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A B S T R A C T

Attribute reduction is a critical research topic in rough set theory, aiming to eliminate irrelevant and redundant
attributes while maintaining the descriptive power of the data. However, traditional neighborhood rough set-
based attribute reduction methods typically require manual setting of the parameters involved in the methods
(e.g., neighborhood radius), and often struggle to find the globally optimal feature subset. To address these
issues, this paper proposes a novel attribute reduction algorithm (called 3PKO-ANRAR) based on adaptive
neighborhood rough sets and the three-way Pied Kingfisher Optimizer (PKO) algorithm. First, the neighborhood
relationships are constructed using sample distribution information, and a neighborhood radius reduction factor
is defined to enable reasonable adaptation of the neighborhood radius. Second, PKO is introduced as an efficient
search mechanism, where the position of the kestrels is treated as the result of attribute reduction (i.e., the
reduct). A fitness function is defined based on the attribute dependency of the adaptive neighborhood rough
sets to evaluate the quality of the reduct. Third, to mitigate the risk of PKO getting trapped in local optima,
several improvements are introduced, including the incorporation of a three-way group partitioning mechanism
and a local perturbation strategy, allowing for dynamic updates of the kingfishers’ positions during iteration.
The proposed attribute reduction algorithm based on adaptive neighborhood rough sets and three-way PKO is
able to find feature subsets with minimal information loss while achieving high classification accuracy.
1. Introduction

Attribute reduction is a critical step in data preprocessing. It sim-
plifies models by identifying and removing redundant attributes in
datasets (Ibrahim et al., 2020; Wang et al., 2013; Xu & Bu, 2024),
thereby enhancing the efficiency and interpretability of algorithms,
reducing computational costs, and maintaining the decision-making
capability of the datasets (Xu, Guo et al., 2023; Yin et al., 2024). This
is crucial for improving the performance of machine learning models
and reducing complexity in practical applications (Guo et al., 2024; Liu
et al., 2021; Wang et al., 2024).

In the field of data mining and knowledge discovery, the neigh-
borhood rough set model has received significant attention for its
unique advantages in handling uncertainty and incomplete data (Liu,
Cai et al., 2024; Xia et al., 2024; Yang et al., 2024). With the increasing
complexity of data, many scholars have explored various models based
on classical rough set theory to handle diverse datasets. Among these,
research on attribute reduction using the neighborhood rough set (NRS)
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method has become increasingly prevalent (Sewwandi et al., 2023;
Wang & Zhao, 2024; Xu, Yuan et al., 2023). Yuan et al. proposed a
feature selection method that uses a novel zentropy-based uncertainty
measure to exploit granular level structures in knowledge space (Yuan
et al., 2023). Experimental results demonstrated that their approach
achieves state-of-the-art performance in terms of stability and classifi-
cation accuracy. Wang et al. proposed a feature selection method based
on k-nearest neighborhood rough set model to improve the handling
of category-mixed samples in heterogeneous data (Wang et al., 2019).
Hu et al. introduced a neighborhood rough set model to handle het-
erogeneous feature subset selection, applying different thresholds for
numerical and categorical features (Hu, Yu et al., 2008). Compared to
classical techniques, their method showed greater flexibility in dealing
with heterogeneous data. Wan et al. (2021) proposed a feature selec-
tion method that considers feature interaction in neighborhood rough
sets, and developed the Max Relevance minRedundancy MaxInteraction
(MRmRMI) evaluation function and the NCMIIFS algorithm.
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Although existing methods have achieved significant success, there
re some issues that limit their application (Chen et al., 2019; Tsai
t al., 2024). One major issue is the need to manually set a fixed neigh-

borhood radius and apply the same radius to all samples. Many scholars
have proposed solutions to address more complex data distribution
problems by improving the adaptability of the neighborhood radius.
Yuan et al. (2024) introduced a variable precision composite measure

ithin a neighborhood rough set model, adapting neighborhood sizes
to enhance computational efficiency and accuracy, by processing uncer-
tain information from both global and local perspectives. Liu, Lin et al.
(2024) proposed an adaptive neighborhood rough set model that uses
the Sparrow Search Algorithm to optimize the neighborhood radius
for each sample, and the search range was defined by the maximum
and minimum distances between the target sample and other samples.
Yuan, Miao et al. (2024) proposed a zentropy-based uncertainty mea-
sure for robust heterogeneous feature selection, leveraging multi-level
nformation integration within heterogeneous neighborhood rough sets.
xperimental results confirmed the method’s effectiveness and stability

compared to existing techniques. Zhou et al. (2019) defined the Gap re-
ation, which is a novel neighborhood rough set approach with adaptive
eighbors, and proposed an online streaming feature selection method
sing the Gap relation in neighborhood rough sets. This method does
ot require prior domain knowledge or parameter specification. On
his basis, Shu et al. (2024) introduced an online hierarchical stream-
ng feature selection algorithm that utilizes adaptive neighborhood
ough sets to address dynamic feature spaces. By automatically se-
ecting neighborhood granularity based on hierarchical structures, the
ethod effectively identifies interactive features in high-dimensional
ata, outperforming existing algorithms in experiments.

However, these methods often overlook the intrinsic distribution
characteristics of the data and the impact of the correlation between
condition attributes and decision attributes. This indicates the need
or a more flexible and adaptive approach to define the neighborhood
adius, in order to enhance the model’s generalization ability and
ccuracy.

To address complex optimization problems, the introduction of
swarm intelligence algorithms could offer a more robust search mecha-
nism for attribute reduction. The swarm intelligence algorithm typically
xhibits outstanding performance and is extensively employed in op-
imization problems. Chen et al. (2015) proposed a rough set-based

feature selection method, which is enhanced by the fish swarm algo-
rithm. This method utilized the search capability of the fish swarm
lgorithm to identify the optimal feature subset, addressing the limi-

tations of traditional approaches in finding a globally minimal reduct.
Tawhid and Ibrahim (2020) proposed a novel binary whale optimiza-
tion algorithm for feature selection. By simulating the hunting behavior
of humpback whales, this algorithm can effectively find the optimal

inimum feature subset without relying on the heuristic information.
Sun et al. (2023) proposed an adaptive fuzzy neighborhood-based
pproach to address the oversight of label correlations in multilabel

classification, enhancing the prediction efficiency. It also automates
the selection of neighborhood radii, reducing manual computation and
demonstrating its effectiveness through experiments. Chen et al. (2024)
ntroduced the artificial hummingbird algorithm and three clusters into
-means clustering. Thus, the issues of reducing local optimality and
etermining the initial clustering center were addressed. Gupta and
upta (2024) proposed a binary particle swarm optimization method
y combining fitness and historical success information and applied it
o feature selection. This approach effectively eliminates irrelevant and
edundant features while significantly improving the exploration and
xploitation capabilities in feature selection.

To sum up, existing neighborhood rough set-based attribute re-
uction methods face two key limitations: (1) the selection of crucial
arameters, such as the neighborhood radius, and (2) the inability to
onsistently identify globally optimal feature subsets. The neighbor-
ood radius directly influences the balance between granularity and
 o

2 
accuracy in data representation. A smaller radius captures finer details
but may increase sensitivity to noise, while a larger radius enhances ro-
bustness at the cost of losing important distinctions. Thus, appropriately
configuring the radius is critical for optimal data analysis. Additionally,
identifying the optimal attribute subset in attribute reduction ensures
that only the most relevant and informative features are retained. To
address these challenges, we propose an attribute reduction algorithm
based on three-way PKO and adaptive neighborhood rough sets. This
approach overcomes the limitations of fixed neighborhood radii, which
are often unsuitable for diverse datasets, and enhances the search for
optimal attribute subsets. By leveraging adaptive neighborhood rela-
tionships that dynamically adjust to sample distributions, the method
improves both granularity and accuracy in data representation. More-
ver, the integration of PKO introduces a robust search mechanism

inspired by the foraging behavior of pied kingfishers, enabling effi-
cient navigation through complex solution spaces and avoidance of
local optima. We further enhance PKO with three-way decision theory,
which partitions the population into subgroups to balance exploration
and exploitation during the search process. The algorithm is compared
with five other neighborhood rough set-based methods in terms of
runtime and attribute subset quality, validated using Decision Tree
(DT) and K-nearest Neighbors (KNN) classifiers. Experimental results
show that 3PKO-ANRAR consistently selects optimal attribute subsets
with relatively short runtimes. The main contributions of this study are
summarized as follows:

(1) We apply the distribution radius to address the challenge of
setting the neighborhood radius across different types of datasets in
classical neighborhood rough sets, and construct a new neighborhood
relationship. By leveraging sample distribution information, we de-
fine a neighborhood radius reduction factor to adaptively adjust the
neighborhood radius.

(2) We apply PKO to the search of attribute subsets. The positions
of the kestrels are treated as the reducts, and a fitness function is
constructed based on the attribute dependency of the adaptive neigh-
borhood rough set to evaluate the quality of the reducts, aiming to
identify the optimal reduct.

(3) We propose a population-based three-way partitioning mech-
nism and apply a local perturbation strategy to prevent the PKO
lgorithm from becoming trapped into local optima. These enhance-
ents dynamically update the search strategy during iterations, thereby

mproving the robustness of the algorithm.
(4) We propose an attribute reduction algorithm (called 3PKO-

NRAR) based on the adaptive neighborhood rough set and three-
ay PKO algorithm. By comparing 3PKO-ANRAR with other methods,

he final selected attribute subsets of the proposed algorithm exhibit
igher accuracy and balance precision. We demonstrate the proposed
lgorithm’s effectiveness, particularly its relatively lower runtime and
uperior robustness in complex environments.

The organization of the sections in this paper is delineated as fol-
ows. The neighborhood rough sets and the PKO algorithm are reviewed
n Section 2. Section 3 provides a detailed explanation of the proposed

algorithm, including the improved PKO algorithm and the adaptive
neighborhood rough set model. In Section 4, a comparative experiment
is conducted to evaluate the efficacy of the proposed algorithm. Finally,
ection 5 concludes the paper and offers insights for future research

directions.

2. Preliminaries

This section provides crucial background knowledge and two key
pproaches, the neighborhood rough set model and the pied kingfisher
ptimizer.
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2.1. Neighborhood rough set

In rough set theory, an information table is formally represented as
 2-tuple ⟨𝑈 , 𝐴⟩, where 𝑈 = {𝜅1, 𝜅2,… , 𝜅𝑛} denotes the set of samples,
lso referred to as the universe, and the set 𝐴 comprises the attributes

of these samples. If 𝐴 is partitioned into 𝐶 and 𝐷, where 𝐶 represents
the set of condition attributes and 𝐷 represents the set of decision
attributes, then the information table ⟨𝑈 , 𝐴⟩ is called a decision table,
denoted as 𝐷 𝑆 = (𝑈 , 𝐶 ∪𝐷).

Let 𝐷 𝑆 = (𝑈 , 𝐶 ∪ 𝐷) be a decision system. For each 𝐵 ⊆ 𝐶 and
𝑖, 𝜅𝑗 ∈ 𝑈 , let 𝛿 be the neighborhood radius of 𝜅𝑖, and let 𝐸 𝑑 𝑖𝑠𝐵(𝜅𝑖, 𝜅𝑗 )

represent the Euclidean distance between 𝜅𝑖 and 𝜅𝑗 under 𝐵. The
neighborhood of 𝜅𝑖 with respect to 𝐵 is defined as follows:

𝛿𝐵(𝜅𝑖) = {𝜅𝑗 ∈ 𝑈 |𝐸 𝑑 𝑖𝑠𝐵(𝜅𝑖, 𝜅𝑗 ) ≤ 𝛿}. (1)

Let 𝐷 𝑆 = (𝑈 , 𝐶 ∪ 𝐷) be a decision system. For each 𝐵 ⊆ 𝐶, 𝜅𝑖 ∈ 𝑈
nd 𝑋 ⊆ 𝑈 , the neighborhood upper and lower approximations of 𝑋
nder 𝐵 can be defined as follows:

𝑁𝐵(𝑋) = {𝜅𝑖 ∈ 𝑈 |𝛿𝐵(𝜅𝑖) ∩𝑋 ≠ ∅}, (2)

𝑁𝐵(𝑋) = {𝜅𝑖 ∈ 𝑈 |𝛿𝐵(𝜅𝑖) ⊆ 𝑋}, (3)

where the lower approximation of 𝑋 under 𝐵 is commonly referred to
as the positive region of 𝑋 under 𝐵, denoted as 𝑃 𝑂 𝑆𝐵(𝑋). 𝑃 𝑂 𝑆𝐵(𝑋)
epresents the subset of elements in 𝑋 that can be definitively classified
s members of 𝑋 based on the information provided by 𝐵.

Let 𝐷 𝑆 = (𝑈 , 𝐶 ∪ 𝐷) be a decision system. The neighborhood con-
ditional entropy reflects the uncertainty of attribute set B for decision
attribute D. For each 𝐵 ⊆ 𝐶, The neighborhood conditional entropy of
𝐷 on 𝐵 is defined as follows:

𝑁 𝐸(𝐷|𝐵) = 𝑁 𝐸(𝐷 ∪ 𝐵) −𝑁 𝐸(𝐵), (4)

where 𝑁 𝐸(𝐵) is the neighborhood information entropy of 𝐵 on 𝑈 ,

𝑁 𝐸(𝐵) = 1 − 1
|𝑈 |

∑

|𝑈 |

𝑖=1

|

|

|

𝑁𝛿
𝐵 (𝜅𝑖)

|

|

|

|𝑈 |

, 𝑁𝛿
𝐵(𝜅𝑖) is a neighborhood of sample 𝜅𝑖

with respect to 𝐵.

2.2. Pied kingfisher optimizer

The Pied Kingfisher Optimizer (PKO) algorithm represents a novel
bio-inspired optimization strategy, drawing its design inspiration from
the distinctive flight patterns and intelligent foraging behaviors of
the pied kingfisher. Based on a meticulous examination of the pied
kingfisher’s predatory behaviors, this algorithm delineates three pivotal
tages: perching and hovering strategies (exploration stage), diving

strategy (exploitation stage), and commensalism stage (local escape
stage). According to the comparative analysis presented in Bouaouda
t al. (2024), the PKO algorithm adeptly navigates solution spaces
n intricate optimization quandaries, steadily converging towards the

optimal solution while upholding diversity.

2.2.1. Initialization
In alignment with the majority of population-based swarm intelli-

gence algorithms, Pied kingfisher optimizer initiates the search process
by generating random initial solutions within the defined search space.
This approach serves as the preliminary step in exploring potential
solutions. The generation of the initial population can be defined as
follows:

ℎ𝑖,𝑗 = 𝐿𝑜𝑤 + (𝑈 𝑝 − 𝐿𝑜𝑤) × 𝑟𝑎𝑛𝑑 , (5)

where 1 ≤ 𝑖 ≤ 𝑁 and 1 ≤ 𝑗 ≤ Dim (Note: 𝑁 represents the population
ize, and Dim indicates the problem’s dimensionality). ℎ𝑖,𝑗 signifies
he position of the 𝑖th individual in the 𝑗th dimension, and 𝑟𝑎𝑛𝑑 is a
tochastic value in the range of [0, 1], 𝑈 𝑝 denote the upper limits of the
earch space, and 𝐿𝑜𝑤 denote the lower limits of the search space.
3 
2.2.2. Perching and hovering strategies (exploration stage)
The exploration phase of the PKO algorithm is inspired by the

erching and hovering behaviors of the pied kingfisher. Observations
in their natural habitats reveal that these birds alternate between
striking from perches and attacking while hovering. The PKO algorithm
dynamically modifies the positions of search agents in accordance with
the foraging behaviors of pied kingfishers. This adjustment is formally
efined as follows:

ℎ𝑖(𝑧 + 1) = ℎ𝑖(𝑧) + 𝛼 × 𝑇 × (ℎ𝑗 (𝑧) − ℎ𝑖(𝑧)), (6)

where 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑁 (Note: 𝑁 denotes the population size), ℎ𝑖(𝑧 + 1)
denotes the position of the 𝑖th agent in the subsequent iteration, and
ℎ𝑖(𝑧) denotes its current position.

In Eq. (6), the parameter 𝛼 is defined as: 2 × 𝑟𝑎𝑛𝑑 𝑛 (1, 𝐷 𝑖𝑚) − 1,
where 𝑟𝑎𝑛𝑑 𝑛 is a normally distributed random variable and 𝐷 𝑖𝑚 denotes
he problem’s dimensionality. Moreover, the value of parameter 𝑇 is
ynamically adjusted according to the current strategy, which can be
ither ‘Perching’ or ‘Hovering’.

The PKO algorithm models the bird’s behavior of perching on nat-
ural and artificial structures to precisely capture prey. In the perching
strategy, the parameter 𝑇 is computed as follows:

𝑇 = (exp(1) − exp ( 𝑧 − 1
𝑀 𝑎𝑥_𝐼 𝑡𝑒𝑟 )

1
𝐵 𝐹 ) × cos(𝐶 𝑟𝑒𝑠𝑡_𝑎𝑛𝑔 𝑙 𝑒𝑠), (7)

where 𝐶 𝑟𝑒𝑠𝑡_𝑎𝑛𝑔 𝑙 𝑒𝑠 = 2 ⋅ 𝑝𝑖 ⋅ 𝑟𝑎𝑛𝑑, 𝐵 𝐹 (Beating Factor) is a constant
ith a value of 8, and 𝑟𝑎𝑛𝑑 is a uniformly distributed random variable
etween 0 and 1.

On the contrary, during the hovering phase, the Pied Kingfisher
maintains stability through rapid wing flapping. In this hovering strat-
egy, the parameter 𝑇 is determined as follows:

𝑇 = 𝑏𝑒𝑎𝑡𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 × ( 𝑡
1
𝐵 𝐹

𝑀 𝑎𝑥_𝐼 𝑡𝑒𝑟 1
𝐵 𝐹

), (8)

where 𝑏𝑒𝑎𝑡𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 𝑟𝑎𝑛𝑑 × 𝑓 𝑖𝑡𝑃 𝐾 𝑂 (𝑗)
𝑓 𝑖𝑡𝑃 𝐾 𝑂 (𝑖) , 𝐵 𝐹 is set to 8, 𝑟𝑎𝑛𝑑 is a random

value between 0 and 1, and 𝑓 𝑖𝑡𝑃 𝐾 𝑂(𝑖) denotes the fitness of the 𝑖th
individual within the population.

2.2.3. Diving strategy (exploitation stage)
The exploration phase of the PKO algorithm is inspired by the

erching and hovering movements of the pied kingfisher. Observations
in their natural settings reveal that these birds alternate between strik-
ing from perches and launching attacks from hovering postures. The
PKO algorithm dynamically modifies the placements of search agents
in accordance with the foraging activities of pied kingfishers. This
modification is officially delineated as follows:

ℎ𝑖(𝑧 + 1) = ℎ𝑖(𝑧) +𝐻 𝐴 × 𝜎 × 𝛼 × (𝑏 − ℎ𝑏𝑒𝑠𝑡(𝑧)), (9)

where 1 ≤ 𝑖 ≤ 𝑁 , 𝛼 is a control parameter which is defined as: 𝛼 = 2 ×
𝑎𝑛𝑑 𝑛 (1, 𝐷 𝑖𝑚) − 1, 𝜎 = exp ( −𝑡

𝑀 𝑎𝑥_𝐼 𝑡𝑒𝑟 )
2, and 𝑏 = ℎ𝑖(𝑧) +𝜎2×𝑟𝑎𝑛𝑑 𝑛 ⋅ℎ𝑏𝑒𝑠𝑡(𝑧).

In Eq. (9), 𝐻 𝐴 denotes the hunting ability which is defined as:
𝐻 𝐴 = 𝑟𝑎𝑛𝑑 ⋅ ( 𝑓 𝑖𝑡𝑃 𝐾 𝑂 (𝑖)

𝐵 𝑒𝑠𝑡_𝑓 𝑖𝑡𝑃 𝐾 𝑂 ), where 𝑓 𝑖𝑡𝑃 𝐾 𝑂(𝑖) denotes the fitness of the

𝑖th individual within the population, and 𝐵 𝑒𝑠𝑡_𝑓 𝑖𝑡𝑃 𝐾 𝑂 represents the
highest fitness value achieved across all iterations.

2.2.4. Commensalism stage (local escape stage)
The pied kingfisher exhibits a symbiotic interaction with several

tter species. This relationship indicates mutual benefit between both
species without inflicting harm. This symbiotic behavior can be for-
mally depicted as follows:

ℎ𝑖(𝑧 + 1) =
{

ℎ𝑚(𝑧) + 𝜎 × 𝛼 × 𝑎𝑏𝑠(ℎ𝑖(𝑧) − ℎ𝑛(𝑧)), 𝑖𝑓 𝑟𝑎𝑛𝑑 > (1 − 𝑃 𝐸),
ℎ𝑖(𝑧), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(10)

where 1 ≤ 𝑖 ≤ 𝑁 , 𝛼 is a control parameter which is defined as:
𝛼 = 2 × 𝑟𝑎𝑛𝑑 𝑛 (1, 𝐷 𝑖𝑚) − 1, 𝜎 = exp ( −𝑧 )2, and ℎ (𝑧) and ℎ (𝑧)
𝑀 𝑎𝑥_𝐼 𝑡𝑒𝑟 𝑚 𝑛
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Fig. 1. The framework of this 3PKO-AMRAR model.
represent the positions of two individuals randomly selected from the
population.

In Eq. (10), 𝑃 𝐸 denotes the predatory efficiency of the pied king-
fisher, which is defined as: 𝑃 𝐸 = 𝑃 𝐸max − (𝑃 𝐸max − 𝑃 𝐸min) × ( 𝑧

𝑀 𝑎𝑥_𝐼 𝑡𝑒𝑟 ),
where the constant 𝑃 𝐸max is set to 0.5 and the constant 𝑃 𝐸min is set to
0.

3. The proposed 3PKO-ANRAR model

To overcome the problem of setting the neighborhood radius across
diverse datasets in rough set theory, we introduce a distribution radius
and define a neighborhood radius adjustment factor to calculate the
optimal neighborhood radius for each sample with the dataset. This
optimal radius is used to construct an adaptive neighborhood rough set,
applied to attribute reduction. Next, the PKO algorithm is introduced
as a search mechanism for attribute subsets. The positions of the
pied kingfisher are treated as the reducts, and a corresponding fitness
function is defined to evaluate the quality of the reducts. Additionally,
to prevent the PKO algorithm from becoming trapped into local optima,
the concept of three-way decision is incorporated into the PKO’s pop-
ulation division mechanism. The population is divided in three ways,
with strategies dynamically updated over multiple iterations, aiming to
discover the globally optimal reduct. This work develops an attribute
reduction algorithm based on adaptive neighborhood rough sets and
three-way pied kingfisher optimizer, and illustrates the framework in
Fig. 1 from three phases: (1)adaptive neighborhood granulation; (2)
three-way Pied Kingfisher Optimizer; (3) attribute reduction.

3.1. Adaptive neighborhood radius

In various datasets, the distribution of samples is not uniform, mak-
ing it challenging to set a consistent radius for selection. Consequently,
Zhou et al. (2019) introduced a novel neighborhood relationship: the
neighborhood is automatically determined based on the distribution of
samples surrounding the target sample.

Definition 1. Given a decision system 𝐷 𝑆 = (𝑈 , 𝐶 ∪ 𝐷), for each
𝐵 ⊆ 𝐶 and 𝜅 ∈ 𝑈 , let 𝑁 𝑒𝑖 (𝜅 ) be a set of neighbors of 𝜅 arranged
𝑖 𝐵 𝑖 𝑖

4 
in ascending order of their distances from 𝜅𝑖 under 𝐵, which can be
represented as follows:

𝑁 𝑒𝑖𝐵(𝜅𝑖) = {𝜅1
𝑖 , 𝜅2

𝑖 ,… , 𝜅𝑘
𝑖 ,… , 𝜅𝑛−1

𝑖 }, (11)

where 𝐸 𝑑 𝑖𝑠𝐵(𝜅𝑖, 𝜅𝑖1) ≤ 𝐸 𝑑 𝑖𝑠𝐵(𝜅𝑖, 𝜅2
𝑖 ) ≤ ⋯ ≤ 𝐸 𝑑 𝑖𝑠𝐵(𝜅𝑖, 𝜅𝑛−1

𝑖 ), and 𝐸 𝑑 𝑖𝑠𝐵
denotes the distance metric under 𝐵.

The samples in the set 𝑁 𝑒𝑖𝐵(𝜅𝑖) are arranged in ascending order of
their distances from 𝜅𝑖 under 𝐵, as illustrated in Fig. 2.

From Fig. 2, it can be observed that there are 𝑛− 2 intervals between
adjacent samples in the set 𝑁 𝑒𝑖𝐵(𝜅𝑖), where the first interval is defined
as: 𝐻1 = 𝐸 𝑑 𝑖𝑠𝐵(𝜅𝑖, 𝜅2

𝑖 ) −𝐸 𝑑 𝑖𝑠𝐵(𝜅𝑖, 𝜅1
𝑖 ). Moreover, the second interval is

defined as: 𝐻2 = 𝐸 𝑑 𝑖𝑠𝐵(𝜅𝑖, 𝜅3
𝑖 ) −𝐸 𝑑 𝑖𝑠𝐵(𝜅𝑖, 𝜅2

𝑖 ), and so on. Consequently,
the 𝑚th interval is defined as: 𝐻𝑚 = 𝐸 𝑑 𝑖𝑠𝐵(𝜅𝑖, 𝜅𝑚+1

𝑖 ) − 𝐸 𝑑 𝑖𝑠𝐵(𝜅𝑖, 𝜅𝑚
𝑖 ).

Assuming an even distribution from 𝜅1
𝑖 to 𝜅𝑛−1

𝑖 , we partition the
interval 𝐸 𝑑 𝑖𝑠𝐵(𝜅𝑖, 𝜅𝑛−1

𝑖 ) into 𝑛− 1 equal segments: 𝐻1, 𝐻2,… , 𝐻𝑛−1, such
that 𝑊 𝑖𝑑 𝑡ℎℎ = 𝑊 𝑖𝑑 𝑡ℎ2 = ⋯𝑊 𝑖𝑑 𝑡ℎ𝑛−1 = ℎ. Each segment ℎ contains
exactly one sample. It is acknowledged that the distribution from 𝜅1

𝑖 to
𝜅𝑛−1
𝑖 is inherently non-uniform. Between 𝜅1

𝑖 and 𝜅𝑛−1
𝑖 , if the distance

between any two instances 𝜅𝑘
𝑖 and 𝜅𝑘+1

𝑖 exceeds ℎ, this is termed a
‘‘ℎ𝐺 𝐴𝑃 ’’, denoted as ℎ𝐺 𝐴𝑃 (𝜅𝑘, 𝜅𝑘+1). Consequently, the samples between
𝜅𝑖 and the first encountered ℎ𝐺 𝐴𝑃 are considered the nearest neighbors
of 𝜅𝑖. In Zhou et al. (2019), ℎ𝐺 𝐴𝑃 = 1.5 × 𝐸 𝑑 𝑖𝑠max−𝐸 𝑑 𝑖𝑠min

𝑛−1 .

Definition 2. Given a decision system 𝐷 𝑆 = (𝑈 , 𝐶∪𝐷), for each 𝐵 ⊆ 𝐶
and 𝜅𝑖 ∈ 𝑈 , the distance from sample 𝜅𝑖 to the location of the first
gap is defined as the neighborhood radius, which can be represented
as follows:

𝛿𝑑 (𝜅𝑖) = 𝐸 𝑑 𝑖𝑠𝐵(𝜅𝑖, 𝜅𝑚
𝑖 ), (12)

where 𝐸 𝑑 𝑖𝑠(𝜅𝑖, 𝜅𝑚
𝑖 ) > ℎ𝐺 𝐴𝑃 and for any 2 ≤ 𝑘 ≤ 𝑚, 𝐸 𝑑 𝑖𝑠𝐵(𝜅𝑘

𝑖 , 𝜅𝑘+1
𝑖 ) <

ℎ𝐺 𝐴𝑃 .

From Fig. 2, it is known that 𝐻𝑚 = 𝐸 𝑑 𝑖𝑠𝐵(𝜅𝑖, 𝜅𝑚+1
𝑖 ) −𝐸 𝑑 𝑖𝑠𝐵(𝜅𝑖, 𝜅𝑚

𝑖 ) >
ℎ𝐺 𝐴𝑃 and for any 1 < 𝑘 < 𝑚− 1, 𝐻𝑘 < ℎ𝐺 𝐴𝑃 . Next, we will illustrate the
computation process of the distribution radius through an example.

The distribution radius is calculated based on the local distribution
of samples, ignoring the inter-class distribution within the sample
space. If there is an overly dense region of samples, the chosen dis-
tribution radius may be too large, resulting in an excessive number
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Fig. 2. Contrast difference between the target and background.
of samples within the neighborhood. This not only increases the com-
putation time for the neighborhood radius, but also leads to overly
coarse granulation. To address this issue, considering the global sample
distribution, a maximum value is set for the distribution radius in this
paper.

Definition 3. Given a decision system 𝐷 𝑆 = (𝑈 , 𝐶 ∪ 𝐷). For each
𝐵 ⊆ 𝐶 and 𝜅𝑖 ∈ 𝑈 , consider the distribution of all sample labels
and distributions in the sample space. The maximum value of the
distribution radius is defined as follows:

𝛿𝑑max(𝜅𝑖) =
1
2
|

|

|

C𝑆 𝑎𝑚𝑒𝐿𝑎𝑏𝑒𝑙(𝜅𝑖, 𝐵) − C𝐷 𝑖𝑓 𝑓 𝐿𝑎𝑏𝑒𝑙(𝜅𝑖, 𝐵)||
|

, (13)

where C𝑆 𝑎𝑚𝑒𝐿𝑎𝑏𝑒𝑙(𝜅𝑖, 𝐵) represents the center of samples with the same
label as 𝜅𝑖 under 𝐵, and C𝐷 𝑖𝑓 𝑓 𝐿𝑎𝑏𝑒𝑙(𝜅𝑖, 𝐵) represents the center of
samples with different labels from 𝜅𝑖 under 𝐵.

C𝑆 𝑎𝑚𝑒𝐿𝑎𝑏𝑒𝑙(𝜅𝑖, 𝐵) and C𝐷 𝑖𝑓 𝑓 𝐿𝑎𝑏𝑒𝑙(𝜅𝑖, 𝐵) are defined as follows:

C𝑆 𝑎𝑚𝑒𝐿𝑎𝑏𝑒𝑙(𝜅𝑖, 𝐵) =
∑
|𝑃𝑠𝑎𝑚𝑒|
𝑖=1 𝑤𝑖𝑔(𝜅𝑖, 𝐵)
∑
|𝑃𝑠𝑎𝑚𝑒|
𝑖=1 𝑤𝑖

, (14)

C𝐷 𝑖𝑓 𝑓 𝐿𝑎𝑏𝑒𝑙(𝜅𝑖, 𝐵) =
∑

|

|

|

𝑃𝑑 𝑖𝑓 𝑓 ||
|

𝑖=1 𝑤𝑖𝑔(𝜅𝑖, 𝐵)
∑

|

|

|

𝑃𝑑 𝑖𝑓 𝑓 ||
|

𝑖=1 𝑤𝑖

, (15)

where 𝑃𝑠𝑎𝑚𝑒 denotes the set of samples with the same label as 𝜅𝑖, and
𝑃𝑑 𝑖𝑓 𝑓 denotes the set of samples with different labels from 𝜅𝑖. The
weight 𝑤𝑖 = 1

𝐸 𝑑 𝑖𝑠𝐵 (𝜅𝑖 ,𝜅𝑗 ) considers the distribution between classes in
the sample space. Specifically, the maximum value of the distribution
radius should not exceed the distance between the center of its class
and other class centers; otherwise, it is considered to exceed the class’s
distribution range.

Compared to the traditional granulation mechanism with fixed radii
in neighborhood rough sets, this approach allows for the adaptive
determination of a neighborhood radius for each sample based on its
distribution. Suppose that 𝐶 𝑙 𝑎𝑠𝑠1 and 𝐶 𝑙 𝑎𝑠𝑠2 are considered the most
suitable for classification and are expected to be selected during at-
tribute reduction. In that case, it is necessary to ensure that the number
of samples correctly classified under these two attributes is higher than
other attributes. However, as shown in Fig. 3, the neighborhoods of the
samples 𝑤𝑖 and 𝑣𝑖 at the boundary between two classes may still contain
samples from different classes. In such case, 𝑤𝑖 and 𝑣𝑖 do not belong
to the identified samples and cannot be correctly classified. If there
are many such samples under 𝐶 𝑙 𝑎𝑠𝑠1 and 𝐶 𝑙 𝑎𝑠𝑠2, the importance of
these attributes may be underestimated during evaluation, potentially
leading to their exclusion.

Definition 4. Given a decision system 𝐷 𝑆 = (𝑈 , 𝐶∪𝐷). For each 𝐵 ⊆ 𝐶
and 𝜅𝑖 ∈ 𝑈 , the adaptive neighborhood radius adjustment factor 𝜉(𝜅𝑖)
for sample 𝜅𝑖 is defined as follows:

𝜉(𝜅𝑖) = 1
1 +𝑁 𝐸(𝐷 | 𝐵 )

, (16)

where 𝜉(𝜅𝑖) > 0, 𝑁 𝐸(𝐷 ∣ 𝐵) represents the neighborhood conditional
entropy, which quantifies the uncertainty of the decision attribute 𝐷
with respect to the condition attribute subset 𝐵. The neighborhood
5 
Fig. 3. Boundary issues in sample classification.

conditional entropy is given by 𝑁 𝐸(𝐷 ∣ 𝐵) = 𝑁 𝐸(𝐷 ∪ 𝐵) − 𝑁 𝐸(𝐵),
where 𝑁 𝐸(𝐵) is the neighborhood information entropy of 𝐵 on 𝑈 .

Specifically, 𝑁 𝐸(𝐵) = 1 − 1
|𝑈 |

∑

|𝑈 |

𝑖=1

|

|

|

𝑁𝛿
𝐵 (𝜅𝑖)

|

|

|

|𝑈 |

, where 𝑁𝛿
𝐵(𝜅𝑖) denotes the

neighborhood of sample 𝜅𝑖 with respect to 𝐵.

Definition 5. Given a decision system 𝐷 𝑆 = (𝑈 , 𝐶 ∪ 𝐷), For each
𝜅𝑖 ∈ 𝑈 , the adaptive neighborhood radius of 𝜅𝑖 is defined as follows:

𝛿𝑑𝑎𝑑 𝑎𝑝(𝜅𝑖) = 𝜉 × 𝛿𝑑 (𝜅𝑖), (17)

where 𝜉 is the adaptive neighborhood radius adjustment factor.
During the neighborhood adjustment process, if the adjustment ratio

is too large, the neighborhood radius becomes too small, resulting in
the absence of other samples within the neighborhood. On the contrary,
if the adjustment ratio is too small, too many heterogeneous sam-
ples remain in the neighborhood, resulting in ineffective adjustment.
Therefore, the range of 𝛿𝑑𝑎𝑑 𝑎𝑝(𝜅𝑖) is as follows:
⎧

⎪

⎨

⎪

⎩

𝛿𝑑𝑎𝑑 𝑎𝑝 = 0.1𝛿𝑑 ,
𝛿𝑑𝑎𝑑 𝑎𝑝 = 𝜉 × 𝛿𝑑 ,
𝛿𝑑𝑎𝑑 𝑎𝑝 = 0.9𝛿𝑑 ,

𝜉 < 0.1;
0.1 ≤ 𝜉 ≤ 0.9;

𝜉 > 0.9.
(18)

When 𝜉 < 0.1, it is considered that the maximum adjustment
strength has been reached, and the parameter 𝜉 = 0.1 is used. When 𝜉 >
0.9, the condition attribute subset has little correlation with the decision
attribute, so the adjustment strength is reduced, and the parameter
𝜉 = 0.9 is applied. When 0.1 ≤ 𝜉 ≤ 0.9, the neighborhood radius is
reduced according to the value of 𝜉 given by the formula.

Fig. 4 illustrates the granulation effects on boundary samples before
and after adjusting the neighborhood radius. In Fig. 4(a), a fixed neigh-
borhood radius 𝛿𝑑 is applied to the samples 𝑤𝑖 and 𝑣𝑖, encompassing
samples from both 𝐶 𝑙 𝑎𝑠𝑠1 and 𝐶 𝑙 𝑎𝑠𝑠2 within its neighborhood. This
overlap introduces ambiguity in the classification of 𝑤𝑖 and 𝑣𝑖, making
it difficult to determine its correct classes. The fixed radius fails to
adapt to the local sample distribution, resulting in coarse granularity
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Fig. 4. Adaptive neighborhood radius adjustment and sample granulation effects.
and potential misclassification at class boundaries. To address this
issue, an adaptive neighborhood adjustment strategy is adopted. Since
condition attributes have varying correlations with decision attributes,
the neighborhood radius is adjusted based on these correlations. Specif-
ically, a higher correlation results in a greater adjustment to enhance
the precision of granulation, whereas a lower correlation reduces the
adjustment. This approach helps in selecting more suitable attributes
for classification. As shown in Fig. 4(b), the adaptive neighborhood
radius dynamically adjusts based on local density and the dependency
between condition and decision attributes. This adaptation reduces
boundary ambiguity and ensures that 𝑤𝑖 is correctly classified as be-
longing to 𝐶 𝑙 𝑎𝑠𝑠1. Similarly, for 𝑣𝑖, the adaptive radius 𝛿𝑑𝑎𝑑 𝑎𝑝 excludes
blue samples from its neighborhood, ensuring its accurate classification
as belonging to 𝐶 𝑙 𝑎𝑠𝑠2. By fine-tuning the radius according to local
density and class distribution, the adaptive mechanism achieves finer
granularity and improved classification accuracy.

3.2. Adaptive neighborhood rough set

Definition 6. Given a decision system 𝐷 𝑆 = (𝑈 , 𝐶 ∪ 𝐷), for each
𝐵 ⊆ 𝐶 and 𝜅𝑖, 𝜅𝑗 ∈ 𝑈 , let 𝛿𝐷𝑎𝑑 𝑎𝑝 be the adaptive neighborhood radius of
𝜅𝑖. Then, the adaptive neighborhood of 𝜅𝑖 with respect to conditional
attribute subset 𝐵 is defined as follows:

𝛿𝐷𝑎𝑑 𝑎𝑝(𝜅𝑖) = {𝜅𝑗 ∈ 𝑈 |𝐸 𝑑 𝑖𝑠𝐵(𝜅𝑖, 𝜅𝑗 ) ≤ 𝛿𝐷𝑎𝑑 𝑎𝑝}, (19)

where 𝐸 𝑑 𝑖𝑠𝐵(𝜅𝑖, 𝜅𝑗 ) is the Euclidean distance between 𝜅𝑖 and 𝜅𝑗 regard-
ing attribute subset 𝐵.

Next, it is necessary to develop two approximation operators for
the purpose of constructing an approximate representation of the target
samples’ neighborhoods.

Definition 7. Given a decision system 𝐷 𝑆 = (𝑈 , 𝐶 ∪ 𝐷), for each
𝐵 ⊆ 𝐶 and 𝜅𝑖, 𝜅𝑗 ∈ 𝑈 . Let 𝑈∕𝐷 = {𝐷1, 𝐷2,… , 𝐷𝑘}, the upper and lower
approximations of 𝐷 with respect to conditional attribute subset 𝐵 can
be defined as follows:

𝐴𝑑 𝑎𝑝𝑁𝐵(𝐷) =
𝑘
⋃

𝑖=1
𝐴𝑑 𝑎𝑝𝑁𝐵(𝐷𝑖), (20)

𝐴𝑑 𝑎𝑝𝑁𝐵(𝐷) =
𝑘
⋃

𝑖=1
𝐴𝑑 𝑎𝑝𝑁𝐵(𝐷𝑖). (21)

for any 1 ≤ 𝑖 ≤ 𝑘,

𝐴𝑑 𝑎𝑝𝑁𝐵(𝐷𝑖) = {𝜅 ∈ 𝑈 |𝛿𝐷𝑎𝑑 𝑎𝑝(𝜅) ∩𝐷𝑖 ≠ ∅}, (22)

𝐴𝑑 𝑎𝑝𝑁𝐵(𝐷𝑖) = {𝜅 ∈ 𝑈 |𝛿𝐷𝑎𝑑 𝑎𝑝(𝜅) ⊆ 𝐷𝑖}. (23)
6 
Definition 8. Given a decision system 𝐷 𝑆 = (𝑈 , 𝐶∪𝐷), for each 𝐵 ⊆ 𝐶
and 𝜅𝑖, 𝜅𝑗 ∈ 𝑈 . The positive, boundary, and negative regions of 𝐷 with
respect to 𝐵 can be defined as follows:

𝑃 𝑂 𝑆𝐴𝑑 𝑎𝑝𝑁𝐵
(𝐷) = 𝐴𝑑 𝑎𝑝𝑁𝐵(𝐷), (24)

𝐵 𝑁 𝐷𝐴𝑑 𝑎𝑝𝑁𝐵
(𝐷) = 𝐴𝑑 𝑎𝑝𝑁𝐵(𝐷) − 𝐴𝑑 𝑎𝑝𝑁𝐵(𝐷), (25)

𝑁 𝐸 𝐺𝐴𝑑 𝑎𝑝𝑁𝐵
(𝐷) = 𝑈 − 𝐴𝑑 𝑎𝑝𝑁𝐵(𝐷). (26)

Definition 9. Given a decision system 𝐷 𝑆 = (𝑈 , 𝐶∪𝐷), for each 𝐵 ⊆ 𝐶,
the dependency degree of 𝐷 with respect to 𝐵 is defined as follows:

𝐴𝐷 𝐸(𝐷 , 𝑈 ) =
|

|

|

𝑃 𝑂 𝑆𝐴𝑑 𝑎𝑝𝑁𝐵
(𝐷)||

|

|𝑈 |

. (27)

It is obvious that 0 ≤ 𝐴𝐷 𝐸(𝐷 , 𝑈 ) ≤ 1, and the dependency degree
calculates the proportion of samples that can be accurately classified
under conditional attribute subset 𝐵.

3.3. Three-way pied kingfisher optimizer

In this subsection, we introduce the integration of three-way de-
cision (Yao, 2011) into the PKO algorithm. The three-way decision
is crucial for dynamically categorizing the kingfisher population into
pioneer, regular, and exploratory subgroups. This categorization is
based on the fitness of individuals relative to the population’s mean and
standard deviation. By incorporating these decision-making strategies,
the algorithm effectively balances exploration and exploitation. The
pioneer subgroup focuses on fine-tuning solutions near optimality, the
regular subgroup facilitates diverse exploration, and the exploratory
subgroup enhances overall diversity. This integration not only improves
convergence speed but also mitigates the risk of local optima.

Definition 10. Let 𝑋𝑖 = {𝜅𝑖,1, 𝜅𝑖,2,… , 𝜅𝑖,𝑑} be the position of a pied
kingfisher. Through a specific transformation method, the continuous
position 𝑋𝑖 can be converted into a binary position of length 𝑑, de-
noted as 𝑋′

𝑖 = {𝜅′
𝑖,1, 𝜅′

𝑖,2,… , 𝜅′
𝑖,𝑑}, where 𝑑 represents the number

of attributes. This specific transformation method can be defined as
follows:

𝜅′
𝑖,𝑗 =

{

1 𝑖𝑓 𝑟𝑎𝑛𝑑 < 𝜅𝑖,𝑗 (28)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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where 𝑟𝑎𝑛𝑑 is a random number between 0 and 1, 𝜅𝑖,𝑗 ∈ [0, 1] denotes
the 𝑗th dimension value of prey 𝑖 in the continuous space. Each 𝜅′

𝑖,𝑗
orresponds to an attribute, with a value of 1 indicating that the
ttribute is selected, and a value of 0 indicating that it is not selected.

Definition 11. The fitness function is defined based on attribute
dependency and the length of the reduced set. This function evaluates
the quality of feature subsets, with larger fitness values indicating
superior feature subsets. The fitness function can be defined as follows:

𝑓 𝑖𝑡𝑃 𝐾 𝑂 = 𝛼 × 𝐴𝐷 𝐸𝑅(𝐷) + 𝛽 × 𝑅𝐿𝐸 𝑁 , (29)

where 𝑅𝐿𝐸 𝑁 is the length of the reduced set, calculated as 𝑅𝐿𝐸 𝑁 =
|𝐶|−|𝑅|

|𝐶|

, |𝑅| is the length of the currently selected attribute subset, and
𝐶| is the total number of attributes in the dataset.

In Eq. (27), the parameters 𝛼 and 𝛽 correspond to the importance
f 𝐴𝐷 𝐸𝑅(𝐷) and 𝑅𝐿𝐸 𝑁 , respectively, where 𝛼 ∈ [0, 1] and 𝛽 = 1 −
. Attribute dependency, representing the proportion of the positive
egion, is more crucial than the length of the reduced set to ensure
lassification accuracy, as it allows the derivation of deterministic rules.

Definition 12. By incorporating the concept of three-way decision-
aking, individuals in the kingfisher population are dynamically di-

ided into pioneer, regular, and exploratory subgroups based on the
elationship between individual fitness and the mean and standard
eviation of the population fitness. Individuals with fitness above the
hreshold are classified into the pioneer subgroup, those below the
hreshold are classified into the regular subgroup, and the remaining in-
ividuals are classified into the exploratory subgroup. The partitioning
ules are as follows.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑓 𝑖𝑡𝑖 ≥ 𝜇 + exp(− 𝐼 𝑡𝑒𝑟
𝐼 𝑡𝑒𝑟max

) × 𝜎 , 𝑖 → 𝑃 𝑂 𝑃𝑝(𝑡),

𝜇 − exp(− 𝐼 𝑡𝑒𝑟
𝐼 𝑡𝑒𝑟max

) × 𝜎 < 𝑓 𝑖𝑡𝑖 < 𝜇 + exp(− 𝐼 𝑡𝑒𝑟
𝐼 𝑡𝑒𝑟max

) × 𝜎 , 𝑖 → 𝑃 𝑂 𝑃𝑒(𝑡),

𝑓 𝑖𝑡𝑖 ≤ 𝜇 − exp(− 𝐼 𝑡𝑒𝑟
𝐼 𝑡𝑒𝑟max

) × 𝜎 , 𝑖 → 𝑃 𝑂 𝑃𝑟(𝑡),

(30)

where 𝐼 𝑡𝑒𝑟 is the current iteration number, 𝐼 𝑡𝑒𝑟max is the maximum
teration number, 𝑓 𝑖𝑡𝑖 denotes the fitness value of the 𝑖th individual, 𝜇
s the mean fitness of the current population, and 𝜎 is the standard de-
iation of the population fitness. As the algorithm iterates, exp(− 𝐼 𝑡𝑒𝑟

𝐼 𝑡𝑒𝑟max
)

gradually decreases, tightening the criteria for individual partitioning.
Initially, the criteria are more lenient, allowing more individuals to
nter the pioneer subgroup, while later, only those individuals who are

very close to the optimal individuals enter the pioneer subgroup.

Definition 13. For individuals in the regular subgroup 𝑃 𝑂 𝑃𝑟(𝑡), the
kingfishers are relatively far from the current optimal individual. As
hey approach the optimal individual, there are numerous possibilities
hat make them less prone to local optima. In contrast, kingfishers
n the pioneer subgroup 𝑃 𝑂 𝑃𝑝(𝑡) are closer to the optimal individual

and may quickly converge to a local optimum. Thus, by constructing
substitute points for the optimal individual, the position update process
f kingfishers in the pioneer subgroup utilizes the substitute point 𝑋𝑚
nstead of the optimal individual, which is defined as follows:

𝑋𝑚 = 𝑋 − 𝑚 × 𝑐𝑖 × |

|

𝑋 −𝑋𝑟𝑎𝑛𝑑
|

|

, (31)

where 𝑚 = 𝐼 𝑡𝑒𝑟max−𝐼 𝑡𝑒𝑟
𝐼 𝑡𝑒𝑟max

, and 𝑐𝑖 is the perturbation amplitude which
is dynamically adjusted based on the relative difference in individual
fitness. Individuals with a larger fitness gap will have greater perturba-
tion, while those with a smaller gap will have less perturbation, defined
s: 𝑐𝑖 =

𝑓 𝑖𝑡𝑏𝑒𝑠𝑡−𝑓 𝑖𝑡𝑖
𝑓 𝑖𝑡𝑏𝑒𝑠𝑡 . Moreover, 𝑋 is the current optimal individual, and

𝑟𝑎𝑛𝑑 is a randomly generated individual. For kingfishers in the pioneer
ubgroup, the position update process uses 𝑋𝑚 to replace the optimal
ndividual, while the position update process for individuals in the

regular subgroup remains unchanged.
7 
3.4. The 3PKO-ANRAR algorithm

In this subsection, we propose an attribute reduction algorithm
based on the adaptive neighborhoods and three-way pied kingfisher
optimizer(denoted by 3PKO-ANRAR).

To illustrate the procedure of algorithm, the neighborhood distribu-
tion radius and the radius adjustment factor are computed first, so as
to obtain each sample’s adaptive neighborhood radius. Then the neigh-
borhood conditional entropy and neighborhood dependence between
attribute and label sets are calculated. The PKO algorithm is then intro-
duced to attribute reduction. Considering that in PKO, the individual’s
move decision is probabilistic, that is, different search strategies are
used to update the location under different probabilities. Therefore, this
uncertainty is eliminated by combining three-way decisions. Finally, an
attribute reduction algorithm based on the improved three-way PKO is
developed. After several iterations, the optimal reduction is selected
and presented in Algorithm 1.

The algorithm 1 is briefly discussed as follows. Step 1 randomly
generates a set of solutions, and steps 2–4 calculate the adaptive
neighborhood radius for each sample. Steps 5–24 are used to get the
final reduction. Among them, steps 5–9 are to calculate the fitness
function of the current sample and get the current elite individual.
Steps 10–23 are the search scheme of the three-way PKO algorithm.
The algorithm stops until the maximum number of iterations is reached.
Steps 21–22 update the current location only if the new location
offers better solution than the current location. Since the Euclidean
distance employed in this paper is not suitable for measuring distances
between high-dimensional vectors, high-dimensional datasets are ex-
cluded from consideration. Fig. 5 clearly shows the flow diagram of the
algorithm.

In the adaptive neighborhood radius computation stage, calculating
pairwise distances for a dataset with samples and attributes requires
𝑂(|𝑈 |

2 × |𝐶|). Sorting the distances for each sample to determine the
eighborhood radius is 𝑂(|𝑈 |

2log |𝑈 |). Adjusting the radius with scaling
actors involves a linear pass over the samples, contributing O(|𝑈 |) .
hus, this stage has a total complexity of 𝑂(|𝑈 |

2×|𝐶|) +𝑂(|𝑈 |

2× log |𝑈 |).

In the fitness function evaluation stage, computing dependency
easures like the positive region involves examining the neighborhood

elationships of all samples, contributing 𝑂(|𝑈 |

2×|𝐶|). Constructing the
itness function for a population of size 𝑁 adds 𝑂(𝑁 × |𝐶|). Therefore,
he total complexity of this stage is 𝑂(|𝑈 |

2 × |𝐶|) + 𝑂(𝑁 × |𝐶|).
The three-way PKO optimization stage includes initializing the pop-

lation, dividing it into subgroups, and updating positions over Itermax
terations. Initialization and position updates each take 𝑂(𝑁 × |𝐶|), and

sorting for subgroup division takes 𝑂(𝑁 log𝑁). Repeating these steps
for Itermax iterations results in a total complexity of 𝑂(𝐼 𝑡𝑒𝑟max×𝑁×|𝐶|)
(since 𝑁 log𝑁 is dominated by 𝑁 × |𝐶| when |𝐶| is large).

The attribute reduction and output stage requires scanning the final
olution to extract the optimal subset, with a complexity of 𝑂 (|𝐶|).
ombining these, the overall time complexity of the 3PKO-ANRAR
lgorithm is 𝑂(|𝑈 |

2 × |𝐶|) + 𝑂(|𝑈 |

2 × log |𝑈 |) + 𝑂(𝐼 𝑡𝑒𝑟max × 𝑁 × |𝐶|).
ssuming |𝑈 | and |𝐶| are proportional to the problem size, and Itermax
nd 𝑁 are constants or grow more slowly compared to the problem
ize, the terms |𝑈 |

2 × |𝐶| and |𝑈 |

2 log |𝑈 | will be more significant
han Itermax × 𝑁 × |𝐶|. Since log |𝑈 | grows slower than |𝐶|, as |𝑈 |

ecomes very large, the term |𝑈 |

2 × |𝐶| will dominate. Therefore, the
ime complexity of the given expression is 𝑂(|𝑈 |

2 × |𝐶|).

4. Experimental design and analysis

This section evaluates the effectiveness of 3PKO-ANRAR by compar-
ing it with five representative algorithms. The comparative analysis is
divided into four parts: classification performance, running time, the
number of attributes selected, and statistical tests.
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Fig. 5. The flow chart of Algorithm 1.
b
a
e
N
e
f

i
c

w

a
p
a
a

4.1. Experimental environment and datasets

All experiments were performed on MATLAB2023b with the follow-
ng configuration. Windows 10 operating system, with the processor

being Intel(R) Core(TM) i7-8700 CPU @ 3.20 GHz, and 16.0 GB of
RAM. To verify the effectiveness of 3PKO-ANRAR, 16 datasets were
chosen from the UCI Machine Learning Repository1 and gene datasets2

for comparative experiments. Detailed information on the experimental
datasets is shown in Table 1.

4.2. Experimental scheme

This subsection introduces the experimental setup. We compared
the proposed algorithm with raw datasets and five existing algorithms
on 16 datasets listed in Table 1. In the PKO algorithm, the number of
iterations was set to 20. and all the conditional attributes within the
data set have been normalized to a range of [0, 1].

To validate the effectiveness of 3PKO-ANRAR algorithm, the exper-
iments assessed the algorithm from three perspectives:

(1) evaluating the attribute reduction process;
(2) evaluating whether 3PKO-ANRAR algorithm can effectively re-

ove redundant attributes while improving the accuracy of raw classi-
ication;

(3) evaluating whether the efficiency of 3PKO-ANRAR algorithm
outperforms the five representative attribute reduction algorithms,
i.e., NNRS (Wang et al., 2019), HARNRS (Hu, Yu et al., 2008), Far-
VPKNN (Hu, Liu et al., 2008), HARCD (Wang et al., 2018), and

1 http://archive.ics.uci.edu/ml/datasets.php.
2 https://csse.szu.edu.cn/staff/zhuzx/datasets.html.
8 
FSMRI (Qu et al., 2023).
For (1), the evaluation of the reduction process was conducted

y comparing the runtime of each algorithm. For (2) and (3), the
ccuracy and balanced accuracy of the attribute groups selected by
ach algorithm were assessed using Decision Tree (DT) and K-Nearest
eighbors (KNN) classifiers, with 10-fold cross-validation applied to
ach dataset. The Gini index was employed as the partition criterion
or the Decision Tree, and the parameter 𝐾 in KNN was varied from 1

to 10.
Accuracy(ACC) is a fundamental metric for assessing classification

performance. It is defined as the proportion of correctly classified
nstances out of the total number of instances evaluated. It can be
alculated according to Eq. (32).

Acc = TP + TN
TP + TN + FP + FN , (32)

where TP refers to instances where positive samples are accurately
identified as positive, FN denotes cases where positive samples are
mistakenly classified as negative, FP describes scenarios where negative
samples are incorrectly identified as positive, and TN signifies instances
where negative samples are correctly classified as negative.

Accuracy measures the overall correctness of predictions and is
idely utilized for its simplicity and interpretability. However, it

should be supplemented with additional metrics, such as balanced
ccuracy, to offer a more comprehensive evaluation of a model’s
erformance, particularly in scenarios with data imbalance. Balanced
ccuracy(BA) provides a thorough assessment by considering sensitivity
cross all classes. It is calculated as shown in Eq. (33).

BA = 1
2

(

TP
TP + FN + TN

TN + FP

)

, (33)

where TP, TN, FP, and FN denote true positives, true negatives, false
positives, and false negatives, respectively. This metric accounts for

http://archive.ics.uci.edu/ml/datasets.php
https://csse.szu.edu.cn/staff/zhuzx/datasets.html
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Algorithm 1: 3PKO-ANRAR

Input: Decision table 𝐷 𝑆 = (𝑈 , 𝐶 ∪𝐷), 𝐼 𝑡𝑒𝑟𝑚𝑎𝑥
Output: An optimal reduct 𝑅𝑜𝑝𝑡

1 Initialization of population creation 𝑋𝑖 (1 ≤ 𝑖 ≤ 𝑁)
2 for any sample 𝜅𝑖 in 𝑈 do
3 Generate the adaptive neighborhood radius 𝛿𝑎𝑑 𝑎𝑝 of 𝜅𝑖 according

to Equation (19).
4 end
5 Generate the current pied kingfisher group

𝑃 𝑂 𝑃 (𝑖𝑡𝑒𝑟) = 𝑋𝑖𝑡𝑒𝑟
1 , 𝑋𝑖𝑡𝑒𝑟

2 ,… , 𝑋𝑖𝑡𝑒𝑟
𝑁 .

6 for 𝑖𝑡𝑒𝑟 = 1, 2,… , 𝐼 𝑡𝑒𝑟𝑚𝑎𝑥 do
7 Use Equation (29) to calculate the fitness of each individual in

𝑃 𝑂 𝑃 (𝑖𝑡𝑒𝑟).
8 Search for the position of the current optimal individual 𝑋𝑏𝑒𝑠𝑡 and

record its fitness value 𝑓 𝑖𝑡𝑏𝑒𝑠𝑡.
9 Use Equation (30) to calculate the probability of the optimal

replacement group.
10 for 𝑖 = 1 ∶ 𝑁 do
11 Calculate the adaptive distance from individual 𝑋𝑖 to the

optimal individual 𝑅𝑜𝑝𝑡.
12 if 𝑟𝑎𝑛𝑑() < 0.8 then
13 Update the position of pied kingfisher 𝑋𝑖 according to

Equation (6).
14 else if 𝑟𝑎𝑛𝑑() > 1 − 𝑃 𝐸 then
15 Update the position of pied kingfisher 𝑋𝑖 according to

Equation (9).
16 else
17 Update the position of pied kingfisher 𝑋𝑖 according to

Equation (10).
18 end
19 if 𝑋𝑖 ∈ 𝑃 𝑂 𝑃𝑝(𝜅) then
20 Update the position of pied kingfisher 𝑋𝑖 according to

Equation (31).
21 end
22 end
23 Compute the current fitness of pied kingfisher 𝑓 𝑖𝑡𝑝𝑘𝑜, and 𝑓 𝑖𝑡𝑏𝑒𝑠𝑡

← 𝑓 𝑖𝑡𝑝𝑘𝑜.
24 Set the optimal position 𝑅𝑜𝑝𝑡 as the position of 𝑓 𝑖𝑡𝑏𝑒𝑠𝑡.
25 end
26 return 𝑅𝑜𝑝𝑡

Table 1
The properties of the 16 datasets.

No. Datasets Samples Attributes Classes

1 Breast Cancer Coimbra 116 9 2
2 Glass1 214 9 2
3 Plrx 182 12 2
4 Speaker Accent Recognotion 329 12 6
5 Heart 270 13 2
6 Wine 178 13 3
7 Climate Model Simulation Crashes 540 18 2
8 Messidor features 1151 19 2
9 Parkinsons 195 21 2
10 Wpbc 194 21 2
11 Wdbc 569 23 2
12 Audit 776 26 2
13 Ionosphere 351 33 2
14 Hill 606 100 2
15 Colon 62 2000 2
16 Toxicity 171 1203 2

the accuracy of each class independently, thus mitigating the bias
ntroduced by imbalanced datasets.

Five attribute reduction algorithms are selected for comparison with
PKO-ANRAR. The rationale for including these algorithms stems from
heir methodological similarities, shared focus on neighborhood rough
et models, ability to handle heterogeneous datasets, and applicability
o problems involving both attribute reduction and classification accu-
acy. A brief introduction to the comparison algorithms and the reasons
9 
for their selection for evaluation is provided below.
(1) The HARNRS algorithm is included as it is a well-established

ethod for heterogeneous feature subset selection, using the 𝜂-
eighborhood rough set model to evaluate feature discriminative abil-
ty (Hu, Yu et al., 2008). This algorithm is suitable for datasets contain-
ng both numerical and categorical attributes, making it a strong bench-
ark for evaluating the flexibility and adaptability of the proposed

lgorithm. Comparing against HARNRS demonstrates whether 3PKO-
NRAR can achieve comparable or better performance in handling
eterogeneous feature spaces.

(2) The Far-VPKNN algorithm applies 𝑘-nearest neighbor relation-
hips to neighborhood rough sets, handling both numerical and cate-

gorical attributes through granulation and approximation methods (Hu,
iu et al., 2008). The model is used to assess the importance of

mixed features and constructs a greedy attribute reduction algorithm.
Its greedy attribute reduction approach is particularly relevant for
evaluating the efficiency and effectiveness of the proposed algorithm’s
search mechanism (i.e., the three-way Pied Kingfisher Optimizer). By
comparing with Far-VPKNN, we can assess whether the proposed al-
gorithm’s attribute subset search mechanism outperforms traditional
greedy methods.

(3) The FSMRI algorithm is a feature selection method based on
daptive neighborhood rough sets that rely on sample neighborhood
abel distributions (Qu et al., 2023). This algorithm quantifies the corre-
ation between features and decisions using Rough Mutual Information
nd applies the Maximal Relevance and Minimal Redundancy principle

for feature selection. Since 3PKO-ANRAR also uses adaptive neighbor-
ood rough sets and aims to reduce time complexity while improving

classification accuracy, comparison with FSMRI can assess the balance
between running time and efficiency in the proposed algorithm.

(4) The NNRS algorithm is an attribute reduction method based on
the 𝑘-nearest neighborhood rough set (𝑘-NNRS) model (Wang et al.,
2019). This model combines the advantages of the 𝛿-neighborhood and
𝑘-nearest neighbors, effectively addressing non-homogeneous sample
distributions, which makes it an excellent benchmark for evaluat-
ing how well the adaptive neighborhood radius mechanism in 3PKO-

NRAR handles datasets with non-homogeneous distributions or un-
ven sample densities. By comparing NNRS, we can assess whether
he proposed approach improves upon the robustness and flexibil-
ty of traditional neighborhood-based methods in handling diverse
istributions.

(5) The HARCD algorithm is a feature selection method based on
the neighborhood distinguishability matrix, designed to select effective
eature subsets in heterogeneous datasets (Wang et al., 2018). This

algorithm considers both sample consistency and the ability to distin-
uish between different decision outcomes, making it highly relevant
or evaluating classification performance. By comparing with HARCD,
e can directly assess the efficacy of 3PKO-ANRAR in selecting optimal

eature subsets and improving classification results.

4.3. Experimental results and analysis

In this section, we demonstrate the effectiveness of the proposed
attribute selection algorithm through comprehensive comparative ex-
periments. The evaluation is based on three key metrics: the running
time required to generate the reducts, the size of the reducts, the length
of the reducts, and the classification accuracy and balanced accuracy of
the reducts on the specific classifier.

The comparison of the running time of different attribute reduction
lgorithms is shown in Table 2, where our algorithm shows competi-

tive performance, ranking favorably against the other five algorithms
across multiple datasets. Notably, the proposed algorithm exhibits a
significantly lower average runtime of 755.4 s compared to HARNRS,
Far-VPKNN, and HARCD. It also outperforms NNRS on most datasets,
though FSMRI achieves the fastest average runtime at 14.5 s. These
results indicate that 3PKO-ANRAR performs competitively, achieving
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Table 2
The reduction time of 5 comparison algorithms(s).

No. Datasets 3PKO-ANRAR HARNRS Far-VPKNN FSMRI NNRS HARCD

1 bcc 2 7 6 1 5 3
2 glass1 4 52 20 1 9 29
3 plrx 5 27 15 1 18 17
4 sar 26 113 91 1 19 57
5 heart 23 112 68 1 43 45
6 wine 7 35 33 1 16 18
7 cmsc 156 542 591 1 47 366
8 mf 621 9049 1996 2 1312 4981
9 parkinsons 19 101 74 1 48 71
10 wpbc 32 265 176 1 105 151
11 wdbc 36 13 12 1 17 17
12 audit 732 4060 1387 2 1421 2921
13 ionosphere 235 1036 899 1 401 571
14 hill 9152 26 912 13 172 11 5921 18 962
15 tc 635 1358 3543 204 675 3201
16 colon 402 1513 812 48 241 1698

average 755.4 2824.7 1430.1 17.4 643.6 2069.2

shorter runtimes than methods such as HARNRS, Far-VPKNN, and
ARCD, while being slightly slower than FSMRI. This difference is
ttributed to the iterative nature of PKO and the computational over-
ead introduced by the adaptive scaling factor, which results in slightly
onger runtimes for 3PKO-ANRAR. Although FSMRI achieves the fastest
verage runtime, it compromises classification accuracy and reduc-
ion quality. This makes 3PKO-ANRAR a more advantageous choice
or scenarios where computational resources allow for slightly higher
untimes in exchange for better overall performance.

Table 3 presents the reduction lengths across 16 datasets using
various comparison algorithms. Our proposed 3PKO-ANRAR algorithm
generally achieves shorter reduction lengths, demonstrating its effi-
ciency in attribute reduction. Table 4 details the specific attributes
elected by each algorithm for the same datasets, highlighting differ-

ences in attribute selection across methods. Our algorithm consistently
produces more concise attribute sets while maintaining essential in-
formation across datasets. Regarding reduction set size, 3PKO-ANRAR
demonstrates significant advantages by generating smaller feature sub-
sets without compromising classification accuracy, reflecting its ability
to balance the trade-off between dataset simplification and predictive
power. In contrast, algorithms such as NNRS tend to generate larger
subsets due to less sophisticated reduction strategies, which may in-
clude redundant features. While FSMRI produces small subsets, its
reliance on Fisher Score dimensionality reduction sometimes overlooks
critical feature interactions, leading to a loss in classification accuracy.
The ability of 3PKO-ANRAR to consistently achieve smaller subsets
while maintaining or improving classification accuracy underscores its
effectiveness in simplifying datasets, reducing computational costs for
downstream tasks, and enhancing model interpretability.

Figs. 6 and 7 displays the accuracy and the balanced accuracy of
arious algorithms on KNN and Decision Tree classifiers. The proposed

algorithm consistently outperforms other algorithms, particularly with
he Decision Tree, where it achieves the highest accuracy and balanced
ccuracy across most datasets.

Tables 5 and 6 show the results of different algorithms on the Deci-
ion Tree classifier. Our algorithm leads in average accuracy (0.7632)

and balanced accuracy (0.7255), indicating strong performance in both
overall prediction and handling class imbalances. Tables 7 and 8 detail
he results of different algorithms on the KNN classifier. Here, our
lgorithm once again performs excellently, with an average accuracy of
.7848 and a balanced accuracy of 0.7215, surpassing other methods
n maintaining predictive stability across different classes.

It is interesting that even when the proposed algorithm is not
the leader in terms of raw accuracy, it often ranks highest in terms
of balanced accuracy, indicating its robustness in managing different
class distributions. This highlights the algorithm’s adaptive capabilities,
10 
making it effective for complex datasets with uneven class distributions.
In terms of classification accuracy, 3PKO-ANRAR consistently outper-
forms the comparison methods across a wide range of datasets. This
robust performance can be attributed to the adaptive neighborhood
rough set model, which effectively captures local data distributions,
and the well-designed fitness function that emphasizes both attribute
dependency and minimal redundancy. Unlike traditional methods such
as Far-VPKNN or NNRS, which rely on fixed-radius or greedy strate-
gies, 3PKO-ANRAR dynamically adapts to the characteristics of each
dataset, avoiding premature convergence through its three-way deci-
sion mechanism. Although FSMRI and HARCD are more efficient in
certain respects, their predictive accuracy often lags behind due to their
reliance on simpler or less flexible optimization processes.

The Wilcoxon test is a non-parametric statistical method used to
compare two paired groups. When the data cannot be assumed to be
normally distributed, it can serve as an alternative to the paired t-test.
It evaluates whether the median differences between pairs of observa-
tions are zero, making it particularly useful for assessing performance
differences in computational experiments.

In Table 9, the Wilcoxon test results compare the 3PKO-ANRAR
algorithm with other algorithms across two classifiers: K-Nearest Neigh-
bors (KNN) and Decision Tree (DT). The threshold was set to 0.05 in the
xperiment. This table evaluates two metrics: accuracy and balanced

accuracy, offering insights into the comparative effectiveness of the
lgorithms. For the KNN classifier, the P-values remain below 0.05,

including FSMRI, NNRS, and RAW, in terms of accuracy, and the same
pattern is observed in terms of balanced accuracy. Thus, the results
demonstrate that both the accuracy and balanced accuracy of 3PKO-
ANRAR are significant distinct from those of the three algorithms.
Regarding the DT classifier, most P-values are below 0.05, with the
exception of HARNRS and HARCD in terms of accuracy. Similarly,
in terms of balanced accuracy, the P-values of HARNRS, Far-VPKNN,
FSMRI and HARCD are all below 0.05. This indicates that 3PKO-ANRAR
exhibits significant differences in accuracy compared to approaches
other than HARNRS and HARCD, and exhibits significant differences in
balanced accuracy compared to approaches other than NNRS, HARCD,
and RAW. These statistical findings underscore the robust classification
performance of 3PKO-ANRAR.

Fig. 8 provides a visual representation of 9, clearly depicting the
performance comparison of existing algorithms with the proposed al-
gorithm across two classifiers. The chart is presented as a bar graph,
where each bar is divided into segments representing the p-values of
different algorithms. The height of each segment indicates the per-
centage of that algorithm’s 𝑝-value relative to the total 𝑝-value of all
algorithms. A smaller segment proportion suggests a more significant
performance difference between the algorithms.

5. Conclusions and future work

This paper proposed a method for attribute reduction based on
adaptive neighborhood rough sets and an improved PKO algorithm.
This approach addresses the challenge of setting neighborhood radii
in traditional rough sets and enhances the performance of attribute re-
duction. By incorporating sample distribution information to construct
adaptive neighborhood relations and setting a scaling factor, the ap-
proach achieves automatic adjustment of neighborhood radii, thereby
improving the adaptability to various data distributions. Furthermore,
leveraging the robust search capabilities of the PKO algorithm and the
dependency of adaptive neighborhood rough sets, a fitness function is
designed to evaluate the quality of reducts effectively and identify the
optimal reduct. To avoid local optima, a three-way population division
mechanism and local perturbation strategy are introduced, significantly
enhancing the robustness of our approach. Despite these achievements,
the proposed approach has some limitations. Firstly, the adaptive radius
of the neighborhood depends on the sample distribution, which may
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Table 3
The length of the reduction results of 5 comparison algorithms.
No. Datasets 3PKO-ANRAR HARNRS Far-VPKNN FSMRI NNRS HARCD RAW

1 bcc 3 2 3 2 9 4 9
2 glass1 2 4 1 2 9 4 9
3 plrx 1 3 1 1 12 2 12
4 sar 7 3 3 1 12 4 12
5 heart 8 5 3 2 13 3 13
6 wine 6 3 2 2 13 4 13
7 cmsc 5 2 2 1 18 3 18
8 mf 4 7 3 2 19 4 19
9 parkinsons 5 3 1 2 22 5 22
10 wpbc 4 2 1 2 33 2 33
11 wdbc 5 3 3 1 23 6 23
12 audit 11 3 1 3 22 3 22
13 ionosphere 5 3 3 1 33 2 33
14 hill 10 3 2 7 100 7 100
15 tc 4 2 2 6 1206 2 1206
16 colon 3 6 4 1 2000 2 2000
Table 4
The length of the reduction results of 5 comparison algorithms.

No. Datasets 3PKO-ANRAR HARNRS FarVPKNN FSMRI NNRS HARCD RAW

1 bcc 1,3,8 1,3 1,4,8 1,3 all 1,2,3,7 9
2 glass1 1,4 1,3,4,9 8 5,6 all 1,3,4,6 9
3 plrx 12 3,6,12 12 1 all 1,9 12
4 sar 1,3,4,5,6,10,11 1,3,10 5,6,12 3 all 1,2,8,10 12
5 heart 1,2,3,5,9,11,12,13 3,4,9,10,11 3,10,13 8,13 all 7,10,12 13
6 wine 1,4,5,7,10,13 7,10,13 7,11 7,10 all 1,6,8,13 13
7 cmsc 1,2,14,16,18 2,14 1,3 3 all 1,2,6 18
8 mf 3,7,10,11 3,6,9,10,11,15,18 3,7,16 11,18 all 1,7,8,16 19
9 parkinsons 5,18,19,20,21 1,19,20 5 5,6 all 1,7,16,19,20 22
10 wpbc 1,5,16,31 1,15 23 11,28 all 1,12 33
11 wdbc 22,23,24,25,28 22,23,30 23,26,29 8 all 3,4,21,22,23,24 23
12 audit 11,12,13,14,15,17,18,19,

21,22,23,24,25,26
14,19,22 26 4,14,18 Exceptfor

2,4,13,25
2,4,14 26

13 ionosphere 3,9,26,36 2,31,32 4,5,17 33 all 1,7 33
14 hill 1,2,5,16,18,44,52,72,89,98 2,14,15 25,73 32,42,55,64,65,67,71 all 22,43,8,72,74,83,89 100
15 tc 204,430,726,1096 517 571 430 442 67,204,264,343,798,1000 all 41,464 1206
16 colon 95,258,1411 1293,1673 95,258,1047,1411 1909 all 72,781,1187,1231,

1241,1539
2000
Fig. 6. The accuracy of different algorithms on two classifiers.
restrict the algorithm’s performance when dealing with datasets featur-
ing highly uneven distributions. Secondly, although the improved PKO
algorithm increases the search efficiency, its computational complexity
and memory consumption could become requirements when handling
11 
large-scale datasets. Future work could focus on optimizing the algo-
rithm to accommodate a wider range of data distributions and ex-
ploring more efficient computational strategies for large-scale datasets.
Additionally, future research could consider parallel and distributed
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Fig. 7. The balanced accuracy of different algorithms on two classifiers.
Table 5
Comparison results of accuracy for different algorithms on the DT classifier.
No. Datasets 3PKO-ANRAR HARNRS Far-VPKNN FSMRI NNRS HARCD RAW

1 bcc 0.6719 0.7181 0.6236 0.7104 0.6946 0.6552 0.6977
2 glass1 0.7488 0.7543 0.6254 0.7009 0.7389 0.8061 0.7359
3 plrx 0.6646 0.5901 0.6716 0.6275 0.5911 0.6249 0.5816
4 sar 0.6442 0.5145 0.5115 0.3848 0.6634 0.5837 0.6635
5 heart 0.7858 0.7213 0.7607 0.7137 0.7622 0.7182 0.7459
6 wine 0.9127 0.9343 0.8543 0.8915 0.8944 0.8461 0.8865
7 cmsc 0.8694 0.8551 0.8557 0.8542 0.9109 0.8959 0.9109
8 mf 0.6341 0.6237 0.6478 0.5312 0.6137 0.5922 0.6166
9 parkinsons 0.8545 0.8611 0.8351 0.8099 0.8435 0.8536 0.8476
10 wpbc 0.6836 0.6854 0.6733 0.6654 0.6767 0.7282 0.6813
11 wdbc 0.9324 0.8324 0.9246 0.8628 0.9165 0.9117 0.9153
12 audit 0.9981 0.8937 0.9945 0.9364 0.9999 0.8693 0.9919
13 ionosphere 0.8845 0.8457 0.8819 0.7861 0.8753 0.7988 0.8861
14 hill 0.6081 0.5542 0.5492 0.5208 0.5902 0.5629 0.5809
15 tc 0.6209 0.5335 0.6433 0.5649 0.5751 0.5928 0.5715
16 colon 0.8333 0.7466 0.7883 0.7327 0.7428 0.7145 0.7388

average 0.7717 0.7289 0.7401 0.7059 0.7556 0.7346 0.7533
Table 6
Comparison results of balance accuracy for different algorithms on the DT classifier.
No. Datasets 3PKO-ANRAR HARNRS Far-VPKNN FSMRI NNRS HARCD RAW

1 bcc 0.6562 0.7067 0.6237 0.6956 0.7011 0.6464 0.6942
2 glass1 0.7201 0.7331 0.4843 0.682 0.7102 0.7745 0.7209
3 plrx 0.5782 0.4827 0.5718 0.5063 0.4869 0.5234 0.4864
4 sar 0.5872 0.3937 0.3795 0.216 0.5725 0.47 0.5697
5 heart 0.7672 0.7079 0.7454 0.7147 0.7535 0.7174 0.7536
6 wine 0.9161 0.9183 0.8592 0.8971 0.9022 0.8377 0.8973
7 cmsc 0.5911 0.5439 0.6023 0.501 0.6681 0.648 0.6777
8 mf 0.6344 0.6126 0.6538 0.5148 0.6058 0.5883 0.6089
9 parkinsons 0.8086 0.8002 0.7014 0.7545 0.8157 0.8209 0.8218
10 wpbc 0.5473 0.5603 0.5076 0.5326 0.5579 0.6189 0.5614
11 wdbc 0.9181 0.8282 0.9273 0.8492 0.9214 0.9115 0.9087
12 audit 0.9997 0.8902 0.9981 0.9299 0.9989 0.8503 0.9996
13 ionosphere 0.8728 0.8425 0.8729 0.7497 0.8631 0.7842 0.8735
14 hill 0.6109 0.5477 0.5384 0.5111 0.5906 0.5637 0.5812
15 tc 0.5863 0.4769 0.5912 0.5118 0.5038 0.5226 0.5133
16 colon 0.8217 0.7118 0.7683 0.7128 0.7181 0.665 0.7173

average 0.7263 0.6728 0.6759 0.6424 0.7106 0.6841 0.7116
12 
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Fig. 8. The visualization of the wilcoxon test results.
Table 7
Comparison results of average accuracy for different comparative algorithms on the KNN classifier.

No. Datasets 3PKO-ANRAR HARNRS Far-VPKNN FSMRI NNRS HARCD RAW

1 bcc 0.7295 0.7072 0.7117 0.7093 0.5291 0.7531 0.5291
2 glass1 0.6773 0.7725 0.6348 0.7892 0.6728 0.8021 0.8021
3 plrx 0.6884 0.6457 0.6855 0.6407 0.6612 0.6622 0.6612
4 sar 0.7306 0.5731 0.5329 0.3953 0.8013 0.6197 0.8013
5 heart 0.6654 0.6987 0.7623 0.7162 0.6481 0.7408 0.6481
6 wine 0.9312 0.7132 0.8518 0.9204 0.7216 0.6903 0.7216
7 cmsc 0.9291 0.8924 0.8971 0.8954 0.9179 0.9076 0.9179
8 mf 0.6548 0.6515 0.6514 0.5171 0.6489 0.5657 0.6489
9 parkinsons 0.8865 0.8722 0.8166 0.7383 0.8339 0.8856 0.8339
10 wpbc 0.7198 0.7223 0.7192 0.7196 0.7129 0.7103 0.7129
11 wdbc 0.9017 0.8612 0.9337 0.8941 0.9274 0.9256 0.9274
12 audit 0.9897 0.8929 0.9983 0.9314 0.9632 0.8231 0.9632
13 ionosphere 0.8734 0.8433 0.9092 0.8153 0.8436 0.8136 0.8436
14 hill 0.5886 0.5556 0.5559 0.5386 0.5542 0.5563 0.5545
15 colon 0.8372 0.7273 0.8337 0.7223 0.7982 0.6653 0.7982
16 tc 0.6292 0.5987 0.6283 0.6378 0.5456 0.6329 0.5456

average 0.7848 0.7348 0.7681 0.7246 0.7443 0.7346 0.7443
Table 8
Comparison results of average balance accuracy for different algorithms on the KNN classifier.

No. Datasets 3PKO-ANRAR HARNRS Far-VPKNN FSMRI NNRS HARCD RAW

1 bcc 0.7126 0.7231 0.7054 0.7076 0.5121 0.7496 0.5121
2 glass1 0.6387 0.7449 0.4929 0.6181 0.7675 0.7587 0.7675
3 plrx 0.5373 0.4847 0.5357 0.4794 0.4907 0.5259 0.4907
4 sar 0.6775 0.4289 0.3852 0.1953 0.7652 0.4934 0.765
5 heart 0.6525 0.6841 0.7492 0.7054 0.6329 0.7263 0.6329
6 wine 0.9439 0.7014 0.8725 0.9306 0.7178 0.6768 0.7178
7 cmsc 0.7107 0.5223 0.5194 0.4992 0.5983 0.6207 0.5983
8 mf 0.6475 0.6587 0.6573 0.5176 0.6526 0.5674 0.6526
9 parkinsons 0.8213 0.8113 0.6974 0.6368 0.7544 0.8404 0.7544
10 wpbc 0.5089 0.5689 0.5257 0.5075 0.5313 0.5464 0.5316
11 wdbc 0.8889 0.8425 0.9266 0.8865 0.9182 0.9139 0.9182
12 audit 0.9889 0.9028 0.9978 0.9339 0.9543 0.8105 0.9544
13 ionosphere 0.8452 0.8235 0.8921 0.7852 0.7921 0.7903 0.7921
14 hill 0.5871 0.5539 0.5556 0.5368 0.5558 0.5538 0.5558
15 colon 0.8253 0.6824 0.8232 0.6712 0.7404 0.5749 0.7404
16 tc 0.5609 0.5034 0.5583 0.5564 0.4581 0.5098 0.4581

average 0.7215 0.6633 0.6809 0.6355 0.6775 0.6662 0.6775
Table 9
The wilcoxon test results of 3PKO-ANRAR and other five comparative algorithms.

Classifier Metric HARNRS Far-VPKNN FSMRI NNRS HARCD RAW

KNN Acc 0.0561 0.0931 0.0042 0.0257 0.2067 0.0286
BA 0.1371 0.2375 0.0034 0.0356 0.2058 0.0386

DT Acc 0.0634 0.0151 0.0007 0.0429 0.0765 0.0426
BA 0.0263 0.0135 0.0006 0.0867 0.1539 0.0867

implementations to further enhance processing capabilities.
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