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An Asymmetric Approach to Three-Way
Approximation of Fuzzy Sets
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Abstract—The three-way approximation of fuzzy sets represents
membership values using a three-valued set {1,m, 0}, where 1
indicates total belongingness, 0 total nonbelongingness, and m an
intermediate state. This approach elevates values of membership
function above a threshold α to 1, reduces those below β to 0,
and assigns the remaining ones to an intermediate value m. A key
challenge lies in determining the thresholds α and β and selecting
the value of m, as existing models often lack analytical solutions and
fail to fully explore the relationship between m and membership
structures. This study introduces an asymmetric three-way approx-
imation model for fuzzy sets, removing the constraint α + β = 1.
Analytical formulas are derived for the thresholds α and β by
minimizing information loss, and the relationship between m and
membership structures is thoroughly examined. An adaptive opti-
mizer is proposed to learn the approximate optimal value of m by
minimizing the information loss. The experimental results show
that information loss decreases initially before increasing as m
grows. Besides, our model achieves the best classification across
most datasets.

Index Terms—Fuzzy set, shadowed set, three-way approxi-
mation, three-way decision.

I. INTRODUCTION

FUZZY sets extend set theory by allowing partial member-
ship, making them helpful in handling uncertainty and im-

precision [1], [2], [3], [4], [5]. This flexibility is advantageous for
representing real-world data where boundaries are often unclear.
However, while fuzzy sets offer greater expressiveness, their
high precision associated with membership values can also hin-
der interpretability and complicate decision-making processes,
as it may be challenging to define appropriate membership
functions and decision thresholds.

Received 25 March 2025; accepted 26 April 2025. Date of publication 30 April
2025; date of current version 3 July 2025. This work was supported in part by the
National Natural Science Foundation of China under Grant 62006172 and Grant
62376198 and in part by the National Key Research and Development Program
of China “Key Special Project on Cyberspace Security Governance” under Grant
2022YFB3104700. Recommended by Associate Editor P. Liu. (Corresponding
author: Duoqian Miao.)

Xuerong Zhao is with the College of Information, Mechanical and Electrical
Engineering, Shanghai Normal University, Shanghai 201418, China (e-mail:
xrzhao@shnu.edu.cn).

Duoqian Miao is with the Department of Computer Science and Technology,
Tongji University, Shanghai 201804, China (e-mail: dqmiao@tongji.edu.cn).

Yiyu Yao is with the Department of Computer Science, University of Regina,
Regina, SK S4S 0A2, Canada (e-mail: yiyu.yao@uregina.ca).

Witold Pedrycz is with the Department of Measurement and Control Sys-
tems, Silesian University of Technology (SUT), 44-100 Gliwice, Poland, also
with the Department of Electrical and Computer Engineering, University of
Alberta, Edmonton, AB T6G 2R3, Canada, and also with the Research Center
of Performance and Productivity Analysis, Istinye University, Istanbul 34396,
Türkiye (e-mail: wpedrycz@ualberta.ca).

Digital Object Identifier 10.1109/TFUZZ.2025.3565700

The three-way approximation of fuzzy sets [6], [7], [8], [9],
[10], [11] was introduced to address challenges in interpretabil-
ity and decision-making associated with high-precision mem-
bership functions. It represents a key application of three-way
decision theory [12], [13], [14], [15], [16] and can be formally
characterized using two distinct approaches: three mutually
exclusive sets and a three-valued set.

A. Three Mutually Exclusive Sets

This approach approximates the fuzzy set using three distinct
regions: the positive, negative, and boundary regions. The pos-
itive region comprises elements with high membership values,
indicating they are essential to the fuzzy set. The negative
region includes elements with low or zero membership values,
signifying they are not part of the set. The boundary region
contains elements with intermediate membership values, whose
membership status is uncertain or ambiguous. This classification
enhances the understanding and interpretation of fuzzy data by
clearly tracing the degrees of membership. One way to define
these three mutually exclusive sets is by employing a pair of cut
sets from fuzzy sets, such as the α-core and β-support [11].

B. Three-Valued Set and Shadowed Set

In this alternative approach, each element of the universe is
assigned one of three values, typically denoted as {0,m,1}.
Here, 0 signifies total nonmembership (indicating the element
is excluded from the set), 1 signifies total membership (indi-
cating the element is included in the set), and m represents an
intermediate value that reflects partial or uncertain membership
(where the element is neither fully included nor fully excluded).
Shadowed sets (SS) are a typical model of three-valued sets
and provide a crucial method for constructing three-valued sets
from fuzzy sets [6], [7]. This framework simplifies the represen-
tation of uncertainty and captures the ambiguity between full
membership and nonmembership. The interpretation of these
three values can be approached from two distinct perspectives:
computational and semantic.

From a computational perspective, these values can be as-
signed specific numerical values to facilitate the model’s calcu-
lation and application. While 0 and 1 are straightforward to
define, determining the intermediate value m is more complex
and presents a significant challenge. The interpretation of the
intermediate value m in three-way approximations of fuzzy sets
varies across different methodologies. One approach represents
this uncertainty using an interval. For instance, Pedrycz [6]
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employed the unit interval [0,1] to capture maximum uncertainty
in SS. Building on this, Zhang et al. [17] introduced the interval
shadowed sets (ISS), where m is defined as the interval [β, α]
( 0 ≤ β < α ≤ 1). Alternatively, m can be a specific real
number between 0 and 1, offering more flexibility. Cattaneo and
Ciucci [18], [19] used 0.5 to represent ambiguous membership
grades, leading to 0.5-shadowed sets (0.5-SS). Recognizing
the limitations of a fixed value like 0.5, Deng and Yao [20]
introduced a mutable constant for m in their mean-value-based
decision-theoretic SS (MVDTSS), which uses the mean of mem-
bership grades that are neither 1 nor 0. Gao et al. [21] refined this
further by defining m as the mean of fuzzy entropy, creating
mean-entropy-based SS (MESS).

From a semantic perspective, these values are assigned mean-
ings carrying certain semantic significance. Yao et al. [10]
proposed a generalized three-valued set with values n, m, and
p to represent negative, indeterminate, and positive instances, re-
spectively, providing greater flexibility in modeling uncertainty.
Later, Yang and Yao [22], [23] used w, g, and b to denote
three distinct membership grades of SS, representing the white,
gray, and black objects of SS.

When developing a three-way approximation model for fuzzy
sets, whether using three mutually exclusive sets or a three-
valued set, computation of the two thresholds α and β is
essential. Elements with membership degrees greater than or
equal to α are classified as belonging to the fuzzy set, while
those with membership degrees less than or equal to β are
excluded. Elements with membership degrees between α and
β fall into an intermediate, uncertain category. Thus, deter-
mining the appropriate thresholds is critical for constructing
an effective three-way approximation model. Typically, three
theoretical frameworks are employed to calculate the threshold:
optimization, decision, and game theory.

C. Optimization Theory

The optimization-based approach determines thresholds by
minimizing or maximizing an objective function, guided by
specific principles [6], [7], [8], [10], [17], [20], [21], [24],
[25]. Yao et al. [10] outlined three key principles: uncertainty
invariance, minimum distance, and least cost. The uncertainty
invariance principle ensures that the inherent uncertainty of the
fuzzy set is preserved during approximation. Pedrycz [6] derived
optimal thresholds by minimizing discrepancies in membership
values during elevation and reduction operations. Later, Tahay-
ori et al. [24] extended this by accounting for the fuzziness
in the shadowed region. Gao et al. [21] introduced a broader
optimization approach using fuzzy entropy as the objective. In
many cases, α and β are calculated under the assumption that
α+ β = 1 to simplify computations. However, this introduces
symmetric constraints in the parameters, reducing the model’s
flexibility. In contrast, the Minimum Distance principle aims
to minimize the distance between the three-way approximation
and the original fuzzy set. Zhou et al. [26] introduced the
minimal distance objective function in constructing three-way
approximations and concluded that this function is continuous
but nonconvex.

D. Decision Theory

The Least Cost principle focuses on minimizing the risks or
costs associated with decision-making, leading to cost-sensitive
methods [9], [27], [28], [29]. This decision-theoretic approach
aims to establish thresholds by evaluating various decision crite-
ria. Deng and Yao [9] introduced a decision-theoretic framework
for three-way approximations of fuzzy sets, where thresholds are
derived based on a loss/cost function. Zhang et al. [27] extended
this model by replacing the fixed value 0.5 with a variable
value to optimize the thresholds α and β across different data
distributions. Ibrahim and William-West [28] further critiqued
the rigidity of using 0 and 1 to represent total nonmembership
and membership in three-valued sets, proposing a more flexible
three-way approximation using a generalized three-valued set
{n,m,p}.

E. Game Theory

The game-theoretic approach leverages strategic interactions
to determine threshold values in three-way approximations.
Zhang and Yao [30], [31] introduced the game-theoretic SS
(GTSS), which computes thresholds by modeling the interplay
between elevation and reduction errors as a game, iteratively
adjusting threshold values to balance these errors. Zhang et
al. [32] extended this approach by incorporating fuzzy entropy
into the error characterization, resulting in the fuzzy-entropy-
based GTSS (FeGTSS). Gao et al. [33] argued that existing SS
rely on a single principle and lack a multiprinciple perspective.
As a result, they proposed the UC-GTSS which integrates game
analysis between uncertainty and decision cost.

In addition to research on modeling of three-way approxi-
mations of fuzzy sets, there is extensive theoretical and applied
work in this area [18], [19], [34], [35], [36], [37], [38], [39],
[40], [41], [42]. Cattaneo and Ciucci [18], [19] investigated the
algebraic structures of 0.5-SS. Zhang et al. [43] extended this
by studying three-way approximations of L-fuzzy sets, treating
the three values as white, grey, and black memberships. At the
same time, the three-way approximation of fuzzy sets has been
widely applied in fields such as medicine [44], biology [45], and
computer vision [39], [46] to achieve various downstream tasks,
including classification [46], [47], [48], clustering [38], [40],
[45], [49], [50], [51], [52], image retrieval [39], recommender
systems [42], group decision-making [41], and more.

Although research on three-way approximations of fuzzy sets
is extensive and encompasses a wide array of methodologies,
two fundamental issues continue to pose challenges in the con-
struction of these models.

1) In optimization-based approaches, parameters α and β
are often assumed to satisfy α+ β = 1, simplifying
computation but imposing symmetry. This assumption
limits the model’s flexibility in representing real-world
complexities, where asymmetric configurations are more
appropriate. For example, in medical diagnosis systems,
the threshold for accepting a hypothesis (e.g., disease
presence) is typically higher than for rejection, resulting in
values like α = 0.85 and β = 0.1, violating the symmetry
assumption. Such configurations are common in decision
risk control and cost-sensitive classification.
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2) There is a lack of comprehensive exploration regarding
how different values of m interact with variations in
uncertainty and their corresponding effects on three-way
approximation results. Understanding this relationship is
crucial, as it can significantly enhance the model’s ro-
bustness and capacity to accommodate varying degrees
of uncertainty across different contexts.

To address these challenges, this article introduces an asym-
metric three-way approximation model that departs from the
conventional requirement that α+ β = 1. This flexibility al-
lows for a more comprehensive representation of uncertainties
inherent in decision-making. Additionally, we provide analyt-
ical expressions for calculating the optimal thresholds α and
β, facilitating easier implementation of the model in practical
applications. Moreover, the article delves into the relationship
between the intermediate parameter m (which we assume to be
a real number within the interval [0,1] and denote as m) and the
underlying membership structures, offering insights into how
variations in m can influence decision boundaries.

The rest of this article is organized as follows. Section II
provides a detailed introduction to the asymmetric three-way
approximation model, outlining its theoretical foundations and
presenting analytical solutions for the thresholds α, β, and
the intermediate value m. Section III conducts different exper-
iments to demonstrate the model’s effectiveness and to address
the limitations associated with using fixed values, such as 0.5,
for the parameter m. Finally, Section IV concludes this article.

II. FRAMEWORK FOR ASYMMETRIC THREE-WAY

APPROXIMATION

In this section, we present the asymmetric three-way ap-
proximation model, which relaxes the traditional symmetric
constraints on threshold values, allowing for flexibility in defin-
ing the boundaries between different regions. This approach
enables a more subtle treatment of uncertainty by decoupling
the thresholds α and β, making them independently adjustable.
We also provide analytical solutions for determining the optimal
threshold values, offering precise calculations for α and β in this
context. Additionally, we explore the role of the intermediate pa-
rameter m and its relationship with the underlying membership
structures, shedding light on how it influences the classification
process within the model.

A. Asymmetric Three-Way Approximation Approach

Let A be a fuzzy set with membership function μA : U →
[0, 1], where U = {x1, x2, . . . , xn} represents the universal set
of objects. By introducing threshold (α, β) ∈ [0, 1]2 with β <
α, we approximated A with a three-valued set

Tm
α,β(A) =

⎧⎪⎨
⎪⎩
1, μA(xi) ≥ α

m, β < μA(xi) < α

0, μA(xi) ≤ β

where m ∈ (0, 1) is an intermediate value. The approximation
method focuses on the membership degrees of elements in a

Fig. 1. Three-way approximation of f .

fuzzy set rather than the elements themselves. These member-
ship values, ordered in ascending or descending order, can be
represented as discrete points in a Cartesian coordinate system.
Each element xi is mapped to a pair (μA(xi), μA(xi)), where
both coordinates reflect its membership degree in fuzzy set A.
This geometric representation uses the line function f(x) = x
or f(x) = −x (with x ∈ [0, 1]) as a reference to model mem-
bership degree distribution, enabling analysis of approximations
within the unit square domain while preserving the structural
information of membership degrees.

To generalize, let f : [a, b] → [0, 1] be a continuously differ-
entiable, strictly decreasing function. Given that α, β,m ∈ [0, 1]
satisfy 0 ≤ β < m < α ≤ 1. The asymmetric three-way ap-
proximation (A3WA for short) of f is defined as

Tm
α,β(f) =

⎧⎪⎨
⎪⎩
1, f(x) ≥ α

m, β < f(x) < α

0, f(x) ≤ β.

(1)

Here, “asymmetric” indicates that α+ β �= 1. The three-way
approximation represents a qualification of f : values greater
than or equal to α are mapped to 1, those less than or equal
to β are mapped to 0, and values in between are mapped to the
intermediate level m, reflecting uncertainty. Fig. 1 illustrates this
process, where upward arrows indicate regions where values are
raised to 1 and m, and downward arrows show where values are
lowered to 0 and m. Regions marked 1© and 4© are certain, while
2© and 3© represent uncertain regions with values approximated

as m.
The key challenge in A3WA is determining the optimal thresh-

olds α, β, and m. Various methods have been proposed over the
past two decades, each with its strengths and limitations depend-
ing on the application scenario [10]. However, a consensus on
the best approach remains lacking. In the following, we establish
a relationship among the thresholds by minimizing information
loss, defined as the reduction in membership information.

B. Threshold Optimization for Information Loss Minimization

When a value increases from a to b, the information loss is
b− a units; when a value decreases from c to d, the information
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loss is c− d units. Therefore, the total information loss from
the three-way approximation of f can be computed as follows:

Definition 1 (Information loss for A3WA): Let f : [a, b] →
[0, 1] be a continuously differentiable and strictly decreasing
function. Given that α, β,m ∈ [0, 1] satisfy 0 ≤ β < m < α ≤
1. The information loss for the three-way approximation of f
is defined as

L(α, β,m) = λ1

∫ f−1(α)

a

(1− f(x))dx

+ λ2

∫ f−1(m)

f−1(α)

(f(x)−m)dx

+ μ1

∫ b

f−1(β)

f(x)dx

+ μ2

∫ f−1(β)

f−1(m)

(m− f(x))dx (2)

where λ1, λ2, μ1, μ2 are nonnegative factors that balance the
membership loss in certain and uncertain regions.

The factors λ1, λ2, μ1, and μ2 in (2) quantify distinct
information losses in the three-way approximation. Specifically,
λ1 penalizes assigning elements with membership degrees not
less than α to the positive region, accounting for residual uncer-
tainty; λ2 addresses the loss from assigning elements in (m,α)
to the uncertain region, reflecting deviation from the neutral
threshold m. Likewise, μ1 penalizes assigning elements with
membership degrees not greater than β to the negative region,
capturing uncertainty in rejection, and μ2 corresponds to the
loss from assigning elements in (β,m) to the uncertain region,
representing hesitation in rejecting low-support elements.

For convenience, we denote

L(α,m) = λ1

∫ f−1(α)

a

(1− f(x))dx

+ λ2

∫ f−1(m)

f−1(α)

(f(x)−m)dx (3)

L(β,m) = μ1

∫ b

f−1(β)

f(x)dx

+ μ2

∫ f−1(β)

f−1(m)

(m− f(x))dx. (4)

Thus, the total information loss can be rewritten as

L(α, β,m) = L(α,m) + L(β,m). (5)

Since L(α,m) ≥ 0 and L(β,m) ≥ 0, minimizing L(α, β,m)
for a fixed m is equivalent to independently minimizing
L(α,m) and L(β,m). This is formalized in the following
theorem, which provides explicit formulas for the optimal values
αopt and βopt, assuming f is continuously differentiable and
strictly decreasing.

Theorem 1: Let f : [a, b] → [0, 1] be a continuously dif-
ferentiable and strictly decreasing function, and m ∈ [0, 1] be
a fixed intermediate value. The total information loss function

L(α, β,m) is separable as

L(α, β,m) = L(α,m) + L(β,m)

with L(α,m) and L(β,m) depending only on α and β,
respectively. The optimal values αopt and βopt are found by
solving the independent subproblems

αopt = argmin
α

L(α,m) βopt = argmin
β

L(β,m).

These optimal values are explicitly given by

αopt =
λ1 + λ2m

λ1 + λ2
βopt =

μ2m

μ1 + μ2
. (6)

Moreover, (αopt, βopt) minimizes the total information loss
function, satisfying

(αopt, βopt) = arg min
(α,β)

L(α, β,m). (7)

Proof: We aim to find the unique optimal values αopt and βopt

that minimize L(α,m) and L(β,m), respectively, and show
that these solutions achieve the global minimum of L(α, β,m).

Step 1. Optimization for α opt : Taking the derivative of
L(α,m) [shown in (3)] for α, we have

∂

∂α
L(α,m) =

λ1(1− α)− λ2(α−m)

f ′(f−1(α))
.

Setting ∂
∂αL(α,m) = 0, we solve λ1(1− α) = λ2(α−m).

This simplifies to

α =
λ1 + λ2m

λ1 + λ2
.

To ensure the solution is the global minimum, note that
f ′(f−1(α)) < 0 and

1) ∂
∂αL(α,m) < 0 for α < λ1+λ2m

λ1+λ2

2) ∂
∂αL(α,m) > 0 for α > λ1+λ2m

λ1+λ2
.

Thus, L(α,m) has a unique critical point at αopt = λ1+λ2m
λ1+λ2

,
which is a global minimum.

Step 2. Optimization for βopt: Taking the derivative of
L(β,m) [shown in (4)] with respect to β, we have

∂

∂β
L(β,m) =

−μ1β + μ2(m− β)

f ′(f−1(β))
.

Setting ∂
∂βL(β,m) = 0, we solve −μ1β + μ2(m− β) = 0.

This simplifies to

β =
μ2m

μ1 + μ2
.

As with α, note that f ′(f−1(β)) < 0 and
1) ∂

∂βL(β,m) < 0 for β < μ2m
μ1+μ2

2) ∂
∂βL(β,m) > 0 for β > μ2m

μ1+μ2
.

Thus, L(β,m) has a unique critical point at βopt = μ2m
μ1+μ2

,
which is a global minimum.

Step 3 Uniqueness and globality of L(α, β,m): The total loss
L(α, β,m) is given by

L(α, β,m) = L(α,m) + L(β,m).

Since L(α,m) and L(β,m) are minimized independently
at their respective unique global minima, substituting αopt

and βopt ensures that L(α, β,m) is globally minimized. The
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separability of the terms guarantees that solving the subproblems
independently leads to the global minimum for the total loss. �

This proof ensures that the solutions for α and β are unique
and globally optimal. Equation (6) demonstrates the relationship
between the optimal values of α and β and the intermediate
value m. This relationship is independent of the specific form
of the function f , suggesting that the results possess a general
characteristic.

Note 1: Equation (6) suggests that imposing the condition
α+ β = 1 is not necessary, although this condition holds when
the parameters λ1, λ2, μ1, μ2, and the intermediate value m
satisfy the equation

m =
λ2μ1 + λ2μ2

λ1μ2 + λ2μ1 + 2λ2μ2

such as when λ1 = λ2, μ1 = μ2 = 1, and m = 0.5. Thus, in-
sisting on α+ β = 1 is unnecessary, though it can simplify solv-
ing the optimization problem in (7). Furthermore, when λ1 =
μ1 = λ, λ2 = μ2 = 1, and m = 0.5, the result is (α, β) =
( 0.5+λ

1+λ
, 0.5
1+λ

), which matches the result presented by Yue
et al. [47].

The following outlines several properties of the optimal values
αopt and βopt.

Proposition 1: The optimal thresholds αopt and βopt exhibit
the following monotonicity property:

1) αopt monotonically increases with λ1 and monotonically
decreases with λ2;

2) βopt monotonically decreases with μ1 and monotonically
increases with μ2;

3) αopt and βopt monotonically increase with m.
Proof:
1) Taking the derivative of αopt with respect to λ1 gives

∂αopt

∂λ1
= λ2(1−m)

(λ1+λ2)2
. Since m ∈ [0, 1] and λ2 ≥ 0, we have

∂αopt

∂λ1
≥ 0, implying that αopt increases monotonically

with λ1. Similarly, taking the derivative of αopt with
respect to λ2 yields ∂αopt

∂λ2
= λ1(m−1)

(λ1+λ2)2
. Using the same

reasoning, we have ∂αopt

∂λ2
≤ 0, indicating that αopt de-

creases as λ2 increases.
2) This is similarly proved.
3) This result is straightforward and self-evident.

�
As a result of Proposition 1, we observe that the shadow area

increases monotonically with λ1 and μ1, while it decreases
monotonically with λ2 and μ2. Additionally, the value of m
affects the positions of α and β—increasing m leads to higher
values of both α and β. The above discussion assumes a fixed
value of m. Next, we outline the method for determining the
optimal value of m for a given pair of α and β.

Theorem 2: Let f : [a, b] → [0, 1] be a continuously dif-
ferentiable and strictly decreasing function. For a fixed pair
(α, β) satisfying 0 ≤ β ≤ α ≤ 1, the optimal value of m in
the optimization problem

mopt = argmin
m

L(α, β,m)

is given by

mopt = f

(
λ2f

−1(α) + μ2f
−1(β)

λ2 + μ1

)
. (8)

Proof: We begin by differentiating the loss function
L(α, β,m) concerning m, as described in (2). This yields

∂

∂m
L(α, β,m)

= λ2(f
−1(α)− f−1(m)) + μ2(f

−1(β)− f−1(m)).

Setting ∂
∂mL(α, β,m) = 0, we solve

f−1(m) =
λ2f

−1(α) + μ2f
−1(β)

λ2 + μ2
.

From this, we can express m as

m = f

(
λ2f

−1(α) + μ2f
−1(β)

λ2 + μ2

)
.

Next, we examine the second derivative of L(α, β,m) with m.
Differentiating ∂

∂mL(α, β,m) with m, we get

∂2

∂m2
L(α, β,m) = − λ2 + μ2

f ′(f−1(m))
.

Since f is strictly decreasing, f ′(x) < 0 for all x ∈ [a, b].
Therefore, the second derivative is always positive, namely,
∂2

∂m2L(α, β,m) > 0. This implies that L(α, β,m) is convex
with m. Thus, the critical point is the global maximum. There-
fore, the optimal value of m is uniquely determined by

mopt = f

(
λ2f

−1(α) + μ2f
−1(β)

λ2 + μ2

)
.

�
The theorem shows that the optimal intermediate value mopt

is the function value of a weighted average of the inverse images
of α and β under f−1, with weights λ2 and μ2. This provides
a solid mathematical foundation for determining m based on
α and β. In practice, m is selected according to task-specific
criteria. Once m is defined, α and β are efficiently computed
using (6), ensuring minimal information loss.

Note 2: If f is a continuously differentiable and strictly
increasing function, the principal results remain consistent with
those in Theorems 1 and 2. Therefore, further discussion on
monotonically increasing continuous functions is omitted to
avoid redundancy.

Note 3: The information loss for a discrete membership
function is computed as

L(α, β,m) = λ1

∑
{x|α≤f(x)≤1}

(1− f(x))

+ λ2

∑
{x|m≤f(x)<α}

(f(x)−m)

+ μ1

∑
{x|0≤f(x)≤β}

f(x)

+ μ2

∑
{x|β<f(x)<m}

(m− f(x))
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(a) (b)

Fig. 2. Illustration of membership functions and information loss with varying
parameters. (a) Membership Functions. (b) Information Loss vs. m Variations.

where α and β are computed by (6).

III. EXPERIMENTAL STUDIES

This section presents experiments to evaluate the proposed
A3WA model. We start with a sensitivity analysis to examine
how different parameters affect information loss, using both
continuous membership functions and UCI datasets. The second
part compares classification performance, evaluating the A3WA
model against others with various classifiers. We conduct com-
parative experiments and statistical tests and analyze the impact
of parameters on accuracy, providing insights into the model’s
effectiveness.

A. Sensitivity Analysis of Parameters Affecting Information
Loss

In this section, we perform two parametric sensitivity anal-
yses, one based on continuous membership functions and the
other on discrete data. These analyses explore the relationship
between the intermediate value and membership structures and
the impact of each parameter’s variation on information loss.

1) Continuous Membership Function Analysis: This section
conducts a parametric sensitivity analysis of commonly used
membership functions, including Gaussian, bell, triangular, and
trapezoidal functions. The membership functions are defined as
follows, with Fig. 2(a) showing visual representations of each
function.

1) Gaussian function:

f(x) = e−
(x−c)2

2θ2 , (θ, c) = (2, 5).

2) Bell function:

f(x) =
1

1 +
∣∣x−c

a

∣∣2b , (a, b, c) = (1, 1, 5).

3) Triangular function:

f(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x < a
x−a
b−a , a ≤ x ≤ b,
c−x
c−b , b < x ≤ c

0, x > c.

(a, b, c) = (3, 5, 8)

(a) (b)

(c) (d)

Fig. 3. Illustration of membership functions and information loss with varying
parameters. (a) Information Loss vs. λ1 Variations. (b) Information Loss vs.
λ2 Variations. (c) Information Loss vs. µ1 Variations. (d) Information Loss vs.
µ2 Variations.

4) Trapezoidal function:

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, x < a
x−a
b−a , a ≤ x ≤ b

1, b < x ≤ c,
d−x
d−c , c < x ≤ d

0, x > d.

(a, b, c, d) = (0, 5, 7, 9)

We conducted five experiments to analyze the impact of the
intermediate value m and the factors λ1, λ2, μ1, μ2 on informa-
tion loss. In each experiment, we kept the other four parameters
fixed and varied the selected parameter according to predefined
rules: λ1, λ2, μ1, μ2 ∈ {0.1, 0.2, . . . , 1.0, 2.0, . . . , 9.0}, while
m took values from {0.1, 0.15, . . . , 0.95}. The fixed values for
λ1, λ2, μ1, μ2 and m are 1.0, 1.0, 1.0, 1.0, and 0.5.

Fig. 2(b) shows how information loss changes with m for each
function. Initially, information loss decreases as m increases,
reaches a minimum, and then increases. Table I lists the thresh-
olds and corresponding losses. As m increases, both α and β
increase. Notably, m = 0.5 is not always optimal. The optimal
value for the Gaussian function is 0.45; for the bell function,
it is 0.25; for the triangular and trapezoidal functions, it is 0.5.
Additionally, m = 0.5 is the only value for which α+ β = 1,
corresponding to the S3WA model in [47] and [48].

Fig. 3(a)–(d) illustrates that the information loss increases
with λ1, λ2, μ1, μ2 across all membership functions. Detailed
results are provided in Tables II–V. The information loss is con-
stant for all tables involving triangular and trapezoidal functions.
This behavior arises from the parameter settings in the second
and third experiments.

1) Second experiment:
λ1 ∈ {0.1, 0.2, . . . , 1.0, 2.0, . . . , 9.0}, λ2 = μ1 = μ2 =
1.0, m = 0.5.

2) Third experiment:
λ2 ∈ {0.1, 0.2, . . . , 1.0, 2.0, . . . , 9.0}, λ1 = μ1 = μ2 =
1.0, m = 0.5.
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TABLE I
INFORMATION LOSS VERSUS m VARIATIONS

TABLE II
INFORMATION LOSS VERSUS λ1 VARIATIONS

TABLE III
INFORMATION LOSS VERSUS λ2 VARIATIONS

TABLE IV
INFORMATION LOSS VERSUS µ1 VARIATIONS

TABLE V
INFORMATION LOSS VERSUS µ2 VARIATIONS

Under these settings, the optimal values αopt(λ1) and
αopt(λ2) are given by

αopt(λ1)− 0.5 =
λ1 + 1 · 0.5

λ1 + 1
− 0.5 =

0.5λ1

1 + λ1

1− αopt(λ2) = 1− 1− λ2 · 0.5
1 + λ2

=
0.5λ2

1 + λ2
.

Since λ1 and λ2 vary over the same range of values, it follows
that αopt(λ1)− 0.5 = 1− αopt(λ2). This symmetry ensures that
the area of the green triangle in Fig. 4(a) equals that in Fig. 4(b),
and similarly for the orange triangles. This relationship holds

only for linear functions. Since λ1

∫ f−1(αopt(λ1))

a (1− f(x))dx+∫ f−1(0.5)

f−1(αopt(λ1))
(f(x)− 0.5)dx =

∫ f−1(αopt(λ2))

a (1− f(x))dx+

λ2

∫ f−1(0.5)

f−1(αopt(λ1))
(f(x)− 0.5)dx. We have L(αopt(λ1), 0.5) =

L(αopt(λ2), 0.5). Thus, the total information loss is identical

(a) (b)

Fig. 4. Illustration of information loss computation. (a) λ2 = µ1 = µ2 =
1.0, m = 0.5. (b) λ1 = µ1 = µ2 = 1.0, m = 0.5

in the second and third experiments. Since μ1 = μ2 = 1, this
equivalence also holds for L(β, 0.5). Similar conclusions apply
to the fourth and fifth experiments.
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Fig. 5. Illustration of the asymmetric three-way approximation model.

TABLE VI
DATA INFORMATION

Tables II–V also show how α and β vary with λ1, λ2, μ1,
and μ2. Specifically, α increases with λ1 and decreases with
λ2, while β decreases with μ1 and increases with μ2. These
trends are consistent with the results in Proposition 1.

2) Experiments on UCI Datasets: This section further ana-
lyzes the effect of the intermediate value on information loss
through practical datasets. We obtained 10 datasets from the UC
Irvine Machine Learning Repository [53], with details provided
in Table VI. Each dataset is represented by an information table
IT = (U,AT, f, V ), where

1) U is the set of objects;
2) AT is the set of attributes;
3) f is the information function mapping each object to a

value for each attribute in V ;
4) V = ∪a∈ATVa, with Va ⊆ R for each attribute a.
In our experiments, each attribute value space Va is a subset

of real numbers.
For each dataset, we compute its three-way approximation

using the following steps (see Fig. 5).
1) Compute near-optimal intermediate value: For each at-

tribute ai, find the near-optimal intermediate value mopt
i

using an adaptive optimizer.
a) Start with an initial search range ri = [0, 1] and step

size si = 0.1. Find the optimal solution mopt
i in the

initial search.
b) Update the search range ri = [mopt

i − s,mopt
i + s] (or

r = [mopt
i ,mopt

i + s] or ri = [mopt
i − s,mopt

i ] if mopt
i

is one of the endpoints of the search range) and reduce

(a) (b)

(c) (d)

Fig. 6. Visualization of optimal thresholds for attributes across datasets.
(a) IRIS. (b) MHR. (c) RCO. (d) WINE.

the step size to si =
mopt

i

10 . Find the optimal solution
mopt

i in this search.
c) Repeat the process in the last step until the difference in

information losses between two iterations is less than
a threshold δ = 0.001.

d) Once mopt
i is found, output the corresponding αopt

i

and βopt
i .

2) Approximate the information table: Using the optimal
values (αopt

i , βopt
i ,mopt

i ), compute the new information
function g for each object x ∈ U and attribute ai ∈ AT
as

g(x, ai) =

⎧⎪⎨
⎪⎩
1, f(x, ai) ≥ αopt

i

mopt
i , βopt

i < f(x, ai) < αopt
i

0, f(x, ai) ≤ βopt
i .

The resulting information table is IT3WA = (U,AT, g,
V ′), where V ′ = {0, 1,mopt

1 ,mopt
2 , . . . ,mopt

l }.
Algorithm 1 describes obtaining a three-way approximation

of an information table. The first for-loop (lines 1–19) calculates
the optimal values of m, α, and β for each attribute ai. The third
for-loop (lines 21–33) computes the three-valued information
function using these optimal values. For n instances and l
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Algorithm 1: Three-Way Approximation of Information
Table.

attributes, the computational complexity of the first for-loop is
O(l ×M × 20), where M is the maximum number of while-
loop iterations, and 20 is the maximum number of steps in the
second for-loop (lines 6–9). The complexity of the third for-loop
is O(l × n), making the overall complexity of Algorithm 1
O(l ×M × 20) +O(l × n). Here, O(l ×M × 20) represents
the complexity of finding the optimal values for m, α, and
β, while O(l × n) represents the complexity of computing the
three-valued information function.

The parameters (λ1, λ2, μ1, μ2) are fixed at (1, 1, 1, 1) for all
datasets to determine the optimal value of m. Fig. 6 presents the
optimal values of α, β, and m for datasets IRIS, MHR, RCO,
and WINE. It demonstrates that the optimal values of m differ
across attributes within the same dataset. For example, for the
IRIS dataset, the optimal m values for each attribute are 0.48,
0.4167, 0.6271, and 0.5417. This reinforces the idea that setting

m to a fixed value 0.5 is not always appropriate to minimize
information loss.

B. Classification Performance Evaluation

In this section, we assess the classification performance of
different models in three aspects: 1) a comparative analysis
of classification accuracy; 2) a statistical test for performance
significance; and 3) an evaluation of the impact of individual
model parameters. We employed four classifiers—multinomial
naive Bayes (MNB), logistic regression (LR), decision tree (DT),
and feedforward neural network (FNN)—and tested them on ten
benchmark datasets (details in Table VI). All numerical features
were normalized to [0,1] using Min–Max normalization, and
fivefold cross-validation was applied to all models.

1) Comparative Experiments: We compared the classifica-
tion accuracy of the Baseline model (directly applying classifica-
tion to normalized data), MMSS model [20], MESS model [21],
S3WA model [47], [48], and three A3WA models. The A3WA-I
model uses 0.5 as the intermediate value, A3WA-II takes the
mean of uncertain membership values, and A3WA-III optimizes
m in 0.1, 0.2, . . . , 0.9. All other factors are searched within
0.2, 0.4, . . . , 1.0.

Table VII summarizes each model’s classification accuracy
and standard deviation across the datasets for all classifiers. The
experimental results demonstrate that the A3WA models con-
sistently outperform the Baseline, MMSS, MESS, and S3WA
models across most datasets and classifiers. Among the three
A3WA variants, A3WA-III delivers the best overall performance
with 23 highest accuracy instances across dataset-classifier
combinations. A3WA-II follows with 11 cases, while A3WA-I
achieves 6. The baseline records 5, MMSS 2, S3WA 1, and
MESS none among the other models. A3WA-III achieves the
highest accuracy on MNB (9 cases), LR (5 cases), and FNN
(5 cases), highlighting its generalization capability, robustness,
and adaptability across classification tasks and data complex-
ities. In datasets like BCWD and IRIS, most models achieve
similar high accuracy. However, the performance gap widens
in datasets like RCO and ECOLI across MNB and FNN, where
A3WA models—especially A3WA-III—show notable improve-
ments. Overall, A3WA-III proves the most reliable, followed by
A3WA-II, highlighting the effectiveness of adaptive parameter
optimization in enhancing classification performance.

2) Statistical Test: We assessed the methods’ significance
using the Friedman test [54] with α = 0.05 on 10 datasets. The
null hypothesis assumes all methods perform equally, which is
rejected if the p-value is below α. The Friedman test yielded
p-values of 2.7557× 10−8, 3.4263× 10−7, 3.61× 10−7, and
9.4501× 10−7 for the four classifiers, all significantly below
0.05, confirming statistical differences between the methods.
To further analyze these differences, we applied Nemenyi’s
test [54], which compares the ranked performances of methods.
The null hypothesis assumes no significant difference between
methods and is rejected if the average rank difference exceeds the
critical difference (CD). With qα = 3.15, k = 7, and N = 10,
the calculated CD was 3.04.
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(a) (b) (c) (d)

Fig. 7. Nemenyi test of different models across four classifiers. (a) MNB. (b) LR. (c) DT. (d) FNN.

TABLE VII
PERFORMANCE COMPARISON OF MODELS ACROSS CLASSIFIERS

Table VIII presents the average ranks of each model, and Fig. 7
shows the test results. A3WA-III consistently ranks highest,
outperforming other models across classifiers. It significantly
differs from the Baseline and MESS on MNB, DT, and FNN. The

Fig. 8. Nemenyi test p-values heatmap.

Fig. 9. Impact of the intermediate value m on classification accuracy across
classifiers.

final row of Table VIII shows the overall average rank, indicating
that a fixed intermediate value of 0.5 underperforms compared
to the membership mean and globally optimized m (as seen
in the A3WA variants), further emphasizing the inadequacy
of the fixed-value approach. Fig. 8 visualizes the Nemenyi
test p-value heatmap, confirming that A3WA-III outperforms
baseline, MESS, and S3WA, with A3WA-II and A3WA-I per-
forming similarly well. These results demonstrate the superior
performance of A3WA models, with A3WA-III leading, fol-
lowed by A3WA-II and A3WA-I.
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(a) (b)

(c)
(d)

Fig. 10. Impact of various factors on classification accuracy across classifiers. (a) Classification Accuracy with Variations in λ1. (b) Classification Accuracy
with Variations in λ2. (c) Classification Accuracy with Variations in µ1. (d) Classification Accuracy with Variations in µ2.

TABLE VIII
AVERAGE RANKS OF MODELS ACROSS CLASSIFIERS

3) Parameter Analysis on Classification Accuracy: We con-
ducted five experiments to assess the impact of specific pa-
rameters ( λ1, λ2, μ1, μ2, or m) on classification ac-
curacy. In each experiment, the other four parameters were
fixed, while the selected parameter was varied based on pre-
defined values: λ1, λ2, μ1, μ2 ∈ {0.2, 0.4, . . . , 5.0} and m ∈
{0.1, 0.2, . . . , 0.9}. The fixed values for the parameters were
λ1 = λ2 = μ1 = μ2 = 1.0 and m = 0.5.

We presented the results from five representative datasets.
Fig. 9 shows the effect of the intermediate value m on classifi-
cation accuracy across classifiers. The relationship between m
and accuracy varies by dataset. For RCO, accuracy decreases as

m increases, then rises again. For BCWD, accuracy improves
initially, then decreases. For other datasets, accuracy fluctuates
unpredictably without a clear trend. Fig. 10 illustrates the impact
of λ1, λ2, μ1, and μ2 on classification accuracy, with each
subplot containing four smaller subplots presenting results for
different classifiers. The effect of each parameter differs across
datasets and classifiers. For RCO, accuracy decreases with in-
creasing λ1 and μ1, but increases with λ2 and μ2. For BCWD,
λ1 and λ2 have minimal effect, while μ1 reduces accuracy and
μ2 slightly improves it. For other datasets, the parameters show
inconsistent or negligible effects across classifiers.

IV. CONCLUSION

This article presented an A3WA model with analytical
solutions for determining optimal thresholds. A key finding was
that when m was given, the optimal values of α and β were
independent of the membership structure. However, the mem-
bership structure influenced the choice of m, even when α and
β were fixed. Ablation experiments validated this distinction,
further solidifying the model’s theoretical framework.
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Comparative experiments showed that our model flexibly
delivered superior classification performance across various
datasets and machine learning algorithms.

Looking forward, two key directions emerge for future work.
First, since our model is built on information loss, explor-
ing other A3WA models grounded in other uncertainty invari-
ances will provide deeper insights and broaden their applica-
bility. Second, applying our model in real-world scenarios is
essential, with a particular emphasis on improving the inter-
pretability of deep learning algorithms. This will ensure that
the model enhances computational performance and supports
clearer decision-making in practical applications. We aim to
advance the theoretical development and practical utility of
three-way approximation models through these future efforts.
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