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A B S T R A C T

The rapid spread of misinformation on social media has posed significant challenges, particularly in the early
detection of rumors, which is critical to mitigating their negative impact. However, the limited data available
during the initial stages of trending topics poses significant challenges, including analysis constraints and model
overfitting. Therefore, the adoption of specific methods are needed to identify patterns from historical sample
data and enable effective knowledge transfer, facilitating inductive reasoning with limited data on new topics.
To address these challenges, we propose an Adversarial Domain Alignment Unsupervised Domain Adaptation
(ADA-UDA) method based on the Transformer architecture. Our approach leverages labeled historical data
from the source domain alongside a limited quantity of unlabeled data from new trending topics in the
target domain. At the heart of our method is the Parameter Transferable Module (PTM), which guides the
Transformer to focus on transferable and distinguishable features, thereby enhancing the model’s ability to
perform effective inductive reasoning with limited data. We conducted extensive experiments to evaluate our
method, benchmarking it against current mainstream rumor detection techniques. The findings indicate that
our ADA-UDA method outperforms existing approaches, underscoring its potential for early and accurate rumor
detection in emerging topics.
1. Introduction

The rapid expansion of social media has transformed how informa-
tion is disseminated, making these platforms the primary channel for
news and updates. This shift has its downsides — most notably the ac-
celerated spread of rumors, leading to considerable societal disruption
during crises. Given the situation’s urgency, the need for efficient and
rapid rumor detection mechanisms becomes undeniably critical (Lotfi
et al., 2020).

The rapid spread of misinformation on social media poses signif-
icant challenges, particularly in the early detection of rumors, which
is crucial for mitigating their negative impacts. For instance, misin-
formation linking 5G technology to the coronavirus has caused real
societal harm, including the vandalism of telecommunication infras-
tructure. This issue extends beyond a single case. In China, the widely
circulated ‘‘salt rumor’’ triggered a nationwide panic-buying of salt,
based on the false belief that consuming salt could prevent radiation
poisoning. In another case, millions of people in Shanxi Province,
China, took to the streets due to an unsubstantiated rumor about

∗ Corresponding author at: School of Computer and Software Engineering, Xihua University, Chengdu, 610039, PR China.
E-mail address: chenxl@mail.xhu.edu.cn (X. Chen).

an impending earthquake. Additionally, the dairy industry in China
suffered significant economic losses due to rumors of ‘‘leather milk
powder’’, which raised widespread public concern. While many news
agencies and social media platforms have developed rumor reporting
systems, such as Sina’s misinformation management center (https://
service.account.weibo.com/?type=5&status=0), Snopes (http://www.
snopes.com/), and Factcheck (http://www.factcheck.org/), these ef-
forts remain hindered by manual verification processes, which cannot
keep pace with the rapid flow of information on social media. As social
media continues to expand, the need for automated systems capable
of quickly and accurately identifying and curbing the spread of false
information becomes increasingly urgent (Gereme & Zhu, 2019; Shu
et al., 2017; Zhou et al., 2019).

Rumor detection encompasses a multidisciplinary approach com-
bining Natural Language Processing (NLP), Machine Learning (ML),
and Data Mining (Oshikawa et al., 2020). Its core objective is to
automatically identify false or misleading content by analyzing and
processing textual data. Early research primarily focused on content-
based detection methods (Ferreira & Vlachos, 2016; Gupta et al., 2014),
https://doi.org/10.1016/j.eswa.2024.125487
Received 15 July 2024; Received in revised form 11 September 2024; Accepted 29
vailable online 18 October 2024 
957-4174/© 2024 Elsevier Ltd. All rights are reserved, including those for text and 
 September 2024

data mining, AI training, and similar technologies. 
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Expert Systems With Applications 261 (2025) 125487 
such as text writing style and text-image consistency, using predefined
ules and features to identify rumors. Nevertheless, social media posts
re often short and might not include images, limiting the effective-
ess of content-based methods. To address these issues, researchers
ave proposed various rumor detection techniques, ranging from tra-
itional models utilizing handcrafted features to those leveraging deep

learning. Early studies utilized handcrafted features to capture key in-
ormation in rumor propagation. For example, researchers used writing
tyle, vocabulary choices, and source credibility to identify poten-
ial rumors, with these features often based on domain knowledge
nd experience. The advent of deep learning has led researchers to
tilize neural networks for autonomously learning rumor representa-
ions (Kuter et al., 2018). Methods like Recurrent Neural Networks

(RNN) (Bugueño et al., 2019; Lin et al., 2018; Wang, Guo et al.,
2019) and Convolutional Neural Networks (CNN) (Bian et al., 2020;
Ebrahimi Fard et al., 2019; Guo, Tang et al., 2021; Li et al., 2019) have
been employed to extract semantic information from large text datasets,
enabling a more comprehensive understanding of rumor content. This
automatic learning approach not only improves model performance but
also enhances generalization capabilities. Recently, researchers have
focused on rumor propagation structures, proposing detection models
based on propagation paths and influence (Guo et al., 2018). For
instance, by constructing propagation networks (Xu et al., 2022), one
an analyze information dissemination paths on social media to better

understand rumor mechanisms. To improve detection accuracy, the
idea of multi-source heterogeneous aggregation has been introduced,
integrating multiple information sources such as text and images. By
considering both text content and related images (Abdelnabi et al.,
2022; Xuming et al., 2023), models can gain a more comprehensive un-
derstanding of rumor events, thereby enhancing detection performance.
This approach has achieved significant progress in rumor detection.
n addition, the advent of pre-trained language models like GPT and
ERT (Devlin et al., 2019) has introduced new opportunities for rumor

detection. These models, trained on extensive corpora, encapsulate
deep semantic information and can be fine-tuned for particular ru-
mor detection tasks, greatly enhancing detection effectiveness. Despite
these advances, rumor detection still faces challenges. Rumors are
diverse and flexible, making feature extraction and model training diffi-
cult. Additionally, real-time detection requires quick identification and
processing of rumors in large-scale data streams. Cross-language and
cross-cultural variations in rumor presentation also pose challenges.

In this paper, we aim to address several challenges that arise from
ata imbalance and scarcity, often accompanied by linguistic diversity

and rapid evolution. Additionally, previous studies have overlooked
the fact that not all features are transferable or distinguishable. To
address these challenges, this paper introduces Unsupervised Domain
Adaptation (UDA) methods aimed at improving rumor detection and
addressing the problem of limited data for trending topics. New epi-
demic rumors often share similarities in expression and punctuation

ith historical rumors. Leveraging historical rumor data features to
lassify epidemic rumor data is effective due to the implicit relationship
etween them. In the early stages with limited rumor content, embed-
ing the BERT model in our framework generates dynamic character-
evel vectors for rumor texts, alleviating vocabulary limitations. To
andle complex semantic features of variable-length sequences, we
ntegrate a BiLSTM model, which combines textual information and
entence order features to better extract semantic features of rumor
exts. And we introduce a fine-grained local adversarial network for
eature discrimination alignment, enhancing rumor detection accuracy.

Adversarial domain alignment is an adversarial learning framework
comprising a feature extractor and a domain discriminator. The feature
extractor extracts features from the data, while the domain discrimi-
nator distinguishes whether the features are from the source domain
r the target domain. Yaroslav Ganin first introduced the concept of
dversarial learning into transfer learning, utilizing a feature extractor

o extract features from the data, and training the discriminator to

2 
become unable to differentiate between features from the source and
target domains (Ganin et al., 2015). This alignment enables domain
adaptation. However, when there is a significant distributional differ-
nce between the source and target domains, using a single feature

extractor and adversarial network may result in poor model stability
during the feature alignment process. To address this, Eric Tzeng et al.
proposed a domain adaptation method. They initially trained a feature
extractor and classifier on the source domain data using supervised
learning (Tzeng et al., 2017). A separate feature extractor was then
constructed to extract features from the target domain. Both feature
extractors fed their outputs into the discriminator, and when the dis-
criminator could no longer distinguish between the two domains, the
target domain feature extractor, along with the pre-trained classifier,
formed the final model to perform the target domain task. Previous
works relied on a single feature extractor and adversarial learning to
align features between domains, which may lead to domain-specific
features being ignored or misaligned. To overcome this, Zhang, Tang
t al. (2019) proposed a symmetric domain adaptation method, where

features from the source and target domains are kept symmetric across
multiple layers of the model. They also introduced the concept of
a private-shared feature space, allowing both domains to maintain
domain-specific features while learning a shared feature space where
domain alignment is achieved.

In our work, we first achieve global feature alignment through
global adversarial learning, which serves as a coarse-grained align-
ment. This approach enhances feature transferability to some extent,
but its performance is limited, especially when there is a significant
discrepancy between the target and source domains. The limitation
arises because not all fine-grained feature representations that make up
the global features are inherently transferable or distinguishable. Given
that the sequential nature of Transformer models naturally provides
finer-grained representations, we introduce local adversarial learning
to focus the model on transferable and distinguishable fine-grained fea-
tures, thereby improving the representation capacity of global features.

This study introduces a novel rumor detection framework utilizing
the Transformer architecture’s ADA-UDA method. By considering the
iversity and complexity of social media content, our method over-
omes existing limitations, providing an innovative and effective so-
ution for addressing uncertainties and complexities in information dis-
emination. Our experimental results demonstrate that ADA-UDA out-
erforms existing methods across various unsupervised domain adap-
ation settings.

The main contributions of this paper are as follows:

• As far as we know, this is the first to incorporate adversarial
networks within the Transformer architecture for UDA in ru-
mor detection. This paper proposes a transferable Transformer
framework for adversarial domain-aligned rumor detection based
on unsupervised domain adaptation. The model aligns deeper
features learned from the source domain with the target domain,
addressing the issue overlooked by previous methods – that not all
features are transferable or distinguishable – thereby enabling the
model to learn higher-quality transferable features. We believe
this work can provide a valuable reference for exploring the use
of Transformer in other UDA tasks.

• We also introduced weight factors for global and local adversarial
losses in the balanced loss function, allowing control over the
weights of global and local adversarial losses simultaneously. This
effectively mitigates the model’s overfitting in domain feature
alignment. Additionally, we fully leverage the inherent features
of the Transformer by proposing the PTM module, which captures
fine-grained transferable and discriminable local features, thereby
enhancing the efficiency of UDA.

• Our method effectively utilizes historical rumor data features to
detect the veracity of early trending topics. The proposed transfer-
able Transformer model exhibits superior performance, surpass-
ing benchmarks. Experiments on Chinese and English datasets
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Expert Systems With Applications 261 (2025) 125487 
revealed that our model attained an accuracy of 81.67% for the
Chinese dataset and 80.79% for the English dataset. Compared to
existing models, our model’s performance improved by 7.11% to
29.82%, demonstrating its effectiveness and providing a direction
for future research.

This paper follows this structure: Section 2 reviews previous re-
search on rumor detection. Section 3 outlines our proposed model
architecture and its key components. Section 4 presents experimental
results, comparing our method with benchmark models and analyzing
the findings. Section 5 concludes the study and provides a summary of
the work.

2. Related work

Rumors, as defined by Gist (1951), are unverified explanations
or reasons targeting public concerns. In rumor detection, limitations
f manual feature extraction, such as time consumption and feature
ias, have shifted the focus towards deep learning methods. Notably,
pproaches based on RNN (Bugueño et al., 2019; Lin et al., 2018; Wang,

Guo et al., 2019) and CNN (Bian et al., 2020; Ebrahimi Fard et al., 2019;
Guo, Tang et al., 2021; Li et al., 2019) have shown significant promise
in enhancing rumor detection capabilities.

Several studies have utilized sequential models to extract features
rom multimedia content in social media posts. Many existing mod-
ls focus only on text features. For instance, Ma et al. introduced
n RNN (Ma et al., 2016) to capture continuous representations of
eibo events, effectively capturing time-series information from orig-

nal posts, retweets, and comments to automatically discern hidden
eatures. Building on this, Chen et al. embedded an attention mech-
nism within the RNN to emphasize temporal hidden features from
equential posts, assisting in early rumor detection (Chen et al., 2018).

Chen et al. proposed a novel hybrid model XGA (namely XLNet-based
Bidirectional Gated Recurrent Unit (BiGRU) network with Attention
mechanism) for Cantonese rumor detection on Twitter (Chen et al.,
2020). First, XLNet produces text-based and sentiment-based embed-
dings at the character level. Then, perform joint learning of character
and word embeddings to obtain the words’ external contexts and inter-
nal structures. Leverage BiGRU and the attention mechanism to obtain
important semantic features and use the Cantonese rumor dataset to
train the model.

In addition to text-based methods, recent research has explored
ultimodal approaches to better understand social media practices.

For instance, multimodal methods (Jin et al., 2017; Khattar et al.,
2019; Wang et al., 2018) propose models that integrate image and
ext features from posts to detect rumors. This fusion approach enables
odels to gain a more comprehensive understanding of rumor events,

ignificantly enhancing detection performance.
Additionally, to validate the authenticity of posts, some studies

employ external resources. For instance, Fang et al. combined multi-
modal data and knowledge graphs to enhance reasoning capability and
improve accuracy in rumor detection by supplementing background
knowledge and semantic connections (Fang et al., 2019). Hierarchical
attention mechanisms have also been employed to enhance detec-
tion accuracy. Lan et al. used a hierarchical attention-based RNN

odel to detect rumors on social media, effectively distinguishing
umors from non-rumors by automatically extracting key semantic and
emporal features (Lan et al., 2018). Another innovative approach,
ntroduced by Khan et al. employed bidirectional graph convolutional
etworks within a deep learning framework to detect rumors on social
edia (Khan et al., 2024).

Methods focusing on propagation structures have also garnered con-
siderable attention. Rao et al. proposed the LGAM-BERT model, which
uses hierarchical attention masks on BERT to detect rumors, leveraging
comments as auxiliary features and reducing language noise by limiting
interaction between posts and comments in the lower layers (Rao et al.,
2021). On the other hand, researchers have also focused on methods
3 
based on propagation structures. Ma et al. utilized tree structures for
modeling information propagation and introduced a propagation tree
kernel method to distinguish rumors from other information (Ma et al.,
2017). They subsequently enhanced this approach by incorporating
a tree-structured Recursive Neural Network (RvNN) to represent and
process rumor propagation structures (Ma et al., 2018). Additionally,
Lu et al. introduced Graph-aware Co-Attention Networks (GCAN), a
neural network model that combines user features and tweet encoding
features to predict information authenticity (Lu & Li, 2020). Fang
t al. proposed the Kernel Graph Attention Network (KGAT), which
ombines edge and point kernels with attention mechanisms based on
ERT, integrating Graph Convolutional Networks (GCN) and hierarchi-
al attention mechanisms (Fang et al., 2015). This method significantly
mproves fact-checking accuracy and model interpretability. Another
otable framework for rumor detection (Tu et al., 2021), introduced by

Tu et al. merges text representation learning with propagation struc-
ture learning. This framework constructs a large propagation graph,
integrating the propagation structures of all tweets, then uses network
embedding methods to learn node vector representations and employs
a convolutional neural network to simultaneously learn features of
textual content and propagation structures, thereby enhancing rumor
detection performance.

Despite these advances, several challenges remain. One major chal-
lenge is data imbalance, where labeled data for actual rumors and
on-rumors on social media is often unequal, affecting model general-
zation. Additionally, the diversity and rapid evolution of social media
anguage pose difficulties for model training and generalization. Lu
t al. proposed a model called Subjective Information Enhanced Re-
nforcement Learning (SIFTER) using multi-task learning to assimilate
xternal knowledge explicitly detailing rumors (Lu et al., 2022). This

model employs reinforcement learning combined with existing rumor
etection models and implements a sequential training mode to address

propagation inconsistency issues, enhancing the trained model’s robust-
ness to noisy comments. The SIFTER framework improves detection
accuracy and real-time performance and excels in cross-domain and
continuous prediction scenarios. Liu et al. proposed the Dual-Attention
GCN (DAGCN) method, combining dual-attention mechanisms with
GCN for rumor detection on social networks (Liu et al., 2023). This
method constructs event propagation graphs and uses GCN to retrieve
tructural information from every event-related tweet. It then integrates
hese data with features from the original posts to create interactive se-
antic text features. Additionally, attention mechanisms are utilized to
inimize false and irrelevant interactions. But if the data is scarce or of

poor quality, their performance may decline because the effectiveness
of both models relies heavily on the training data’s quality and richness.

Further advancements in rumor detection have explored semi-
upervised and unsupervised methods to overcome the lack of labeled
ata. For instance, Alzanin et al. employed a semi-supervised and un-
upervised expectation–maximization algorithm to identify rumors in
rabic tweets, using limited labeled data along with a large amount of
nlabeled data to improve detection accuracy (Alzanin & Azmi, 2019).
n contrast, our research focuses on unsupervised rumor detection. Ran

et al. employed contrastive learning and cross-attention techniques to
bring feature representations of the same class samples from different
domains closer while pushing different class samples apart, achiev-
ing unsupervised cross-domain rumor detection (Ran & Jia, 2023).

owever, their method presumes that the source and target domains
ave an identical class space and necessitates clustering techniques
o create pseudo-labels for the target domain, potentially introducing

noise. Guo et al. developed a rumor detection system using explainable
adaptive learning. This system builds dynamic classifiers with Graph-
based Adversarial Learning (GAL) concepts and detailed feature spaces
employing graph-level encoding, and incorporates ongoing adversarial
training between the generator and unsupervised decoders to tackle
scenarios with insufficient labeled training data (Guo, Yu et al., 2021).
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Fang et al. proposed an unsupervised rumor detection technique utiliz-
ing the Propagation Tree Variational AutoEncoder (PTVAE) to tackle
the issue of scarce reliable pre-labeled datasets (Fang et al., 2023).
This method captures high-order propagation patterns and reconstructs
trees through message-passing strategies, encoding and decoding trees,
aligning multiple modalities such as tree structures and propagation
features to output final predictions. Zhang et al. introduced a novel ap-
proach called the Multimodal Disentangled Domain Adaptation Method
(MDDA), which incorporates multimodal disentangled representation
learning and UDA (Zhang et al., 2021). This method breaks down multi-
media posts into distinct content and rumor-related features. It removes
elements unique to the content and filters out event-specific attributes,
while preserving common rumor characteristics across different events.
In addition to these methods, Xiao et al. proposed a graph-based
contrastive learning self-supervised LSTM model (Xiao et al., 2023).
This model constructs positive and negative sample pairs and utilizes
graph neural networks to capture complex data relationships, extract-
ing useful features from large amounts of unlabeled data to improve
detection accuracy. Although this study focuses on Medicare fraud
detection, its self-supervised learning framework effectively captures
data structures and behavior patterns, providing valuable insights and
references for rumor detection.

Generative models have been utilized in rumor detection. Yang et al.
addressed rumor detection on social media using generative models by
considering news veracity and user credibility as latent random vari-
ables and utilizing user interactions to assess news authenticity (Yang
et al., 2019). Initially, a Bayesian network model captures the rela-
tionships among news veracity, user opinions, and user credibility.
Then, an interaction graph is constructed between users and news,
using comments and retweets to model their opinions and credibility.
Lastly, The approach employs collapsed Gibbs sampling to deduce news
veracity and user credibility, eliminating the requirement for labeled
data. Zhang et al. built upon Yang et al.’s approach by incorporating
tweet authorship, a critical factor in tweet propagation (Zhang, Wang
et al., 2019). A common drawback of these methods is their failure to
recognize that not all features are transferable and discriminable. Thus,
it is crucial to focus on both capabilities during the transfer process.

This section provides an overview of existing approaches to rumor
detection, discussing both text-based and multimodal methods. It also
addresses the limitations of previous studies, such as their inability to
capture transferable and discriminable features effectively, which leads
to the justification for the proposed model.

3. Problem definition

3.1. Rumor detection

In this study, a ‘rumor’ is articulated as information propagated
through Online Social Networks (OSN) that is not substantiated by
corroborating evidence and typically exerts a considerable adverse
impact on the collective societal fabric. A rumor encompasses elements
that are officially confirmed as false information and parts that remain
unverified or undisclosed, as illustrated in Fig. 1. The process of rumor
detection can be defined as the methodological delineation of protocols
designed to identify and categorize information on OSNs as either
spurious or credible. This involves parsing the messages into two dis-
tinct categories: rumors and non-rumors. The current methodologies for
detecting rumors can be categorized into two primary types: identifying
rumors in individual posts or in clusters of posts (Wang et al., 2020).
The model proposed herein is specifically designed to detect rumors in
individual posts.

Formally, the set 𝑆 = (𝑠1, 𝑠2,… , 𝑠𝑙 ,… , 𝑠𝑟) delineates the sample
spectrum of the entire post collection, where 𝑠𝑙 = (𝑤1, 𝑤2,… , 𝑤𝑖,… , 𝑤𝑛)
typifies the content of an individual post 𝑠𝑙 encompassing 𝑛 characters,
and each 𝑤𝑖 encapsulates the 𝑖th word, numeral, or symbol. Our model
aims to train a classification function 𝐹 that transmutes 𝑠 into a feature
𝑙

4 
Fig. 1. Structure of rumors in OSN.

vector 𝑚𝑓 in 𝑓 -dimensional space, simplified hereafter as 𝑚. The study
employs 𝑓 -dimensional matrix vectors universally across the realm
of rumor detection, ultimately distilling the evaluation to a binary
classification of the data into non-rumors (0) and rumors (1), as shown
in Eq. (1).

𝐹(𝑠𝑙 ) =

{

0, if 𝑠𝑙 is not a rumor
1, others

(1)

3.2. Dataset division

The data division in this study differs from traditional methods
in certain respects. The UDA methodology primarily divides the data
into three distinct categories: domain adaptation network training,
domain adaptation network validation, and testing. The dataset under
consideration comprises 𝐵 types of data, each with 𝐶 + 𝐸 instances.
Of these, 𝐶 instances are labeled, while 𝐸 instances are unlabeled.
In this context, the support set comprises 𝐵 ⋅ 𝐶 instances, while the
query set contains 𝐵 ⋅𝐸 instances. Training in the source domain takes
place on the support set and is validated there, whereas testing in the
target domain occurs on the query set. The objective is to migrate
features acquired from multiple events in the source domain to the
target domain, thereby achieving domain adaptation.

3.3. Transferable transformer UDA

The proposed transformer-based ADA-UDA model is capable of
accurately determining the veracity of emerging topics and performing
classification tasks for the purpose of detecting rumors. The UDA task
employs the labeled source domain 𝐷𝐵

{(

𝑠𝑐 , 𝑦𝑐
)}𝑁𝑠

𝑐=1 derived from its
historical process. In this context, 𝑠𝑐 represents the source domain
sample features, 𝑦𝑐 denotes the classification targets, and 𝑁𝑠 specifies
the quantity of training samples. With regard to the unlabeled target
domain 𝐷𝑡

{(

𝑠𝑗
)}𝑟

𝑁𝑠+1
of trending topics, 𝑠𝑗 represents the target do-

main sample features, and 𝑁𝑠 + 1 ∼ 𝑟 denotes the limited number
of samples within the target domain. The primary objective of UDA
is to identify and learn distinguishing and invariant features between
the two domains. These transferable features are then integrated into
the multi-head attention module, ensuring accurate classification in the
rumor detection task.
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Fig. 2. Overview of the ADA-UDA model: Consists of three parts: the BERT + BiLSTM combination module, the parameter transferability module (PTM), and the adversarial
alignment with global and local discriminators and the MLP classifier.
The problem definition clarifies the context in which rumor detec-
tion is performed, with a focus on Online Social Networks (OSNs). It
outlines the goal of classifying messages into rumor and non-rumor
categories and explains the structure of the dataset used in this study.

4. Methodology

This section aims to develop an ADA-UDA model framework based
on the Transformer architecture, designed to identify whether a post
is a rumor. This section provides a comprehensive description of the
overall model, detailing the specific structure of each module. The
specific explanations for the notations can be found in Table A.8 in
the Appendix.

4.1. Overview

Fig. 2 depicts the overall architecture of the proposed ADA-UDA
model, consisting of three main components. The initial module is a
combination of BERT and BiLSTM, which converts input data from
the source and target domains into vectors. This includes both labeled
historical rumor data and unlabeled trending topic data (discussed in
Section 4.2). The second part of the model involves global adversar-
ial analysis and the final classification task, which is facilitated by
a domain discriminator that encourages the formation of a domain-
invariant feature space (discussed in Section 4.3). The third module
is the PTM, which injects learned transferable features into the at-
tention module, guiding the Transformer to focus on transferable and
discriminable features (discussed in Section 4.4).

4.2. Embedding module based on BERT+BiLSTM

Research indicates that combined models generally outperform
single-network models in feature extraction and text representation
(Cheng et al., 2020; Guha et al., 2020). In our ADA-UDA model,
the BERT model generates dynamic character-level vector representa-
tions of rumor text. This approach mitigates the issue of insufficient
vocabulary for new epidemic rumors during the input stage. By inte-
grating the BiLSTM model, we combine text information and sentence
5 
order features to derive semantic features of rumor texts. This com-
bined model can handle variable-length sequences, representing more
complex semantic features.

We utilize a pre-trained BERT model for character-level embeddings
to convert textual features into vectors. Initially, the text is split into
individual characters, each assigned a sequential positional encoding,
commencing with 1. A [CLS] token is added at the beginning (position
0), and a [SEP] token is appended at the end. This positional encoding
facilitates feature extraction in subsequent stages.

Given an input text of a single post 𝑠𝑙 = (𝑤1, 𝑤2,… , 𝑤𝑖,… , 𝑤𝑛),
the goal is to derive a vector representation 𝑚 = (𝑥1, 𝑥2,… , 𝑥𝑖,… , 𝑥𝑛).
The core framework of BERT, utilizing the bidirectional Transformer
encoder structure, passes the input text through the initial sublayer,
the multi-head self-attention layer, and then to the fully connected
feedforward layer. Each sublayer incorporates normalization and resid-
ual connections, with the overall output of each sublayer computed
according to Eq. (2):

𝑂 𝑢𝑡𝑝𝑢𝑡𝑠𝑢𝑏𝑙 𝑎𝑦𝑒𝑟 = 𝐿𝑎𝑦𝑒𝑟𝑁 𝑜𝑟𝑚(𝑥 + 𝑠𝑢𝑏𝑙 𝑎𝑦𝑒𝑟(𝑥)) (2)

The function 𝑠𝑢𝑏𝑙 𝑎𝑦𝑒𝑟(𝑥) represents the sublayer’s specific function.
In order to achieve effective residual connections, the outputs of all
sublayers and embeddings in the model are set to 𝑑 = 512 dimensions.

In the self-attention submodule, three vectors are used: query matrix
(𝑞), key matrix (𝑘), and value matrix (𝑣). Each submodule takes a set of
(𝑞), (𝑘), and (𝑣) as input, calculates the similarity between each word,
and determines the corresponding weights based on the similarity. This
enables each word to obtain related information from other words,
thereby learning dependencies between different positions. The process
involves the calculation of dot products between keys and queries,
which are then subjected to the application of the 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥 function
in order to obtain value weights. The attention layer is computed as
described in Eq. (3):

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑞 , 𝑘, 𝑣) = 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥
(

𝑞 𝑘𝑇
√

𝑑𝑘

)

𝑣 (3)

where 𝑑𝑘 is the dimension of the (𝑞) and (𝑘). To comprehensively
compute attention, a multi-head attention mechanism is applied, lin-
early mapping the input to generate query, key, and value matrices.
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Each matrix calculates the scaled dot-product attention for every input
sentence, with the results called heads.

The attention matrices are concatenated horizontally and multiplied
y a weight matrix 𝑊 0 to compress them into a single matrix, allowing
ttention to different spatial representations at different positions. The
alculations are presented in Eqs. (4) and (5):

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑞 𝑊 𝑄𝑚
𝑖 , 𝑘𝑊 𝐾 𝑚

𝑖 , 𝑣𝑊 𝑉 𝑚
𝑖 ) (4)

𝑀 𝑢𝑙 𝑡𝑖𝐻 𝑒𝑎𝑑(𝑞 , 𝑘, 𝑣) = 𝐶 𝑜𝑛𝑐 𝑎𝑡(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2,… , ℎ𝑒𝑎𝑑𝑖,… , ℎ𝑒𝑎𝑑𝑚)𝑊 0 (5)

where 𝑊 𝑄𝑚
𝑖 , 𝑊 𝐾𝑚

𝑖 , and 𝑊 𝑉𝑚
𝑖 are the weight matrices for the 𝑞, 𝑘, and 𝑣

of the 𝑖th head, respectively. 𝐶 𝑜𝑛𝑐 𝑎𝑡 denotes the function concatenating
multiple heads, and 𝑊 0 is the weight matrix used in concatenation.
The multi-head attention layer’s output is sent to a fully connected
feedforward network, incorporating multiple activation functions to
produce the final output. The calculations are presented in Eq. (6):

𝑂 𝑢𝑡𝑝𝑢𝑡𝐹 𝑁 = 𝑑 𝑟𝑜𝑝𝑜𝑢𝑡(𝑅𝐸 𝐿𝑈 (𝑊𝑀 𝐴𝐿 ∗ 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑞 , 𝑘, 𝑣) +𝑏𝑀 𝐴𝐿))𝑊𝐹 𝐹+𝑏𝐹 𝐹
(6)

where 𝑊𝑀 𝐴𝐿 represents the weights of the multi-head attention, and
𝑏𝑀 𝐴𝐿 represents its biases. The feedforward network layers have
weights denoted as 𝑊𝐹 𝐹 and biases denoted as 𝑏𝐹 𝐹 . Finally, the output
from BERT is fed into the BiLSTM model to extract features and mine
information. The BiLSTM model comprises the following elements:
character input 𝑥𝑡, the internal state 𝐶𝑡, the input state 𝐶𝑡𝑧 , hidden state
ℎ𝑡, forget gate 𝑓𝑡, memory gate 𝑚𝑡, and the output gate 𝑜𝑡, all at time
𝑡. The internal calculation process of the BiLSTM model is detailed as
follows, with the forget gate calculation given by Eq. (7):

𝑓𝑡 = 𝛿(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓 ) (7)

where 𝛿 is the activation function, and 𝑊𝑓 , 𝑈𝑓 , and 𝑏𝑓 denote the
parameters of the forget gate. The output of the hidden layer at time
𝑡 − 1 is ℎ𝑡−1.

The memory gate calculation at time 𝑡 is given by Eq. (8). 𝐶𝑡𝑧 is
mainly derived from the hidden layer output of the previous time step
𝑡 − 1 and the input at 𝑡, undergoing a linear transformation and tanh
activation to produce a new state value, as shown in Eq. (9). The
revious internal state at 𝑡 − 1 is then updated to 𝐶𝑡 at 𝑡, as detailed

in Eq. (10). The calculation process for the output gate 𝑜𝑡 is provided
n Eq. (11). The parameters for the input gate are 𝑊𝑖, 𝑈𝑖, and 𝑏𝑖; for
he input state are 𝑊𝑐 , 𝑈𝑐 , and 𝑏𝑐 ; and for the output gate are 𝑊𝑜, 𝑈𝑜,
nd 𝑏𝑜.

𝑚𝑡 = 𝛿(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (8)

𝐶𝑡𝑧 = t anh(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐 ) (9)

𝐶𝑡 = 𝐶𝑡−1 ⋅ 𝑓𝑡 + 𝐶𝑡𝑧 ⋅ 𝑚𝑡 (10)

𝑜𝑡 = 𝛿(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (11)

At time 𝑡, the hidden states of the forward and backward LSTM
networks are ⃖⃖⃗ℎ𝑡 and ⃖⃖ ⃖ℎ𝑡, respectively, as shown in Eqs. (12) and (13).
The final hidden state ℎ𝑡 is computed as shown in Eq. (14). The
idden states 𝐻 = (ℎ1, ℎ2,… , ℎ𝑇 ) of 𝑇 serve as the input to the

softmax classifier, resulting in a weight vector 𝑊 calculated as shown
in Eq. (15):
⃖⃗ 𝑡 = 𝑜𝑡−1 ∗ t anh(𝐶𝑡−1) (12)

⃖⃖ℎ𝑡 = 𝑜𝑡+1 ∗ t anh(𝐶𝑡+1) (13)

ℎ𝑡 = 𝐶 𝑜𝑛𝑐 𝑎𝑡(⃖⃖ℎ𝑡, ⃖⃗ℎ𝑡) (14)
𝑊 = 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥(𝑊𝑠𝑠1 t anh(𝑊𝑠𝑠2𝐻
𝑇 ) + 𝑏𝑠) (15)

6 
where 𝑊𝑠𝑠1 ∈ R𝑑𝑠×2𝑢 and 𝑊𝑠𝑠2 ∈ R𝑑𝑠 are weight matrices, 𝑑𝑠 is a hyper-
parameter, 𝑢 denotes the size of the hidden state of the unidirectional
LSTM, and 𝑏𝑠 is a bias. Thus, the final single text vector 𝑚 is represented
as shown in Eq. (16):

𝑚 =
𝑇
∑

𝑡=1
𝑊𝑡 ⋅ ℎ𝑡 (16)

Subsequently, the text vectors from both the source and target
domains are transmitted to the transferable Transformer module.

4.3. Global adversarial feature alignment

The Transformer architecture has achieved significant success in
LP tasks, showcasing exceptional performance across various lan-
uage applications such as text classification and machine transla-
ion (Devlin et al., 2019; Zhou et al., 2020). This success is primarily

attributed to the attention mechanism’s feature extraction capabilities.
However, the transferability of parameters and the incorporation of
adversarial domain alignment in the Transformer architecture for UDA
methods in rumor detection have not yet been explored. This paper
ocuses on analyzing knowledge transfer in the Transformer-based UDA
ethod for rumor detection, leveraging the Transformer’s multi-head

self-attention mechanism to capture long-term dependencies. Vaswani
et al. (2017). To accurately predict unlabeled target data, a common
approach in domain adaptation tasks is to further optimize the loss
function as shown in Eq. (17), aiming to enhance joint feature learning,
omain adaptation, and classifier learning.

𝐿𝑐1(𝑠𝑠, 𝑦𝑠) + 𝛽 𝐿𝑎𝑑 𝑣(𝑠𝑠, 𝑠𝑡) (17)

where 𝐿𝑐1 is a supervised classification loss, 𝐿𝑎𝑑 𝑣 is a transfer loss,
and 𝛽 is a parameter used to control the importance of 𝐿𝑎𝑑 𝑣. In this
paper, the 𝐿𝑎𝑑 𝑣 adopted is an adversarial loss, which primarily forms an
invariant feature space through the domain discriminator (Ganin et al.,
2015).

The encoder 𝐻𝑓 is employed initially for feature learning, pre-
dominantly within the parameter-transferable Transformer, while 𝐻𝑐
erves as the classifier for classification. The domain discriminator 𝐷𝑑
s utilized for global feature alignment, focusing on the output states
f class tokens in both the source and target domain text content.
o enhance domain knowledge adaptation, this study implements a
ax–min game strategy between 𝐻𝑓 and 𝐷𝑑 , where 𝐻𝑓 learns domain-

nvariant features to deceive 𝐷𝑑 , and 𝐷𝑑 aims to distinguish features
etween the source and target domains. The supervised classification
oss is calculated as shown in Eq. (18), and the global adversarial
oss for the parameter transferability module is calculated as shown

in Eq. (19).

𝐿𝑐1(𝑠𝑠, 𝑦𝑠) = 1
𝑁𝑠

∑

𝑠𝑚∈𝐷𝐵

𝐿𝐶 𝑟𝑜𝑠𝑠𝐸 (𝐻𝑐 (𝐻𝑓 (𝑠𝑚)), 𝑦𝑚) (18)

𝐿𝑎𝑑 𝑣(𝑠𝑠, 𝑠𝑡) = −1
𝑟

∑

𝑠𝛥∈𝐷
𝐿𝐵 𝐶 𝐸 (𝐷𝑑 (𝐻𝑓 (𝑠𝛥)), 𝑦∗) (19)

where 𝐷 = 𝐷𝐵 ∪ 𝐷𝑡, 𝑠𝑠 and 𝑠𝑡 represent data from the source domain
data and target domains, respectively, and 𝑦𝑠 represents the source
omain labels. The subscript of 𝑠𝛥 can indicate either domain. 𝑦∗
epresents the domain label (𝑦∗ = 1 for the source domain and 𝑦∗ = 0

for the target domain). 𝐿CrossE and 𝐿BCE denote the loss functions for
cross-entropy and binary cross-entropy, respectively. Ablation experi-
ments have shown that while global adversarial alignment improves
transferability to some extent, it does not fully exploit the param-
eter transferability capabilities within the Transformer. To address
more complex rumor detection scenarios, this study introduces fine-
grained local adversarial alignment. During feature transfer, not all
encoded positions have transferable and discriminable features. The
Transformer’s sequential feature transmission naturally provides finer-
grained features. Thus, incorporating fine-grained local adversarial
alignment allows a focus on both transferable and discriminable fea-
tures. To solve the above issues, a PTM is further proposed, detailed in

4.4.
Section



S. Chen et al. Expert Systems With Applications 261 (2025) 125487 
Fig. 3. Framework of the PTM.
4.4. Transferability feature module

This section analyzes the implementation of parameter-transferable
features within the attention module, driving the Transformer to focus
on transferable and discriminable features. To study the domain adap-
tation capabilities of the Transformer, we train our backbone network
on labeled data from source domain and partially unlabeled data from
the target domain. We validate the transferability performance using
results on target data obtained from the detection of rumors. The
detailed framework of the PTM is shown in Fig. 3.

The module primarily focuses on capturing transferable and seman-
tically significant features. PTM leverages the intrinsic attention mech-
anism and sequential feature transmission advantages of the Trans-
former. Since tokens in the input text are treated as local features with
fine-grained representations, the module can capture various aspects
of features. Tokens in the input text have different semantic impor-
tance and transferability. The PTM module assigns varying weights
to these tokens to guide the learned text representation, namely the
output state of the class token, towards transferable and discriminable
tokens. Although self-attention weights in the Transformer can serve
as discriminative weights, a challenge arises as the transferability of
each token is not inherently available. To address this issue, inspired
by the ideas in Pei et al. (2018) and Wang, Li et al. (2019), we introduce
a token-level domain discriminator 𝐷𝑡𝑙 to align cross-domain local
features within the PTM module. The local adversarial loss calculation
for the parameter transferability module is shown in Eq. (20).

𝐿𝑡𝑜𝑘(𝑠𝑠, 𝑠𝑡) = − 1
𝑟𝑛

∑

𝑛
∑

𝐿𝑏𝑐 𝑒(𝐷𝑡𝑙(𝐻𝑓 (𝑠𝛥𝑁 )), 𝑦∗𝑁 ) (20)

𝑠𝛥∈𝐷𝑁=1

7 
where 𝑛 represents the number of tokens, and 𝐷𝑡𝑙(∙) denotes the prob-
ability that the local region belongs to the source domain. During
adversarial learning, 𝐷𝑡𝑙 assigns a label of 1 to source domain tokens
and a label of 0 to target domain tokens. Essentially, after 𝐻𝑓 learns
domain-invariant features to deceive 𝐷𝑡𝑙 (for example, if 𝐷𝑡𝑙 is around
0.5, the token is easily deceived, indicating stronger transferability
between domains and thus requiring better transferability assignment).
Therefore, this study uses the standard entropy function 𝐺(∙) to mea-
sure transferability, replacing 𝐺(∙) with 𝐸 𝑛𝑡𝑟𝑜𝑝𝑦 in Fig. 3, and using
𝐺(𝐷𝑡𝑙(𝐻𝑓 (𝑠𝛥𝑁 ))) ∈ [0, 1] to evaluate the transferability of the 𝑁th token
of the 𝛥th text.

By transforming the traditional multi-head attention mechanism
into a transferable multi-head attention mechanism (T-MultiHead),
we can inject learned transferable features into the class token at-
tention weights. The T-MultiHead is built on the transferable atten-
tion mechanism (T-Attention), with the specific calculation shown
in Eq. (21).

𝑇 − 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥
(

𝑄𝑘𝑇
√

𝑑𝑘

)

⊙ [1;𝐺(𝑘𝑡𝑜𝑘𝑒𝑛)]𝑣 (21)

Here, 𝑄 is the class token query, In the earlier sections of this
paper, q refers to the query matrix, which differs from Q here, where
it represents the class token query. 𝑘token is the token key, ⊙ is
the Hadamard product, and [; ] indicates concatenation. Therefore,
softmax

(

𝑄𝑘𝑇
√

𝑑𝑘

)

can represent the semantic importance of each token,
while [1;𝐺(𝑘 )] signifies each token’s transferability. To jointly
token
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capture transferability at various positions, the T-MultiHead calcula-
ion process is redefined as shown in Eq. (22), with ℎ𝑒𝑎𝑑𝑖 redefined
n Eq. (23).

𝑇 −𝑀 𝑢𝑙 𝑡𝑖𝐻 𝑒𝑎𝑑(𝑄, 𝑘, 𝑣) = 𝐶 𝑜𝑛𝑐 𝑎𝑡(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2,… , ℎ𝑒𝑎𝑑𝑖,… , ℎ𝑒𝑎𝑑𝑚)𝑊 𝑜

(22)

ℎ𝑒𝑎𝑑𝑖 = 𝑇 − 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊 𝑄𝑚
𝑖 , 𝑘𝑊 𝐾 𝑚

𝑖 , 𝑣𝑊 𝑉 𝑚
𝑖 ) (23)

Applying the PTM in the last layer of the Transformer enables it
to focus on fine-grained, transferable features essential for our classifi-
cation task. The final PTM calculation result is presented in Eq. (24),
where 𝐿𝑁 stands for layer normalization, and 𝑁 indicates the total
umber of Transformer layers.

𝑧𝑁 = 𝑀 𝐿𝑃 (𝐿𝑁(𝑇 −𝑀 𝑢𝑙 𝑡𝑖𝐻 𝑒𝑎𝑑(𝐿𝑁(𝑧𝑁−1)) + 𝑧𝑁−1))

+ 𝑇 −𝑀 𝑢𝑙 𝑡𝑖𝐻 𝑒𝑎𝑑(𝐿𝑁(𝑧𝑁−1)) + 𝑧𝑁−1 (24)

After the above analysis, the target loss function of the proposed
model is shown in Eq. (25),

𝐿𝑜𝑠𝑠𝑔 𝑙 𝑜𝑏𝑎𝑙 = 𝐿𝑐1(𝑠𝑠, 𝑦𝑠) + 𝛽 𝐿𝑎𝑑 𝑣(𝑠𝑠, 𝑠𝑡) + 𝜆𝐿𝑡𝑜𝑘(𝑠𝑠, 𝑠𝑡) (25)

where the hyperparameters 𝛽 and 𝜆 control the importance of the
corresponding losses. The overall process of the model is provided in
pseudocode 1.

Algorithm 1 Overall precedure of ADA-UDA

Input: Source domain, 𝐷𝐵
{(

𝑠𝑐 , 𝑦𝑐
)}𝑁𝑠

𝑐=1;
Target domain, 𝐷𝑡

{(

𝑠𝑗
)}𝑟

𝑁𝑠+1
;

Dimension of a query and key vector, 𝑑𝑘;
Sublayer and embedding layer dimension, 𝑑;

Output: classifier
1: 𝑠𝑐 , 𝑦𝑐 , 𝑠𝑗 = 𝑝𝑟𝑒𝑝𝑟𝑜𝑐 𝑒𝑠𝑠(𝑆)
2: for each post 𝑠𝑙 in 𝑆 do
3: 𝑚𝑓 = BERT + BiLSTM encoder 𝑠𝑙;
4: obtain 𝑚𝑓 of 𝑠𝑐 , 𝑚𝑓 of 𝑠𝑗 ;
5: end for
6: for 𝑐 ∈ 1, 2, 3,… , 𝑁𝑠,𝑗 ∈ 𝑁𝑠 + 1,… , 𝑟 do
7: assign 𝑚𝑓 of 𝑠𝑐 to 𝐷𝐵 ,assign 𝑚𝑓 of 𝑠𝑗 to 𝐷𝑡;
8: end for
9: input 𝑚𝑓 from 𝐷𝐵 and 𝐷𝑡 into the 𝑁 − 1 layer of the transformer;

10: learn and extract features;
11: input to the PTM module;
12: use the 𝐻𝑓 encoder to learn the features;
13: perform local adversarial alignment using the local domain

discriminator 𝐷𝑡𝑙 ;
14: 𝐷𝑡𝑙 assigns the label of 1 to tokens in 𝐷𝐵 and the label of 0 to tokens

in 𝐷𝑡;
15: evaluate each token’s transferability using the standard information

entropy function 𝐺(⋅);
16: PTM ←←← Equation (24);
17: perform global adversarial domain alignment using the 𝐷𝑑 global

domain discriminator;
18: return classifier;

5. Experimental evaluation

This section details the datasets used in our experiments, the base-
ine techniques applied, and the parameter settings for the experiments.
ollowing this, we analyze the results of the rumor detection exper-
ments and assess the effectiveness of the modules through ablation
xperiments.
8 
Table 1
The statistic of real-world datasets.

DatasetCN DatasetEN

HD ED All HD ED All

RumorNum 4321 321 4642 2574 222 2796
NonRumorNum 4628 420 5048 3079 374 3453
Min.Length 41 30 30 35 16 16
Max.Length 275 167 275 143 129 143
Ave.Length 177 156 175 137 119 135

5.1. Data description

We assessed the ADA-UDA model’s performance in rumor detection
using datasets in both Chinese and English. The specific data statistics
re presented in Table 1. During data preprocessing, we applied several
uality control procedures to guarantee the integrity and reliability of

the data. These included the removal of replies with fewer than three
ords and user replies containing more than 70% emoji. Additionally,
e deleted a significant number of irrelevant posts.

For testing rumor detection on Chinese datasets, we employed
the rumor dataset provided by Song et al. (2019) as our historical
umor dataset. In addition, we collected historical rumor data from
he Sina Weibo False Information Reporting Platform to expand the
ataset. The dataset CHECKED, provided by Yang et al. (2021), was

used to construct the data set of rumors pertaining to the 2019 novel
coronavirus (COVID-19), also known as the 2019-nCOV or simply the
novel coronavirus. Additionally, rumors officially recognized by the
ina Community Management Center were collected to build the corpus

of COVID-19 rumors.
For testing rumor detection on English datasets, we used the pub-

icly available Twitter dataset and parts of the FakeNewsNet dataset.
The Twitter dataset primarily comprises samples from Twitter15 and
Twitter16, supplemented with rumor events from the Snopes platform
o build the historical rumor dataset. Additionally, we constructed the
OVID-19 rumor dataset using data from Cheng et al. (2021), which

ncludes news web pages and Twitter data, with all rumors verified by
act-checking websites.

5.2. Experimental setup

5.2.1. Baseline methods
To more effectively assess the performance of our UDA method,

we compared it against the following baseline methods. Each baseline
experiment involved training on the source domain and evaluation on
he target domain:

(1) FastText (Joulin et al., 2017): A text classification model that
uses the bag-of-words method to vectorize text while considering
word order between sentences. N-grams are used to vectorize
adjacent words as auxiliary features to improve classification
accuracy.

(2) TextCNN (Kim, 2014): A convolutional neural network model
for text classification that effectively extracts local features and
contextual information through convolution and pooling opera-
tions, enhancing classification performance.

(3) TextRNN (Liu et al., 2016): A text classification method using
a recurrent neural network (RNN). After embedding the text
samples to obtain word vector representations, the RNN model
is used for modeling, and the output is mapped to the category
space through a fully connected layer.

(4) Att_TextRNN (Zhou et al., 2016): A text classification method
combining BiLSTM and attention mechanisms. It models text se-
quences through BiLSTM to capture long-distance dependencies
and contextual information, and uses the attention mechanism
to learn the importance weights of different parts of the text,
focusing on information that contributes to the classification
task, thus enhancing classification performance.

https://github.com/cyang03/CHECKED
https://www.dropbox.com/s/7ewzdrbelpmrnxu/rumdetect2017.zip?dl=0
https://github.com/KaiDMML/FakeNewsNet
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(5) Transformer (Vaswani et al., 2017): The Transformer model
uses self-attention mechanisms to directly focus on different
positions in the input sequence, capturing long-distance de-
pendencies more effectively. It significantly improves parallel
computing capabilities, training, and inference speed, and has
achieved outstanding results in various NLP tasks.

(6) KDCN (Sun et al., 2023): A knowledge-guided dual consistency
network for multimodal rumor detection, combining visual and
textual information with entity information from external knowl-
edge bases to achieve efficient performance in rumor detection
tasks.

(7) EBGCN (Wei et al., 2021): A reinforced Bayesian graph con-
volutional network model for rumor detection incorporates an
edge enhancement mechanism and Bayesian inference to model
propagation uncertainty, thus boosting the performance and
reliability of rumor detection.

Furthermore, an examination was conducted on three variants of
ADA-UDA, with the objective of evaluating the effectiveness of the
arious model components.

(1) ADA-UDA-a: In the text representation part, ADA-UDA-a ignores
the BERT embedding module and uses only BiLSTM to model
variable-length sequences for rumor detection.

(2) ADA-UDA-b: In the feature transfer part, ADA-UDA-b ignores the
PTM module and uses only the multi-head attention within the
Transformer for feature transfer to complete rumor detection.

(3) ADA-UDA-c: In the global adversarial analysis part, ADA-UDA-c
ignores global adversarial alignment to complete rumor detec-
tion.

5.2.2. Evaluation metrics
In this study, four metrics are used to evaluate the comparative

methods: Accuracy, Precision, Recall, and Macro F1. Macro F1 is a
balanced measure that addresses the issue of label imbalance, which
is a common challenge in text classification.

5.2.3. Parameter settings
This section outlines the parameter settings involved in the ADA-

UDA model. We implemented the ADA-UDA model using Python 3.8
and the Pytorch 1.11.0 deep learning framework. The parameters are
s follows: 𝐷 𝑟𝑜𝑝𝑜𝑢𝑡 = 0.1, 𝑇 𝑟𝑎𝑖𝑛_𝑏𝑎𝑡𝑐 ℎ_𝑠𝑖𝑧𝑒 = 500, 𝐸 𝑣𝑎𝑙_𝑏𝑎𝑡𝑐 ℎ_𝑠𝑖𝑧𝑒 = 64,
 𝑒𝑠𝑡_𝑏𝑎𝑡𝑐 ℎ_𝑠𝑖𝑧𝑒 = 64, 𝑁 𝑢𝑚_𝑡𝑟𝑎𝑖𝑛_𝑒𝑝𝑜𝑐 ℎ𝑠 = 80, 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 3𝑒−6,
nd 𝑀 𝑎𝑥_𝑠𝑒𝑞_𝑙 𝑒𝑛𝑔 𝑡ℎ = 140.

The experimental setup outlines the datasets, baseline methods,
evaluation metrics, and parameter settings used to validate the pro-
posed model. It provides the necessary details to replicate the ex-
periments and understand the comparison with other state-of-the-art
methods.

5.3. Experimental results

5.3.1. Overall performance
Tables 2 and 3 show the Accuracy, Precision, Recall, and Macro

F1 scores of the proposed model compared to seven deep learning
models on both the Chinese dataset (DatasetCN) and the English dataset
(DatasetEN). Overall, our proposed ADA-UDA method shows superior
erformance compared to baseline methods on both datasets. The
esults demonstrate that our model, integrating UDA and adversarial
omain alignment, enhances rumor detection performance. Bold text
ighlights the best results for each evaluation metric.

Experiments showed that the ADA-UDA method achieved an ac-
curacy of 81.67% on the Chinese dataset and 80.79% on the English
dataset. Compared to the seven existing models, ADA-UDA significantly
improved rumor detection performance by 7.11% to 29.82%. This
improvement stems from the ADA-UDA model’s effective extraction of
9 
shared semantic features by combining a transferable attention mod-
ule with extensive historical rumor data and limited trending rumor
data. Among the other models, EBGCN performed best due to its
edge-enhanced mechanism, which captures local relationships between
different words more effectively. In contrast, Transformer had the worst
performance, with accuracies of 51.85% on DatasetCN and 53.50%
on DatasetEN. This result indicates that Transformer have difficulty
capturing process dependencies on small-scale datasets. TextCNN out-
performed TextRNN, achieving classification accuracies of 59.54% and
55.02% on the two datasets, respectively. TextCNN’s ability to capture
long-range dependencies through multiple convolutional layers gives it
an advantage over RNN, which suffers from gradient vanishing issues
and lacks the capability to capture complex features. Att_TextRNN im-
proved performance by effectively capturing long-range dependencies
with LSTM and using an attention mechanism to identify the most
relevant parts of the input sequence for the task, achieving accuracies
of 71.51% and 67.52% on DatasetCN and DatasetEN, respectively.
KDCN, employing dual consistency learning and external knowledge
guidance to extract complex features, achieved classification accuracies
of 72.64% on DatasetCN and 71.32% on DatasetEN.

5.3.2. Ablation experiments
Fig. 4 shows the results of ADA-UDA and its variants in terms of

Accuracy, Precision, Recall, and Macro F1.
We first evaluated the performance of ADA-UDA and ADA-UDA-a on

oth datasets. The variant ADA-UDA-a achieved accuracies of 79.29%
n DatasetCN and 78.52% on DatasetEN, which are 2.38% and 2.27%
ower than those of ADA-UDA, respectively. The experimental results
ndicate that BERT’s bidirectional structure captures the left and right
ontext at each time step, providing a more comprehensive semantic
epresentation and improving rumor detection accuracy.

Subsequently, we assessed the performance of ADA-UDA and ADA-
DA-b. ADA-UDA outperformed ADA-UDA-b by 5.15% on DatasetCN
nd 5.47% on DatasetEN, demonstrating the superior performance
f the PTM module. The PTM module effectively gathers both local
ransferable features and discriminable features, enabling finer-grained
omain alignment and enhancing rumor detection capability.

Finally, we conducted a comparative analysis of the performance
of ADA-UDA and ADA-UDA-c. The results demonstrated that ADA-
UDA outperformed ADA-UDA-c by 3.75% on DatasetCN and 4.11% on

atasetEN. The incorporation of the global adversarial component into
he ADA-UDA model resulted in the creation of an invariant feature
pace, leading to enhanced performance.

5.3.3. The impact of hyperparameters
We tested the sensitivity of ADA-UDA to the hyperparameters 𝛽

nd 𝜆 on two sets of cross-domain datasets. As shown in Fig. 5, 𝛽
nd 𝜆 range between (0,1) and are grouped in our experiments. In

Fig. 5(a), the horizontal axis represents a group of 𝛽 values from top
to bottom, with 𝜆 fixed at its optimal value. In Fig. 5(b), the horizontal
axis represents a group of 𝜆 values from top to bottom, with 𝛽 fixed at
its optimal value. ADA-UDA shows different sensitivities on different
datasets. For instance, when 𝜆 is fixed at its optimal value, the model
achieves the best performance on the Chinese dataset at 𝛽 = 0.6 and
on the English dataset at 𝛽 = 0.4. When 𝛽 is fixed at its optimal value,
the model reaches the best performance on both Chinese and English
datasets at 𝜆 = 0.4.

5.3.4. Impact of epoch changes on training and validation accuracy
We analyzed the impact of epoch variations on training and valida-

tion accuracy across two cross-domain datasets. As shown in Fig. 6,
with epoch ∈ [1, 100), the Chinese dataset Fig. 6(a) demonstrates
that accuracy increases with the number of epochs during training,
stabilizing around epoch 65. During validation, accuracy also improves
with more epochs, peaking at epoch 69. Similarly, for the English
dataset Fig. 6(b), training accuracy rises with more epochs, stabilizing
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Table 2
Comprision with baseline in DatasetCN.

Method Accuracy Precision Recall Macro F1

Transformer (Vaswani et al., 2017) 0.5185 0.5508 0.5736 0.4935
TextRNN (Liu et al., 2016) 0.5786 0.5187 0.6202 0.4218
TextCNN (Kim, 2014) 0.5954 0.5934 0.6284 0.5467
FastText (Joulin et al., 2017) 0.6211 0.6339 0.6358 0.6071
Att_TextRNN (Zhou et al., 2016) 0.7151 0.6979 0.7395 0.7006
KDCN (Sun et al., 2023) 0.7264 0.7336 0.7378 0.7285
EBGCN (Wei et al., 2021) 0.7456 0.7579 0.7581 0.7331
ADA-UDA 0.8167 0.8092 0.8132 0.8146
Table 3
Comprision with baseline in DatasetEN.

Method Accuracy Precision Recall Macro F1

Transformer (Vaswani et al., 2017) 0.5350 0.6195 0.5850 0.5219
TextRNN (Liu et al., 2016) 0.5500 0.5917 0.6323 0.4451
TextCNN (Kim, 2014) 0.5502 0.6230 0.6331 0.5293
FastText (Joulin et al., 2017) 0.6250 0.6216 0.6583 0.4823
Att_TextRNN (Zhou et al., 2016) 0.6752 0.6614 0.7086 0.6693
KDCN (Sun et al., 2023) 0.7132 0.7328 0.7196 0.7035
EBGCN (Wei et al., 2021) 0.7352 0.7438 0.7449 0.7326
ADA-UDA 0.8079 0.7983 0.8017 0.8031
Fig. 4. Performance analysis of ADA-UDA and its variants on two datasets.
Fig. 5. The Impact of hyperparameters 𝛽 and 𝜆 on ADA-UDA performance.
10 
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Fig. 6. Impact of epoch changes on training and validation accuracy.
t

around epoch 69. Validation accuracy reaches its optimal level at epoch
5.

This section presents the results of the experiments, comparing the
performance of ADA-UDA with existing models. It includes detailed
iscussions of the ablation studies, the impact of hyperparameters, and
he influence of the number of epochs on model performance.

6. Conclusion and future work

This study addresses the critical issue of rumor detection during
epidemic outbreaks, where the rapid spread of misinformation can
significantly disrupt social order. The development of high-precision
detection methods is crucial for effectively preventing and controlling
the dissemination of rumors. Given the limited availability of early-
stage trending topic data and the uncertainty of their veracity, it
is imperative to leverage traditional historical data to identify the
truthfulness of such topics. In order to achieve this, we propose the
ADA-UDA model for the detection of rumors, which employs both
local and global adversarial networks in order to identify early-stage
epidemic rumor posts.

The experimental results demonstrate the following key findings:

(1) The proposed ADA-UDA model significantly enhances rumor
detection performance, particularly in scenarios with limited
trending data lacking relevant labels. The model outperforms
several state-of-the-art models in terms of Accuracy, Precision,
Recall, and Macro F1. Specifically, the model achieved the best
performance with an Accuracy of 81.67%, Precision of 80.92%,
Recall of 81.32%, and Macro F1 of 81.46% on the Chinese
dataset (DatasetCN). This represents an improvement of ap-
proximately 9.59% in Accuracy, 7.11% in Precision, 7.36% in
Recall, and 8.15% in Macro F1 compared to the best-performing
baseline models. On the English dataset (DatasetEN), the model
reached Accuracy of 80.79%, Precision of 79.83%, Recall of
80.17%, and Macro F1 of 80.31%, showing improvements of
9.44% in Accuracy, 7.40% in Precision, 7.31% in Recall, and
8.04% in Macro F1. These substantial improvements across all
metrics validate the model’s effectiveness and robustness.

(2) The local adversarial alignment component of the model
markedly improves rumor detection performance by effectively
identifying and extracting local features, which are crucial for
distinguishing between truthful and deceptive information.

(3) The global adversarial component employs domain discrimina-
tors to form invariant feature spaces, thereby achieving better
stability and generalization across different domains.

During epidemic outbreaks, the proliferation of rumor posts among
vast amounts of information can cause significant public anxiety. The
proposed ADA-UDA model offers a robust solution for detecting rumors
on OSNs such as Sina Weibo. This study not only provides a practical
tool for rumor detection but also sets a new research direction for future
 a
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work in this field. Future research could explore the integration of
additional data sources and the refinement of adversarial components
to further enhance detection accuracy and adaptability.
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Appendix

A.1. Summary of related works

The method of related works is summarized in Table A.4

A.2. Comparison tables

To maintain the flow and clarity of the main text, we have placed
three key tables in the appendix for further reference. These tables
provide additional detailed experimental results. Table A.5 presents
he results of the ablation experiments. Table A.6 shows the impact of

key hyperparameters(𝛼 and 𝛽) on the model’s performance. Table A.7
displays the evolution of training and validation accuracy on DatasetCN
nd DatasetEN across different epochs.
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Table A.4
Summary of related work methods.

Methods Strengths Weaknesses

RNN-RD (Ma et al.,
2016)

Accurately capture temporal sequences and detect
dynamic features

Demands extensive data for training

Call attention to
rumors (Chen et al.,
2018)

Employs a soft attention mechanism to highlight
the temporal hidden representations across
consecutive posts

Depends on the integrity of the temporal
data

CHRD-T (Khattar
et al., 2019)

Generates text-based and emotion-based
embeddings at the character level

Unable to fully extract the emotional
features of some rumors

Mvae (Jin et al.,
2017)

Discovers cross-modal associations by learning
shared representations between text and images

Fails to incorporate social context or
event-specific information

att-RNN (Wang
et al., 2018)

Proposes an end-to-end attention-based RNN
leveraging multimodal content

The feature alignment between text and
images is not clear

Eann (Fang et al.,
2019)

Integrated an event discriminator and a fake news
detector

The fusion of text and image features is
merely a simple concatenation

MKEMN (Lan et al.,
2018)

Utilizing an event memory network to measure the
differences between various events has improved
performance and generalization in detecting new
events

Relies on external knowledge graphs to
supplement the background knowledge of
the text

MSV-RNN (Khan
et al., 2024)

Utilizes a hierarchical attention mechanism to
detect content that is rich and textually distinct

High computational overhead

Rpf-gcns (Rao et al.,
2021)

Bidirectional graph convolutional networks provide
a more comprehensive understanding of rumor
propagation structures

High computational complexity

STANKER (Ma
et al., 2017)

The integration of BERT helps mitigate the
interference from noisy information

Complex preprocessing

PSKL (Ma et al.,
2018)

Using propagation trees to represent rumor spread
paths captures the dynamic characteristics of
rumor propagation more effectively

Depends on the quality of the propagation
tree

TRNN (Lu & Li,
2020)

Leverages a tree-structured RNN to effectively
capture the hierarchical relationships within rumor
propagation

Depends on the quality of the data

GCAN (Fang et al.,
2015)

Integrates graph convolutional networks with
co-attention mechanisms to model latent user
interactions, exhibiting robust performance in
processing short texts

Depends on the accuracy of the graph
structure

Word-of-mouth
understanding (Tu
et al., 2021)

Provides a visualization of content and opinions
associated with event entities

The emotional interpretation of some
images may be biased

Rumor2vec (Lu
et al., 2022)

Employs a joint graph approach to mitigate the
problem of feature sparsity

Depends on the quality of the preprocessing

Sifter (Liu et al.,
2023)

Introducing external subjective information
effectively addresses the issue of domain shift

Both training and inference demand
substantial computational resources

DAM-GCN (Alzanin
& Azmi, 2019)

By extracting noise-resistant features, the model is
better equipped to manage complex relationships
within propagation graphs

Depends on the quality of the propagation
graph

SSUM (Ran & Jia,
2023)

Combines semi-supervised and unsupervised
expectation–maximization algorithms

Depends on the choice of initial parameters

UCD-CLCA (Guo, Yu
et al., 2021)

Incorporates cross-domain contrastive learning and
cross-attention mechanisms

Depends on the accuracy and quality of the
generated pseudo-labels

EAL-FDS (Fang
et al., 2023)

Integrates generative adversarial networks with
graph embeddings

The training process lacks stability

PTVAE (Zhang
et al., 2021)

Incorporates sentiment analysis and propagation
features

Demands substantial computational
resources

MDDA (Yang et al.,
2019)

Separating the content and rumor-specific features
of multimedia posts solves the issue of highly
entangled event content

The discriminative power of the visual style
space is lower than that of the textual style
space

GCLF (Zhang, Wang
et al., 2019)

Combines Medicine Graph, GCN, and contrastive
learning

Limited by the Medicine Graph

UFND (Morone
et al., 2016)

Not rely on pre-labeled datasets Performs poorly in handling complex
textual content

INCC (Wang et al.,
2020)

Employs the improved network constraint
coefficient to quantify local node advantages while
maintaining global connectivity through tenacity

The parameter selection process is complex
12 
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Table A.5
Ablation experiments: performance comparison for different methods.

Methods CN EN

Accuracy Precision Recall Macro F1 Accuracy Precision Recall Macro F1

ADA-UDA-a 0.7929 0.7936 0.7982 0.7995 0.7852 0.7849 0.7889 0.7903
ADA-UDA-b 0.7652 0.7683 0.7689 0.7734 0.7532 0.7618 0.7633 0.7647
ADA-UDA-c 0.7792 0.7751 0.7732 0.7736 0.7668 0.7627 0.7679 0.7705
ADA-UDA 0.8167 0.8092 0.8132 0.8146 0.8079 0.7983 0.8017 0.8031
Table A.6
Accuracy on DatasetCN and DatasetEN for different values of 𝛽 and 𝛼.

Value Accuracy for 𝛽 Accuracy for 𝛼

DatasetCN DatasetEN DatasetCN DatasetEN

0.9 0.7873 0.7644 0.7856 0.7668
0.8 0.7672 0.7587 0.7715 0.7527
0.7 0.7631 0.7698 0.7732 0.7629
0.6 0.8167 0.7783 0.8013 0.7738
0.5 0.7993 0.7924 0.7943 0.7807
0.4 0.7821 0.8079 0.8167 0.8079
0.3 0.8012 0.7806 0.8057 0.7536
0.2 0.7725 0.7883 0.7425 0.7775
0.1 0.7826 0.7593 0.7629 0.7801
Table A.7
Training and validation accuracy across epochs for DatasetCN and DatasetEN.

Epoch DatasetCN DatasetEN

Training accuracy Validation accuracy Training accuracy Validation accuracy

1 0.4213 0.4345 0.4415 0.4347
5 0.6214 0.5598 0.5534 0.5611
9 0.5553 0.5324 0.5759 0.5494
13 0.6032 0.5806 0.6332 0.5716
17 0.6127 0.5893 0.5327 0.5293
21 0.7223 0.6133 0.6524 0.5932
25 0.7772 0.6024 0.7377 0.6067
29 0.8163 0.6311 0.7463 0.6019
33 0.8421 0.6425 0.7724 0.6125
37 0.8575 0.6534 0.8074 0.6431
41 0.8711 0.6621 0.8312 0.6322
45 0.8776 0.6743 0.8788 0.6683
49 0.8833 0.6931 0.8895 0.7041
53 0.9272 0.7011 0.9324 0.7091
57 0.9567 0.7411 0.9497 0.7517
61 0.9832 0.7738 0.9874 0.7758
65 0.9965 0.7952 0.9975 0.7812
69 1.0000 0.8305 0.9992 0.7965
73 1.0000 0.8047 1.0000 0.8077
77 1.0000 0.8053 1.0000 0.8022
81 1.0000 0.8101 1.0000 0.8007
85 1.0000 0.8079 1.0000 0.8031
89 1.0000 0.7998 1.0000 0.7997
93 1.0000 0.7854 1.0000 0.7898
97 1.0000 0.8018 1.0000 0.7944
99 1.0000 0.7997 1.0000 0.7944
a
i

A.3. N-gram analysis

We provide detailed N-gram plots to further analyze the perfor-
ance of different models on both the DatasetCN and DatasetEN, as

shown in Fig. A.7. These plots illustrate the classification accuracy
across various N-gram settings, ranging from 1-gram to 5-gram. The vi-
ualizations allow for a clear comparison of how different models—such
s Transformer, TextRNN, TextCNN, FastText, AttTextRNN, KDCN,

EBGCN, and ADA-UDA—perform when classifying verified and unver-
fied false information. The results demonstrate that the ADA-UDA

model consistently achieves superior accuracy across different N-gram
settings, highlighting its effectiveness in rumor detection tasks.

A.4. Main notations used in this paper

Main notations as shown in Table A.8
13 
A.5. Accuracy Comparison at Different Percentages of Training Data

Accuracy Comparison at Different Percentages of Training Data as
shown in Table A.9.

A.6. Performance of Large Language Models

Performance of Large Language Models as shown in Table A.10.

A.7. Performance comparison with different models

The newly added comparison models from 2023 and 2024, which
ddress data imbalance and involve attention mechanisms, are shown
n Table A.11.



S. Chen et al. Expert Systems With Applications 261 (2025) 125487 
Fig. A.7. N-gram analysis of classification performance across models on DatasetCN and DatasetEN.
Table A.8
Main notations used in this paper.

Notation Description

𝑆 Information of the entire post sample
𝑠𝑙 Information of the 𝑙th post sample
𝑤𝑖 𝑖th character in a post
𝑚𝑓 𝑓 -dimensional matrix–vector
𝐹 Prediction function
𝐵 Number of classes contained in an episode
𝐶 Number of labeled instances in each class
𝐸 Number of unlabeled instances in each class
𝐷𝐵 Source domain space
𝐷𝑡 Target domain space
𝑠𝑐 Input source domain sample
𝑠𝑗 Input target domain sample
𝑁𝑠 Number of posts in the source domain
𝑟 Total number of posts
𝑦𝑐 Output classification target
𝑥𝑖 Vectorized representation of the 𝑖th character in a post
𝑞 Query matrix–vector
𝑘 Key matrix–vector
𝑣 Value matrix–vector
𝑑𝑘 Dimension of a query and key vector
𝑊𝑖 Weight matrices corresponding to the 𝑖th header
𝑊 Weight
𝑏 Bias value
𝐶𝑡 Storage cell state of BiLSTM
𝐶𝑡𝑧 Temporary cell state of BiLSTM
ℎ𝑡 Hidden state
𝑓𝑡 Forget gate
𝑚𝑡 Memory gate
𝑂𝑡 Output gate
𝛿 Activation function
𝐻𝑇 𝑇 hidden states of the whole BiLSTM
𝑦∗ Domain label
𝐻 𝐷 Historical rumor dataset
𝐸 𝐷 Epidemic rumor data
𝑠𝑠 Data from the source domain
𝑠𝑡 Data from the target domain
𝐻𝑐 Representation classifier
𝐻𝑓 Feature encoder
𝐷𝑑 Domain discriminator
𝐷𝑡𝑙 Local feature domain discriminator
𝑄 Query matrix vector of class token
𝐺(⋅) Standard information entropy function
𝑛 Number of tokens
Table A.9
Accuracy comparison at different percentages of training data.

Our model Accuracy (50%) Accuracy (60%) Accuracy (70%) Accuracy (80%) Accuracy (90%) Accuracy (100%)

ADA-UDA (DatasetCN) 0.7386 0.7458 0.7623 0.7841 0.8014 0.8167
ADA-UDA (DatasetEN) 0.7249 0.7391 0.7604 0.7739 0.7903 0.8079
14 
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Table A.10
Performance of large language models on DatasetCN and DatasetEN.

Method DatasetCN DatasetEN

Accuracy Precision Recall MacroF1 Accuracy Precision Recall MacroF1

LLaMA-13B 0.5339 0.5017 0.5142 0.4936 0.5548 0.5219 0.5425 0.5023
Claude 0.5631 0.5509 0.5240 0.5326 0.5513 0.5460 0.5311 0.5460
ChatGPT 0.6204 0.6392 0.6317 0.6228 0.6437 0.6345 0.6338 0.6182
Table A.11
Performance comparison for different methods on DatasetCN and DatasetEN.

Method DatasetCN DatasetEN

Accuracy Precision Recall MacroF1 Accuracy Precision Recall MacroF1

PN+CNN (Wang et al., 2023) 0.6822 0.6617 0.6724 0.6542 0.6634 0.6734 0.6441 0.6215
GNN+PHEME (Bilal et al., 2024) 0.7318 0.7409 0.7416 0.7211 0.7201 0.7351 0.7226 0.7130
ADA-UDA 0.8167 0.8092 0.8132 0.8146 0.8079 0.7983 0.8017 0.8031
Data availability

Data are available for download at the following web links. https:
//github.com/oulaxiaoge/ADA-UDA.
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