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Abstract
Three‐way concept analysis is an important tool for information processing, and rule
acquisition is one of the research hotspots of three‐way concept analysis. However,
compared with three‐way concept lattices, three‐way semi‐concept lattices have three‐way
operators with weaker constraints, which can generate more concepts. In this article, the
problem of rule acquisition for three‐way semi‐concept lattices is discussed in general.
The authors construct the finer relation of three‐way semi‐concept lattices, and propose a
method of rule acquisition for three‐way semi‐concept lattices. The authors also discuss
the set of decision rules and the relationships of decision rules among object‐induced
three‐way semi‐concept lattices, object‐induced three‐way concept lattices, classical
concept lattices and semi‐concept lattices. Finally, examples are provided to illustrate the
validity of our conclusions.
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1 | INTRODUCTION

In general, a formal concept consists of extension and intension,
and is the formal and mathematical description of concepts in
philosophy. Since Wille [1] proposed formal concept analysis
(FCA) for constructing lattice theory in 1982, FCA has been
widely used in data analysis [2–4], information retrieval [5], data
mining [6], medical diagnosis [7], machine learning [8] and many
other fields [9, 10]. The semi‐concept proposed by Luksch and
Wille [11] in 1991 is a branch of FCA, and the binary relation
expressed by it is unidirectional, which makes any set of objects
and attributes are semi‐concepts. Vormbrock [12] explained the
relationship between semi‐concept and classical concept, and
proved two important theorems of semi‐concept.

Three‐way decisions [13], proposed by Yao, is a decision‐
making theory, which describes the decision‐making behav-
iour of decision maker on uncertain things. The three‐way de-
cision theory considers decision problems from the perspective

of acceptance, rejection and non‐commitment, and can well
explain many decision problems in practice. Qi et al. [14]
combined FCA with three‐way decisions and proposed the
concept of three‐way concept analysis, and divided the object
set (or attribute set) into three parts by the information of
‘common possession’ and ‘common not possession’. Compared
with the traditional FCA, three‐way concept analysis can better
mine the hidden information in the formal context, and is more
in line with people's decision‐making behaviour and cognitive
process, which makes it more conducive to the data expression.
Zhai et al. [15] developed a structure theorem for three‐way
concept lattice which mathematically describes the relation-
ships between concept lattices. Mao et al. [16] combined three‐
way decision with rough semi‐concepts, defined the three‐way
rough semi‐concepts, and gave two approximation operators
to describe the three‐way rough semi‐concepts. On this basis,
they also defined two forms of the three‐way semi‐concept
(OE‐semi‐concept and AE‐semi‐concept) [17].
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In order to obtain the decision rules of concept lattices,
Zhang et al. [18] and Wei et al. [19] explored the Formal De-
cision Context (FDC), and then Liu et al. [20] discussed the
problem of rule acquisition of concept lattice based on their
research and rough set theory. Rule acquisition is also an
important content of three‐way concept analysis. For the
consistent decision formal context, Wei et al. [21] acquired the
decision rules of three‐way concept lattices, and gave their se-
mantic interpretation. Liu et al. [22] designed a rule acquisition
method for three‐way concept lattice under the inconsistent
formal context, and presented some important properties of
three‐way rules. Li et al. [23] proposed a theoretical framework
of object compressing for FDC without losing decision rules.
Xu and Huang [24] introduced a methodological analysis of rule
extraction of three‐way concept lattices, and their purpose was
to build shared conceptual models of the real world that support
knowledge‐intensive domain applications. Zhai et al. [25]
introduced variable decision implications as a fundamental form
of knowledge reasoning in FCA for decision‐making problems.
They extended the concept of decision implications to uncertain
decision implications and provided semantic explanations. Zhai
et al. [26] proposed three inference rules for deduction on de-
cision implications and studied their properties. Li et al. [27]
developed the minimal closed label concept lattice to extract
rules from concept lattices. They demonstrated through nu-
merical experiments, that limitary decision implications can
acquire rules more easily than decision implications. Wu et al.
[28] investigated the rule extraction of multi‐scale formal
context, and presented a method of local optimal scale selec-
tions to obtain more concise decision rules for different objects.

This work aims to establish the mathematical basis for in-
formation storage of three‐way semi‐concepts using the three‐
way semi‐concept lattice. Compared with the three‐way
concept, the binary relationship of the three‐way semi‐
concept is unidirectional. Our work complements that of Wei
et al. by considering a complementary context that was not
accounted for in their study. Additionally, we provide a detailed
comparison of decision rule sets for semi‐concept lattices,
concept lattices, three‐way concept lattices, and three‐way semi‐
concept lattices from a generalised perspective.

The rest of this paper is organised as follows: Section 2
reviews some basic concepts related to formal concept, semi‐
concept, three‐way concept, three‐way semi‐concept and rule
acquisition of three‐way concept lattice. Section 3 provides a
method of rule acquisition of object‐induced three‐way semi‐
concept lattice and discusses the relations of semi‐consistency,
consistency, object‐induced three‐way semi‐consistency and
object‐induced three‐way consistency of FDC. Finally, conclu-
sions are drawn in Section 4.

2 | RELATED CONCEPTS

This section mainly reviews some necessary concepts about
formal concept, semi‐concept, three‐way concept, three‐way
semi‐concept, and rules acquisition of three‐way concept
lattices.

2.1 | Formal concept analysis

Definition 1 [1] Assume that K = (G, V, I ) is a formal
context, where G is a non‐empty finite set of objects, V is a
non‐empty finite set of attributes, and I is the relationship of G
and V, where I ⊆ G � V. If an object u ∈ G possesses an
attribute v ∈ V, we denote the relation of u and v as uIv (or (u,
v) ∈ I ).

For convenience of expression, we denote formal context
by FC.

Definition 2 [1] Suppose K = (G, V, I ) is a FC. For any
Y ⊆ G and B ⊆ V, a pair of positive operators are defined in
the following:

  ∗: PðGÞ→ PðV Þ;Y ∗ ¼ fv ∈ V j ∀y ∈ Y ðyIvÞg

¼ fv ∈ V jY ⊆ Ivg ð1Þ

  ∗: PðV Þ→ PðGÞ; B∗ ¼ fu ∈ Gj ∀b ∈ BðuIbÞg

¼ fu ∈ GjB ⊆ uIg ð2Þ

where P(G) and P(V ) are the power sets (the set of all subsets)
of G and V respectively. Y∗ is the set of all attributes shared by
all objects in Y and B∗ is the set of all objects having all at-
tributes in B.

If Y∗ = B and B∗ = Y, then (Y, B) is called as a formal
concept, and then Y and B are called the extension and the
intension of the formal concept respectively. The two opera-
tors * defined above are called positive operators and concepts
induced by positive operators are also called positive concepts
(for short, P‐concepts). The complete lattice consisting of all
P‐concepts is denoted as L(G, V, I ), LE(G, V, I ) and LI(G, V,
I ) represent the set of intensions, the set of the components of
extensions in L(G, V, I ) respectively.

2.2 | Three‐way concept analysis

We sometimes have to pay attention not only to the number of
supporting, but also to the number of opposing. When the
number of opposing exceeds the number of supporting, we
will not be able to achieve our goals. To characterise this
phenomenon, the scholars have defined a pair of negative
operators.

Definition 3 [14] Assume that K = (G, V, I ) is a FC. (G,
V, IC) is the complement context of K (here IC =
G � V − I ), namely, for any x ∈ U and a ∈ V, (x, a) ∈
RC (also noted as xRCa) means that the object x does not
have the attribute a.

Definition 4 [14] Suppose K = (G, V, I ) is a FC. For any
Y ⊆ G and B ⊆ V, a pair of negative operators,

  ∗: PðGÞ→ PðV Þ and  ∗: PðV Þ→ PðGÞ, are defined as:
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Y ∗ ¼ fv ∈ V j ∀y ∈ Y ð¬ðyIvÞÞg
¼ v ∈ V j ∀y ∈ Y yIcvð Þf g

¼ v ∈ V jY ⊆ Icvf g

ð3Þ

B∗ ¼ fu ∈ Gj ∀b ∈ Bð¬ðuIbÞÞg
¼ u ∈ Gj ∀b ∈ B uIcbð Þf g

¼ u ∈ GjB ⊆ uIcf g

ð4Þ

Correspondingly, negative concept can be obtained by
Definition 4.

Definition 5 [14] Assume that K = (G, V, I ) is a FC. For any
Y ⊆ G and B ⊆ V, if Y ∗ ¼ B and B∗ ¼ Y , then (Y, B) is called
a negative concept (noted as N‐concept). Similarly, Y and B are
called the extension and the intension of (Y, B) respectively.

It is easy to see that Y ∗∗;Y ∗
� �

and B∗;B∗∗
� �

are N‐
concepts, and all N‐concepts form a complete lattice (denote
by NL(G, V, I )).

With the operators ∗ and   ∗, we can then construct a pair
of three‐way operators to describe the information of ‘com-
mon possession’ and ‘common not possession’.

Definition 6 [14] Suppose K = (G, V, I ) is a FC. For any
Y ⊆ G and B, C ⊆ V, a pair of object‐induced three‐way
operators (for short, OE‐operators), (OE1)⊲:P(G ) → DP(V )
and (OE2)⊳:DP(V ) → P(G), are defined as:

Y⊲ ¼ Y ∗;Y ∗
� �

ð5Þ

ðB;CÞ⊳ ¼ u ∈ G
�
�
�u ∈ B∗; u ∈ C∗

n o
¼ B∗ ∩ C∗ ð6Þ

where DP(G) is the set of all pairs of subsets of U, that is, P
(G) � P(G), and DP(V ) is the set of all pairs of subsets of V,
that is, P(V ) � P(V ). For any A ⊆ V and X, Y ⊆ G, a pair of
attribute‐induced three‐way operators (for short, AE‐opera-
tors), (AE1)⊲:P(V ) → DP(G ) and (AE2)⊳:DP(G) → P(V ), are
defined as:

A⊲ ¼ A∗;A∗
� �

ð7Þ

ðX;Y Þ⊳ ¼ v ∈ V
�
�
�v ∈ A∗; v ∈ B∗

n o
¼ X∗ ∩ Y ∗ ð8Þ

Definition 7 [14] Assume that K = (G, V, I ) is a FC. For
any Y ⊆ G, B, C ⊆ V, if Y⊲ = (B, C ) and (B, C )⊳ = Y,
then (Y, (B, C )) is called an object‐induced three‐way
concept (for short, OE‐concept), and then Y is called the
extension and B, C are called positive intension and
negative intension of (Y, (B, C )) respectively. The complete
lattice consisting of all OE‐concepts is denoted as OEL(G,
V, I).

Theorem 1 [29] Let K = (G, V, I ) be a FC, the following
relations hold.

(1) LE(G, V, I ) ⊆ OELE(G, V, I ),
NLE(G, V, I ) ⊆ OELE(G, V, I )

(2) LIðG;V ; IÞ ¼OELþI ðG;V ; IÞ,
NLIðG;V ; IÞ ¼OEL−

I ðG;V ; IÞ
Theorem 1 shows that there are some concrete con-

nections between three‐way concept lattices and classical
concept lattices.

Definition 8 [14] Suppose K = (G, V, I ) is a FC. For any Y,
Z ⊆ G, B ⊆ V, if (Y, Z)⊳ = B and B⊲ = (Y, Z ), then ((Y, Z ), B)
is called an attribute‐induced three‐way concept (for short,
AE‐concept), and then B is called the intension and Y, Z are
called the positive extension and negative extension of ((Y, Z ),
B) respectively. The complete lattice consisting of all AE‐
concepts is denoted as AEL(G, V, I).

We will illustrate the above‐mentioned concepts by
Example 1.

Example 1 A FC is shown in Table 1, and its complement
context is shown in Table 2.

Figures 1–4 show the concept lattice in FC, the concept
lattice in FC's complement context, OEL(G, V, I ) and AEL
(G, V, I ) respectively.

2.3 | Semi‐concept

The unidirectional relation is an important binary relation. In
this subsection, we will review the formal expression of uni-
directional relation by semi‐concept.

Definition 9 [11, 12] Assume K = (G, V, I ) is a FC. For any Y,
Z ⊆ G, B, C ⊆ V, if Y* = B, then (Y, B) is called ∩‐semi‐
concept, and then Y and B are called the extension and

TABLE 1 A formal context (G, V, I ).

a1 a2 a3 a4

1 1 1 0 0

2 0 0 0 1

3 1 1 1 0

TABLE 2 Complement context (G, V, IC).

a1 a2 a3 a4

1 0 0 1 1

2 1 1 1 0

3 0 0 0 1
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intension of (Y, B) respectively. Alternatively, (Z, C ) is called
∪‐semi‐concept if Z) = C. The complete lattice consisting of
all semi‐concepts is denoted as SL(G, V, I).

To clearly depict the semi‐concepts, we illustrate it through
Example 2.

Example 2 Consider Table 1 as a formal context. By the
Definition 9, (∅, V ), (1, ab), (2, d ), (3, abc), (12, ∅), (13, ab),
(23,∅) and (G,∅) are ∩‐semi‐concepts, (G, ∅), (13, a), (13, b),
(3, c), (2, d ), (13, ab), (3, ac), (∅, ad ), (3, bc), (∅, bd ), (∅, cd ),
(3, abc), (∅, abd ), (∅, acd ), (∅, bcd ) and (∅, V ) are ∪‐semi‐
concepts.

2.4 | Three‐way semi‐concept

Due to the restriction of three‐way operator is weakened,
three‐way semi‐concept can produce more abundant infor-
mation than three‐way concept.

Definition 10 [17] Suppose K = (G, V, I ) is a FC. For any
Y ⊆ G, B, C ⊆ V, if Y⊲ = (B, C ), then (Y, (B, C )) is called
object‐induced three‐way semi‐concept (for short, OE‐semi‐
concept), and then Y and (B, C ) are called the extension and
intension of (Y, (B, C )) respectively.

For OE‐semi‐concept, the following conclusions hold.

Proposition 1 [17] For any Z1, Z2 ⊆ G, these properties hold
as follows.

(1) Z1 ⊆ Z2 ⇒ Z⊲
2 ⊆ Z⊲

1
(2) Z1 ∪ Z2ð Þ⊲ ¼ Z⊲

1 ∩ Z⊲
2

(3) Z1 ∩ Z2ð Þ⊲ ⊇ Z⊲
1 ∩ Z⊲

2

Definition 11 [17] Assume K = (G, V, I ) is a FC. For any Y,
Z ⊆ G, B ⊆ V, ((Y, Z), B) is called attribute‐induced three‐way
semi‐concept (for short, AE‐semi‐concept) if B⊳ = (Y, Z), and
then (Y, Z) and B are called the extension and intension of ((Y,
Z), B) respectively.

Analogously, the following conclusions of AE ‐ semi‐
concept hold.

Proposition 2 [17] For any B1, B2 ⊆ V, these following
properties hold.

(1) B1 ⊆ B2 ⇒ B⊳
2 ⊆ B⊳

1
(2) B1 ∪ B2ð Þ⊳ ¼ B⊳

1 ∩ B⊳
2

(3) B1 ∩ B2ð Þ⊳ ⊇ B⊳
1 ∩ B⊳

2

Example 3 The FC is shown in Table 1, (∅, (V, V )), (1, (ab,
cd )), (2, (d, abc)), (3, (abc, d )), (12, (∅, c)), (13, (ab, d )), (23, (∅,
∅)) and (G, (∅,∅)) are OE‐semi‐concepts, and ((G, G ),∅),
((13, 2), a), ((13, 2), b), ((3, 12), c), ((2, 13), d ), ((13, 2), ab), ((3,
2), ac), ((∅,∅), ad ), ((3, 2), bc), ((∅,∅), bd ), ((∅, 1), cd ), ((3, 2),
abc), ((∅,∅), abd ), ((∅,∅), acd ), ((∅,∅), bcd ) and ((∅,∅), V )
are AE‐semi‐concepts.

F I GURE 1 L(G, V, I ) produced from Table 1.

F I GURE 2 NL(G, V, I ) produced from Table 2.

F I GURE 3 OEL(G, V, I ) produced from Tables 1 and 2.

F I GURE 4 AEL(G, V, I ) produced from Tables 1 and 2.
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2.5 | Rule acquisition of three‐way concept
lattices in consistent formal decision context

Formal Decision Context (for short, FDC ) includes consistent
formal decision context (for short, CFDC ) and inconsistent
formal decision context (for short, NCFDC ). In this work, we
will focus on rules acquisition of three‐way concept lattices in
CFDC.

Definition 12 [18] Assume L(G, V, I ) and L(G, N, J ) are two
concept lattices. If for any (Y, B ) ∈ L(G, N, J ), there is a
formal concept (Z, C ) ∈ L(G, V, I ) such that Y = Z, then we
say that L(G, V, I ) is finer than L(G, N, J ), and express as L(G,
V, I ) ≤ L(G, N, J ).

Definition 13 [18] A Formal Decision Context (for short,
FDC ) is composed of (G, V, I, N, J ), (G, V, I ) and (G, N, J )
are FC. V and N are called condition attribute set and decision
attribute set respectively. Moreover, if L(G, V, I ) ≤ L(G, N, J ),
then the (G, V, I, N, J ) is a CFDC.

In CFDC, there is object‐induced three‐way CFDC.

Definition 14 [21] Assume (G,V, I,N, J ) is a FDC,OEL(G,V,
I ) andOEL(G,N, J ) are twoOE‐concept lattices. For any (Y, (C,
D)) ∈ OEL(G, N, J ), if there exists (Z, (A, B)) ∈ OEL(G, V, I )
such that Y= Z, we say thatOEL(G,V, I ) is finer thanOEL(G,
N, J ), and express asOEL(G,V, I )≤OEL(G,N, J ), and then (G,
V, I, N, J ) is called object‐induced three‐way consistent formal
decision context (for short, OE − CFDC ).

Definition 14 states that the finer a concept lattice is, the
more information it expresses.

Definition 15 [21] Suppose (G, V, I, N, J ) is a FDC with OEL
(G, V, I ) ≤ OEL(G, N, J ). If (Y, (B, C )) ∈ OEL(G, V, I ), (Z,
(D, E)) ∈ OEL(G, N, J )(Z ≠ ∅, G) satisfying Y ⊆ Z, then we
have a positive object‐induced three‐way decision rule (for
short, OE − P decision rule): B → D(D ≠ ∅), read as if B then
D and a negative object‐induced three‐way decision rule (for
short, OE − N decision rule): not C → not E(E ≠ ∅), read as:
if not C → then not E. The set of all OE − P decision rules is
denoted by OE − PR and the set of all OE − N decision rules
is denoted by OE − NR. OE − P and OE − N are collectively
called object‐induced three‐way rules (for short, OE‐decision
rules), and all the OE‐decision rules are expressed by OE − R.

Definition 16 [21]Assume (G,V, I,N, J ) is a FDCwithOEL(G,
V, I ) ≤ OEL(G,N, J ). ForOE − P decision rules, if B→ D and
B0 → D0 such that B ⊆ B0 and D0 ⊆ D, then we say B → D can
derive B0 → D0, and the rule B0 → D0 is redundant. ForOE − N
decision rules, if not C → not E and not C0 → not E0 such that
C ⊆ C0 and E0 ⊆ E, then we say not C → not E can deduce not
C0 → not E0, and the rule not C0 → not E0 is redundant.

To clearly depict the above‐mentioned the decision rules
and the irredundant decision rules in OE − CFDC, we illus-
trate them through Example 4.

Example 4 A FDC is shown in Table 3. Figures 5 and 6 are
OE‐concept lattices respectively.

Intuitively, Figures 5 and 6 show that OEL(G, V,
I ) ≤ OEL(G, N, J ), then the FDC is OE‐consistent. By the
Definitions 15 and 16, the object‐induced three‐way rules
OE − R is shown in Table 4 and the irredundant object‐
induced three‐way rules is shown in Table 5.

Dually, one can define AE‐consistent FDC (for short,
AE − CFDC ) and acquire decision rules of attribute‐induced
three‐way concept lattice in AE − CFDC. For simplicity, we
only discuss rules obtainment of object‐induced three‐way
concept lattice in OE − CFDC.

3 | RULE ACQUISITION OF THREE‐
WAY SEMI‐CONCEPT LATTICES IN FDC

Concept lattice is an important method of information storage,
but also a mathematical means of data analysis. Obtaining
decision rules of concept lattice is of great significance for data
mining. In reality, a lot of data have unidirectional relation, so it

TABLE 3 A formal decision context (G, V, I, N, J).

a b c d e f g

1 1 1 0 0 1 1 0

2 0 0 0 1 0 1 1

3 1 1 1 0 1 0 0

F I GURE 6 OEL(G, N, J) produced from Table 3.

F I GURE 5 OEL(G, V, I ) produced from Table 3.

ZHAO ET AL. - 337

 24682322, 2024, 2, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12248 by T

ongji U
niversity, W

iley O
nline L

ibrary on [27/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



is of great practical significance to obtain decision rules of
three‐way semi‐concept lattice. This section explores the
problem of obtaining decision rules of three‐way semi‐concept
lattices in FDC.

3.1 | Rule acquisition of semi‐concept
lattices in FDC

Definition 17 Assume SL(G, V, I ) and SL(G, N, J ) are two
semi‐concept lattices. If for any (Y, B) ∈ SL(G, N, J ), there is a
formal concept (Z, C ) ∈ SL(G, V, I ) such that Y = Z, then we
say SL(G, V, I ) is finer than SL(G, N, J ), and express as SL(G,
V, I ) ≤ SL(G, N, J ).

In fact, the finer relation between semi‐concept lattices
essentially exhibits a kind of thickness about knowledge. In
other words, the finer the semi‐concept lattice is, the more
abundant information it contains.

Definition 18 [18] Suppose L(G, V1, I1) and L(G, V2, I2) are
two concept lattices. If for any (Y, B) ∈ L(G, V2, I2), there
exists (Y 0, B0) ∈ L(G, V1, I1) such that Y 0 = Y, then we say L
(G, V1, I1) is finer than L(G, V2, I2), and express as:

L G;V1; I1ð Þ ≤ L G;V2; I2ð Þ ð9Þ

If L(G, V1, I1) ≤ L(G, V2, I2) and L(G, V2, I2) ≤ L(G, V1,
I1), then those two concept lattices are deemed to be
isomorphic to each other, and denoted by

L G;V1; I1ð Þ ≅ L G;V2; I2ð Þ ð10Þ

Definition 18 shows that the finer the concept lattice is, the
more abundant information it contains. Definition 18 also

describes an effective method to prove the isomorphic rela-
tionship between two concept lattices without computing the
infimum and supremum of the concept lattice.

Definition 19 Assume (G, V, I, N, J ) is a FDC. If SL(G, V,
I ) ≤ SL(G, N, J ), then we say (G, V, I, N, J ) is a semi‐
consistent formal decision context (for short, SFDC ).

Definition 19 provides a formal description of semi‐
consistent formal decision context (SFDC). In the following,
we will give some important theorems about semi‐concept
lattices before discussing the relationships between formal
decision contexts of consistency and semi‐consistency.

Theorem 2 Suppose (G, V, I ) is a FC, then L(G, V, I ) ⊆ SL
(G, V, I ) holds.

Proof For any (Y, B) ∈ L(G, V, I ), there exist Y * = B and
B * = Y. From the Definition 9, then (Y, B) ∈ SL(G, V, I ).
Therefore, L(G, V, I ) ⊆ SL(G, V, I ).

Theorem 2 shows that in FC, the set of formal concepts is a
subset of the set of semi‐concepts.

Theorem 3 Let (G, V, I, N, J ) be a FDC, then SL(G, V,
I ) ≅ SL(G, N, J ).

Proof Intuitively, according to the Definition 9, SLE(G, V,
I ) = SLE(G, N, J ) holds, where SLE(G, V, I ) and SLE(G, N, J )
represent the set of extensions of SL(G, V, I ) and SL(G, N, J )
respectively. According to the Definition 18, SL(G, V, I ) ≅ SL
(G, N, J ) holds.

Accordingly, by Theorem 2, the following lemma holds.

Lemma 1 If a FDC is consistent, then it is semi‐consistent.

Proof Assume that a FDC is consistent, there exists L(G, V,
I ) ≤ L(G, N, J ). By the Theorem 2 and Definition 9, we have
SL(G, V, I ) ≤ SL(G, N, J ). Therefore, the FDC is semi‐
consistent.

It is worth noting that the Lemma 1 reveals that a FDC is
consistent, then it is semi‐consistent, but the converse is not all
true. We illustrate the above‐mentioned semi‐concept lattice
and SFDC by Example 5.

Example 5 A FDC is shown in Table 3. Lattices plotted in
Figures 7 and 8 are semi‐concept lattices, and lattices plotted in
Figures 9 and 10 are concept lattices.

Obviously, by the Definitions 12, 13, 17, 19 and
Figures 7–10, one can conclude that the FDC is semi‐consistent
and is not consistent.

Next, we will introduce a rule acquisition method of semi‐
concept lattices.

Definition 20 Assume (G, V, I, N, J ) is a FDC with SL(G, V,
I ) ≤ SL(G, N, J ). If (Y, B) ∈ SL(G, V, I ), (Z, C ) ∈ SL(G, N, J )
(Z ≠ ∅, G) and Y ⊆ Z, then we say B → C is a semi‐decision
rule (for short, S‐decision rule), read as: if B then C.

TABLE 5 The irredundant object‐induced three‐way rules.

ab → e not d → not g

d → f not abc → not e

ab → f not d → not fg

d → fg

ab → ef

TABLE 4 The object‐induced three‐way rules OE − R.

ab → e not cd → not g

abc → e not d → not g

d → f not abc → not e

ab → f not d → not fg

d → fg

ab → ef
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Henceforth, the set of decision rules consisting of all semi‐
decision rules determined by Definition 20 is denoted as SR,
and the set of decision rules consisting of all semi‐decision
rules in their complementary context is denoted by SRC.

Definition 21 Suppose (G, V, I, N, J ) is a FDC with SL(G, V,
I ) ≤ SL(G, N, J ). If S‐decision rules B → C and B0 → C0 such
that B ⊆ B0 and C0 ⊆ C, then we say B → C implies B0 → C0,
and the decision rule B0 → C0 is redundant.

Definition 21 gives a basis for eliminating redundant deci-
sion rules, and combined with Definitions 14 and 19, the
following conclusions can be drawn.

Lemma 2 If a FDC is OE‐consistent, then it is semi‐
consistent.

Proof Intuitively, according to Lemma 3, the conclusion holds.
Lemma 2 reveals that a FDC is OE‐consistent, then it be

semi‐consistent, but the converse is not all true. Example 6
below effectively demonstrates this situation.

Example 6 A FDC is shown in Table 6. Lattices plotted in
Figures 11 and 12 are semi‐concept lattices, and lattices plotted
in Figures 9 and 10 are OE‐concept lattices.

Intuitively, by the Definitions 14, 19 and Figures 11–14,
one can conclude that the FDC is semi‐consistent and it is not
OE‐consistent.

Subsequently, we will discuss the relationships between the
set of decision rules of SFDC(CFDC ) and the set of decision
rules of its complement context.

Theorem 4 Assume (G, V, I, N, J ) is a FDC with SL(G, V,
I ) ≤ SL(G, N, J ), L(G, V, I ) ≤ L(G, N, J ). The following
conclusions hold.

(1) R ⊆ SR, R ⊆ SRC

(2) RC ⊆ SR, RC ⊆ SRC

Proof (1a) For R ⊆ SR, we will disprove it. Suppose R ⊃ SR,
then for ∀B → C ∈ SR, there exist (Y, B) ∈ SL(G, V, I ) and
(Z, C ) ∈ SL(G, N, J ), thus, Y ⊆ Z. If (Y, B) ∈ L(G, V, I ), (Z,
C ) ∈ L(G, N, J ) and Y ⊆ Z, then B → C ∈ R. However, for ∩‐
semi‐concept lattice, there no exist B* = Y and C* = Z. This
contradicts the assumption. Therefore, (1a) holds. Similar to
(1a), one can easily prove (1b) and (2).

F I GURE 7 SL(G, V, I ) produced from Table 3.

F I GURE 8 SL(G, N, J) produced from Table 3.

F I GURE 9 L(G, V, I ) produced from Table 3.

F I GURE 1 0 L(G, N, J) produced from Table 3.

TABLE 6 A formal decision context (G, V, I, N, J).

a b c d e f g

1 1 1 0 0 1 1 0

2 0 0 0 1 0 1 1

3 1 1 1 0 0 0 1
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Just as the rules of semi‐concept lattice and concept lattice
are obtained in FDC, the decision rules of OE‐semi‐concept
lattice (OESL) and AE‐semi‐concept lattice (AESL) can also
be obtained easily.

3.2 | Acquiring decision rules of OE‐semi‐
concept lattice in FDC

Extracting decision rules for OESL is an important research
topic in FCA. In this work, we will discuss the decision rules
acquisition of OESL in FDC.

Definition 22 Assume (G, V, I, N, J ) is a FDC. If OESL(G,
V, I ) ≤ OESL(G, N, J ), then we say (G, V, I, N, J ) is a OE‐
semi‐consistent formal decision context (for short,
OE − SFDC ).

Definition 22 gives a formal description of the OE‐semi‐
consistent FDC. From the definitions of semi‐concept, formal
concept, OE‐semi‐concept and OE‐concept, it is also not
difficult to find that there are some connections among them.

Proposition 3 Suppose (G, V, I ) is a FC. The following
properties hold.

(1) |SL(G, V, I )| ≥ |L(G, V, I )|, |SL(G, V, I )| ≥ |NL(G,
V, I )|

(2) |OESL(G, V, I )| ≥ |OEL(G, V, I )|
(3) OELþI ðG;V ; IÞ ¼ LIðG;V ; IÞ,

OEL−
I ðG;V ; IÞ ¼ NLIðG;V ; IÞ

(4) OESLþI ðG;V ; IÞ ¼ SLIðG;V ; IÞ,
OESL−

I ðG;V ; IÞ ¼ SNLIðG;V ; IÞ

where |⋅| represents the cardinality of a set, LI(G, V, I ) is the
set of all intensions of L(G, V, I ), OELþI ðG;V ; IÞ is the set of
all positive intensions of OEL(G, V, I ).

Proof Intuitively, from the Definitions 2, 5, 7, 9, and 10, one
may easily verify these properties.

Proposition 3 reveals the relationship among concepts in
the same formal context.

Theorem 5 Let (G, V, I, N, J ) be a FDC, then OESL(G, V,
I ) ≅ OESL(G, N, J ).

Proof By Definition 10, there exists OESLE(G, V, I ) = OES-
LE(G, N, J ), where OESLE(G, V, I ), OESLE(G, N, J ) are
extension sets of OESL(G, V, I ) and OESL(G, N, J ) respec-
tively. According to Definition 18, SL(G, V, I ) ≅ SL(G, N, J )
holds intuitively.

From Theorem 5, it is straightforward to yield the following
lemma.

Lemma 3 Semi‐consistency and OE‐semi‐consistency of FDC
are coherent, that is, a FDC is semi‐consistent, then it is also
OE‐semi‐consistent, and a FDC is OE‐semi‐consistent, then it
is also semi‐consistent.

F I GURE 1 1 SL(G, V, I ) produced from Table 6.

F I GURE 1 2 SL(G, N, I ) produced from Table 6.

F I GURE 1 3 OEL(G, V, I ) produced from Table 6.

F I GURE 1 4 OEL(G, N, J) produced from Table 6.
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Proof Intuitively, by the Theorems 3 and 5, one may easily
prove the conclusions.

According to Lemma 3, a FDC is OE‐semi‐consistent if
and only if it is semi‐consistent. Furthermore, the relationships
among consistency, OE‐semi‐consistency, and OE‐consistency
of the FDC are as follows.

Lemma 4 A FDC being OE‐semi‐consistent is not necessarily
consistent.

Proof According to the Lemmas 1 and 3, one may easily verify
the lemma.

Lemma 5 A FDC being OE‐semi‐consistent is not necessarily
OE‐consistent.

Lemma 5 implies that if a FDC is consistent, then it is OE‐
semi‐consistent, but the converse is not necessarily all true.

Definition 23 Assume (G, V, I, N, J ) is a FDC with OESL(G,
V, I ) ≤ OESL(G, N, J ). If (Y, (B, C )) ∈ OESL(G, V, I ) and
(Z, (D, E)) ∈ OESL(G, N, J )(Z ≠ ∅, G) such that Y ⊆ Z, then
we have a positive object‐induced three‐way semi‐decision rule
(for short, OES − P decision rule): B → D(D ≠ ∅), read as if B
then D and a negative object‐induced three‐way decision rule
(for short, OES − N decision rule): not C → not E(E ≠ ∅),
read as: if not C → then not E.

The set of all OES − P decision rules is expressed by
OES − PR. The other is not C → not E(E ≠ ∅), the set of all
OES − N decision rules is denoted by OES − NR. OES − P
and OES − N are collectively called object‐induced three‐way
semi‐decision rules (for short, OES‐decision rules), and all the
OES‐decision rules are denoted by OES − R.

Definition 24 Suppose (G, V, I, N, J ) is a FDC with OESL(G,
V, I ) ≤ OESL(G, N, J ). For OES − P decision rules, if B → D
and B0 → D0 such that B ⊆ B0 and D0 ⊆ D, then we say B → D
can derive B0 → D0, and the rule B0 → D0 is redundant. For
OES − N decision rules, if not C → not E and not C0 → not
E0 such that C ⊆ C0 and E0 ⊆ E, then we say not C → not E
can derive not C0 → not E0, and the rule not C0 → not E0 is
redundant.

In general, Definition 24 allows for the elimination of
redundant OES‐decision rules, resulting in a set of non‐
redundant OES‐decision rules and an OES‐decision rule set.
Theorem 6 is presented prior to the discussion of the re-
lationships among R, SR, and OES‐PR.

Theorem 6 Let (G, V, I, N, J ) be a FDC with SL(G, V,
I ) ≤ SL(G, N, J ), OESL(G, V, I ) ≤ OESL(G, N, J ).

The following conclusions hold.

(1) For any (Y, B) ∈ SL(G, V, I ), we have Y ; B;Y ∗I
� �� �

∈
OESLðG;V ; IÞ.

(2) For any
�
Y ;
�
B;Y ∗I�� ∈ OESLðG;V ; IÞ, we have (Y,

B) ∈ SL(G, V, I ).

Proof One can easily verify the conclusions based on Defini-
tions 9 and 10 by intuition.

Theorem 6 provides a detailed explanation of the relation-
ships between SL(G, V, I ) and OESL(G, V, I ). Furthermore,
the relationships among decision rule sets R, RC, SR, SRC,
OES − PR and OES − NR can be described as follows.

Theorem 7 Assume (G, V, I, N, J ) is a FDC with SL(G, V,
I ) ≤ SL(G, N, J ), L(G, V, I ) ≤ L(G, N, J ), OESL(G, V,
I ) ≤ OESL(G, N, J ). The following relations hold.

(1) R ⊆ SR = OES − PR
(2) RC ⊆ SRC = OES − NR

Proof (1) For R ⊆ SR, Theorem 4 has been proved. For
SR = OES − PR, we firstly prove SR ⊆ OES − PR. For the
semi‐concepts (Y, B) ∈ SL(G, V, I ), (Z, C ) ∈ SL(G, N, J ) and
∀B → C ∈ SR, we have Y ⊆ Z. By the Theorem 6,

Y ; B;Y ∗I
� �� �

∈ OESLðG;V ; IÞ, Z; C;Z∗J
� �� �

∈ OESL

ðG;N ; JÞ hold.
Thus, B → C ∈ OES − PR. Hence, SR ⊆ OES − PR. We try

to prove SR ⊇ OES − PR. For the OE‐semi‐concepts
Y ; B;Y ∗I
� �� �

∈ OESLðG;V ; IÞ, Z; C;Z∗J
� �� �

∈ OESL

ðG;N ; JÞ and ∀B → C ∈ OES − PR, then Y ⊆ Z. According to
the Theorem 6, we have (Y, B)∈ SL(G,V, I ), (Z,C )∈ SL(G,N,
J ). Thus, B → C ∈ SR. Hence, SR ⊇ OES − PR. Therefore, the
conclusion is proved. Similar to (1), one can prove (2).

Theorem 7 reveals the relationships among the decision rule
sets mentioned above. Specifically, it states that the decision rule
set is a subset of the semi‐decision rule set SR, SR is equal to the
OES − P decision rule set OES − PR, and this conclusion still
holds in their corresponding complement contexts.

Theorem 8 Let (G, V, I, N, J ) be a FDC with L(G, V, I ) ≤ L
(G, N, J ), OEL(G, V, I ) ≤ OEL(G, N, J ), then

(1) For any (Y, B) ∈ L(G, V, I ), we have Y ; B;Y ∗I
� �� �

∈
OELðG;V ; IÞ.

(2) For any
�
Y ;
�
B;Y ∗I�� ∈ OELðG;V ; IÞ, we have (Y,

B) ∈ L(G, V, I ).

Proof One can easily prove these properties based on the
Definitions 2 and 7 by intuition.

Theorem 8 provides a detailed explanation of the re-
lationships between L(G, V, I ) and OEL(G, V, I ).

Theorem 9 Assume (G, V, I, N, J ) is a FDC with L(G, V,
I ) ≤ L(G, N, J ),OEL(G, V, I ) ≤ OEL(G, N, J ). The following
conclusions hold.

(1) R = OE − PR, RC = OE − NR
(2) OE − R = R ∪ RC
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Proof (1a) For R = OE − PR, we firstly prove R ⊆ OE − PR.
For ∀B → C ∈ R, (Y, B) ∈ L(G, V, I ), (Z, C ) ∈ L(G, N, J ),

then Y ⊆ Z. From Theorem 8, Y ; B;Y ∗I
� �� �

∈ OEL

ðG;V ; IÞ, Z; C;Z∗J
� �� �

∈ OELðG;N ; JÞ hold. Thus,

B → C ∈ OE − PR. Hence, R ⊆ OE − PR. Then, we try to
prove R ⊇ OE − PR. For ∀B → C ∈ OE − PR,

Y ; B;Y ∗I
� �� �

∈ OELðG;V ; IÞ, Z; C;Z∗J
� �� �

∈ OELðG;

N ; JÞ, we have Y ⊆ Z. By the Theorem 8, (Y, B) ∈ L(G, V, I )
and (Z, C ) ∈ L(G, N, J ) hold. Thus, B → C ∈ R. Hence,
R ⊇ OE − PR. Therefore, the conclusion is proven. Similarly,
one can prove (1b) and (2) as well.

Theorem 9 states that the decision rule set R is equivalent
to the OE − P decision rule set, and this conclusion remains
valid in their corresponding complement contexts. It is clear
that the object‐induced three‐way decision rule set is the union
of R and RC.

Theorem 10 Assume (G, V, I, N, J ) is a FDC with SL(G, V,
I ) ≤ SL(G, N, J ), L(G, V, I ) ≤ L(G, N, J ), OESL(G, V,
I ) ≤ OESL(G, N, J ), OEL(G, V, I ) ≤ OEL(G, N, J ). The
following conclusions hold.

(1) OE − PR ⊆ OES − PR
(2) OES − R = SR ∪ SRC

Proof One can easily prove (1) using a similar method as
demonstrated in Theorem 4. Similarly, (2) can be easily verified
by the approach used in Theorem 9.

Theorems 9 and 10 reveal the relationships of decision rule
sets among R, RC, SR, SRC, OE − PR, OE − NR, OES − PR,
OES − NR, OE − PR and OE − NR.

3.3 | The relationships of decision rules
among semi‐concept lattice, concept lattice,
OE‐semi‐concept lattice and OE‐concept
lattice in FDC

In this work, we obtain decision rules of the OESL in FDC
and compare decision rule sets among R, RC, SR, SRC,
OE − PR, OE − NR, OES − PR, OES − NR, OE − PR and
OE − NR. Moreover, we aim to explore the relationships
among the decision rules of these aforementioned decision
rule sets, which can serve as a significant theoretical basis for
data analysis and decision‐making. Therefore, our main focus
is to compare the relationships of decision rules among the
semi‐concept lattice, concept lattice, OESL, and OE‐concept
lattice in FDC. This analysis can help us make sound de-
cisions that are acquired from the concept lattices.

Theorem 11 Suppose (G, V, I, N, J ) is a FDC with OEL(G, V,
I ) ≤ OEL(G, N, J ). For ∀B → C ∈ R, there exists a rule
D → C ∈ OE − PR such that D ⊆ B.

Proof If the concepts (Y, B) ∈ L(G, V, I ) and (Z, C ) ∈ L(G,
N, J ), for any rule B → C ∈ R, then Y ⊆ Z. Due to (Z, C ) ∈ L

(G, N, J ), Z; C;C∗J
� �� �

∈ OELðG;N ; JÞ hold. For OEL(G,

V, I ) ≤ OEL(G, N, J ) and Z; C;C∗J
� �� �

∈ OELðG;N ; JÞ,

there exists Z; D;D∗I
� �� �

∈ OELðG;V ; IÞ, hence,

D → C ∈ OE − PR. Since (Y, B) ∈ L(G, V, I ), thus,

Y ; B; B∗I
� �� �

∈ OELðG;V ; IÞ. And then Y ⊆ Z, we have

D;D∗I
� �

⊆ B; B∗I
� �

. Therefore, D ⊆ B holds.

Theorem 11 clearly illustrates the containment relation
between decision conditions and OE − P decision conditions.
This means that for the same conclusion, an OE − P decision
rule has fewer decision conditions than a decision rule.

Theorem 12 Assume (G, V, I, N, J ) is a FDC with OEL(G, V,
I ) ≤ OEL(G, N, J ). For any rule B → C ∈ R, there exists a
rule B → D ∈ OE − PR such that C ⊆ D.

Proof If the concepts (Y, B) ∈ L(G, V, I ) and (Z, C ) ∈ L(G, N,
J ), for any rule B → C ∈ R, we have Y ⊆ Z. Due to (Y, B) ∈ L

(G, V, I ), therefore, Y ; B;B∗I
� �� �

∈ OELðG;V ; IÞ. For

OEL(G, V, I ) ≤ OEL(G, N, J ) and Y ; D;D∗J
� �� �

∈OELðG;N ; JÞ, there exists Y ; B; B∗I
� �� �

∈ OELðG;V ; IÞ.

Hence, B → D ∈ OE − PR. Since (Z, C ) ∈ L(G, N, J ), thus,

Z; C;C∗J
� �� �

∈ OELðG;N ; JÞ. And then Y ⊆ Z, C;C∗J
� �

⊆ D;D∗J
� �

holds. Hence, C ⊆ D.

Theorem 12 establishes the containment relation between
decision conclusions and OE − P decision conclusions under
the condition of ‘OEL(G, V, I ) ≤ OEL(G, N, J )’. For the same
condition, an OE − P decision rule has more decision con-
clusions than a decision rule. Similarly, by following a similar
approach, one can obtain some crucial relationships between
semi‐decision rules and OES − P decision rules, which are
presented below.

Theorem 13 Suppose (G, V, I, N, J ) is a FDC with OESL(G,
V, I ) ≤ OESL(G, N, J ). For any decision rule B → C ∈ SR,
there exists a decision rule D → C ∈ OES − PR such that
D ⊆ B.

Proof Similar to Theorem 11, one can easily prove the
conclusion by intuition.

Theorem 13 clearly illustrates the containment relation
between semi‐decision conditions and OES − P decision
conditions. This means that for the same conclusion, an
OES − P decision rule has fewer decision conditions than a
semi‐decision rule.

Theorem 14 Assume (G, V, I, N, J ) is a FDC with OESL(G,
V, I ) ≤ OESL(G, N, J ). For any decision rule B → C ∈ SR,
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there exists a decision rule B → D ∈ OES − PR such that
C ⊆ D.

Proof Similar to Theorem 12, one can easily verify the
conclusion.

Theorem 14 establishes the containment relation between
decision conclusions and OE − P decision conclusions under
the condition of ‘OEL(G, V, I ) ≤ OEL(G, N, J )’. For the same
condition, an OES − P decision rule has more decision con-
clusions than a semi‐decision rule.

To clearly depict the decision rules and the irredundant
decision rules of the aforementioned concept lattices in
CFDC, we will illustrate them through the Example 7.

Example 7 A formal decision context (G, M, I, N, J ) is shown
in Table 7. Lattices plotted in Figures 15 and 16 are semi‐

F I GURE 1 5 SL(G, V, I ) produced from Table 7.

F I GURE 1 6 SL(G, N, J) produced from Table 7.

TABLE 7 A formal decision context (G, M, I, N, J) [30].

a b c d e f g

1 1 0 0 0 1 0 0

2 1 0 0 1 1 1 0

3 1 1 0 0 1 1 0

4 0 1 1 1 0 1 1

F I GURE 1 7 SNL(G, V, I ) produced from Table 7.

F I GURE 1 8 SNL(G, N, J) produced from Table 7.

F I GURE 1 9 L(G, V, I ) [30] produced from Table 7.

F I GURE 2 0 L(G, N, J) [30] produced from Table 7.
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concept lattices, and lattices plotted in Figures 17 and 18 are
semi‐concept lattices in its complement context. Additionally,
concept lattices are shown in Figures 19 and 20. Concept lat-
tices of its complement context are shown in Figures 21
and 22. Lattices plotted in Figures 23 and 24 are OE‐semi‐
concept lattices, and lattices plotted in Figures 25 and 26
are OE‐concept lattices. Tables 8–19 show the respective de-
cision rules in different concept lattices.

4 | CONCLUSION

Obtaining decision rules of concept lattice is of great sig-
nificance for data mining. The problem of decision rule
acquisition for three‐way concept lattices was originally pro-
posed by Wei et al. [20]. In this work, we extended the
research of decision rules acquisition from three‐way concept
lattices to three‐way semi‐concept lattices, and investigated
decision rule acquisition for three‐way concept lattices in the
complement context, which complemented Wei et al.'s
research. Additionally, we analysed the decision rule acquisi-
tion problem from a generalised perspective and compared
the sets of decision rules for semi‐concept lattices, concept
lattices, three‐way concept lattices, and three‐way semi‐
concept lattices.

F I GURE 2 1 NL(G, V4, I4) produced from Table 7.

F I GURE 2 2 NL(G, N4, J4) produced from Table 7.

F I GURE 2 3 OESL(G, V, I ) produced from Table 7.

F I GURE 2 4 OESL(G, N, J) produced from Table 7.

F I GURE 2 5 OEL(G, V, I ) [30] produced from Table 7.

F I GURE 2 6 OEL(G, N, J) [30] produced from Table 7.
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TABLE 10 The rule acquisition in semi‐consistent complement
formal decision context.

not bcd → not fg

not bcd → not g

not bc → not g

not cd → not g

not a → not e

not c → not g

TABLE 11 The irredundant rule acquisition in semi‐consistent
complement formal decision context.

not bcd → not fg

not a → not e

not c → not g

TABLE 12 The rule acquisition in consistent formal decision context
[30].

a → e b → f ad → ef bcd → fg

ad → e d → f ab → ef

ab → e ad → f

ab → f

bcd → f

TABLE 13 The irredundant rule acquisition in consistent formal
decision context [30].

a → e ad → ef

b → f ab → ef

d → f bcd → fg

TABLE 14 The rule acquisition in consistent complement formal
decision context.

c → g a → e

bc → g bcd → fg

cd → g

bcd → g

TABLE 15 The irredundant rule acquisition in consistent
complement formal decision context.

c → g

a → e

bcd → fg

TABLE 16 The rule acquisition in OE‐semi‐consistent formal
decision context.

a → f a → e a → ef not c → not g

b → f ad → e ab → ef not bc → not g

d → f ab → e ad → ef not cd → not g

ab → f bcd → fg not bcd → not g

ad → f not bcd → not fg

bcd → f not a → not e

TABLE 17 The irredundant rule acquisition in OE‐semi‐consistent
formal decision context.

a → f a → e not c → not g

b → f a → ef not bcd → not fg

d → f bcd → fg not a → not e

TABLE 18 The rule acquisition in OE‐consistent formal decision
context [30].

a → e b → f ab → ef not a → not e not bcd → not fg

ad → e d → f ad → ef not c → not g

ab → e ad → f bcd → fg not bc → not g

ab → f not cd → not g

bcd → f not bcd → not g

TABLE 19 The irredundant rule acquisition in OE‐semi‐consistent
formal decision context [30].

a → e ab → ef not c → not g

b → f ad → ef not bcd → not fg

d → f bcd → fg not a → not e

TABLE 9 The irredundant rule acquisition in semi‐consistent formal
decision context.

b → f a → e

d → f a → ef

a → f bcd → fg

TABLE 8 The rule acquisition in semi‐consistent formal decision
context.

a → e b → f a → ef bcd → fg

ad → e d → f ab → ef

ab → e a → f ad → ef

ab → f

ad → f

bcd → f
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Multi‐granulation computing is a significant field in cur-
rent information processing. In the future work, we will
investigate decision rule acquisition of three‐way semi‐concept
lattices in the multi‐granulation formal context. Moreover,
managing incomplete and inconsistent information systems is
a crucial area of academic focus [31, 32]. Notable research
results include using incomplete hesitant fuzzy linguistic
preference relations to handle incomplete information and
group decision consensus [33], as well as acceptable incom-
plete uncertain two‐tuples linguistic preference relation [34].
These findings will also serve as valuable references for our
future work on rule acquisition in three‐way semi‐concept
lattices in inconsistent formal context.
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