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 A B S T R A C T

Person search aims to locate target individuals in large image databases captured by multiple non-overlapping 
cameras. Existing models primarily rely on spatial feature extraction to capture fine-grained local details, which 
is vulnerable to background clutter and occlusions and leads to unstable feature representations. To address the 
issues, we propose a Dynamic Frequency Selection and Spatial Interaction Fusion Network (PS-DFSI), marking 
the first attempt to introduce frequency decoupling and selection into person search. By integrating frequency 
and spatial features, PS-DFSI enhances feature expressiveness and robustness. Specifically, it comprises two 
core modules: the Dynamic Frequency Selection Module (DFSM) and the Spatial Frequency Interaction Module 
(SFIM). DFSM decouples feature maps into low-frequency and high-frequency components using learnable 
low-pass and high-pass filters, and a frequency selection modulator emphasizes key frequency components via 
channel attention. SFIM refines local details by fusing frequency-enhanced features with high-level semantic 
representations, leveraging multi-scale receptive fields and cross-feature attention for efficient spatial-frequency 
integration. Extensive experiments on CUHK-SYSU and PRW demonstrate that PS-DFSI significantly improves 
person search performance, validating its effectiveness and robustness.
. Introduction

Person search [1–6] aims to locate and identify individuals across 
mages from different camera views, involving two sub-tasks: per-
on detection [7] and person re-identification (ReID). Person detec-
ion locates individuals and generates bounding boxes (BBoxes), while 
eID [8–13] matches the same individual across cameras, ensuring 
onsistent identity. With applications in surveillance, public safety, and 
rime tracking [14], person search has become a key research area in 
omputer vision.
Existing methods for person search are categorized into two-step 

15,16] and one-step approaches [17,18]. The two-step method first 
etects individuals and generates bounding boxes, then uses a re-
dentification network for matching. Although effective, it is less com-
utationally efficient and consumes more resources. In contrast, the 
ne-step method uses a shared feature extraction network for both 
ocalization and re-identification, reducing computation redundancy 
nd improving its suitability for large-scale video data and real-time 

I Code is accessible at https://github.com/zqx951102/DFSI.
∗ Corresponding author.
E-mail addresses: zhangqx@tongji.edu.cn (Q. Zhang), dqmiao@tongji.edu.cn (D. Miao), zhangqi_cs@tongji.edu.cn (Q. Zhang), zhaocairong@tongji.edu.cn 

C. Zhao), zhanghongyun@tongji.edu.cn (H. Zhang), yesun23@m.fudan.edu.cn (Y. Sun), ruizhiwang@tongji.edu.cn (R. Wang).

surveillance applications. Despite the efficiency of existing one-step 
methods, they typically rely on neural networks, e.g., Convolutional 
Neural Networks (CNNs), to capture spatial domain features. Their 
pixel-level modeling is vulnerable to noise, complex backgrounds, and 
occlusions and reduces feature robustness and discriminability. As il-
lustrated in Fig.  1(a), complex backgrounds often lead to confusion 
with person features, while occlusions resulting in missing appearance 
features severely reduce feature discriminability. Additionally, existing 
spatial domain methods struggle to capture cross-scale details and 
global information, limiting adaptability in complex scenarios such as 
crowded or partially occluded environments.

Fortunately, frequency modeling provides a novel perspective for 
addressing challenges in person search, which capably decomposes 
image features into different frequency components to capture dis-
criminative and robust features. Low-frequency components capture 
global structural information, facilitating an understanding of the over-
all layout of the image. Meanwhile, high-frequency components focus 
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Fig. 1. Illustrations of person search challenges and the motivation behind the 
proposed PS-DFSI. (a) Challenges: The image shows difficulties caused by occlusion 
and complex backgrounds. (b) Motivation: Existing methods rely on pixel-level feature 
extraction (left), while PS-DFSI integrates spatial and frequency features (right) to 
improve robustness.

on local details, such as textures and edges, improving the accuracy 
of pedestrian identification. In addition, frequency modeling exhibits 
strong noise suppression capabilities, effectively filtering out high-
frequency noise while preserving valuable low-frequency information, 
thus enhancing noise resistance. Naturally, low-frequency components 
in complex scenarios (e.g., occlusion) help extract unobstructed global 
information, while high-frequency components capture unobstructed 
local details, guaranteeing recognition accuracy. Although frequency 
modeling has shown success in person re-identification [19,20] and 
time-series forecasting [21,22], its potential to enhance the robustness 
and recognition accuracy of person search tasks has yet to be fully 
explored.

To address this, we propose a novel person search framework, 
the Dynamic Frequency Selection and Spatial Interaction Fusion Net-
work (PS-DFSI). PS-DFSI strives to fully utilize the complementary 
advantages of frequency and spatial features to enhance detail per-
ception and improve adaptability to complex scenarios. Its core idea 
is illustrated in Fig.  1(b) that PS-DFSI introduces frequency feature 
decoupling and selection effectively to enhance the expressiveness 
and robustness of features. Specifically, PS-DFSI comprises two key 
modules: the Dynamic Frequency Selection Module (DFSM) and the 
Spatial Frequency Interaction Module (SFIM). DFSM first decouples 
input features into low-frequency and high-frequency components us-
ing learnable low-pass and high-pass filters. Then, through a channel 
attention mechanism, it selects the key frequency components related 
to the person region and suppresses irrelevant information, avoiding 
background noise interference in feature extraction. SFIM further com-
bines these frequency features with spatial features, enhancing detail 
perception through multi-scale receptive fields and achieving efficient 
fusion of spatial and frequency features via cross-feature attention 
interaction. PS-DFSI not only overcomes the robustness challenges of 
spatial domain methods in dealing with complex backgrounds and 
occlusions but also significantly enhances the overall performance of 
person search tasks. Extensive experimental results demonstrate that 
PS-DFSI surpasses existing methods in terms of robustness and accuracy 
on the CUHK-SYSU and PRW.

Our main contributions are summarized as follows:
2 
• We propose a Dynamic Frequency Selection and Spatial Interac-
tion Fusion Network (PS-DFSI), marking the first attempt to intro-
duce frequency decoupling and selection into person search, sig-
nificantly enhancing the expressiveness and robustness of person 
features.

• We design the Dynamic Frequency Selection Module (DFSM) to 
decouple and select frequency features, effectively emphasizing 
person features and suppressing background noise.

• We design the Spatial Frequency Interaction Module (SFIM) to 
effectively fuse frequency and spatial features, enabling PS-DFSI 
to perceive details.

• Extensive experiments on CUHK-SYSU and PRW show the supe-
rior robustness and accuracy of PS-DFSI on person search tasks, 
verifying significant improvements over state-of-the-art person 
search baselines.

The paper is structured as follows: Section 2 reviews related work, 
Section 3 describes the network architecture and principles of the PS-
DFSI method, Section 4 presents and analyzes the experimental results, 
and Section 5 summarizes the paper and discusses future research 
directions.

2. Related work

2.1. Person search

Person search has gained attention in computer vision due to its 
real-world applications. Based on training workflows, existing methods 
are categorized into two-step and one-step approaches.

(1) Two-step methods: These methods [2,15,16,23,24] separate per-
son search into two sub-tasks: person detection and re-identification 
(ReID), using separate models for training. Zheng et al. [2] explored 
detector-ReID combinations and proposed Confidence-Weighted Simi-
larity (CWS) to reduce false positives. Lan et al. [23] addressed resolu-
tion diversity with a Cross-Level Semantic Alignment (CLSA) network 
for multi-scale matching. Chen et al. [24] identified and mitigated 
the optimization conflict between detection and ReID with a dual-
stream model. Han et al. [15] introduced ReID loss supervision for more 
reliable bounding boxes, while Wang et al. [16] improved ReID training 
consistency by generating query-like bounding boxes.

(2) One-step methods: These methods [3,4,14,17,18] integrate per-
son detection and ReID into a unified end-to-end framework for joint 
training, yielding fewer parameters and higher efficiency. Xiao et al. [3] 
first introduced an end-to-end person search framework based on Faster 
R-CNN [25], improving efficiency by sharing lower-level features with 
the ReID network and proposing the Online Instance Matching (OIM) 
loss for representation learning. This sparked interest in end-to-end 
approaches, which became mainstream [26,27]. Dong et al. [26] in-
troduced a bidirectional interaction model to reduce unnecessary con-
textual interference. Chen et al. [27] proposed norm-aware embed-
ding (NAE), which decouples detection and ReID by decomposing 
representations into norm and angle. Additionally, some studies fur-
ther optimize person search by incorporating query images. Munjal 
et al. [28] proposed a query-guided mechanism to refine search ar-
eas, while Li and Miao [4] introduced SeqNet, using two sequential 
Faster R-CNNs for detection and ReID. Jaffe et al. [14] developed 
SeqNeXt, filtering irrelevant images before detection to reduce the 
search space. Han et al. [29] adopted a queue-style memory buffer for 
recent sample training, and Kim et al. [18] guided attention modules 
to highlight identity-invariant regions across different poses using pro-
totypes. Jiang et al. [30] achieved scene adaptation by maintaining 
highly similar feature representations of the same person across dif-
ferent scenes. Yang et al. [31] proposed an efficient Tri-Hybrid model 
that improves similarity matching by integrating multi-level informa-
tion into the pedestrian detection stage. Tian et al. [32] introduced 
a hybrid pre-training framework that leverages sub-task data for full-
task person search, significantly enhancing generalization performance. 
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In addition, recent studies have begun exploring weakly-supervised 
and domain-adaptive approaches for person search [33,34], further 
advancing the field under more challenging real-world scenarios.

In addition to Faster R-CNN-based models, Yan et al. [35] developed 
AlignPS, an anchor-free person search model based on FCOS [36], 
which learns feature relationships without predefined anchor boxes. As 
the first anchor-free approach, it addresses misalignment at scale, re-
gion, and task levels. Given the success of Transformers [37,38] in com-
puter vision, researchers have integrated them into person search [39–
41]. Cao et al. [39] introduced PSTR, a DETR-based [38] model with 
a detection encoder–decoder and a discriminative ReID decoder. Yu 
et al. [40] developed COAT, a Cascade R-CNN-based [42] model that 
applies multi-scale convolution transformers across stages to capture 
occlusion features from coarse to fine. Fiaz et al. [41] proposed SAT, 
a scale-augmented transformer for handling scale variations and occlu-
sions.

Mainstream person search methods primarily rely on spatial domain 
modeling, enhancing performance through local context augmenta-
tion (e.g., AlignPS) or global feature extraction (e.g., COAT, PSTR). 
However, they often introduce irrelevant information in complex back-
grounds, reducing feature discriminability. In contrast, we first incor-
porate frequency modeling into person search, selecting key frequency 
features to emphasize person-related regions and suppress background 
interference. The global properties of frequency enhance robustness 
against occlusion, pose, and scale variations. By integrating frequency 
and spatial domains, we improve feature representation, enhancing the 
model’s robustness, generalization, and efficiency in complex scenarios.

2.2. Frequency domain information

Frequency information is pivotal fo digital image processing. Some 
studies leverage frequency information to enhance visual tasks [19–
22], while others use frequency-domain techniques for network ac-
celeration [43,44]. For instance, Zhang et al. [19] proposed PHA, 
which enhances high-frequency feature representation using the Dis-
crete Haar Wavelet Transform. Li et al. [20] introduced an adaptive 
high-frequency transformer to strengthen high-frequency learning. Lao 
et al. [45] proposed FSRU, utilizing Fourier transform for discrimi-
native frequency spectrum features in multi-modal rumor detection. 
Yi et al. [21] developed FreTS, which employs MLP to learn fre-
quency components for efficient time series prediction. Yang et al. [22] 
proposed SFFNet, decomposing features into low-frequency and high-
frequency components using Haar wavelet transform for remote sensing 
segmentation. Oyallon et al. [43] proposed a wavelet scattering model 
for efficient image recognition, while Rao et al. [44] proposed GFNet, 
establishing long-term dependencies with logarithmic complexity from 
a frequency perspective.

Although frequency domain methods show potential in visual tasks, 
most studies overlook the distinction between high-frequency (textures 
and details) and low-frequency (smooth regions) features. To address 
this, we introduce frequency domain decoupling and dynamic selection 
to person search, dynamically selecting key frequency information 
and fusing it with spatial features to enhance robustness and feature 
expressiveness in complex scenarios.

2.3. Feature fusion and attention mechanisms

Feature fusion is essential for improving model performance in 
visual tasks [46,47], especially in complex scenarios where interaction 
between different feature domains is critical. Recent studies have ex-
plored combining spatial and frequency domain features to enhance 
robustness, such as applying Fourier transform for global frequency 
features and fusing them with local spatial features to improve detec-
tion accuracy. However, most approaches rely on simple concatenation 
and lack deep interaction modeling, particularly in person search tasks, 
where such studies are limited. Multi-scale receptive field methods 
3 
(e.g., FPN [48], ASPP [49], HRNet [50]) improve detail capturing 
but are restricted to spatial domain processing, underutilizing global 
frequency information. This limitation hampers performance in han-
dling occlusion, complex backgrounds, and scale variations. Combining 
global frequency characteristics with multi-scale detail enhancement 
can significantly improve robustness and adaptability. Attention mech-
anisms, such as ECA-Net [51] and Transformer, excel in feature se-
lection and capturing cross-domain interactions. While some studies 
integrate attention mechanisms into feature fusion, most are confined 
to single-domain optimization, lacking efficient interaction modeling 
between frequency and spatial domains.

In summary, despite advancements in feature fusion and attention 
mechanisms, achieving efficient integration of frequency and spatial 
domains through dynamic interaction remains a challenge in person 
search. These findings motivate the design of our proposed DFSM and 
SFIM.

3. Methodology

This section outlines the problem definition and the overall struc-
ture of the proposed PS-DFSI model. We then detail its key components, 
including the Dynamic Frequency Selection Module (DFSM) with its 
learnable low-pass filter and the Spatial Frequency Interaction Module 
(SFIM). Finally, we explain the model’s loss functions.

3.1. Problem formulation

Given a query person 𝑞 in a query image 𝑄 and a gallery set 𝐼 =
{𝐼1, 𝐼2,… , 𝐼𝑁}, person search aims to detect pedestrian bounding boxes 
𝐵 within 𝐼 and identify the best match for 𝑞 in 𝐵. During training, 
a model 𝐹 (⋅) learns discriminative representations 𝑓𝑖 = 𝐹 (𝑥𝑖) from 
a labeled dataset 𝐷 = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1, ensuring robustness to occlusions 
and pose variations. In testing, the trained model extracts 𝑓𝑞 from 𝑄. 
For each gallery image 𝐼𝑖, a detector produces candidate boxes 𝐵𝑖 =
{𝐵𝑖1, 𝐵𝑖2,… , 𝐵𝑖𝑀}, and the network extracts features 𝑓𝑖𝑗 for each 𝐵𝑖𝑗 . 
The query feature 𝑓𝑞 is then compared with 𝑓𝑖𝑗 , and the box with the 
highest similarity score is chosen as the final match.

Traditional methods focus on extracting spatial features to obtain 
boundary features 𝑓𝑖𝑗 but struggle with complex backgrounds, leading 
to unstable representations and performance variations. To address this, 
we propose PS-DFSI, which enhances feature robustness by using DFSM 
to extract essential frequency features and suppress noise, while SFIM 
integrates spatial-frequency domain features 𝐹𝑠𝑝𝑎 and 𝐹𝑓𝑟𝑒, producing 
robust fusion features 𝐹𝑜𝑢𝑡. These improvements enable PS-DFSI to 
achieve superior person search performance.

3.2. Overall architecture

Our person search framework builds on SeqNet’s [4] end-to-end 
architecture but adopts a ‘‘ReID-first’’ strategy, integrating novel meth-
ods for robust feature representation in complex scenarios. We elimi-
nate detection-related parts from the ReID network and redesign the 
re-identification head with a Dynamic Frequency Selection Module 
(DFSM) and a Spatial-Frequency Interaction Module (SFIM), as shown 
in Fig.  2.

PS-DFSI comprises four components: a backbone network, a detec-
tion network, a DFSM, and a SFIM. The first four convolutional blocks 
of Swin-S [52] serve as the backbone, extracting scene feature maps 
from complete images. These maps are fed into the detection network, 
where the Region Proposal Network (RPN) generates region propos-
als, and the box predictor classifies and regresses them to produce 
bounding boxes. Pedestrian feature maps are then extracted via RoI-
Align [53] and subsequently processed by DFSM, which encodes them 
into 512-dimensional embeddings, emphasizing key frequency domain 
information. To align feature dimensionality with the semantic branch 
and to enable effective attention-based interaction within the SFIM, a 
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Fig. 2. An outline of the proposed PS-DFSI framework: The input image is first processed by the Backbone network to extract initial features. These features are then passed 
through the Region Proposal Network (RPN) to generate bounding box predictions, which are subsequently refined using Non-Maximum Suppression (NMS) during the test phase 
for detection. In the ReID phase, we introduce two novel modules: the Dynamic Frequency Selection Module (DFSM) and the Spatial Frequency Interaction Module (SFIM). The 
DFSM decouples and selects frequency features, enhancing robustness by suppressing irrelevant background noise. The SFIM fuses spatial and frequency features to improve detail 
perception and feature representation for ReID. The resulting 1024-dimensional feature embedding is supervised using the 𝐿TOIM loss, which effectively balances intra-person 
similarity and inter-person discrimination.
1 × 1 convolution is applied to project the DFSM output from 512 to 
1024 dimensions. These projected frequency-aware features are then 
fused with high-level semantic features, such as the 12 × 6 feature map 
produced by Conv5, the fifth convolutional block of Swin-S.

During training, we introduce the 𝐿TOIM loss to supervise feature 
learning. This loss integrates the OIM and triplet losses. The triplet 
loss enhances inter-person discrimination, and the OIM loss forces 
intra-person similarity.

3.3. Dynamic frequency selection module

To select effective frequency domains for feature enhancement, 
DFSM involves two main components: Frequency Decoupling Oper-
ation and Frequency Selection Modulator. The decoupling operation 
dynamically decomposes features into different frequency components 
using learnable filters, while the modulator employs channel attention 
to emphasize components related to pedestrian regions. DFSM further 
split features along the channel dimension, using various sizes of filters 
to capture diverse frequency features, as shown in the lower left of
Fig.  2.

3.3.1. Frequency decoupling operation
To dynamically decompose the feature map, we employ theoreti-

cally proven learnable low-pass filters (see Section 3.4) and correspond-
ing high-pass filters to generate low-frequency and high-frequency 
maps. The learned filters are distributed across groups, ensuring a 
balance between complexity and feature diversity. Given a feature map 
𝑋 ∈ R𝐻×𝑊 ×𝐶 , we apply the filters to generate low-pass components for 
each group using the following formula: 
𝐹𝐿𝑜𝑤 = Softmax(BN(𝑊 (GAP(𝑋)))) (1)

where 𝐹𝐿𝑜𝑤 ∈ R𝑔×𝑘×𝑘, with 𝑘 × 𝑘 as the size of low-pass filter kernels 
and 𝑔 as the number of groups. BN, 𝑊 , and GAP denote the batch 
normalization, the linear transformation, and the global average pool-
ing, respectively. The Softmax function is applied to each group. The 
group operation constrains the kernel size within each group, reducing 
computational complexity.

High-pass filters are constructed by subtracting low-pass filters from 
a unit kernel, where the central value is set to 1 and others to 0. Given 
a group feature 𝑋𝑖 ∈ R𝐻×𝑊 ×𝐶𝑖  with 𝐶𝑖 = 𝐶∕𝑔, low-pass filters 𝐹𝐿𝑜𝑤

and high-pass filters 𝐹𝐻𝑖𝑔ℎ are used to extract corresponding frequency 
components. The computation is as follows: 
𝑋𝑙𝑜𝑤

𝑖,ℎ,𝑤,𝑐 =
∑

𝐹𝐿𝑜𝑤
𝑖,𝑝,𝑞 𝑋𝑖,ℎ+𝑝,𝑤+𝑞,𝑐 (2)
𝑝,𝑞

4 
𝑋ℎ𝑖𝑔ℎ
𝑖,ℎ,𝑤,𝑐 =

∑

𝑝,𝑞
𝐹𝐻𝑖𝑔ℎ
𝑖,𝑝,𝑞 𝑋𝑖,ℎ+𝑝,𝑤+𝑞,𝑐 (3)

where 𝑋𝑙𝑜𝑤
𝑖,ℎ,𝑤,𝑐 and 𝑋

ℎ𝑖𝑔ℎ
𝑖,ℎ,𝑤,𝑐 denote the extracted low-frequency and high-

frequency features, respectively. Here, 𝑐 is the channel index, and ℎ,𝑤
are spatial coordinates. 𝑝, 𝑞 ∈ {−1, 0, 1} define the local receptive field 
of the filter in the spatial domain. 𝐹𝐿𝑜𝑤

𝑖,𝑝,𝑞  and 𝐹𝐻𝑖𝑔ℎ
𝑖,𝑝,𝑞  represent the weights 

of the low-pass and high-pass filters, respectively.

3.3.2. Frequency selection modulator
After frequency decomposition, a frequency-selective modulator dy-

namically adjusts feature weights across frequency components, em-
phasizing the most relevant features for target feature enhancement. 
Formally, given two frequency features 𝑋𝑙𝑜𝑤 and 𝑋ℎ𝑖𝑔ℎ, the fused 
features are computed as follows: 
 = 𝑊𝑓𝑐

(

GAP
(

𝑋𝑙𝑜𝑤 +𝑋ℎ𝑖𝑔ℎ)) (4)

where 𝑊𝑓𝑐 defines the parameters of the fully connected layer. To 
compute the attention weights for high-frequency and low-frequency 
components, two 1 × 1 convolution layers process . The results are 
then combined and normalized via the Softmax function, ensuring the 
sum of the weights to 1. 

[𝑊 𝑙𝑜𝑤,𝑊 ℎ𝑖𝑔ℎ]𝑐 =
𝑒[𝑊𝑙𝑜𝑤(),𝑊ℎ𝑖𝑔ℎ()]𝑐

∑2𝐶
𝑗=1 𝑒

[𝑊𝑙𝑜𝑤(),𝑊ℎ𝑖𝑔ℎ()]𝑗
(5)

where 𝑊 𝑙𝑜𝑤 and 𝑊 ℎ𝑖𝑔ℎ are the channel attention weights for the 
two frequencies, and 𝑊𝑙𝑜𝑤() and 𝑊ℎ𝑖𝑔ℎ() are the weights of two 
fully connected layers. [⋅, ⋅] denotes concatenation. The total number 
of high-frequency and low-frequency channels is 2𝐶, with 𝑐 as the 
current channel index. The Softmax computes weights for each channel 
𝑐 separately, iterating over all channels indexed by 𝑗.

The normalized weights are then split into high-frequency and 
low-frequency parts and applied to 𝑋ℎ𝑖𝑔ℎ and 𝑋𝑙𝑜𝑤 for channel-wise 
weighting. Lastly, a 1 × 1 convolution layer further refines the fused 
features. The formula is: 
𝑋𝑜𝑢𝑡 = 𝑊𝑜𝑢𝑡

(

𝑋ℎ𝑖𝑔ℎ ⊙𝑊 ℎ𝑖𝑔ℎ +𝑋𝑙𝑜𝑤 ⊙𝑊 𝑙𝑜𝑤) (6)

The above describes a single-branch dynamic frequency selection 
module. We extend it to a multi-branch structure with varying filter 
sizes, represented as: 
�̂� = [1(1(𝑋1)),… ,𝑚(𝑚(𝑋𝑚))] (7)

where �̂� denotes the feature set after multi-branch fusion,  and 
represent the frequency domain decoupler and modulator, respectively, 
and 𝑋  denotes the feature set after the 𝑚th branch partitioning.
𝑚
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3.4. Proof the low-pass filter

In DFSM, the filter is applied to a 𝑘×𝑘 region of the feature map via 
convolution, operating in the spatial dimension with a sliding window 
and a specific stride. Next, we prove its low-pass characteristics.

Theorem 1.  Given 𝑊 ,𝐷 ∈ R𝑛×𝑛, and 𝑊𝑖 = softmax(𝐷𝑖), 𝑖 ∈ {0, 1,… , 𝑛−
1}, then 𝑊  is a low-pass filter, satisfying for any 𝑚 ∈ R𝑛, as 𝑡 → ∞: 

lim
𝑡→∞

‖[𝑊 𝑡𝑚]‖2
‖𝑊 𝑡𝑚‖2

= 0. (8)

where [⋅] represents the high-frequency component extraction operation. 
In our case, 𝑛 = 𝑘2. Here, 𝑡 denotes the number of times the filter 𝑊  is 
applied recursively.

Proof.  Through the Softmax operation, 𝑊  is a non-negative matrix, 
and each row sums to 1, i.e. 𝑊 𝑒 = 𝑒, 𝑒 = [1, 1,… , 1]𝑇 ∈ R𝑛. Thus, the 
main eigenvalue of 𝑊  is 𝜆1 = 1, corresponding to the eigenvector 𝑒. 
According to the Perron–Frobenius theorem [54], the spectral radius 
of 𝑊  is 1, and the absolute values of the other eigenvalues satisfy 
|𝜆𝑖| < 1, 𝑖 ≠ 1. To compute the higher powers of 𝑊 , we perform the 
Jordan canonical decomposition of 𝑊 .

𝑊 = 𝑃𝐽𝑃−1

=
[

𝑎1 𝑎2 … 𝑎𝑛
] [

𝜆1 𝐽2(𝜆2) … 𝐽𝑠(𝜆𝑠)
]

⎡

⎢

⎢

⎢

⎢

⎣

𝑏𝑇1
𝑏𝑇2
⋮
𝑏𝑇𝑛

⎤

⎥

⎥

⎥

⎥

⎦

(9)

where 𝑃  is a non-singular matrix (a linearly independent combination 
of eigenvectors), and 𝐽𝑖(𝜆𝑖) is the Jordan block. For 𝑊 , after 𝑡 iterations, 
we have: 𝑊 𝑡 = 𝑃𝐽 𝑡𝑃−1, 𝐽 𝑡 = diag(𝜆𝑡1, 𝐽2(𝜆2)

𝑡,… , 𝐽𝑠(𝜆𝑠)𝑡). Thus, for 
any vector 𝑚 ∈ R𝑛: 𝑊 𝑡𝑚 = 𝜆𝑡1𝑎1 +

∑𝑠
𝑖=2 𝐽𝑖(𝜆𝑖)

𝑡𝑏𝑖, 𝑎1, 𝑏𝑖 ∈ R𝑛. Where 
𝜆1𝑎1 represents the principal component, and 𝐽𝑖(𝜆𝑖)𝑡 represents the 
high-frequency components.

Since |𝜆𝑖| < 1 for all 𝑖 ≠ 1, the elements of the Jordan block 𝐽𝑖(𝜆𝑖)𝑡
decay exponentially: 
lim
𝑡→∞

𝐽𝑖(𝜆𝑖)𝑡 = 0, 𝑖 ≠ 1. (10)

Thus, the high-frequency component [𝑊 𝑡𝑚] is primarily con-
tributed by 𝐽𝑖(𝜆𝑖)𝑡, and we have: ‖[𝑊 𝑡𝑚]‖2 → 0 as 𝑡 → ∞. At 
the same time, due to the eigenvalue 𝜆1 = 1, the principal component 
𝜆𝑡1𝑎1 remains unchanged. Therefore, the overall expression for 𝑊 𝑡𝑚 is: 
‖𝑊 𝑡𝑚‖2 ∼ ‖𝜆𝑡1𝑎1‖2 = ‖𝑎1‖. Finally, the ratio of the norms is: 

lim
𝑡→∞

‖[𝑊 𝑡𝑚]‖2
‖𝑊 𝑡𝑚‖2

= 0
‖𝑎1‖2

= 0. (11)

Proved. □

Based on the above derivation, the matrix 𝑊 , as a low-pass fil-
ter, can effectively preserve the low-frequency components, while the 
high-frequency components decay to zero over time, thus proving the 
result.

3.5. Spatial frequency interaction module

Although DFSM enhances frequency domain features, it struggles 
with capturing local details in complex scenarios like occlusion, multi-
scale variations, or background interference. To address this, we in-
troduce the SFIM, which integrates spatial and frequency features 
for improved local representation. Specifically, SFIM fuses frequency-
modulated features from DFSM with high-level semantic features (e.g., 
Conv5), enhancing local detail perception through multi-scale receptive 
fields and efficient feature fusion via cross-feature attention. This inte-
gration improves the network’s ability to capture both global semantics 
and local details, significantly enhancing its representational power. 
The SFIM structure, shown in Fig.  3, includes multi-scale mapping and 
cross-feature attention.
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3.5.1. Multi-scale mapping operation
We apply dimensionality reduction to project the frequency and spa-

tial features into a unified dimension. Local details are then extracted 
using horizontal and vertical convolutions of varying sizes. The results 
are concatenated and processed with 1 × 1 convolutions to generate a 
unified feature array, 𝑄, 𝐾, and 𝑉 . For the input feature 𝑥 ∈ R𝐶×𝐻×𝑊 , 
multi-scale mapping operations are defined as: 
𝑄,𝐾, 𝑉 = 𝑓𝑚𝑚(𝑥)

= 𝐶𝑜𝑛𝑣1×1
(

𝑂𝐶3(𝐿𝑁(𝑥)) + 𝑂𝐶5(𝐿𝑁(𝑥)) + 𝑂𝐶7(𝐿𝑁(𝑥))
) (12)

where 𝐿𝑁 denotes layer normalization, 𝑂𝐶𝑘 represents the kernel size 
of 𝑘 × 1 and 1 × 𝑘 convolutions, and 𝑓𝑚𝑚 indicates the convolution 
operation. 𝑄, 𝐾, and 𝑉 ∈ R𝐶×𝐻×𝑊  are the feature matrices obtained 
after multi-scale mapping.

For the SFIM, the input frequency-optimized feature 𝐹𝑓𝑟𝑒 ∈ R𝐶×𝐻×𝑊

and spatial feature 𝐹𝑠𝑝𝑎 ∈ R𝐶×𝐻×𝑊  are processed using multi-scale 
mapping as follows: 
{

𝑄1, 𝐾1, 𝑉1 = 𝑓𝑚𝑚(𝐹𝑓𝑟𝑒)

𝑄2, 𝐾2, 𝑉2 = 𝑓𝑚𝑚(𝐹𝑠𝑝𝑎)
(13)

3.5.2. Cross-feature attention interaction
Building on multi-scale mapping, cross-feature attention interaction 

(CAI) strengthens the features by performing interaction calculations 
across input branches, enabling effective fusion.

Specifically, given the Query and Key features 𝑄1, 𝐾1 from multi-
scale mapping, and 𝑄2, 𝐾2 from other branches, the attention interac-
tion process is as follows: 

Attention(𝑄,𝐾, 𝑉 ) = Softmax
(

𝑄 ⋅𝐾𝑇
√

𝑑𝑘

)

⋅ 𝑉 (14)

where 𝑑𝑘 is the dimension of the Key feature and it serves to scale 
the attention weights and ensure numerical stability. The calculation 
process of CAI is as follows: 
{

𝐹𝐹𝑟𝑒 = 𝐶𝑜𝑛𝑣1×1(Attention(𝑄2, 𝐾1, 𝑉1))

𝐹𝑆𝑝𝑎 = 𝐶𝑜𝑛𝑣1×1(Attention(𝑄1, 𝐾2, 𝑉2))
(15)

The entire SFIM process can be defined as: 
𝐹𝑜𝑢𝑡 = 𝑓𝑠𝑓𝑖𝑚(𝐹𝑓𝑟𝑒, 𝐹𝑠𝑝𝑎) = Concat(𝐹𝐹𝑟𝑒, 𝐹𝑆𝑝𝑎) (16)

where 𝐹𝐹𝑟𝑒, 𝐹𝑆𝑝𝑎 ∈ R𝐶∕2×𝐻×𝑊  represent the frequency and spatial 
domain features, respectively, as the two outputs of CAI. 𝑓𝑠𝑓𝑖𝑚 denotes 
the SFIM application, and 𝐹𝑜𝑢𝑡 ∈ R𝐶×𝐻×𝑊  denotes the output of the 
SFIM module.

3.6. Loss function

OIM [3] loss is a widely used method in person search for re-
identification. It stores features of labeled identities in a lookup table 
(LUT), 𝑉 ∈ R𝐷×𝐿 = 𝑣1,… , 𝑣𝐿, while features of unmarked identities 
are stored in a circular queue, 𝑈 ∈ R𝐷×𝑄 = 𝑢1, 𝑢2,… , 𝑢𝐿. Here, 𝐷
is the feature dimension, and 𝐿 is the number of identities. For an 
identity labeled as 𝐼 , the feature representation is 𝑥 ∈ R𝐷, and the 
OIM calculation probability is as follows: 

𝑝𝑖 =
exp(𝑣𝑇𝑖 𝑥∕𝜏)

∑𝐿
𝑗=1 exp(𝑣

𝑇
𝑗 𝑥∕𝜏) +

∑𝑄
𝑘=1 exp(𝑢

𝑇
𝑘 𝑥∕𝜏)

(17)

where 𝜏 = 1∕30 is a hyperparameter for controlling the smoothness 
of the probability distribution. OIM aims to minimize the negative 
log-likelihood of the target: 
𝐿OIM = −𝐸𝑥(log 𝑝𝑡), 𝑡 = 1, 2,… , 𝐿 (18)

Although OIM yields satisfactory results, its softmax function em-
phasizes inter-person similarity but is less sensitive to differences be-
tween pedestrians, limiting discriminative power. To address this, we 
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Fig. 3. Illustrations of the Multi-scale Mapping and Spatial Frequency Interaction Module. (a) Multi-scale Mapping: This module performs feature extraction at multiple scales using 
convolutions of varying kernel sizes to generate the query (𝑄), key (𝐾), and value (𝑉 ) feature matrices. LayerNorm standardizes the input feature maps before convolution. (b) 
Spatial Frequency Interaction Module (SFIM): This module integrates frequency-modulated features and spatial features through multi-scale mapping. It computes separate query, 
key, and value features (𝑄1, 𝐾1, 𝑉1 from the frequency domain and 𝑄2, 𝐾2, 𝑉2 from the spatial domain) and performs cross-feature attention interaction. The results from both 
domains are combined through 1 × 1 convolutions and concatenated to produce the output feature 𝐹𝑜𝑢𝑡. SFIM effectively fuses spatial and frequency information, improving the 
model’s capacity to capture fine-grained details.
introduce a triplet loss with a hyperparameter 𝛷 to control the margin 
between cosine similarities of different and same pedestrians.

In each min-batch, 𝐵 ∈ R𝐷×𝐵 , given a feature representation 𝑥 ∈ R𝐷

for a labeled identity 𝐼 , we sample a batch from the combined set of 
𝐵 and LUT, 𝐵 ∪ 𝑉 . The batch includes 𝑃  feature vectors with the same 
label 𝐼 , denoted as 𝑋1 ∈ R𝐷×𝑃 , and 𝑁 feature vectors with different 
labels, denoted as 𝑋0 ∈ R𝐷×𝑁 . The triplet loss is expressed as: 

𝐿𝛷 = max{𝛷 − [min(𝑋⊤
1 𝑥) − max(𝑋⊤

0 𝑥)], 0} (19)

where 𝑋⊤
1 𝑥 and 𝑋⊤

0 𝑥 represent the cosine similarities between the 
feature representation and the corresponding sets. Finally, the 𝐿TOIM
loss introduces a weighting parameter 𝜆 to combine the two terms. 
𝐿TOIM = 𝐿OIM + 𝜆𝐿𝛷 (20)

4. Experiments

In this section, we evaluate our method on two widely used person 
search datasets. We first describe the datasets, evaluation metrics, and 
implementation details, followed by comparisons with state-of-the-art 
models. Ablation studies are performed to analyze the contribution of 
each module. Finally, additional experiments and qualitative analysis 
are provided to further validate the effectiveness of our approach.

4.1. Datasets and settings

4.1.1. CUHK-SYSU
CUHK-SYSU [3] is a large-scale person search dataset with 18,184 

scene images from street surveillance and movie screenshots. It con-
tains 96,143 annotated bounding boxes and 8432 pedestrian IDs, split 
into two non-overlapping subsets. The training set includes 11,206 im-
ages, 55,272 bounding boxes, and 5532 pedestrians, while the test set 
comprises 6978 images, 40,871 bounding boxes, and 2900 pedestrian 
IDs. During testing, galleries range from 50 to 4000 images to assess 
model scalability. Unless specified, results are reported with a gallery 
size of 100, otherwise.

4.1.2. PRW
PRW [2] was collected on a university campus using six static 

cameras, featuring diverse viewpoints and notable scale variations. 
It contains 11,816 frames and 34,304 annotated bounding boxes for 
932 pedestrian identities. The training set includes 5704 images with 
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18,048 bounding boxes and 482 identities, while the test set consists of 
6112 images with 2057 query pedestrians across 450 identities. Unlike 
CUHK-SYSU, PRW uses the entire gallery set as the search space during 
testing. Following [18], we use 20% of the training set as a validation 
set for hyperparameter tuning.

4.1.3. Evaluation metrics
Following [3,4], we use standard person search metrics. A predicted 

box is a match if its IoU with the ground truth exceeds 0.5. For 
pedestrian detection, we report recall and Average Precision (AP). For 
person ReID, we evaluate mean Average Precision (mAP) and top-1 
accuracy.

4.1.4. Implementation details
All experiments are performed on a single NVIDIA Tesla V100 

GPU using PyTorch. SeqNet [4] serves as the baseline, with detection 
components removed in the ReID network. ResNet50 [55], ConvNeXt-
B [56], and Swin-S [52] pretrained on ImageNet are used as backbones. 
We set the batch size to 5 for CUHK-SYSU and 8 for PRW, with 
automatic mixed precision (AMP) enabled for efficiency. The model 
is trained for 20 epochs using the Adam optimizer, with an initial 
learning rate of 0.0001, increased in the first epoch and reduced by 
a factor of 10 at epochs 8 and 14. In DFSM, filter sizes are 3 × 3 
and 5 × 5, with 𝑚 = 2 and 𝑔 = 8. In 𝐿TOIM, 𝛷 = 0.2, and 𝜆 is 
0.6 for CUHK-SYSU and 0.8 for PRW. During testing, Non-Maximum 
Suppression (NMS) with a 0.5 threshold removes redundant bounding 
boxes. Detailed hyperparameter analysis is in Section 4.5.

4.2. Comparison with state-of-the-art methods

In this section, we compare PS-DFSI with seven two-step meth-
ods and 19 one-step methods. To assess the scalability of different 
backbones, we display results using the latest convolutional network 
ConvNext-B [56] with SeqNeXt [14] and the Transformer-based PVT 
[63] with PSTR [39]. For baseline comparisons, we use the official 
implementations where available.

4.2.1. Comparison on CUHK-SYSU dataset
In Table  1, we report the mAP and top-1 metrics on the CUHK-SYSU 

dataset with a gallery size of 100. Among ResNet50-based models, PS-
DFSI achieves the second-highest mAP (95.5%) and the fourth-highest 
top-1 (95.9%), comparable to SEAS [30], and surpasses the best two-
step model, TCTS [16], which separates detection and ReID into two 
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Table 1
A comparison of mAP and top-1 accuracy with state-of-the-art methods on the CUHK-SYSU and PRW datasets, with the optimal and suboptimal 
results in each group marked in bold and underline, respectively.
 Methods Ref Backbone CUHK-SYSU PRW

 mAP top-1 mAP top-1 
 Two-step methods
 IDE [2] CVPR17 ResNet50 – – 20.5 48.3  
 MGTS [24] ECCV18 VGG16 83.0 83.7 32.6 72.1  
 CLSA [23] ECCV18 ResNet50 87.2 88.5 38.7 65.0  
 RDLR [15] ICCV19 ResNet50 93.0 94.2 42.9 70.2  
 IGPN [57] CVPR20 ResNet50 90.3 91.4 47.2 87.0  
 TCTS [16] CVPR20 ResNet50 93.9 95.1 46.8 87.5  
 OR [58] TIP21 ResNet50 92.3 93.8 52.3 71.5  
 One-step with CNNs
 OIM [3] CVPR17 ResNet50 75.5 78.7 21.3 49.4  
 RCAA [59] ECCV18 ResNet50 79.3 81.3 – –  
 HOIM [17] AAAI20 ResNet50 89.7 90.8 39.8 80.4  
 APNet [60] CVPR20 ResNet50 88.9 89.3 41.9 81.4  
 NAE+ [27] CVPR20 ResNet50 92.1 92.9 44.0 81.1  
 AlignPS+ [35] CVPR21 ResNet50 94.0 94.5 46.1 82.1  
 SeqNet [4] AAAI21 ResNet50 94.8 95.7 47.6 87.6  
 OIMNet++ [61] ECCV22 ResNet50 93.1 93.9 46.8 83.9  
 DMRNet++ [29] TPAMI23 ResNet50 94.5 95.7 52.1 87.0  
 SeqNeXt [14] WACV23 ConvNeXt-B 96.1 96.5 57.6 89.5  
 PAD [18] TPAMI24 ConvNeXt-B 95.9 96.4 58.6 89.9  
 SEAS [30] IJCAI24 ResNet50 96.2 96.1 52.0 85.7  
 Tian et al. [32] AAAI24 ResNet50 95.4 96.0 54.5 87.6  
 One-step with Transformers
 PSTR [39] CVPR22 ResNet50 93.5 95.0 49.5 87.8  
 PSTR [39] CVPR22 PVTv2-B2 95.2 96.2 56.5 89.7  
 COAT [40] CVPR22 ResNet50 94.2 94.7 53.3 87.4  
 SAT [41] WACV23 ResNet50 95.3 96.0 55.0 89.2  
 SOLIDER [62] CVPR23 Swin-S 95.5 95.8 59.8 86.7  
 Yang et al. [31] TCSVT24 ResNet50 94.9 95.2 58.3 89.7  
 PS-DFSI(Ours) – ResNet50 95.5 95.9 55.2 88.6  
 PS-DFSI(Ours) – ConvNeXt-B 96.0 96.5 58.4 89.2  
 PS-DFSI(Ours) – Swin-S 96.4 96.8 59.5 89.9  
stages, using a detector to generate bounding boxes and a ReID model 
to refine them.

Comparisons with Transformer-based methods (e.g., PSTR, COAT, 
and SOLIDER [62]) further demonstrate the effectiveness of frequency-
domain learning. Using Swin-S [52] as the backbone, PS-DFSI achieves 
the best mAP (96.4%) and top-1 (96.8%), significantly outperforming 
COAT and PSTR, highlighting its scalability with Transformer back-
bones.

We further evaluate the models across different gallery sizes (rang-
ing from 50 to 4000) to assess their robustness in larger-scale scenarios, 
as shown in Fig.  4. As the gallery size increases, mAP scores of all 
methods decrease, highlighting the challenges of instance recognition 
in broader search spaces. PS-DFSI consistently outperforms other meth-
ods across all gallery sizes, surpassing SAT [41] and COAT [40] with 
ResNet50 and PSTR [39] with PVT. This superior outcome stems from 
the efficient fusion of frequency and spatial domain features, enhancing 
adaptability to complex backgrounds and occlusions. Even with a larger 
search space, PS-DFSI maintains robust performance.

4.2.2. Comparison on PRW dataset
Compared to the CUHK-SYSU dataset, the PRW dataset features a 

larger gallery size, with many identities having similar appearances, 
as well as more variations in scale, complex environments, and occlu-
sions. These factors make distinguishing pedestrians significantly more 
challenging. Notably, on the ResNet50 backbone, our PS-DFSI achieves 
competitive performance on PRW, with a second-highest mAP of 55.2% 
and a third-highest top-1 accuracy of 88.6%.

Among the one-step state-of-the-art methods, PS-DFSI outperforms 
AlignPS, which considers feature misalignment, and SeqNet, which uses 
a two-stage refinement approach. Compared to PSTR, which recently 
introduced the more powerful DETR detector, our method achieves 
a 5.7% improvement in mAP. For the top-1 metric, our approach 
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performs comparably to SeqNeXt [14] and COAT. Similar to the CUHK-
SYSU dataset, when Swin-S is used as the backbone network, PS-DFSI 
achieves a mAP of 59.5% and a top-1 score of 89.9%, significantly out-
performing COAT and SeqNeXt. However, compared to SOLIDER [62], 
which also uses the Swin-S backbone, PS-DFSI’s mAP is slightly lower. 
This can be attributed to SOLIDER’s use of a semantic controller that 
dynamically adjusts the balance between semantic and appearance 
information, allowing it to better adapt to tasks that require more 
semantic details. In contrast, PS-DFSI focuses on robust feature learning 
for the ReID task, which may limit its flexibility in tasks requiring 
more semantic adaptation. Nevertheless, PS-DFSI still delivers strong 
performance in person search.

Table  2 presents the benchmark results under the multi-view gallery 
setting in the PRW dataset. In this setting, PS-DFSI achieves the best 
performance, with a mAP of 52.2% and a top-1 score of 77.4%, surpass-
ing our baseline SeqNet and achieving competitive performance with 
recent strong methods such as SAT and PAD. This setting simulates 
a real-world scenario where multiple images of the same person are 
captured from different camera viewpoints. The experiment aims to 
evaluate the robustness and adaptability of the PS-DFSI method in 
handling viewpoint changes. By comparing with other methods in this 
multi-view scenario, the experimental results demonstrate that PS-DFSI 
is more effective at capturing invariant features across viewpoints, 
leading to a significant improvement in performance.

4.3. Qualitative performance

4.3.1. CUHK-SYSU
Fig.  5 shows the top-1 search results on the CUHK-SYSU dataset, 

comparing PS-DFSI with state-of-the-art models like SeqNet [4], PAD 
[18], and SAT [41]. The results highlight the impact of occlusion 
(first row) and cluttered backgrounds (second and third rows) on 
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Fig. 4. Impact of gallery sizes on mAP across different configurations in the CUHK-SYSU dataset. We evaluate state-of-the-art methods using ResNet50 as the backbone (left) and 
the latest ConvNeXt and PVT backbones (right).
Table 2
Quantitative results evaluated on the PRW dataset with a multi-view gallery. All 
experiments are conducted using the ResNet50 backbone.
 Methods Backbone PRW

 mAP top-1

 HOIM [17] ResNet50 36.5 65.0 
 APNet [60] ResNet50 38.7 66.7 
 NAE+ [27] ResNet50 40.0 67.5 
 SeqNet [4] ResNet50 43.6 68.5 
 COAT [40] ResNet50 50.9 75.1 
 SAT [41] ResNet50 52.1 75.4 
 PAD [18] ResNet50 52.1 77.3 
 PS-DFSI(Ours) ResNet50 52.2 77.4 

search performance. PS-DFSI consistently outperforms other methods 
in detecting and identifying the query person. This demonstrates that 
PS-DFSI effectively handles occlusions and background interference 
through the fusion of frequency-domain and spatial-domain features, 
producing more discriminative embeddings. Additionally, PS-DFSI ex-
cels at fine-grained feature capture, as seen in the fourth row, where 
it correctly identifies the white stripes on the shirt hem, while other 
methods misidentify a person in a black shirt as the target.

4.3.2. PRW
Fig.  6 shows the rank-3 search results on the PRW dataset for 

PAD [18] and PS-DFSI. While PAD performs well in top-1 ranking, it 
struggles with consistent detection due to appearance similarities (first 
row) and viewpoint variations (second and third rows). In contrast, 
PS-DFSI, through efficient fusion of frequency-domain and spatial-
domain features, captures finer details from different regions, address-
ing intra-person variations such as appearance and pose changes. De-
spite some failures (e.g., fourth row with minimal differences and 
partial occlusion), PS-DFSI consistently captures key details (e.g., brief-
case in the third row), while PAD misidentifies it as an umbrella. 
Although the retrieved person is not the correct identity, the presence 
of the briefcase indicates that PS-DFSI focuses more accurately on 
fine-grained visual cues. This demonstrates the method’s strength in 
capturing discriminative features and maintaining robustness under 
challenging conditions.

4.4. Ablation study

In this section, we perform ablation experiments to assess the con-
tribution of each component and validate the design choices of our 
method. To ensure a fair comparison while optimizing computational 
resources and time, we select ResNet50 as the backbone for the subse-
quent experiments.
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4.4.1. Analysis of different components
We conduct ablation experiments on the PRW dataset to assess the 

contributions of each proposed component. Table  3 shows the incre-
mental performance improvements achieved by adding components 
to the baseline model, which is derived from SeqNet by removing 
detection-related parts, initially achieving 48.6% mAP and 87.6% top-1 
accuracy. Specifically, the DFSM, comprising the Frequency Decoupling 
Operation (FDO) and Frequency Selection Modulator (FSM), shows sig-
nificant improvements. Rows 2–4 show that introducing FDO improves 
mAP by 2.0%, demonstrating its effectiveness in decoupling features 
into high-frequency and low-frequency components. Furthermore, fur-
ther adding FSM increases mAP to 52.3% and top-1 accuracy to 87.9%, 
highlighting the significant role of FSM in modulating key frequency 
components. In addition, the SFIM, consisting of the Multi-scale Map-
ping Operation (MMO) and Cross-feature Attention Interaction (CAI), 
further boosts performance. Rows 5–7 show that adding MMO increases 
mAP to 53.7% (a 1.4% gain) and top-1 accuracy to 88.0%, demonstrat-
ing MMO’s ability to capture multi-scale local information. Adding CAI 
boosts mAP to 54.1% and top-1 accuracy to 88.2%, confirming the crit-
ical contribution of CAI in cross-feature interaction and fusion of global 
and local features. Finally, introducing the triplet loss term 𝐿𝛷 in 𝐿TOIM
improves performance by 0.7% in mAP and 0.3% in top-1 accuracy. 
This proves that 𝐿TOIM enhances the network’s discriminative ability 
by improving intra-person consistency and inter-person separability.

4.4.2. Analysis of different decoupling methods
To validate the effectiveness of the decoupling strategy in DFSM and 

to further analyze the application and limitations of different methods 
in person search, we compare the performance of fixed and learnable 
alternatives. As shown in Table  4, standard convolution (Conv) operates 
in the spatial domain and struggles with frequency separation, resulting 
in lower performance. This limitation becomes more evident in scenar-
ios with background clutter and occlusions. Gaussian filters provide 
basic frequency decomposition but lack adaptive optimization, lim-
iting performance (mAP 54.2%). Wavelet transform improves results 
via multi-scale information (mAP 54.9%, top-1 88.5%), yet struggles 
with viewpoint variation. Dynamic convolution offers better flexibility 
and slightly higher accuracy (mAP 55.4%), but its high parameter 
count (2.53M) increases computational cost, making it less suitable 
for resource-limited settings. In contrast, our FDO employs learnable 
low-pass and high-pass filters for efficient frequency decomposition, 
achieving the best trade-off in performance with fewer parameters 
(2.34M).
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Fig. 5. Qualitative results on the CUHK-SYSU dataset. We visualize the top-1 matching results for the state-of-the-art methods SeqNet, PAD, SAT, and our method for each query 
image. Red boxes indicate failed matches, while green boxes indicate successful matches. For comparison, we provide zoomed-in views of some detected instances.
Fig. 6. Qualitative results on the PRW dataset. For each query image, we visualize the rank-3 search results for PAD and our method. Red boxes indicate failed matches, while 
green boxes indicate correct matches.
4.4.3. Analysis of different scales
To further investigate the impact of multi-scale mapping in SFIM, 

we examine how different scales affect network performance. As shown 
in Table  5, the first three rows represent feature extraction at a single 
scale, while the middle three rows and the last row use two and three 
scales for feature extraction, respectively. The experimental results 
indicate that using three scales achieves the best performance on both 
the CUHK-SYSU and PRW datasets. This suggests that by modeling the 
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human visual system to extract essential information from diverse per-
spectives, the network can capture rich and comprehensive pedestrian 
features.

4.4.4. Analysis of different fusion methods
To further investigate the effectiveness of the Cross-feature Atten-

tion Interaction (CAI) module in SFIM, we replace CAI with several 
common feature fusion strategies (such as FPN, ASPP, HRNet, and 
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Table 3
Ablation analysis demonstrating the impact of each added component on the PRW dataset.
 Baseline DFSM SFIM 𝐿TOIM ReID Detection

 FDO FSM MMO CAI w/o 𝐿𝛷 w/𝐿𝛷 mAP top-1 Recall AP  
 ✓ 48.6 87.6 95.4 92.9 
 ✓ ✓ 50.6 87.4 95.7 93.2 
 ✓ ✓ 51.4 87.7 95.3 93.1 
 ✓ ✓ ✓ 52.3 87.9 95.8 93.6 
 ✓ ✓ ✓ ✓ 53.7 88.0 96.2 93.6 
 ✓ ✓ ✓ ✓ 53.5 87.8 96.4 93.5 
 ✓ ✓ ✓ ✓ ✓ 54.1 88.2 96.6 93.7 
 ✓ ✓ ✓ ✓ ✓ ✓ 54.5 88.3 96.8 94.1 
 ✓ ✓ ✓ ✓ ✓ ✓ 55.2 88.6 97.1 94.6 
Table 4
Analysis of different decoupling methods on the PRW dataset.
 Decoupling methods #Params(M) PRW

 mAP top-1 
 Conv 2.88 53.8 87.6  
 Gaussian [64] 2.34 54.2 88.2  
 
Fixed

Wavelet [19] 2.36 54.9 88.5  
 Dynamic Conv [65] 2.53 55.4 88.4  
 learnable FDO(Ours) 2.34 55.2 88.6  

Table 5
Ablation study on scale combinations for SFIM multiscale mapping on the CUHK-SYSU 
and PRW datasets. Bold indicates the best performance.
 Scale combinations CUHK-SYSU PRW

 mAP top-1 mAP top-1 
  {3×1, 1×3} 94.4 95.2 53.8 88.0  
 1 {5×1, 1×5} 94.9 95.2 54.3 88.3  
  {7×1, 1×7} 94.8 95.3 54.2 88.4  
  {3×1, 1×3},{5×1, 1×5} 95.2 95.5 54.6 88.3  
 1 {3×1, 1×3},{7×1, 1×7} 95.3 95.7 54.8 88.7  
  {5×1, 1×5},{7×1, 1×7} 95.1 95.7 54.9 88.5  
 3 {3×1, 1×3},{5×1, 1×5},{7×1, 1×7} 95.5 95.9 55.2 88.6  

Table 6
Ablation study on feature fusion methods for CAI in SFIM on CUHK-SYSU and PRW 
datasets.
 Fusion methods CUHK-SYSU PRW

 mAP top-1 mAP top-1 
 FPN [48] 94.4 94.9 54.2 87.4  
 ASPP [49] 95.2 95.7 54.8 88.2  
 HRNet [50] 95.4 95.6 54.4 87.8  
 SE module [66] 94.2 94.4 53.5 86.7  
 CAI(Ours) 95.5 95.9 55.2 88.6  

SE) to examine their impact on network performance. As shown in 
Table  6, although traditional methods improve performance to some 
extent (for example, HRNet achieves an mAP of 54.4% on the PRW 
dataset), using CAI leads to a performance improvement to 55.2%. This 
performance difference further validates the importance of CAI. CAI 
effectively integrates global information from the frequency domain 
and local detail features from the spatial domain through a cross-
domain attention mechanism, enhancing the model’s ability to perceive 
details.

4.4.5. Analysis of 𝐹𝐹𝑟𝑒 and 𝐹𝑆𝑝𝑎 in SFIM
To assess the contributions of 𝐹𝐹𝑟𝑒 and 𝐹𝑆𝑝𝑎 in SFIM, we conduct 

an ablation study by using each feature individually. As shown in 
Table  7, the performance of using only 𝐹𝐹𝑟𝑒 (54.6% mAP, 88.3% top-1) 
slightly exceeds that of using only 𝐹𝑆𝑝𝑎, indicating that frequency-
domain features contribute more effectively to fine-grained discrimina-
tion. Notably, combining both yields the best performance, confirming 
the complementary strengths of the two branches and validating the 
effectiveness of our fusion design.
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Table 7
Analysis of the contributions of 𝐹𝐹𝑟𝑒 and 𝐹𝑆𝑝𝑎 in SFIM on the PRW 
dataset.
 Methods PRW

 mAP top-1

 Only 𝐹𝐹𝑟𝑒 54.6 88.3 
 Only 𝐹𝑆𝑝𝑎 54.1 87.9 
 Concat(𝐹𝐹𝑟𝑒, 𝐹𝑆𝑝𝑎) 55.2 88.6 

Table 8
Performance comparison under different RoI-Align resolutions on PRW.
 Resolution DFSM SFIM PRW

 mAP top-1 
 14 × 14 50.6 87.2  
 14 × 14 ✓ 53.0 87.9  
 14 × 14 ✓ 52.8 87.5  
 14 × 14 ✓ ✓ 54.5 88.4  
 24 × 12 51.2 87.4  
 24 × 12 ✓ ✓ 55.2 88.6  

4.4.6. Analysis of different RoI-align resolution
We conduct ablation experiments under both the standard 14 × 14 

and our adopted 24 × 12 RoI-Align resolutions. As shown in Table  8, 
even with the 14 × 14 setting, adding DFSM or SFIM individually yields 
2.4%/2.2% mAP and 0.7%/0.3% top-1 gains. Using both together leads 
to 3.9% mAP and 1.2% top-1 improvement. In contrast, increasing 
resolution alone provides only 0.6% mAP and 0.2% top-1 gain. At 
24 × 12, integrating our modules achieves a significantly higher boost 
of 4.0% mAP and 1.2% top-1, indicating that the improvement mainly 
comes from our proposed modules, not resolution alone.

4.5. Hyperparameter analysis

4.5.1. Number of groups 𝑔
We evaluate the effect of 𝑔 on frequency-domain decomposition 

and selection, focusing on its impact on mAP and top-1 accuracy. 
As 𝑔 increases, finer grouping enables filters to capture more diverse 
frequency information, generally enhancing performance. However, an 
excessively large 𝑔 may cause over-decomposition, leading to higher 
computational cost, and degrading performance (As shown in Fig.  7). 
The optimal 𝑔 = 8 balances granularity and performance, achieving the 
best feature representation.

4.5.2. Number of branches 𝑚
We analyze the impact of the multi-branch parameter 𝑚 on feature 

capture at different scales, aiming to balance fine-grained perception 
and computational complexity. As shown in Fig.  8, when 𝑚 = 2, both 
mAP and top-1 accuracy stabilize at optimal levels on the CUHK-SYSU 
and PRW datasets. While increasing 𝑚 (e.g., 𝑚 = 3, 4) may provide slight 
performance gains, it also significantly raises computational cost. Thus, 
𝑚 = 2 is selected as the optimal configuration, balancing performance 
and computational efficiency.
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Fig. 7. Impact of 𝑔 on CUHK-SYSU and PRW datasets.

Fig. 8. Impact of 𝑚 on CUHK-SYSU and PRW datasets.

Fig. 9. Impact of 𝜆 on CUHK-SYSU and PRW datasets.

4.5.3. Loss weight 𝜆
We evaluate the impact of the weight parameter 𝜆 ∈ [0, 1] in 𝐿TOIM

(Eq. (20)) on model performance. As shown in Fig.  9, the optimal 
values for 𝜆 are 0.6 for CUHK-SYSU and 0.8 for PRW. A higher 𝜆
on PRW enhances 𝐿𝛷’s effect, improving intra-person consistency for 
cross-camera matching. This demonstrates that 𝐿TOIM, with 𝜆, dynami-
cally balances inter-class discriminability and intra-person consistency, 
boosting feature learning.

4.5.4. Hyperparameter 𝛷
We evaluate the impact of the hyperparameter 𝛷 on 𝐿𝛷. As shown 

in Fig.  10, the optimal value of 𝛷 is 0.2 for CUHK-SYSU and PRW. 
This indicates that an appropriate setting of 𝛷 can effectively control 
the minimum cosine similarity margin between pedestrians, thereby en-
hancing inter-person discriminability while ensuring the compactness 
of intra-person features. Consequently, this significantly improves the 
overall performance of the model.

4.6. Qualitative analysis of DFSM

In the DFSM module, we visualize the spectral features of differ-
ent groups (as shown in Fig.  11). The results show that the DFSM 
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Fig. 10. Impact of 𝛷 on CUHK-SYSU and PRW datasets.

module adaptively selects low-frequency or high-frequency signals, 
demonstrating its dynamic selection capability and enhancing the di-
versity of frequency-domain features. The filters in different groups 
exhibit distinct and targeted characteristics, focusing on specific fre-
quency components, which build richer and more refined frequency 
representations and validate the crucial role of the DFSM module in 
capturing fine-grained features. In addition, we visualize the spatial-
domain representations of the convolutional kernels from different 
groups to further reveal their capability in extracting local features. The 
spatial-domain results show that the responses of kernels across groups 
exhibit clear differences on the image, which helps to understand their 
roles in capturing local details and contours.

We analyze the impact of DFSM on the feature map (as shown in 
Fig.  12). DFSM dynamically selects frequency domains, decomposing 
features into low-frequency (structural) and high-frequency (local de-
tail) components. Through modulation and fusion, the final feature map 
enhances detail in blurred regions, such as textures and edges, with 
the heatmap showing DFSM’s focus on key pedestrian features, clearly 
distinguishing them from the background.

4.7. Effectiveness of 𝐿TOIM

To validate the improvement in feature discriminability and ro-
bustness brought by 𝐿TOIM, we use t-SNE to compare the feature 
distributions with and without 𝐿TOIM. Six identities are selected from 
the PRW dataset for analysis. As shown in Fig.  13(a), features of the 
same class are scattered, and the inter-class boundaries are blurred 
with significant overlapping regions. In contrast, Fig.  13(b) shows 
that features of the same class are well-clustered, and inter-class fea-
tures are clearly separated, significantly enhancing feature separability. 
This demonstrates that 𝐿TOIM effectively optimizes intra-person con-
sistency and inter-person discriminability, thereby improving feature 
representation for person search tasks.

4.8. Effectiveness in cross-dataset scenarios

To validate the generalization ability of PS-DFSI, we evaluate its 
performance in cross-dataset scenarios, where the model is trained on 
a source dataset (e.g., PRW) and tested on a target dataset (e.g., CUHK-
SYSU) without any fine-tuning. As shown in Table  9, PS-DFSI out-
performs state-of-the-art methods in both cross-dataset scenarios. This 
excellent performance can be attributed to the effective integration of 
frequency-domain and spatial-domain features, particularly through its 
dynamic frequency selection and spatial interaction mechanisms, which 
enhance robustness in cross-domain tasks. 
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Fig. 11. Visualization of the discrete Fourier transform results from different groups generated by DFSM. Top: High frequency. Middle: Low frequency. Bottom: Spatial-domain 
convolutional kernels.
Fig. 12. Feature changes and heatmap analysis of the DFSM module. It illustrates 
the processing of input images in low-frequency, high-frequency, and fused features, 
highlighting its ability to enhance key details in pedestrian regions and its effectiveness 
in background separation.

Fig. 13. Impact of 𝐿TOIM loss on feature distribution. t-SNE visualization comparing 
feature distributions with and without 𝐿TOIM loss, using six identities from PRW. The 
right panel highlights improved intra-person compactness and inter-person separability.
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Table 9
Performance comparison on cross-dataset scenario. ‘‘PRW → CUHK-SYSU’’ means that 
the model is trained on PRW dataset while tested on CUHK-SYSU.
 Methods PRW → CUHK-SYSU CUHK-SYSU → PRW
 mAP top-1 mAP top-1  
 OIM [3] 49.2 54.8 20.4 42.2  
 SeqNet [4] 50.6 55.6 25.6 71.8  
 DMRNet [29] 52.1 57.5 27.4 76.5  
 COAT [40] 53.2 58.8 28.5 76.5  
 PAD [18] 53.7 58.5 29.2 76.8  
 PS-DFSI(Ours) 55.2 60.2 30.4 77.5  

Table 10
Comparison of computational complexity.
 Methods #Params (M) FLOPs (G) Time (ms) 
 NAE+ [27] 33 575 98  
 AlignPS [35] 42 380 61  
 SeqNet [4] 48 550 86  
 COAT [40] 37 473 102  
 PS-DFSI(Ours) 35 452 95  

4.9. Computational complexity

In Table  10, we compare the computational complexity of PS-
DFSI with other end-to-end networks, reporting the number of pa-
rameters, FLOPs, and inference time (ms). All tests use 1500 × 900 
input images on the same Tesla V100 GPU for fairness. While PS-
DFSI has slightly higher computational cost and inference time than 
the anchor-free detector AlignPS [35], its complexity is much lower 
than SeqNet and COAT [40], which rely on sequential processing 
for detection and re-identification. Notably, PS-DFSI’s efficient design 
with dynamic frequency-domain selection and spatial interaction fusion 
achieves superior performance while maintaining low computational 
cost, balancing efficiency and performance.

4.10. Effectiveness of DFSM and SFIM

To further validate the generalization and effectiveness of the pro-
posed DFSM and SFIM modules, we evaluate them on two represen-
tative ReID datasets: Occluded-DukeMTMC and Market-1501. We inte-
grate DFSM and SFIM into the mainstream TransReID framework and 
conduct controlled comparisons under four settings. As shown in Table 
11, both modules individually improve the mAP and Rank-1 accuracy 
compared to the baseline, demonstrating their standalone effectiveness. 
More importantly, the best performance is achieved when DFSM and 
SFIM are used together, suggesting that the two modules are comple-
mentary in feature enhancement and can jointly benefit the ReID task. 
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Table 11
Effectiveness of DFSM and SFIM on the ReID task.
 Methods Occluded-DukeMTMC Market-1501

 mAP Rank-1 mAP Rank-1 
 TransReID [67] 59.2 66.4 88.9 95.2  
 +DFSM 61.2 70.5 89.5 95.4  
 +SFIM 60.7 69.7 89.3 95.4  
 +DFSM+SFIM 62.3 71.9 89.8 95.6  

Fig. 14. Qualitative comparison of our frequency-enhanced model with SeqNet and 
PAD in challenging scenarios.

This experiment confirms the applicability and generalizability of our 
modules across different vision tasks.

4.11. Visualization under challenging scenarios

To further validate the effectiveness of frequency modeling in com-
plex scenarios, we select samples with background clutter and occlusion 
from the PRW dataset and conduct a visual comparison between our 
frequency-enhanced model and two representative methods. As shown 
in Fig.  14, our method focuses more accurately on the key human 
regions in occluded areas and suppresses irrelevant background re-
sponses. In contrast, the baseline methods are more easily affected by 
background clutter or fail to precisely localize the target under oc-
clusion. These results demonstrate that incorporating frequency-aware 
features helps improve the model’s discriminative ability in complex 
scenes.

4.12. High-frequency attention ratio

We further analyze the trend of the normalized attention ratio be-
tween high-frequency and low-frequency components (𝑊 ℎ𝑖𝑔ℎ∕(𝑊 ℎ𝑖𝑔ℎ+
𝑊 𝑙𝑜𝑤)) in the frequency selection module throughout the training pro-
cess, as illustrated in Fig.  15. The results show that the ratio fluctuates 
significantly during the early training stage and shifts toward low-
frequency dominance in the middle stage. In the later phase, however, 
the ratio gradually increases and stabilizes at a higher level, indi-
cating that the model progressively learns to enhance high-frequency 
responses for more effective feature representation. This trend suggests 
that although the model dynamically balances high- and low-frequency 
information during training, it ultimately allocates more attention to 
high-frequency features, which helps capture fine-grained semantic 
details more effectively.

5. Conclusion

In this paper, we propose a novel dynamic frequency-domain se-
lection and spatial interaction fusion network (PS-DFSI) to address 
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Fig. 15. Ratio of high-frequency to total attention weights (𝑊 ℎ𝑖𝑔ℎ∕(𝑊 ℎ𝑖𝑔ℎ+𝑊 𝑙𝑜𝑤)) over 
training iterations.

the lack of robustness in person search under complex backgrounds 
and occlusions. PS-DFSI combines the DFSM and the SFIM to enhance 
feature representation and model robustness through the joint process-
ing of frequency and spatial domains. Specifically, DFSM decomposes 
features into high-frequency and low-frequency components to extract 
critical information and suppress background noise, while SFIM en-
hances multi-scale perception and achieves efficient fusion of frequency 
and spatial domains. Experiments demonstrate that PS-DFSI achieves 
significant performance improvements on the CUHK-SYSU and PRW 
datasets, particularly excelling in cross-dataset testing.

Limitations and Future Work: Although PS-DFSI performs exception-
ally well in cross-dataset experiments, its generalization ability can 
still be improved in scenarios with large camera viewpoint varia-
tions or severe occlusions. Moreover, the joint processing of frequency 
and spatial domain features may limit its applicability to real-time 
tasks. Future research could focus on optimizing module design and 
reducing computational complexity to further enhance efficiency and 
applicability.
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