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Systematic Feature Selection Based on Three-Level
Improvements of Fuzzy Dominance Three-Way

Neighborhood Rough Sets
Xianyong Zhang , Benwei Chen , and Duoqian Miao

Abstract—Feature selection facilitates system processing, and it
relies on knowledge granulation and uncertainty measurement. Fo-
cusing on ordered decision systems, the fuzzy dominance neighbor-
hood (FDN) granulation and corresponding condition entropy have
recently yielded an outstanding algorithm for feature selection,
FDNCE-FS (fuzzy dominance neighborhood condition entropy-
based feature selection). However, there is room for improvement.
Accordingly, three-level improvements of knowledge granulation,
information enrichment, and heterogeneity fusion are proposed
here, and 2 × 2 × 2 = 8 heuristic algorithms of feature selection
are systematically established. First, FDN granulation is improved
to fuzzy dominance three-way neighborhood (FD3N) granulation
through three-way decision on fuzzy dominance degrees, and FD3N
rough sets are modeled to offer better dependency. Second, the
FDN condition entropy is improved to FD3N condition entropy
by reinforcing the interaction factor and class information, and
corresponding measure systems are constructed. Third, FD3N de-
pendency is fused with four types of condition entropy to produce
four combined measures, and eight uncertainty measures hierar-
chically emerge due to the three-level improvements. Fourth, these
systematic measures have granulation nonmonotonicity, and they
enable heuristic algorithms for feature selection; thus, the current
FDNCE-FS method is improved to seven new selection algorithms:
FHN-FS, RHN-FS, RFHN-FS, HTWN-FS, FHTWN-FS, RHTWN-
FS, and RFHTWN-FS. Finally, the relevant FD3N granulation,
uncertainty measurement, and feature selection are validated by
data-based experiments, and the seven novel algorithms are shown
to outperform FDNCE-FS in terms of classification performance.
This study provides new insights into uncertainty modeling, infor-
mation fusion, and feature selection through granular computing
and three-way decision.

Index Terms—Feature selection, fuzzy dominance three-way
neighborhood rough set (FD3NRS), granular computing (GrC),
ordered decision system, three-way decision (3WD), uncertainty
measurement.
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I. INTRODUCTION

F EATURE selection aids data analysis in complex and in-
telligent systems. It captures effective features to reduce

the data dimensions and improve recognition abilities. Feature
selection methods have been researched for data mining [1],
[2], [3], [4], information processing [5], [6], [7], machine
learning [8], [9], [10], etc. In particular, feature selection is
closely related to attribute reduction in rough set theory [11], so
rough sets and attribute reducts provide strong support for such
methods.

Rough sets involve bidirectional cognition in granular com-
puting (GrC) and three-way decision (3WD), and they support
reasoning methods for imprecise, inconsistent, and incomplete
information. Rough sets are applied in GrC [12] and 3WD [13],
[14]. Classical rough sets aid general information/decision sys-
tems, in which sample orders are not available. In practice,
attribute values may have ordered structures, and the order
information is valuable for data mining. Accordingly, ordered
information/decision systems (OISs/ODSs) have emerged, and
they are handled by dominance-based rough sets (DRSs) [15].
For OISs/ODSs, the dominance degrees between objects deter-
mine dominance relations and knowledge granulation, so these
grounded measures enable DRSs to recognize preferred decision
classes.

When processing numerical data in OISs/ODSs, small mea-
surement fluctuations and data noise easily affect dominance
degrees and relations; thus, DRSs are sensitive in uncertainty
processing, and related studies on robustness employ attribute
reduction [16], [17], [18]. In particular, DRSs have been ef-
fectively extended by introducing fuzzy sets and neighborhood
granulation. For example, Greco et al. [19] proposed dominance-
based fuzzy rough sets by introducing fuzzy logic into dom-
inance relations; Hu et al. [20] introduced fuzzy dominance
degrees (FDDs) to obtain fuzzy dominance rough sets (FDRSs);
Chen et al. [21] proposed dominance-based neighborhood rough
sets (DNRSs) by using neighborhood dominance relations. In
contrast, DNRSs further consider noise, but their neighborhood
boolean relations hinder the effective measurement of domi-
nance degrees. To address this issue, Sang et al. [22] proposed
fuzzy dominance neighborhood rough sets (FDNRSs) by using
fuzzy dominance neighborhood (FDN) granulation on FDDs;
the corresponding fuzzy dominance neighborhood condition
entropy (FDNCE) led to an effective reduction algorithm called
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FDNCE-FS. By observation, FDNs and FDNRSs can handle
only a one-way modification of uncertain granulation with a
central value of 0.5, and they ignore the impact of noise at the
extreme values 0 and 1 [22]; thus, we can incorporate two-way
corrections for extreme (0, 1) valuations and certain granula-
tion. Overall, this article presents fuzzy dominance three-way
neighborhood (FD3N) granulation to model fuzzy dominance
three-way neighborhood rough sets (FD3NRSs), and this new
model improves FDNRSs to motivate more robust uncertainty
measurement and feature selection.

Feature selection depends on uncertainty measurement based
on knowledge granulation, and the quality metric determines
the resulting optimization efficiency and learning performance.
Uncertainty measures include the algebraic measure [11], in-
formation measure [23], and algebra–information combina-
tion [24]. The latter’s heterogeneous fusion ability accelerates
the reduction optimization [25], [26], [27], [28]. For selec-
tion measures in ODSs, algebraic measures concern knowl-
edge granularity, regional metrics, and rough dependencies [17],
[18], [20]; fuzzy information measures include the fuzzy infor-
mation/condition/joint entropy [29] and fuzzy ranking condi-
tion entropy [30], FDNCE [22]; however, fusion measures are
rare. Accordingly, information reduction is important, and met-
ric granulation monotonicity/nonmonotonicity underlies mono-
tonic/nonmonotonic feature selection methods, such as the
monotonic reduction algorithms DCE-FS [31] and FDCE-
FS [30] and nonmonotonic algorithms NDCE-FS [21] and
FDNCE-FS [22].

Regarding feature selection for ODSs, there are some research
limitations and development thoughts as follows, in terms of
uncertainty measures. 1) Knowledge granulation underlies in-
teraction measurement, and it can incorporate FDDs [20]. FDDs
introduce the log–sigmoid transfer functions for stability and
applicability. On this basis, FDNs and FDNRSs can address
noise sensitivity, but their one-way tolerance granulation is not
satisfactory [22]. Furthermore, we plan to formulate FD3Ns
and FD3NRSs for better robustness. 2) Typical information
measurement can use two internal factors

P =
|condition−granule ∩ decision−class|

|condition−granule| ,

FP =
|condition−granule ∩ decision−class|2
|condition−granule| × |decision−class| ; (1)

here P means the condition probability, while FP reinforces
both the interaction information and class cardinality to im-
prove quantification [32], [33]. For ODSs, condition entropies
(CEs) are commonly used, and relevant formulas consider
P but never consider FP [22], [29], [30]; thus, we aim
to improve FDNCE [22] by replacing P with FP . Further-
more, it would be worthwhile to fuse FDNCE and its promo-
tional CEs with model dependency to produce more power-
ful measures—DCEs (i.e., dependency-fused CEs)—as shown
by various algebra–information fusion cases [26], [27], [28].
3) For ODSs, monotonic feature selection is common [29],
[30], while nonmonotonic reduction is rare; in practice, the

latter becomes necessary and valuable for ordering systematic-
ity and complex contexts. Recently, nonmonotonic FDNCE-
FS [22] outperformed three comparison methods: DCE-FS [31],
FDCE-FS [30], and NDCE-FS [21]. Thus, we still consider
nonmonotonic selection for theoretical nonmonotonicity, but we
also emphasize and utilize practical monotonicity trends for the
optimized design of selection algorithms.

According to the above considerations, this article uses uncer-
tainty measurement and feature selection in ODSs to improve
the methods of recent studies discussed in [22]. Concretely, we
perform three-level improvements to FDD granulation, CE en-
richment, and DCE fusion, and 2× 2× 2-systematic selection
algorithms are established from a nonmonotonic perspective.
Our research framework is shown in Fig. 1, and the relevant
content involves 3WD, GrC, and their combination [34], [35],
[36]. The main abbreviations are given in Table I.

1) At the knowledge granulation level, three-way revised
FDDs on (0, 0.5, 1) are proposed to improve one-way
revised FDDs on 0.5 [22] and initial FDDs [20], yielding
FD3N to improve FDN for better granulation robustness.

2) At the single-view level of condition-decision interac-
tion, FD3N-based FD3NRSs are modeled to improve
FDN-based FDNRSs [22], and a corresponding algebraic
dependency γδ

B(D
≥) arises to aid this improvement. In

addition, three new CEs are used to improve the existing
FDNCE on (P , FDN) [22] by using 2-D FP deepening
and FD3N extensions; moreover, metric systems of CE,
informational and joint entropies, and mutual information
are established.

3) At the double-view level of algebra–information fusion,
γδ
B(D

≥) is combined with four CEs via ×, and thus four
DCEs for 2-D (P, FP )× (FDN,FD3N) emerge.

4) The above three-level improvements motivate 2× 2×
2 = 8 uncertainty measures (where only FDNCE ex-
ists [22]), and all measures achieve granulation nonmono-
tonicity and potential monotonicity. A total of eight non-
monotonic selection algorithms are systematically con-
structed, and seven new algorithms improve 1 current
method FDNCE-FS (i.e., HN-FS) [22].

5) Finally, both the uncertainty measures of FDDs, CEs, and
DCEs and the heuristic algorithms of feature selection
are validated by data-based experiments, and our new
algorithms achieve better classification performance.

Regarding contributions, this study deeply provides both
hierarchical improvements of uncertainty measurement and
systematic algorithms of feature selection, in terms of
ODSs.

The rest of this article is organized as follows. Section II
implements three-way FDD corrections to establish FD3Ns
and FD3NRSs. Section III adopts the FDN and FD3N to con-
struct and research CE-central information systems and com-
binational DCEs. Section IV relies on three-level measure-
ment improvements to design 2× 2× 2 selection algorithms.
Section V validates the uncertainty measurement and feature
selection via data-based experiments. Finally, Section VI con-
cludes this article.
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Fig. 1. Three-level improvements and systematic feature selection.

TABLE I
MAIN ABBREVIATIONS AND LABELS OF THIS ARTICLE

II. FUZZY DOMINANCE THREE-WAY NEIGHBORHOOD

ROUGH SETS

A decision system is defined as DS = (U,AT = C ∪
D,V, f) [11]. Here, U = {x1, x2, . . . , xn} denotes the
nonempty finite universe, C = {ck|k = 1, 2, . . . , r} and D =
{d} represent sets of condition and decision attributes, re-
spectively, V =

⋃
a∈C∪D Va determines the value range, and

f : U × (C ∪D)→ V is the mapping function. Furthermore,
the ODS is established by adding an order

�a: x �a y ⇔ f(x, a) ≤ f(y, a) (x, y ∈ U, a ∈ C ∪D).

An attribute subset B ⊆ C induces a dominance relation

RB = {(x, y) ∈ U × U | f(x, a) ≤ f(y, a), ∀a ∈ B} (2)

and there are two types of knowledge granules

(Dominating class) [x]+B = {y ∈ U | (x, y) ∈ RB}
(Dominated class) [x]−B = {y ∈ U | (y, x) ∈ RB} . (3)

For the decision part of D = {d}, a value set VD =
{d1, . . . , dM} provides a preference sorting d1 < · · · <
dM , and decision classes Dk = {x ∈ U | f(x, d) = dk} (k =
1, . . . ,M ) generate an equivalent partition U/D = {Dk | k =

1, . . . ,M} and relevant ordering D1 � · · · � DM . Upward and
downward preference decision classes of Dk become

D≥k = ∪k′≥kDk′ , D
≤
k = ∪k′≤kDk′ . (4)

DRSs mainly describe D≥k , D
≤
k via [x]+B , [x]

−
B [15].

According to ODSs, DRSs underlie uncertainty modeling
and dependency learning. In terms of noise treatments, DNRSs
supplement DRSs by introducing the distance measurement and
neighborhood granulation [21], but they face object-ranking
issues due to dependency. FDNRSs exhibit corresponding im-
provements based on fuzziness and tolerance [22], and their
neighborhood connotation is related to the 0.5-centered correc-
tion and uncertainty of FDD, thus including only one-way gran-
ulation. Furthermore, extreme FDDs 0,1 and certainty trends
are worth incorporating to obtain three-way granulation. Then,
the three-way neighborhood mechanism naturally motivates
FD3NRSs, and this new model further improves DNRSs [21]
and FDNRSs [22].

A. FDD Improvements

Fuzzy dominance relations adopt fuzzy expressions, and this
differentiates them from general dominance relations [see (2)].
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They can be concretized by FDDs [20], i.e.,

D≺B(xi, xj) = min
a∈B

D≺a (xi, xj)

D≺a (xi, xj) =
1

1 + e−K[f(xj ,a)−f(xi,a)]
(5)

where K ∈ N+; let K = 10. For β ∈ [0.4, 0.5), α ∈ (0.5, 0.6],
FDDs are revised according to [22] as

N≺B(xi, xj) =

{
0.5, if D≺B(xi, xj) ∈ [β, α]

D≺B(xi, xj), otherwise.
(6)

N≺B(xi, xj) concerns two operations. Suppose
∧

a∈B repre-
sents the joint integration of attributes and minimum values,
while AE

0.5 represents the equivalent amendment based on the
central value 0.5. Operational commutativity,

∧
a∈B ◦AE

0.5 =
AE

0.5 ◦
∧

a∈B , holds, so we focus on a fundamental correction
to the single attribute

N≺a (xi, xj) =

{
0.5, if D≺a (xi, xj) ∈ [β, α]

D≺a (xi, xj), otherwise.
(7)

We can add the properties of N≺a (xi, xj): N≺a (xi, xj) ∈ (0, 1),
N≺a (xi, xi) = 0.5, and N≺a (xi, xj) +N≺a (xj , xi) = 1, which
accord with those of D≺a (xi, xj). N≺a (xi, xj) +N≺a (xj , xi) =
1 determines N≺a (xi, xj) = 0.5⇔ N≺a (xj , xi) = 0.5, so this
case implies D≺a (xi, xj) ∈ [β, α]⇔ D≺a (xj , xi) ∈ [β, α]⇔
D≺a (xi, xj) ∈ [1− α, 1− β]; thus, we offer a symmetrical con-
ditionα+ β = 1. This parametric requirement naturally applies
to both N≺a (xi, xj) and N≺B(xi, xj), so we alternatively use
N δ

a(xi, xj) andN δ
B(xi, xj)by settingα = 0.5 + δ, β = 0.5− δ

with only the neighborhood threshold δ ∈ [0, 0.1].
Definition 1: One-way neighborhood FDDs of xj over xi on

attribute a ∈ C and subset B ⊆ C are, respectively

N δ
a(xi, xj) =

{
0.5, if D≺a (xi, xj) ∈ [0.5− δ, 0.5 + δ]

D≺a (xi, xj), otherwise

(8)

N δ
B(xi, xj) =

∧
a∈B

N δ
a(xi, xj) (9)

which constitute matrices Nδ
a = [N δ

a(xi, xj)]n×n and Nδ
B =

[N δ
B(xi, xj)]n×n, respectively.
N δ

a(xi, xj), N
δ
B(xi, xj) are individual attribute-driven and

parameter-driven expressions, where δ = 0 causes degradation
for D≺a (xi, xj), D

≺
B(xi, xj). Therefore, N δ

B(xi, xj) simplifies
N≺B(xi, xj) [22], and it has a better granulating mechanism and
calculation superiority.

Next, our 3WD strategy of neighborhood extension is clarified
by schematic diagrams. FDDs D≺a1

(xi, xj) (i, j ∈ {1, . . . , 10})
in Table II are depicted in Fig. 2, where the horizontal
and vertical directions are related to xj and xi, respectively.
1) Some FDD values are very close to 0.5, and the relevant
objects can be considered to have no differences due to noise ef-
fects. Thus, N≺B(xi, xj) [22] and N δ

B(xi, xj) are proposed. The
basic strategy of the one-way neighborhood is shown in Fig. 2(a),
which carries equivalent N≺a1

(xi, xj) (with β = 0.4, α = 0.6)
and N δ

a1
(xi, xj) (with δ = 0.1). 2) The other two cases of 0 and

1 can be similarly processed, and thus we propose a systematic

TABLE II
ORDERED DECISION SYSTEM FOR EXAMPLE DEMONSTRATION

Fig. 2. Value distribution and neighborhood granulation of FDDs. (a) One-way
cut and revision on 0.5. (b) Three-way cuts and revisions on (0, 0.5, 1).

strategy of three-way neighborhoods. As shown by Fig. 2(b)
with small γ and large φ, when the FDDs are in [0, γ] (or [φ, 1]),
the two samples have very different values, so their FDDs can
be considered to be 0 (or 1).

By the above analysis, N≺a (xi, xj) can be extended to

TWN≺a (xi, xj) =

⎧⎪⎪⎨⎪⎪⎩
0.5, if D≺a (xi, xj) ∈ [β, α]
1, if D≺a (xi, xj) ∈ [φ, 1]
0, if D≺a (xi, xj) ∈ [0, γ]

D≺a (xi, xj), otherwise

(10)

where β ∈ [0.4, 0.5], α ∈ [0.5, 0.6], φ ∈ [0.9, 1], and γ ∈
[0, 0.1]. Similar to the symmetrical determination α+ β =
1, we obtain γ + φ = 1, so TWN≺a (xi, xj) is simplified to
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TWNδ,θ
a (xi, xj) by setting δ = 0.5− β = α− 0.5 ∈ [0, 0.1]

and θ = 1− φ = γ − 0 ∈ [0, 0.1]. For unification and conve-
nience, θ = δ is stipulated to yield a simplified form of FDDs.

Definition 2: The three-way neighborhood FDDs of xj over
xi on attribute a ∈ C and on subset B ⊆ C are, respectively

TWNδ
a(xi, xj)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.5, if D≺a (xi, xj) ∈ [0.5− δ, 0.5 + δ]

1, if D≺a (xi, xj) ∈ [1− δ, 1]

0, if D≺a (xi, xj) ∈ [0, δ]

D≺a (xi, xj), otherwise

(11)

TWNδ
B(xi, xj) =

∧
a∈B

TWNδ
a(xi, xj) (12)

which induce matrices TWNδ
a = [TWNδ

a(xi, xj)]n×n,
TWNδ

B = [TWNδ
B(xi, xj)]n×n, respectively.

Three-way correctional FDDs, i.e., TWNδ
a(xi, xj) and

TWNδ
B(xi, xj), are proposed to extend and improve current

one-way correctional FDDs, i.e., N≺B(xi, xj) [22]. Here, 3WD
is considered. Regarding dominance orders, the value 0.5 and
its neighborhood represent the greatest uncertainty and most
noncommittal decision; in contrast, 0, 1 and their neighborhoods
reflect the maximal certainty related to positive decision and
negative decision, and the two cases correspond to the largest
and smallest values. To achieve equilibrium and simplicity, we
require that the 0-driven neighborhood and 1-driven neighbor-
hood have the same threshold δ to match the 0.5-driven neigh-
borhood range 2δ. In the exponential rangeD≺B(xi, xj) ∈ (0, 1),
0 and 1 serve as two limit values that are never realized in
practice, and this contradicts the subjective requirements of
complete certainty on 0, 1. N≺B(xi, xj) ∈ (0, 1) has a similar
constraint and defect regarding 0, 1 realizability. In contrast, our
new TWNδ

B(xi, xj) breaks through the intrinsic bottleneck of
exponential characterizations because it can reach the values 0,1,
so this further supports the superiority of our 3WD correction.

B. Uncertainty Modeling

Definition 3: The fuzzy three-way neighborhood dominating
and dominated classes of xi ∈ U on B ⊆ C are, respectively

TWNδ+
B (xi) =

TWNδ
B(xi, x1)

x1
+ · · ·+ TWNδ

B(xi, xn)

xn

TWNδ−
B (xi) =

TWNδ
B(x1, xi)

x1
+ · · ·+ TWNδ

B(xn, xi)

xn
.

(13)

Proposition 1: 1) TWNδ+
B1

(xi) ∩ TWNδ+
B2

(xi)=TWNδ+
B1∪B2

(xi). 2) If B1 ⊆ B2, then TWNδ+
B1

(xi) ⊇ TWNδ+
B2

(xi). 3) If

δ1 ≤ δ2, then TWNδ1+
B (xi) � TWNδ2+

B (xi), TWNδ1+
B (xi) �

TWNδ2+
B (xi).

Based on three-way neighborhood FDDs, fuzzy knowledge
granules must adhere to fuzzy sets and memberships, and
they offer attribute subset monotonicity and neighborhood
threshold nonmonotonicity. A measure with functionMδ

B has
attribute/granulation monotonicity if it satisfies B1 ⊆ B2 ⇒

Mδ
B1
≤Mδ

B2
or B1 ⊆ B2 ⇒Mδ

B1
≥Mδ

B2
; otherwise,Mδ

B

has attribute/granulation nonmonotonicity. δ-parameter mono-
tonicity and nonmonotonicity can be defined similarly. Further-
more, we propose FD3NRSs for improved approximation, de-
pendency, and properties. Before modeling, we naturally define
the decision part under fuzziness. Fuzzy dominating and domi-
nated decision classes of xi ∈ U on decision attribute D = {d}
are defined as

M+
D (xi) =

MD(xi, x1)

x1
+ · · ·+ MD(xi, xn)

xn
,

(14)

M−
D(xi) =

MD(x1, xi)

x1
+ · · ·+ MD(xn, xi)

xn
,

where MD(xi, xj) =

{
0, if D(xi) < D(xj),
1, otherwise.

M+
D (xi),M

−
D(xi) adhere to fuzzy decision granulation for later

information measurement. For uncertainty modeling, we use
fuzzy upward and downward decision classes

D≥k (xj) =

{
0, if xj /∈ D≥k or D(xj) < dk

1, if xj ∈ D≥k or D(xj) ≥ dk

D≤k (xj) =

{
0, if xj /∈ D≤k or D(xj) > dk

1, if xj ∈ D≤k or D(xj) ≤ dk.
(15)

Definition 4 (FD3NRSs): The fuzzy lower and upper approx-
imations and the subsequent dependency of upward preference
decision classes D≥k are represented as

TWNδ
B(D

≥
k )(xi)

= inf
xj∈U

max(|TWNδ+
B (xi, xj)− TWNδ+

B (xj , xi)|, D≥k (xj))

= inf
xj∈U

max(|1− 2TWNδ+
B (xi, xj)|, D≥k (xj))

TWNδ
B(D

≥
k )(xi)

= sup
xj∈U

min(1−|TWNδ+
B (xi, xj)−TWNδ+

B (xj , xi)|, D≥k (xj))

= sup
xj∈U

min(1− |1− 2TWNδ+
B (xi, xj)|, D≥k (xj))

γδ
B(D

≥) =

∑M
k=1

∑n
i=1 TWNδ

B(D
≥
k )(xi)∑M

k=1

∑n
i=1 D

≥
k (xi)

. (16)

Proposition 2: 1) TWNδ
B(D

≥
k ) ⊆ D≥k ⊆ TWNδ

B(D
≥
k ). 2)

The dependency γδ
B(D

≥) ∈ [0, 1] has B-attribute nonmono-
tonicity and δ-parameter nonmonotonicity.

FD3NRSs improve the current FDNRSs [22] not only in terms
of the extended neighborhood granulation but also through the
formal structure of approximation cognition. According to [22],
the relevant N δ+

B (xi) can be provided, and D≥k -based FDNRSs
satisfy

N δ
B(D

≥
k )(xi) = inf

xj∈U
max(1−N δ+

B (xi, xj), D
≥
k (xj))

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on September 28,2024 at 05:04:09 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: SYSTEMATIC FEATURE SELECTION BASED ON THREE-LEVEL IMPROVEMENTS OF FD3N ROUGH SETS 5065

N δ
B(D

≥
k )(xi) = sup

xj∈U
min(N δ+

B (xi, xj), D
≥
k (xj))

γ̃δ
B(D

≥) =

∑M
k=1

∑n
i=1 N

δ
B(D

≥
k )(xi)∑M

k=1

∑n
i=1 D

≥
k (xi)

. (17)

However, this definition cannot derive an ideal squeeze rule for
bidirectional approximation and cognition. Such a squeeze rule
can be blocked by N δ+

B (xi, xi) = 0.5, and it is related to a
false setting N δ+

B (xi, xi) �= 1. We obtain 1− |N δ+
B (xi, xi)−

N δ+
B (xi, xi)| = 1− |0.5− 0.5| = 1 to motivate the corre-

sponding improvements, so we convert N δ+
B (xi, xj) to 1−

|N δ+
B (xi, xj)−N δ+

B (xj , xi)|, which yields greater symmetry
and information enrichment. Thus, (17) is first updated to an
improved formula, and then, new and transitional approxima-
tions on N δ+

B induce approximations on TWNδ+
B in turn, as

shown in (16). As an improved result, γδ
B(D

≥) ∈ [0, 1] corrects
γ̃δ
B(D

≥), and the previous dependency may exceed 1 because
its numerator may be greater than its denominator.

C. Example Illustration

Example 1: Table II shows an ODS (with size order)
from [22]. For B1 = {c1}, δ = 0.05, we obtain the correctional
condition matrix

TWN0.05
B1

=⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.50 0.43 0.77 0.88 0.80 0.94 1.00 1.00 1.00 1.00
0.57 0.50 0.82 0.91 0.85 1.00 1.00 1.00 1.00 1.00
0.23 0.18 0.50 0.69 0.50 0.82 1.00 1.00 1.00 1.00
0.12 0.09 0.31 0.50 0.35 0.67 1.00 0.94 1.00 1.00
0.20 0.15 0.50 0.65 0.50 0.79 1.00 1.00 1.00 1.00
0.06 0.00 0.18 0.33 0.21 0.50 0.91 0.88 0.94 1.00
0.00 0.00 0.00 0.00 0.00 0.09 0.50 0.43 0.62 0.67
0.00 0.00 0.00 0.06 0.00 0.12 0.57 0.50 0.69 0.73
0.00 0.00 0.00 0.00 0.00 0.06 0.38 0.31 0.50 0.50
0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.27 0.50 0.50

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We obtain fuzzy classes of condition and decision, such as

TWN0.05+
B1

(x1) =
0.50

x1
+

0.43

x2
+

0.77

x3
+ · · ·+ 1.00

x9
+

1.00

x10

D≥3 (xj) =
0

x1
+

0

x2
+

0

x3
+ · · ·+ 1

x10
.

In terms of nonzero memberships, the FD3NRS model satisfies

TWN0.05
B1

(D≥3 ) :
0.15

x8
+

0.24

x9
+

0.34

x10

TWN0.05
B1

(D≥3 ) :
0.13

x4
+

0.24

x6
+

0.85

x7
+

1

x8
+

1

x9
+

1

x10

γ0.05
B1

(D≥) =
10 + 5.02 + 0.73

10 + 7 + 3
=

15.75

20
= 0.79.

III. UNCERTAINTY MEASURES BASED ON FD3N
GRANULATION

In the above section, the FD3N granulation improves the
current FDN granulation [22]. Regarding condition and deci-
sion interactions, FD3NRSs with algebraic dependency already

improve current FDNRSs [22]. Next, information measures are
systematically developed. Furthermore, their CEs are combined
with dependency, so powerful fusion measures, DCEs, are gen-
erated to support follow-up feature learning.

FD3N granulation underlies the improvements to information
measures, and here, we additionally reinforce the information
structures for further improvement. We first review, extend, and
upgrade FDNCE [22] via N δ+

B (xi). To support granular inter-
actions, suppose the conditional classes N δ+

B (xi),TWNδ+
B (xi),

and decisional class M+
D (xi) produce three types of fuzzy

granulation structures

N δ+
B =

[
N δ+

B (x1), N
δ+
B (x2), . . . , N

δ+
B (xn)

]
TWNδ+

B =
[
TWNδ+

B (x1), . . . ,TWNδ+
B (xn)

]
M+

D =
[
M+

D (x1), . . . ,M
+
D (xn)

]
. (18)

Definition 5 ([22]): FDNCE of B on D is

Hδ(D|B) = − 1

n

n∑
i=1

log2
|N δ+

B (xi) ∩M+
D (xi)|

|N δ+
B (xi)|

. (19)

The current Hδ(D|B) provides two development
opportunities: information enrichment and system deep-
ening, which accord with the replacement P → FP
in (1). 1) Hδ(D|B) mainly concerns the conditional

probability P δ
B(xi) =

|Nδ+
B (xi)∩M+

D(xi)|
|Nδ+

B (xi)| . The core interaction

|N δ+
B (xi) ∩M+

D (xi)| can be enhanced by the square function,
while the other granular cardinality |M+

D (xi)| can be
complemented for class information completeness. That
is, we adopt more powerful forms

FPδ
B(xi) =

|N δ+
B (xi) ∩M+

D (xi)|2
|M+

D (xi)||N δ+
B (xi)|

≤ P δ
B(xi)

FHδ(D|B) = − 1

n

n∑
i=1

log2 FP δ
B(xi) ≥ Hδ(D|B) (20)

which refer to relevant existing notions in other environ-
ments [32], [33]. 2) Hδ(D|B) and FHδ(D|B) concern only
CEs, and other notions (such as information entropy and mutual
information) can be comprehensively mined to establish mea-
sure systems. The above two assumptions are made, and we
next generalize N δ+

B to TWNδ+
B . Note that all following results

for TWNδ+
B have corresponding descriptions in N δ+

B . Next,
the corresponding symbols of FHδ and FPδ

B(xi) are uniformly
utilized for the formal TWNδ+

B and potential N δ+
B , and specific

contexts can provide effective identifications.
Definition 6: Regarding TWNδ+

B , CE of B on D is

FHδ(D|B) = − 1

n

n∑
i=1

log2
|TWNδ+

B (xi) ∩M+
D (xi)|2

|TWNδ+
B (xi)||M+

D (xi)|
. (21)

Information entropies of B and D are

FHδ(B) = − 1

n

n∑
i=1

log2
|TWNδ+

B (xi)|
n
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Fig. 3. FDDs where xi dominates x1 on B1 and δ. (a) WPBC. (b) Seeds. (c) Wine. (d) BCW. (e) Breast. (f) Climate. (g) Glass. (h) Chemical. (i) WDBC.
(j) Sports. (k) Hill. (l) DARWIN.

Algorithm 1: Calculating Condition Entropy FHδ(D|B).

FHδ(D) = − 1

n

n∑
i=1

log2
|M+

D (xi)|
n

(22)

and the joint entropy and mutual information of B on D are

FHδ(B,D) = − 1

n

n∑
i=1

log2
|TWNδ+

B (xi) ∩M+
D (xi)|2

n|M+
D (xi)|

FHδ(B;D) = − 1

n

n∑
i=1

log2
|TWNδ+

B (xi)||M+
D (xi)|2

n|TWNδ+
B (xi) ∩M+

D (xi)|2
.

(23)

Theorem 1: 1) FHδ(D|B) = FHδ(B,D)− FHδ(B),
2) FHδ(B;D) = FHδ(B) + FHδ(D)− FHδ(B,D), and
3) FHδ(B;D) = FHδ(D)− FHδ(D|B).
Definition 6 establishes a system of information measure-

ment, and Theorem 1 (proved in Appendix A) reveals systematic

relationships. As an example, the promotional CE is calculated
in Algorithm 1.

FHδ(D|B) improves Hδ(D|B), and they can be fused with
algebraic dependency for greater robustness. γδ

B(D
≥) improves

γ̃δ
B(D

≥) so it is considered, and the fusion operation di-
rectly adopts ×, as is widely used [26], [27], [28]. Next,
Hδ(D|B), FHδ(D|B) are each combined with γδ

B(D
≥), and

CEs and fusion measures are used for the two contexts of
TWNδ+

B and N δ+
B .

Definition 7: Define two DCEs

RHδ(D|B) = γδ
B(D

≥)×Hδ(D|B),

RFHδ(D|B) = γδ
B(D

≥)× FHδ(D|B). (24)

Theorem 2: Hδ(D|B), FHδ(D|B), RHδ(D|B), and RFHδ

(D|B) have attribute granulation nonmonotonicity and neigh-
borhood parameter nonmonotonicity.

Theorem 2 is proved in Appendix B from a theoretical view,
and it can be practically verified by experiments (such as exper-
imental Fig. 4).

IV. 2× 2× 2 FEATURE SELECTION ALGORITHMS BASED ON

THREE-LEVEL IMPROVEMENTS

Thus far, three-level improvements have been completed.
As shown in Fig. 1, we improve FDNRSs to FD3NRSs at
the knowledge level; at the interaction level, the algebraic
model improvement is from FDNRSs to FD3NRSs (from
γ̃δ
B(D

≥) to γδ
B(D

≥)), while the information measure improve-
ment is from Hδ(D|B) to the FHδ(D|B) system. At the fusion
level, algebraic-informational DCEs RHδ(D|B),RFHδ(D|B)
emerge by adding γδ

B(D
≥). The three-level improvements in-

duce 2× 2× 2 uncertainty measures on FDDs, CEs, and DCEs,
and the latter measures further motivate feature selection here.

As shown in Table III, CEs and DCEs generate 4 measures
(i.e., Hδ(D|B), FHδ(D|B), RHδ(D|B), and RFHδ(D|B)),
while knowledge granulation concerns 2 cases (i.e., FDNs re-
lated to N and FD3Ns related to TWN). Thus, 4× 2 cases emerge
to support the relevant uncertainty measurement and feature
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Fig. 4. 3-D surfaces of eight measures on B-attribute and δ-rate chains. (a) WPBC. (b) Seeds. (c) Wine. (d) BCW. (e) Breast. (f) Climate. (g) Glass. (h) Chemical.
(i) WDBC. (j) Sports. (k) Hill. (l) DARWIN.

TABLE III
EIGHT COMBINATION MEASURES AND SELECTION ALGORITHMS FROM THREE-LEVEL IMPROVEMENTS

selection. The 8 relevant measures are abbreviated as

Hδ
♥(D|B),FHδ

♥(D|B),RHδ
♥(D|B),RFHδ

♥(D|B) (25)

where ♥ ∈ {N,TWN}, and the corresponding algorithms for
feature selection become

HN-FS,FHN-FS,RHN-FS,RFHN-FS,

HTWN-FS,FHTWN-FS,RHTWN-FS,RFHTWN-FS (26)

which are shown in Fig. 1 and Table I. HN-FS denotes the
existing algorithm FDNCE-FS [22], while the other 7 algorithms
are novel and arise from the three-level improvements.

A. Algorithm Construction

Definition 8: On Hδ
♥(D|B), R ⊆ C is a reduct if

1) Hδ
♥(D|R) ≤ Hδ

♥(D|C), and
2) ∀r ∈ R,Hδ

♥(D|(R− {r})) > Hδ
♥(D|R).

Significances of external attribute b ∈ C −B and internal at-
tribute b ∈ B on subset B ⊆ C are, respectively

Sig+(b,B,D) = Hδ
♥(D|B)−Hδ

♥(D|(B ∪ {b}))
Sig−(b,B,D) = Hδ

♥(D|(B − {b}))−Hδ
♥(D|B). (27)

Hδ
♥(D|B) involves two CEs on N,TWN, and its granula-

tion nonmonotonicity implies nonmonotonic feature selection.
The relevant reduct definition and algorithm framework refer
to FDNCE-FS [22]. The corresponding Algorithm 2 contains
HN-FS and HTWN-FS, and it mainly includes three blocks. The
“for” loop in Steps 2–7 adopts Sig−(c, C,D) > 0 to collect the
initial attributes. The “while” and “for” loops in Steps 9–14 use
the maximal Sig+(b,R,D) to add optimal features and quickly
obtain the selection sufficiency. The “for” loop in Steps 15–20

Algorithm 2: Feature Selection on CE Hδ
♥(D|B).

deletes redundant attributes to meet the reduction necessity.
Finally, an effective reduct R is obtained.
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Algorithm 3: Feature Selection on Measure ♦δ
♥(D|B).

The remaining measures FHδ
♥(D|B), RHδ

♥(D|B),
RFHδ

♥(D|B) can be unified by

♦δ
♥(D|B), where ♦ ∈ {FH,RH,RFH}.

Although these improved measures are also nonmonotonic, they
follow monotonic trends of attribute granulation, as observed in
practical cases. For this case, we adopt the idea of nonmonotonic
reduction by approximatively simulating classical monotonic
reduction.

Definition 9: On ♦δ
♥(D|B), R ⊆ C is a reduct if

1) ♦δ
♥(D|R) = ♦δ

♥(D|C) and
2) ∀r ∈ R, ♦δ

♥(D|(R− {r})) �= ♦δ
♥(D|R).

The approximation condition of ♦δ
♥(D|R) to ♦δ

♥(D|C) is de-
fined via tolerance threshold t ∈ [0, 1] as follows:

|♦δ
♥(D|R)−♦δ

♥(D|C)| ≤ t♦δ
♥(D|C). (28)

According to theoretical nonmonotonicity and approximative
monotonicity, the reducts on ♦δ

♥(D|B) are related to met-
ric preservation, but their Algorithm 3 adds maximal metric
attributes to satisfy the approximation condition. For (28),
|♦δ
♥(D|R)−♦δ

♥(D|C)|/♦δ
♥(D|C) reflects the relative ap-

proximation ratio, and its tolerance parameter is set to t = 5%
for feasibility. Tolerant and approximate reducts are pursued by
referring to the relevant framework [29], [37], and they resolve
the difficulty of measure preservation. Algorithm 3 yields the
six new selection algorithms in Table III.

B. Example Validation

Example 2: We continue Example 1 with Table II and
δ = 0.05. Tables IV and V record the detailed pro-
cesses of HN-FS and RFHTWN-FS and clarify Algo-
rithms 2 and 3, respectively. Finally, the eight algorithms
yield reducts {c1, c2, c3, c4}, {c4}, {c1, c2, c3, c4}, {c2, c3, c4},
{c1, c2, c3, c4}, {c4}, {c1, c2, c3, c4}, and {c2, c3, c4}. In con-
trast, the existing HN-FS and FDNCE-FS [22] never remove
attributes, while new algorithms (such as RFHTWN-FS) may
obtain fewer features.

V. DATA-BASED EXPERIMENTS ON UNCERTAINTY

MEASUREMENT AND FEATURE SELECTION

Here, data-based experiments are made to validate the im-
provements to both uncertainty measurement and feature se-
lection. A total of 12 datasets from the UCI machine learn-
ing repository,1 described in Table VI, are used as the ODS
(U,C ∪D,V, f). After min–max normalization on f(xi, ck)→
f̂(xi, ck), a noise addition mechanism (with rik = 0.1) is used
for noise-oriented verification [22], i.e.,

f̂ ′(xi, ck) =

{
f̂(xi, ck) + rik, if f̂(xi, ck) + rik ∈ [0, 1]

f̂(xi, ck), otherwise.

A. Calculation Verification of Uncertainty Measurement

For the uncertainty measures, we first calculate and vali-
date the bottom FDDs. Concretely, we show observation val-
ues where xi (with an upper bound of 100) dominates x1 on
B = {c1}, and the relevant 3-D graphs on (xi, δ) are given in
Fig. 3, where δ comes from (29). The FDDs onN,TWN have the
same trends in the main part. The correctional FDDs can reach
a certainty value 0 (or 1) to resist noise and enhance reasoning,
so they are reasonable and effective for GrC and 3WD.

Then, we consider middle CEs and top DCEs, and eight
relevant measures are obtained from

B : B1 = {c1} ⊂ · · · ⊆ Br = {c1, c2, . . . , cr} = C

δ : δ0 = 0 < δ1 = 0.01 < · · · < δ10 = 0.1. (29)

The 3-D values on (B, δ) are displayed in Fig. 4. Fig. 4 supports
the theoretical granulation nonmonotonicity and actual mono-
tonicity trends, and these two characteristics are respectively
related to the mathematical results in Theorem 2 and the de-
sign of Algorithms 2 and 3. For example, the four measures
FHδ

N (D|B), FHδ
TWN(D|B), RFHδ

N (D|B), and RFHδ
TWN(D|B)

always have monotonically increasing trends, while the other
four measures exhibit a trend of monotonically increasing or
decreasing in different cases.

B. Classification Comparison of Feature Selection

Now, we turn to the analysis of feature selection and algorithm
comparison. As given in Fig. 1 and Table III, the systematic
2× 2× 2 = 8 selection algorithms come from the three-level
improvements and measures. Their 4× 2 structure is given in
(26), and the relevant symbols are identified by combinations
of four CE/DCE labels (i.e., H, FH, RH, and RFH) and two
FDD labels (i.e., N and TWN). Relevant algorithmic contrasts
can be obtained from parallel and structural perspectives, and
these two types of observations reveal the overall algorithm opti-
mization and three improvement points, respectively. Moreover,
the algorithm HN-FS is actually the existing FDNCE-FS [22],
and this recent algorithm has outperformed three contrasted
approaches: DCE-FS [31], FDCE-FS [30], and NDCE-FS [21].
Therefore, our goal is to show the superiority of the new algo-
rithms over HN-FS/FDNCE-FS; thus, our novel algorithms can

1[Online]. Available: http://archive.ics.uci.edu/ml
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TABLE IV
EXECUTION PROCESS OF FEATURE SELECTION HN-FS/FDNCE-FS ON δ = 0.05

TABLE V
EXECUTION PROCESS OF FEATURE SELECTION RFHTWN-FS ON δ = 0.05

TABLE VI
UCI DATASETS AND THEIR DETAILS

achieve direct and indirect improvement verification. For the
evaluation indexes, classification accuracies are mainly used,
and we employ two classifiers KNN (K=3) and SVM, which
denote the K-Nearest Neighbor and Support Vector Machine
respectively.

For the eight algorithms, based on (29), Tables VII and
VIII show the δ-optimal accuracies (and corresponding selected
numbers) for KNN and SVM, respectively. Tables VII and VIII
show the main results for the algorithm comparisons (where
bold entities reflect maximums), and their last 2 lines concern
the 12-dataset statistics on average accuracies (average features)
and maximum frequencies. For the selected features, all eight
algorithms can effectively reduce the attributes, and FHN-FS,
RFHN-FS, HTWN-FS, FHTWN-FS, and RFHTWN-FS can

Fig. 5. Nemenyi’s test figures of eight algorithms on classification accuracies.
(a) KNN. (b) SVM.

obtain smaller average lengths than HN-FS/FDNCE-FS. Fur-
thermore, Tables VII and VIII can be statistically analyzed
to determine the algorithmic improvement. Friedman’s test
and Nemenyi’s test are performed for the eight algorithms
and 12 datasets with the statistical threshold 0.05. By cal-
culation, τF = 10.5860 > F0.05(7, 77) = 2.1310 holds for the
KNN while τF = 14.6667 > F0.05(7, 77) = 2.1310 holds for
the SVM, so these algorithms have significant differences. In
addition, the critical difference is CD0.05 = 3.0310, and the
figures for Nemenyi’s test are depicted in Fig. 5. 1) By the
KNN-based Table VII, the corresponding rankings based on
average accuracies are

RFHTWN-FS�RFHN-FS�FHTWN-FS�RHTWN-FS �
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TABLE VII
δ-OPTIMAL KNN CLASSIFICATION ACCURACIES (AND FEATURE SELECTION LENGTHS) OF 8 SELECTION ALGORITHMS

TABLE VIII
δ-OPTIMAL SVM CLASSIFICATION ACCURACIES (AND FEATURE SELECTION LENGTHS) OF 8 SELECTION ALGORITHMS

FHN-FS�RHN-FS�HTWN-FS�HN-FS.

RFHTWN-FS is optimal, RFHN-FS is suboptimal, and HN-FS
is last. By the statistics in Fig. 5(a), the first 2 algorithms are
significantly superior to HN-FS/FDNCE-FS. 2) By the SVM-
based Table VIII, the corresponding rankings based on average
accuracies are

RFHTWN-FS � RFHN-FS � RHN-FS � RHTWN-FS �
FHTWN-FS � FHN-FS � HTWN-FS � HN-FS.

RFHTWN-FS and RFHN-FS are also optimal and suboptimal,
respectively, while HN-FS is last again. Similarly, by the statis-
tics in Fig. 5(b), the first four algorithms are significantly supe-
rior to HN-FS/FDNCE-FS. By the two sets of analysis results,
we obtain the order

RFHTWN-FS � RFHN-FS � · · · � HTWN-FS � HN-FS.

Our 7 new algorithms exhibit systematicity, robustness, and
optimization, and all of them outperform the comparison algo-
rithm HN-FS/FDNCE-FS [22]. In addition, RFHTWN-FS and
RFHN-FS constitute the optimal echelon, and their advantages
over HN-FS/FDNCE-FS are statistically significant.

The improved algorithms of feature selection benefit from
three-level measurement improvements to FDDs, CEs, and
DCEs. Finally, the experimental results of statistical accura-
cies are hierarchically analyzed regarding the 3 improvement
points. For this purpose, the average accuracies in Tables VII
and VIII are arranged two-dimensionally in Table IX. In this

TABLE IX
8-ALGORITHMIC δ-OPTIMIZATION AND DATASET-AVERAGE CLASSIFICATION

ACCURACIES ON 2 FDDS AND 4 CES/DCES

table,←, ↑, respectively, indicate the horizontal and longitudinal
maximums, while subtables (a) and (b), respectively, correspond
to the KNN and SVM. Next, the algorithmic improvements are
analyzed to match and justify the three-level improvements; see
the main Table IX and auxiliary Fig. 5. 1) HTWN-FS, FHTWN-
FS, RHTWN-FS, and RFHTWN-FS outperform HN-FS, FHN-
FS, RHN-FS, and RFHN-FS, respectively, thus verifying the
FDD improvement: TWN � N . At the interior level of N or
TWN, the combined order for macro-level measure improve-
ments is RFH � RH ≈ FH � H. 2) Regarding the addition of
F , FHN-FS � HN-FS, FHTWN-FS � HTWN-FS, RFHN-FS
� RHN-FS, and RFHTWN-FS � RHTWN-FS always hold.
Thus, we can also infer the CE improvement on FH � H and
RFH � RH. At the interior level, the combined order becomes
RHTWN ≈ RHN � HTWN � HN. 3) Regarding the fusion
of R, RHN-FS, RFHN-FS, RHTWN-FS, and RFHTWN-FS
outperform HN-FS, FHN-FS, HTWN-FS, and FHTWN-FS,
respectively. Hence, we determine the DCE fusion improve-
ments on RH � H and RFH � FH. At the interior level, the
combined order becomes FHTWN � FHN � HTWN � HN.
Overall, the three-level measure improvements are validated via
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systematic comparisons of the selection algorithms. The bottom
improvement TWN � N is clear, the middle improvement of
CE promotion is somewhat clear, and the top improvement of
algebra–information fusion is most prominent.

VI. CONCLUSION

This article advances recent studies of the FDN-driven
information measure FDNCE and selection algorithm
FDNCE-FS [22], and we obtain both FD3N-driven
three-level improvements of uncertainty measurement and
2× 2× 2-structural algorithms of feature selection, as shown
in Fig. 1. The three-level measurement improvements yield
stronger FDDs, dependency/CEs, and DCEs. Thus, FD3NRSs
improve FDNRSs [22], and the seven new selection algorithms
outperform the current FDNCE-FS [22]. Regarding advantages,
this study offers deeper measurement content and greater
algorithm robustness in ODSs, so it provides new insights
into uncertainty modeling, information fusion, and feature
selection in terms of GrC and 3WD. Regarding disadvantages,
the relevant constructions are mainly restricted to ODSs, and
the proposed algorithms of nonmonotonic feature selection may
be affected by tolerance parameters. In the future, three-level
improvements (such as those related to FD3Ns, FD3NRSs, and
measure construction) can be generalized for interval-valued
data, incomplete and fuzzy systems. Systematic algorithms of
feature selection are also worth further researching in terms of
incremental learning and application in noisy environments.

APPENDIX A
THEORETICAL PROOF OF THEOREM 1

Proof: By (21)–(23), we have
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By combining the two results, the eventual result FHδ(B;D) =
FHδ(D)− FHδ(D|B) naturally holds. �

APPENDIX B
THEORETICAL PROOF OF THEOREM 2

Proof: At first, the nonmonotonicity of Hδ(D|B) can be
referenced in [22].

Then, the nonmonotonicity of FHδ(D|B) is mainly focused
on. For ∀B1 ⊆ B2 ⊆ C and by (21), we have
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where

g(xi) =
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(xi) ∩M+

D (xi)|2

h(xi) =
|TWNδ+

B1
(xi)|

|TWNδ+
B2

(xi)|
. (31)

B1 ⊆ B2 ⇒ TWNδ+
B1

(xi) ⊇ TWNδ+
B2

(xi) by Proposition 1’
2). Thus, 0 ≤ g(xi) ≤ 1, h(xi) ≥ 1, neither g(xi)h(xi) ≥ 1
nor g(xi)h(xi) ≤ 1 always holds. The conclusion whether
FHδ(D|B2)− FHδ(D|B1) is greater than 0 is uncertain,
i.e., neither FHδ(D|B2) ≤ FHδ(D|B1) nor FHδ(D|B2) ≥
FHδ(D|B1) always holds. Therefore, the attribute granulation
nonmonotonicity of FHδ(D|B) is verified. In contrast, the
neighborhood parameter nonmonotonicity on δ1 ≤ δ2 can be
similarly validated due to (30), (31), and Proposition 1’ 3).

At last, RHδ(D|B) and RFHδ(D|B), respectively, develop
Hδ(D|B) and FHδ(D|B) by multiplying γδ

B(D
≥), so their

nonmonotonicity naturally comes from the nonmonotonicity of
factorial measures, where the nonmonotonicity of γδ

B(D
≥) is

given in Proposition 2’ 2). �
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