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Abstract

Early exiting is an effective paradigm for improving the in-
ference efficiency of pre-trained language models (PLMs)
by dynamically adjusting the number of executed layers for
each sample. However, in most existing works, easy and
hard samples are treated equally by each classifier during
training, which neglects the test-time early exiting behavior,
leading to inconsistency between training and testing. Al-
though some methods have tackled this issue under a fixed
speed-up ratio, the challenge of flexibly adjusting the speed-
up ratio while maintaining consistency between training and
testing is still under-explored. To bridge the gap, we pro-
pose a novel Consistency-Oriented Signal-based Early Exit-
ing (COSEE) framework, which leverages a calibrated sam-
ple weighting mechanism to enable each classifier to empha-
size the samples that are more likely to exit at that classifier
under various acceleration scenarios. Extensive experiments
on the GLUE benchmark demonstrate the effectiveness of our
COSEE across multiple exiting signals and backbones, yield-
ing a better trade-off between performance and efficiency.

Code — https://github.com/He-Jianing/COSEE
Extended version — https://arxiv.org/abs/2412.13236

1 Introduction
Although tremendous improvements have been achieved by
pre-trained language models (PLMs) in natural language
processing tasks (Devlin et al. 2019; Lan et al. 2020; Rad-
ford et al. 2019; Liu et al. 2019), high computational costs of
PLMs in both training and inference still hinder their deploy-
ment in resource-constrained devices and real-time scenar-
ios. Besides, overthinking problem (Kaya, Hong, and Dumi-
tras 2019) also restricts the application of PLMs. Precisely,
for easy samples, PLMs can generate correct predictions ac-
cording to the representations indicated by shallow layers.
However, high-level representations may focus on more in-
tricate or unrelated details, leading to incorrect answers.

To address these issues, early exiting (Xin et al. 2020;
Zhou et al. 2020; Xin et al. 2021; Liao et al. 2021; Sun
et al. 2022; Zeng et al. 2024), a kind of adaptive inference
strategy, has been proposed to accelerate the inference of
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PLMs. As illustrated in Figure 2, each intermediate layer
of the PLM is coupled with an internal classifier to give an
early prediction. This enables the early exiting of samples
once the early predictions are sufficiently reliable, eliminat-
ing the need for passing them through the entire model. This
method employs a sample-wise inference strategy to deal
with easy samples with shallow classifiers and process hard
samples with deeper classifiers, significantly improving in-
ference efficiency without sacrificing accuracy and alleviat-
ing the overthinking problem.

Signal-based early exiting methods (Xin et al. 2020; Liu
et al. 2020; Zhou et al. 2020; Schwartz et al. 2020; Li et al.
2021; Liao et al. 2021; Ji et al. 2023; Zhu 2021; Zhu et al.
2021; Gao et al. 2023; Zhang et al. 2023; He et al. 2024; Ak-
bari, Banitalebi-Dehkordi, and Zhang 2022; Xin et al. 2021;
Balagansky and Gavrilov 2022) are typical implementations
of early exiting, which rely on carefully designed exiting
signals (e.g. entropy, energy score, softmax score, and pa-
tience) to dynamically adjust the number of executed layers
for each sample. The inference process is terminated once
the exiting signal meets a certain condition. These methods
can easily adapt to various acceleration requirements dur-
ing inference by simply adjusting the threshold, without in-
curring additional training costs. However, existing works
simply use the (weighted) sum of cross-entropy losses from
all classifiers as the training objective, where each classifier
treats the loss of both easy and hard samples equally. This
treatment ignores the dynamic early exiting behavior during
inference (as shown in Figure 1), leading to a gap between
training and testing.

To bridge the gap, router-based early exiting meth-
ods (Sun et al. 2022; Mangrulkar, MS, and Sembium 2022;
Zeng et al. 2024) have been successively proposed. These
methods employ a router (e.g. a hash function or a net-
work) to determine the exiting layer of samples during both
training and inference, and each sample only incurs a cross-
entropy loss at its exiting classifier, ensuring consistency be-
tween training and testing. However, router-based early ex-
iting methods fail to meet various acceleration requirements
during inference, as a router can only generate a fixed exiting
strategy, leading to unadjustable speed-up ratios.

In this paper, we aim to bridge the gap between train-
ing and testing while enabling flexible adjustments of the
speed-up ratio. To this end, building upon the signal-based
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early exiting framework, we propose to assign sample-wise
weights on the cross-entropy loss of all classifiers, such that
each classifier is encouraged to emphasize samples that are
more likely to exit at that classifier. Unfortunately, samples
exit at different classifiers under various acceleration scenar-
ios, bringing extreme challenges to weight assignment.

To address the challenges, we propose a novel frame-
work of Consistency-Oriented Signal-based Early Exiting
(COSEE). Specifically, at each training step, we mimic the
test-time early exiting process at multiple randomly selected
thresholds to find where the samples tend to exit under
different accelerations. Subsequently, we adopt a heuristic
sample weighting mechanism (SWM) to assign weights on
the cross-entropy loss of each sample across all classifiers,
where each sample is emphasized by the classifiers near
its exiting layer. Accordingly, we minimize the mean of
cross-entropy losses across different thresholds to ensure the
model’s generalization ability in various acceleration sce-
narios. In addition, we further devise an online signal cal-
ibration (OSC) objective to generate highly discriminative
exiting signals for more reliable exiting decisions, thus en-
couraging more proper loss weights based on exiting layers.

Our method is simple yet effective. Extensive experiments
on the GLUE benchmark demonstrate that our COSEE
framework with energy score consistently outperforms the
state-of-the-art methods across all tasks, yielding a better
trade-off between performance and efficiency with faster
convergence speed and negligible additional storage over-
head. In addition, an in-depth analysis further confirms the
generalization of the COSEE framework on different exit-
ing signals and backbones. Our main contributions can be
summarized as follows:

• We disclose that the performance bottleneck of current
early exiting methods primarily stems from the chal-
lenge of ensuring consistency between training and test-
ing while flexibly adjusting the speed-up ratios.

• We propose a novel Consistency-Oriented Signal-based
Early Exiting (COSEE) framework to bridge the gap,
which incorporates a sample weighting mechanism
(SWM) and an online signal calibration (OSC) objective.

• Extensive experiments verify the effectiveness of our
COSEE across multiple exiting signals and backbones.

2 Preliminaries
In this section, we provide the necessary background for
signal-based early exiting. Related works are detailed in the
extended version.

2.1 Problem Definition
Per Figure 2, given a BERT-style PLM with M layers, we
denote the hidden states at the mth layer as h(m). To enable
early exiting during inference on a classification task involv-
ing C classes, each intermediate layer is equipped with an
internal classifier Fm,m ∈ {1, 2, · · · ,M−1} to produce an
early prediction p(m) = Fm(h(m)), i.e., a probability distri-
bution over the C classes. Classifiers in different layers do
not share parameters.

Figure 1: Exiting layer distribution on the QNLI develop-
ment set with entropy-based exiting signal (Threshold =
0.4). Neg and Pos denote negative and positive samples, re-
spectively. Samples near the classification boundary (hard
samples) tend to exit at deep classifiers, while samples far
from the classification boundary (easy samples) typically
exit at shallow classifiers.

2.2 Signal-based Early Exiting
For a given sample x, the inference process is terminated
once the exiting signal at the current layer meets a certain
condition. For exiting signals that exhibit a positive correla-
tion with sample difficulty (e.g. entropy and energy score),
early exiting is triggered once the exiting signal falls below
a predefined threshold. A higher threshold leads to a higher
speed-up ratio and potentially some performance degrada-
tion. Conversely, for exiting signals negatively correlated
with sample difficulty (e.g. patience and softmax score), the
exiting condition is met when the exiting signal surpasses
the threshold. A higher threshold leads to a lower speed-up
ratio and performance improvements.

2.3 Conventional Training Methods
In current signal-based early exiting methods, a widely used
training objective involves the (weighted) sum of cross-
entropy losses across all classifiers:

L =

M∑
m=1

wmL(m), (1)

where L(m) denotes the cross-entropy loss of the mth clas-
sifier and wm denotes the corresponding loss weight. Un-
der Eq.(1), each classifier treats the loss of both easy and
hard samples equally, which is inconsistent with the dy-
namic early exiting behavior during inference.

3 The COSEE Framework
3.1 Framework Overview
We propose a novel Consistency-Oriented Signal-based
Early Exiting (COSEE) framework for PLMs, aiming to en-
sure consistency between training and testing while main-
taining flexible adjustments of the speed-up ratio. Figure 2
provides an overview of our framework. We first propose a
sample weighting mechanism (SWM) that identifies the po-
tential exiting layer of samples by simulating the test-time
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Figure 2: Comparison between the conventional signal-based early exiting framework and our COSEE. The conventional frame-
work simply minimizes the (weighted) sum of cross-entropy losses from all classifiers, where each classifier treats all samples
equally during training. Instead, our COSEE enables each classifier to emphasize samples that are more likely to exit at that clas-
sifier, ensuring consistency between training and testing. We also incorporate an online signal calibration objective LossOSC for
each internal classifier to encourage highly discriminative exiting signals for more reliable exiting decisions and loss weights.

early exiting process during training and then uses this in-
formation to produce sample-wise loss weights across all
classifiers. Additionally, we further devise an online signal
calibration (OSC) objective to encourage highly discrimina-
tive exiting signals for more reliable exiting decisions, thus
ensuring more proper loss weights based on exiting layers.
Finally, regarding the exiting signal, we introduce a normal-
ized energy score to align energy distributions across differ-
ent layers for easy threshold selection. We primarily use it
to implement the COSEE framework.

3.2 Sample Weighting Mechanism
Our goal is to identify the potential exiting layer of samples
in various acceleration scenarios, and then assign greater
weights to the cross-entropy loss of each sample on classi-
fiers closer to its exiting layer. Accordingly, at each training
step, all samples are passed through the entire model to gen-
erate predictions and exiting signals at all classifiers. Subse-
quently, we randomly select K thresholds and simulate the
early exiting process based on exiting signals at each thresh-
old to find where the samples exit. This information is used
to produce sample-wise loss weights across all classifiers.

Range for Threshold Selection. For threshold selection,
we collect the maximum and minimum values of exiting sig-
nals across all layers for training samples within each epoch
and use them to create the selection range for the next epoch.
We start with the thresholds randomly selected between 0
and 1 in the first epoch.

Weight Assignment. For a given threshold τ , we impose
sample-wise loss weights across all classifiers based on the
exiting layer of samples and then compute the classification
loss at threshold τ :

LCE,τ =
1

N

N∑
n=1

M∑
m=1

w(m)
n · CE(ŷ(m)

n , yn), (2)

w(m)
n =

e−βt·|m−m∗
n|∑M

m=1 e
−βt·|m−m∗

n|
, (3)

where CE(ŷ(m)
n , yn) and w

(m)
n denote the cross-entropy loss

and the loss weight for the nth sample at the mth classi-
fier respectively, and w

(m)
n satisfies

∑M
m=1 w

(m)
n = 1. N

denotes the number of samples. m∗
n denotes the index of

exiting layer for the nth sample at threshold τ , and βt de-
notes the decay factor at the tth training step. According
to Equation 3, classifiers closer to the exiting layer are as-
signed greater weights compared to those further away, i.e.,
each sample is emphasized by the classifiers near its exiting
layer. Note that the loss weights of classifiers are symmet-
rical around the exiting layer for easy parameter selection.
Different from router-based early exiting methods, which
employ one-hot sample-wise loss weights such that each
sample only incurs a cross-entropy loss on its exiting clas-
sifier, we employ a softer sample weighting mechanism to
enable the generality of our COSEE on unseen thresholds.

During the early training stage, unstable exiting layers of-
ten lead to fluctuating loss weights, consequently impacting
the model’s convergence. To mitigate this problem, we con-
duct a warm-up operation for the decay factor βt to gradu-
ally increase the impact of the sample’s exiting layers on the
loss weights during training:

βt = γt · β0, (4)

where β0 is positive, and γt is the ratio of the current training
step to the total training steps.

Classification Objective. To enable various acceleration
ratios during inference, the classification objective is defined
as the mean of classification losses across all K thresholds:

LCE =
1

K

∑
τ

LCE,τ . (5)

3.3 Online Signal Calibration
While SWM effectively facilitates the training of multi-exit
networks, exiting signals may not consistently reflect sam-
ple difficulty, particularly during the early training stages.
This affects the reliability of exiting decisions, leading to
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(a) Original Energy Score (b) Normalized Energy Score

Figure 3: Energy distribution across layers 2, 6, and 10 for
the SST-2 task. Normalization aligns the energy distribution
across layers, facilitating threshold selection.

sub-optimal loss weights based on exiting layers. Therefore,
we introduce an online signal calibration (OSC) objective to
explicitly enlarge the distribution divergence of exiting sig-
nals between easy and hard samples. Specifically, for exiting
signals that indicate the sample difficulty (e.g. entropy and
energy score), our OSC objective is formulated as:

LOSC =
1

M − 1

M−1∑
m=1

L
(m)
OSC, (6)

L
(m)
OSC = max(0, S

(m)

easy − S
(m)

hard + ϵ), (7)

where L
(m)
OSC is the signal calibration loss at the mth layer.

S
(m)

easy and S
(m)

hard are the mean of exiting signals on easy and
hard samples at the mth layer, respectively, and ϵ is the mar-
gin parameter shared across layers. For exiting signals nega-
tively correlated with sample difficulty (e.g. softmax score),
the calculation for L(m)

OSC in Eq.(7) needs to be replaced with:

L
(m)
OSC = max(0, S

(m)

hard − S
(m)

easy + ϵ). (8)

Note that we only minimize the signal calibration loss for
the first M − 1 layers, since there is no need to exit at the
last layer. Additionally, we define samples as easy or hard
depending on whether the internal classifier can predict them
correctly, thus the partition may differ across layers.

3.4 Training Objective
The training objective of the COSEE is formulated as the
weighted sum of the classification and OSC objective:

L = LCE + α× LOSC, (9)

where α is a hyper-parameter used to balance the classifica-
tion and OSC objectives. All internal classifiers are jointly
trained with the backbone.

3.5 Exiting Signal
Following E-LANG (Akbari, Banitalebi-Dehkordi, and
Zhang 2022), we primarily implement our COSEE with the
energy-based exiting signal. The energy score is defined as:

E(x;Fm) = − log
C∑
i=1

ef
(m)
i , (10)

where C is the number of classes, and f
(m)
i denotes the logit

value of sample x on class i suggested by the mth internal
classifier Fm. A lower energy score indicates lower sample
difficulty. The exiting criterion is met when the energy score
falls below a predefined threshold. To align the energy dis-
tribution across different layers for threshold selection, we
normalize the original energy scores to (0, 1):

Enorm(x;Fm) = (1 + e−E(x;Fm))
−1

. (11)

Figure 3 confirms the superiority of the normalized energy
score over the original energy score. In this paper, we mainly
conduct experiments with the normalized energy score. Nev-
ertheless, we also verify the effectiveness of the COSEE
framework on other exiting signals, i.e., entropy and soft-
max score (see Section 5.2).

4 Experiments
4.1 Tasks and Datasets
Following Li et al. (2021); Liao et al. (2021), we evaluate
COSEE on six classification tasks from the GLUE bench-
mark (Wang et al. 2019), including SST-2, MRPC, QNLI,
RTE, QQP, and MNLI. Data statistics are shown in Table 1.

4.2 Baselines
We compare our COSEE model with three groups of repre-
sentative and state-of-the-art baselines.

Backbone. We adopt the widely used BERT-base (Devlin
et al. 2019) as the backbone for convincing comparisons.

Budget Exiting. We directly train a BERT-base with 6
layers (BERT-6L) to obtain a speed-up ratio of 2.00×, es-
tablishing a lower bound for early exiting methods as no
techniques are employed.

Early Exiting. For signal-based early exiting methods,
we choose DeeBERT (Xin et al. 2020), PABEE (Zhou et al.
2020), BERxiT (Xin et al. 2021), LeeBERT (Zhu 2021),
GPFEE (Liao et al. 2021), GAML-BERT (Zhu et al. 2021),
PALBERT (Balagansky and Gavrilov 2022), and Disentan-
gledEE (Ji et al. 2023). For router-based early exiting meth-
ods, we choose state-of-the-art ConsistentEE (Zeng et al.
2024). Notably, some early exiting methods (Sun et al.
2022; Mangrulkar, MS, and Sembium 2022; Zhang et al.
2023; Zhu et al. 2023) are not included due to the differ-
ence in backbones. CascadeBERT (Li et al. 2021) and E-
LANG (Akbari, Banitalebi-Dehkordi, and Zhang 2022) are
excluded for fair comparisons since they implement early
exiting within several complete networks instead of a multi-
exit network. Refer to the extended version for more details.

4.3 Experimental Settings
Measurement. Since the runtime is unstable across different
runs, following Zhang et al. (2022) and Liao et al. (2021), we
utilize the saved layers to measure the speed-up ratio:

Speed-up Ratio =

∑M
m=1 M ×Nm∑M
m=1 m×Nm

, (12)

where M is the total number of layers and Nm is the num-
ber of samples exiting from the mth layer. According to Xin
et al. (2020), this metric is proportional to actual runtime.
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Dataset Classes |Train| |Test| Task

SST-2 2 67k 1.8k Sentiment
MRPC 2 3.7k 1.7k Paraphrase
QQP 2 364k 391k Paraphrase
MNLI 3 393k 20k NLI
QNLI 2 105k 5.4k QA/NLI
RTE 2 2.5k 3k NLI

Table 1: Dataset Statistics. NLI is the Natural Language In-
ference task, and QA is the Question Answering task.

(a) SST-2 (b) QNLI

(c) MNLI (d) QQP

Figure 4: Impact of SWM and OSC on the trade-off between
performance and efficiency for COSEE with energy.

Training. Our implementation is based on Hugging
Face’s Transformers (Wolf et al. 2020). Each internal clas-
sifier consists of a single linear layer. We mainly implement
our COSEE framework with the normalized energy score
if not specified. We also conduct experiments with entropy
and softmax scores for generalization analysis. Following
the previous work (Zhou et al. 2020; Zhang et al. 2022; Liao
et al. 2021), we perform a grid search over learning rates
of {1e-5, 2e-5, 3e-5, 5e-5}, batch sizes of {16, 32, 128}, α
values in Eq.(9) of {0.001, 0.01, 0.1, 1.0}, and β0 values in
Eq.(4) of {0.05, 0.2, 1.0, 10.0}. We set ϵ to 0.3 in Eq.(7) and
K to 5 in Eq.(5). The maximum sequence length is fixed at
128. We employ a linear decay learning rate scheduler and
the AdamW optimizer (Loshchilov and Hutter 2019). We
conduct experiments on two RTX4090 GPUs with 24GB.

Inference. Following previous work (Zhang et al. 2022;
Liao et al. 2021), we adopt a batch size of 1 for inference,
emulating a typical industry scenario where requests from
various users arrive one by one. For fair comparisons, we
carefully adjust the threshold τ for each task to achieve
a similar speed-up ratio as the baseline methods (approxi-
mately 2.00×) and further compare the trade-off between
task performance and inference efficiency.

(a) SST-2 (b) QNLI

Figure 5: DIS heatmap of different models for layers 2, 6,
and 10 on the SST-2 and QNLI development sets.

4.4 Overall Performance Comparison
Table 2 reports the test results of each early exiting method
on the GLUE benchmark with BERT-base as the backbone
model. The speed-up ratio is approximately 2.00× (±38%).
Overall, our COSEE framework with normalized energy
score demonstrates a superior performance-efficiency trade-
off across different tasks compared to the baseline meth-
ods, which verifies the effectiveness of our design. Notably,
our COSEE can even outperform the original BERT-base
on RTE and QQP tasks, indicating that our method can ef-
fectively alleviate the overthinking problem of PLMs. This
suggests that, for easy samples, predictions from intermedi-
ate layers may outperform those from the final layer. Our
method enables easy samples to exit at shallow classifiers,
thereby reducing the inference time while maintaining or
even improving the task performance. Besides, our method
can save training costs (see Section 4.5) and introduce negli-
gible additional storage overhead (see Section 5.3). We also
explore the impact of hyperparameters and statistically ana-
lyze the failure cases in the extended version.

Although using energy scores and BERT-base in the pri-
mary experiments, we also verify the generality of COSEE
on various exiting signals and backbones (see Section 5.2).

4.5 Ablation Studies
Performance-Efficiency Trade-Off. To investigate the ef-
fectiveness of SWM and OSC, we plot the performance-
efficiency trade-off curves of models trained using differ-
ent methods on four GLUE development sets, as shown in
Figure 4. We can observe both SWM and OSC significantly
improve the performance of early exiting across all tasks,
especially under high speed-up ratios. This confirms the ad-
vantage of our COSEE under high acceleration scenarios,
indicating the proposed SWM and OSC effectively facilitate
the training of internal classifiers, particularly shallow ones.

Evaluation of Exiting Signals. Difficulty Inversion Score
(DIS) is first proposed by Li et al. (2021), an evaluation met-
ric for exiting signals. A higher value indicates a greater
correlation between the exiting signal and sample difficulty,
thus enabling more reliable exiting decisions. Figure 5 illus-
trates the DIS of exiting signals generated by different mod-
els. The results indicate that OSC explicitly enhances the
correlation between the exiting signal and sample difficulty
by enlarging the distribution divergence of exiting signals
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Method RTE MRPC QQP SST-2 QNLI MNLI
Acc F1/Acc/Mean F1/Acc/Mean Acc Acc Acc

BERT-base 66.4 (1.00×) 88.9/-/- (1.00×) 71.2/-/- (1.00×) 93.5 (1.00×) 90.5 (1.00×) 84.6 (1.00×)

BERT-6L† 63.9 (2.00×) 85.1/78.6/81.9 (2.00×) 69.7/88.3/79.0 (2.00×) 91.0 (2.00×) 86.7 (2.00×) 80.8 (2.00×)
DeeBERT† 64.3 (1.95×) 84.4/77.4/80.9 (2.07×) 70.4/88.8/79.6 (2.13×) 90.2 (2.00×) 85.6 (2.09×) 74.4 (1.87×)
PABEE† 64.0 (1.81×) 84.4/77.4/80.9 (2.01×) 70.4/88.6/79.5 (2.09×) 89.3 (1.95×) 88.0 (1.87×) 79.8 (2.07×)
BERxiT 65.7 (2.17×) 86.2/-/- (2.27×) 70.5/-/- (2.27×) 91.6 (2.86×) 89.6 (1.72×) 82.1 (2.33×)
LeeBERT - 87.1/-/- (1.97×) - 92.6 (1.97×) - 83.1 (1.97×)
GPFEE 64.5 (2.04×) 87.0/81.8/84.4 (1.98×) 71.2/89.4/80.3 (2.18×) 92.8 (2.02×) 89.8 (1.97×) 83.3 (1.96×)
GAML-BERT 64.3 (1.96×) 87.2/-/- (1.96×) 70.9/-/- (1.96×) 92.8 (1.96×) 84.2 (1.96×) 83.3 (1.96×)
PALBERT‡ 64.3 (1.48×) -/-/80.7 (1.48×) -/-/79.3 (1.48×) 91.8 (1.48×) 89.1 (1.48×) 83.0 (1.48×)
DisentangledEE 66.8 (1.25×) -/-/83.8 (1.25×) -/-/79.4 (1.25×) 92.9 (1.25×) 88.5 (1.25×) 83.0 (1.25×)
ConsistentEE 69.0 (1.85×) 89.0/-/- (1.59×) -/89.0/- (1.82×) 92.9 (1.85×) 89.9 (1.72×) 83.4 (1.45×)
COSEE (ours) 68.7 (1.96×) 88.0/82.0/85.0 (2.70×) 71.4/89.4/80.4 (2.01×) 93.0 (2.14×) 90.2 (2.56×) 83.4 (1.92×)

Table 2: Performance comparison on the GLUE test set with BERT-base as the backbone. † denotes the results taken from
GPFEE (Liao et al. 2021), and ‡ denotes the results taken from DisentangledEE (Ji et al. 2023). Other baseline results are from
their original papers. Our COSEE uses the normalized energy score as the exiting signal. Best results are marked in bold.

(a) SST-2 (b) QNLI

Figure 6: Impact of SWM and OSC on training convergence
for the SST-2 and QNLI tasks.

between easy and hard samples. Meanwhile, SWM encour-
ages highly discriminative exiting signals by enabling each
classifier to emphasize a subset of samples with certain dif-
ficulty levels. Also, it is noticeable that the improvements
brought by SWM and OSC appear to be significant on shal-
low layers, which aligns with the observation shown in Fig-
ure 4. This is due to the constrained capability of shallow
classifiers, which allows for greater potential for improve-
ments in training than deep classifiers.

Training Curves. To further explore the convergence
speed of our COSEE during training, we plot the model’s
training curves across different training methods on SST-2
and QNLI tasks, as shown in Figure 6. The results indicate
that the proposed SWM effectively accelerates the model’s
convergence during training. We attribute this to SWM’s
ability to reduce data complexity during training by enabling
each classifier to emphasize a different subset of samples.
Additionally, we can observe that incorporating the OSC ob-
jective can slightly impact the model’s convergence speed.
Nevertheless, our COSEE framework still maintains an ad-
vantage over the vanilla training method.

5 In-depth Analysis
5.1 Visualization of Sample Exiting Layers
To examine the consistency between training and testing un-
der our COSEE framework, we visualize the exiting layer
distribution in training and development sets at various

(a) train (τ = 0.1) (b) dev (τ = 0.1)

(c) train (τ = 0.2) (d) dev (τ = 0.2)

(e) train (τ = 0.3) (f) dev (τ = 0.3)

Figure 7: Exiting layer distribution on the training and de-
velopment sets of SST-2 task under different thresholds τ .
Neg and Pos denote negative and positive samples, respec-
tively. The results exhibit consistency between training and
development sets across different thresholds.

thresholds, respectively. Figure 7 shows the visualization re-
sults for the SST-2 task. At different thresholds, training and
development sets demonstrate consistent exiting layer dis-
tributions, which verifies the interpretability of our design.
Additionally, we can observe that samples near the classi-
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(a) SST-2 (b) QNLI

(c) MNLI (d) QQP

Figure 8: Impact of SWM and OSC on the trade-off between
performance and efficiency for COSEE with entropy. We in-
clude COSEE with energy in comparison.

(a) SST-2 (b) QNLI

(c) MNLI (d) QQP

Figure 9: Impact of SWM and OSC on the trade-off between
performance and efficiency for COSEE with softmax score.

fication boundary (hard samples) tend to exit at deep clas-
sifiers while samples far from the classification boundary
(easy samples) tend to exit at shallow classifiers. Further-
more, increasing the threshold will cause a decrease in ex-
iting layers, thus achieving a higher speed-up ratio. These
observations align with our intuitive understanding.

5.2 Generality of the COSEE Framework
In this subsection, we explore the generality of our method
on various exiting signals and backbones.

Figure 8 and Figure 9 present the experimental results of

Method Speed-up QQP SST-2 QNLI MNLI AVG

ALBERT-base† 1.00× 79.6 93.3 92.0 85.2 87.5

PABEE† 1.95× 79.8 92.4 90.9 84.2 86.8
PALBERT 1.21× 79.1 91.4 90.9 83.2 86.2
DisentangledEE 1.26× 79.3 92.2 91.0 83.5 86.5
COSEE-energy 2.12× 79.6 92.9 91.8 84.8 87.3

Table 3: Test results of different early exiting methods with
ALBERT-base as the backbone. The speed-up ratio is av-
eraged across 4 tasks. We report the mean of accuracy and
F1-score for QQP, and accuracy for other tasks. † denotes
results taken from GPFEE (Liao et al. 2021). Other baseline
results are taken from DisentangledEE (Ji et al. 2023).

Model #Params
C = 2 C = 3

BERT-base 109.48M 109.48M
COSEE +16.92K +25.38K

Table 4: Parameter volume comparison. C is the number of
classes. COSEE introduces negligible extra parameters.

our COSEE framework with entropy and softmax scores,
respectively. The results demonstrate the generality of our
framework across various exiting signals. Notably, COSEE
with energy outperforms COSEE with entropy or softmax
scores on most tasks (SST-2, QNLI, and QQP). We attribute
this to the superiority of energy scores in distinguishing
easy and hard samples compared to entropy and softmax
scores, as theoretically demonstrated by Akbari, Banitalebi-
Dehkordi, and Zhang (2022). Therefore, we primarily im-
plement COSEE with energy scores in this paper.

Table 3 presents the performance comparison with back-
bone ALBERT-base. We observe that our COSEE with en-
ergy outperforms competitive baseline methods on most
tasks, demonstrating its generality across different PLMs.

5.3 Storage Costs Analysis
Table 4 compares the parameter volume of our COSEE
model with that of the original BERT-base. Our COSEE
model introduces less than 0.03% additional parameters due
to incorporating internal classifiers. Notably, the proposed
SWM is parameter-free, yet it effectively generates appro-
priate loss weights for each sample to enhance the training
of multi-exit networks.

6 Conclusion
In this paper, we point out that the performance bottleneck
of existing early exiting methods primarily lies in the chal-
lenge of ensuring consistency between training and testing
while enabling flexible adjustments of the speed-up ratio.
To remedy this, we propose COSEE, which mimics the test-
time early exiting process under various acceleration scenar-
ios based on calibrated exiting signals and then produces the
sample-wise loss weights at all classifiers according to the
sample’s exiting layer. Our framework is both simple and
intuitive. Extensive experiments on the GLUE benchmark
demonstrate the superiority and generality of our framework
across various exiting signals and backbones.
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