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A B S T R A C T

Comprehensive learning label correlation is conducive to boosting the accuracy of multi-label classification.
While existing methods focus on exploring the correlation-aware original features or latent subspaces, they
often overlook the role of correlation in deducing local structures. The oversight can result in suboptimal
topic-based label correlation estimation and thus incur information loss. In contrast to the conventional single-
granularity-based learning for local label correlation, we propose a multi-granularity correlation-based feature
augmentation (MGOFA) model. MGOFA consists of three components that progressively refine the granularity
of label correlation: granular-based feature augmentation for relative neighborhood-based class tendency
estimation, granular-based latent topic mining for tendency-aware topic modeling, and fine-grained label
correlation mining for augmented local label correlation learning. The information on neighborhood-based
similarity between instances is explicitly leveraged and contributes to the model two-fold. Firstly, it induces
the prototypes of latent topics, which share more knowledge with the label association. Secondly, it refines
the discriminative granularity of the model by integrating it with the original features. Such a formulation
simulates the viewpoint of human decision-making by automatically determining optimal solutions on both
data and knowledge from coarse and refined granularity, respectively. Extensive comparisons completed of ten
benchmarks demonstrate that MGOFA outperforms the state-of-the-art methods with satisfying convergence
and sensitivity.
1. Introduction

Multi-label classification [1,2] determines the label associations of
instances by learning a projection from features to labels. The instances
may be associated with varying collections of labels, which can be
co-existent or mutually exclusive. The label association described by
a probability distribution is an instantiation of label correlation. For
example, the labels beach, boat, harbor can be available in an image,
while the sun and star are less likely to appear together. Such phe-
nomena associated with labels imply the topic distribution and are
omnipresent in real applications involving emotion analysis [3], video
annotation [4], and disease diagnosis [5].

Label correlation is an indispensable component in improving the
model generalization. From unconditionally hold only to both con-
ditionally and unconditionally hold, there are three categories called
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global label correlation, local label correlation, and global and local label
correlation. The global label correlation corresponds to the case where
label correlation holds unconditionally at the same possibility across
the instances. This assumption favors those topic-independent label
correlations. However, it incurs performance degeneration due to the
over-simplification of topic structures. Representatives include Random
k-label sets [6], LIFT [7], LLSF [8], and HNOML [9]. In contrast,
the local label correlation embraces the case where both strengths
and components are topic-dependent. Representatives include ML-
LOC [10], GD-LDL-SCL [11], LTE [12], and MLCD [13]. The third
group (i.e., global and local label correlations) is an integration of the
first two assumptions and attempts to reach a balance between topic-
dependent and topic-independent structures. Representatives include
Glocal [14], MDFS [15], TIFS [16], and MLC-LFLC [17]. Considering
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Fig. 1. Major differences between existing approaches and our approach.
that the diversified topics are a generalization case of a holistic topic,
it is necessary to introduce a novel decision-making theory to reduce
the uncertainty of topics by approximating the underlying structures of
label correlation.

Granular computing(GrC) [18,19] is a structural cognitive method-
ology that simulates human processing via measuring and reasoning on
knowledge characterized by information granules. Many scholars [20–
25] demonstrate the superiority of employing granular computing on
multi-label classification. With granular computing, it is likely to opti-
mize the label association by approximating the underlying structures
of label correlation via the refinements on granules. The construction of
information granules can explicitly describe the correlations between
instances and labels by combining them with heterogeneous tech-
niques. Fortunately, the integrations of the neighborhood, clustering,
and feature augmentation technique [26,27] are competent to com-
plete such a task. To realize the adaptive utilization of multi-faceted
information, we devise a correlation-based multi-granulation feature
augmentation model to hierarchically approximate the local intrinsic
relationship within instances, which assumes a different perspective
against the previous solutions (see Fig. 1).

Our contributions are enumerated below:
1. We have developed a multi-granularity structure to highlight the

functionality of local label correlation for multi-label classifica-
tion. The structure sequentially refines the knowledge granular-
ity on label correlation by exploring similarity in correlation-
based feature augmentation.

2. The aim of correlation-based feature augmentation is not to
directly replace the original feature representation. Instead, it
works in conjunction with the original features to enrich the fea-
ture representation, allowing for the simulation of the adaptive
perception mechanism of humans via optimization.

3. We extend the scope of multi-granularity on multi-label classi-
fication by introducing a novel model called multi-granularity
correlation-based feature augmentation (MGOFA). Furthermore,
we demonstrate that the proposed second-order-based local label
correlation not only dominates the state-of-the-art approaches
with high-order or sophisticated label correlation but also pro-
duces promising performance with respect to convergence and
sensitivity.

The paper is organized as follows: Section 2 reviews the related
work. Section 3 outlines the pipeline and explains model details. Sec-
tion 4 presents experimental results on benchmarks and further analy-
ses on the MGOFA. Finally, Section 5 concludes the paper and identifies
the future directions.

2. Related work

We briefly review some related work regarding three aspects, i.e., la-
bel correlation, multi-granularity, and feature augmentation.
2

2.1. Label correlation

Label correlation constitutes a widespread assumption in dealing
with multi-label classification as they can condense the solution from
a sparse distribution of labels. However, one visible challenge is the
inadequate knowledge of the label correlation, which can be regarded
as the cartesian product of components (which describes how labels are
correlated) and scopes (which describes the collections of instances that
share the same components of label correlations) on label space (see
Fig. 2). The components are relevant to a particular order of label cor-
relation and are generally composed of three categories named as first-
order, second-order, and high-order, respectively. In contrast, the scopes
are pertinent to the cardinality of topics and are generally composed of
three categories named as global label correlation, local label correlation,
and global and local label correlation. Fig. 2 enumerates three represen-
tative taxonomies with the corresponding representative algorithms to
determine whether association of instance-label pairs hold (denoted as
1) or not (denoted as 0). The second-order with global label correlation
include LLSF [8], HNOML [9], and WRAP [28], where Huang et al. [8]
exploited label-specific features by imposing 𝓁1-norm on the linear
weights of observable features, Zhang et al. [9] enhanced the general-
ization of second-order label correlation by constructing a projection
from feature vectors to enriched labels, Yu et al. [28] established
label-specific features in embedded space by introducing 𝓁2-norm on
projection and 𝓁1-norm on linear model. The second-order with local la-
bel correlation include LPLC [29], LF-LPLC [30], and GD-LDL-SCL [11],
where Huang et al. [29] explored neighborhood-based pairwise label
correlation from both the positive and negative perspectives, Weng
et al. [30] leveraged clustering-based pairwise label correlation by im-
proving feature discrimination on aligned labels, Jia et al. [11] learned
clustering-based pairwise label correlation by imposing 𝓁2-norm on
similarity regularization between instances and cluster centers. The
second-order with global and local label correlation include Glocal [14],
MDFS [15], and TIFS [16], where Zhu et al. [14] pioneered the global
and local label correlation by introducing instance-level and label-level
manifold regularization constraints simultaneously, Zhang et al. [15]
exploited the global and local label correlation by considering the
𝓁2,1-norm regularization on embedded feature space, Ma et al. [16] cap-
tured the topic-based correlation on latent representations constructed
by nonnegative matrix factorization.

2.2. Multi-granularity analysis

Multi-granularity [31] of information is a structural methodology of
approximate modeling with the uncertainty that highlights the interac-
tions between data and knowledge via the generation and deduction of
information granules across multiple layers. The uncertainty measure
is a fundamental component in describing the degrees of functionality
similarity. For instance, Xia et al. [32] preserved the variation mono-
tonicity of rough approximations in attribute reduction by defining
local knowledge distance. Wang et al. [33] formulated the multi-
granularity decision problem for large-scale trustworthy hierarchical
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Fig. 2. Representative learning frameworks on label correlation.
Table 1
Differences between MGOFA and the related algorithms.

Methods Global label
correlation

Local label
correlation

Feature
augmentation

Wrapping feature
selection

Embedding feature
selection

MGOFA × ✓ ✓ ✓ ×
WRAP [28] ✓ × × ✓ ×
HOMI [43] ✓ × × × ✓

SLOFS [44] ✓ × × × ✓

MDFS [15] ✓ ✓ × × ✓

TIFS [16] ✓ ✓ × × ✓

RLFSCL [45] ✓ × × × ✓

GLFS [46] ✓ ✓ × × ✓

MC-GM [47] ✓ ✓ × × ✓

✓ denotes that a method takes the corresponding strategy.
× denotes that a method does not take the corresponding strategy.
classification by developing a distortion measure on reconstruction
error. Zhang et al. [34] improved the approximation robustness of
the double-quantitative neighborhood rough set by optimizing neigh-
borhood distance with arithmetic-mean and geometric-mean, respec-
tively. Shu et al. [35] renewed the hierarchical structures of fine-
grained image-based classification by defining joint probability-based
loss. Some recent advancements in multi-label classification manifest
the effectiveness. For instance, Yu et al. [36] enriched the inference
capability of graph convolutional neural networks by introducing at-
tribute subset-based object relationships. Yu et al. [37] emphasized
the uncertainty of inter-feature relationships in boundary regions by
characterizing instance-level tripartition based on the variable degree
of the multi-granulation rough set.

2.3. Feature augmentation

Feature augmentation [38] is an essential solution to enrich the
discrimination of original features by generating informative features
with the semantics of class-oriented correlation. It is different from the
well-established feature selection techniques (e.g., filtering, wrapping,
and embedding) strengthen the feature-label correlation by replac-
ing rather than replenishing the original. Recently, feature augmen-
tation has demonstrated effectiveness in the single-label classifica-
tion cases [39–42] and multi-dimensional classification cases [26,27].
Zhang et al. [39] constructed a feature enhancement network with
characteristics of multi-granularity to improve the classification perfor-
mance of image-based small object detection. Wang et al. [41] incorpo-
rated feature augmentation in the contrastive semantic augmentation
loss to alleviate the negative transfer. Jia et al. [26] first introduced
correlation-based feature augmentation to the multi-dimensional clas-
sification case to address the inappropriate fitness on class dependen-
cies. As multi-dimensional classification is an extension of multi-label
classification, we believe it can be a powerful module to boost classi-
fication performance. The differences between MGOFA and the related
state-of-the-art multi-label classification methods are summarized in
Table 1.
3

3. Proposed model

3.1. Notation

Given a multi-label dataset  = {
(

𝐱𝑖, 𝑌𝑖
)

|1 ⩽ 𝑖 ⩽ 𝑛 }, let 𝐗 =
[

𝐱1,𝐱2,…, 𝐱𝑛
]⊤ ∈ R𝑛×𝑚 and 𝐘 =

[

𝐲1,𝐲2,…, 𝐲𝑛
]⊤ ∈ {0, 1}𝑛×𝑞 denote the 𝑛

instances with 𝑚-dimensional features and 𝑞-dimensional labels on 𝑛
instances, where 𝐲𝑖 =

[

𝑦𝑖1, 𝑦𝑖2,… , 𝑦𝑖𝑞
]⊤. 𝑦𝑖𝑗 = 1 if 𝑙𝑗 ∈ 𝑌𝑖 and 𝑦𝑖𝑗 = 0

otherwise. MGOFA generates the topic-based label-specific features by
learning correlation similarity from observable features. For ease of
reference, we enumerate major notation in Table 2.

3.2. Basic idea

We optimize the label-specific feature representations by learn-
ing discriminative yet limited features in a global-to-local strategy.
As described in Fig. 3, MGOFA includes three crucial components
called ‘‘Granular-based Feature Augmentation’’, ‘‘Granular-based La-
tent Topic Mining’’, and ‘‘Fine-grained Label Correlation Learning’’,
respectively. To approximate the latent topic-aware label correlation,
we first enrich the instance correlation by learning augmented fea-
tures with 𝑞-dimensionality in a label-by-label manner. For the 𝑗th
label 𝑙𝑗 , the augmented feature 𝐀𝐅𝑗 ∈ R𝑛×1 measures the relative
positive class tendency on 𝑙𝑗 . The feature prototype of 𝑙𝑗 learns from
the instance-based neighborhood determined by trade-off factor 𝜇 and
neighborhood count k simultaneously. By exploring the instance and
class distribution within the neighborhood, we refine the prototypes
with the overall weighted scores for positive and negative (see 𝐖𝐒𝐏𝑗
and 𝐖𝐒𝐍𝑗 in Fig. 3) and deduce the augmented features accordingly.
Secondly, we explore the underlying topic distribution by concate-
nating augmented features across all labels rather than the original
features. Thirdly, we partition the original features and the corre-
sponding augmented features into different topics (exemplified as 𝐗1

𝑎𝑢𝑔 ,
𝐗2
𝑎𝑢𝑔 , and 𝐗3

𝑎𝑢𝑔 in Fig. 3) by generating multi-granularity features.
With the original features (abbreviated as OF) and augmented features
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Table 2
Summary of notations.
Notations Meanings

𝐗 ∈ R𝑛×𝑚 Original training set with 𝑛 instances and 𝑚 features
𝐘 ∈ R𝑛×𝑞 Labelset of 𝐗 on 𝑞 labels
𝐷 𝑖𝑠 (⋅, ⋅) Instance-based distance operator
𝜇 Weight of cosine similarity and Pearson correlation coefficient in instance-based

distance
𝑘 Size of nearest neighbor ∀𝐱𝑏

(

𝐱𝑏
)

An ordered indicator of the k nearest neighbors of 𝐱𝑏 based on the ascending order
of 𝐷 𝑖𝑠 (⋅, ⋅)

𝐱𝑏
𝑗 ∈ R𝑘×1 Indicators of the nearest neighborhood with label association on the 𝑗th label for 𝐱𝑏

 𝐱𝑏
𝑗 ∈ R𝑘×1 Indicators of the nearest neighborhood without label association on the 𝑗th label for

𝐱𝑏
𝐖𝐱𝑏 ∈ R𝑘×1 Instance weights of k nearest neighborhood for 𝐱𝑏
𝐫 𝐢𝐩𝑗 ∈ R𝑛×1 Relative influential ratio of positive instances within 

(

𝐱𝑏
)

𝐫 𝐢𝐧𝑗 ∈ R𝑛×1 Relative influential ratio of negative instances within 
(

𝐱𝑏
)

𝐖𝐒𝐏𝑗 ∈ R𝑛×1 Weighted score vectors for positive tendency of instances on label 𝑙𝑗
𝐖𝐒𝐍𝑗 ∈ R𝑛×1 Weighted score vectors for negative tendency of instances on label 𝑙𝑗
𝑀 𝑒 (𝐖𝐱𝑏 ) Median radius of the k nearest neighborhood w.r.t. 𝐱𝑏
𝐀𝐅𝑗 ∈ R𝑛×1 Augmented feature for label 𝑙𝑗
𝐗𝑎𝑢𝑔 ∈ R𝑛×(𝑚+𝑞) Multigranularity features
𝑡 Latent topic count
𝐗𝑟

𝑎𝑢𝑔 ∈ R𝑛𝑟×(𝑚+𝑞) The feature representation of the 𝑟th topic
𝐕𝑟 ∈ R(𝑚+𝑞)×𝑑 Embedding matrix for generation of multi-granularity features w.r.t. the 𝑟th topic
𝐔𝑟 ∈ R𝑑×𝑞 Weight matrix for multi-granularity features w.r.t. the 𝑟th topic
𝐛𝑟 ∈ R𝑞×1 Bias vector for multi-granularity features w.r.t. the 𝑟th topic
𝐸 (⋅) Expectation of a variable
𝐵 𝑖𝑎𝑠𝑜 (𝐗) Bias term incurred by the original features without consideration of topics
𝐵 𝑖𝑎𝑠𝑐 (𝐗𝑎𝑢𝑔

)

Bias term incurred by concatenation of original and augmented features without
consideration of topics

𝐵 𝑖𝑎𝑠𝑟𝑚
(

𝐗𝑟
𝑎𝑢𝑔

)

Bias term incurred by latent topics from multi-granularity features
Fig. 3. Framework of MGOFA.
(abbreviated as AF), we optimize the topic-based label correlation by
learning the local concatenation of OF and AF in a wrapped strategy.
Ultimately, we obtain a fine-grained solution of weight combinations
on original and augmented features.

3.3. Granular-based feature augmentation

3.3.1. Instance-based neighborhood
The instance-based neighborhood measures the likelihood of the

consistent label association between two arbitrary instances. Here, we
construct a granular-based neighborhood determined by parameters
4

k and 𝜇 simultaneously. For an arbitrary instance 𝐱𝑏, let 
(

𝐱𝑏
)

=
(

𝐷 𝑖𝑠 (𝐱𝑏, 𝐱(1)
)

,… , 𝐷 𝑖𝑠 (𝐱𝑏, 𝐱(𝑘)
))

denote the ordered set of indexes (ex-
cept the instance 𝐱𝑏 itself) identified in k-nearest neighborhood of
𝐱𝑏 ∈ 𝐗 based on 𝐷 𝑖𝑠 (⋅, ⋅), which is a mixture of Pearson correlation
coefficient and cosine similarity and determined by 𝐱𝑏 (𝑘, 𝜇).

𝐷 𝑖𝑠(𝐱𝑏, 𝐱𝑟) =
𝜇
2

(

1 − 𝐶 𝑜𝑣 (𝐱𝑏, 𝐱𝑟
)

𝜎𝐱𝑏𝜎𝐱𝑟

)

+
1 −𝜇
2

(

1 − 𝐱𝑏𝐱𝑟
‖

‖

𝐱𝑏‖‖‖‖𝐱𝑟‖‖

)

(1)

where 𝐶 𝑜𝑣(𝐱𝑏 ,𝐱𝑟)
𝜎𝐱𝑏 𝜎𝐱𝑟

and 𝐱𝑏𝐱𝑟
‖𝐱𝑏‖‖𝐱𝑟‖

represent Pearson correlation coefficient
and cosine similarity, respectively. Note that Pearson correlation coeffi-
cient and cosine similarity share similar values if the linear correlation
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Fig. 4. Visualization of differences between Pearson correlation coefficient and cosine
similarity.

becomes stronger but diversified otherwise (see Fig. 4). It is thus mean-
ingful to integrate them by introducing a trade-off factor 𝜇. Typically,
𝐷 𝑖𝑠 (⋅, ⋅) assumes values in the unit interval as presented in Property 1.

Property 1. 𝐷 𝑖𝑠 (⋅, ⋅) ∈ [0, 1]

Proof. Since 𝐶 𝑜𝑣(𝐱𝑏 ,𝐱𝑟)
𝜎𝐱𝑏 𝜎𝐱𝑟

∈ [−1, 1] and 𝐱𝑏𝐱𝑟
‖𝐱𝑏‖‖𝐱𝑟‖

∈ [−1, 1] hold, which

means both 𝜇
2

(

1 − 𝐶 𝑜𝑣(𝐱𝑏 ,𝐱𝑟)
𝜎𝐱𝑏 𝜎𝐱𝑟

)

∈ [0, 2] and 1−𝜇
2

(

1 − 𝐱𝑏𝐱𝑟
‖𝐱𝑏‖‖𝐱𝑟‖

)

∈ [0, 2]

hold. Considering that 𝜇 ∈ [0, 1], we have 𝐷 𝑖𝑠 (⋅, ⋅) ∈ [0, 1]. □

As the value of 𝐷 𝑖𝑠 (⋅, ⋅) decreases, the similarity of the 𝐱𝑟 for the
specified 𝐱𝑏 increases, indicating a stronger similarity in the label
association between 𝐱𝑏 and 𝐱𝑟.

3.3.2. Multi-layer feature augmentation
We conduct feature augmentation by estimating neighborhood-

based class tendencies for each label. As positive and negative are
complementary, we estimate positive tendency by considering the
following factors:

1. (Coarse granules): The percentage of instances with the positive
class within the neighborhood of 𝐱𝑏.

2. (Refined granules): The relative closeness of instances with the
positive class within the neighborhood of 𝐱𝑏.

3. (Hybrid granules): The compactness of k neighborhood of 𝐱𝑏.
The positive tendency of 𝐱𝑏 on 𝑙𝑗 increases as the values of coarse,

refined, and hybrid granules become larger. Here, we offer some ex-
planations of rationality. Specifically, a larger ratio of instances with
a positive class on 𝑙𝑗 in the neighborhood of 𝐱𝑏 means that 𝐱𝑏 is
surrounded by more instances that are associated with 𝑙𝑗 , thus 𝐱𝑏 is
more likely to be associated with 𝑙𝑗 . However, a drawback is that the
coarse granules treat all relevant instances equally. A more reasonable
solution is to examine the values on refined granules, which assumes
that the instances contribute more to class tendency determination if
they are similar. It is worth mentioning that the combination of both
coarse and refined granules is not comprehensive, as the radius of k
nearest neighborhood can be very different. Consequently, the hybrid
granule measures the reliability of the combination objectively.

We consider both instance similarity weight and relative influen-
tial ratio on refined granules. The instance similarity weight mea-
sures how many degrees of similarity for an arbitrary instance 𝐱𝑟
to the given instance 𝐱𝑏, which can be deduced from distance mea-
sure 𝐷 𝑖𝑠 (𝐱 , 𝐱

)

. Formally, we devise a similar-aware weight vector
5

𝑏 𝑟
(i.e., 𝐖𝐱𝑏 ) in computing varying 
(

𝐱𝑏
)

.

𝐖𝐱𝑏 =
(

√

1 −𝐷 𝑖𝑠 (𝐱𝑏, 𝐱𝑟
)

)

𝑘×1
(2)

where 𝐱𝑟 is a component of 𝑘 nearest neighborhood of 𝐱𝑏. It can be
easily deduced the component 𝑤𝐱𝑏

𝑟 ∈ [0, 1], with the larger weight of 𝐱𝑟
if more similar to 𝐱𝑏 and vice versa. Example 1 explains the rationality
of Eq. (2).

Example 1. Let 𝐱𝑏 and 𝐱𝑐 be two instances, given that (𝑘, 𝜇) = (5, 0.5)
and two ordered indicators denoted as 𝐷 𝑖𝑠(𝐱𝑏,

(

𝐱𝑏
)

) = (0.10, 0.20, 0.25,
0.30, 0.50) and 𝐷 𝑖𝑠(𝐱𝑏,

(

𝐱𝑐
)

) = (0.20, 0.30, 0.45, 0.50, 0.70). Then the 𝐖𝐱𝑏

and 𝐖𝐱𝑐 are as follows:

𝐖𝐱𝑏 =
(
√

0.90,
√

0.80,
√

0.75,
√

0.70,
√

0.50
)

5×1

𝐖𝐱𝑐 =
(
√

0.80,
√

0.70,
√

0.55,
√

0.50,
√

0.30
)

5×1
□

Obviously, Eq. (2) offers a data-driven manner to adaptively adjust
the influential strength of the neighborhood to the center instance.
Typically, 𝑤𝐱𝑏

𝑟 reaches maximum value of 1 if the original features of
𝐱𝑏 and 𝐱𝑟 are indistinguishable.

The coarse granule construction are constructed based on the neigh-
borhood of instances. We realize the coarse granule by calculating the
instance count with positive/negative class on 𝑙𝑗 . Suppose the distance
between 𝐱𝑏 and an arbitrary 𝐱𝑟 ranks in ascending order according to
𝐷 𝑖𝑠 (⋅, ⋅), where 𝑟 = 1, 2,… , 𝑛. The indicators 𝐱𝑏

𝑗 and  𝐱𝑏
𝑗 are defined

as:

𝐱𝑏
𝑗 =

([[

𝑦𝑟,𝑗 = 1]])𝑘×1 (3)

where [[𝜋]] returns 1 if it holds and 0 otherwise. Similarly, we have:

 𝐱𝑏
𝑗 =

([[

𝑦𝑟,𝑗 = 0]])𝑘×1 (4)

where [[𝜋]] returns 1 if it holds and 0 otherwise. The relationship
between 𝐱𝑏

𝑗 and  𝐱𝑏
𝑗 is given in Property 2.

Property 2. ∑𝐱𝑏
𝑗 +

∑

 𝐱𝑏
𝑗 = 𝑘

Proof. Eqs. (3) and (4) imply that both 𝐱𝑏
𝑗 and  𝐱𝑏

𝑗 are composed
of the sequence of {0, 1}𝑘. Since the instance 𝐱𝑟 is either associated
with label 𝑙𝑗 or not, which means either

[[

𝑦𝑟,𝑗 = 1]] or
[[

𝑦𝑟,𝑗 = 0]] holds.
Therefore, the element-wise summation on 𝐱𝑏

𝑗 and  𝐱𝑏
𝑗 should be a

vector of all 1 with the dimensionality of 1 × 𝑘. □

Meanwhile, the relative influential ratio measures the similarity
between the observed class-based distribution and the optimal dis-
tributions of positive and negative classes. Concretely, the optimal
distribution of the positive class corresponds to the case where all
positive instances within the 𝑘 neighborhood are the ∑

𝐱𝑏
𝑗 nearest. The

optimal distribution of the negative is analogous. Formally, we define
the relative influential ratio for a positive class 𝑙𝑗 as:

𝐫 𝐢𝐩𝑗 =
(

𝑟𝑖𝑝𝐱𝑏𝑗
)

𝑛×1

𝑤ℎ𝑒𝑟𝑒 𝑟𝑖𝑝𝐱𝑏𝑗 =

⎧

⎪

⎨

⎪

⎩

𝐖𝐱𝑏 ⊤𝐱𝑏
𝑗

∑𝑃
𝑟=1 𝑤

𝐱𝑏
𝑟

∃
[[

𝑦𝑟𝑗 = 1]]

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(5)

where 𝐱𝑏 ∈ 𝐗 and 𝑃 = 𝟏𝑘
𝐱𝑏
𝑗 , 𝟏𝑘 denotes a row vector with all elements

of length 𝑘 being 1.
Analogously, we define the relative influential ratio for the negative

class on 𝑙𝑗 as:

𝐫 𝐢𝐧𝑗 =
(

𝑟𝑖𝑛𝐱𝑏𝑗
)

𝑛×1

𝑤ℎ𝑒𝑟𝑒 𝑟𝑖𝑛𝐱𝑏𝑗 =

⎧

⎪

⎨

⎪

𝐖𝐱𝑏 ⊤ 𝐱𝑏
𝑗

∑𝑁
𝑟=1 𝑤

𝐱𝑏
𝑟

∃
[[

𝑦𝑟𝑗 = 0]]

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(6)
⎩
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where 𝐱𝑏 ∈ 𝐗 and 𝑁 = 𝟏𝑘
𝐱𝑏
𝑗 , 𝟏𝑘 denotes a row vector with all

elements of length 𝑘 being 1.
Example 2 shows the computing of relative influential ratio on 𝐱𝑏

nd 𝐱𝑐 .

Example 2 (Continuing Example 1). Let 𝑦𝐱𝑏𝑗 = 1 and 𝑦𝐱𝑐 𝑗 = 1 denote
he instance 𝐱𝑏 and 𝐱𝑐 are positively and negatively associated with 𝑙𝑗 .
uppose the instances in 

(

𝐱𝑏
)

are all negatively associated with 𝑙𝑗 ,
hile the instances with the second-nearest and third-nearest of 𝐱𝑐 are
egatively associated with 𝑙𝑗 , then the relative influential ratio 𝑟𝑖𝑝𝐱𝑏𝑗
nd 𝑟𝑖𝑛𝐱𝑐𝑗 are computed as:

𝑟𝑖𝑝𝐱𝑏𝑗 = 0

𝑟𝑖𝑛𝐱𝑐𝑗 =

√

0.70 +
√

0.55
√

0.80 +
√

0.70
= 0.9117 □

It should be mentioned that the elements of 𝐫 𝐢𝐩𝑗 and 𝐫 𝐢𝐧𝑗 (i.e., 𝑟𝑖𝑝𝐱𝑏𝑗
and 𝑟𝑖𝑛𝐱𝑏𝑗 ) are finite as demonstrated in Property 3.

Property 3. For 𝑟𝑖𝑝𝐱𝑏𝑗 and 𝑟𝑖𝑛𝐱𝑏𝑗 , we have:

(1) 𝑟𝑖𝑝𝐱𝑏𝑗 ∈ [0, 1]
(2) 𝑟𝑖𝑛𝐱𝑏𝑗 ∈ [0, 1]
(3) 𝑟𝑖𝑝𝐱𝑏𝑗 = 1 if 𝑟𝑖𝑛𝐱𝑏𝑗 = 0, ∀𝐱𝑟 ∈ 

(

𝐱𝑏
)

(4) 𝑟𝑖𝑛𝐱𝑏𝑗 = 1 if 𝑟𝑖𝑝𝐱𝑏𝑗 = 0, ∀𝐱𝑟 ∈ 
(

𝐱𝑏
)

(5) 𝑟𝑖𝑝𝐱𝑏𝑗 ≠ 1 if 𝑟𝑖𝑛𝐱𝑏𝑗 = 1
(6) 𝑟𝑖𝑛𝐱𝑏𝑗 ≠ 1 if 𝑟𝑖𝑝𝐱𝑏𝑗 = 1

Proof. (1) From Eq. (2), we deduce that 𝑤𝐱𝑏
𝑟 > 𝑤𝐱𝑏

𝑠 if 𝐷 𝑖𝑠 (𝐱𝑏, 𝐱𝑟
)

<
𝐷 𝑖𝑠 (𝐱𝑏, 𝐱𝑠

)

, which means that for 𝑃 instances with positive class on 𝑙𝑗 ,
𝑖𝑝𝐱𝑏𝑗 reaches maximum if all 𝑃 instances are with the top 𝑃 smallest
 𝑖𝑠 (𝐱𝑏, ⋅

)

, thus obtaining the maximum value of 1. Note that the value
f 𝑟𝑖𝑝𝐱𝑏𝑗 decreases as more instances with negative class on 𝑙𝑗 obtains
maller 𝐷 𝑖𝑠 (𝐱𝑏, ⋅

)

and becomes the minimum if all 𝑃 instances are with
he top 𝑃 largest 𝐷 𝑖𝑠 (𝐱𝑏, ⋅

)

. In the extreme case where all instances are
with negative class, it reaches the minimum value of 0.

(2) This is similar to that of (1).
(3) Both 𝑟𝑖𝑛𝐱𝑏𝑗 = 0 and ∀𝐱𝑟 ∈ 

(

𝐱𝑏
)

imply that all instances in the
eighborhood of 𝐱𝑏 are with positive class on 𝑙𝑗 , hence 𝑟𝑖𝑝𝐱𝑏𝑗 = 1.

(4) This is similar to that of (3).
(5) 𝑟𝑖𝑛𝐱𝑏𝑗 = 1 means all 𝑁 instances are with the top 𝑁 smallest

𝐷 𝑖𝑠 (𝐱𝑏, ⋅
)

, and 𝑁 > 1 holds. Since the instance is either with the
positive or negative class on 𝑙𝑗 and 𝑃 = 𝑛 − 𝑁 , there exists at
least min (𝑃 , 𝑁) instances that are closer to 𝐱𝑏 and with negative class
simultaneously, which implies that 𝑟𝑖𝑝𝐱𝑏𝑗 < 1. It is similar for that of
𝑟𝑖𝑝𝐱𝑏𝑗 = 1.

(6) This is similar to that of (5). □

The overall positive and negative tendencies can be estimated using
he following triple tuples:

• Positive tendency:
(

𝐱𝑏
𝑗 ,𝐖𝐱𝑏 , 𝑟𝑖𝑝𝐱𝑏𝑗

)

• Negative tendency:
(

 𝐱𝑏
𝑗 ,𝐖𝐱𝑏 , 𝑟𝑖𝑛𝐱𝑏𝑗

)

Consequently, the collection of the weighted score of the positive class
on 𝑙𝑗 is the assembly of all 𝐱𝑏 and is defined as:

𝐖𝐒𝐏𝑗 =
(

𝑟𝑖𝑝𝐱𝑏𝑗 𝐖𝐱𝑏⊤𝐱𝑏
𝑗

)

𝑛×1
(7)

Analogously, the weighted score of negative class on 𝑙𝑗 is defined
as:

𝐖𝐒𝐍 =
(

𝑟𝑖𝑛𝐱𝑏𝐖𝐱𝑏⊤ 𝐱𝑏
)

(8)
6

𝑗 𝑗 𝑗 𝑛×1
To objectively compare the local relative discrimination degrees
i.e., 𝐖𝐒𝐏𝑗 −𝐖𝐒𝐍𝑗), we simply consider the average distances within
eighborhoods by defining the following augmented feature for 𝑙𝑗 :

𝐀𝐅𝑗 =
𝐖𝐒𝐏𝑗 −𝐖𝐒𝐍𝑗

𝑀 𝑒 (𝐖𝐱𝑏 )
(9)

where 𝑀 𝑒 (𝐖𝐱𝑏 ) denotes the median distance of the instances within
the neighborhood of 𝐱𝑏. It describes the compactness of k nearest
neighborhood and can reduce the side-effect from outliers. The smaller
the median value is, the more compact a k nearest neighborhood
becomes. Therefore, the larger the component in 𝐀𝐅𝑗 is, the more
reliable positive tendency of a k nearest neighborhood becomes, and
vice versa.

3.4. Granular-based latent topic mining

Clustering is an effective strategy to characterize the topic struc-
ures. Instead of directly clustering completed on the original features,
e employ k-means clustering on the concatenation of augmented

eatures across the label space to generate the t topics. The advantages
f generating topics in such a manner are three-fold.

1. From the viewpoint of concept cognition, people prefer to take
the strategy of big concept priority. This means some abstraction
procedures are required to construct the middle-level concepts
like topics. In other words, the relationship between topics and
the very detailed information (e.g., the original features) is
rather weak.

2. The augmented features capture the distribution of
neighborhood-based relative discrimination degrees. Instead, the
relationship between original features and labels is ambiguous.

3. The clustering procedure will be accelerated, as the dimension-
ality of the augmented features is smaller than the original
features.

Formally, we define 𝐀𝐅𝑟 ∈ R𝑛𝑟×𝑞 as the 𝑟th topic generated by the
augmented features, where ∑

𝑟 𝑛𝑟 = 𝑛.
(

𝐀𝐅1,… ,𝐀𝐅𝑟,… ,𝐀𝐅𝑡) = 𝑘𝑚𝑒𝑎𝑛𝑠 (𝐀𝐅, 𝑡) (10)

where 𝐀𝐅 =
(

𝐀𝐅1,𝐀𝐅2,… ,𝐀𝐅𝑞
)

denotes the concatenation of aug-
mented features on 𝑙1, 𝑙2,… , 𝑙𝑞 . 𝐀𝐅𝑟 =

(

𝐀𝐅𝑟
1,𝐀𝐅

𝑟
2,… ,𝐀𝐅𝑟

𝑞

)

denotes
the concatenation of augmented features on the 𝑟th topic. In this way,
the instances with similar local relative discrimination degrees will be
partitioned into the same topics, and the gaps between representation
and classification are thus decreased.

3.5. Fine-grained label correlation learning

We generate label-specific features by learning an embedding ma-
trix 𝐕 ∈ R𝑚×𝑑 based on the partitions of the concatenation of both
riginal and augmented features. This means the components of 𝐕 are
ifferent if we consider different latent topics. Assuming that each label
n a latent topic corresponds to a linear model as shown below:

𝑓 𝑟
𝑗 (𝐱) = 𝐮𝑗 𝑟⊤𝐕⊤

𝑟 𝐱 + 𝑏𝑗 𝑟 (11)

where 1 ⩽ 𝑗 ⩽ 𝑞, 𝐮𝑗 𝑟 and 𝑏𝑗 𝑟 correspond to the coefficient and
ias in embedding feature space for the 𝑟th topic. To explore the
ontributions of features, MGOFA follows the granulation schema on
ata and knowledge by following the loss function below:

min
𝑟 ,𝐕𝑟 ,𝐛𝑟


(

𝐘𝑟,𝑓
(

𝐗𝑟
𝑎𝑢𝑔 ,𝐔𝑟,𝐕𝑟,𝐛𝑟

))

+1 (𝐾)+2 (𝐷) (12)

where 𝐔𝑟 ∈ R𝑑×𝑞 , 𝐕𝑟 ∈ R𝑚×𝑑 , 𝐛𝑟 ∈ R𝑞×1, and 𝟏𝑛 ∈ R𝑛×1. Specifically,

(

𝐘𝑟,𝑓
(

𝐗𝑟
𝑎𝑢𝑔 ,𝐔𝑟,𝐕𝑟,𝐛𝑟

))

describes the structured loss of linear model,
1 (𝐾) represents the correlation-based knowledge constraint. 2 (𝐷)
specifies regularization on model complexity. 𝐗𝑟

𝑎𝑢𝑔 = 𝐗𝑟 ∪ 𝐀𝐅𝑟, where
𝐗𝑟 stands for the original features of 𝐗 w.r.t. 𝑟th topic. By considering
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the topic-based second-order label correlation on embedded matrix,
Eq. (12) can be expanded as:

min
𝑟 ,𝐕𝑟 ,𝐛𝑟

1
2
‖𝐗𝑟

𝑎𝑢𝑔𝐕𝑟𝐔𝑟+𝟏𝑛𝐛⊤𝑟 −𝐘𝑟‖
2
2
+
𝜆1
2
𝑡𝑟
(

𝐔𝑟𝐂𝑟𝐔⊤
𝑟
)

+
𝜆2
2
‖𝐕𝑟‖

2
2+𝜆3‖𝐔‖1

𝑠.𝑡.𝐮⊤𝑗 𝑟𝐮𝑗 𝑟 = 1, 1 ⩽ 𝑗 ⩽ 𝑞 .
(13)

where 1
2‖𝐗

𝑟
𝑎𝑢𝑔𝐕𝑟𝐔𝑟 + 𝟏𝑛𝐛⊤𝑟 − 𝐘𝑟‖

2
2

denotes the loss function of 

𝐘𝑟,𝑓
(

𝐗𝑟
𝑎𝑢𝑔 ,𝐔𝑟,𝐕𝑟,𝐛𝑟

))

on the 𝑟th topic. For the 𝑟th topic, 1 (𝐾) =
𝜆1
2 𝑡𝑟

(

𝐔𝑟𝐂𝑟𝐔⊤
𝑟
)

measures the topic-based correlation between any two
inear models w.r.t. 𝑙𝑎 and 𝑙𝑏, which is expanded as ∑𝑞

𝑎=1
∑𝑞

𝑏=1 𝑐𝑎𝑏𝐮
⊤
𝑎𝑟𝐮𝑏𝑟,

2 (𝐷) = 𝜆2
2 ‖𝐕𝑟‖

2
2 + 𝜆3‖𝐔‖1 constraints the model complexity on

mbedding matrix and weight sparsity. 𝐂𝑟 =
[

𝑐𝑟𝑎𝑏
]

𝑞×𝑞 ∈ R𝑞×𝑞 , where

𝑎𝑏 = −∑𝑛
𝑖=1 𝑦𝑖𝑎𝑦𝑖𝑏 denotes the negation of the number of instances

hich is associated with 𝑙𝑎 and 𝑙𝑏 simultaneously in 𝑟th topic. By
imposing this constraint, we enforce the weights for 𝑙𝑎 and 𝑙𝑏 in 𝑟th
topic should be similar if 𝑙𝑎 and 𝑙𝑏 for instances in 𝑟th topic are strongly
correlated, and vice versa.

The objective function in Eq. (13) can be solved via alternating
ptimization as below.

(1) Update 𝐔𝑟, with 𝐕𝑟 and 𝐛𝑟 fixed:
Eq. (13) reduces to:

min
𝐔𝑟

𝑓
(

𝐔𝑟
)

+ 𝜆3 ‖‖𝐔𝑟
‖

‖1

𝑠.𝑡.𝐮⊤𝑗 𝑟𝐮𝑗 𝑟 = 1, 1 ⩽ 𝑗 ⩽ 𝑞
(14)

where 𝑓
(

𝐔𝑟
)

= 1
2
‖

‖

‖

𝐗𝑟
𝑎𝑢𝑔𝐕𝑟𝐔𝑟+𝟏𝑛𝐛⊤−𝐘𝑟

‖

‖

‖

2

2
+𝜆1

2 𝑡𝑟
(

𝐔𝑟𝐂𝑟𝐔⊤
𝑟
)

corresponds
o the smoothing part of convex objective function in Eq. (14). By
nvoking proximal gradient descent, we deduce the gradient of the
bjective w.r.t. 𝐔𝑟 on 𝑓

(

𝐔𝑟
)

as:

▽𝐔𝑟
𝑓
(

𝐔𝑟
)

=
(

𝐗𝑟
𝑎𝑢𝑔𝐕𝑟

)⊤(
𝐗𝑟
𝑎𝑢𝑔𝐕𝑟𝐔𝑟+𝟏𝑛𝐛⊤𝑟 −𝐘𝑟

)

+ 𝜆1𝐔𝑟𝐂𝑟 (15)

Furthermore, 𝑓
(

𝐔𝑟
)

satisfies the 𝐿-Lipschitz condition as:
‖

‖

‖

▽𝐔𝑟
𝑓
(

𝐔1
𝑟
)

−▽𝐔𝑓
(

𝐔2
𝑟
)

‖

‖

‖2

⩽
(

‖

‖

‖

𝐗𝑟
𝑎𝑢𝑔𝐕𝑟

‖

‖

‖

2

2
+ 𝜆1 ‖‖𝐘𝑟

‖

‖

2
2

)

⋅ ‖‖
‖

𝐔1
𝑟 − 𝐔2

𝑟
‖

‖

‖

(16)

with Lipschitz constant 𝐿 = ‖

‖

‖

𝐗𝑟
𝑎𝑢𝑔𝐕𝑟

‖

‖

‖

2

2
+𝜆1 ‖‖𝐘𝑟

‖

‖

2
2. Therefore, the weight

atrix 𝐔𝑟 at the round 𝑖𝑡𝑒𝑟+ 1 can be iteratively updated based on the
revious round as:

𝐔(𝑖𝑡𝑒𝑟+1)
𝑟,𝑖𝑗 =

𝐒(𝑖𝑡𝑒𝑟)𝑟,𝑖𝑗
‖

‖

‖

𝐬𝑟,𝑗
‖

‖

‖2

(17)

where 𝐒(𝑖𝑡𝑒𝑟)𝑟,𝑖𝑗 = 𝑠𝑔 𝑛
(

𝐙(𝑖𝑡𝑒𝑟)
𝑟,𝑖𝑗

)

max
(

|

|

|

𝐙(𝑖𝑡𝑒𝑟)
𝑟,𝑖𝑗

|

|

|

− 𝜆3
𝐿 , 0

)

and 𝐙(𝑖𝑡𝑒𝑟)
𝑟 = 𝐔(𝑖𝑡𝑒𝑟)

𝑟 −
1
𝐿▽𝐔𝑓

(

𝐔(𝑖𝑡𝑒𝑟)). 𝐬𝑟,𝑗 =
[

𝐒(𝑖𝑡𝑒𝑟)𝑟,1𝑗 ,… ,𝐒(𝑖𝑡𝑒𝑟)𝑟,𝑑 𝑗
]⊤

.
Meanwhile, 𝐂𝑟 is renewed by:

𝐂𝑟 = 𝐗𝑟
𝑎𝑢𝑔

⊤ (

𝟏𝑛𝐛⊤𝑟 − 𝐘𝑟
)

𝐔⊤
𝑟 (18)

(2) Update 𝐕𝑟 and 𝐛𝑟, with 𝐔𝑟 fixed:
Eq. (13) reduces to:

min
𝐕𝑟 ,𝐛𝑟

1
2
‖

‖

‖

𝐗𝑟
𝑎𝑢𝑔𝐕𝑟𝐔𝑟 + 𝟏𝑛𝐛⊤𝑟 − 𝐘𝑟

‖

‖

‖

2

2
+
𝜆2
2

‖

‖

𝐕𝑟
‖

‖

2
2 (19)

The solving on 𝐕𝑟 satisfies the following condition:

𝐗𝑟
𝑎𝑢𝑔

⊤𝐗𝑟
𝑎𝑢𝑔𝐕𝑟𝐔𝑟𝐔⊤

𝑟 + 𝐗𝑟
𝑎𝑢𝑔

⊤ (

𝟏𝑛𝐛⊤𝑟 − 𝐘𝑟
)

𝐔⊤
𝑟 + 𝜆2𝐕𝑟 = 𝟎 (20)

Let 𝐄𝑟 = 𝐗𝑟
𝑎𝑢𝑔

⊤ (

𝟏𝑛𝐛⊤𝑟 −𝐘𝑟
)

𝐔⊤
𝑟 , 𝐀𝑟 = 𝐗𝑟

𝑎𝑢𝑔
⊤𝐗𝑟

𝑎𝑢𝑔 , and 𝐁𝑟 = 𝐔𝑟𝐔⊤
𝑟 ,

the symmetric matrix 𝐀 can be factorized as 𝐏 𝜦 𝐏⊤, where 𝐏 is an
7

𝑟 𝑟 𝑟 𝑟 𝑟 w
orthonormal matrix whose columns are the matrix of 𝐀𝑟 and 𝜦𝑟 is a
diagonal matrix whose diagonal elements are the eigenvalues of matrix
𝐀𝑟. The factorization on 𝐁𝑟 is similar and can be denoted by 𝐐𝑟𝜞 𝑟𝐐⊤

𝑟 ,
where 𝐐𝑟 is an orthonormal matrix and 𝜞 𝑟 is a diagonal matrix with the
elements as eigenvalues of 𝐐𝑟. Consequently, Eq. (20) can be rewritten
as:

𝐏𝑟𝜦𝑟𝐏⊤
𝑟 𝐕𝑟𝐐𝑟𝜞 𝑟𝐐⊤

𝑟 + 𝐄𝑟 + 𝜆2𝐕𝑟 = 𝟎 (21)

By multiplying 𝐏⊤
𝑟 and 𝐐𝑟 to the left side and right side of Eq. (21),

e have:

𝜦𝑟𝐏⊤
𝑟 𝐕𝑟𝐐𝑟𝜞 𝑟+𝐏⊤

𝑟 𝐄𝑟𝐐𝑟 + 𝜆2𝐏⊤
𝑟 𝐕𝑟𝐐𝑟 = 𝟎 (22)

The closed-form solution of 𝐕𝑟 is thus denoted as:

𝐕𝑟=𝐏𝑟
((

−𝐏⊤
𝑟 𝐄𝑟𝐐𝑟

)

⊘
(

𝜦𝑟𝟏𝑛𝟏⊤𝑑𝜞 𝑟+𝜆2𝟏𝑛𝟏⊤𝑑
))

𝐐⊤
𝑟 (23)

where ⊘ represents the Hadamard division operator. The closed form
olution of 𝐛𝑟 is denoted as:

𝐛𝑟 = −1
𝑛

(

𝐗𝑟
𝑎𝑢𝑔𝐕𝑟𝐔𝑟 − 𝐘𝑟

)⊤
𝟏𝑛 (24)

3.6. Bias analysis with feature augmentation

A rigorous theoretical analysis on whether feature augmentation
incurs additional bias is essential. Ensuring that any performance im-
provements from feature augmentation are not accompanied by in-
reased bias is crucial for maintaining the reliability and robustness

of the proposed MGOFA. Theorem 1 is formally given to address this
concern.

Theorem 1. Let 𝐗 and 𝐀𝐅 denote the original and augmented fea-
ures, where augmented features are generated based on the approach
overed in Section 3.3.2, 𝐗𝑎𝑢𝑔 = 𝐗 ∪𝐀𝐅. Suppose 𝐵 𝑖𝑎𝑠𝑜 (𝐗), 𝐵 𝑖𝑎𝑠𝑐

(

𝐗𝑎𝑢𝑔
)

,
𝐵 𝑖𝑎𝑠𝑟𝑚

(

𝐗𝑟
𝑎𝑢𝑔

)

denote the bias of learning classifier based on original, con-
catenating features, and multi-granularity features, where the concatenating
features and multi-granularity features is based on studies in Sections 3.3.2
nd 3.5, respectively. Then 𝐸

(

𝐵 𝑖𝑎𝑠𝑟𝑚
(

𝐗𝑟
𝑎𝑢𝑔

))

< 𝐸
(

𝐵 𝑖𝑎𝑠𝑐
(

𝐗𝑎𝑢𝑔
))

<

𝐸
(

𝐵 𝑖𝑎𝑠𝑜 (𝐗)
)

is held, where 𝐸 (⋅) represents the expectation operator.

Proof. In the terminology, bias stands for the difference between the
expected output and the ground-truth labels. For the term 𝐵 𝑖𝑎𝑠𝑜 (𝐗), we
have:

𝐵 𝑖𝑎𝑠𝑜 (𝐗) = 𝐸
(

𝑓𝑜 (𝐗)
)

− 𝐘

where 𝑓𝑜 (𝐗) denotes the output with the original features being treated
as input, while 𝐘 denotes the ground-truth labels.

Similarly, we have 𝐵 𝑖𝑎𝑠𝑐
(

𝐗𝑎𝑢𝑔
)

and 𝐵 𝑖𝑎𝑠𝑟𝑚
(

𝐗𝑟
𝑎𝑢𝑔

)

expressed as:

𝐵 𝑖𝑎𝑠𝑐
(

𝐗𝑎𝑢𝑔
)

= 𝐸
(

𝑓𝑐
(

𝐗𝑎𝑢𝑔
))

− 𝐘

𝐵 𝑖𝑎𝑠𝑟𝑚
(

𝐗𝑟
𝑎𝑢𝑔

)

= 𝐸
(

𝑓𝑚
(

𝐗𝑟
𝑎𝑢𝑔

))

− 𝐘

where 𝑓𝑐
(

𝐗𝑎𝑢𝑔
)

denotes the output with the concatenation of original
and augmented features treated as input, while 𝑓𝑚

(

𝐗𝑟
𝑎𝑢𝑔

)

denotes the
output with multi-granularity features as input. In what follows, we
demonstrate the inequality assertion in two steps:

(1) Firstly, we prove that 𝐸
(

𝐵 𝑖𝑎𝑠𝑐
(

𝐗𝑎𝑢𝑔
))

< 𝐸 (

𝐵 𝑖𝑎𝑠𝑜 (𝐗)
)

:
As suggested by Eq. (9), each element of 𝐀𝐅 (i.e., 𝐀𝐅𝑖) strength-

ens the relevancy between augmented feature and corresponding la-
bels while maintaining the neighborhood-based similarity of raw data,

hich means
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𝐻
(

𝑙𝑖
|

|

|

𝐗𝑎𝑢𝑔

)

< 𝐻 (

𝑙𝑖 |𝐗
)

where 𝐻
(

𝑙𝑖 |⋅
)

denotes the conditional entropy of determining 𝑙𝑖.
herefore, the concatenation of original and augmented features offers
 finer discrimination on label association. In other words, under
he sparse feature coefficients constraint, the sparse coefficient com-
inations generated by 𝑓𝑜 (𝐗) is a subset on that of 𝑓𝑐

(

𝐗𝑎𝑢𝑔
)

. The
unctionality of 𝐮𝑐 can also be observed from Eq. (11) as:

𝐮𝑐 =
(

𝐮𝑜,𝐮𝑎
)

where
(

𝐮𝑜, 𝟎
)

is a special case of 𝐮𝑐 , which means that all augmented
features do not contribute to the classification. Given that the condi-
ional entropy is decreasing, we have:

𝐸
(

𝐵 𝑖𝑎𝑠𝑜 (𝐗)
)

= 𝐸
(

𝐵 𝑖𝑎𝑠𝑐
(

𝐗𝑎𝑢𝑔
))

+ 𝛥𝑜𝑐

where 𝛥𝑜𝑐 > 0 represents the improvement of feature augmentation on
ias estimation.

(2) Secondly, we prove that 𝐸
(

𝐵 𝑖𝑎𝑠𝑟𝑚
(

𝐗𝑟
𝑎𝑢𝑔

))

< 𝐸 (

𝐵 𝑖𝑎𝑠𝑐
(

𝐗𝑎𝑢𝑔
))

:
The latent topics deduced by the similarity of augmented features

enerate a partition of 𝐗. In other words, there is a group of 𝐮𝑐 , where
each of them is different in terms of sparse combinations. Suppose two
arbitrary labels 𝑙𝑎 and 𝑙𝑏 shows salient label correlation w.r.t. 𝑟th topic.
Then for the concatenation of original and augmented features on 𝑟th
topic, we have:

𝐻
(

𝐂𝑟
|

|

|

𝐗𝑟
𝑎𝑢𝑔

)

< 𝐻
(

𝐂𝑟
|

|

|

𝐗𝑎𝑢𝑔

)

where 𝐂𝑟 denotes the correlation matrix in 𝑟th topic, and 𝐻
(

𝐂𝑟 |⋅
)

measures the conditional entropy of fitting the latent label correlation
in 𝐂𝑟.

The reduction in conditional entropy means that given the feature
representation of the 𝑟th topic (i.e., 𝐗𝑟

𝑎𝑢𝑔), the uncertainty of the cor-
responding local label correlation (i.e., 𝐂𝑟) is reduced. As the robust
estimation on label correlation is conducive to deducing accurate classi-
ication, the capability of classifying 𝑙𝑖 becomes stronger, which implies
he decrease of 𝐻

(

𝑙𝑖 ||𝐂𝑟
)

. Given that 𝐂𝑟 is deduced by 𝐗𝑟
𝑎𝑢𝑔 , it implies:

𝐻
(

𝑙𝑖
|

|

|

𝐗𝑟
𝑎𝑢𝑔

)

< 𝐻
(

𝑙𝑖
|

|

|

𝐗𝑎𝑢𝑔

)

Thus, we have:

𝐸
(

𝐵 𝑖𝑎𝑠𝑐
(

𝐗𝑎𝑢𝑔
))

= 𝐸
(

𝐵 𝑖𝑎𝑠𝑟𝑚
(

𝐗𝑟
𝑎𝑢𝑔

))

+ 𝛥𝑐 𝑚
where 𝛥𝑐 𝑚 > 0 represents the bias improvement of finding latent topics
ased on feature augmentation.

Combining (1) and (2), the 𝐸
(

𝐵 𝑖𝑎𝑠𝑟𝑚
(

𝐗𝑟
𝑎𝑢𝑔

))

< 𝐸 (

𝐵 𝑖𝑎𝑠𝑐
(

𝐗𝑎𝑢𝑔
))

<
𝐸
(

𝐵 𝑖𝑎𝑠𝑜 (𝐗)
)

is held. □

Theorem 1 demonstrates that the feature augmentation is conducive
o reducing the bias in constructing the proposed MGOFA. The values

of 𝛥𝑜𝑐 and 𝛥𝑐 𝑚 are pertinent to the dataset characteristics, and will be
easured experimentally in the ablation study (see Section 4.7).

3.7. Complexity analysis

Algorithm 1 summarizes the major procedures of the MGOFA. The
raining procedures of MGOFA include ‘‘Granular-based Feature Aug-

mentation’’ (Step 1–Step 10), ‘‘Granular-based Latent Topic Mining’’
(Step 11), and ‘‘Fine-grained Label Correlation Learning’’ (Step 12–Step
25). Step 26 corresponds to the testing procedure.

The complexity of MGOFA is analyzed as follows. The complexity of
‘Granular-based Feature Augmentation’’ is 𝑂 (

𝑛2𝑚
)

+𝑂 (𝑛𝑘𝑞), which cor-
responds to the instance-based neighborhood generation and relative
class tendency estimation, respectively. The complexity of ‘‘Granular-
based Latent Topic Mining’’ is 𝑂 (

𝑛2𝑞
)

. The complexity of ‘‘Fine-grained
Label Correlation Learning’’ in a single iteration is 𝑂

(

𝑛2𝑟 𝑟
2𝑚2𝑑2𝑞2

)

,
where 𝑛𝑟 denotes the instance count partitioned into the 𝑟th topic.
Given that both 𝑑 < 𝑛𝑟 and 𝑞 < 𝑚 hold in most cases, the overall
omplexity of MGOFA is 𝑂

(

𝑛2𝑟2𝑚2𝑑2𝑞2
)

.

8

𝑟

Algorithm 1: Multi-Granularity cOrrelation-based Feature
Augmentation(MGOFA)

Input: Training set 𝐗, ground-truth labels 𝐘, Nearest
neighborhood count 𝑘, distance balance factor 𝜇, topic
number 𝑡, embedding dimension d, regularization
parameters 𝜆1, 𝜆2, and 𝜆3, unseen instances 𝐗∗

Output: Predicted labels 𝐘∗

1 for 𝑏 = 1 to 𝑛 do
2 Find the k nearest neighborhood w.r.t. 𝐱𝑏 based on Eq. (1).
3 Compute the instance weight 𝐖𝐱𝑏 w.r.t. 𝐱𝑏 based on Eq. (2).
4 for 𝑗 = 1 to 𝑞 do
5 Find the positive and negative class (i.e., 𝐱𝑏

𝑗 ,  𝐱𝑏
𝑗 )

based on Eqs. (3) and (4).
6 Compute the relative influential ratio of positive and

negative class (i.e., 𝐫 𝐢𝐩𝑗 and 𝐫 𝐢𝐧𝑗) based on Eqs. (5)
and (6).

7 Compute weighted score of positive and negative class
(i.e., 𝐖𝐒𝐏𝑗 and 𝐖𝐒𝐍𝑗) based on Eqs. (7) and (8).

8 Generate the 𝑗th augmented feature 𝐀𝐅𝑗 based on Eq.
(9).

9 end
10 end
11 Generate 𝑡 topic-based representation

{𝐗1
𝑎𝑢𝑔 ,𝐗

2
𝑎𝑢𝑔 ,… ,𝐗𝑟

𝑎𝑢𝑔 ,… ,𝐗𝑡
𝑎𝑢𝑔} based on Eq. (10).

12 for 𝑟 = 1 to 𝑡 do
13 Factorize the 𝐗𝑟

𝑎𝑢𝑔
⊤𝐗𝑟

𝑎𝑢𝑔 into 𝐏𝑟𝜦𝑟𝐏⊤
𝑟

14 repeat
15 Randomly initialize 𝐔𝑟, 𝐛𝑟, and 𝐕𝑟 s.t. 𝐔𝑟𝐔⊤

𝑟 = 𝐈,
𝑖𝑡𝑒𝑟 ← 0.

16 repeat
17 Compute ▽𝐔𝑟

𝑓
(

𝐔𝑟
)

based on Eq. (15) and update
𝐔(𝑖𝑡𝑒𝑟+1)
𝑟 based on Eq. (17).

18 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1.
19 until convergence;
20 Factorize 𝐔𝑟𝐔⊤

𝑟 into 𝐐𝑟𝜞 𝑟𝐐⊤
𝑟 , where 𝐔𝑟 ← 𝐔(𝑖𝑡𝑒𝑟)

𝑟 .
21 Update 𝐂𝑟 by Eq. (18).
22 Update 𝐕𝑟 by Eq. (23).
23 Update 𝐛𝑟 by Eq. (24).
24 until convergence;
25 end
26 Return 𝐘∗ =

{

𝜔𝑗
|

|

|

𝑓 𝑟
𝑗 (𝐱) > 0.5, 1 ⩽ 𝑗 ⩽ 𝑞

}

4. Experiments

4.1. Datasets

Table 3 enumerates characteristics of ten datasets, including the
nstance count |𝑆|, feature dimensionality 𝑑 𝑖𝑚 (𝑆), label count 𝐿 (𝑆),
nd the cardinality of average associated labels per instance 𝐿𝐶 𝑎𝑟𝑑 (𝑆).
hey all come from Lamda1 repository.

4.2. Experimental settings

To evaluate the effectiveness of MGOFA, we adopt five widely used
etrics [48], including Hamming Loss, Ranking Loss, One Error, Average
recision and Macro-averaging AUC. Except for the last two metrics that
ignify a better performance for larger values, the remaining embrace
maller values for better performance.

We compare MGOFA against eight state-of-the-art multi-label al-
orithms for performance evaluations to examine whether MGOFA

1 https://www.lamda.nju.edu.cn/code_MDDM.ashx.

https://www.lamda.nju.edu.cn/code_MDDM.ashx
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Table 3
Dataset characteristics.
𝐷 𝑎𝑡𝑎 𝑠𝑒𝑡 |𝑆| 𝑑 𝑖𝑚 (𝑆) 𝐿 (𝑆) 𝐿𝐶 𝑎𝑟𝑑 (𝑆)

Art 5000 462 26 1.64
Business 5000 438 30 1.59
Computers 5000 681 33 1.51
Education 5000 550 33 1.46
Entertainment 5000 640 21 1.42
Health 5000 612 32 1.66
Recreation 5000 606 22 1.42
Reference 5000 793 33 1.17
Science 5000 743 40 1.45
Social 5000 1047 39 1.28

achieves better performance than solutions that are (1) with optimal
omponents via feature selection and (2) with stronger label correlation

assumption on such optimal components. The configurations for these
lgorithms take the recommended values via five-fold cross-validation.

• WRAP [28]23: A label-specific multi-label classification that takes
a wrapped approach w.r.t. each label by considering global label
correlation. [parameter configurations: grid search for 𝜆1, 𝜆2 ∈
{0, 1,… , 10}. 𝜆3 ∈ {0.1, 1} and 𝛼 = 0.9].

• HOMI [43]4: A high-order label correlation learning with self-
representation and local geometric structure on global label cor-
relation. [parameter configurations: grid search for 𝛽 , 𝜆, 𝛾 ∈
{10−5, 10−4,… , 1} and 𝑠 ∈ {5, 10}].

• SLOFS [44]5: A shared latent sublabel structure with global label
correlation. [parameter configurations: grid search for 𝛼 , 𝜆1, 𝜆2,
𝛽 , 𝛿 ∈ {0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 1}]

• MDFS [15]6: An embedded feature selection strategy with man-
ifold regularization to exploit discriminative features on both
global and local label correlation. [parameter configurations: 𝛼 =
1, grid search for 𝛽 , 𝛾 ∈ {10−3, 10−2,… , 103}].

• TIFS [16]7: A latent topic-based instance and feature selection
with global and local label correlation simultaneously. [parameter
configurations: 𝜆 = 0.5, 𝑘 = 10, 𝑠 = 50, grid search for 𝜏 , 𝛿 ∈
{10−4, 10−3,… , 10−1}].

• RLFSCL [45]8: A low-rank feature and label representation learn-
ing approach with global label correlation. [parameter configu-
rations: 𝜌 = 1.1, grid search for 𝜆1, 𝜆2 ∈ {10−3, 10−2,… , 103},
𝜇 ∈ {1, 101,… , 106}].

• GLFS [46]9: A group-preserving label-specific feature selection
learning for global and local label correlation learning. [parame-
ter configurations: grid search for 𝛼 , 𝜆 ∈ {0, 0.2,… , 1}, 𝐾 = 5, 𝑀 =
16, 𝛽 , 𝛾 ∈ {10−3, 10−2,… , 103}].

• MC-GM [47]10: A group-specific feature selection strategy with
label-specific group selection by combining global and local label
correlation. [parameter configurations: grid search for 𝜆, 𝛽 ∈
{10−4, 10−2,… , 1}, 𝛿 , 𝛼 ∈ {10−2, 10−1,… , 102}, 𝑠 = 50].

The configurations of MGOFA are as follows: The balance factor 𝜇 is
searched in [0, 1] at a step of 0.1. We stipulate 𝑘 = 10 for neighborhood
onstruction and 𝑡 = 3 as topic count. The 𝑑 dimensionality in embed-

ded matrix V are defined as 𝑑 = ⌈𝛽min (𝑚, 𝑞)⌉, where 𝛽 = 0.9. We take
a grid search manner for trade-off 𝜆1, 𝜆2 ∈ {1, 2,… , 10}. The trade-off

2 https://palm.seu.edu.cn/zhangml/files/WRAP.rar.
3 For fair comparisons, we use the linear version instead of the kernel

ersion.
4 https://github.com/Chongjie-Si/HOMI.
5 https://github.com/zhongjingyu1/SLOFS.
6 https://github.com/jiazhang-ml/MDFS.
7 https://github.com/JianghongMA/TIFS.
8 https://github.com/JingChuanTang/RLFSCL.
9 https://github.com/jiazhang-ml/GLFS.

10 https://github.com/JianghongMA/MC-GM.
9

𝜆3 is fixed as 𝜆3 = 1.
For fair comparisons, all experiments are executed via five-fold

ross-validation on a desktop with Intel i7-10700CPU (2.90 GHz) and
2 GB RAM. The MGOFA is implemented via Matlab R2017b.

4.3. Results

Table 4 shows the detailed classification performance ranking in-
ormation over ten benchmarks and eight comparing methods. From
he metric view, MGOFA ranks first at 80% cases

(

4
5

)

, ranks second

t 20% cases
(

1
5

)

. From the dataset view, MGOFA ranks first at 70%
(

35
50

)

cases, ranks second at 16%
(

8
50

)

cases, ranks third at 12%
(

6
50

)

ases.
We employ the Friedman test [49] to examine whether the statis-

tical difference in relative performance holds for all metrics. Let 𝑁 ,
𝑇 , and 𝑟𝑗𝑖 denote the comparison approaches count, the dataset count,
nd the rank of the 𝑗th algorithm on the 𝑖th dataset, respectively.
iven the average rank (i.e., 𝑅𝑗 = 1

𝑇
∑𝑇

𝑖=1 𝑟
𝑗
𝑖 ) information induced in

Table 4, Friedman statistic 𝐹𝐹 follows the 𝐹 -distribution under the null
hypothesis that all algorithms are statistically indistinguishable, with
𝑁 − 1 numerator degrees of freedom and (𝑁 − 1) (𝑇 − 1) denominator
egrees of freedom.

𝐹𝐹 =
(𝑇 − 1)𝜒2

𝐹

𝑇 (𝑁 − 1) − 𝜒2
𝐹

(25)

where 𝜒2
𝐹 = 12𝑇

𝑁(𝑁+1)

[

∑𝑁
𝑗=1 𝑅

2
𝑗 −

𝑁(𝑁+1)2

4

]

. Table 5 summarizes the
results for all considered five metrics, where 𝑁 = 9 and 𝑇 = 10. Given
that critical value 𝛼 = 0.05, the null hypothesis of statistically indistin-
guishable performance among all considered algorithms is rejected for
all metrics.

To further examine whether MGOFA is significantly superior over
he remaining algorithms on different metrics, we employ Holm’s pro-
edure [49] as the post-hoc test by regarding MGOFA as the control

algorithm (denoted as 1). For the remaining 𝑇 − 1 comparing algo-
rithms (denoted as 𝑗 , where 2 ⩽ 𝑗 ⩽ 𝑁), the one obtaining the 𝑗 − 1th
largest average rank over all datasets is denoted as 𝑗 . Then we have
the test statistic for comparing 1 (i.e., MGOFA) and 𝑗 in Eq. (26).

𝑧𝑗 =
(

𝑅1 − 𝑅𝑗
)

∕
√

𝑁 (𝑁 + 1)
6𝑇

(2 ⩽ 𝑗 ⩽ 𝑁) (26)

In practice, we stipulate 𝑝𝑗 as the 𝑝-value of 𝑧𝑗 under the normal
distribution. Given the significance level 𝛼 = 0.05, the Holm’s procedure
works by sequentially examining whether 𝑝𝑗 < 𝛼∕(𝑁 − 𝑗 + 1)holds
n ascending order of 𝑗. Typically, the Holm’s procedure continues
ntil the first 𝑗 (denoted as 𝑗∗) which 𝑝𝑗 ⩾ 𝛼∕(𝑁 − 𝑗 + 1) holds.11

Consequently, MGOFA is statistically superior over algorithms with the
ranking of 𝑗 , where 𝑗 ∈ {2,… , 𝑗∗ − 1}.

Table 6 enumerates the results of Holm’s procedure. We infer that
MGOFA achieves the most statistically superior at metric Hamming
Loss. Additionally, it achieves statistically superior performance over
TIFS, SLOFS, on all five metrics, GLFS, MDFS on all metrics except for
Ranking Loss, MC-GM on Hamming Loss and Ranking Loss.

4.4. Convergence analysis

Fig. 5 illustrates the convergence of objective functions w.r.t. differ-
nt topics with the parameters

(

𝛽 , 𝑘, 𝜇 , 𝑡, 𝜆1, 𝜆2, 𝜆3
)

= (0.9, 10, 0.4, 3, 5,
5, 1), on datasets Art, Business, and Computers, respectively. The con-
ergence condition is either the variations of the objective function in
wo consecutive rounds are smaller than 10−4 or the iteration count
eaches 1000. From Fig. 5, we can observe that the objective function

of MGOFA decreases rapidly in a limited number of iterations for all
topics. The maximal round of reaching convergence is smaller than 400,
which implies the solution is optimal.

11 𝑗∗ is set to be 𝑁 + 1 if 𝑝 < 𝛼∕ 𝑁 − 𝑗 + 1 holds ∀𝑗.
𝑗 ( )

https://palm.seu.edu.cn/zhangml/files/WRAP.rar
https://github.com/Chongjie-Si/HOMI
https://github.com/zhongjingyu1/SLOFS
https://github.com/jiazhang-ml/MDFS
https://github.com/JianghongMA/TIFS
https://github.com/JingChuanTang/RLFSCL
https://github.com/jiazhang-ml/GLFS
https://github.com/JianghongMA/MC-GM
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Table 4
Comparisons (mean ± std) on five metrics (↓: the smaller the better, ↑: the larger the better).

Dataset Hamming loss ↓
MGOFA WRAP HOMI SLOFS MDFS TIFS RLFSCL GLFS MC-GM

Art 0.054 ± 0.001 0.054 ± 0.001 0.060 ± 0.001 0.063 ± 0.001 0.063 ± 0.001 0.124 ± 0.020 0.057 ± 0.001 0.063 ± 0.001 0.086 ± 0.002
Business 0.025 ± 0.000 0.025 ± 0.001 0.026 ± 0.001 0.029 ± 0.001 0.028 ± 0.001 0.044 ± 0.006 0.026 ± 0.000 0.028 ± 0.002 0.032 ± 0.002
Computers 0.034 ± 0.001 0.034 ± 0.001 0.035 ± 0.001 0.040 ± 0.001 0.038 ± 0.001 0.074 ± 0.008 0.035 ± 0.001 0.039 ± 0.001 0.063 ± 0.005
Education 0.037 ± 0.001 0.038 ± 0.001 0.043 ± 0.000 0.044 ± 0.001 0.044 ± 0.001 0.072 ± 0.007 0.039 ± 0.001 0.044 ± 0.000 0.060 ± 0.001
Entertainment 0.052 ± 0.002 0.052 ± 0.001 0.063 ± 0.002 0.068 ± 0.001 0.067 ± 0.001 0.112 ± 0.008 0.055 ± 0.001 0.067 ± 0.001 0.087 ± 0.004
Health 0.035 ± 0.001 0.035 ± 0.001 0.036 ± 0.001 0.050 ± 0.001 0.036 ± 0.001 0.044 ± 0.001 0.032 ± 0.001 0.047 ± 0.001 0.048 ± 0.002
Recreation 0.054 ± 0.001 0.054 ± 0.001 0.062 ± 0.001 0.065 ± 0.001 0.065 ± 0.001 0.124 ± 0.014 0.056 ± 0.001 0.065 ± 0.001 0.098 ± 0.007
Reference 0.026 ± 0.001 0.026 ± 0.001 0.035 ± 0.000 0.031 ± 0.001 0.029 ± 0.001 0.051 ± 0.004 0.028 ± 0.001 0.035 ± 0.000 0.050 ± 0.002
Science 0.032 ± 0.001 0.032 ± 0.001 0.035 ± 0.000 0.036 ± 0.001 0.036 ± 0.000 0.061 ± 0.004 0.034 ± 0.001 0.036 ± 0.000 0.057 ± 0.001
Social 0.021 ± 0.001 0.021 ± 0.001 0.025 ± 0.001 0.028 ± 0.001 0.024 ± 0.001 0.042 ± 0.004 0.022 ± 0.001 0.026 ± 0.001 0.033 ± 0.003

Dataset Ranking loss ↓
MGOFA WRAP HOMI SLOFS MDFS TIFS RLFSCL GLFS MC-GM

Art 0.135 ± 0.005 0.133 ± 0.006 0.124 ± 0.006 0.176 ± 0.004 0.172 ± 0.002 0.189 ± 0.018 0.135 ± 0.006 0.174 ± 0.003 0.156 ± 0.006
Business 0.040 ± 0.003 0.040 ± 0.002 0.040 ± 0.003 0.048 ± 0.004 0.048 ± 0.002 0.050 ± 0.009 0.061 ± 0.006 0.047 ± 0.004 0.054 ± 0.003
Computers 0.092 ± 0.009 0.094 ± 0.008 0.102 ± 0.008 0.096 ± 0.005 0.095 ± 0.001 0.136 ± 0.013 0.097 ± 0.004 0.094 ± 0.004 0.127 ± 0.010
Education 0.106 ± 0.008 0.107 ± 0.007 0.093 ± 0.003 0.108 ± 0.004 0.106 ± 0.003 0.128 ± 0.011 0.097 ± 0.006 0.108 ± 0.003 0.127 ± 0.010
Entertainment 0.113 ± 0.007 0.114 ± 0.007 0.100 ± 0.005 0.155 ± 0.004 0.137 ± 0.003 0.152 ± 0.005 0.115 ± 0.002 0.149 ± 0.002 0.128 ± 0.050
Health 0.062 ± 0.004 0.063 ± 0.005 0.062 ± 0.003 0.082 ± 0.003 0.070 ± 0.006 0.056 ± 0.003 0.075 ± 0.006 0.073 ± 0.006 0.079 ± 0.006
Recreation 0.149 ± 0.004 0.146 ± 0.007 0.136 ± 0.009 0.213 ± 0.005 0.197 ± 0.003 0.212 ± 0.013 0.149 ± 0.006 0.205 ± 0.005 0.162 ± 0.008
Reference 0.093 ± 0.006 0.094 ± 0.003 0.189 ± 0.007 0.110 ± 0.006 0.112 ± 0.004 0.107 ± 0.007 0.095 ± 0.008 0.110 ± 0.003 0.110 ± 0.010
Science 0.134 ± 0.010 0.131 ± 0.007 0.119 ± 0.006 0.153 ± 0.002 0.149 ± 0.005 0.152 ± 0.009 0.133 ± 0.006 0.149 ± 0.002 0.138 ± 0.006
Social 0.082 ± 0.004 0.082 ± 0.003 0.065 ± 0.003 0.078 ± 0.004 0.078 ± 0.002 0.091 ± 0.004 0.084 ± 0.007 0.078 ± 0.005 0.095 ± 0.008

Dataset One error ↓

MGOFA WRAP HOMI SLOFS MDFS TIFS RLFSCL GLFS MC-GM

Art 0.460 ± 0.010 0.462 ± 0.018 0.492 ± 0.006 0.749 ± 0.009 0.730 ± 0.012 0.689 ± 0.066 0.524 ± 0.020 0.738 ± 0.010 0.471 ± 0.014
Business 0.111 ± 0.004 0.113 ± 0.008 0.114 ± 0.016 0.135 ± 0.011 0.135 ± 0.004 0.293 ± 0.054 0.115 ± 0.007 0.135 ± 0.008 0.127 ± 0.018
Computers 0.353 ± 0.018 0.350 ± 0.009 0.371 ± 0.014 0.476 ± 0.020 0.476 ± 0.012 0.616 ± 0.041 0.383 ± 0.010 0.476 ± 0.011 0.368 ± 0.014
Education 0.468 ± 0.018 0.471 ± 0.006 0.507 ± 0.015 0.685 ± 0.007 0.685 ± 0.008 0.689 ± 0.049 0.519 ± 0.015 0.685 ± 0.017 0.477 ± 0.009
Entertainment 0.399 ± 0.017 0.403 ± 0.015 0.436 ± 0.022 0.715 ± 0.009 0.650 ± 0.009 0.608 ± 0.031 0.459 ± 0.010 0.700 ± 0.025 0.404 ± 0.007
Health 0.273 ± 0.010 0.270 ± 0.013 0.283 ± 0.011 0.493 ± 0.016 0.289 ± 0.013 0.364 ± 0.020 0.254 ± 0.008 0.448 ± 0.021 0.324 ± 0.024
Recreation 0.461 ± 0.006 0.459 ± 0.021 0.488 ± 0.022 0.805 ± 0.012 0.750 ± 0.024 0.691 ± 0.027 0.521 ± 0.017 0.799 ± 0.011 0.469 ± 0.018
Reference 0.373 ± 0.010 0.381 ± 0.009 0.535 ± 0.005 0.535 ± 0.015 0.535 ± 0.009 0.621 ± 0.045 0.423 ± 0.007 0.535 ± 0.016 0.384 ± 0.020
Science 0.499 ± 0.019 0.501 ± 0.029 0.524 ± 0.016 0.728 ± 0.015 0.682 ± 0.027 0.706 ± 0.037 0.565 ± 0.013 0.699 ± 0.011 0.502 ± 0.015
Social 0.294 ± 0.015 0.289 ± 0.016 0.341 ± 0.007 0.446 ± 0.014 0.404 ± 0.004 0.554 ± 0.047 0.325 ± 0.015 0.431 ± 0.017 0.294 ± 0.016

Dataset Average precision ↑

MGOFA WRAP HOMI SLOFS MDFS TIFS RLFSCL GLFS MC-GM

Art 0.583 ± 0.008 0.583 ± 0.009 0.573 ± 0.013 0.419 ± 0.005 0.429 ± 0.006 0.441 ± 0.047 0.555 ± 0.013 0.424 ± 0.004 0.572 ± 0.011
Business 0.856 ± 0.006 0.855 ± 0.004 0.854 ± 0.008 0.826 ± 0.010 0.827 ± 0.004 0.777 ± 0.033 0.855 ± 0.007 0.829 ± 0.008 0.835 ± 0.010
Computers 0.691 ± 0.009 0.690 ± 0.008 0.683 ± 0.011 0.587 ± 0.017 0.590 ± 0.007 0.510 ± 0.033 0.671 ± 0.006 0.588 ± 0.011 0.660 ± 0.010
Education 0.624 ± 0.015 0.623 ± 0.006 0.602 ± 0.009 0.479 ± 0.004 0.485 ± 0.002 0.457 ± 0.038 0.607 ± 0.009 0.481 ± 0.012 0.612 ± 0.011
Entertainment 0.678 ± 0.018 0.676 ± 0.012 0.659 ± 0.015 0.489 ± 0.005 0.535 ± 0.007 0.538 ± 0.020 0.646 ± 0.008 0.503 ± 0.014 0.667 ± 0.009
Health 0.750 ± 0.005 0.750 ± 0.010 0.746 ± 0.008 0.610 ± 0.007 0.737 ± 0.014 0.716 ± 0.013 0.772 ± 0.009 0.644 ± 0.011 0.698 ± 0.020
Recreation 0.598 ± 0.007 0.602 ± 0.016 0.589 ± 0.016 0.383 ± 0.007 0.422 ± 0.017 0.450 ± 0.022 0.563 ± 0.010 0.394 ± 0.007 0.591 ± 0.012
Reference 0.682 ± 0.010 0.679 ± 0.008 0.532 ± 0.006 0.557 ± 0.013 0.561 ± 0.006 0.536 ± 0.031 0.669 ± 0.004 0.558 ± 0.008 0.666 ± 0.018
Science 0.561 ± 0.018 0.560 ± 0.018 0.547 ± 0.009 0.388 ± 0.007 0.425 ± 0.013 0.422 ± 0.028 0.528 ± 0.012 0.406 ± 0.003 0.553 ± 0.011
Social 0.715 ± 0.012 0.717 ± 0.009 0.702 ± 0.009 0.616 ± 0.014 0.640 ± 0.005 0.585 ± 0.028 0.709 ± 0.008 0.625 ± 0.014 0.697 ± 0.015

Dataset Macro-averaging AUC ↑

MGOFA WRAP HOMI SLOFS MDFS TIFS RLFSCL GLFS MC-GM

Art 0.958 ± 0.010 0.958 ± 0.001 0.957 ± 0.001 0.933 ± 0.002 0.936 ± 0.001 0.604 ± 0.022 0.956 ± 0.001 0.932 ± 0.002 0.957 ± 0.002
Business 0.959 ± 0.001 0.959 ± 0.001 0.959 ± 0.001 0.933 ± 0.007 0.925 ± 0.002 0.562 ± 0.013 0.957 ± 0.001 0.917 ± 0.008 0.956 ± 0.001
Computers 0.969 ± 0.001 0.969 ± 0.001 0.968 ± 0.001 0.945 ± 0.002 0.949 ± 0.002 0.594 ± 0.013 0.968 ± 0.000 0.940 ± 0.005 0.968 ± 0.002
Education 0.971 ± 0.001 0.970 ± 0.001 0.967 ± 0.003 0.950 ± 0.004 0.952 ± 0.002 0.594 ± 0.025 0.968 ± 0.003 0.946 ± 0.006 0.967 ± 0.002
Entertainment 0.957 ± 0.001 0.957 ± 0.001 0.956 ± 0.001 0.926 ± 0.002 0.942 ± 0.001 0.637 ± 0.014 0.956 ± 0.001 0.930 ± 0.010 0.956 ± 0.002
Health 0.965 ± 0.001 0.965 ± 0.002 0.965 ± 0.001 0.954 ± 0.007 0.965 ± 0.002 0.591 ± 0.006 0.966 ± 0.001 0.961 ± 0.000 0.965 ± 0.001
Recreation 0.959 ± 0.001 0.958 ± 0.002 0.958 ± 0.002 0.931 ± 0.002 0.940 ± 0.002 0.623 ± 0.013 0.956 ± 0.001 0.933 ± 0.001 0.957 ± 0.001
Reference 0.977 ± 0.000 0.975 ± 0.003 0.834 ± 0.017 0.953 ± 0.006 0.963 ± 0.002 0.614 ± 0.013 0.975 ± 0.002 0.954 ± 0.001 0.975 ± 0.001
Science 0.976 ± 0.001 0.976 ± 0.001 0.975 ± 0.001 0.959 ± 0.002 0.966 ± 0.001 0.615 ± 0.016 0.976 ± 0.001 0.958 ± 0.002 0.974 ± 0.002
Social 0.978 ± 0.001 0.977 ± 0.003 0.977 ± 0.001 0.959 ± 0.007 0.968 ± 0.002 0.627 ± 0.011 0.976 ± 0.003 0.956 ± 0.003 0.978 ± 0.000
4.5. Performance variations during convergence

Fig. 6 shows the performance variations on datasets Art, Busi-
ess, and Computers with the continuously updating of 𝐂𝑟, 𝐕𝑟 and 𝐛𝑟
or solving Eq. (13). Since the objective function converges with at
ost 400 iterations for the three datasets, we record the variations

f Hamming Loss, Ranking Loss, One Error, Average Precision and
acro-averaging Precision every 10 iterations. As shown in Fig. 6, the

performance variation becomes negligible for Art and Business when the
10

w

iteration count reaches 100, while almost remains unchanged for Com-
puters after 200 iterations. These observations imply that MGOFA con-
verges simultaneously for both the objective function and classification
performance.

4.6. Sensitivity analysis

To explore the performance fluctuations w.r.t. parameter settings,
e conduct sensitivity analysis for MGOFA on datasets Art, Business,
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Fig. 5. Convergence curves on dataset, where Art for (a) Topic 1, (b) Topic 2, and (c) Topic 3, Business for (d) Topic 1, (e) Topic 2, and (f) Topic 3, and Computers for (g) Topic
1, (h) Topic 2, (i) Topic 3.
Table 5
Summary of the Friedman statistics 𝐹𝐹 (N = 9, T = 10) and the critical value at
significance level 𝛼 = 0.05 on all evaluation metrics.

Evaluation metric 𝐹𝐹 Critical value

𝐻 𝑎𝑚𝑚𝑖𝑛𝑔 𝑙 𝑜𝑠𝑠 88.1223
𝑅𝑎𝑛𝑘𝑖𝑛𝑔 𝑙 𝑜𝑠𝑠 6.8404
𝑂 𝑛𝑒 𝑒𝑟𝑟𝑜𝑟 53.1762 2.0698
𝐴𝑣𝑒𝑟𝑎𝑔 𝑒 𝑝𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 44.9191
𝑀 𝑎𝑐 𝑟𝑜 − 𝑎𝑣𝑒𝑟𝑎𝑔 𝑖𝑛𝑔 𝐴𝑈 𝐶 44.5980

and Computers over the parameters 𝛽, 𝜇, k, t, 𝜆1, and 𝜆2.
We devise four groups of comparisons to examine the performance

fluctuations from modules of granular-based feature augmentation,
granular-based latent topic mining, and fine-grained label correlation
learning. Details are as follows:

1. 𝛽: Parameter 𝛽 is searched from 0.1 to 0.9 at a step of 0.1,
while the remaining parameters

(

𝑘, 𝜇 , 𝑡, 𝜆1, 𝜆2, 𝜆3
)

are fixed as
(10, 0.4, 3, 5, 5, 1).

2. (𝑘, 𝜇): Parameters 𝜇 and k are searched from 0.1 to 0.9 at a step
of 0.1 and from 3 to 12 at a step of 1, respectively, while the
remaining parameters

(

𝛽 , 𝑡, 𝜆 , 𝜆 , 𝜆 )

are fixed as 0.9, 3, 5, 5, 1 .
11

1 2 3 ( )
3. 𝑡: Parameter 𝑡 is searched from 1 to 128 at a step of 2𝑛, where
𝑛 = 0, 1,… , 6, while the remaining parameters

(

𝛽 , 𝑘, 𝜇 , 𝜆1, 𝜆2, 𝜆3
)

are fixed as (0.9, 10, 0.4, 5, 5, 1).
4.

(

𝜆1, 𝜆2
)

: Parameters 𝜆1 and 𝜆2 are searched from 1 to 10 at a step
of 1, while the remaining parameters

(

𝛽 , 𝑘, 𝜇 , 𝑡, 𝜆3
)

are fixed as
(0.9, 10, 0.4, 3, 1).

4.6.1. Varying the dimensionality of embedding features
Fig. 7 shows the results of group 1 (i.e., (𝛽)). It clearly reveals

that the overall values of loss-based measures (i.e., Hamming Loss,
Ranking Loss, and One Error) become smaller if 𝛽 selects a larger
value. The overall values of accuracy-based measures (i.e., Average
Precision, Macro-averaging AUC) become larger if 𝛽 selects a larger
value. These observations suggest that a larger value of 𝛽 can preserve
more discriminative information.

4.6.2. Varying the trade-off weight 𝜇 and neighborhood size k
Fig. 8 shows the results of group 2 (i.e., (𝑘, 𝜇)). It shows the optimal

performance is both dataset-dependent and metric-dependent. Typi-
cally, the results of Art become better if 𝜇 is medium while k is smaller;
the results of Business become better if 𝜇 is larger while k is smaller; the
results of Computers become better if both 𝜇 and k are smaller. These
findings suggest that it is valuable to scrutinize the trade-off between
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Fig. 6. Performance variations with the increment of iteration count for Art on (a), (d), (g), (j), (m), for Business on (b), (e), (h), (k), (n) and for Computers on (c), (f), (i), (l), (o).
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Fig. 7. Sensitivity analysis with varying parameter 𝛽 for Art on (a), (d), (g), (j), (m), for Business on (b), (e), (h), (k), (n) and for Computers on (c), (f), (i), (l), (o).
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Table 6
Comparisons of MGOFA (control algorithm) against the remaining algorithms with the

olm test at the significance level 𝛼 = 0.05. Algorithms that are statistically inferior to
GOFA are shown in bold size.
Hamming loss
𝑗 Algorithm 𝑧𝑗 𝑝𝑗 𝛼∕ (𝑘 − 𝑗 + 1)
2 TIFS −5.837951 5.2847e−9 0.00625
3 MC-GM −5.266403 1.3912e−7 0.00714
4 SLOFS −4.123308 3.7347e−5 0.00833
5 GLFS −3.674235 2.3856e−4 0.01000
6 MDFS −3.021037 0.002519 0.01250
7 HOMI −2.245366 0.024745 0.01667
8 RLFSCL −1.102270 0.270344 0.02500
9 WRAP −0.081650 0.934925 0.05000

Ranking loss
𝑗 Algorithm 𝑧𝑗 𝑝𝑗 𝛼∕ (𝑘 − 𝑗 + 1)
2 TIFS −3.470110 5.2025e−4 0.00625
3 SLOFS −3.388461 7.0286e−4 0.00714
4 MC-GM −3.143512 0.0017 0.00833
5 GLFS −2.204541 0.0275 0.01000
6 MDFS −2.041241 0.0412 0.01250
7 RLFSCL −1.592168 0.1130 0.01667
8 WRAP −0.122474 0.9025 0.02500
9 HOMI 0.163299 1.0000 0.05000

One error
𝑗 Algorithm 𝑧𝑗 𝑝𝑗 𝛼∕ (𝑘 − 𝑗 + 1)
2 SLOFS −5.307228 1.1130e−9 0.00625
3 TIFS −5.103104 3.3413e−7 0.00714
4 GLFS −4.73568 2.1832e−6 0.00833
5 MDFS −4.082483 4.4557e−5 0.01000
6 RLFSCL −2.245366 0.024745 0.01250
7 HOMI −2.204541 0.027486 0.01667
8 MC-GM −1.551344 0.120819 0.02500
9 WRAP −0.122474 0.902523 0.05000

Average precision
𝑗 Algorithm 𝑧𝑗 𝑝𝑗 𝛼∕ (𝑘 − 𝑗 + 1)
2 SLOFS −5.715476 1.0940e−8 0.00625
3 TIFS −4.980629 6.3378e−7 0.00714
4 GLFS −4.81733 1.4549e−6 0.00833
5 MDFS −3.919184 8.8849e−5 0.01000
6 HOMI −2.44949 0.014306 0.01250
7 MC-GM −2.28619 0.022243 0.01667
8 RLFSCL −1.918767 0.055014 0.02500
9 WRAP −0.367423 0.713303 0.05000

Macro-averaging AUC
𝑗 Algorithm 𝑧𝑗 𝑝𝑗 𝛼∕ (𝑘 − 𝑗 + 1)
2 TIFS −5.960425 2.5158e−9 0.00625
3 GLFS −4.73568 4.2948e−8 0.00714
4 SLOFS −4.490731 7.0979e−6 0.00833
5 MDFS −3.347636 8.1504e−4 0.01000
6 HOMI −1.877942 0.060389 0.01250
7 MC-GM −1.755468 0.079179 0.01667
8 RLFSCL −1.551344 0.120819 0.02500
9 WRAP −0.530723 0.530723 0.05000

the Pearson correlation coefficient and cosine similarity for local label
correlation. Furthermore, having a large-scale neighborhood may not
necessarily guarantee a better outcome for cases with underlying topics.

4.6.3. Varying the number of topics t
Fig. 9 shows the results of group 3 (i.e., (𝑡)). They obviously illus-

trate that the latent topics in Art, Business, and Computers are limited in
scale. Concretely, the classification performance is rapidly degenerated
if too many topics are assumed. It implies the poor generalization abil-
ity of label correlation in a few instances. Consequently, a reasonable
number of topics is crucial in boosting classification performance.
14
4.6.4. Varying the penalties 𝜆1 and 𝜆2
Fig. 10 shows the results of group 4 (i.e.,

(

𝜆1, 𝜆2
)

). The fluctuations
incurred by variations from 𝜆1 and 𝜆2 are insignificant. It implies that
MGOFA is insensitive to the variations of 𝜆1 and 𝜆2.

4.7. Ablation study

To explore the functionality of label correlation and feature aug-
mentation in MGOFA, four reduced versions of MGOFA are studied:

1. MGOFA-LC: A reduced version of MGOFA without leverag-
ing label correlation. This means that the regularization term
𝜆1
2 𝑡𝑟

(

𝐔𝑟𝐂𝑟𝐔⊤
𝑟
)

in Eq. (13) is removed.
2. MGOFA-FA: A reduced version of MGOFA without exploring

augmented features. The fine-grained label correlation learning
in this version learns the topic-based label correlation on the
𝑚-dimensional feature space.

3. MGOFA-FS: A reduced version of MGOFA without imposing
sparsity constraints on the weights of features. This means that
the regularization term 𝜆3‖𝐔‖1 in Eq. (13) is removed.

4. MGOFA-FE: A reduced version of MGOFA without learning fea-
ture embedding. This means that both the regularization term
𝜆2
2 ‖𝐕𝑟‖

2
2 and the construction of 𝐕𝑟 in Eq. (13) are removed.

Table 7 shows the results of the ablation study. The smaller the
ranking is, the better the classification performance becomes. It clearly
shows that all these components contribute to the effectiveness of
MGOFA, as MGOFA dominates the MGOFA-LC (with the win/tie/lose
as 44/6/0), MGOFA-FA (with the win/tie/lose as 48/2/0), MGOFA-
FS (with the win/tie/lose as 28/22/0), and MGOFA-FE (with the
win/tie/lose as 50/0/0). For the degenerated versions, the larger
ranking implies the more significant contributions to the MGOFA. Con-
idering the ranking among the MGOFA and all degenerated versions,
he importance of the four modules is ‘‘Feature Embedding > Feature
ugmentation > Label Correlation > Feature Sparsity’’. Furthermore,

he functionality of augmented features is more important than the
abel correlation, demonstrating that the likelihood of bias incurred by
ugmented features is negligible.

4.8. Computational efficiency evaluation

Table 8 provides a comparison of the computational time required
for different approaches. Parameter settings for MGOFA are
(

𝛽 , 𝑘, 𝜇 , 𝑡, 𝜆1, 𝜆2, 𝜆3
)

= (0.9, 10, 0.4, 3, 5, 5, 1), while the comparing al-
gorithms take the settings as declared in Section 4.2. As shown in
Table 8, SLOFS, which employs a filtering-based feature selection
strategy, emerges as the most efficient solution. In contrast, the pro-
posed MGOFA outperforms approximately half of the state-of-the-
art methods. Given that the primary objective is effectiveness, the
computational efficiency ranking of MGOFA is acceptable.

5. Conclusions

We present a multi-granularity correlation-based feature augmenta-
tion (MGOFA) method to deduce fine-grained local label correlations
for multi-label classification. With the semantics of relative positive
tendency towards label space and a limited number of such features,
we bridge the gap between feature representation and classification
by concatenating the low-level original features with the high-level
augmented features for each topic independently. By learning the
mapping from the multi-faceted information to the ground-truth labels
in a wrapped manner, we demonstrate that it not only achieves the
statistical superiority performance over the state-of-the-art approaches,
but also converges rapidly and fluctuates stably.

The MGOFA demonstrates it is feasible to employ multi-granularity
on multi-label classification in dealing with the uncertainty of local
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Fig. 8. Sensitivity analysis with varying parameters k and 𝜇 for Art on (a), (d), (g), (j), (m), for Business on (b), (e), (h), (k), (n) and for Computers on (c), (f), (i), (l), (o).
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Fig. 9. Sensitivity analysis with varying parameter 𝑡 for Art on (a), (d), (g), (j), (m), for Business on (b), (e), (h), (k), (n) and for Computers on (c), (f), (i), (l), (o).
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Fig. 10. Sensitivity analysis with varying parameters 𝜆1 and 𝜆2 for Art on (a), (d), (g), (j), (m), for Business on (b), (e), (h), (k), (n) and for Computers on (c), (f), (i), (l), (o).
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Table 7
Functionality analysis on MGOFA (↓: the smaller the better, ↑: the larger the better).

Dataset Hamming loss ↓
MGOFA MGOFA-LC MGOFA-FA MGOFA-FS MGOFA-FE

Art 0.054 ± 0.001(2) 0.054 ± 0.001(2) 0.057 ± 0.000(5) 0.054 ± 0.001(2) 0.056 ± 0.045(4)
Business 0.025 ± 0.000(1.5) 0.026 ± 0.001(3.5) 0.026 ± 0.001(3.5) 0.025 ± 0.001(1.5) 0.028 ± 0.006(5)
Computers 0.034 ± 0.001(1.5) 0.036 ± 0.002(4.5) 0.035 ± 0.001(3) 0.034 ± 0.001(1.5) 0.036 ± 0.067(4.5)
Education 0.037 ± 0.001(1.5) 0.038 ± 0.000(3) 0.040 ± 0.002(4) 0.037 ± 0.001(1.5) 0.044 ± 0.126(5)
Entertainment 0.052 ± 0.002(1.5) 0.053 ± 0.001(3.5) 0.054 ± 0.003(5) 0.052 ± 0.001(1.5) 0.053 ± 0.003(3.5)
Health 0.035 ± 0.001(2.5) 0.035 ± 0.001(2.5) 0.035 ± 0.001(2.5) 0.035 ± 0.001(2.5) 0.044 ± 0.020(5)
Recreation 0.054 ± 0.001(1.5) 0.055 ± 0.001(3.5) 0.058 ± 0.002(5) 0.054 ± 0.001(1.5) 0.055 ± 0.004(3.5)
Reference 0.026 ± 0.001(2) 0.026 ± 0.001(2) 0.028 ± 0.001(4) 0.026 ± 0.001(2) 0.031 ± 0.002(5)
Science 0.032 ± 0.001(1.5) 0.034 ± 0.002(4) 0.035 ± 0.003(5) 0.032 ± 0.001(1.5) 0.033 ± 0.078(3)
Social 0.021 ± 0.001(1) 0.026 ± 0.002(5) 0.023 ± 0.002(4) 0.022 ± 0.001(2.5) 0.022 ± 0.077(2.5)

Dataset Ranking loss ↓
MGOFA MGOFA-LC MGOFA-FA MGOFA-FS MGOFA-FE

Art 0.135 ± 0.005(1) 0.149 ± 0.005(3) 0.162 ± 0.005(5) 0.136 ± 0.005(2) 0.151 ± 0.020(4)
Business 0.040 ± 0.003(1) 0.048 ± 0.006(4.5) 0.045 ± 0.004(3) 0.041 ± 0.005(2) 0.048 ± 0.017(4.5)
Computers 0.092 ± 0.009(1.5) 0.109 ± 0.003(4) 0.112 ± 0.010(5) 0.092 ± 0.004(1.5) 0.094 ± 0.015(3)
Education 0.106 ± 0.008(1.5) 0.121 ± 0.008(3) 0.132 ± 0.017(4) 0.106 ± 0.006(1.5) 0.143 ± 0.013(5)
Entertainment 0.113 ± 0.007(1.5) 0.126 ± 0.007(4) 0.127 ± 0.015(5) 0.113 ± 0.007(1.5) 0.125 ± 0.007(3)
Health 0.062 ± 0.004(1) 0.071 ± 0.003(4) 0.065 ± 0.003(3) 0.064 ± 0.003(2) 0.111 ± 0.005(5)
Recreation 0.149 ± 0.004(1) 0.162 ± 0.008(4) 0.171 ± 0.005(5) 0.151 ± 0.007(2) 0.154 ± 0.015(3)
Reference 0.093 ± 0.006(1.5) 0.102 ± 0.006(3) 0.117 ± 0.010(4) 0.093 ± 0.008(1.5) 0.122 ± 0.003(5)
Science 0.134 ± 0.010(1) 0.149 ± 0.004(3) 0.152 ± 0.010(4) 0.136 ± 0.007(2) 0.156 ± 0.025(5)
Social 0.082 ± 0.004(1) 0.103 ± 0.006(4) 0.097 ± 0.014(3) 0.083 ± 0.003(2) 0.114 ± 0.015(5)

Dataset One error ↓

MGOFA MGOFA-LC MGOFA-FA MGOFA-FS MGOFA-FE

Art 0.460 ± 0.010(1) 0.468 ± 0.016(3) 0.493 ± 0.021(5) 0.464 ± 0.013(2) 0.485 ± 0.011(4)
Business 0.111 ± 0.004(1) 0.112 ± 0.010(3) 0.112 ± 0.009(3) 0.112 ± 0.008(3) 0.116 ± 0.021(5)
Computers 0.353 ± 0.018(1) 0.361 ± 0.007(3.5) 0.367 ± 0.005(5) 0.354 ± 0.009(2) 0.361 ± 0.101(3.5)
Education 0.468 ± 0.018(1) 0.476 ± 0.014(3) 0.497 ± 0.017(4) 0.474 ± 0.010(2) 0.513 ± 0.031(5)
Entertainment 0.399 ± 0.017(1) 0.415 ± 0.006(3) 0.422 ± 0.021(5) 0.406 ± 0.012(2) 0.421 ± 0.006(4)
Health 0.273 ± 0.010(1) 0.274 ± 0.012(2.5) 0.275 ± 0.014(4) 0.274 ± 0.011(2.5) 0.342 ± 0.011(5)
Recreation 0.461 ± 0.006(1) 0.476 ± 0.016(3) 0.496 ± 0.014(5) 0.472 ± 0.016(2) 0.486 ± 0.006(4)
Reference 0.373 ± 0.010(1) 0.377 ± 0.012(3) 0.404 ± 0.006(4) 0.376 ± 0.021(2) 0.427 ± 0.004(5)
Science 0.499 ± 0.019(1) 0.514 ± 0.013(3) 0.518 ± 0.017(4) 0.511 ± 0.014(2) 0.535 ± 0.024(5)
Social 0.294 ± 0.015(1) 0.320 ± 0.010(4) 0.305 ± 0.027(3) 0.303 ± 0.012(2) 0.320 ± 0.076(5)

Dataset Average precision ↑

MGOFA MGOFA-LC MGOFA-FA MGOFA-FS MGOFA-FE

Art 0.583 ± 0.008(1) 0.573 ± 0.009(3) 0.558 ± 0.014(5) 0.580 ± 0.008(2) 0.564 ± 0.019(4)
Business 0.856 ± 0.006(1) 0.845 ± 0.014(4) 0.847 ± 0.007(3) 0.854 ± 0.013(2) 0.838 ± 0.018(5)
Computers 0.691 ± 0.009(1) 0.676 ± 0.003(4) 0.674 ± 0.011(5) 0.689 ± 0.004(3) 0.690 ± 0.076(2)
Education 0.624 ± 0.015(1) 0.611 ± 0.010(3) 0.598 ± 0.018(4) 0.620 ± 0.006(2) 0.580 ± 0.048(5)
Entertainment 0.678 ± 0.018(1) 0.663 ± 0.007(3) 0.661 ± 0.024(5) 0.674 ± 0.009(2) 0.662 ± 0.005(4)
Health 0.750 ± 0.005(1) 0.749 ± 0.006(2) 0.745 ± 0.004(4) 0.748 ± 0.007(3) 0.681 ± 0.011(5)
Recreation 0.598 ± 0.007(1) 0.584 ± 0.013(3) 0.568 ± 0.014(5) 0.592 ± 0.013(2) 0.579 ± 0.007(4)
Reference 0.682 ± 0.010(1) 0.671 ± 0.012(3) 0.656 ± 0.008(4) 0.681 ± 0.017(2) 0.634 ± 0.004(5)
Science 0.561 ± 0.018(1) 0.546 ± 0.007(3) 0.541 ± 0.015(4) 0.556 ± 0.007(2) 0.532 ± 0.034(5)
Social 0.715 ± 0.012(1) 0.688 ± 0.007(5) 0.702 ± 0.023(3) 0.710 ± 0.007(2) 0.690 ± 0.080(4)

Dataset Macro-averaging AUC ↑

MGOFA MGOFA-LC MGOFA-FA MGOFA-FS MGOFA-FE

Art 0.958 ± 0.010(2) 0.958 ± 0.001(2) 0.956 ± 0.001(5) 0.958 ± 0.001(2) 0.957 ± 0.003(4)
Business 0.959 ± 0.001(2.5) 0.959 ± 0.001(2.5) 0.959 ± 0.002(2.5) 0.959 ± 0.000(2.5) 0.957 ± 0.001(5)
Computers 0.969 ± 0.001(1.5) 0.968 ± 0.001(3.5) 0.967 ± 0.001(5) 0.969 ± 0.002(1.5) 0.968 ± 0.003(3.5)
Education 0.971 ± 0.001(1) 0.969 ± 0.002(3.5) 0.969 ± 0.001(3.5) 0.970 ± 0.001(2) 0.968 ± 0.002(5)
Entertainment 0.957 ± 0.001(2) 0.957 ± 0.001(2) 0.955 ± 0.002(4) 0.957 ± 0.001(2) 0.944 ± 0.003(5)
Health 0.965 ± 0.001(1.5) 0.964 ± 0.001(3.5) 0.964 ± 0.001(3.5) 0.965 ± 0.001(1.5) 0.958 ± 0.002(5)
Recreation 0.959 ± 0.001(1.5) 0.958 ± 0.001(3.5) 0.956 ± 0.001(5) 0.959 ± 0.001(1.5) 0.958 ± 0.005(3.5)
Reference 0.977 ± 0.000(1.5) 0.975 ± 0.001(4) 0.975 ± 0.001(4) 0.977 ± 0.001(1.5) 0.975 ± 0.001(4)
Science 0.976 ± 0.001(1.5) 0.975 ± 0.002(4) 0.975 ± 0.001(4) 0.976 ± 0.001(1.5) 0.975 ± 0.001(4)
Social 0.978 ± 0.001(1.5) 0.977 ± 0.001(3.5) 0.977 ± 0.001(3.5) 0.978 ± 0.001(1.5) 0.974 ± 0.002(5)
18
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Table 8
Comparisons (mean ± std) on time consumption.

Dataset Time consumption (unit:s) ↓

MGOFA WRAP HOMI SLOFS MDFS TIFS RLFSCL GLFS MC-GM

Art 15.48 ± 2.143 5.116 ± 2.670 114.5 ± 0.733 2.366 ± 0.251 39.07 ± 3.434 81.32 ± 8.941 16.24 ± 0.272 12.56 ± 2.230 98.42 ± 0.175
Business 7.306 ± 1.920 1.161 ± 0.082 114.0 ± 0.570 2.139 ± 0.044 37.52 ± 0.967 74.60 ± 2.269 16.98 ± 0.222 10.00 ± 2.998 99.07 ± 0.189
Computers 48.78 ± 3.034 6.774 ± 3.574 137.1 ± 5.689 2.422 ± 0.015 39.67 ± 0.840 82.77 ± 3.026 30.67 ± 0.527 10.93 ± 1.981 101.7 ± 1.462
Education 13.36 ± 1.605 6.177 ± 0.688 123.0 ± 0.173 2.299 ± 0.042 46.18 ± 6.256 75.43 ± 0.458 23.48 ± 0.343 11.92 ± 2.384 99.19 ± 1.687
Entertainment 20.56 ± 1.230 7.027 ± 4.194 139.3 ± 3.133 2.359 ± 0.030 37.24 ± 0.685 78.57 ± 0.334 23.13 ± 0.347 16.19 ± 6.788 94.85 ± 0.481
Health 19.28 ± 3.404 2.668 ± 0.258 137.5 ± 1.125 2.274 ± 0.021 48.23 ± 0.337 84.63 ± 4.539 25.66 ± 0.513 13.47 ± 3.418 96.57 ± 1.753
Recreation 25.70 ± 4.144 8.623 ± 3.649 129.2 ± 3.035 2.426 ± 0.080 37.24 ± 0.532 85.98 ± 1.785 21.31 ± 0.301 16.18 ± 5.489 93.66 ± 0.293
Reference 38.05 ± 5.801 18.28 ± 4.977 206.0 ± 0.588 2.623 ± 0.036 41.74 ± 2.701 101.1 ± 8.209 37.68 ± 1.550 19.74 ± 15.76 98.53 ± 0.243
Science 51.49 ± 11.22 42.27 ± 15.78 141.7 ± 2.339 2.566 ± 0.019 30.38 ± 0.299 91.73 ± 1.952 41.91 ± 0.529 13.62 ± 2.161 96.40 ± 0.337
Social 85.11 ± 17.96 48.21 ± 21.54 177.2 ± 0.696 3.065 ± 0.032 44.13 ± 2.335 109.7 ± 9.657 64.73 ± 0.621 15.21 ± 1.421 97.94 ± 0.462

Average ranking 4.7(5) 2.4(2) 9(9) 1.1(1) 5.3(6) 7.2(7) 4.6(4) 2.9(3) 7.8(8)
:

label correlations. However, a shortcoming is the degenerated func-
ionality of augmented features for insufficient supervision information

cases. Therefore, we intend to extend the model to weakly supervised
cases.
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