eliminate
the overlapping granular balls so that there is no overlap between each granular
ball. Through the above algorithm, the effect of the granular balls covering all
samples is achieved.

Algorithm 2. attribute reduction in the GBRS
Input: A dataset U = {x1, x2, · · · , xn};
Output: Attribute set C

′′
;

1: The dimension of each sample: d;
2: the i-th attribute of the sample: ai;
3: for l ∈ {a1, a2, ..., ad} do
4: The minimum number of samples in the ball is min_sample = 2 ∗ (d − l);
5: pos_num = 0;
6: C

′′
= ∅;

7: C
′
= {a1, a2, ..., ad};

8: repeat
9: for ai ∈ C

′
do

10: The data set U based on the current attribute set T = C
′′ ∪ {ai} is input

to the algorithm 1 for granular-balls splitting; the number of samples in the
positive region balls is ball_numi, calculated by Eq.(13);

11: end for
12: The largest max_num = max(ball_numi) and its corresponding attribute

a∗ are selected;
13: if max_num > pos_num then
14: pos_num = max_num;
15: C

′′
= C

′′
+ {a∗};

16: C
′
= C

′ − {a∗};
17: end if
18: until C

′
= ∅ or max_num ≤ pos_num

19: end for

Algorithm 2 is the attribute reduction method in [23]. This algorithm selects
attributes based on the growth of the number of positive region samples. If the
positive region samples increase after adding attributes, the attribute with the
largest increase will be selected as the final attribute in the current round.

5 Descriptions of Datasets for Experiments

The research problem is to determine which clinical medical tests should be
performed based on the clinical physical signs of patients with liver disease.
Based on the goal of this problem, two eligible UCI public datasets are used
for experiments, both are Hepatitis dataset [28] and Cirrhosis Patient Survival
Prediction dataset [29].
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5.1 Hepatitis Dataset

Hepatitis dataset contains 155 samples with 20 attributes [28]. Based on the
meaning of the attributes, 13 condition attributes including Sex, Steroid, Antivi-
rals, Fatigue, Malaise, Anorexia, Liver Big, Liver Firm, Spleen Palpable, Spiders,
Ascites, Varices, and Histology attributes are used as clinical physical signs. 5
condition attributes including Bilirubin, Alk Phosphate, Sgot, Albumin, and
Protime attributes are used as clinical medical test decision-making attributes.

Preprocessing method for the clinical physical sign attributes in Hepatitis
dataset. 10 clinical physical sign attributes including Steroid, Fatigue, Malaise,
Anorexia, Liver Big, Liver Firm, Spleen Palpable, Spiders, Ascites, and Varices
attributes contain missing values. Assuming that these clinical signs are normal,
which resulted in the doctor not recording them. According to the above prin-
ciples, the missing values of the attribute Liver Firm are filled with ‘2’ as ‘yes’,
the other attributes are filled with ‘1’ as ‘no’.

Preprocessing method for the clinical medical test decision-making attributes
in Hepatitis dataset. 5 clinical medical test decision-making attributes including
Bilirubin, Alk Phosphate, Sgot, Albumin, and Protime contain missing values.
Assuming that the missing value part means that the doctor think the patient
does not require medical test of the corresponding attributes while others are
the opposite, the items with values is converted into ‘1’ as ‘done’; the items with
missing values is converted into ‘0’ as ‘not done’.

5.2 Cirrhosis Patient Survival Prediction Dataset

Cirrhosis Patient Survival Prediction dataset contains 418 samples with 20
attributes [29]. Based on the meaning of the attributes, 9 condition attributes
including Drug, Sex, Ascites, Hepatomegaly, Spiders, Edema, Stage, Biliru-
bin, and Albumin attributes are used as clinical physical signs. 7 condi-
tion attributes including Cholesterol, Copper, Alk_Phos, SGOT, Tryglicerides,
Platelets, and Prothrombin attributes are used as clinical medical test decision-
making attributes.

Preprocessing method for the clinical physical sign attributes in Cirrhosis
Patient Survival Prediction dataset. 3 clinical physical sign attributes including
Ascites, Hepatomegaly, and Spiders attributes contain missing values. Assuming
that these clinical signs are normal, which resulted in the doctor not recording
them. According to the above principles, the missing values are filled with ‘0’ as
‘no’. Preprocessing the value of the attribute Drugs as: D-penicillamine as ‘1’,
placebo as ‘2’, NA as ‘0’. Preprocessing the value of all attributes as: ‘N’ as ‘0’,
‘Y’ as ‘1’, ‘S’ as ‘2’.

Preprocessing method for the clinical medical test decision-making attributes
in Cirrhosis Patient Survival Prediction dataset. 7 clinical medical test
decision-making attributes including Cholesterol, Copper, Alk_Phos, SGOT,
Tryglicerides, Platelets, and Prothrombin attributes contain missing values. The
missing values are preprocessed same in Hepatitis dataset. According to the
meaning of Stage attribute, the 6 samples which contain the missing value in
Stage attribute should be deleted, the total samples number changes from 418
to 412.
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6 Experimental Results

There is currently no independent study on clinical medical test decision-making
for liver disease in the rough set field, in order to demonstrate the effectiveness of
GBRS in the clinical medical test decision-making problem for liver disease, this
paper followed the original experimental setup in [23]. Using GBRS to perform
attribute reduction on clinical physical signs, and then use the dataset after
attribute reduction to do the classification task of clinical medical medical test
decision-making. In order to be consistent with the classifier adopted in GBRS,
kNN is adopted as the classifier. RS uses an attribute reduction algorithm based
on the degree of significance, which proposed by Pawlak [19].

This paper randomly divide the training set and test set of the dataset into
ratios of 9:1, 8:2, 7:3, 6:4, 5:5, the results can be seen in Table 1 and Table 3.

6.1 Comparison in Cirrhosis Dataset

In the cirrhosis dataset, 9 clinical physical signs are used as condition attributes
and 7 clinical medical test attributes are used as decision attributes. The 7
decision attributes are combined together as the result for classification. The
comparison results can be seen in Table 1. In Table 1, train acc represents the
accuracy of the model in the training set, and test acc represents the accuracy
of the model in the test set.

Table 1. Comparison results in cirrhosis dataset.

ratios evaluation original data+classifier RS+classifier GBRS+classifier

9:1 train acc 89.5 88.4 90.5
test acc 85.7 90.5 95.2

8:2 train acc 90.9 89.4 91.2
test acc 88.0 85.5 90.4

7:3 train acc 91.0 89.2 91.7
test acc 85.5 85.5 89.5

6:4 train acc 89.5 89.5 91.1
test acc 85.5 86.7 90.9

5:5 train acc 89.3 71.8 92.2
test acc 86.9 64.1 60.7

According to the comparison results in cirrhosis dataset in Table 1, the accu-
racy results on the training set and test set by GBRS are better than RS and
original data in different ratios except 5:5. When the ratio of training set to test
set is 5:5, the accuracy result on the training set in original data and the test
set in original data remain stable, while the accuracy of the data after attribute
reduction by RS drops greatly, and the accuracy of the data after attribute
reduction by GBRS has over-fitting phenomenon. The accuracy result on the
test set is much lower than the training set.
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Table 2. Comparison attributes reduction in cirrhosis dataset.

attribute name ratios 9:1 8:2 7:3 6:4 5:5
original RS GBRS RS GBRS RS GBRS RS GBRS RS GBRS

Drug
√ √ √ √ √ √ √ √ √ × √

Sex
√ × × × × × × × √ × ×

Ascites
√ × × × × × × × √ × ×

Hepatomegaly
√ × × × × × × × × × ×

Spiders
√ × × × × × × × × × ×

Edema
√ × × × × × × × √ × √

Stage
√ √ √ √ √ √ √ × × × ×

Bilirubin
√ √ × √ × √ × √ × √ ×

Albumin
√ √ × √ × √ × √ √ √ √

According to the attribute reduction results in Table 2, in the data ratios of
9:1, 8:2 and 7:3, the attributes selected by RS and GBRS remain stable. GBRS
selected the attributes by the algorithm 2. The attributes selected by GBRS are
a subset of the attributes selected by RS. In the data ratios of 6:4 and 5:5, the
number of attributes selected by GBRS is higher than RS.

6.2 Comparison in Hepatitis Dataset

Table 3. Comparison results in hepatitis dataset.

ratios evaluation original data+classifier RS+classifier GBRS+classifier

9:1 train acc 58.3 58.3 58.3
test acc 37.5 37.5 56.3

8:2 train acc 58.9 58.9 55.6
test acc 38.7 38.7 38.7

7:3 train acc 54.6 56.5 45.4
test acc 51.1 46.8 57.4

6:4 train acc 59.1 59.1 66.7
test acc 32.3 32.3 41.9

5:5 train acc 61.0 62.3 61.0
test acc 32.1 30.8 37.2

According to the comparison results in hepatitis dataset in Table 3, when the
data ratios are in 9:1, 8:2 and 6:4, there is little difference in accuracy among
the original dataset, the dataset after RS attribute reduction, and the dataset
after GBRS attribute reduction. The accuracy result on the training set and the
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test set after GBRS attribute reduction are better than the accuracy result on
the training set and the test set in the original dataset. When the data ratios
are in 7:3 and 5:5, the accuracy result on the training set after RS attribute
reduction is higher than the original dataset, the accuracy result on the test set
after GBRS attribute reduction is higher than the original dataset.

Table 4. Comparison attributes reduction in hepatitis dataset.

attribute name ratios 9:1 8:2 7:3 6:4 5:5
original RS GBRS RS GBRS RS GBRS RS GBRS RS GBRS

Sex
√ √ √ √ √ √ √ √ √ √ √

Steroid
√ √ √ √ √ √ × √ √ √ √

Antivirals
√ √ √ √ √ √ √ √ √ √ ×

Fatigue
√ √ × √ × √ × √ × √ √

Malaise
√ √ √ √ √ √ √ √ √ √ ×

Anorexia
√ √ × √ × √ √ √ √ √ ×

Liver Big
√ √ √ √ √ √ × √ × √ ×

Liver Firm
√ √ √ √ √ √ √ √ √ √ √

Spleen Palpable
√ √ × √ × √ √ √ √ √ √

Spiders
√ √ √ √ √ √ × √ × √ ×

Ascites
√ √ × √ × √ √ √ × × √

Varices
√ √ × √ × × √ √ × √ √

Histology
√ √ √ √ √ √ × √ √ √ √

According to the attribute reduction results in Table 4, in all different dataset
partition ratios, the number of attributes selected by GBRS is much smaller than
the number of attributes selected by RS. The number of selected attributes in
RS is either the same as the original dataset or one less than the original dataset.

7 Discussion

Already in 1983, [16] has already raised the issue of patients’ clinical medical
test decision-making. From the perspective of doctors, the author showed that
because clinician’s professional practice habits tend to be more conservative,
clinicians often arrange more tests for patients than patients actually needed.
In subsequent studies, from a medical perspective, studies on changing doctors’
behavior to solve patients’ clinical medical test decision-makings were also pro-
posed in [3,7]. In [27], the authors used medical records and clinical guideline
information to support the orders of medical tests. In [10], the authors used a
decision-tree-based Bayesian approach to do medical test rationing.

Clinical medical tests are of importance to doctors in diagnosing diseases.
This paper starts from the necessity of clinical medical test decision-making and
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applies rough set to this problem for the first time. Rough set uses the attribute
reduction method on this problem to prove that some clinical physician signs
can also make clinical medical test decisions comparable to all clinical physician
signs in liver disease. This paper currently only making preliminary attempts,
and it is worth looking forward to expect more variants of rough set [6,20,26] to
be applied to this problem in the future.

8 Conclusion

It is an interesting attempt to abstract the clinical medical test decision-making
problem of liver disease from the clinical diagnosis of liver disease. Through
this attempt, doctors can get the necessary attributes to make clinical medi-
cal test decisions from the answer to this problem. Granular-ball rough set is a
representative rough set algorithm, through its attribute reduction, doctors can
obtain necessary clinical physical sign attributes from liver disease dataset to
help determine the necessity of clinical medical tests. After experimental ver-
ification on the liver disease dataset, granular-ball rough set can obtain more
better classification performance comparable to all clinical physician attributes
while using fewer attributes. Granular-ball rough set has shown advantages in
the small dataset of this paper, but whether it can maintain its advantages in
larger datasets is still a problem. It is worth looking forward to more rough set
attempts on this problem.
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Abstract. Recent research about lung cancer risk prediction model
require the data for predicting as same as the data for training whether
based on single-source data or multi-source data. Both of them either
cannot fully use collected multi-source data to train model or need higher
data cost to predict. If the model is trained by gathered multi-source
data, but still make prediction by single-source data, the cost of the
patients will be avoid increasing. In this work, the cross-modal knowledge
distillation technique is introduced to train the lung cancer risk predic-
tion model for the purpose. However, present cross-modal knowledge dis-
tillation techniques are incapable of dealing with different biases in data
sources. To solve this problem, the model performs features extraction
on a sample from multiple perspectives. For validating the efficacy, the
proposed model is evaluated with eight baselines on the NLST dataset,
which includes CT image data as well as questionnaire data. In terms
of AUC, the results demonstrate that the proposed model outperforms
the vanilla MLP by 10.88% and the best baseline by 2.71%. The pro-
posed model may effectively exploit history data, ensuring not only the
accuracy of prediction but also lowering the user’s expenditure for data.

Keywords: lung cancer · risk prediction · multi-source data ·
cross-modal knowledge distillation

1 Introduction

Lung cancer is one of the most burdensome malignancies in the world. According
to the GLOBOCAN 2020 database, in all cases of malignancy, the global cases
of lung cancer are 11.4% and the mortality rate is 18.0% [25]. It is the leading
cause of cancer death worldwide. Early prediction of lung cancer can effectively
reduce the burden from lung cancer. Risk prediction models can calculate the
probability that an individual will develop lung cancer over a period of time in
the future, thereby identifying people at high risk for lung cancer. The higher
accuracy of prediction model, the better early detection of lung cancer.

To identify the high-risk groups of lung cancer, the risk prediction model are
used to calculate the probability of developing lung cancer in the future. As the
result, medical intervention could be made earlier. For the input of trained pre-
diction model, it is costly or difficult to obtain medical data which is generated at
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Hu et al. (Eds.): IJCRS 2024, LNAI 14840, pp. 280–294, 2024.
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the diagnosis stage, because risk predictions are often made before patients enter
medical institutions. Another fact is that the risk prediction model is trained by
the collected data, such as historical lung cancer data and the data collected from
lung screening projects. Those data have the diversity of big data, such as abun-
dant data sources, various data modes and views, and the multi-stage nature
of medical data. The stages of lung cancer data include: screening, diagnosis,
treatment, re-examination, follow-up, etc.

The existing algorithms could be classified according to the data used by
the model. They could be divided into the following two categories: based on
single-source data, such as questionnaire data [5,11,26], imaging data [3,31],
metabolic data [12], genomic data [17], and based on multi-sources data [20].
Analysing from a perspective about practice, more studies focus on questionnaire
data and image data, such as prediction [11], prognosis [8], diagnosis [19,24],
etc. Existing techniques with single-source data for risk prediction are based on
single classifiers, such as logistic regression [5,26], decision tree [23], or based on
ensemble learning techniques [11]. There are also studies on the application of
computer vision techniques based on deep learning for image data [3,31]. The
multi-modal techniques with multi-source data based on deep learning uses more
kinds of data for risk prediction [6,11,20].

From the perspective of the way for improving the accuracy of the model, the
above methods could be divided into two categories. One is to design a new classi-
fier, the other way is to increase the training data. The first measure is increasing
training samples. It is the most direct and effective way, which can make the clas-
sifier has more comprehensive learning during the training process, but samples
cannot be increased unlimitedly. First, it is expensive to conduct questionnaire
surveys over and over again for an unlimitedly increasing data requirement. Sec-
ond, the population of a region is limited, so it is difficult to obtain unlimited
samples. There are also methods to increase data by appending features or views
to improve the classifier performance. The representative method is multi-modal
and multi-view method. By using more features for training, the classifier can
learn more comprehensively, too. However, for current algorithms, these addi-
tional features also need to be input into the trained model when the model is
used to make prediction. From the above risk prediction description, these data
are either expensive to collect, such as CT images, or cannot be collected during
prediction, such as pathology images. It conduct to increases the cost of using
the model.

In this work, we try to design a training method on image data and question-
naire data for achieve the goal – using multi-source data training model whose
input is single-source data. About this method, the model uses only question-
naire data for predicting. The purpose is improving the efficiency utilizing of
existing data for enhancing model while avoid increasing the cost of using the
model.

One possible way to achieve this goal is to use a model pre-trained with CT
image data to assist in the training of the model which trained with question-
naire. Similar work has been studied in other fields, and the technique is called
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cross-modal knowledge distillation [22,30]. Therefore, we consider adopting the
cross-modal knowledge distillation to achieve the goal.

This work contributions are mainly as follows:

– A lung cancer risk prediction model which can make full use of existing col-
lected multi-source data while avoid increasing the cost of using the model.

– The effect about data utilizing of the method is verified. Compared with eight
models which are derived from single-source data technique—only trained
with questionnaire, our model could effectively utilize existing collected data.
As the result our model outperforms the vanilla MLP by 10.88% and outper-
forms the best baseline model by 2.71%, in terms of AUC.

– In order to alleviate impact from the differences and noise between different
data sources, knowledge distillation is applied to a part of the network, and
then the different extracted features are used to make prediction.

2 Background

2.1 Risk Prediction and Early Diagnosis of Lung Cancer

For lung cancer risk prediction, existing models can be divided into two cate-
gories: models with single-source data and models with multi-source data.

Models with Single-Source Data: Classifying by data source, commonly
used data include the questionnaires data that consist of demographic, smoking
history, disease history, and other data from questionnaires, the CT image data
from CT examinations, and the metabolic data from blood tests, etc. These data
show the relevant feature of the patients from different views. The data from
the questionnaire include basic information of the patient, such as education,
race, ethnicity, and common risk factors for lung cancer, such as age, family
history, and disease history. CT image data show the shape of the patient’s
lungs. Metabolic data can be used to obtain tumour information by detecting
tumour biomarkers in the blood.

Existing methods for questionnaire data include logistic regression, decision
trees, and ensemble Learning (XGBoost). Logistic regression is a typical risk
prediction modelling method, such as the PLCO model [26] which AUC was
0.8. These models which are based on logistic regression have been confirmed
to be able to avoid more lung cancer deaths than the USPSTF standard [28].
The ensemble learning technique represented by XGBoost [7] has shown better
performance in lung cancer risk prediction. Mamun et al. used the 10-fold cross-
validation method to verify the performance of ensemble learning algorithms on
the Kaggle lung cancer dataset, and the AUC and ACC of XGBoost, LightGBM,
Bagging and AdaBoost all reached above 0.9 [18].

For neural network models, CNN, 3DCNN and other architectures have
emerged, hence computer vision technique has a better application in the med-
ical. In terms of CT image data, Ardila et al. [3] applied the I3D model to CT
image data, and the AUC of the one-year risk prediction for all samples by CT
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image data in the NLST dataset was 0.94. Zhang et al. [31] proposed a new pre-
training method to reduce the model’s dependence on ROI labelling and achieve
the performance in lung nodule detection that AUC was 0.88.

Ensemble learning algorithms are also applied in the work of predicting lung
cancer through metabolomics data. Guan et al. used the detected lung cancer
markers to predict lung cancer by XGBoost algorithm. For both the training
group and the test group, the AUC was 0.81 [12].

Models with Multi-source Data: Because of development of machine learn-
ing, using multi-source data for lung cancer prediction could provide superior
prediction performance compared to using only a single-source data. Lung can-
cer is a complex disease, and the integration of multi-source data could provide
more comprehensive information. Park et al. developed a prediction model and
a multi-omics data affinity artificial intelligence algorithm based on graph con-
volutional network, which integrated mRNA expression, DNA methylation and
DNA sequencing data, achieving AUC of 0.994 [20]. Barrett and Viana used
intermediate and intermodal relationships between CT scans and clinical data
to provide a more accurate lung cancer classification task performance, achieving
AUC of 0.843 [6]. Gould et al. used XGBoost to predict lung cancer risk based
on questionnaire data and laboratory test data, achieving AUC of 0.85 in a 3 to
6 month window for all screening participants [11].

In above cases, multi-source data could build better model than single-source
data. However, it requires the data for predicting as same as the data for training
when making prediction. Thus, the cost of obtaining input data for prediction
becomes higher by this limitation.

2.2 Cross-Modal Knowledge Distillation

Potential gaps between cross-modal data could lead to difficulties in learning
for student model, which in turn limits the performance of knowledge distilla-
tion [22]. A common solution is to pass annotation or label information through
paired samples, shown in Fig. 1 [10]. Zhao et al. carried out cross-modal distil-
lation through synchronous radio signals and camera images to distil knowledge
from radio-based model of human posture recognition to image-based models, so
as to complete the task of human posture estimation through walls or obscured
images [32]. To improve action recognition performance using only RGB images,
Thoker, Fida and Gall obtained paired samples from two modalities: RGB video
and human action skeleton sequences. These pairings are used to distil the knowl-
edge generated from RGB video into a skeleton-based model of human action
recognition [29].

There are other measures to pair samples for knowledge distillation. Ren et
al. trained a teacher model based on two modalities of sound and silent video,
and distilled knowledge from the teacher model to the student model using only
silent video [22]. Hoffman et al. proposed a modality hallucination architecture
to implement cross-modal distillation [13]. Passalis et al. proposed probabil-
ity knowledge distillation [21] and proof the reasonability of this method by
quadratic mutual information.
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Fig. 1. Cross-modal knowledge distillation [10]

Because of bias among data from different sources [16], the cross-modal
knowledge distillation cannot directly applicated.

3 Proposal Method

Considering that different biases between different data sources may lead to
noise, in the first stage of model training, only part of the network will accept
knowledge distillation (Fig. 2). In the second stage, features extracted by differ-
ent feature extraction modules will be integrated and the rest network will be
trained (Fig. 3 left). Finally, the trained model (Fig. 3 right) will be used for risk
prediction.

Fig. 2. Feature extraction part training with CT

3.1 Knowledge Distillation

In the existing studies [29,32], the distillation of knowledge from a fine-grained
level could achieve ideal performance, but only when crossed modalities are
similar, such as: RGB image to infrared image such image to image type, or
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Fig. 3. In left image, where is framed by orange dotted lines is the rest part of the model
training, and the right image is the trained model when the model makes predictions
(Color figure online)

similar to video to audio such sequence to sequence type. But, in the case of
unstructured image data paired with structured tabular data, there is a greater
gap between two modalities. The different information contained in these data
further increases the complexity and challenge of model training for students.
Taking it into consideration, the knowledge is distilled at the coarse-grained level
by align the conditional probability distribution of the feature space between the
student model and the teacher model thought KL divergence [21].

As shown in the green dotted line in Fig. 2, First, the n ∗ m dimensional
featuremap extracted from the teacher’s model is transformed into the n ∗ 1
dimensional feature vector v. Here, the row by line averaging method is used:

featuremap = Feature extractorteacher(CT volume), (1)

v = mean(featuremap, 1). (2)

The function mean(x, y) represents averaging the tensor x in the order y(y =
0, 1, 2, ..., n) dimension. The conditional probability density of samples in a batch
p(xi|xj) is then estimated by kernel density estimation (KDE):

p(xi|xj) =
K(xi, xj)

∑N
j=1,j �=iK(xi, xj)

, (3)

where xi, xj are samples in a batch. For a batchX, xi, xj ∈ X, K(·) is the kernel
function, and p(xi|xj) represents the conditional probability density of sample
x with respect to xi in a batch. The cosine function as the kernel function is
recommended to use in [21]:

K(xi, xj) =
1
2
(

vi · vT
j

‖vi‖
∥
∥vT

j

∥
∥ ). (4)

In Eq. 4, vi,v
T
j respectively represent the feature vector. Let p(xi|xj) be the

probability density of the sample in the feature space of the student model,
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q(xi|xj) be the probability density of the sample in the feature space of the
teacher model, then the loss of feature distillation is obtained:

lossKD =
1
n

n∑

k=1

KL(q(xi|xj)||p(xi|xj)). (5)

3.2 Features Extraction

Through knowledge distillation, the prediction model could be improved accu-
racy in imitating the intermediate representation of the model which makes
prediction by CT image data. However, since questionnaire data and CT image
data come from two different data sources, both have different bias [16]. As a
result, bias from CT image data could be introduced as noise during the training
of the prediction model.

The ensemble learning model is robust to noise by multiple models, so the
inspiration drawn from it. Different feature extractors are used to extract differ-
ent features for prediction to alleviate noise originating from CT images. And
these extractors are trained independently in first training stage. Feature extrac-
tors are performed on the questionnaire data in the model, as shown in Fig. 3
right. Three feature extraction steps for the questionnaire data are the feature
extraction processes of two classifiers, and the coding process of a linear encoder.
One of the two classifiers is trained under knowledge distillation and the other
is trained without knowledge distillation. The encoder is from trained linear
autoencoder.

Through the feature extraction of these three parts, the model obtains three
representations related to the sample. The representation of these three parts
are the feature vector v1 generated with the knowledge of CT image data, the
feature vector v2 generated without the knowledge of CT image data, and the
sample encoding result code through the linear encoder, and then the features
in the form of concatenation as the input is sent to the inference module.

3.3 Optimizing

The model is based on multilayer perceptron (MLP), and the back propagation
algorithm is used to train the model in two stage. The first stage is for training
the feature extraction part of the model, which consists of three parts: the feature
extraction part of the classifier which is trained with both CT image data and
questionnaire data, the feature extraction part of the classifier which is trained
only with questionnaire data, and the encoder part of the auto-encoder which
is trained on questionnaire data. In the second stage of model training, the
parameters of the above three feature extraction modules are fixed. Then the
feature vectors output by these three modules will be concatenated as the input
of the inference module for the inference module training or online prediction.

When training with CT image data and questionnaire data, the loss function
consists of two parts, one is the loss lossKD for knowledge distillation, and the
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other is the cross-entropy lossCE with correct labels of samples. Finally, the loss
function is obtained by the weighted combination of two loss:

lossmodule1 = αlossCE + (1 − α)lossKD. (6)

In model training practice, we found that at the beginning of model train-
ing, the gradient provided by distillation loss is much smaller than provided by
cross entropy (about 20000 to 30000 times). The direction of gradient descent is
important in gradient descent algorithm. The loss that provides the larger gra-
dient could plays a leading role in model training, as the result of large gradient
difference between two losses. It affects the performance of knowledge distilla-
tion. Although the gradient gap between the two will be narrow at the progress
of training, the model has been overfitting. So the loss in Eq. 6 is corrected by
follow:

lossmodule1 = αlossCE + (1 − α)lossKD ∗ grad ratio, (7)

grad1 norm =
∥
∥
∥
∥

∂lossCE

∂Θ

∥
∥
∥
∥
2

, (8)

grad2 norm =
∥
∥
∥
∥

∂lossKD

∂Θ

∥
∥
∥
∥
2

, (9)

grad ratio =
grad1 norm

grad2 norm
. (10)

In the above equation, Θ represents the parameters of the model,
grad1 norm is the 2-norm (modulus length) of the gradient provided by the
cross-entropy loss, and grad2 norm is the 2-norm of the gradient provided by
the distillation loss. Through this way, the gap of gradient provided by the two
losses would be narrow, which could be conducive to promoting the distillation
performance.

For the classifier which is trained only with questionnaire data, the loss func-
tion is cross entropy loss:

lossCE = ylable ∗ log(ypredict) + (1 − ylabel) ∗ log(1 − ypredit). (11)

The reconstruction loss of linear autoencoder:

reconstructAE = (ysample − yreconstruct sample)2. (12)

In the first stage of model training, modules are trained independently. The
loss for inference module in the second stage of model training, in Fig. 3 left, is
also cross-entropy loss, which is the same as Eq. 11. Different from the training
in the first stage, the model parameters of the model feature extractors are fixed
and do not participate in the training. At last, in order to make each module
more suitable for each other, the whole model is fine tuned at a lower learning
rate.
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4 Experiment Data

4.1 NLST

In this work, United States National Lung Screening Trail [27] was used data.
The National Lung Screening Trial is a randomized controlled clinical trial of
screening tests for lung cancer. The participants were randomly assigned to
the two study arms in equal proportions. One arm received low-dose helical
computed tomography (CT), while other received a single-view chest X-ray. The
selected feature included information of the study, questionnaire data, smoking
history, working history, disease history, personal cancer history and family lung
cancer history.

We selected 4820 samples of the dataset, among which 2222 samples had
available CT image data, and it would be used as the training set. Another 2598
samples without available CT image data would be sampled to generate the
verification set and the testing set. The selected time window is one year.

4.2 Dataset Split

Participants in the NLST screening trial were randomly assigned to two study
groups, one using CT and the other using X-rays. As a result, some samples
in the dataset have corresponding CT image, while other samples without CT
image. Thus, samples with CT image were taken as training sets. 1:1 sampling
was performed on samples without CT image, and two datasets were verification
sets and test sets respectively.

4.3 Data Prepossessing

For tabular data, according to the data dictionary, the samples whose first diag-
nosis of lung cancer is less than 365 days was selected as positive samples, and
those whose first diagnosis is greater than 365 days or whose value is null was
selected as negative samples. For the missing values, the samples with missing
attributes is deleted. However, for some cases where the missing values has a
special meaning in the data dictionary, such as the age at which the participant
stopped smoking (age quit), the missing value are filled with −1 to indicate that
the participant do not provide relevant information. For CT image data, the
processing process is referred to kaggle scientific data bowl [1], resampling, seg-
mentation and normalization image, and transformed image files into the form
of third-order tensors which could be used by deep learning models.

5 Experiment and Result

5.1 Setup

Teacher Model: The teacher model is trained on the CT dataset, which can
complete the lung cancer risk prediction through CT images with good per-
formance. This work [3], completed the prediction of lung cancer with a time
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window of one year. The Inflated 3D ConvNet architecture is used to complete
the analysis of the whole lung. In this work, this model architecture is used as a
teacher network for pre-training to assist student model training.

Metric: Area under receiver curve (AUC) is used to evaluate the overall perfor-
mance of the model on the dataset. Specificity is used to evaluate the ability of
the screening model to exclude negative samples. False Positive Rate (FPR) is
the metric associated with it, it means that percentage of participants who were
actually disease-free but were judged to be sick. Sensitivity is used to evaluate
the ability of the model to detect positive samples. To comprehensively evaluate
performance, G-Mean is used, and finally we include ACC as a commonly used
evaluation metric into the experiment:

Sensitivity =
TP

TP + FN
, (13)

Specificity =
TN

TN + FP
, (14)

ACC =
TN + TP

TN + PN + FP + TP
, (15)

FPR =
FN

TN + FP
= 1 − Specificity, (16)

G-Mean =
√

Sensitivity ∗ Specifity. (17)

Hyperparameter Optimization and Setting: For the baseline model, the
optuna tool-kit [2] is used to conduct hyperparameter optimization (HPO) for
models. For the Epoch, several value are selected as the search space according
to the characteristics of the model. For other discrete parameters, feasible values
for each parameter that do not conflict with other parameters are included in
the search scope. For continuous parameters with a range, such as 0 to 1, their
range will be used as the search space. For other continuous parameters which
are without certain range, a suitable range that cannot make models overfitting
are selected as the search space. After the search, baseline models is retrained by
the selected parameters in order to prevent overfitting, and the models with top
N performance on the verification set ware tested on the test set, and best perfor-
mance of baseline models is selected. For the proposed model, the architecture of
MLP for both feature extractors is [127−50−34−15], the dropout for each layer
are [0, 0.7, 0.6, 0.5]. The architecture of linear auto-encoder is [127 − 50 − 127],
the dropout is 0.5. The architecture of the head of the proposed model is [15−2],
the dropout is 0.5. The optimizator for proposed model is Adam optimizer.

Threshold Chosen: Due to data imbalance, the probability of risk prediction
of the model trends to be low, so the probability threshold of risk prediction is
determined according to the Youden index. The maximum probability thresh-
old corresponding to the Youden index is selected as the threshold of binary
classification.
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5.2 Comparison

Baseline: To verify effectiveness of our model about data leverage, our model
is compared with eight existing representative algorithms, including three tradi-
tional ML algorithms (logistic regression, KNN, and decision trees), two ensem-
ble learning algorithms (XGBoost, CatBoost), and three DL models (MLP, Tab-
Net [4], GANDALF [15]). Among them, XGBoost [11], logistic regression [5,26]
and decision tree [23] are the commonly used models of tabular data for risk
prediction. XGBoost and CatBoost are two representative algorithms in ensem-
ble learning. For deep learning models, MLP and TebNet are representative
method of DNN and tabular learning respectively. The TebNet and GANDALF
are implemented by Pytrochtabular tool-kit [14]. All of baseline models are only
trained with questionnaire.

In order to evaluate the model more comprehensively, the experiment
recorded metric results of each method from two perspectives. Table 1 records
performance of each method after threshold chosen, Table 2 records performance
of each method in different FPR.

Table 1. Comparison Result – Threshold Chosen

AUC Sensitivity Specificity G-Mean ACC

XGBoost [7] 77.19 79.41 67.04 72.96 77.19

CatBoost [9] 73.98 50.00 87.91 66.29 86.91

LR 68.54 64.71 70.20 67.40 69.98

DT 65.96 82.35 47.91 62.81 51.88

KNN 73.04 52.94 84.51 66.89 89.99

MLP 71.50 67.64 75.81 71.31 75.51

TabNet [4] 73.48 82.35 55.97 67.89 56.66

GANDALF [15] 68.15 73.53 59.76 66.28 60.12

Ours 79.28 70.58 79.13 74.74 78.90

According to Table 1, XGBoost, decision tree and TabNet have high sensitiv-
ity in prediction, they tend to classify patients into high risk groups. However, low
specificity could result in high false positive rate, which could lead to unnecessary
detection and extra cost in practice. CatBoost, KNN and our model have high
specificity. They are conservative in classifying patients into high-risk groups,
thus detection cost could be saved. However, poor sensitivity of CatBoost and
KNN show that they are difficult to detect lung cancer patients. From balanced
performance of specificity and sensitivity by the G-mean, our model is better
than other models, and from overall performance as measured by the AUC, our
model is better than other models.

According to Table 2, in different FPR, almost all cases, the sensitivity of our
method is higher than that of other models, except in case of 40% FPR. Our
method could more easily detect high-risk patients in most cases.
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Table 2. Comparison Result – Threshold Not Chosen

Sensitivity AUC

10%FPR 20%FPR 30%FPR 40%FPR 50%FPR 60%FPR

XGBoost [7] 32.35 58.82 64.71 79.41 85.29 91.18 77.19

CatBoost [9] 38.24 55.88 64.71 70.59 79.41 82.35 73.98

LR 29.41 50 64.71 64.71 73.53 82.35 68.54

DT 17.65 38.24 55.88 70.59 70.59 85.29 65.96

KNN 41.18 52.94 52.94 73.53 73.53 85.29 73.04

MLP 35.29 50 67.65 73.53 82.35 85.29 71.5

TabNet [4] 35.29 44.12 61.76 73.53 85.29 88.24 73.48

GANDALF [15] 29.41 38.24 52.94 70.59 76.47 79.41 68.15

Ours 41.18 64.71 73.53 76.47 91.18 91.18 79.28

To sum up, on the one hand, due to the full use of multi-source data our
model is better than baseline models. On the other hand, because the data for
prediction is only questionnaire, proposed model could keep the characteristic
of low data cost for prediction.

5.3 Ablation

In order to verify the effectiveness of two parts of our model—cross-modal knowl-
edge distillation and the features extraction—for multi-source data training,
we respectively test the performance of the vanilla MLP (MLP1), cross-modal
knowledge distillation (MLP2) and features extraction (MLP3) according to the
Setup, and compare and analyze the test results.

Table 3. Ablation Result – Threshold Chosen

AUC Sensitivity Specifity G-Mean ACC

MLP1 71.50 67.64 75.81 71.61 75.51

MLP2 77.27 73.52 73.75 73.64 73.67

MLP3 79.28 70.58 79.13 74.74 78.90

Table 4. Ablation Result – Threshold Not Chosen

Sensitivity AUC

10%FPR 20%FPR 30%FPR 40%FPR 50%FPR 60%FPR

MLP1 35.29 50 67.65 73.53 82.35 85.29 71.5

MLP2 38.24 61.76 73.53 79.41 88.24 91.18 77.27

MLP3 41.18 64.71 73.53 76.47 91.18 91.18 79.28
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As the results shown in Tables 3 and 4, the performance of the MLP3 is
the best, and the performance of only using cross-modal knowledge distillation
is second, both are better than the vanilla MLP performance. It demonstrates
that two parts of proposed model is effective for collected multi-source data
utilizing.

6 Conclusion

In this article, multi-source data training method for lung cancer prediction
model is proposed after three methods for improving the performance of lung
cancer prediction model is compared. This method utilizes the diversity of med-
ical data to expand the training data of the model to improve the performance
of the prediction model, while avoid increasing the cost of using the model. Con-
sidering the differences between data, the model has three feature extraction
modules, which are the feature extraction module after cross-modal knowledge
distillation, the feature extraction module without distillation, and the linear
encoder. The model is trained in two steps, and finally the model performance
was improved again.

7 Future Work

Of course, the comprehensive exploration of this method is not performed, for
example: 1) Whether multi-source training is suitable for tasks corresponding
to medical data at different stages, such as: diagnosis, re-examination, and so
on. 2) The current work is only discussed under the two data sources. In the
future, it is interesting to discuss whether this method can be extended to more
data sources. 3) The current work of this method requires matching of two data
of training samples during model training, which increases the constraints on
training data and reduces the utilization rate of data or samples in a form.
It needs to be solved in the follow-up research. 4) The knowledge distillation
method in this work uses off-line distillation. It is interesting to explore other
method to perform multi-source data training. 5) The current work has not dealt
with the feature fusion problem of multiple feature extractors.
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Abstract. In the past two years, large language models (LLMs) have
shown extensive attention in the applications of intelligent transporta-
tion systems (ITS). Despite the huge potential, there is still a lack of
comprehensive understanding of the advantages, challenges, and future
efforts of LLMs in the transportation field. In this paper, we present a
systematic investigation in this field, underlining their approaches and
performance in improving forecasting accuracy, decision-making capa-
bility, and sim-to-real tasks. We first explore the current applications
of LLMs in traffic management, transportation safety, and autonomous
driving, as well as analyze their advantages and limitations. Then we also
list some typical datasets employed within this domain. Challenges and
prospects of the development of LLMs for ITS applications are discussed,
encompassing technological, security, and policy aspects. We aim to offer
a holistic overview of the transformative impact of LLMs in the trans-
portation field, highlight their significance, and provide some possible
views for future research and development.

Keywords: Large Language Model · Intelligent Transportation
Systems · Autonomous Driving

1 Introduction

LLMs have rapidly emerged as significant approaches across various domains,
demonstrating their capability to emulate human-like intelligence with high pre-
cision [16]. LLMs, such as GPT-4 [1], PaLM-2 [2], and LLaMA-2 [33], have
been investigated for their potential to enhance the prediction and decision-
making performance of ITS applications, particularly in traffic management,
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transportation safety, and autonomous driving tasks. Although these are still
at an exploratory stage, LLMs have demonstrated the possibility of improving
mobility and management paradigms in ITS [30].

Recent advancements in LLMs have enabled them to address complex tasks,
ranging from semantic analysis [15] to contextual response generation [23]. These
capabilities are significant for ITS, where prediction and decision-making pro-
cesses rely on high-performance of data processing and understanding. For exam-
ple, the application of LLMs in traffic management systems can improve the way
traffic flow is monitored. It processes dynamic data to predict traffic congestion
and suggest optimal routing strategies [50]. The powerful processing capability
of LLMs can also help researchers analyze data from different sources to under-
stand accident reports and identify potential risks, thus enhancing the safety
of transportation [47]. Moreover, LLMs have shown great possibilities in sim-
ulating human-like intelligence, while their applications in autonomous driving
have received much attention. These research studies mainly focus on percep-
tion algorithms enhancement [48], motion planning improvement [6], and control
mechanisms improvement [8], thereby improving the response speed, decision-
making accuracy, and operation reliability of autonomous driving.

However, there are challenges when applying LLMs to improve ITS appli-
cations, including data privacy issues, system fault tolerance requirements, and
ethical implications [30,51]. Therefore, the application of LLMs in realistic traf-
fic scenarios is still being explored, and their reliability and effectiveness are to
be verified.

The main contributions of this paper are summarized as follows:

(1) A comprehensive overview of research on LLMs for ITS applications
is outlined, focusing on traffic management, transportation safety, and
autonomous driving, discussing their potential to increase forecasting accu-
racy, improve safety, and enhance decision-making processes.

(2) Existing relevant datasets are systematically summarized, including those
for single tasks and complex scenarios.

(3) The potential challenges in LLMs for ITS applications are discussed, includ-
ing data privacy, system robustness, and ethical considerations. In addition,
some possible future research directions are listed.

Fig. 1. The structure of this paper
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As shown in Fig. 1, our survey paper aims to provide a comprehensive
overview of LLMs for ITS applications. The following section provides a brief
overview of LLMs. Sections 3 to 5 present current published works about LLMs
related to traffic management, transportation safety, and autonomous driving.
Section 6 lists recent datasets that can be used as benchmarks to evaluate LLM-
based models for ITS tasks. In the last two sections, we discuss the potential
challenges that LLMs for ITS applications may face and some possible directions
for future research.

2 LLMs: An Overview

LLMs, such as GPT-3 [3], LLaMA [33], and GPT-4 [1] implement language
functions primarily through advanced text generation. These models achieve
semantic understanding and cognitive capabilities comparable to human pro-
cessing levels by being trained on large amounts of Internet data [16]. LLMs
also have several emerging capabilities, including in-context learning, instruc-
tion following, and chain of thought reasoning. These capabilities extend LLMs
to autonomous domains and then build systems that can implement decision-
making and problem-solving. Furthermore, the combination of LLMs with other
models constitutes a significant advancement in cross-modal learning.

The integration of vision, language, video, and audio modalities has been
a primary objective in AI research for decades. With the rising need for multi-
modal interaction, LLMs have progressed from processing solely text to handling
multiple modalities, leading to the development of Multimodal Large Language
Models (MLLMs). MLLMs enhance LLMs’ capabilities to evolve from large-scale
pre-training to task-specific fine-tuning. BLIP-2 [19] combines convolutional neu-
ral networks with text representations to produce images from textual inputs.
DALL-E [26], which is built on the GPT-3 [3] framework, generates images
from text descriptions thereby demonstrating multimodal models’ applicability
in diverse fields. GPT-4V1 demonstrates notable capabilities in enhancing under-
standing of traffic scenarios, thus supporting flow control, accident analysis, and
driving decision applications. In the above MLLMs research, instruction tuning
is a central method to enable models to follow instructions across various modal-
ities [13,19]. This approach allows models to integrate visual cues with textual
commands, such as identifying objects in images based on text descriptions and
instructions.

In addition to cross-modal learning, some studies combine real-world sensor
data with LLMs. They link verbal instructions to perceptual inputs to enhance
the model’s understanding of the physical environment, and they are able to
interpret those understandings through languages [31,35]. Voyager [35] demon-
strates AI’s lifelong learning. It mimics human learning patterns by interacting
with the environment in an improved way and acquiring knowledge continuously.
Voxposer [17] further extends the usefulness of LLMs for ITS applications by
applying these models to create robot trajectories for a variety of manipulation
tasks.
1 https://openai.com/research/gpt-4v-system-card.

https://openai.com/research/gpt-4v-system-card
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3 LLMs for Traffic Management

The challenges of handling complex and dynamic traffic data, as well as the
need for adaptive traffic management solutions, show the critical importance
of LLMs for the current traffic management research [30]. Their advanced lan-
guage and data processing capabilities enable the integration of heterogeneous
information sources, such as traffic reports [51], sensor data [48], and map data
[8], into coherent insights. In this way, highly accurate traffic flow predictions
and sophisticated traffic management strategies are achieved. Table 1 summa-
rizes LLM-based research for traffic management in prediction and traffic control
tasks with their advantages and limitations.

Table 1. Summary of recent research on LLMs for traffic management.

Model Year Backbone Task Advantages Limitations

ChatGPT for
GTFS [11]

2023 GPT-3.5 GPT-4 Prediction Demonstrate a reasonable
understanding of GTFS by
ChatGPT

Rely on the support of program
synthesis

TFM [40] 2023 GPT-3 Prediction Understand dynamic traffic flow
through LLMs

Hard to balance joint probabilities
and granularity

UniST [46] 2024 GPT-3 Prediction Mimick the key features of LLMs
for spatio-temporal prediction

Have difficulties in variations in
data distributions across different
scenarios

TrafficGPT [50] 2023 GPT-3.5 Traffic Control Integrates ChatGPT with traffic
foundation models effectively

Hard to handle extensive
numerical data and interact with
simulations

Mixed Traffic
Control via RL [34]

2023 GPT-4 Traffic Control Solve mixed traffic control
problems without expert
knowledge

Get inconsistent outcomes across
different traffic scenarios

LLMLight [18] 2024 GPT-4 TSC Have capabilities for interpretable
and human-like decision- making
in TSC

Require specialized training and
fine-tuning

PromptGAT [10] 2024 GPT-4 TSC Reduce the sim-to-real
performance gap in TSC
significantly

Have difficulties in unobserved
states and lead to significant
prediction errors under specific
scenarios

3.1 Urban Spatio-Temporal Prediction

Urban spatio-temporal forecasting predicts the dynamic patterns of urban activ-
ities in both space and time. Figure 2 includes an example of applying a prompt
to predict traffic flow based on spatio-temporal data. It begins with extracting
features from abundant spatio-temporal data, then proceeds to pre-training with
tasks like spatial association learning and pattern recognition. Then, structured
prompts are applied to guide the LLM in predicting traffic flow for specified
periods at given locations.

Abundant Spatio-Temporal Data Large Language ModelsSpatio-Temporal Pre-training
Urban Spatio-Temporal

Predication

For example: 
Given the historical data and the corresponding tokens 

The recording time [The location]. Please predict the 
tra [The time period] at [The location].

Feature Extraction Time Series Analysis

Spatial Association Learning

Pattern and Exception Recognition

Fig. 2. An general pipeline of using LLMs to enhance urban spatio-temporal prediction.
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ChatGPT for GTFS [11] benchmarks OpenAI’s GPT-3.5-Turbo and GPT-4
to investigate the performance of using natural language prompts to retrieve
urban-related information, such as the number of trains visiting a station in a
period, from the General Transit Feed Specification (GTFS) dataset. The study
demonstrates that using prompts to interpret complex GTFS data is effective,
with results showing that ChatGPT correctly answered 59.7% and 73.3% of
multiple-choice questions, respectively. However, ChatGPT was hard to process
complex queries. Its accuracy drops significantly without the program synthesis
support, which indicates a lack of deep understanding of the GTFS schema and
data relationships.

For forecasting road traffic flows, some studies investigate the effectiveness of
applying LLMs [40,46]. TFM [40] captures the participatory behavior and inter-
action of transportation system actors using graph structures and dynamic graph
generation algorithms, which provides an adaptive and flexible way to model
complex transportation problems. However, it faces challenges in balancing the
complexity of solving joint probabilities and managing the granularity of traffic
prediction, which may affect the precision in simulating real-world traffic behav-
iors. UniST [46] is the first general spatio-temporal prediction model that takes
advantage of using prompts through LLMs. To create a unified sequence format
that is compatible with the Transformer architecture, it processes diverse city
and domain data by using spatio-temporal tokenizers. UniST captures complex
spatio-temporal correlations through a masking strategies-based pre-training
model. Through spatio-temporal knowledge-guided prompts, it can generate
prompts that share attributes across datasets according to domain knowledge. It
was tested through datasets across 15 cities and 6 domains, which significantly
verified LLMs’ capabilities in few-shot and zero-shot prediction. However, the
variation in data distribution may affect its adaptability and accuracy in different
scenarios.

LLMs show promise in spatio-temporal forecasting by effectively interpreting
complex datasets with structured prompts and capturing intricate data corre-
lations. However, they have difficulties in complex queries and exhibit variable
accuracy across different data distributions, which reveal a limited deep under-
standing of domain-specific schemas and relationships.

3.2 Traffic Control

Another traffic management application that has been attempted to be opti-
mized using LLMs is traffic control, including Traffic Flow Control (TFC) and
Traffic Signal Control (TSC). Since the real traffic environment is very complex,
how to avoid lane congestion is a main purpose of traffic control [29]. Figure 3
illustrates that factors such as vehicles, road conditions, and signal lights in the
scene are observed through a prompt. Then LLM agents generate responses that
inform traffic control actions, such as adjusting signal switches to alleviate traffic
congestion. Research on TFC includes combining LLMs with traffic base models
[50] and reinforcement learning (RL) techniques [34]. LLMs for TFC effectively
augment data analysis and decision-making in complex scenarios, even helping
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non-experts to make successful decisions [34]. However, they face challenges with
extensive numerical data and exhibit variable performance across different traffic
conditions.

Prompt

[Observation]
[Task Description] How to 
control the vehicle path or 
speed so that can cross 
under a green light?

Observation

Response

Large Language Models

Driving Suggestions
Signal Switch

In cases where the car is able to 
pass the intersection on a green 
light, recommended state space is 
[speed limit, clearance with the 
front of the vehicle, lane]

Fig. 3. An general workflow of using LLMs to give suggestions for traffic control.

LLMLight [18] first guides LLMs to optimize traffic signal configuration using
commonsense enhanced hints. The process begins by transforming dynamic traf-
fic conditions into human-readable texts that serve as inputs for the LLM.
Then LightGPT is designed as a specialized LLM fine-tuned for the TSC
task. It is trained through imitation fine-tuning and learned from high-quality
control actions and rationales derived from GPT-4. Policy refinement is then
applied using a critical model to enhance the decision-making capability of the
LLM. Experiments on nine real-world and synthetic datasets showed that LLM-
Light with LightGPT achieved competitive results, while it answered 73.3% of
multiple-choice questions correctly and achieved up to 93% accuracy for sim-
ple queries in an information extraction task using GTFS data. The results
showed significant improvements over traditional traffic-based models and rein-
forcement learning methods. However, it requires specialized training and fine-
tuning to align with specific TSC tasks, which present challenges in initial setup
and adaptation. PromptGAT [10] enhances the reasoning ability of the model.
It optimizes the performance in the TSC task by asking LLMs for dynamic traf-
fic information, as well as it enhances action transformation by incorporating
human knowledge with LLMs, thus significantly reducing the sim-to-real per-
formance gap in TSC. PromptGAT may have difficulties in unobserved states
and rare conditions in the real world, which can lead to significant prediction
errors under those specific scenarios. Therefore, although LLMs have made some
achievements in dealing with decision-making problems in complex scenes, the
research on them is still under exploration due to the changeable traffic environ-
ment.

4 LLMs for Transportation Safety

In the field of traffic safety research, accident analysis is a necessary task [32],
such as static environment analysis [49], dynamic collision detection [20], and
accident cause analysis [32], etc. LLMs’s powerful text analysis capabilities and
their integration with perceptual models are expected to help researchers gain
a deeper understanding of traffic safety-related information. Table 2 summarizes
LLM-based research for transportation safety in accident text analysis and mul-
tisensory safety analysis tasks with their advantages and limitations.



Advancing ITS Applications with LLMs: A Survey 301

Table 2. Summary of recent research on LLMs for transportation safety.

Model Year Backbone Task Advantages Limitations

ChatGPT is on the
Horizon [51]

2023 GPT-3.5 Accident Text Analysis Explore ChatGPT in
accident report analysis
and traffic data
augmentation

Discuss several
challenges which could
hinder practical
deployment

Large Language
Models in
Analyzing Crash
Narratives [24]

2023 ARD GPT-4 Accident Text Analysis Extract information
from crash narratives
efficiently

Exhibit variable
performance depending
on the complexity of
information

GPT-4V as Traffic
Assistant [53]

2024 GPT-4 Multisensory Safety
Analysis

Explore GPT-4V in
recognizing and
analyzing complex
traffic events

Requires additional
modalities beyond texts
and images

AccidentGPT [36] 2023 GPT-4 Multisensory Safety
Analysis

Offer comprehensive
accident analysis and
prevention through
multi-modal and
multi-sensor framework

Depend on the
integration of additional
modalities and accurate
multi-sensor data

ChatGPT is on the Horizon [51] demonstrated the potential of LLMs for
automating accident reporting. The experimental results show that ChatGPT
achieved a 90% true positive rate for accident information extraction, 80% for
accident classification, and 75% for accident data imputation, matching the per-
formance of models specifically fine-tuned for each task. Moreover, ChatGPT is
also able to augment long-tail data based on prompts. However, it encounters
challenges such as model bias, data privacy, model vulnerability, and hallucina-
tion, which could hinder its practical deployment in traffic safety applications.
Mumtarn et al. [24] investigated the ability of three LLMs, ChatGPT, BARD,
and GPT-4, to understand accident narratives. By comparing their responses to
queries, it was found that the results were more accurate for the binary answer
questions, but relatively poor for the complex questions. And their answers in
the task of determining the responsible party had obvious bias.

It is a more direct way to recognize and understand traffic accidents through
pictures and videos at the accident scene. Zhou and Knoll [53] explored the
capabilities of the GPT-4V model through a representative set of traffic accident
videos. It showed that GPT-4V can successfully identify accidents in the vast
majority of tasks without any specific prompting strategies or fine-tuning meth-
ods, which demonstrated its powerful zero-shot capability. In addition, it was
found that GPT-4V can formulate reasonable emergency measures and perform
severity analysis by combining accident features and relevant contextual informa-
tion extracted from images. Figure 4 shows examples of GPT-4V’s understanding
capabilities in traffic accident scenarios and potentially risky urban road scenar-
ios. Traffic scenario A(top) is a picture containing a traffic accident, and traffic
scenario B(bottom) is a series of screenshots from a video [36]. AccidentGPT [36]
is the first large-scale model to integrate comprehensive scenario understanding
into traffic safety research for accident analysis and prevention. However, its
effectiveness is dependent on the integration of additional modalities and accu-
rate multi-sensor data, which may limit its application in environments where
such data integration is challenging or incomplete.
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LLMs demonstrate high accuracy and zero-shot capabilities in traffic acci-
dent identification and analysis, offering detailed extraction and classification of
accident data. However, they face challenges such as model bias and dependency
on complex data integration, limiting their practical deployment in traffic flow
control.

Q: Please determine if there are any tra c accidents or notable tra c events happen in the image. If yes, give detailed descriptions, if no, give the reason.

A: Based on the image provided, it seems there may be a tra c incident involving the white van and the red truck .  The positioning of the truck, skewed at an angle and in close 
proximity to the van, suggests that it may have collided with the van's rear end.   If this were a real-world scenario, we would expect the drivers to have engaged their hazard lights and 
for them to be exchanging information or waiting for tra c authorities to arrive and assess the situation. 

Q: Please determine if there are any tra c accidents or notable tra c events happen in the images (from a video). If yes, give detailed descriptions, if no, give the reason.

A: In a series of four images, a tra c event unfolds on a city street:
First Image: All vehicles are in their proper lanes, with a white bus in the center, a blue car on the left, and a red car on the right.
Second Image:
Third Image: The perspective shows the bus from behind, with a red car visible in front of it across the intersection.
Fourth Image: The vehicle is positioned at an intersection and is facing oncoming tra c, which is not a normal tra c pattern and suggests that it may have been involved in a collision.
There seems to be a tra c accident involving the red car. 

Fig. 4. GPT-4V evaluation of interpretability and inference of traffic anomaly scenar-
ios.

5 LLMs for Autonomous Driving

With the development of LLMs, they bring innovation to the research in the
autonomous driving domain. [13,22]. These aspects collectively advance the
development of vehicles that operate without human intervention, thus con-
tributing to the evolution of mobility. Figure 5 shows a general workflow of
autonomous driving including inputs, models, and tasks. Sensor inputs and text
tokens are processed through models. Models are trained in simulations for real-
world application. Prompts are utilized as structured queries or instructions to
guide the models in performing specific tasks such as perception, planning and
control, answering questions, or content generation. Table 3 summarizes LLM-
based research for autonomous driving in perception, planning, decision-making,
and control tasks with their advantages and limitations.

ModelsInputs

Sensor Inputs LLMsTokens Multi-Modals

Transformers Generatives

End-to-Ends
Reinforcement

Learnings

Tasks

Perception

Simulations

Planning & Control

Question-Answer Generation

Fig. 5. A general pipeline of LLMs for autonomous driving.

5.1 Perception and Understanding

The core of autonomous driving technology is perception and understanding,
where vehicles must accurately interpret their surroundings to navigate the driv-
ing. LLMs play a foundational role in processing vast amounts of sensory data
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Table 3. Summary of recent research on LLMs for autonomous driving.

Model Year Backbone Task Advantages Limitations

HiLM-D [13] 2023 BLIP-2 Perception Incorporate high-resolution
information effectively

Be limited by datasets and may
not capture extreme weather
conditions

Talk2BEV [12] 2023 BLIP-2
MiniGPT-4
InstructBLIP-2

Perception Planning Allow to use language-enhanced
maps for visual and spatial
reasoning without task-specific
training

Require human-verified
annotations and heavily
dependent on the quality of
BEV prediction models

VisionLLM [38] 2024 LLaMA Perception Planning
Decision-making

Handle open-ended
vision-centric tasks through
unified language prompts

Require significant alignment
between vision and language
modalities, and depend on the
specific prompts

LiDAR-LLM [43] 2023 GPT-4 Perception Comprehend and reason about
3D scenes

Face challenges with sparsity
and complexity in outdoor
LiDAR data and relies on the
quality and availability of 3D
LiDAR-text pairing data

Dolphins [21] 2023 LLaMA Perception Planning
Decision-making

Implement vision-language
model to process multimodal
inputs and generate informed
outputs corresponding to the
provided instructions

Depend on the quality and
scope of its training datasets
highly

OccWorld [52] 2023 GPT-3 Perception Forecast future scene evolution
and ego movements without
needing instance and map
supervision

Hard to forecast new vehicles

LM-Nav [27] 2023 GPT-3 Planning Control Execute complex, long-horizon
navigation tasks from natural
language prompts without
language-annotated robot data

Rely on landmarks heavily

Drive as You Say
[7]

2023 GPT-4 Planning
Decision-making

Enable communication between
drivers and vehicles

Lack of LLM’s direct
environmental perception

Dilu [41] 2023 GPT-3.5 GPT-4 Decision-making Show strong generalization
abilities and effective use of the
memory module

Experience decision-making
latency of 5–10 s and may
generate hallucinations

ReAct [44] 2023 GPT-3 Decision-making Enhance model interpretability
and trustworthiness

Depend heavily on the quality
of the prompting setup

DriveLLM [9] 2024 GPT-3.5 Decision-making Process edge cases effectively Faces challenges with real-time
performance

LLM-Assist [28] 2023 GPT-3 GPT-4 Planning
Decision-making

Enhance decision-making under
uncertainty

Require high computational
resources

DriveMLM [39] 2023 GPT-3.5 Planning
Decision-making Control

Achieve high flexibility and
interpretability

Depend highly on the quality
and breadth of its training
dataset

from cameras, LiDAR, radar, and other sensors, to create a comprehensive under-
standing of the environment. Thus they can identify objects, assess distances,
and understand complex scenarios such as pedestrian movements, traffic flow,
and road conditions [12].

The cross-modal analysis capability of MLLMs enhances their popularity for
addressing both object detection and semantic segmentation. HiLM-D [13] has
investigated the use of MLLMs to detect single objects. To focus on potential
risks, it processes low-resolution videos through a reasoning branch while incor-
porating high-resolution images in a perception branch to enhance object detec-
tion. Integrated seamlessly with existing LLMs, HiLM-D demonstrated notable
improvements on this benchmark with a 4.8% increase in BLEU-4 for captioning
accuracy and a 17.2% rise in mIoU for object detection. The results show its capa-
bility to provide a more nuanced understanding of driving scenes. After exploring
the ability of MLLMs to detect a single object, Talk2BEV [12] dived into the
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understanding of the whole scene and tried to perceive human-car and car-to-car
interactions. It processes multi-view images and LiDAR data to generate BEV
maps. It operates without the need for task-specific models or fine-tuning. How-
ever, the performance of these models relies heavily on the integration quality
of multimodal data and may require sophisticated processing of different reso-
lutions to focus effectively on relevant objects and interactions within complex
scenes.

Describing images by text is another improvement in applying LLMs to 3D
object detection. VisionLLM [38] employs a language-guided image tokenizer and
an LLM-based decoder to interpret and execute a wide range of vision-centric
tasks as defined by the prompts. This approach facilitates a seamless blend of
vision and language tasks, allowing for flexible task definitions and management
using language instructions. It achieved over 60% mean average precision on
the COCO dataset, which is comparable to detection-specific models. However,
it requires significant alignment between vision and language modalities and is
dependent on the specific prompts. The open-vocabulary approach allows the
capability to self-update and learn new labels when encountering new objects
or scenes. Thus, it can better adapt and deal with various unknown objects
and scenes. LiDAR-LLM [43] applied LLMs for a comprehensive outdoor 3D
scene understanding through tasks like 3D captioning and question answering. It
achieved a 40.9 BLEU-1 score in 3D captioning and 63.1% classification accuracy
in question answering. However, it faces challenges with sparsity and complexity
in outdoor LiDAR data and relies on the quality and availability of 3D LiDAR-
text pairing data for training, which may limit its application in scenarios not
covered by the data.

It is also a focus and difficulty of research to construct a world model that
tends to be more extensive real scene through LLMs. OccWorld [52] uses a
GPT-like spatio-temporal generative transformer to predict future scene and
ego car tokens, thus decoding both future occupancy and self-trajectories. Per-
formance evaluations on the nuScenes benchmark reveal its competency in mod-
eling dynamic driving scenes and planning. It achieved an average intersection
over union of 26.63 and a mean of 17.13 for 3-second futures given 2-second
histories. Moreover, it produced planning trajectories with an L2 error of 1.16
without relying on instance and map annotations. However, It’s difficult to fore-
cast new vehicles entering the view, because of the limitation arising from their
absence in input data. Dolphins [21] is also highly dependent on the quality and
scope of its training datasets. Therefore, the sim-to-real task is still the diffi-
culty of research. Due to the variability of real world scenarios, how to reduce
the dependence of models on datasets is still being explored.

5.2 Navigation and Planning

LLMs help incorporate human-like reasoning into the navigation process,
enabling vehicles to make safer and more effective choices by learning about
subtleties and potential hazards in the environment. LM-Nav [27] is a robotic
navigation system built entirely from pre-trained navigation models, CLIP and
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GPT-3, without requiring any fine-tuning or language-annotated robot data. Its
performance is bounded by the landmark detection capabilities of the vision-
language model. Cui et al. [7] processes prompts as spoken instructions from
drivers, employing these for real-time contextual analysis and driving execution.
However, it is constrained by the LLMs’ limited direct perception capabilities. It
achieved a 4.8% increase in BLEU-4 for captioning accuracy and a 17.2% rise in
mIoU for object detection which improved driving decisions with personalization
through real-time feedback.

5.3 Decision-Making and Control

In the domain of autonomous driving, the decision-making processes and con-
trol are increasingly being augmented by LLMs. Several studies [41,44] explored
the implementation of basic decision-making through LLMs. They show that
LLMs may experience decision-making latency and hallucinations that affect
real-time responsiveness. Their effectiveness can be constrained by limited sup-
port for complex behaviors and heavy dependence on the quality of prompt
setup, requiring extensive fine-tuning to optimize performance.

In addition to achieving basic decision-making, the researchers also worked on
enabling more advanced and complex human-vehicle interactions. DriveLLM’s
[9] process begins with an LLM-AD Bridge that aligns the decision-making crite-
ria of autonomous driving with the interpretive functions of LLMs. In this way,
common sense reasoning and decision-making are enabled based on a comprehen-
sive array of inputs, including real-time information about vehicle states, map
data, and passenger requests. LLM-Assist [28] controls autonomous driving in
closed-loop by LLMs, and a memory module is introduced to record important
driving information such as driving scene and driving experience. DriveMLM
[39] can perform closed-loop autonomous driving in a real-world simulator. The
model uses driving rules, user prompts, and various sensors’ data as inputs,
and enables the driver to make decisions with explanations. However, LLMs
face significant challenges in real-time applications in these research studies due
to high computational demands, decision-making latency, hallucinations, exten-
sive and high-quality training dataset dependency, and robust multimodal input
requirements. These limitations can restrict LLMs’ practical deployment and
performance in dynamic and complex scenarios.

6 Datasets

In this section, we enumerated some typical benchmark datasets that could be
used for LLMs for ITS applications (a summary is shown in Table 4). These
datasets range from individual tasks, such as traffic flow prediction and object
detection, to synthetic scenes, such as scenario understanding.
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Table 4. Summary of ITS domain datasets for LLMs’ evaluation.

Datasets Main Tasks URLs

GTFS LLM [11] GTFS Data Understanding https://github.com/UTEL-UIUC/GTFS LLM

PeMSa Traffic Flow Predication https://dot.ca.gov/programs/traffic-operations/mpr/pems-source

nuScenes [4] Object Detection https://www.nuscenes.org/nuscenes

DeepAccident [37] Scenario Understanding https://deepaccident.github.io/

Waymo [14] Scenario Understanding https://github.com/waymo-research/waymo-open-dataset

MAPLM [5] Scenario Understanding https://github.com/LLVM-AD/MAPLM

NuScenes-QA [25] VQA https://github.com/qiantianwen/NuScenes-QA

DAIR-V2X [45] V2X https://github.com/AIR-THU/DAIR-V2X
ahttps://dot.ca.gov/programs/traffic-operations/mpr/pems-source

7 Potential Challenges and Future Directions

Applying LLMs to ITS applications comes with challenges related to model bias,
safety, reliability, artificial hallucination, computational demands, and integra-
tion with existing infrastructure.

Model bias stems from skewed training data which can lead to unfair or
sub-optimal decision-making processes, thus affecting traffic routing and safety
measures [30]. Safety and reliability concerns are amplified by the unpredictable
nature of LLM outputs, which could compromise the operational integrity of
ITS and endanger user safety [42]. Furthermore, artificial hallucination poses a
threat to the accurate interpretation of traffic scenarios, which potentially leads
to erroneous decision-making [9]. Computational requirements for fine-turning
LLMs are substantial and would limit their deployment in ITS applications due
to the high processing power needed. This issue often strains system efficiency
and escalates costs, particularly in real-time applications [8]. Additionally, inte-
gration challenges arise from attempting to seamlessly incorporate LLMs with
existing models.

Addressing these challenges necessitates a multifaceted approach. Future
research should focus on enhancing the dynamic adaptation of LLMs to real-
time conditions. This involves not only overcoming computational limitations
through model and hardware optimizations but also ensuring that safety mea-
sures derived from LLMs are effective and equitable across different user demo-
graphics. In terms of model bias, a concerted effort is needed to diversify train-
ing datasets and apply fairness-aware algorithms to mitigate output skew. For
safety and reliability, rigorous testing and robust data governance are required
to manage LLMs’ unpredictable outputs effectively. Tackling artificial halluci-
nation requires methods that improve model understanding and prevent false
extrapolations.

Additionally, efforts to standardize LLMs in ITS applications are essential
for broader adoption. This includes developing adaptable LLM solutions and
creating interoperability standards within ITS applications. A multidisciplinary,
collaborative approach is vital for the responsible development of LLMs, priori-
tizing societal values and regulatory compliance.

https://github.com/UTEL-UIUC/GTFS_LLM
https://dot.ca.gov/programs/traffic-operations/mpr/pems-source
https://www.nuscenes.org/nuscenes
https://deepaccident.github.io/
https://github.com/waymo-research/waymo-open-dataset
https://github.com/LLVM-AD/MAPLM
https://github.com/qiantianwen/NuScenes-QA
https://github.com/AIR-THU/DAIR-V2X
https://dot.ca.gov/programs/traffic-operations/mpr/pems-source
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8 Conclusion

This paper comprehensively discussed the performance of LLMs in advancing
ITS applications, focusing on traffic management, transportation safety, and
autonomous driving tasks. We provided an extensive review of relevant research
and datasets, as well as discussed the main challenges and future directions in
the field.
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Abstract. Brain Tumors are the abnormal growth of cells within the
brain that can be categorized as benign (non-cancerous) or malignant
(cancerous). Accurate and timely classification of brain tumors is crucial
for effective treatment planning and patient care. Medical imaging tech-
niques like Magnetic Resonance Imaging (MRI) provide detailed visual-
izations of brain structures, aiding in diagnosis and tumor classification.
In this paper, we propose a brain tumor classifier applying deep learn-
ing methodologies to automatically classify brain tumor images without
any manual intervention. The classifier uses deep learning architectures
to extract features and classify brain MRI images. Specifically, Convolu-
tional Neural Networks (CNNs) are trained on a diverse dataset of brain
tumor images. The CNN learns intricate patterns and features within
the images, enabling it to classify various tumor types. Transfer learn-
ing, utilizing pre-trained models such as Visual Geometry Group and
EfficientNet, enhances the CNN model’s ability to generalize across dif-
ferent datasets. The performance of the Visual Geometry Group and
EfficientNet models are evaluated and compared. The metrics like accu-
racy, precision, recall and F1 score are used to evaluate the efficacy of
each model in brain tumor classification. This project contributes to the
advancement of automated brain tumors diagnosis, potentially improv-
ing patient outcomes through more efficient diagnosis strategies.

Keywords: Brain Tumor Classification · Deep Learning ·
Convolutional Neural Network · Visual Geometry Group · EfficientNet

1 Introduction

Effective treatment of brain tumors requires early stage detection and classifi-
cation of tumors. The diagnostic process for brain tumors relies on the analy-
sis of brain images acquired through Magnetic Resonance Imaging (MRI) [20].
The initial step in assessing a patient’s condition with a brain tumor involves
the precise interpretation of the images. The task of identifying brain tumors
becomes challenging in the absence of an automated detection system. Diag-
noses related to the brain demand careful attention as even the slightest error
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can lead to adverse consequences. The formation of tumor cells in the human
brain increases the risk of significant mortality. Brain tumors exhibit instability
for approximately twenty-five days due to the complexity of the tissues involved.
The average survival rate for individuals is typically less than 14months [12].
More accurate computer-based automated tumor detection/diagnosis methods
are needed to understand and intervene in this real situation.

The construction of an automated classifier necessitates the use of effective
deep learning model Convolutional Neural Network (CNN) to achieve optimal
classification performance. The concept behind an automated classifier is to
expand CNN’s capabilities through tasks such as cropping, rotating, labeling,
flattening, and converting input images to grayscale. A significant challenge lies
in supplying a well-preprocessed input image that enables the classifier to deter-
mine the type of tumor present. Furthermore, achieving the highest accuracy
with minimal computational resources presents additional challenges.

The objective of this study is to categorize the type of tumor present in a
patient’s brain MRI image. In addition to this primary goal, our research aims
to highlight the advantages and disadvantages of the models employed for brain
tumor classification. The Automated Brain Tumor Classifier developed in this
project is a sophisticated system that is designed to automatically classify brain
tumor images and provide the likelihood of the classified tumor without the
manual intervention. This study conducts a comparative analysis of the per-
formance of three models: Visual Geometry Group 16-layer (VGG-16), Visual
Geometry Group 19-layer (VGG-19), and EfficientNet (B2, B3) in the context
of brain tumor classification. VGG-16 and VGG-19, two deep convolutional neu-
ral networks, differ in the number of weight layers: VGG-16 has 16 layers, while
VGG-19 has 19 [18]. EfficientNet is based on compound scaling technique, which
balances model depth, width, and resolution [15]. EfficientNet features variable
input shapes based on the scaling factor and utilizes depth-wise separable con-
volutions in its convolutional layers.

This study conducts a thorough assessment and juxtaposition of the capabil-
ities of VGG-16, VGG-19, and EfficientNet. The primary metrics for this evalu-
ation are their efficiency and accuracy, particularly in the realm of brain tumor
classification tasks. We will delve into aspects such as the models’ performance,
computation time, inherent complexity, and their precision in classification.

2 Related Work

This study builds upon foundational work in deep learning for image recogni-
tion, such as Zisserman and Karen’s exploration of very deep convolutional net-
works [19] and Bhatt et al.’s comprehensive review of CNN variants for computer
vision [2]. To encompass a range of approaches to brain tumor detection utiliz-
ing deep learning techniques, Naseer et al. evaluated the performance of a deep
learner CNN using augmented brain MRI for diagnosis, highlighting the efficacy
of convolutional neural networks in this domain [9]. The proposed CNN model
achieved 92%–98% accuracy on the chosen datasets. Additionally, Zulfiqar et
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al. proposed the use of EfficientNets for multi-class classification of brain tumor
types [20]. Khan et al. present a deep convolutional neural network for accurate
brain tumor detection [6]. Transfer learning was leveraged, as demonstrated by
Samee et al. [12] and Srikanth [13], with the former employing a hybrid transfer
learning model and the latter utilizing VGG-16 for classification tasks attaining
the accuracy of 95% with computational time of 26 ms. These studies collec-
tively contribute to the advancement of image classification by integrating deep
learning methodologies, indicating the growing interest and effectiveness of such
approaches in medical imaging analysis.

3 Data Collection and Preprocessing

The dataset used in this experiment is published on Kaggle and the dataset
consists of 7023 images of human brain MRI images which are classified into
4 categories: glioma, meningioma, pituitary, and healthy brain [10]. Inputs are
provided in the form of images. Output is expected to be a class label that
falls into one of the four categories. The dataset is balanced with inputs in all
kinds of categories. For classification at the model level, we represented classes
as follows: No Tumor (0), Glioma (1), Meningioma (2), and pituitary(3). After
inputting an image, we apply 224× 224 dimension preprocessing. Preprocessing
w.r.t image data includes cropping (height × width), rotating, resizing, gray
scaling etc. For example: we do not consider image borders, names, and labels.
These input features are not able to predict the output. So, cleaning these kind
of features from actual images is required beforehand. The image data between
these pixels is considered as an input feature. Output is dependent on the image
data fed in the NumPy array. The dataset is split into a training set and a test
set. There are 5140 images in the training set, 572 images in the validation set,
and 1311 images in the test set.

4 Methodologies

4.1 Convolutional Neural Networks (CNNs)

A Convolutional Neural Network (CNN), also known as a ConvNet, is a spe-
cialized neural network architecture tailored for tasks in image recognition and
computer vision [6,16]. It employs convolutional and pooling layers to process
data. Figure 1 provides the simplified diagram of CNN from input to output
layer [11] The key components of a CNN are as follows [2,8]:

– Convolutional layers serve as the building blocks of CNNs. Convolution oper-
ations are performed between the input images and a filter or kernel and
involve sliding the kernel over the input data and computing the element-
wise multiplication followed by summation, enabling the network to capture
patterns and features in the images. Convolutional layers are where features
of input images are extracted.
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Fig. 1. Schematic Diagram of CNN

– Activation functions enable CNN models to capture complex patterns in
the data by introducing nonlinearity into the network. Rectified Linear Unit
(ReLU) function is used in this project.

– Pooling layers often are implemented as max pooling, these layers play a role
in downsampling the dimensions of feature maps, reducing load and param-
eter count while preserving information.

– Connected layers appear at the end of the network for classification purposes.
They take high-level features extracted by convolutional and pooling layers
and map them to class scores.

– Flattening layers help to convert the data into a one-dimensional vector.
Flattening is a common practice before feeding the results of pooling layers
into connected layers.

– Dropout is a regularization technique used to prevent overfitting during train-
ing by randomly disconnecting a fraction of connections.

– When dealing with classification tasks, the SoftMax activation function is
frequently employed in the output layer to transform the network scores into
probability distributions across classes.

CNNs have demonstrated state-of-the-art performance in various computer
vision challenges [6]. Due to its ability to autonomously learn features from
input data, CNNs are highly effective in tasks such as image classification, object
detection, and image segmentation [16].

4.2 Visual Geometry Group - 16 Layers (VGG-16)

The Visual Geometry Group - 16 layers (VGG-16) model is a type of deep CNN
architecture developed by the Visual Graphics Group (VGG) at the University of
Oxford [12]. VGG-16 has gained popularity for its performance in tasks related
to image classification, and it is well known for its consistent structure [18]. It
comprises a total of 16 layers, including both fully connected layers, as shown
in Fig. 2. The architecture follows a pattern consisting of repeated layers with
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Fig. 2. VGG-16 Architecture

small 3 × 3 filters, followed by max-pooling layers; three connected layers are
placed after the layers [13]. In VGG-16, all convolutional layers utilize filters
with dimensions of 3× 3. The stride (the amount by which the filter moves) for
these layers is set to 1 pixel. After each set of layers, a max pooling is applied.
The max pooling involves using filters sized at 2 × 2 and moving them with
a stride of 2 pixels. The final stages of VGG-16 consist entirely of layers that
possess respective neuron counts of 4096. The last layer contains precisely 1000
neurons corresponding to the output classes.

The pre-trained weights of VGG-16 have proven to be quite useful as a start-
ing point for transfer learning in computer vision tasks [17]. In applications,
VGG-16 can be widely employed for tasks like image classification, object detec-
tion, and feature extraction [14].

4.3 Visual Geometry Group - 19 Layers (VGG-19)

Visual Geometry Group - 19 layers (VGG-19), introduced by Andrew Zisser-
manis and Karen Simonyan, is a deep convolutional neural network architecture
that gained prominence for its simplicity and effectiveness in image classification
tasks [19]. The key characteristics of VGG networks are their uniform architec-
ture with small 3 × 3 convolutional filters and the stacking of multiple convo-
lutional layers. Amin, et al. explored the impact of increasing network depth
on image classification performance, demonstrating that deeper models tend to
perform better on large-scale visual recognition tasks [1].

Figure 3 illustrates the architecture of VGG-19. Feature extraction function-
ality consists of 16 convolutional layers which are divided into 5 blocks. The first
two blocks are identical compared to VGG-16. 3 more layers are added from
block 3 to block 5. During the training process, our ConvNets receive a fixed
size 224× 224 RGB image as input. We simply adjust the RGB value calculated
from the training set by subtracting it from each pixel. The image then goes
through a series of convolutional layers that utilize filters with a receptive field
size of 3×3 to capture left/right, up/down, and center concepts. Additionally, we
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Fig. 3. VGG-19 Architecture

incorporate 1×1 convolution filters, in one configuration to perform transforma-
tions on input channels followed by non-linearity. The convolution stride remains
at 1 pixel and spatial padding ensures that the spatial resolution is maintained
post convolution with a padding of 1 pixel, for every 3 × 3 convolutional layer.
A series of layers precedes three connected layers in various architectures; the
initial two consist of 4096 channels each while the final convolutional layer with
1000 channels corresponds to the 1000 classes in the ImageNet dataset, which
is commonly used as a benchmark dataset for the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) [6]. The ultimate layer is the dropout layer
and is optional. The setup of the connected layers remains consistent, across all
networks. For the experimental purpose, we have implemented it in a sequential
manner of layers instead of making use of the existing Keras inline function.

4.4 EfficientNet

EfficientNet is a group of CNN architectures created to strike a balance between
accuracy, efficiency, and model size [7]. It aims to optimize resources while main-
taining performance levels. EfficientNet introduces a method called compound
scaling that uniformly scales the network’s width, depth, and resolution [15].
This scaling factor is determined by a user-defined compound coefficient (φ)
which considers the resources [15].

EfficientNet utilizes depth convolutions to reduce parameters and computa-
tional requirements. These convolutions consist of two steps; depth convolution
followed by point convolution [15]. The depth-wise convolution operation is a
key component of the EfficientNet architecture, where each input channel is
convolved separately with its corresponding filter. After the depth-wise convolu-
tion, a point-wise convolution is applied, where a 1× 1 convolution is performed
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to combine the output channels of the depth-wise convolution. To effectively
capture low-level features, the model employs inverted residuals in its archi-
tecture [4]. Linear bottlenecks are also introduced to enhance information flow
throughout the network [4]. The fundamental building block of EfficientNet is a
block that incorporates wise separable convolutions and linear bottlenecks. Effi-
cientNet adjusts the input resolution, in conjunction with the network architec-
ture to capture spatial information [2]. This means that using resolution images
leads to the extraction of features.

EfficientNet offers multiple model variants (B0 to B7) with different scaling
coefficients [7]. These variants are designed to accommodate varying resource
limitations catering to both devices and larger cloud-based models. By adjust-
ing φ based on the target resolution, EfficientNet can achieve a balance between
model accuracy and computational efficiency across different resource con-
straints. This allows EfficientNet models to be efficiently scaled up or down
to meet specific requirements while maintaining performance. EfficientNet has
proven its excellence in image classification tasks by delivering top-notch per-
formance while maintaining efficiency in terms of model size and computational
requirements [15]. It has gained adoption across computer vision applications
and serves as a benchmark architecture for tasks like image recognition and
object detection, through transfer learning and fine-tuning [7].

5 Experiments

5.1 Hardware Resources

The experiment setup in this paper is geared towards showcasing the perfor-
mance of the selected models. In the implementation phase, our initial focus lies
in identifying the hardware prerequisites.

VGG models, known for their deep architecture and large parameter count,
are featured prominently. Our focus lies on the implementation intricacies of the
16 and 19 layer versions. For effective execution, a dual-core processor coupled
with a minimum RAM capacity of 4 GB is warranted. The inference and training
stages necessitate a GPU equipped with at least 4 GB of VRAM, exemplified
by models such as the NVIDIA GTX 1060 or superior variants. VGG is widely
acknowledged for its computational intensity, particularly in CNN settings.

EfficientNet, on the other hand, seeks to achieve peak accuracy while judi-
ciously managing computational resources. To effectively run EfficientNet mod-
els, a dual-core processor complemented by a RAM capacity of 2 GB or
more is indispensable. Additionally, a GPU boasting a minimum of 2 GB of
VRAM, exemplified by models like the NVIDIA GTX 1050 or higher, is deemed
necessary.
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5.2 Evaluation Metrics

Evaluation metrics serve as quantitative measures employed to gauge the effi-
cacy of a machine learning model. These metrics furnish valuable insights into
the model’s performance across a spectrum of parameters, including accuracy,
precision, recall, and the F1-score, among others.

Confusion Matrix. In the realm of machine learning, a confusion matrix stands
as a pivotal tool, encapsulated within a tabular structure, offering a detailed
breakdown of real labels or ground truth vs predicted labels [5]. Beyond a mere
assessment of the model’s performance, this matrix extends a holistic analysis
of its generalization capabilities across diverse classes [5]. True labels adorn the
y-axis, while the predicted class labels adorn the x-axis within the confusion
matrix. Such matrices prove instrumental in evaluating both binary and multi-
class classification tasks.

Classification Report. The classification report emerges as a succinct synop-
sis, amalgamating a plethora of performance metrics gleaned from the confusion
matrix, including accuracy, precision, recall, and the F1-score, alongside support
statistics [3]. Collectively, these metrics furnish a comprehensive overview of the
model’s efficacy in tackling classification challenges [3]. The classification report
serves as a beacon, illuminating the model’s performance for each individual
class and discerning any potential biases towards specific classes.

Accuracy. Accuracy measures the proportion of correctly classified instances
among all instances. It is calculated as the ratio of the number of correctly
predicted instances to the total number of instances. It gives the percentage of
how accurate the proposed model will be on testing [3].

Accuracy =
Number of Correct Predictions
Total Number of Predictions

(1)

Precision. Precision for a particular class c is calculated as the ratio of the
number of true positives (correctly predicted instances of class c) to the sum of
true positives and false positives (instances incorrectly predicted as class c) [3].

Precisionc =
True Positivesc

True Positivesc + False Positivesc
(2)

Recall (Sensitivity or True Positive Rate). Recall for a particular class
c measures the proportion of correctly predicted positive instances of class c
among all actual positive instances of class c. It focuses on the ability of the
classifier to find all positive instances of class c [3].

Recallc =
True Positivesc

True Positivesc + False Negativesc
(3)
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F1-Score. F1-Score is the harmonic mean of precision and recall. It provides
a single metric that balances both precision and recall, making it useful for
imbalanced datasets [3].

F1Scorec = 2× Precisionc × Recallc
Precisionc + Recallc

(4)

5.3 Module Evaluations

The performance of deep learning models hinges on the chosen model architec-
ture and its parameters. Total parameters can be categorized into two types:
trainable and non-trainable. Trainable parameters undergo learning and updat-
ing throughout the training process. These parameters wield a direct influence
on the model’s performance and are fine-tuned using optimization algorithms,
such as gradient descent, to minimize the loss function. Conversely, non-trainable
parameters remain fixed and untouched during training. In scenarios involving
pre-trained models, like pre-trained neural networks for image recognition, it may
be desirable to freeze certain layers’ weights to preserve their learned features.
These layers serve as feature extractors and maintain their constancy during
subsequent fine-tuning stages.

An epoch concludes when the model has traversed the entire training dataset
once. The number of epochs serves as a hyperparameter that necessitates config-
uration before commencing model training. Determining the appropriate number
of epochs relies on several factors, including the task’s complexity, the dataset’s
size, and the convergence behavior of the model. Finding the optimal balance
among these considerations is paramount for achieving optimal model perfor-
mance.

VGG-16. We have applied each input image to the VGG-16 model. VGG-16 is
implemented from Keras package which consists of trainable and non-trainable
parameters. In total, the model comprises 16,816,452 parameters, with 2,101,764
parameters are trainable and 14,714,688 as non-trainable. Table 1 represents the
classification report of VGG-16 model. Healthy brain category achieves 100%
precision, recall and f1-score for all images. While meningioma category faces
the least precision. Support represents the number of actual occurrences of each
class in the dataset, that is, it is the number of true instances for each class.
The support row of the classification report illustrates that 2 out of 1311 images
are unclassified. Table 2 represents the confusion matrix of VGG-16 model which
demonstrates that the highest number of misclassifications happens with glioma
test images.

Continuing with the computation time of model compilation, each epoch
takes approximately 100 ms per step, resulting in a total of 16 s per epoch.
Running 20 epochs requires a total time of 16 × 20 = 320 s (or approximately
5.3min).
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Table 1. Classification Report of VGG-16

Precision Recall f1-score support

Healthy 1.00 1.00 1.00 405
Glioma 0.95 0.92 0.93 309
Meningioma 0.90 0.95 0.92 288
Pituitary 1.00 0.97 0.99 307

Total 1309

Table 2. Confusion matrix of VGG-16

No Tumor Glioma Meningioma Pituitary

No Tumor 403 1 2 0
Glioma 0 284 24 0
Meningioma 0 14 273 1
Pituitary 1 1 6 299

VGG-19. Unlike VGG-16 implementation from Keras package, VGG-19 imple-
mentation is done in a sequential layers manner as per architecture. The conve-
nience of this approach is to balance the computation resources usage with the
execution time. Few of the output layers are optional to implement like Dropout.
We can achieve a decent accuracy of 96%. Due to model complexity, VGG-19
holds a large number of parameters. As a custom model, the trainable parame-
ters of the VGG-19 model are 139,586,628 and non-trainable parameters are 0.
These are very high compared to VGG-16. These numbers represent the training
of the model from scratch with no pretrained features or knowledge. The advan-
tage of building a custom model is that it can learn from scratch or fine-tune
effectively. Table 3 represents the classification report of VGG-19 model on the
test set. Compared with the classification report of VGG-16 shown in Table 1,
glioma category faces the least precision of 0.93, which means 93% of instances
predicted as glioma are correct. While a recall score of 0.97 for glioma category
means that 97% of the actual glioma image instances are correctly identified.

Table 3. Classification Report of VGG-19

Precision Recall f1-score support

Healthy 1.00 0.98 0.99 411
Glioma 0.93 0.97 0.95 285
Meningioma 0.95 0.91 0.93 319
Pituitary 0.97 0.99 0.98 294

Total 1309
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An F1-score of 0.99 for healthy category indicates that the model achieves a
high balance between precision and recall for that class. Table 4 represents the
confusion matrix of VGG19 model on the test set. Unlike VGG-16, the high-
est number of misclassifications 30 happened with meningioma category images.
While pituitary category images achieve the least number of misclassifications 2.

Table 4. Confusion matrix of VGG-19

No Tumor Glioma Meningioma Pituitary

No Tumor 403 0 8 0
Glioma 0 277 7 1
Meningioma 2 21 289 7
Pituitary 0 1 1 292

As for the computation time of VGG-19 model, per epoch, is approximately
306 ms per step, totaling around 50 s. Running 20 epochs requires a total time
of 50× 20 = 1000 s (or approximately 16.6min).

EfficientNet (B2,B3). In our experimental setup, we leveraged built-in func-
tionalities provided by the Keras library to implement and evaluate two variants
of EfficientNet, namely B2 and B3. While EfficientNet boasts a powerful archi-
tecture, it is not as intricately structured as VGG, resulting in a comparatively
lower parameter count. Specifically, the parameter count for EfficientNet B2 is
below 50% of that of VGG-16, underscoring its efficiency in resource utilization.

However, as we move up the EfficientNet variants, such as to B3, the param-
eter count increases, necessitating additional computation time and resources.
This increment in parameters enhances the model’s capacity to capture more
intricate patterns and nuances within the data, albeit at the cost of increased
computational overhead. Table 5 provides a detailed breakdown of the parameter
counts for both EfficientNet B2 and B3, elucidating their respective computa-
tional requirements.

Table 5. Parameter Count for EfficientNet B2 and B3

Model Total Paras Trainable Paras Non-trainable Paras

EfficientNet B2 8,135,933 8,065,542 70,391
EfficientNet B3 11,184,179 11,093,804 90,375

For EfficientNet B2, each epoch is executed in approximately 52 s. Over the
course of 20 epochs, the total execution time amounts to 1040 s (or 17.3min).
In contrast, EfficientNet B3 exhibits a longer execution time, with each epoch
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taking around 65 s. Consequently, the total time required to complete 20 epochs
sums up to 1300 s (or 21.3min). The computational demands associated with the
B3 variant are notably higher compared to B2, rendering it less cost-effective in
terms of execution time [10]. Considering the results, it is advised to opt B2 for
the dataset.

Upon meticulous analysis, both the B2 and B3 variants achieved an impres-
sive accuracy of 99.5% and 99.8%. Notably, the B2 variant reached this accuracy
level by the 4th iteration, while the B3 variant accomplished the same feat by the
3rd iteration. In Table 6, the classification report of the EfficientNet B2 model
represents the highest precision, recall, and f1-score of the Healthy category.
Overall EfficientNet (B2) model achieves a decent balance between precision
and recall for every class. Table 7 represents the confusion matrix derived from
the EfficientNet B2 model. Only 7 out of 1308 images (total support) test data
are misclassified and 3 out of 1311 images are not predicted.

Table 6. Classification Report of EfficientNet (B2)

Precision Recall f1-score support

Healthy 1.00 1.00 1.00 404
Glioma 0.99 1.00 0.99 295
Meningioma 0.99 0.98 0.99 308
Pituitary 1.00 0.99 1.00 301

Total 1308

Table 7. Confusion matrix of EfficientNet (B2)

No Tumor Glioma Meningioma Pituitary

No Tumor 404 0 0 0
Glioma 0 295 0 0
Meningioma 0 4 303 1
Pituitary 0 0 2 299

5.4 Performance Comparison

Table 8 shows the accuracy of three models VGG-16, VGG-19 and Efficient-
Net(B2). The EfficientNet (B2) variant achieved high accuracy with a smaller
number of epochs and the trade-off is computation time. VGG-16 performs less
accuracy at initial epochs and improves over iterations. Increase in variations of
VGG and EfficientNet models like (VGG-19, VGG21, B0, B3, B5, B7) will result
in higher accuracy at initial epochs due to the convolutional layers processing.
Table 9 displays the execution time (in seconds) for each epoch across three mod-
els: VGG-16, VGG-19, and EfficientNet (B2). VGG-16 completes execution in
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Table 8. Accuracy comparison

VGG-16 VGG-19 EfficientNet(B2)

Accuracy 96% 96% 99%

1/3 of the time consumed by EfficientNet. Figure 4 (a) represents accuracy plots
of three selected models. EfficientNet(B2) achieved the highest accuracy within
a few iterations and maintains this accuracy consistently across 20 epochs. In
contrast, VGG-16 and VGG-19 exhibit inconsistent declines in accuracy through-
out the 20 epochs. Figure 4 (b) represents loss plots that converge after certain
epochs which illustrate that all models perform equally after iterations.

Table 9. Execution time comparison

VGG-16 VGG-19 EfficientNet(B2)

Seconds per epoch 16 50 52
Seconds for 20 epochs 320 1000 1040

Fig. 4. Comparison of accuracy and loss of three models

6 Conclusion

In conclusion, this paper aims to develop and evaluate automated classifiers for
MRI brain images to accurately identify the presence of brain tumors. Leveraging
convolutional neural networks (CNNs), specifically VGG-16, VGG-19, and Effi-
cientNet, our objective is to achieve high classification accuracy while prioritiz-
ing computational efficiency. This experiment meticulously addresses hardware
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considerations essential for model implementation. VGG models, renowned for
their deep architectures, necessitate substantial computational resources, espe-
cially GPUs with significant VRAM, while EfficientNet variants demonstrate
efficiency by achieving high accuracy with relatively modest hardware specifica-
tions.

Each model’s performance is rigorously evaluated and compared based on
various metrics, including confusion matrices and classification reports, which
offer comprehensive insights into model performance across different classes of
brain tumors. Experimental results underscore the effectiveness of CNNs in accu-
rately classifying brain tumor images, with EfficientNet exhibiting promising
results in achieving high accuracy with relatively fewer parameters, while VGG
models demonstrate competitive performance albeit with higher computational
demands.

The automated brain tumor classifier’s performance depends on the qual-
ity of trained data. Unseen/unrecognized patterns in test data might lead to
classification errors. There are over 120 sub-categories of Glioma, Meningioma,
and Pituitary Tumors. Brain tumors exhibit a wide range of morphological and
biological variability, making accurate classification challenging. Factors such as
tumor size, location, and histological subtype can introduce complexities that
may not be adequately captured by the classifier. Complex models like VGG-19
might suffer with overfitting. Models trained on one dataset from one institution
or population may not generalize well to data from other sources due to differ-
ences in imaging protocols, patient demographics, and tumor characteristics.

The findings of this research lay a robust foundation for future investigations
in the domain of automated brain tumor classification. Future explorations may
involve refining model architectures, exploring additional CNN variants, opti-
mizing hyperparameters, and integrating advanced techniques such as transfer
learning to further enhance classification accuracy and efficiency.
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