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Granular-Ball Computing-Based Fuzzy Twin Support
Vector Machine for Pattern Classification

Guangming Lang , Lixi Zhao, Duoqian Miao , and Weiping Ding , Senior Member, IEEE

Abstract—The twin support vector machine (TWSVM) classifier
and its fuzzy variant fuzzy twin support vector machine (FTSVM)
have received considerable attention due to their low computational
complexity. However, their performance often deteriorates when
the input data is affected by noise. To overcome this limitation, this
study leverages the robustness of granular-ball computing (GBC)
against noise to develop more effective classification models by
integrating GBC with TWSVM and FTSVM. First, we introduce
the granular-ball TWSVM (GBTWSVM) classifier, which incorpo-
rates GBC with the TWSVM framework. By replacing traditional
point-wise inputs with granular-ball representations, we derive
a pair of nonparallel hyperplanes for the GBTWSVM classifier
by solving a quadratic programming problem. Afterwards, we
develop the granular-ball FTSVM (GBFTSVM) classifier, where
the membership and nonmembership functions of granular-balls
are defined using Pythagorean fuzzy sets, enabling a more nuanced
differentiation of the contributions of granular-balls from distinct
regions within the input space. By incorporating these functions
into the FTSVM framework, we derive a pair of nonparallel
hyperplanes for the GBFTSVM classifier through the solution
of a quadratic programming problem. Finally, we present algo-
rithms for the GBTWSVM and GBFTSVM classifiers and evaluate
their performance on 21 benchmark datasets. Experimental re-
sults demonstrate the superior scalability, computational efficiency,
and robustness of the proposed classifiers in pattern recognition,
highlighting their potential as advanced tools for noise-tolerant
classification.

Index Terms—Fuzzy twin support vector machine (FTSVM),
granular-ball computing, Pythagorean fuzzy sets (PFS), twin
support vector machine (TWSVM).

I. INTRODUCTION

SUPPORT vector machine (SVM), introduced by Vapnik
in 1995 [1], is a foundational machine learning technique

Received 2 December 2024; revised 1 March 2025; accepted 13 March 2025.
Date of publication 21 March 2025; date of current version 3 July 2025. This
work was supported in part by the National Key Research and Development
Program of China under Grant 2022YFB3104700, in part by the National Natural
Science Foundation of China under Grant 62076040, Grant 62376198, and
Grant 12471431, in part by the Hunan Provincial Natural Science Foundation of
China under Grant 2020JJ3034, and in part by the Scientific Research Fund of
Hunan Provincial Education Department under Grant 22A0233. Recommended
by Associate Editor J. Liu. (Corresponding author: Weiping Ding.)

Guangming Lang and Lixi Zhao are with the School of Mathematics and
Statistics, Changsha University of Science and Technology, Changsha 410114,
China (e-mail: langguangming1984@126.com; zhaolixi0915@163.com).

Duoqian Miao is with the School of Computer Science and Technology, Tongji
University, Shanghai 201804, China (e-mail: dqmiao@tongji.edu.cn).

Weiping Ding is with the School of Artificial Intelligence and Computer
Science, Nantong University, Nantong 226019, China, and also with the Faculty
of Data Science, City University of Macau, Macau 999078, China (e-mail:
dwp9988@163.com).

Digital Object Identifier 10.1109/TFUZZ.2025.3552281

widely applied in both classification and regression tasks. Over
the years, SVM and its numerous variants have demonstrated
exceptional effectiveness in handling high-dimensional and non-
linear datasets [2], [3], [4], [5]. A particularly notable variant,
twin SVM (TWSVM), differs from standard SVM by construct-
ing two nonparallel hyperplanes for classification, rather than a
single hyperplane [6], [7], [8], [9]. It ensures that each data point
is closer to one hyperplane while being farther from the other.
In classification tasks, new samples are assigned to the class
associated with the nearest hyperplane. Furthermore, TWSVM
achieves computational efficiency by solving two smaller-scale
quadratic programming problems instead of a single large-
scale problem. It retains the advantages of SVM in addressing
high-dimensional and nonlinear problems while offering train-
ing speeds theoretically four times faster than the traditional
SVM [10]. However, the performance of SVM and its variants
often deteriorates when dealing with noisy datasets [11]. To
mitigate the adverse effects of noise, researchers have developed
the fuzzy SVM (FSVM) classifier, which assigns a membership
degree to each sample based on its confidence within its native
class [12], [13], [14], [15]. Although this membership-based
approach enhances robustness, the membership functions of
FSVM often rely solely on the distance between a sample and
its class center, which may misidentify noisy data points far
from the center as support vectors, thereby degrading classi-
fication performance. To address these limitations, numerous
researchers have redefined the membership functions used in
FSVM to improve its noise-resilience [16], [17], [18], [19], [20],
[21]. For instance, Fan et al. introduced an entropy-based fuzzy
membership function, leading to the development of the entropy-
based fuzzy SVM (EFSVM) classifier [16]. Similarly, Rezvani,
Wang, and Pourpanah [17] proposed the intuitionistic fuzzy twin
SVM (IFTSVM) classifier, which integrates intuitionistic fuzzy
sets into the TWSVM framework. These advancements not
only enhance the robustness of SVM-based classifiers against
noise but also improve their ability to accurately distinguish
true support vectors from noisy or outlier samples, signifi-
cantly advancing the state-of-the-art methods for classification
tasks.

Granular computing (GC) is a computational paradigm that
utilizes information granulation to process imprecise, inaccu-
rate, and incomplete datasets. Zadeh [22] took vast amounts
of information to achieve intelligent systems and controllers
by leveraging the principles of GC. Since then, significant
advancements have been made in integrating GC approaches
including rough sets, fuzzy sets, three-way decisions, and formal
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concept analysis with machine learning [23], [24], [25], [26],
[27], [28], [29], [30], [31]. Chen [32] pointed out that human
cognition has the characteristic of large-scale priority. Inspired
by this cognitive mechanism, Wang [33] proposed a framework
of multigranularity cognitive computing to address uncertainty
in information processing. Building upon this foundation, Xia
et al. [34] introduced a novel method, namely, granular-ball
computing, for deal with uncertain information, which merges
the principles of granular computing with granular-ball repre-
sentations, thereby offering a concrete methodology for infor-
mation processing within the framework of granular computing.
Afterwards, GBC has demonstrated strong applicability across
various domains, including classification [34], [35], [36], [37],
[38], [39], [40], [41], [42], clustering [43], [44], [45], [46],
and attribute reduction [47], [48], [49], [50], [51], [52], [53],
[54], [55]. Most recently, Xia et al. [38] proposed the granular-
ball SVM (GBSVM) classifier, which integrates granular-balls
with the SVM framework. Unlike traditional methods that treat
individual samples as inputs, the GBSVM classifier utilizes
granular-balls as inputs, representing a shift towards nonpoint
input methods, and demonstrates significant robustness to noise
and superior classification effectiveness. In practice, TWSVM
outperforms standard SVM in classification accuracy and com-
putational efficiency. Motivated by the robustness of GBC
and the computational efficiency of TWSVM, this study aims
to design a novel classifier by integrating granular-balls into
the TWSVM framework, with the objective of constructing
a model that exceeds GBSVM in both efficiency and effec-
tiveness. Further progress has been achieved by Xue, Shao,
and Xia [35], who introduced the granular-ball fuzzy SVM
(GBFSVM) classifier. It offers enhanced robustness compared
to the traditional FSVM approaches. However, the GBFSVM
classifier faces limitations, as it determines the membership
degree of granular-balls solely based on their distance from the
class center. The granular-balls in boundary regions between
two classes may receive identical membership degrees for both
classes, which can lead to misclassifications and reduce the
accuracy of predictions. Moreover, the current approach eval-
uates granular-ball memberships by calculating the Euclidean
distance from the granular-ball’s center to the sample class
center, which risks overlooking support granular-balls located
far from class centers but close to classification boundaries.
Inspired by the robustness of GBC, the computational effi-
ciency of TWSVM, and the flexibility of Pythagorean fuzzy
sets (PFS) in handling uncertain problems, we aim to develop
an improved classification framework that overcomes the lim-
itations of GBFSVM. The contributions of this work are as
follows.

1) We integrate GBC with the TWSVM framework to de-
velop the GBTWSVM classifier. This novel classifier
employs coarse-grained granular-balls as inputs, replacing
traditional sample points. By positioning the hyperplane
closer to one class of granular-balls while maintaining
distance from the other class, the GBTWSVM classifier
significantly enhances the robustness and efficiency of the
TWSVM framework.

2) We combine GBC, PFS, and the FTSVM framework
to propose the GBFTSVM classifier. This classifier in-
troduces an innovative scoring function to assign dif-
ferentiated scores to granular-balls located in positive
and boundary regions. By capturing the distinct con-
tributions of granular-balls across various regions, the
GBFTSVM classifier further improves the performance
of the GBTWSVM classifier.

3) We conduct a comprehensive evaluation of the
GBTWSVM and GBFTSVM classifiers on 21 benchmark
datasets from the UCI Machine Learning Repository.
The experimental results reveal that both classifiers
outperform seven state-of-the-art classification methods
across multiple metrics, including running time, accuracy,
precision, and recall. Notably, the GBTWSVM and
GBFTSVM classifiers exhibit superior robustness against
noise, underscoring their effectiveness in real-world
classification tasks.

The rest of this article is organized as follows. Section II
provides a review of GBC, TWSVM, and FSVM. Section III
develops the GBTWSVM classifier. Section IV presents the
GBFTSVM classifier. Section V reports experimental results
with the GBTWSVM and GBFTSVM classifiers. Finally,
Section VI concludes this article.

II. PRELIMINARIES

In this section, we review some concepts of GBC [34],
TWSVM [6], and FSVM [12].

A. Granular-Ball Computing

The fundamental concept of GBC involves utilizing a fam-
ily of granular-balls to cover the original dataset, replacing
individual sample points with granular-balls as computational
inputs. Consider a datasetU = {(x1, l1), (x2, l2), . . ., (xn, ln)},
where X = {xk |xk ∈ Rd, k = 1, 2, . . ., n} stands for the fea-
ture value matrix of U with d features, and L = {lk | lk ∈
R, k = 1, 2, . . ., n} is the corresponding label vector. The sam-
ple universe U is covered by a family of granular-balls GB =
{GBi | i = 1, 2, . . .,m}. The center of the ith granular-ballGBi

is calculated as ci =
1
ni

∑ni

k=1 xik, where xik represents the
ikth sample and ni is the number of samples within GBi.
There are two available methods to determine the radius ri of
the granular-ball GBi: ri = maxxik∈GBi

|xik − ci| and ri =
1
ni

∑ni

k=1 |xik − ci|, and in this study, we adopt the average
distance as the radius of the granular-ball. To eliminate the
effect of noisy data within each granular-ball, the overall label
yi = argmaxlk∈L | {(x, l) ∈ GBi | l = lk} | of GBi takes the
label that appears most frequently within the granular-ball. The
purity pi =

|{(x,l)∈GBi|l=yi}|
ni

denotes the proportion of samples
with the label yi in GBi. This metric quantifies the consistency
of sample labels within each granular-ball. In fact, granular-
balls can be regarded as adaptive neighborhoods, where their
centers and radii are determined through optimization methods,
enabling them to accurately capture the local structure of the
data. Compared to the traditional neighborhoods, granular-balls
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exhibit greater adaptability and flexibility, making them more
effective in representing complex data.

In GBC, the initial primary objective is to generate a family of
granular-balls GB that effectively encapsulates the dataset. The
objective function for granular-ball generation is formulated as

min λ1 × n∑
GBi∈GB

|GBi| + λ2 ×m, (1)

s.t. quality(GBi) ≥ T (2)

where λ1 and λ2 are weight coefficients,m is the total number of
granular-balls, and quality(GBi) represents the proportion of
the majority of samples with the same label in the granular-ball
GBi. However, the traditional methods of generating granular-
balls encounter challenges in adapting to the unique data dis-
tribution of each dataset. These challenges primarily stem from
the difficulty in setting a fixed purity threshold parameter that
aligns with diverse dataset characteristics. To address this lim-
itation, Xia et al. [37] proposed a purity-adaptive method of
granular-ball generation, and made the granular-ball genera-
tion completely parameter-free. The objective function can be
expressed as follows:

min λ1 × n∑
GBi∈GB

|GBi| + λ2 ×m,

s.t. quality(GBi) ≥ T0,W (GBi) > quality(GBi),

‖ci − cj‖ > ‖ri − rj‖(i, j ∈ [1,m], yi �= yj) (3)

where T0 stands for the initial purity of the granular-ball, GBi

denotes the set of the child granular-balls of GBi, and W (GBi)
signifies the weighted sum of purities of the child granular-
balls of GBi. This adaptive approach ensures that the granular-
ball generation process dynamically aligns with the underlying
data distribution, thereby enhancing robustness and eliminating
reliance on prespecified purity parameters.

B. TWSVM and FSVM

The TWSVM classifier aims to find a pair of nonparallel
hyperplanes, with each hyperplane positioned closer to samples
of its corresponding class while maintaining a certain distance
from samples of the opposite class. A new sample x ∈ Rd is
assigned to class +1 or −1 depending on which hyperplane
it is closest to. The pair of nonparallel hyperplanes of the
TWSVM classifier is derived by solving the following quadratic
programming problems (QPPs):

min
ω1,b1,ξ2

1

2
(xAω1 + e1b1)

T (xAω1 + e1b1) + C1e
T
2 ξ2,

s.t. − (xBω1 + e2b1) + ξ2 ≥ e2, ξ2 ≥ 0, (4)

and

min
ω2,b2,ξ1

1

2
(xBω2 + e2b2)

T (xBω2 + e2b2) + C2e
T
1 ξ1,

s.t. (xAω2 + e1b2) + ξ1 ≥ e1, ξ1 ≥ 0 (5)

where matrices xA and xB stand for the samples of classes +1
and −1, respectively, C1 and C2 are penalty parameters, e1 and
e2 are vectors of ones with suitable dimensions, and ξ1 and ξ2
are slack variables.

In the dual form, the pair of nonparallel hyperplanes is derived
by solving the following QPPs:

max
α

αT e2 − 1

2
αTG(HTH)−1GTα,

s.t. 0 ≤ α ≤ C1 (6)

and

max
γ

γT e1 − 1

2
γTP (QTQ)−1PT γ,

s.t. 0 ≤ γ ≤ C2 (7)

where H = [xA e1], G = [xB e2], P = [xA e1],
Q = [xB e2], u = [ω1 b1]

T = (HTH)−1GTα, and
v = [ω2 b2]

T = (QTQ)−1PT γ.
Assume a training dataset Ũ = {(x1, l1, s1), (x2, l2, s2),

. . ., (xn, ln, sn)}, where sk ∈ (0, 1] is the membership degree
of xk to its corresponding label lk. The FSVM classifier seeks
to determine an optimal hyperplane by solving the following
optimization problem:

min
1

2
‖ω‖2 + C

n∑
k=1

skξk,

s.t. lk(ω
Tφ(xk) + b) ≥ 1− ξk,

ξk ≥ 0, k = 1, 2, . . ., n (8)

where C is a penalty parameter, ξk is a slack variable, and
φ(xk) represents the mapping to a higher-dimensional space.
This formulation incorporates membership degrees to reduce
the impact of noise on the hyperplane’s placement.

III. GRANULAR-BALL TWIN SUPPORT VECTOR MACHINE

In this section, we detail the construction of the GBTWSVM
classifier and present the corresponding algorithm for its applica-
tion in classification tasks [41]. The framework for constructing
the GBTWSVM classifier is illustrated in Fig. 1.

We define two nonparallel hyperplanes f1(x) : xTω1 + b1 =
0 and f2(x) : x

Tω2 + b2 = 0, where f1(x) stands for the hy-
perplane close to the positive-class granular-ball (yi = +1),
and f2(x) stands for the hyperplane close to the negative-class
granular-ball (yi = −1). Here, ωt and bt denote the normal
vector and bias of ft(x), respectively, where t ∈ {1, 2}. The
two hyperplanes are constrained by the following principles: 1)
each hyperplane should be as close as possible to the center
of the granular-balls of its respective class and 2) each hyper-
plane should maintain the maximum possible distance from the
surfaces of the granular-balls belonging to the opposite class.
For binary classification problems, assume m1 granular-balls of
class +1 and m2 granular-balls of class −1 are generated. The
centers of the granular-balls of classes +1 and −1 are repre-
sented by the matrices cA and cB , respectively, while their radii
of the granular-balls of classes+1 and−1 are represented by the
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Fig. 1. Framework of the GBTWSVM classifier.

Fig. 2. GBTWSVM classifier.

matrices rA and rB , respectively. The graphical representation
of the GBTWSVM classifier is illustrated in Fig. 2, where the
red and blue circles represent granular-balls of class +1 and
class −1, respectively. A pair of nonparallel hyperplanes of the
GBTWSVM classifier is derived by solving the following QPPs:

min
ω1,b1,ξ2

1

2
(cAω1 + e1b1)

T (cAω1 + e1b1) + C1e
T
2 ξ2,

s.t. − (cBω1 + e2b1)− rB + ξ2 ≥ e2, ξ2 ≥ 0 (9)

and

min
ω2,b2,ξ1

1

2
(cBω2 + e2b2)

T (cBω2 + e2b2) + C2e
T
1 ξ1,

s.t. (cAω2 + e1b2)− rA + ξ1 ≥ e1, ξ1 ≥ 0 (10)

where C1 and C2 are positive penalty parameters, and e1 and e2
are unit vectors with appropriate dimensions.

The GBTWSVM classifier minimizes the structural risk by
incorporating the regularization term to the margin maximiza-
tion objective. This objective is formulated as a pair of QPPs,
which can be addressed through the corresponding Lagrange
function:

L(ω1, b1, ξ2, α, β)

=
1

2
‖cAω1 + e1b1‖2 + C1e

T
2 ξ2 − αT (−(cBω1 + e2b1)

+ ξ2 − rB − e2)− βT ξ2 (11)

where α and β are Lagrangian multipliers. This formulation
integrates the optimization of hyperplane placement while ac-
counting for the tradeoff between minimizing classification er-
ror and maximizing margin, thus enhancing the generalization
capability of the classifier.

According to the Karush–Kuhn–Tucker (KKT) conditions,
the Lagrange function must satisfy the following conditions:

∂L

∂ω1
= cTA(cAω1 + e1b1) + cTBα = 0; (12)

∂L

∂b1
= eT1 (cAω1 + e1b1) + eT2 α = 0; (13)

∂L

∂ξ2
= C1e

T
2 − α− β = 0. (14)

By combining (12) and (13), we arrive at the following matrix
formulation:[

cTA
eT1

] [
cA e1

] [ω1

b1

]
+

[
cTB
eT2

]
α = 0. (15)

Let E = [cA e1], F = [cB e2], and u = [ω1 b1]
T . Using

these notations, (15) can be rewritten as

ETEu+ FTα = 0. (16)

To improve its generalization capacity, we add a regularization
item, and get the expression of u

u = −(ETE + εI)−1FTα. (17)

Similarly, for the second hyperplane, let R = [cA e1], S =
[cB e2], and v = [ω2 b2]

T , we get the expression of v

v = (STS + εI)−1RT γ. (18)

A pair of nonparallel hyperplanes for the dual model of the
GBTWSVM classifier is obtained by solving the following
QPPs:

max
α

αT (e2 + rB)− 1

2
αTF (ETE)−1FTα,

s.t. 0 ≤ α ≤ C1 (19)

and

max
γ

γT (e1 + rA)− 1

2
γTR(STS)−1RT γ,

s.t. 0 ≤ γ ≤ C2. (20)

For a new sample x εRd, the class label t ∈ {1, 2} is determined
by comparing the distances between the sample and the two
hyperplanes. Specifically, the sample is assigned to the class
corresponding to the closest hyperplane

Class t = arg min
t∈{1,2}

|〈ωt, x〉+ bt|
‖ωt‖ . (21)

This decision rule ensures that the new sample is assigned
to the class associated with the nearest hyperplane, thereby
leveraging the granular-ball proximity information for accurate
classification.

The algorithm for constructing the GBTWSVM classifier is
presented as follows.
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Algorithm 1: GBTWSVM Classifier.
Input: Granular-balls
GB = {(ci, ri, pi, yi) | i = 1, 2, . . .,m}.

Output: Hyperplane parameters ω1, ω2, b1, and b2.
1: Initialize cA, cB , rA, and rB as empty matrices;
2: for each GBi ∈ GB do
3: if yi = +1 then
4: add ci to cA and ri to rA;
5: else
6: add ci to cB and ri to rB ;
7: end if
8: end for
9: Use (19) and (20) to define the dual quadratic

programming problems;
10: Perform L-BFGS-B optimization to compute the

Lagrange multipliers α and γ;
11: Calculate ω1 and b1 for the first hyperplane by (17);
12: Calculate ω2 and b2 for the second hyperplane by (18);
13: return Hyperplane parameters ω1, ω2, b1, and b2.

Suppose the training dataset consist of n samples, with ap-
proximately n/2 samples per class, the time complexity of
SVM is O(n3), which scales cubically with the number of
training samples. In contrast, the time complexity of TWSVM
is O(2× (n/2)3), which is four times faster than SVM. If n
samples generate m granular-balls (m < n), with each class
having approximately m/2 granular-balls, the time complex-
ity of GBTWSVM is O(2× (m/2)3). If the number of gen-
erated granular-balls m ≈ n/2, the computational speed of
GBTWSVM is eight times faster than TWSVM due to its
reliance on a reduced number of granular-balls. The enhanced
efficiency makes GBTWSVM particularly well suited for large-
scale classification tasks, effectively balancing computational
cost with classification performance.

IV. GRANULAR-BALL FUZZY TWIN SUPPORT VECTOR

MACHINE

In this section, we present a detailed account of the con-
struction of the GBFTSVM classifier along with its associated
algorithm for effective implementation in classification tasks.
The framework for constructing the GBFTSVM classifier is
depicted in Fig. 3.

A. Pythagorean Fuzzy Membership Assignment

Assume X = {xk | k = 1, 2, . . ., n} is a dataset with n sam-
ple points, from which a set of granular-balls GB = {GBi | i =
1, 2, . . .,m} is derived. Each granular-ball GBi is assigned a
pair of membership and nonmembership degrees (μGBi

, νGBi
),

such that 0 ≤ μGBi
, νGBi

≤ 1 and μ2
GBi

+ ν2GBi
≤ 1. These

degrees characterize the relationship between the granular-ball
GBi and a specific class. Let μP (xik) and νP (xik) represent the
membership and nonmembership degrees of a sample xik in a
given class, respectively, then the membership and nonmember-
ship degrees of the granular-ball GBi in that class are defined

Fig. 3. Framework of the GBFTSVM classifier.

by

μGBi
=

1

ni

ni∑
k=1

μP (xik), νGBi
=

1

ni

ni∑
k=1

νP (xik) (22)

where xik is the ikth sample within the ith granular-ball GBi,
and ni denotes the number of samples inGBi. In most cases, the
membership and nonmembership degrees of individual samples
are not directly known. So, we design the membership and
nonmembership functions of the granular-balls as follows.

1) Membership Degree: The majority of methods for
constructing membership functions rely on the dis-
tance between individual samples and their respec-
tive class centers. For binary-class granular-balls GB =
{(ci, ri, pi, yi) | 1 ≤ i ≤ m}, where ci, ri, pi, and yi
represent the center, radius, purity, and label of GBi,
respectively, the class center C+ and the maximum radius
R+ of positive-class granular-balls (yi = +1), as well
as the class center C− and the maximum radius R− of
negative-class granular-balls (yi = −1), are defined as

C+ =
1

m+

∑
yi=+1

ci, R
+ = max

yi=+1

∥∥ci − C+
∥∥ ; (23)

C− =
1

m−

∑
yi=−1

ci, R
− = max

yi=−1

∥∥ci − C−∥∥ (24)

where m+ and m− stand for the numbers of positive and
negative granular-balls, respectively. For a granular-ball
GBi, the membership degree can be defined as

μGBi
=

{
1− ‖ci−C+‖

R++ε , if yi = +1;

1− ‖ci−C−‖
R−+ε , if yi = −1

(25)

where ε is a small positive constant.
2) Nonmembership Degree: Utilizing the membership de-

gree and the purity of a granular-ball GBi, we give the
nonmembership degree as follows:

νGBi
=

√
(1− μ2

GBi
)(1− pi) (26)
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where pi indicates the purity of GBi. For each granular-
ball GBi, the membership degree μGBi

and the non-
membership degree νGBi

satisfy the conditions: 0 <
μGBi

, νGBi
≤ 1, and 0 ≤ μ2

GBi
+ ν2GBi

≤ 1.
Remark: Pythagorean fuzzy sets [56], [57], [58] extend in-

tuitionistic fuzzy sets, offering greater flexibility in handling
uncertainty and fuzziness. Accordingly, this study employs
Pythagorean fuzzy sets to define the membership and non-
membership degrees of granular-balls. Furthermore, the positive
constant ε ensures that the membership degree of a granular-
ball containing a single object remains meaningful, and cannot
overly affect the values of the membership function. Therefore,
a small positive value, such as 0.0001 or 0.00001, can be appro-
priately selected.

In three-way decisions, Yao [59] categorized objects into three
distinct groups based on their evaluations to minimize the risk of
misclassification. Specifically, objects with different evaluations
are assigned to different regions. Analogously, the impact of
individual samples on classification is not uniform. The samples
located in the boundary region play a crucial role in achieving
accurate classifications. Conversely, the samples situated farther
from the boundary contribute relatively less to the classifica-
tion. To accurately measure the contribution of granular-balls
in various regions to classification, we categorize them into
positive and boundary regions, and assign them different scoring
functions. Based on the closeness index of PFS, we define the
granular-ball closeness function as follows:

θGBi
=

√
1− ν2GBi

2− μ2
GBi

− ν2GBi

. (27)

In classification tasks, granular-balls positioned in the boundary
region are typically close to the decision boundary, playing a
significant role in its determination. In contrast, granular-balls
located in the positive region are generally farther from the
decision boundary and have little influence on its construction.
According to the theory of three-way decisions, if the purity of
granular-ball GBi equals 1, then GBi belongs to the positive
region. If the purity of granular-ball GBi is not equal to 1, then
GBi belongs to the boundary region. To reflect these differences
in contribution, we assign a lower scoreμGBi

to the granular-ball
in the positive region and a higher score θGBi

to that in the
boundary region. The scoring function of the granular-ball GBi

is defined as follows:

sGBi
=

{
μGBi

, if pi = 1;

θGBi
, if pi �= 1.

(28)

In Fig. 4, dashed granular-balls stand for those belonging to
the boundary region, typically positioned close to the separating
boundary, and are assigned a higher score. In contrast, solid
granular-balls stand for those belonging to the positive region,
and they are often positioned far from the separating boundary.
This scoring function effectively distinguishes the contributions
of granular-balls in different regions, offering a more nuanced
understanding of their roles in the classification process.

Fig. 4. GBFTSVM classifier.

B. Linear Granular-Ball Fuzzy Twin Support Vector Machine
Classifier

Consider a family of granular-balls GB = {(ci, ri, pi, yi) |
1 ≤ i ≤ m}, where ci is the center of granular-ballGBi, ri is the
radius of granular-ball GBi, pi is its purity, and yi ∈ {−1,+1}
indicates its class label. The linear GBFTSVM classifier con-
structs two nonparallel hyperplanes by solving the following
QPPs:

min
ω1,b1,ξ2

1

2
(cAω1 + e1b1)

T (cAω1 + e1b1) + C1s
T
Bξ2,

s.t. − (cBω1 + e2b1)− rB + ξ2 ≥ e2, ξ2 ≥ 0 (29)

and

min
ω2,b2,ξ1

1

2
(cBω2 + e2b2)

T (cBω2 + e2b2) + C2s
T
Aξ1,

s.t. (cAω2 + e1b2)− rA + ξ1 ≥ e1, ξ1 ≥ 0 (30)

where C1 and C2 are constants and both are greater than 0,
and e1 and e2 are unit vectors of the appropriate dimension,
sA ∈ R and sB ∈ R are the score values of positive and negative
granular-balls, respectively.

We tackle the QPP of the linear GBFTSVM classifier by in-
corporating Lagrange multipliersα1, β1, α2, and β2 as follows:

L(ω1, b1, ξ2, α1, β1)

=
1

2
‖cAω1 + e1b1‖2 + C1s

T
Bξ2 − αT

1 (−(cBω1 + e2b1)

+ ξ2 − rB − e2)− βT
1 ξ2 (31)

where α1 and β1 are Lagrangian multipliers.
According to KKT conditions, we get

∂L

∂ω1
= cTA(cAω1 + e1b1) + cTBα = 0; (32)

∂L

∂b1
= eT1 (cAω1 + e1b1) + eT2 α = 0; (33)

∂L

∂ξ2
= C1s

T
B − α1 − β1 = 0. (34)
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From (32) and (33), we obtain[
cTA
eT1

] [
cA e1

] [ω1

b1

]
+

[
cTB
eT2

]
α1 = 0. (35)

Simplifying, we write

ETEu+ FTα = 0 (36)

where E = [cA e1], F = [cB e2], and u = [ω1 b1]
T . By

adding the regularization item, we obtain

u = −(ETE + εI)−1FTα1. (37)

Similarly, for the second hyperplane, we write

v = (STS + εI)−1RTα2 (38)

where R = [cA e1], S = [cB e2], and v = [ω2 b2]
T .

The dual optimization problems for the two hyperplanes are
formulated as

max
α1

αT
1 (e2 + rB)− 1

2
αT
1 F (ETE)−1FTα1,

s.t. 0 ≤ α1 ≤ C3sB (39)

and

max
α2

αT
2 (e1 + rA)− 1

2
αT
2 R(STS)−1RTα2,

s.t. 0 ≤ α2 ≤ C4sA. (40)

For a new input data x εRd, the predicted class t ∈ {1, 2} is
determined by the hyperplane closer to the input

Class t = arg min
t∈{1,2}

|〈ωt, x〉+ bt|
‖ωt‖ . (41)

The process of constructing the GBFTSVM classifier is summa-
rized in Algorithm 2. It involves computing granular-ball scores,
building optimization problems, and solving them iteratively to
obtain the hyperplane parameters.

Assume n samples generate m granular-balls (m < n), with
each class containing approximately m/2 granular-balls, the
time complexity of GBFTSVM is O(2× (m/2)3). If the num-
ber of generated granular-balls m is approximately n/2, the
computational speed of GBFTSVM is eight times faster than
TWSVM.

V. EXPERIMENTAL ANALYSIS

In this section, we present a comparative analysis of
GBFTSVM and GBTWSVM against seven established meth-
ods, including TWSVM [6], EFSVM [16], IFTSVM [17],
GBKNN [34], GBFSVM [35], GBSVM [38], and 3WC-
GBNRS++ [40]. All methods were implemented in Python
3.11 and executed on a desktop computer equipped with an
Intel Core i7-10700 CPU operating at 2.90 GHz, with 16 GB
of RAM.

Algorithm 2: GBFTSVM Classifier.
Input: Granular-balls
GB = {(ci, ri, pi, yi) | i = 1, 2, . . .,m}.

Output: Hyperplane parameters ω1, ω2, b1, and b2.
1: Use (25) and (27) to calculate μGBi

and θGBi
;

2: Initialize si as empty matrices;
3: for each GBi ∈ GB do
4: if pi = 1 then
5: add μGBi

to matrix si;
6: else
7: add θGBi

to matrix si;
8: end if
9: end for

10: Initialize cA, cB , rA, rB , sA, and sB as empty
matrices;

11: for each GBi ∈ GB do
12: if yi = 1 then
13: add ci, ri, and si to matrices cA, rA, and sA,

respectively;
14: else
15: add ci, ri, and si to matrices cB , rB , and sB ,

respectively;
16: end if
17: end for
18: Use (39) and (40) to define the objective function;
19: Perform L-BFGS-B optimization for α1 and α2;
20: Use (37) to calculate ω1 and b1;
21: Use (38) to calculate ω2 and b2;
22: return Hyperplane parameters ω1, ω2, b1, and b2.

A. Experimental Datasets

We utilize 21 benchmark datasets obtained from the UCI
Machine Learning Repository [60]. The statistical characteris-
tics are summarized in Table I. To assess the performance of
the nine methods, we employ four evaluation metrics: Running
time, Accuracy (Acc), Precision (Prec), and Recall (Rec). Each
dataset is partitioned into training and testing subsets using an
8 : 2 ratio. In the experiments, to ensure consistency across
all tests, we adopted the classical k-means-based granular-ball
generation method, where the radius ri of each granular-ball
GBi is calculated as the average distance of all data points
within the granular-ball. For every experiment conducted on
a dataset, we systematically optimize the purity threshold in
increments of 0.01. The highest classification accuracy obtained
across various purity thresholds is selected as the final accuracy
for that dataset. The value of the small positive constant ε in (25)
was set to 0.00001. To ensure the reliability of the results, each
experiment is repeated ten times, and the average value across
these repetitions is reported as the final evaluation outcome.

B. Penalty Parameters

We conduct a grid search over the penalty parameters used
in different methods, and report the best-performing results as
the final outcomes. The parameter settings for the TWSVM,
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TABLE I
TWENTY-ONE DATASETS FOR EXPERIMENT

IFTSVM, GBTWSVM, and GBFTSVM classifiers are listed
as follows: Ci (i = 1, 2, 3, 4) is systematically explored over
the grid {2i | i = −5,−4, . . .,+4,+5}, with the constraints
C1 = C3, C2 = C4. For the EFSVM, GBSVM, and GBFSVM
classifiers, the parameter C is similarly optimized over the
grid {2i | i = −5,−4, . . .,+4,+5}. We select the parameter
settings that yield the highest accuracy by each of the nine
models on the datasets as the final configurations. In addition,
we present the optimized parameters for these methods across
different datasets in Table II.

C. Experimental Results on Datasets Without Noise

1) Comparison of Training Times: In the absence of noise,
the training times for the evaluated models across various
datasets are presented in Table III. Notably, while the 3WC-
GBNRS++ classifier achieves the shortest training time on
most datasets, GBTWSVM and GBFTSVM exhibit significant
speed advantages as dataset size increases. For instance, on the
Electrical dataset, GBTWSVM’s training speed is ten times
faster than that of 3WC-GBNRS++. In addition, in terms of
average training time and average ranking across all datasets,
GBTWSVM emerges as the fastest, followed by GBFTSVM.
While 3WC-GBNRS++ ranks slightly higher overall, its effi-
ciency on larger datasets lags behind GBTWSVM. These find-
ings underscore GBTWSVM’s distinct advantage in terms of
both overall performance and scalability for large datasets. Two
primary factors contribute to these observations: First, the num-
ber of granular-balls generated in the datasets is significantly
smaller than the sample size. Second, both GBTWSVM and
GBFTSVM derive the hyperplane by two smaller-scale QPPs
instead of a single large-scale one, thereby reducing compu-
tational complexity. While the GBTWSVM classifier achieves
slightly worse accuracy than the GBFTSVM classifier, it ex-
hibits faster. This efficiency arises because GBFTSVM requires

the calculation of a scoring function for each granular ball to
evaluate its contribution to classification, whereas GBTWSVM
does not include this step.

2) Comparison of Accuracy, Precision, and Recall: To com-
prehensively evaluate the performance of the GBTWSVM and
GBFTSVM classifiers on multiple datasets without noise, we
conduct a rigorous comparison of nine models across 21 bench-
mark datasets. These models are evaluated based on their ac-
curacy, precision, and recall for classification. The results of
this evaluation are summarized in Table IV and illustrated in
Figs. S1, S2, and S3 (see supplementary materials). After a
thorough analysis, we arrive at the following conclusions: The
GBFTSVM classifier exhibits the highest accuracy, precision,
and recall across 16 of the 21 datasets, and firmly establishes
its superior classification capabilities. Notably, the GBFTSVM
classifier exhibits a relatively low standard deviation in accu-
racy, indicating its consistent and reliable performance across
datasets. While the GBTWSVM classifier trails the GBFTSVM
classifier slightly in terms of overall accuracy, it still achieves
high accuracy on eleven datasets with a low standard deviation,
positioning it as a strong contender among the remaining eight
models. Furthermore, we compare the average accuracy of each
model across all datasets. Evidently, the GBFTSVM classifier
achieves the highest average accuracy, and outperforms the
other models by 1% –30% , which underscores its superior
classification performance. In comparison with the GBTWSVM
classifier, the notable improvement of the GBFTSVM classi-
fier’s average accuracy validates the significance of our opti-
mizations and enhancements to the membership function for
classification.

To overcome the potential bias caused by a model’s high
accuracy in one dataset and low accuracies in others, we cal-
culate the average rank of each model across all datasets. The
model with the highest accuracy is ranked first, and in cases
of equal accuracy, the average of the corresponding ranks is
used. The GBFTSVM classifier emerges with the lowest aver-
age rank, and firmly establishes its superiority among all the
compared models. Similarly, the GBTWSVM classifier, with
the second-lowest average rank, demonstrates strong perfor-
mance relative to the other models, apart from the GBFTSVM
classifier.

D. Experimental Results on Datasets With Noise

To assess the robustness of the GBTWSVM classifier and
the GBFTSVM classifier to noise, we generated noisy datasets
by randomly flipping the labels of 5% and 10% of the samples
to 21 datasets and compare the classification accuracy of nine
models. The results are shown in Table V, and illustrated in
Fig. S4 (see supplementary materials). Due to the extended train-
ing time of GBSVM, which exceeded seven days to complete a
single experiment under both the 5% and 10% noise conditions,
and the requirement to run the experiment ten times, its results
are excluded from the analysis. From the results in Table V,
the GBFTSVM classifier achieves the highest accuracy on 16
datasets with 5% noise and on 19 datasets with 10% noise,
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TABLE II
OPTIMAL PARAMETERS OF SEVEN MODELS ON UCI DATASETS WITHOUT NOISE

TABLE III
RUNNING TIME OF NINE MODELS ON UCI DATASETS WITHOUT NOISE

outperforming the other eight models. Notably, on the Messidor-
features, Diabetes-upload, and WDBC datasets, the GBFTSVM
classifier, although not the top performer in noise-free condi-
tions, demonstrates improved stability under noise, leading to
better classification accuracy, particularly with 10% label noise.
It is noteworthy that classifiers based on granular-balls exhibits
a relatively stable accuracy fluctuation of approximately 2%
with noise addition, compared to a fluctuation of over 2% for
classifiers based on point inputs. This suggests that classifiers

based on granular-balls offer better robustness to noise, main-
taining prediction stability more effectively. Furthermore, the
GBFTSVM classifier emerges as the top performer in terms of
average accuracy across all noise levels (5% and 10%). This can
be attributed to several factors: First, the coarser granularity of
the granular-balls and the assignment of majority labels to noisy
points mitigate the impact of label noise. Second, the GBFTSVM
classifier employs two symmetric support vectors based on
granular-balls, which, through their symmetry, effectively resists
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TABLE IV
ACCURACY, PRECISION, AND RECALL OF NINE MODELS ON UCI DATASETS WITHOUT NOISE

noise and outliers, thereby enhancing the model’s generalization
ability. Third, the assignment of scoring functions to granular-
balls helps distinguish supportive granular-balls, minimizing
their detrimental effect on the separation hyperplane, and further
improving the classifier’s robustness to noise.

E. Statistical Analysis

To validate the statistical significance of the GBFTSVM
classifier, we perform the Friedman test followed by the Ne-
menyi post-hoc test across nine models on 21 datasets with-
out noise. Initially, we assume that all models are equiva-
lent under the null hypothesis. The Friedman statistic fol-
lows a chi-square distribution, and is calculated using the for-
mula: χ2

F = 12N
M(M+1) [

∑M
j=1 R

2
j − M(M+1)2

4 ], where Rj (j =

1, 2, . . .7) stands for the average rank of the jth model, N
is the number of datasets, and M is the number of models.
Alternatively, the Friedman statistic follows an F-distribution
with ((M − 1), (M − 1)(N − 1)) degrees of freedom, and is

Fig. 5. Comparison of nine models in terms of CD diagrams.

computed as: FF =
(N−1)χ2

F

N(M−1)−χ2
F

. From Table IV, we obtain
an FF value of 22.16 with degrees of freedom (8160). At
a significance level of 0.05, the critical value of F (8160) is
1.9967. Since FF exceeds this critical value, we reject the null
hypothesis. Subsequently, we ultilize the Nemenyi post-hoc test
to further distinguish these models. It involves calculating the

critical difference (CD): CD = qα

√
M(M+1)

6N . At a significance
level of 0.05, qα is 2.949. To visualize the differences among
nine classifiers, we generate a CD diagram depicted in Fig. 5.
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TABLE V
ACCURACY OF NINE MODELS ON UCI DATASETS WITH DIFFERENT NOISE LEVELS

This diagram clearly shows that the horizontal line representing
the GBFTSVM classifier does not overlap with the lines for the
3WC-GBNRS++, EFSVM, GBFSVM, GBSVM, and GBKNN
classifiers. This indicates that the GBFTSVM classifier signifi-
cantly differs from and outperforms these other models.

VI. CONCLUSION

In this article, inspired by GBC and TWSVM, we have
proposed the GBTWSVM classifier for binary classification
problems, which utilizes granular-balls as inputs instead of
individual samples, and offers a scalable, efficient, and robust
data processing method. Subsequently, we have introduced the
GBFTSVM classifier by integrating GBC, PFS, and FTSVM,
which defines the granular-ball membership and nonmember-
ship functions based on the Pythagorean closeness index. In
addition, the GBFTSVM classifier distinguishes the contribu-
tion of granular-balls from different regions to classification,
further enhancing its effectiveness. Finally, the experimental
results conducted on 21 benchmark datasets demonstrate that

the GBFTSVM classifier achieves outstanding performance in
terms of classification accuracy, precision, recall, and stability,
while the GBTWSVM classifier excels in training efficiency.

In real-world applications, there are numerous instances of
nonlinear classification problems and multiclass classification
challenges. In the future, we will explore methods to integrate
granular-ball computing with nonlinear and multiclass tasks to
enhance model performance on complex data. We also investi-
gate the combination of granular-ball computing with variant
models of twin support vector machines to further improve
classification performance. In addition, advanced techniques
such as deep learning or reinforcement learning will be intro-
duced to optimize both the generation of granular-balls and the
classification processes.
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