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Multiple Self-Adaptive Correlation-Based Multiview
Multilabel Learning

Changming Zhu , Yimin Yan, Duoqian Miao , Yilin Dong , and Witold Pedrycz , Life Fellow, IEEE

Abstract—In order to process multiview multilabel, multilabel,
and multiview data, current learning algorithms are designed on
the basis of data characteristics, correlations, etc. While these
algorithms cannot express correlations among different features,
instances, labels in within-view, cross-view, and consensus-view
representations self-adaptively and relative accurately. To this
end, this study takes the classical multiple correlations-based
model as the basis and explores some laws of self-adaptive change
for those correlations in multiple representations. The proposed
algorithm is called multiple self-adaptive correlation-based multi-
view multilabel learning (MuSC-MVML). Extensive experiments
on 38 datasets demonstrate the superiority of MuSC-MVML and
some conclusions are addressed. 1) MuSC-MVML outperforms
most compared algorithms in statistical in terms of AUC and
its performance is also stable; 2) the computational cost of
MuSC-MVML is moderate and on most datasets, MuSC-MVML
has a relatively fast convergence; and 3) introducing some laws
of self-adaptive change for those correlations can improve the
ability of MuSC-MVML to process multiview multilabel datasets
effectively and express correlations in multiple representations
better. Furthermore, this study explains the reason that why we
use alternating optimization strategy to optimize the model of
MuSC-MVML and provides some suggestions that how to modify
the model of MuSC-MVML to process incomplete multiview
multilabel datasets with noise.

Index Terms—Consensus-view, cross-view, multiview
multilabel, self-adaptive, within-view.
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I. INTRODUCTION

A. Background

MULTIVIEW multilabel, multilabel, and multiview
datasets are common in real-world applications. Each

instance in these datasets can be tagged by multiple class labels
or/and represented by multiple sets of features. For example,
in Fig. 1, we give three illustrative examples to show these
datasets in some specific real-world applications. In order to
tackle with these datasets, scholars have to design algorithms
that conform to these data characteristics, including features,
labels, and instances themselves (see Table I) [1], [2], [3], [4],
[5], [6], [7], [8], [9], [10] and they have achieved effective
performances and attracted scholars to improve them.

Compared with the usage of these characteristics, another
strategy to solve these datasets is to use of the correlations
among instances, features, and labels which are common
in different representations. Indeed, information about fea-
tures, labels, and instances themselves can be demonstrated
in multiple forms, including within-view, cross-view, and
consensus-view representations. First, within-view represen-
tation demonstrates data information expressed in a view.
Second, cross-view representation is shared by two different
views and its information can be treated as the source for
the information of two views. Third, consensus-view repre-
sentation is shared by all views and its information describes
the consensus representation and source of information from
all different views. On the basis of these correlations, four
types of widely concerned algorithms are developed, namely
algorithms focused on within-view correlations, cross-view
correlations, consensus-view correlations, and self-adaptive
ways [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24]. Their differences to multiple
self-adaptive correlation-based multiview multilabel learning
(MuSC-MVML) are given in Table II and details are reviewed
in Section II. Among these algorithms, the one developed
in [13] is a multilabel algorithm, the ones developed in [12],
[14], [15], [17], [18], [23], [24] are multiview algorithms, and
then others are multiview multilabel ones.

B. Main Problem

According to some discussions about above mentioned
algorithms (see Section II and Tables I and II), there are some
common shortcomings exist. 1) In order to realize the measure-
ment of those correlations, some algorithms exploit low-rank
preserving terms or self-adaptive constraints. However, they
only express several or one correlation information (such as
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Fig. 1. Use of multiview multilabel, multiview, and multilabel datasets in
specific real-world applications. (a) Illustrative multiview multilabel scenario:
two news webpages from BBC can be represented in multiview, including
text and picture. For these webpages, we provide four labels which can be
selected and for the top webpage, it can be tagged as “travel” and “crowd”
simultaneously while for the bottom webpage, it is tagged as “sport” and
“single” at the same time (the selected labels are given in red). (b) Illustrative
multiview scenario: an introduction about National Museum of China can be
represented in multiview, including text, picture, and video. (c) Illustrative
multilabel scenario: weather forecast from Qingdao and Chongqing in five
days are given and they have different labels. Among the given four selectable
labels, for Qingdao, sunny and cloudy are selected while for Chongqing,
cloudy, rainy, and cloudy to sunny are selected.

TABLE I
CLASSICAL MULTIVIEW ([1], [2], [3], [4]), MULTILABEL ([5], [6], [7]),

AND MULTIVIEW MULTILABEL ([8], [9], [10]) ALGORITHMS AND

DIFFERENCES TO OURS

TABLE II
DIFFERENCES TO MUSC-MVML FOR ALGORITHMS FOCUSED ON

WITHIN-VIEW CORRELATIONS, CROSS-VIEW CORRELATIONS,
CONSENSUS-VIEW CORRELATIONS, AND SELF-ADAPTIVE WAYS. “HIGH

COMPUTATIONAL COST” INDICATES THE COMPUTATIONAL COST IS

O(n3)-LEVEL

within-view feature-feature correlation) and do not study the
simultaneous measurement of multiple kinds of correlation
information, explore laws of self-adaptive change for multiple

correlation information, and consider the self-adaptive con-
straints design comprehensively. Indeed, consideration of these
factors will bring more concrete correlations and this is one
main problem to be solved in this study. 2) Some mentioned
algorithms here are only developed for multiview or multilabel
data and bring high computational costs. These disadvantages
also form another main problem to be solved.

C. Proposal, Contributions, and Work

To solve the above mentioned main problems, we analyze
the advantages and frameworks about models in the above
mentioned algorithms and refer to some ideas in these studies,
especially, one in global and local multiview multilabel learn-
ing (GLMVML) [11] and the one of dual noise elimination and
dynamic label correlation guided partial multilabel learning
(PML-DNDC) [13].

Then, this study considers the self-adaptive measurements
of the correlations in the representations about within-view,
consensus-view, and cross-view. In order to express these
correlations in a sound way, we explore the laws of self-
adaptive change for these multiple correlation information
according to the characteristics of the data further and design
feasible self-adaptive constraints. The developed algorithm is
called MuSC-MVML. Different from many current existing
algorithms (details can be found in Section IV-D), MuSC-
MVML is not just about the simple combination of current
algorithms. Indeed, it has a different model and its core
module is to explore the laws of self-adaptive change for these
correlations.

The major contributions and novelties of this study are
1) MuSC-MVML can express correlations in multiple repre-
sentations better with the exploration of self-adaptive change
laws about correlations; 2) MuSC-MVML provides a better
way to process multiview multilabel data, multilabel data,
and multiview data simultaneously with the consideration
about influence of correlations in different representations;
3) compared with the basic machines, including GLMVML
and PML-DNDC, MuSC-MVML has a better performance in
statistical in terms of AUC, a moderate computational cost and
a relatively fast convergence.

The main work of this study includes 1) we put forward
a new design concept for models of multiview multilabel
learning and elaborate its theoretical fundamental, framework,
optimization procedure, and computational cost; 2) we analyze
influence of different correlations and laws of their self-
adaptive change in the representations about within-view,
consensus-view, and cross-view; and 3) we report the sig-
nificant performances of MuSC-MVML compared with the
baselines.

D. Framework

The study is organized as follows. Section II reviews
the related works about the previous four kinds of
widely concerned algorithms using correlations. Sections III
and IV demonstrate the theoretical fundamental, framework,
optimization procedure, and computational cost of MuSC-
MVML. In Section V, we report on numerous experiments
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to evaluate the proposed algorithm. In Section VI, we give
some further discussions about this study. Finally, Section VII
concludes this study and advises the future work.

II. RELATED WORK

As mentioned before, there are four types of widely
concerned algorithms to solve datasets with the usage of cor-
relations. Thus, we review them and describe their advantages
in detail here.

1) Type 1: Algorithms Focused on Within-View
Correlations: Zhu et al. [11] developed GLMVML
to express label-label correlations within each view
and process multiview multilabel datasets well;
Hajjar et al. [12] expressed correlations between labels
and seek the consensus representation for cluster label
matrices of different views through adding a smoothness
constraint over all views; Hu et al. [13] captured
correlations between labels by constructing dynamic
label-level Laplacian matrix to help classifier learning.
The instance-level and label-level Laplacian matrices
enable the algorithm to reinforce each other, enhancing
the robustness of the model. Li et al. [14] developed a
method to emphasize the preservation of local residuals
to enhance data representation through instance-instance
correlation within views used.

2) Type 2: Algorithms Focused on Cross-View Correlations:
Dong and Sun [15] discovered cross-view correlations
by learning view-sharing and view-specific features of
different views in the representation space and then they
can learn the comprehensive representation of partial
multiview data. By the exploration of the consistency
and complementarity information across different views
and with the consideration about label correlations,
Zhang et al. [16] generated the common and individual
representations for each instance to comprehensively
characterize all of its relevant semantic labels and then
to improve the performance of multilabel prediction.

3) Type 3: Algorithms Focused on Consensus-View
Correlations: Liu et al. [17] learned a consensus-view
instance-instance correlation matrix from the consensus
latent data representation with the feedback information
of the clustering process and the performance of cluster-
ing can be better; Zhang et al. [18] constructed a linear
model to seek the correlations between the consensus
latent representation for features of different views and
features of each view and make the latent representation
depicts data more comprehensively than each individ-
ual view with the usage of the complementarity of
multiple views; Ma et al. [19] minimized the similarity
between the shared and view-specific representations
with consensus-view and within-view correlations con-
sidered, thereby improving diversity. Tan et al. [20]
learned a consensus subspace to capture the shared
instances and explore the consensus correlations among
labels. They also exploit multiple individual classifiers
to explore characteristics of each view. Then, one can
realize an improved performance with individuality and

TABLE III
DEFINITIONS OF A MULTIVIEW MULTILABEL DATASET

commonality information used and enhance the robust-
ness with respect to rare labels.

4) Type 4: Algorithms Focused on Self-Adaptive Ways:
Liu et al. [21] constructed a crafted label correla-
tion matrix to describe the relationships among labels
self-adaptively and then utilized multiview learning
and dimension reduction to exploit the high-level
latent semantic label information and the latent fea-
ture information, so as to build a classifier in the
low dimensional space. Wang and Xu [22] employed
the KNN method to mine the correlation between the
training instances with different views to generate the
manifold structure self-adaptively and then exploited the
relationship between labels and views, thereby reducing
the impact of noisy labels with the low-rank and sparse
decomposition strategy used; Liu et al. [23] expressed
cross-view instance-instance correlation between two
different views and the one for each view with a
self-adaptive way according to the characteristics of
instances so that the classification performances can
be enhanced. Li et al. [24] expressed the consen-
sus instance-instance correlation for all views with a
self-adaptive way according to the characteristics of
instances and labels.

III. THEORETICAL FUNDAMENTAL

A. Classical Multiple Correlations-Based Model

By summarizing the above mentioned algorithms, it has
been found that a classical multiview multilabel model to solve
datasets with v views always include the feature-oriented part,
the label-oriented part, and the associated part.

In order to elaborate on this classical model, we use
Table III to define a multiview multilabel dataset first. Here
V , S, U, and W describe the corresponding feature-feature,
instance-instance, label-label, and feature-label correlation
matrices, respectively. ˜C is the latent representation of C.
Subscript “j,” “c,” and “ij’ indicate the information about the
jth view, consensus information, and cross-view information
between the ith view and the jth view. For example, Xj and
Yj represent the jth view and corresponding label matrix,
while Xc and Yc represent consensus representation for all
views. The meanings of symbols in “dimensionality” are as
follows. n: numbers of instances; dj (cj): number of features
(classes) for the jth view; l (k): number of features (classes)
for consensus-view representation; dij (cij): number of features
(classes) for cross-view representation between the ith view
and the jth view. Then, we take the jth view for example.
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1) For Xj, it can be reconstructed with a feature-feature
correlation matrix Vj used. Elements of Vj describe the
similarities between features. Then, ||Xj − ˜XjVj||2F can be
treated as the feature-oriented term where ||�||F represents the
Frobenius norm. 2) For Yj, it can be reconstructed through the
usage of a label-label correlation matrix Uj whose elements
describe the similarities between labels. Then, ||Yj − ˜YjUj||2F
can be treated as the label-oriented term. 3) For Xj and Yj,
they can be associated by a feature-label correlation matrix
Wj whose elements describe the relationships between features
and labels. Then, the associated term can be written as
||Yj − XjWj||2F. 4) The classical model for the jth view can
be composed by the previous three terms and a common
objective model is given in (1), where ηs are the corresponding
hyperparameters. Here, we notice that during the realization
of a classical multiview multilabel algorithm, the feasible
correlation matrices are trainable and independent from the
data. Namely, we always initialize their values and optimize
them in an iterative way. The terms given above are used for
constructing the model only. The correlation matrices cannot
be calculated from data directly

min η1
∣

∣

∣

∣Xj − ˜XjVj
∣

∣

∣

∣

2
F + η2

∣

∣

∣

∣Yj − ˜YjUj
∣

∣

∣

∣

2
F (1)

+η3
∣

∣

∣

∣Yj − XjWj
∣

∣

∣

∣

2
F.

Since within-view, cross-view, and consensus-view are three
common representations to express a multiview multilabel
dataset, the previous classical model can be migrated to
corresponding cross-view form (see (2)) and corresponding
consensus-view form (see (3))

min η4
∣

∣

∣

∣Xij −˜XijVij
∣

∣

∣

∣

2
F + η5

∣

∣

∣

∣Yij − ˜YijUij
∣

∣

∣

∣

2
F (2)

+ η6
∣

∣

∣

∣Yij − XijWij
∣

∣

∣

∣

2
F

min η7
∣

∣

∣

∣Xc − ˜XcVc
∣

∣

∣

∣

2
F + η8

∣

∣

∣

∣Yc − ˜YcUc
∣

∣

∣

∣

2
F (3)

+ η9||Yc − XcWc||2F.

B. Related Self-Adaptive Terms and Laws

We summarize and analyze some existing work, includ-
ing [11], [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23], [24]. It is found that these correlations can be
described in self-adaptive ways and their changes follow some
laws. For example, 1) if two instances are strongly correlated,
their corresponding features and the predictive labels might
be more similar; 2) if two labels are strongly correlated, their
corresponding outputs might be more similar; and 3) if two
instances are strongly correlated, their corresponding cross-
view and consensus-view representations are more similar.

In order to realize the law 1), we utilize two regularizer
terms and take the jth view as example. Namely, for Xj, its
predictive label matrix is denoted as Yj = XjWj, then xa

j is
the ath instance of Xj and ya

j is the ath row of Yj and it is
the corresponding predictive label of xa

j . If instance xa
j and

instance xb
j are strongly correlated, the similarity between xa

j

and xb
j or the one between ya

j and yb
j will be large. Then, we

define two regularizer terms as

n
∑

a,b

1

2
Sab

j

∣

∣

∣

∣

∣

∣xa
j − xb

j

∣

∣

∣

∣

∣

∣

2

2
= tr

(

XT
j LSjXj

)

(4)

n
∑

a,b

1

2
Sab

j

∣

∣

∣

∣

∣

∣ya
j − yb

j

∣

∣

∣

∣

∣

∣

2

2
= tr

(

YT
j LSj Yj

)

= tr
(

WT
j XT

j LSj XjWj

)

(5)

where Sab
j describes the instance-instance correlation between

instance xa
j and instance xb

j and LSj is the Laplacian matrix
for Sj.

In order to realize the law (ii), we also utilize a regularizer
term and still take the jth view as example. Since Yj can be
derived from XjWj and its pth (or qth) column yjp (or yjq)

describes the output of the pth (or qth) label. Thus, referring
to (5), the regularizer term can be written as

cj
∑

p,q

1

2
Upq

j

∣

∣

∣

∣yjp − yjq
∣

∣

∣

∣

2
2 = tr

(

YjLUj Y
T
j

)

= tr
(

XjWjLUj W
T
j XT

j

)

(6)

where Upq
j describes the label-label correlation between the

pth and qth labels. Similar with LSj , LUj is the Laplacian matrix
for Uj.

Then, referring to Section III-A, these regularizer terms
can also be migrated to cross-view form (see (7)–(9)) and
consensus-view form (see (10)–(12)), where ⇒ describes
the migration operation and LSij , LUij , LSc , and LUc are the
Laplacian matrices for Sij, Uij, Sc, and Uc, respectively

tr
(

XT
j LSjXj

)

⇒ tr
(

XT
ij LSijXij

)

(7)

tr
(

WT
j XT

j LSj XjWj

)

⇒ tr
(

WT
ij XT

ij LSijXijWij

)

(8)

tr
(

XjWjLUj W
T
j XT

j

)

⇒ tr
(

XijWijLUij W
T
ij XT

ij

)

(9)

tr
(

XT
j LSjXj

)

⇒ tr
(

XT
c LSc Xc

)

(10)

tr
(

WT
j XT

j LSj XjWj

)

⇒ tr
(

WT
c XT

c LSc XcWc
)

(11)

tr
(

XjWjLUj W
T
j XT

j

)

⇒ tr
(

XcWcLUc WT
c XT

c

)

. (12)

Moreover, in order to realize the law (iii), we suppose the
similarity information (namely, correlation) between instances
will be kept in different representations and as we know that if
the correlation between the ath instance and the bth instance
is larger, their corresponding cross-view and consensus-view
representations are more similar. So we utilize the following
regularizer terms to realize this law where xa

c , xb
c , ya

c , yb
c , xa

ij,
xb

ij, ya
ij, and yb

ij are the information for the two instances in
cross-view and consensus-view representations. Indeed, with
the realization of this law, the relationship between within-
view representation and the other two representations is built

n
∑

a,b

1

2
Sab

j

∣

∣

∣

∣

∣

∣xa
c − xb

c

∣

∣

∣

∣

∣

∣

2

2
= tr

(
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c LSjXc

)

(13)

n
∑

a,b

1

2
Sab

j

∣

∣

∣

∣

∣

∣ya
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c

∣

∣

∣

∣

∣

∣

2

2
= tr

(

YT
c LSjYc

)

(14)
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n
∑
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∣

∣
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∣

∣

2

2
= tr

(

XT
ij LSjXij

)

(15)

n
∑

a,b

1

2
Sab

j

∣

∣

∣

∣

∣

∣ya
ij − yb

ij

∣

∣

∣

∣

∣

∣

2

2
= tr

(

YT
ij LSj Yij

)

. (16)

Followed by above laws, the correlations can be expressed
self-adaptively.

C. Strategies to Avoid the Over-Fitting Problems

As is known to all that handling multiple correlations
and parameters raises concerns about potential over-fitting
problems. Indeed, over-fitting problems are always caused
by too large feature space and rank space, namely feature
redundancy and rank redundancy. Thus, to this end, we refer
to the studies in [25], [26] and find that matrix max-norm
can make the metric matrices (in our study, are correlation
matrices) be low rank and detecting the redundant columns for
the feature matrices can make these feature spaces be sparse.

Inspired by the ideas in [25], [26], we first to adopt
the matrix max-norm to enforce the low rank property on
correlation matrices and let them be the constraints as below

s.t. ||θj||max, ||θc||max, ||θij||max ≤ λ2 (17)

where θj
�= {Vj, Sj, Uj, Wj}, θc

�= {Vc, Sc, Uc, Wc}, θij
�=

{Vij, Sij, Uij, Wij}, and λ ≥ 0 is a tuning parameter.
Then, since these correlation matrices are related with the
features and labels, thus (17) can be replaced by the
formulated as

s.t.

{
∣

∣

∣

∣Xj
∣

∣

∣

∣

2,∞, ||Xc||2,∞,
∣

∣

∣

∣Xij
∣

∣

∣

∣

2,∞ ≤ λ
∣

∣

∣

∣Yj
∣

∣

∣

∣

2,∞, ||Yc||2,∞,
∣

∣

∣

∣Yij
∣

∣

∣

∣

2,∞ ≤ λ
(18)

where || � ||2,∞ is the matrix �2,∞ norm.
Second, to pursue sparse features, a natural idea is to use

the �2,1 norm on Xj, Xc, and Xij to enforce group sparsity,
that is, we expect many columns of Xj, Xc, and Xij to be
zeros. If a whole column of Xj, Xc, and Xij is zero, then the
corresponding features are detected as irrelevant. The corre-
sponding model is given below where κj, αc, γij ≥ 0 are tuning
parameters

κj
∣

∣

∣

∣Xj
∣

∣

∣

∣

2,1 + αc||Xc||2,1 + γij
∣

∣

∣

∣Xij
∣

∣

∣

∣

2,1. (19)

With these above strategies, the over-fitting problems can
be avoided efficiently.

IV. METHODOLOGY

A. Framework of MuSC-MVML

Based on comments in Section III, we develop MuSC-
MVML and its framework is given as below where θ =
{θj, θc, θij} and IVj ∈ R

dj×1, IUj ∈ R
cj×1, ISj ∈ R

n×1, IVc ∈
R

l×1, IUc ∈ R
k×1, ISc ∈ R

n×1, IVij ∈ R
dij×1, IUij ∈ R

cij×1, and
ISij ∈ R

n×1 are nine identity matrices. Moreover, we let the
correlation between the information and itself be 0

min
θ

L = fj + fc−1 + fij−1 + fc−2 + fij−2 (20)

s.t.
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⎪
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⎪
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 ≤ θj, θc, θij ≤ 1
VjIVj = IVj , UjIUj = IUj , SjISj = ISj

VcIVc = IVc , UcIUc = IUc , ScISc = ISc

VijIVij = IVij , UijIUij = IUij , SijISij = ISij

WjIUj = IVj , WT
j IVj = IUj , WcIUc = IVc

WT
c IVc = IUc , WijIUij = IVij , WT

ij IVij = IUij

Vaa
j = Saa

j = · · · = Waa
ij = 0

∣

∣

∣

∣Xj
∣

∣

∣

∣

2,∞, ||Xc||2,∞,
∣

∣

∣

∣Xij
∣

∣

∣

∣

2,∞ ≤ λ
∣

∣

∣

∣Yj
∣

∣

∣

∣

2,∞, ||Yc||2,∞,
∣

∣

∣

∣Yij
∣

∣

∣

∣

2,∞ ≤ λ

where fj = ∑v
j=1 
(j), fij−1 = ∑v

i=1,i 	=j
∑v

j=1 �(j), fc−2 =
∑v

j=1 �(j), fij−2 =∑v
i=1,i 	=j

∑v
j=1 (j), and


(j) = κ1
∣

∣

∣

∣Xj − ˜XjVj
∣

∣

∣

∣

2
F + κ2

∣

∣

∣

∣Yj − ˜YjUj
∣

∣

∣

∣

2
F

+ κ3
∣

∣

∣

∣Yj − XjWj
∣

∣

∣

∣

2
F + κ4tr

(

XT
j LSjXj

)

+ κj
∣

∣

∣

∣Xj
∣

∣

∣

∣

2,1

+ κ5tr
(

WT
j XT

j LSjXjWj

)

+ κ6tr
(

XjWjLUj W
T
j XT

j

)

(21)

fc−1 = α1
∣

∣

∣

∣Xc − ˜XcVc
∣

∣

∣

∣

2
F + α2

∣

∣

∣

∣Yc − ˜YcUc
∣

∣

∣

∣

2
F

+ α3||Yc − XcWc||2F + α4tr
(

XT
c LScXc

)+ αc||Xc||2,1

+ α5tr
(

WT
c XT

c LScXcWc
)+ α6tr

(

XcWcLUc WT
c XT

c

)

(22)

�(j) = γ1
∣

∣

∣

∣Xij −˜XijVij
∣

∣

∣

∣

2
F + γ2

∣

∣

∣

∣Yij − ˜YijUij
∣

∣

∣

∣

2
F

+ γ3
∣

∣

∣

∣Yij − XijWij
∣

∣

∣

∣

2
F + γ4tr

(

XT
ij LSij Xij

)

+ γij
∣

∣

∣

∣Xij
∣

∣

∣

∣

2,1 + γ5tr
(

WT
ij XT

ij LSijXijWij

)

+ γ6tr
(

XijWijLUijW
T
ij XT

ij

)

(23)

�(j) = β1tr
(

XT
c LSjXc

)+ β2tr
(

YT
c LSjYc

)

(24)

(j) = δ1tr
(

XT
ij LSjXij

)

+ δ2tr
(

YT
ij LSjYij

)

. (25)

Here, the κs, αs, γ s, βs, and δs are tuning parameters.

B. Optimization

In order to optimize (20), we adopt a three-step updating
strategy and in each iteration, we update the correlations,
features of data, and labels of data sequentially.

First, we adopt alternating optimization strategy to update
each correlation with the gradient descent way. In simple
speaking, in the t-th iteration, in order to update a correlation
C, we fix others except C and then compute ∇C which is the
total derivative for C. According to (20), the ∇C include 11
forms (see Table IV), where [E]AC has the same dimensionality
of C and its pth row and qth column element is ||AT

p,:−AT
q,:||2,

where Ap,: and Aq,: stand for the pth and qth rows of A,
respectively. Moreover, diag([1/||Cd||]) is a diagonal matrix
and the dth element on the diagonal in this matrix is depended
on Cd which is the dth row of C. Then, we update correlation
C with C(t + 1) ← C(t) − ∇C . Concrete formulations about
these ∇Cs are given below.

1) Updating Vj: To update Vj, we fix others and
optimization problem (20) can be reduced to

minVj κ1
∣

∣

∣

∣Xj − ˜XjVj
∣

∣

∣

∣

2
F. (26)
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TABLE IV
FORMS OF DERIVATIVE W.R.T. C AND A, B, AND

D DESCRIBE DIFFERENT TERMS

Then, the gradient of (26) with respect to Vj is

∇Vj = 2κ1

(

˜Xj
T
˜XjVj − ˜Xj

TXj

)

. (27)

2) Updating Sj: To update Sj, we fix others and
optimization problem (20) can be reduced to

min
Sj

κ4tr
(

XT
j LSj Xj

)

+ κ5tr
(

WT
j XT

j LSj XjWj

)

+ β1tr
(

XT
c LSj Xc

)+ β2tr
(

YT
c LSj Yc

)

+
v
∑

i=1,i 	=j

[

δ1tr
(

XT
ij LSjXij

)

+ δ2tr
(

YT
ij LSjYij

)]

. (28)

Then, the gradient of (28) with respect to Sj is

∇Sj =
1

2

(

κ4[E]
XT

j
Sj
+ κ5[E]

WT
j XT

j
Sj

+ β1[E]
XT

c
Sj

+ β2[E]
YT

c
Sj
+

v
∑

i=1,i 	=j

[δ1[E]
XT

ij
Sj
+ δ2[E]

YT
ij

Sj
]

⎞

⎠. (29)

3) Updating Uj: To update Uj, we fix others and
optimization problem (20) can be reduced to

minUj κ2
∣

∣

∣

∣Yj − ˜YjUj
∣

∣

∣

∣

2
F + κ6tr

(

XjWjLUj W
T
j XT

j

)

. (30)

Then, the gradient of (30) with respect to Uj is

∇Uj = 2κ2

(

˜Yj
T
˜YjUj − ˜Yj

TYj

)

+ 1
2κ6[E]

XjWj
Uj

. (31)

4) Updating Wj: To update Wj, we fix others and
optimization problem (20) can be reduced to

minWj κ3
∣

∣

∣

∣Yj − XjWj
∣

∣

∣

∣

2
F + κ5tr

(

WT
j XT

j LSjXjWj

)

+κ6tr
(

XjWjLUj W
T
j XT

j

)

. (32)

Then, the gradient of (32) with respect to Wj is

∇Wj = 2κ3

(

XT
j XjWj − XT

j Yj

)

+ κ5

(

XT
j LSj XjWj + XT

j LT
Sj

XjWj

)

+ κ6

(

XT
j XjWjL

T
Uj
+ XT

j XjWjLUj

)

. (33)

5) Updating Vc: To update Vc, we fix others and
optimization problem (20) can be reduced to

minVc α1
∣

∣

∣

∣Xc − ˜XcVc
∣

∣

∣

∣

2
F. (34)

Then, the gradient of (34) with respect to Vc is

∇Vc = 2α1

(

˜Xc
T
˜XcVc − ˜Xc

TXc

)

. (35)

6) Updating Sc: To update Sc, we fix others and
optimization problem (20) can be reduced to

minSc α4tr
(

XT
c LSc Xc

)+ α5tr
(

WT
c XT

c LSc XcWc
)

. (36)

Then, the gradient of (36) with respect to Sc is

∇Sc = 1
2

(

α4[E]
XT

c
Sc
+ α5[E]

WT
c XT

c
Sc

)

. (37)

7) Updating Uc: To update Uc, we fix others and
optimization problem (20) can be reduced to

minUc α2
∣

∣

∣

∣Yc − ˜YcUc
∣

∣

∣

∣

2
F + α6tr

(

XcWcLUc WT
c XT

c

)

. (38)

Then, the gradient of (38) with respect to Uc is

∇Uc = 2α2

(

˜Yc
T
˜YcUc − ˜Yc

TYc

)

+ 1
2α6[E]XcWc

Uc
. (39)

8) Updating Wc: To update Wc, we fix others and
optimization problem (20) can be reduced to

minWc α3||Yc − XcWc||2F + α5tr
(

WT
c XT

c LScXcWc
)

+α6tr
(

XcWcLUc WT
c XT

c

)

. (40)

Then, the gradient of (40) with respect to Wc is

∇Wc = 2α3
(

XT
c XcWc − XT

c Yc
)+ α5

(

XT
c LSc XcWc + XT

c LT
Sc

XcWc
)

+ α6
(

XT
c XcWcLT

Uc
+ XT

c XcWcLUc

)

. (41)

9) Updating Vij: To update Vij, we fix others and
optimization problem (20) can be reduced to

minVij γ1
∣

∣

∣

∣Xij −˜XijVij
∣

∣

∣

∣

2
F. (42)

Then, the gradient of (42) with respect to Vij is

∇Vij = 2γ1

(

˜Xij
T
˜XijVij −˜Xij

TXij

)

. (43)

10) Updating Sij: To update Sij, we fix others and
optimization problem (20) can be reduced to

minSij γ4tr
(

XT
ij LSij Xij

)

+ γ5tr
(

WT
ij XT

ij LSijXijWij

)

. (44)

Then, the gradient of the (44) with respect to Sij is

∇Sij = 1
2

(

γ4[E]
XT

ij
Sij
+ γ5[E]

WT
ij XT

ij
Sij

)

. (45)

11) Updating Uij: To update Uij, we fix others and
optimization problem (20) can be reduced to

minUij γ2
∣

∣

∣

∣Yij − ˜YijUij
∣

∣

∣

∣

2
F + γ6tr

(

XijWijLUijW
T
ij XT

ij

)

. (46)

Then, the gradient of (46) with respect to Uij is

∇Uij = 2γ2

(

˜Yij
T
˜YijUij − ˜Yij

TYij

)

+ 1
2γ6[E]

XijWij
Uij

. (47)
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12) Updating Wij: To update Wij, we fix others and
optimization problem (20) can be reduced to

min
Wij

γ5tr
(

WT
ij XT

ij LSijXijWij

)

+ γ6tr
(

XijWijLUij W
T
ij XT

ij

)

+ γ3
∣

∣

∣

∣Yij − XijWij
∣

∣

∣

∣

2
F. (48)

Then, the gradient of (48) with respect to Wij is

∇Wij = 2γ3

(

XT
ij XijWij − XT

ij Yij

)

+ γ5

(

XT
ij LSij XijWij + XT

ij LT
Sij

XijWij

)

+ γ6

(

XT
ij XijWijL

T
Uij
+ XT

ij XijWijLUij

)

. (49)

Second, on the base of the updated correlations, we update
the features of the data. In simple speaking, for Xj, Xc,
and Xij, according to Table IV, the gradient of (20) with
respect to them are given as below, respectively, and in
these formulations, the correlations have been updated by the
above (26)–(49), while d ∈ [1, n]

∇Xj = 2κ1
(

Xj − ˜XjVj
)+ κjdiag

⎛

⎝

1
∣

∣

∣

∣

∣

∣Xd
j

∣

∣

∣

∣

∣

∣

⎞

⎠Xj

+ 2κ3

(

XjWjW
T
j − YjW

T
j

)

+ κ4

(

LSj Xj + LT
Sj

Xj

)

+ κ5

(

LT
Sj

XjWjW
T
j + LSjXjWjW

T
j

)

+ κ6

(

XjWjL
T
Uj

WT
j + XjWjLUj W

T
j

)

(50)

∇Xc = 2α1
(

Xc − ˜XcVc
)+ αjdiag

(

1
∣

∣

∣

∣Xd
c

∣

∣

∣

∣

)

Xc

+ 2α3
(

XcWcWT
c − YcWT

c

)+ α4
(

LSc Xc + LT
Sc

Xc
)

+ α5
(

LT
Sc

XcWcWT
c + LSc XcWcWT

c

)

+ α6
(

XcWcLT
Uc

WT
c + XcWcLUc WT

c

)

+
v
∑

j=1

(

β1(LSjXc + LT
Sj

Xc)
)

(51)

∇Xij = 2γ1
(

Xij −˜XijVij
)+ γjdiag

⎛

⎝

1
∣

∣

∣

∣

∣

∣Xd
ij

∣

∣

∣

∣

∣

∣

⎞

⎠Xij

+ 2γ3

(

XijWijW
T
ij − YijW

T
ij

)

+ γ4

(

LSijXij + LT
Sij

Xij

)

+ γ5

(

LT
Sij

XijWijW
T
ij + LSij XijWijW

T
ij

)

+ γ6

(

XijWijL
T
Uij

WT
ij + XijWijLUij W

T
ij

)

+ δ1

(

LSjXij + LT
Sj

Xij

)

. (52)

Then, on the base of the above three formulations, we
update the features by Xj(t + 1)← Xj(t)− ∇Xj , Xc(t + 1)←
Xc(t)−∇Xc , and Xij(t + 1)← Xij(t)−∇Xij .

Third, with the updated correlations and features, we can
update the labels of data. Namely, Yj(t + 1) = Xj(t +
1)Wj(t + 1), Yij(t + 1) = Xij(t + 1)Wij(t + 1), and
Yc(t + 1) = Xc(t + 1)Wc(t + 1).

According to the above three-step updating strategy, the
optimization procedure will be terminate until the changes

Fig. 2. Illustration of the framework of MuSC-MVML.

TABLE V
COMPUTATIONAL COST OF ∇C

about the normalized value of L is lesser than some threshold
values. Once the optimization procedure is terminated, we can
get the optimal correlations and corresponding feature and
label spaces. Moreover, the feature space and rank space can
be small so that we can avoid the over-fitting problems. For
convenience, we use Fig. 2 to demonstrate the framework of
MuSC-MVML in simple.

C. Computational Cost

According to Sections IV-A and IV-B, the computations
of ∇C determine the computational cost of MuSC-MVML.
Then, we analyze the corresponding computational costs of
them in Table V. According to Table V, we can get the total
computation cost of MuSC-MVML as below

O(L) =
v
∑

j=1

[

O
(∇Vj

)+ O
(∇Sj

)+ O
(∇Uj

)

+ O
(∇Wj

)+ O
(∇Xj

)]+ O
(∇Vc

)+ O
(∇Sc

)+ O
(∇Uc

)

+ O
(∇Wc

)+ O
(∇Xc

)+
v
∑

j=1

v
∑

i=1,i	=j

[

O
(∇Vij

)

+ O
(∇Sij

)+ O
(∇Uij

)+ O
(∇Wij

)+ O
(∇Xij

)]

. (53)

Since in generally, n > dj, cj, l, k, dij, cij, thus O(L) ≤
v[2O(C(1)n)+O(C(2)n2)+2O(C(3)n+C(4)n2)]+2O(C(5)n)+
O(C(6)n2) + 2O(C(7)n + C(8)n2) + v(v − 1)[2O(C(9)n) +
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O(C(10)n2) + 2O(C(11)n + C(12)n2)] ≤ (2v + 2 + 2v2 −
2v)[O(C(13)n) + O(C(14)n + C(15)n2)] + (v + 1 + v2 −
v)O(C(16)n2) = (v2+1)(2O(C(13)n)+2O(C(14)n+C(15)n2)+
O(C(16)n2)), where C(�) represents a constant.

According to the above computation, it is found the
maximum computational cost for MuSC-MVML is (v2 +
1)(2O(Sn)+2O(Rn+Qn2)+O(Tn2)), where S, R, Q, and T are
four constants and this causes the total computational cost of
MuSC-MVML is closely related to the number of views and
instances and compared with the existing algorithms [12], [13],
[16], [18], [22] whose computational costs are O(n3)-levels,
the computational cost of MuSC-MVML is much smaller.

D. Difference Between Ours and the Existing Algorithms

In previous contents, including Tables I and II, we have
mentioned many multiview multilabel, multilabel, multiview
algorithms, and reviewed four kinds of widely concerned
algorithms using correlations. Thus, in this section, we state
the difference between MuSC-MVML and these algorithms
clearly. Indeed, as is a multiview multilabel learning algorithm
with self-adaptive correlations used, compared with these
mentioned algorithms, our MuSC-MVML have significant
differences as below.

First, MuSC-MVML has a different model. As we know,
the model of MuSC-MVML introduces some �2,∞ norm and
�2,1 norm terms and it considers the sound self-adaptive
measurements of multiple correlations according to some laws
which is also the core module of MuSC-MVML. Indeed, some
compared algorithms take different ways, including creating
new instances to handle with the data and some compared
algorithms ignore those laws to some extents. All mentioned
algorithms above here cannot measure multiple within-view,
cross-view, and consensus-view correlations in a self-adaptive
way simultaneously neither.

Second, MuSC-MVML has an ability to process multi-
view multilabel data, multilabel data, and multiview data
simultaneously. But some mentioned existing algorithms do
not possess this ability due to they only focus on the
processing of multiview data or multilabel data while some
other algorithms cannot effectively utilize this ability due
to they ignore the influence of correlations in different
representations.

Third, although some classical algorithms adopt self-
adaptive correlations [21], [22], [23], [24], there still
exist some significant differences between ours and these
algorithms. Indeed, for our developed MuSC-MVML, we
measure the correlations self-adaptively with three laws (see
Section III-B) considered. While for those classical algorithms,
they will not consider too much. For example, for the models
in [21], [22], [23], [24], they only consider the law that if two
instances are strongly correlated, their corresponding features
or/and the predictive labels might be more similar and then
they design the self-adaptive terms to measure correlations.

Moreover, in our experiments, we select parts of above
mentioned algorithms here and use statistical analysis (see
Section V-C) to demonstrate the significant differences
between MuSC-MVML and them further.

TABLE VI
DETAILED INFORMATION OF USED DATASETS

V. EXPERIMENTS

A. Experimental Setup

1) Data Setting: Table VI shows the datasets we employed
in the experiments and the application scenarios of them
are also given. The first eight datasets are multiview and
the final one is multiview multilabel. For others, they
are multilabel. All datasets are available in the following
repositories or from following organizations. Namely,
UCI,1 Mulan,2 University of Oxford,3 LIACS Medialab
at Leiden University,4 University College Dublin,5

Jose M. Moyano (jmoyano@uco.es),6 Microsoft,7 and
Caltech Library.8 For each dataset, we randomly sample
70% data for training and use the remaining 30% data
for testing (unlabeled data). Then, for the training set, we
carry out the ten-fold cross-validation and based on the
partitions of training set, we adjust the parameter values
of an algorithm and get the optimal parameter values.9

1http://archive.ics.uci.edu/ml/datasets/
2http://mulan.sourceforge.net/datasets-mlc.html
3http://host.robots.ox.ac.uk/pascal/VOC/voc2007/index.html
4https://press.liacs.nl/mirflickr/#sec_download
5http://mlg.ucd.ie/datasets/3sources.html
6http://www.uco.es/kdis/mllresources/
7http://research.microsoft.com/en-us/projects/ObjectClassRecognition/
8https://data.caltech.edu/records/mzrjq-6wc02
9Best parameter values correspond to the best AUC on training set and all

compared algorithms share same partitions and a same way to select optimal
parameter values.
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TABLE VII
RANGE OF PARAMETERS FOR OTHER COMPARED ALGORITHMS AND THE

FEASIBLE SETTINGS IN OUR EXPERIMENTS (IN BOLD), WHERE l IS THE

NUMBER OF LABELS

Then, we use the optimal parameter values to form a
model for the algorithm and validate its performances
with the test set. After repeating the random sampling
and experiments for five times independently, the aver-
age performances and corresponding standard deviations
can be gotten. Moreover, since the five sets about
optimal parameter values cannot be averaged, thus we
will demonstrate their feasible settings in Section V-D.

2) Baseline Algorithms: We select 15 algorithms from
Tables I and II for comparisons. Namely, multiview
algorithms MVMLSS [1], SMMCL [2], AMGL [3],
S-MVSC [4], MLPL [17], and LMSC [18]; multilabel
ones LF-LPLC [5], GLOCAL [6], lrMMC [7],
and PML-DNDC [13]; and multiview multilabel
ones MVMLP [8], GLMVML [11], ICM2L [20],
ELSMML [21], and TFMDD [22].

3) Parameter Setting: For compared algorithms, optimal
parameters can be selected from corresponding ranges
which are given in the original studies and Table VII.
For MuSC-MVML, tuning parameter λ is set as
1 which can be referred to [25] and for others,
optimal κ1–κ3, α1–α3, and γ1–γ3 can be selected
from the set {0.1, 0.2, . . . , 0.8, 0.9}, optimal κ4–κ6, α4–
α6, γ4–γ6, β1, β2, δ1, and δ2 can be selected from
the set {10−6, 10−5, . . . , 10−1, 100}, optimal parame-
ters in κj, αc, and γij can be selected from the set
{0.1, 0.3, . . . , 1.7, 1.9}, and elements in a correlation
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Fig. 3. AUC comparisons for the used datasets. Top: multiview multilabel
case, middle: multilabel case, and bottom: multiview case.
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matrix are initialized in equipartition. Moreover, thresh-
old value for optimization procedure, i.e., L is set as 0.01.

4) Evaluation: We adopt three metrics for performance
comparisons. They are AUC, training time (in seconds),
and convergence. Then, we further compare the different
influence of parameters and show the statistical analysis,
ablation study results, and the ability to express corre-
lations in multiple representations of MuSC-MVML.

5) Experimental environment: Computational environment
is a node of compute cluster with 32 CPUs (Intel Core
i7-6950X), operation system is RedHat Linux Enterprise
8.0, and the coding environment is MATLAB 2020a.

B. Results on All Datasets With the Used Metrics

Figs. 3 and 4 demonstrate the AUC and corresponding
standard deviations of all algorithms on all datasets (orders
in the “dataset (order)” axis of these subfigures correspond to
the ones in Table VI). Then, Fig. 5 demonstrates the training
time comparison results and for each dataset, we let the
training time of MuSC-MVML be 1 and the results of other
algorithms are scaled. On the basis of the reported results given
in these three figures, Fig. 6 demonstrates a summarization
that in terms of AUC and training time, compared with
other algorithms, how much performance improvements can
MuSC-MVML bring. In this figure, each value represents
an incremental ratio. Take value 0.0993 in the row “AUC”
and column “LMSC” as an example, this value describes
that MuSC-MVML brings a 9.93% incremental ratio on AUC
compared with LMSC. Moreover, Fig. 7 demonstrates the
convergence of MuSC-MVML on all used datasets. In this
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Fig. 7. Convergence of MuSC-MVML on the used datasets and the objective
value has been normalized.

figure, iteration index stands for the index when the changes
of normalized objective value is smaller than 0.01.

According to these figures, some conclusions can be drawn.
First, in terms of AUC, the performances of MuSC-MVML
are more stable and it outperforms other algorithms in average.
Second, although MuSC-MVML considers the self-adaptive
measurement of multiple correlations and its model becomes
more complicated, its training time still be feasible and not
be increased too much, especial for multiview datasets and
multiview multilabel dataset. Finally, MuSC-MVML tends to
converge within 20 iterations in our experiments for most of
the used datasets.

C. Statistical Analysis

Friedman–Nemenyi statistical test [27]10 is used to check
if the differences between MuSC-MVML and other compared

10We adopt AUC for the elaboration.
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case.

algorithms are significant or not. On the basis of AUC results
on all datasets, Fig. 8 demonstrates the average ranks of all
used algorithms, rank differences between MuSC-MVML and
others, and corresponding statistical values.

According to this figure and refer to [27], we first carry
out Friedman test. 1) For multiview case, we adopt eight
datasets and seven algorithms (i.e., N = 8 and k = 7) for
experiments and we get Friedman statistic as follows. χ2

F =
[12× N/k(k + 1)][1.00002 + 4.50002 + 4.62502 + 5.00002 +
5.75002 + 5.00002 + 2.12502 − (k(k + 1)2/4)] = 31.2321,
FF = [(N − 1)χ2

F/N(k − 1)− χ2
F] = 13.0383, F0.05(k −

1, (k − 1)(N − 1)) = F0.05(6, 42) = 2.3240, and F0.10(k −
1, (k − 1)(N − 1)) = F0.10(6, 42) = 1.9193. Since FF >

F0.05(6, 42) and FF > F0.10(6, 42), so we reject the null-
hypothesis and draw a conclusion that the differences between
all compared algorithms on multiple datasets are significant.
2) For multilabel case and multiview multilabel case, we draw
a same conclusion.

Then, we carry out Nemenyi test for pairwise comparisons.
1) For multiview case, since N = 8 and k = 7, thus
critical value at q0.05 is 2.9490 and corresponding critical
difference (CD) is CD0.05 = q0.05

√
(k · (k + 1)/6 · N) =

3.1853 while the one at q0.10 is 2.6930 and correspond-
ing CD is CD0.10 = q0.10

√
(k · (k + 1)/6 · N) = 2.9088.

Since under the case of CD0.05 and CD0.10, rank differences
between MuSC-MVML and S-MVSC are smaller than CD0.05
and CD0.10, so we say on these cases, the performance
of MuSC-MVML is not significant better than the one of
S-MVSC. Then, for other cases, since the corresponding rank
differences are larger than CD0.05 and CD0.10, so MuSC-
MVML outperforms these algorithms significantly under those
cases. 2) For multilabel and multiview multilabel cases,
since rank differences between MuSC-MVML and others are
larger than corresponding CD0.05 and CD0.10, thus MuSC-
MVML outperforms these algorithms significantly. Especially,
for ELSMML and TFMDD which are two algorithms with
self-adaptive correlations adopted, their performances are
significant worse than our MuSC-MVML and this also
validates that self-adaptive approach in our proposed algo-
rithm is significantly differ from and enhances some existing
algorithms.
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Fig. 9. Average influence of parameter values for MuSC-MVML.

In general, our MuSC-MVML performs best as demon-
strated by statistical tests, especially for multilabel case and
multiview multilabel case.

D. Influence of Parameters

For each algorithm, different parameter values lead to
diverse average AUC, training time, and convergence. After
carry out the experiments, the feasible settings for parame-
ters about compared algorithms can be found in Table VII.
Then, in terms of MuSC-MVML, Fig. 9 shows the average
performances vary with the parameters on all used datasets
and from this figure, it is found that if parameters to classical
multiple correlations-based model parts are set as 0.6 or 0.7
and parameters to related self-adaptive terms are set as 10−3,
we can produce better AUC while such a setting leads a higher
training time and iteration indexes. Moreover, other parameters
have little effects on the performance. Thus, to the study, after
optimal parameters selected, we set the feasible settings as
below. We set κ1–κ3, α1–α3, and γ1–γ3 be 0.6, κj, αc, and γij

be 0.9, and others be 10−3.

E. Ablation Study

Framework of MuSC-MVML (i.e., (20)) consists of
associated, feature-oriented, self-adaptive, label-oriented,
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considered here.
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Fig. 11. Visualization for the example about NUS-WIDE.

regularization terms, etc. Each term can be represented by
consensus-view, within-view, and cross-view representations.
These terms correspond to multiple parameters and different
terms have different influence on the performances of MuSC-
MVML. So, in order to validate the influence of these terms,
we carry out ablation study further. Namely, we set a parameter
be 0 which equals to removing the corresponding term and
see the average vary of performances about AUC, training
time, and convergence on all used datasets. The results are
given in Fig. 10, and in this figure, curve “best”/“worst”
stands for the best/worst performances when we adjust
the parameter values while curve “ablation” stands for the
performances when we set the parameter values be 0, namely
removing the corresponding terms. According to this figure,
it can be seen that removing self-adaptive terms brings a
greater reduction to the performances and this indicates that
considering the laws of self-adaptive change for multiple
correlation information expressed in different representations
can improve the ability of algorithms to process multiview
multilabel datasets effectively.

F. Visualization Experiment on Correlation Expression

In order to validate the ability of MuSC-MVML to express
the correlations, we adopt class “bear” in NUS-WIDE for
demonstration (see Fig. 11). For this class, we select four
original pictures in random for display. Then, as we know,
each instance in NUS-WIDE is related with 6 views. These
six views are color histogram (64 − D), color correlogram
(144−D), edge direction histogram (73−D), wavelet texture
(128 − D), block-wise color moments extracted over 5 × 5
fixed grid partitions (225 − D), and bag of words based on
SIFT descriptions (500−D). Then, for the adopted class, we
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select the view color histogram and the view color correlogram
for representation and give their corresponding information
which are denoted as X1, X2, X12, and Xc. Then, take feature-
label correlation matrices W1, W2, W12, and Wc for example,
we demonstrate the actual results and the corresponding
optimal results optimized by ours and compared two multiview
multilabel algorithms ELSMML and TFMDD since they both
adopt self-adaptive correlations. For each optimal feature-label
correlation matrix, we can use it to update the corresponding
label matrix and the predicted label is given in the parentheses
next to the correlation matrix. According to Fig. 11, we can
see that MuSC-MVML can express the correlations well and
predict the labels more accurate while for other compared
algorithms, the optimized correlations have a great differences
to the actual ones and the predicted results are terrible.

VI. FURTHER DISCUSSION

A. Why We Use Alternating Optimization Approach

In this study, we adopt three-step updating strategy for the
solution of our model and in this strategy, the alternating
optimization approach is the main segment and the core
idea of alternating optimization approach is the alternating
direction method of multipliers (ADMMs) which is originally
proposed in the mid-1970s [28]. As we know, ADMM is
intended to blend the decomposability of dual ascent with the
superior convergence properties of the method of multipliers
and it is well suited to distributed convex optimization, and
in particular to large-scale problems arising in statistics,
machine learning, and related areas. Thus, on the base of
ADMM, alternating optimization approach demonstrates its
superiority to solve practical problems [29]. Indeed, alternat-
ing optimization approach has been widely used in diverse
practical scenarios. For example, Wang et al. [30] made full
use of the alternating optimization algorithm with proved
convergence to efficiently optimize some models; Li et al. [31]
adopted the alternating optimization approach to solve a
notconvex problem and the model can be applied to hand-
written datasets recognition problem and even the incomplete
clustering task. Chen et al. [32] also used this approach to train
a discriminative sparse representation learning model. This
model can explore complementary and consistent information
by integrating the sparse regularization item and a consensus
regularization item, respectively, and then it can be feasible
in diverse practical scenarios, including document translation,
news article, etc.

Since many scholars have validated the effectiveness of
alternating optimization approach and the model solved by this
approach still can be applied into diverse practical scenarios,
thus, in this study, we also use alternating optimization
approach. Moreover, since the datasets used in our experiments
are also from different practical scenarios (see Table VI), thus
this can also validate that our MuSC-MVML can be effectively
implemented in diverse practical scenarios.

B. How to Process Incomplete Datasets With Noise

With the arrival of big data era, traditional sampling equip-
ments have no ability to capture all data information and some

data maybe exist noisy or missing values. This leads to an
incomplete and noisy problem which also affect the perfor-
mances of MuSC-MVML. In terms of this problem, there are
also some valuable studies are developed. For example, on
the base of the study about [33], Wen et al. [34] further inte-
grated view-specific deep feature extraction network, weighted
representation fusion module, classification module, and view-
specific deep decoder network simultaneously to process data
with incomplete labels and missing views. Their model can
effectively reduce the negative influence caused by incomplete
labels and views and sufficiently explore the available data
and label information to obtain the most discriminative feature
extractor and classifier; Liu et al. [35] developed a transformer-
based incomplete multiview multilabel learning framework
which including two transformer-style based modules for
cross-view features aggregation and multilabel classification,
respectively. Their study can be adaptable to arbitrary multi-
view and multilabel data; Xu et al. [36] developed a structured
low-rank matrix recovery method to effectively remove view
discrepancy and improve discriminancy through the recovery
of the structured low-rank matrix. Moreover, their proposed
method can handle any zero-mode noise variable that contains
a wide range of noise.

These above mentioned studies inspire us to modify the
model of MuSC-MVML and solve an incomplete and noisy
problem simultaneously. Namely, we can add an error term E
to model noise [36] and E is related with the feature matrix
X by the following (54). Here, P is a common mapping
function shared by all views to project X onto a low-dimension
subspace, where the discrepancy among views can be reduced.
Z is a low-rank representation of PX with respect to an
complete dictionary A and ε is a tradeoff parameter, ||Z||�
is the nuclear norm about Z. ||E||τ is a regularization term
determined by the noise type, such as ||E||1 for random
noise, ||E||F for Gaussian noise, and ||E||2,1 for outliers.
Indeed, since E includes the information about noise and A
includes the complete information about the features, thus
this formulation can be treated as a solution to tackle the
incomplete problem with noise

min
Z,E,P

||Z||� + ε||E||τ
s.t. PX = AZ + E. (54)

Specifically to MuSC-MVML, we take within-view repre-
sentations and random noise as the example and for each Xj,
we define a corresponding Aj as the complete dictionary. Then,
we let Ej be the error term to include the noisy information,
Zj be the low-rank representation of PXj and the following
formulation can be added into the model of MuSC-MVML
and the new model is named as IMuSC-MVML

min
Zj,Ej,P

∣

∣

∣

∣Zj
∣

∣

∣

∣

�
+ ε

∣

∣

∣

∣Ej
∣

∣

∣

∣

1 (55)

s.t. PXj = AjZj + Ej.

The optimization of IMuSC-MVML can also be referred
to Section IV-B and in order to validate its performances, we
randomly remove some information and add some noise about
datasets Mfeat, Arts, and NUS-WIDE and then use IMuSC-
MVML and MuSC-MVML for comparison (see Table VIII).
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TABLE VIII
COMPARISON ABOUT IMUSC-MVML AND MUSC-MVML ON THREE

CLASSICAL DATASETS. THE RESULTS ARE GIVEN IN AVERAGE

According to the results, we find that IMuSC-MVML achieves
a better average AUC than MuSC-MVML while the training
time and iterations add a little much due to it should update
more terms. Thus, this indicates that we can modify the model
of MuSC-MVML to process an incomplete and noisy problem.
Moreover, much training time and more iterations of IMuSC-
MVML inspire us to research further in the future.

VII. CONCLUSION AND FUTURE WORK

There are many existing learning algorithms are developed
to process multiview multilabel, multilabel, and multiview
data. Some of them are developed on the basis of data
characteristics and some are designed on the basis of data cor-
relations. But those algorithms always exist a main drawback
that they cannot express correlations in multiple representa-
tions self-adaptively and relative accurately. This drawback
makes these algorithms hard to reflect the influence of correla-
tions in different representations to the performance accurately
and causes that these algorithms have not an good ability to
process different kinds of data simultaneously well.

In order to overcome this drawback, on the base of classical
multiple correlations-based model, this study explores some
laws of self-adaptive change for correlations among different
instances, features, labels in consensus-view, within-view, and
cross-view representations and develops a MuSC-MVML.
Experiments completed on several benchmark datasets demon-
strate the superiority of MuSC-MVML and some conclusions
are addressed. 1) MuSC-MVML outperforms some classical
compared multiview, multilabel, and multiview multilabel
algorithms in statistical in terms of AUC and its performance
is also stable; 2) although some laws of self-adaptive change
for correlations expressed in different representations are
introduced into the model and this makes the model be more
complexity, the computational cost of MuSC-MVML is still
moderate and will not be increased too much. Moreover, on
most datasets, MuSC-MVML has a relatively fast conver-
gence; 3) introducing these laws can improve the ability of
algorithms to process multiview multilabel datasets effectively
and our MuSC-MVML can express correlations in multiple
representations and reflect influence of these correlations on
the performance much better.

Furthermore, we also explained that why we use alternating
optimization strategy to optimize the model of MuSC-MVML
and provide some suggestions that how to modify the model
of MuSC-MVML so as to process the incomplete multiview
multilabel datasets with noise. While, how to reduce the
training time and iterations still is an open problem and inspire

us to research more feasible algorithms to process complicated
multiview multilabel datasets and solve this open problem in
the future.
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