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Abstract

Decoding visual information from human brain activity has
seen remarkable advancements in recent research. However,
the diversity in cortical parcellation and fMRI patterns across
individuals has prompted the development of deep learning
models tailored to each subject. The personalization limits the
broader applicability of brain visual decoding in real-world
scenarios. To address this issue, we introduce Wills Aligner,
a novel approach designed to achieve multi-subject collabo-
rative brain visual decoding. Wills Aligner begins by aligning
the fMRI data from different subjects at the anatomical level.
It then employs delicate mixture-of-brain-expert adapters and
a meta-learning strategy to account for individual fMRI pat-
tern differences. Additionally, Wills Aligner leverages the se-
mantic relation of visual stimuli to guide the learning of inter-
subject commonality, enabling visual decoding for each sub-
ject to draw insights from other subjects’ data. We rigorously
evaluate our Wills Aligner across various visual decoding
tasks, including classification, cross-modal retrieval, and im-
age reconstruction. The experimental results demonstrate that
Wills Aligner achieves promising performance.

Introduction

The process of human perception is marvelous. Our percep-
tion of the world is shaped not only by the objective reality
around us but also by our individual subjective experiences.
Understanding the mechanisms of human perception is cru-
cial for unraveling the complexities of the brain, advanc-
ing brain-inspired computational models (Du et al. 2023;
Palazzo et al. 2020; Pereira et al. 2018; Nie et al. 2023), and
offering numerous applications in clinical medicine (Linden
2021) and brain-computer interfaces (Naselaris et al. 2011;
Kamitani and Tong 2005). Within this expansive field, visual
decoding stands out as a critical and challenging study. It en-
ables us to delve into the intricate workings of the brain dur-
ing visual processing, object recognition, and scene interpre-
tation (Parthasarathy et al. 2017; Zhang et al. 2022). Among
the various brain imaging modalities, functional magnetic
resonance imaging (fMRI) is particularly favored by re-
searchers due to its non-invasive nature and its ability to
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Figure 1: Illustrations of inter-subject brain differences. The
left figure illustrates structural differences, showing varia-
tions in size and location of the same functional areas (high-
lighted in the same color) across subjects. The right figure
depicts differences in fMRI patterns, where distinct brain ac-
tivities are observed when the same stimulus is presented.

precisely localize functional regions of the cortex. Conse-
quently, fMRI-based visual decoding has become a signifi-
cant and prominent topic in neuroscience research.

Extensive studies (Horikawa and Kamitani 2017; Lin,
Sprague, and Singh 2022; Ozcelik and VanRullen 2023;
Scotti et al. 2023; Liu et al. 2023) have investigated brain
visual decoding. They construct classification, retrieval, and
image reconstruction tasks to mine visual information from
fMRI. However, these methods encounter significant chal-
lenges in practical application, primarily because they are
customized for individual subjects. To elaborate, a subject-
specific deep model is developed by utilizing the subject’s
fMRI data, necessitating an expanding number of models
due to the substantial differences in brains. These differences
arise from variations in brain structure and fMRI patterns,
attributed to diverse genetic backgrounds and cognitive de-
velopment processes. As shown in Figure 1, structural dif-
ferences pertain to variations in cortical parcellation among
subjects, with disparities in the size and location of func-
tional areas like visual, language, and memory regions. It
can only be identified through anatomical information such
as gray and white matter (Fischl et al. 1999; Destrieux et al.
2010). The fMRI pattern differences refer to the fact that dif-
ferent subjects exhibit distinct brain activity even when ex-
posed to the same visual stimulus. These factors complicate
the development of multi-subject visual decoding models.
Hence, it is crucial to explore feasbile approaches that can
achieve effective collaborative visual decoding across sub-
jects while accommodating individual differences.



Currently, research on multi-subject collaboration in vi-
sual decoding is quite limited, and existing multi-subject
models often underperform compared to single-subject
models. Addressing structural differences between subjects
is a prerequisite for effective collaboration. Recent meth-
ods (Zhou et al. 2024; Wang et al. 2024) tackle this chal-
lenge with basic data preprocessing techniques like PCA
or max pooling, which, however, can lead to brain infor-
mation loss and misalignment of functional regions. Other
approaches (Ferrante, Boccato, and Toschi 2023) achieve
fMRI structural alignment by training linear models based
on the same images viewed by different subjects. These
methods also struggle with scalability due to the need for
identical visual stimuli across all subjects. Fortunately, ad-
vances in neuroscience offer inspiration by leveraging prior
anatomical knowledge and aligning fMRI data to a standard-
ized brain template. Besides achieving fMRI alignment, an-
other challenge is to perform effective multi-subject collab-
oration. Existing approaches either employ subject-specific
tokens to identify each subject (Zhou et al. 2024) or adapt
the initial ridge regression to individual subjects (Scotti et al.
2024), allowing model training to accommodate individ-
ual differences. Although making desirable progress, these
methods only achieve superficial subject information inte-
gration from the data input aspect rather than deep seman-
tics of representations. In addition, they have primarily fo-
cused on handling fMRI pattern differences while overlook-
ing inter-subject commonality, resulting in visual decoding
that benefits only from data within a single subject rather
than multiple subjects. Naturally, it is necessary to learn both
the inter-subject commonality and perceive various fMRI
patterns for achieving multi-subject collaboration.

In light of the above discussion, we propose Wills Aligner.
We employ an fMRI alignment technique derived from neu-
roscience, termed anatomical alignment, to address brain
structural differences. To facilitate effective multi-subject
collaboration, we first employ the semantic relation of visual
stimuli to guide the model in learning inter-subject common-
ality, thereby enabling the transfer of universal fMRI visual
decoding knowledge among subjects. Following this, we in-
troduce Mixture-of-Brain-Expert (MoBE) adapters, which
are subject-guided sparse MoE networks designed to capture
distinct fMRI patterns. Additionally, we implement a meta-
learning strategy that progressively integrates these learned
fMRI patterns into the semantics of deep representations, en-
hancing multi-subject decoding performance.

We conducted a comprehensive evaluation on the Natural
Scene Dataset (NSD) (Allen et al. 2022), including multi-
label classification, bidirectional retrieval, few-shot learn-
ing, and fMRI-to-image reconstruction. Our experimental
results demonstrate that the Wills Aligner consistently deliv-
ers promising performance, surpassing both single-subject
and multi-subject baselines under equivalent conditions.

Our contributions are summarized as follows:

* We identify key limitations in existing visual decoding
methods and propose a multi-subject collaborative ap-
proach that addresses these challenges.

* We utilize the anatomical alignment to address structural
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differences in fMRI data across subjects, experimentally
demonstrating its superiority over alternative fMRI pre-
processing methods.

* We leverage the semantic relation of visual stimuli to
guide inter-subject commonality learning and introduce
MoBE adapters with a meta-learning strategy to capture
different fMRI patterns.

Related Works
fMRI Visual Decoding

The study of brain visual decoding based on fMRI has
been a long-standing endeavor (Lu et al. 2023; Scotti et al.
2023, 2024; Gong et al. 2024b,a; Huo et al. 2025; Li et al.
2025). Due to the low signal-to-noise ratio of fMRI, early
studies (Takagi and Nishimoto 2023) emphasized the use
of purely linear models, such as linear regression, to em-
bed fMRI and images into a common intermediate space.
Further studies (Du et al. 2023; Horikawa and Kamitani
2017; Shen et al. 2019; Lin, Sprague, and Singh 2022) used
VGG or ResNet to extract semantically rich image repre-
sentations. Mindeye (Scotti et al. 2023) demonstrated that
a large MLP can serve as an excellent brain representation
learner. Other work (Zhou et al. 2024; Chen et al. 2023;
Chen, Qing, and Zhou 2023; Gong et al. 2024c¢) attempted
to use Transformer-style (Vaswani et al. 2017) in brain vi-
sual decoding. As for optimization objectives, early stud-
ies (Horikawa and Kamitani 2017; Roelfsema, Denys, and
Klink 2018) used the cross-entropy of categorization tasks
as supervised objectives. Recognizing visual stimuli cate-
gories from fMRI can decode coarse-grained visual infor-
mation. Mind-Reader (Lin, Sprague, and Singh 2022) first
used an fMRI-to-image retrieval task to decode fine-grained
visual information. Inspired by contrastive learning (Rad-
ford et al. 2021), Brain-Diffuser (Ozcelik and VanRullen
2023) aligned fMRI representations to pre-trained ViT’s la-
tent space. MindEye (Scotti et al. 2023) proposed BiMixCo,
a data enhancement strategy, to achieve high-performance
fMRI-to-image reconstruction. Some other work explored
self-supervised objectives, such as MinD-Vis (Chen et al.
2023) and MindVideo (Chen, Qing, and Zhou 2023) used
masked brain modeling. However, Due to the large variation
among subjects, the above methods only trained proprietary
single-subject models for each subject.

Multi-Subject Visual Decoding

Some advanced studies have explored multi-subject brain vi-
sual decoding. They focus on how to align fMRI data from
various subjects and how to learn inter-subject differences.
CLIP-MUSED (Zhou et al. 2024) first studies multi-subject
visual classification, and its performance reaches the level
of a single-subject model. MindBridge (Wang et al. 2024)
aligns fMRI using adaptive fMRI aggregation. Psychome-
try (Quan et al. 2024) learns inter-subject differences us-
ing dense MoE with subject-specific projector layers. Mind-
Eye2 (Scotti et al. 2024) aligns fMRI using simple subject-
specific ridge regressions. Although these methods achieve
better decoding performance than the single-subject meth-
ods, they ignore learning inter-subject commonalities.
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(a) Wills Aligner

(b) Three key components of Wills Aligner

Figure 2: Overview of the proposed Wills Aligner. Figure (a) illustrates the pipeline of our method. Figure (b) shows its three
key components: Anatomical Alignment, Mixture of Brain Experts, and Learning Strategy.

Method
Formulation and Overview

Our target is to decode the visual information contained in
the fMRI from a total of S subjects. Each fMRI dataset
can be denoted as D, = {(XS,Z',Y;,Z-,LS,Z-,IS,Z')}fV:Sl,s S
{1,..., S}, where X, ; € REs*HxWs represents fMRI, Y ;
is the seen image, L ; is the image label, and I ; is sub-
ject identity in the form of one-hot encoding. We explore vi-
sual decoding at three distinct levels: recognizing visual cat-
egories from fMRI data, performing bidirectional retrieval
between fMRI and images, and reconstructing the seen im-
age based on the corresponding fMRI.

As illustrated in Figure 2, our Wills Aligner comprises
three key components: 1) Anatomical Alignment, an fMRI
preprocessing to handle fMRI structural differences. 2) Mix-
ture of Brain Experts, a subject-guided sparse mixture-of-
expert (MoE) network for learning various fMRI patterns. 3)
Learning Strategy, a two-phase training strategy to achieve
multi-subject effective collaboration.

Anatomical Alignment

The brain structural differences among subjects lead to in-
consistency in voxel counts and correspondence. Addressing
this issue is a prerequisite for training with fMRI data from
multiple subjects. To uniformly embed fMRI, we introduce
the prior anatomical knowledge to assist fMRI alignment,
i.e. anatomical alignment. The anatomical alignment pro-
cess begins with the construction of the fsaverage standard
brain template, a triangular surface mesh generated through
spherical registration of 40 individual brain structures, based
on the gray and white matter distributions, using an energy
minimization algorithm. Then, a well-established mapping
function maps any fMRI data to this template, preserving the
cortical topological structure as much as possible, formally
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defined as f : REs*HsXWe _ RHoXWo where Hy x W
represents the size of the standard brain template fsaver-
age7 (Fischl et al. 1999). Due to the complete retention
of brain activity and structure, this alignment strategy can
achieve visual information losslessness. Subsequently, the
one-dimensional sequence Xs,i € R? is obtained through
the implementation of anatomical alignment, the selecting a
region-of-interest (ROI), and the application of spatial flat-
tening. After preprocessing, the aligned fMRIs are structure-
standardized, but different fMRI patterns remain.

Mixture of Brain Experts

The fMRI pattern differences are the key factor hindering
multi-subject collaboration. To allow one deep model to
learn various fMRI patterns simultaneously, we introduce
the Mixture of Brain Expert (MoBE) adapters. This branch
network can recognize fMRI patterns and then learn using
the corresponding brain experts. We parameterize the model
F(-) into three parts: 6 is the subject-shared backbone, ¢ is
MoBE adapters of Subject s, and r is the router.

MOoBE adapters Similar to LoRA (Hu et al. 2021), MoBE
adapters ¢ use a parallel structure connected to subject-
shared parameters 6. Assuming that the model contains a
total of M linear layers, thus there are § = {0™}M_, and
s = {¢™}M_|  We use ™ to denote the input of the linear
layer m and 2! = X s,i- Then, the output 0™ of linear layer
m can be formalized as:

S
oM = (em + ZWS(P;n) ™ ’ (1)
s=1

where w, represents the routing coefficient assigned to each
MoBE adapter. To reduce the number of parameters in the
MoBE adapters, we apply a low-rank decomposition to the



parameters g, similar to LoRA. In addition, we adopt the
same initialization strategy as LoRA.

Subject-Guided Sparse Global Router Unlike existing
MoE architectures that use separate routers for each MoE
layer, we configure a subject-guided sparse global router. We
find that the preprocessed fMRI data X, ; retains identifiable
subject-specific fMRI patterns, allowing a simple model to
classify. Therefore, we use subject identity I, ; as supervi-
sion, training an MLP to function as the router R(-):

S N,

Lrouter Z CrossEntropy (R(Xs4;7), Is.i) - (2)
s=1i=1

In our multi-subject visual decoding tasks, all MoBE

adapters must act consistently and make the same routing
choices when processing a specific subject’s fMRI data. To
avoid severe parameter redundancy, we configured a single
router to handle routing for all MoBE adapters, i.e. a global
router. To ensure the proper functioning of MoBE adapters,
it is essential to implement a sparse routing strategy. we use
the probability distributions output by the trained router as
the routing coefficient:

R(Xs’i;f') .

[w17w27"'7ws] (3)
Since the router/classifier can give extremely high classifi-
cation confidence, this dense routing algorithm is equivalent

to a sparse one. We will verify this in our experiments.

Learning Strategy

We split model training into two phases. In the first phase,
we aim to guide the model backbone 6 in learning the uni-
versal fMRI visual decoding knowledge. It is similar to a
model pre-training and we achieve this commonality learn-
ing by a meticulously designed supervised objective. In the
second phase, we aim to learn various fMRI patterns using
MoBE adapters . We further employ a meta-learning strat-
egy to integrate the learned fMRI patterns into semantics
of deep representations. The supervised objective of down-
stream tasks is interspersed throughout both phases.

Downstream Task Learning We use L, to represent
downstream task supervision. It takes different forms de-
pending on the visual decoding task. We calculate the fMRI
representation f, ; = F(Xs:;0, 91, ..., 08,7).

For the classification task, we employ a classifier G(-) and
construct loss as follow:

Z Z CrossEntropy(G(fs.i), Ls

s=11i=1

»Ctask — cls ,i)~ (4)

For the retrieval task, we first use the pre-trained ViT to
extract the image representation y, ; = ViT (Y} ;). Then, we
use a retrieval projector #(+) to construct the bidirectional
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contrastive loss as follow:

| B|
Lmri = — log exp (fj)T‘yj) ’
f Jz; ‘kBll exp( (fj)T . yk)
lmage = %1 €$p(yT (fj)) 7 (%)
j=1 el exp(y] - H(fr))

£task = Lretri = l:fmri + ‘Cimagev

where B is a mini-batch sampled from entire fMRI.

For the image reconstruction task, we adopt the same ba-
sic pipeline as MindEye (Scotti et al. 2023). We map fMRI
representations to the ViT image space through a diffusion
prior D(-). The reconstruction loss contains contrastive loss:

‘Ctask = ‘Crecon = £prior (D(fs,i)7 ys,i) + Eretri . (6)

Commonality Learning Inter-subject commonality is
universal knowledge used for fMRI visual decoding, which
is supposed to be independent of subject identity. Essen-
tially, it implies one-to-one correspondences between fMRI
and images. Therefore, a natural insight is to increase the rel-
evance of fMRI to the image and weaken its relevance to the
subject’s identity, which can be achieved through contrastive
learning. To construct contrastive pairs, we utilize the simi-
larity relation of representations. We represent fMRI repre-
sentations, image representations, and subject identities in
a mini-batch by F, Y, and I, respectively. Then, we cal-
culate their respective similarity relations by Mp = FTF,
My = YTY, and M; = ITL. Subsequently, We align the
fMRI relation more closely with the image relation while
distancing it from the subject identity relation, and term this
process Semantic Relation Alignment (SRA):

blm(./\/l F My)
sim(Mp, My) + sim(Mp, My)’
where sim(-) represents the cosine similarity. Based on this,

our first training phase uses task loss and SRA loss to super-
vise the model backbone € in learning commonality:

Lsra = —log (7

S N
0 = arg ngn Z Z([:task + O“CSRA) .

s=11i=1

®)

Here « is the factor to balance two losses.

fMRI Pattern Learning We use a meta-learning strategy
to learn various fMRI patterns and integrate them into se-
mantics of deep representations Formally, we define the
fMRI data of each subject {D,}%_, as support sets, and en-
tire fMRI D = UY_, D, as the query set. Then, the bi-level
optimization of meta-learning can be formalized as:

0* =arg min Z(»Ctask + alsra)(X; 0,07, .., 05),
XeD
st @f fargmln Z Liask(X;0%) -
XeD,

)

The alternate method is more conducive to the model learn-
ing fMRI patterns. During each training session on sup-
port sets, MoBE adapters capture fMRI patterns. Subsequent



Method #Model # Parameters mAPT AUC{T Hamming|
Single-Subject Vanilla Method 4 66M 0.258 0.854 0.033
Multi-Subject Vanilla Method 1 66M 0.150  0.767 0.039

EMB (Chehab et al. 2022) 1 66M 0.220 0.825 0.035
CLIP-MUSED (Zhou et al. 2024) 1 66M 0.258 0.877 0.030
Wills Aligners (ours) 1 19M 0.424  0.937 0.024

Table 1: Experimental results of the multi-label classification task. All baseline results are quoted from CLIP-MUSED (Zhou
et al. 2024). We report the average value of four subjects, and our results are averaged over three runs.

Method

Objectives

# Parameters Retrieval Accuracy

Image T fMRIT

Mind Reader (Lin, Sprague, and Singh 2022) InfoNCE Loss 2M 11.0% 49.0%
Brain Diffuser (Ozcelik and VanRullen 2023) Contrastive Loss 3B 29.9% 21.4%
MindEye (Scotti et al. 2023) Contrastive Loss 996M 83.7% 79.1%
MindEye (Scotti et al. 2023) Contrastive Loss + MSE loss 996M 88.8% 84.9%
MindEye (Scotti et al. 2023) SoftCLIP Loss + BiMixCo 996M 89.6% 82.2%

Wills Aligners (ours) Contrastive Loss 523M 95.4% 83.9%

Table 2: Experimental results of the cross-modal retrieval on NSD. Our results are averaged over three runs. We report the
results on Subj01, as previous works only provided results on SubjO1.

fine-tuning on the query set integrates these fMRI patterns
into the backbone network, which achieves improved deep
representations and gives back fMRI pattern learning. Re-
peated execution of this alternating training will gradually
improve multi-subject visual decoding performance.

Experiment

To validate the effectiveness and generalization of our Wills
Aligner, we conduct extensive experiments, including clas-
sification, retrieval, reconstruction, and few-shot learning on
the NSD dataset. Additionally, we perform further evalua-
tions and ablation studies; please refer to our appendix'.

Dataset

The Natural Scenes Dataset (NSD) is a massive 7T neuro-
science dataset encompassing fMRI data. Throughout the
NSD experiment, participants were presented with images
sourced from MSCOCO (Lin et al. 2014), while their neu-
ral responses were recorded. Our study aligns with previous
research by concentrating on Subj01, Subj02, Subj05, and
Subj07, as these 4 subjects completed all 40 session scans.

Classification Experiment

The classification task stands as a coarse-grained brain vi-
sual decoding, which demands extracting and recognizing
the categories of visual stimuli contained within fMRI data.
We compare Wills Aligner with existing multi-subject clas-
sification methods on the NSD dataset. The implementation
details follow CLIP-MUSED (Zhou et al. 2024). This task is
a multi-label classification task, we employ three commonly
used evaluation metrics in this field: mean Average Precision
(mAP), the area under the receiver operating characteristic
curve (AUC), and Hamming distance.

"https://arxiv.org/abs/2404.13282
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Results and Analysis Table 1 shows the results of the
classification experiment. The results indicate that our
method achieves state-of-the-art performance in coarse-
grained brain visual decoding, with a 64.3% improvement in
mAP, a 6.8% improvement in AUC, and a 20.0% reduction
in Hamming distance, while using fewer model parameters.
The improvement can be attributed to two perspectives. On
the one hand, our anatomical alignment is better than the
baselines’ fMRI alignment (such as PCA). Since their fMRI
alignment focuses solely on the value itself without consid-
ering the brain structure, it tends to lose valuable informa-
tion. In contrast, our fMRI alignment is based on the brain’s
anatomical knowledge, which retains useful brain informa-
tion. On the other hand, our method achieves multi-subject
collaboration so that visual decoding for the current sub-
ject benefits from other subjects’ data. The similar perfor-
mance between the single-subject vanilla method and CLIP-
MUSED also suggests that existing methods merely avoid
the damage to the performance caused by various fMRI pat-
terns rather than exploiting the benefits of inter-subject com-
monality. Nevertheless, our method can achieve this.

Retrieval Experiment

The cross-modal retrieval between fMRI and images stands
as a fine-grained brain visual decoding task, requiring fine-
grained recognition of the visual semantics contained in the
fMRI. Following MindEye (Scotti et al. 2023), we conduct
bidirectional retrieval on NSD. We evaluate the performance
using Top-1 retrieval accuracy. For image retrieval, we com-
pute the cosine similarity between an fMRI representation
and its respective ground truth image representation and 299
other randomly selected image representations in the test set.
For each test sample, success is determined if the cosine sim-
ilarity is greatest between the fMRI representation and its re-
spective ground truth image representations (random chance



) . Subject 1 Subject 2 Subject 5 Subject 7
Few-Shot Ratio Method mAPT AUCT mAPT AUCT mAPT AUCT mAPT AUCT
0.05 Vanilla 0.128  0.782 0.138  0.740 0.154  0.804 0.122  0.779
(1 session) Wills Aligner (ours) 0.270 0.901 0.229 0.880 0.275 0.907 0.206 0.862
0.1 Vanilla 0.143  0.808 0.168  0.834 0.171 0.827 0.138  0.802
(2 sessions) Wills Aligner (ours) 0.322 0.915 0.287 0.898 0.334 0.921 0.276 0.888
0.2 Vanilla 0.210  0.874 0.185  0.856 0.179  0.851 0.164  0.830
(4 sessions) Wills Aligner (ours) 0.385  0.930 0.354 0922 0.409 0935 0.317 0.904
Table 3: Experiment results of few-shot classification on NSD.
. Subject 1 Subject 2 Subject 5 Subject 7
Few-Shot Ratio Method ‘ Image T fMRIT Image T fMRIT Image T fMRIT Image T fMRIT
0.05 Vanilla 10.6% 1.9% 11.8% 1.2% 10.7% 1.8% 9.1% 1.2%
(1 session) Wills Aligner (ours) 65.1% 47.9% 69.9% 49.3% 47.0%  29.3% 46.3%  30.0%
0.1 Vanilla 26.5% 4.6% 29.5% 3.5% 20.0% 3.2% 20.9% 2.6%
(2 sessions) Wills Aligner (ours) 759%  53.0% 774%  56.3% 53.8%  35.6% 54.8%  39.4%
0.2 Vanilla 46.3%  13.8% 53.8%  12.8% 43.9% 8.5% 41.1% 8.6%
(4 sessions) Wills Aligner (ours) 82.7% 61.1% 84.2% 64.2% 64.3% 46.6% 63.0% 46.8%

Table 4: Experiment results of few-shot retrieval on NSD.

is 1/300). We repeat the evaluation for each test sample 30
times to account for the variability in the random sampling
of batches. The same procedure is used for fMRI retrieval,
except fMRI and images are flipped.

Results and Analysis Retrieval results are shown in Ta-
ble 2. Our Wills Aligner outperforms MindEye, achiev-
ing a 15.4% performance improvement in image retrieval
when the supervised objectives are equal. Even when Mind-
Eye uses BiMixCo data augmentation and SoftCLIP loss,
it still outperforms MindEye, achieving a 7.8% improve-
ment, while using fewer model parameters. Since all base-
lines are single-subject methods, there is no information loss
of fMRI, and differential fMRI patterns are not a concern.
Therefore, the results that more accurate visual information
is decoded experimentally prove that preprocessed fMRI by
anatomical alignment is almost equivalent to the original
fMRI without losing visual information. In Addition, the
performance improvement provided by Wills Aligner stems
from multi-subject collaboration. Other subjects’ data in-
deed helps fine-grained visual decoding for Subj01.

Few-Shot Visual Decoding Experiment

We perform the few-shot brain visual decoding experiment
to further explore how much a single subject’s visual decod-
ing performance can benefit from multi-subject collabora-
tion. The few-shot setting is more practical for real-world
applications, as collecting large-scale fMRI data (40 ses-
sions) for a single subject is challenging. Our experiments
involve the classification and retrieval on NSD. We employ
the few-shot setting for a given subject while the other sub-
jects use the entire fMRI data for training. The few-shot ra-
tios are set to be 0.05, 0.1, and 0.2, corresponding to 1, 2,
and 4 sessions of fMRI. We compare our Wills Aligner with
the single-subject vanilla method, where the model is trained
exclusively on fMRI data from the few-shot subjects.

Results and Analysis

Tables 3 and Table 4 show the per-

formance of different few-shot subjects in the classification
and retrieval tasks. The experiment results show that our
Wills Aligner can significantly improve the brain visual de-
coding performance of few-shot subjects. In particular, for
SubjO1, we achieve a comparable image retrieval perfor-
mance to MindEye (82.7% v.s. 83.7%) while we only use
4-session fMRI (1/10 of MindEye’s training data). This sug-
gests that our multi-subject collaboration strategy can trans-
fer universal visual decoding knowledge from other subjects
and improve the decoding performance of the current few-
shot subject, highlighting the importance of collaboration.

Image Reconstruction Experiment

We further perform the fMRI-to-image reconstruction task
on the NSD dataset to intuitively demonstrate the results of
our visual decoding. Following previous studies (Scotti et al.
2023; Wang et al. 2024), we use eight image quality eval-
uation metrics. Among these, PixCorr, SSIM, AlexNet(2),
and AlexNet(5) assess low-level perceptual aspects, while
Inception, CLIP, EffNet-B, and SWAV evaluate high-level
semantic aspects. We compare Wills Aligner with all exist-
ing methods. These baselines all used CLIP ViT-L/14 to ex-
tract image representations, leading to a fair comparison.

Quantitative Results and Analysis The quantitative ex-
perimental results are shown in Table 5. When com-
pared with the state-of-the-art multi-subject reconstruction
method, MindBridge, we achieve performance excellence
in all metrics. Such an improvement stems from a better
fMRI alignment strategy and multi-subject collaboration.
Specifically, the anatomical alignment we use preserves use-
ful fMRI information, while the max pooling employed by
MindBridge may result in information loss. The fact that
the single-subject MindBridge performs lower than Mind-
Eye also confirms the existence of information loss. In ad-
dition, our method can capture both inter-subject common-
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Low-Level High-Level

Methods #Models 13 SSIMT — Alex()T  Alex(5)T | TncepT CLIPT  EN]  SwAV]
Mind-Diffuser (Lu et al. 2023) 4 0254 0356  942%  96.2% 872% 915% 0775 0423
MindEye (Scotti et al. 2023) 4 0309 0323  947%  97.8% 938% 941% 0.645 0367
DREAM (Xia et al. 2024) 4 0288 0338 950%  97.5% 948% 952% 0.638 0413
MindBridge (Wang et al. 2024) 4 0148 0259 869%  953% 922% 943% 0713 0413
MindBridge (Wang et al. 2024) 1 0151 0263 877%  955% 924% 947% 0712 0418
Wills Aligner (ours) 1 0271 0328 958%  98.0% 943% 948% 0.649 0373

Table 5: Experiment results on fMRI-to-image reconstruction on NSD. Results are averaged over 4 subjects.

MoBEs SRA Classifiaction Retrieval Reconstruction
mAPT AUCT  ImageT fMRIT  PixCorrf SSIMT Alex(2)T Alex(3)] Incepl CLIPT Eff] SWAV]
X X 0.314 0.904 81.6% 77.9% 0.158 0.262 84.1% 93.6% 90.8% 92.6% 0.723  0.420
v X 0.417 0.935 92.3% 81.4% 0.274 0.327 94.5% 96.6% 913% 943% 0.689  0.382
X v 0.361 0.924 85.8% 79.1% 0.143 0.255 86.7% 94.2% 92.3% 944% 0.715 0.423
v v 0.424  0.937 95.4%  83.9% 0.271 0.328 95.8% 98.0% 943% 948% 0.649 0.373
Table 6: Results of Ablation experiments. Results are averaged over 4 subjects.
Seen Image Tagaki et al. MindEye MindBridge Ours wol 100
R = 75 80
60
50
40
= 20
0 1 2 3 4 5 6 7 0 Subj1 Subj2 Subj5 Subj7
(a) Routing Accuracy (b) Routing Confidence

Figure 3: Reconstruction results for SubjO1.

ality and different fMRI patterns, which MindBridge lacks.
Even when compared to existing single-subject reconstruc-
tion methods, our Wills Aligner also achieves promising per-
formance on some metrics. Since the multi-subject collabo-
ration strategy tends to enhance the model’s ability in visual
semantic decoding, we fail to achieve a better performance
than single-subject baselines on low-level metrics based on
pixels, such as PixCorr and SSIM.

Qualitative Results Figure 3 visualizes the results of our
image reconstruction. It can be seen that our reconstruction
is more advantageous in terms of semantic accuracy com-
pared to MindBridge. For instance, in the top row, our recon-
struction of the “bus” exhibits a better spatial position, which
is more similar to the seen image. Similarly, in the bottom
row, we have accurately reconstructed “broccoli” and “cut-
lery”. These observations further explain why our quantita-
tive metrics are better than baselines.

Exploratory Experiments

Ablation Experiments We perform ablation experiments
to explore the performance sources of our Wills Aligner.
We ablate two key components of our Wills Aligner. One

Figure 4: Analysis on router. The left figure shows the
growth of the router’s test set classification accuracy with
training steps. The right figure shows the average probabili-
ties of the router’s top-1 prediction on the test set.

is MoBE adapters together with the corresponding meta-
learning strategy, and the other is the SRA loss used for
learning inter-subject commonality. The experimental re-
sults are shown in Table 6, indicating that both key compo-
nents of Wills Aligner are useful for performance improve-
ment. We also find that SRA loss does not improve perfor-
mance as much as MoBE adapters, suggesting fMRI pattern
learning is indispensable in multi-subject collaboration.

Analysis on Router Figure 4 illustrates the analysis of the
router. It is evident that, despite anatomical alignment, fMRI
from different subjects exhibit distinct fMRI patterns, allow-
ing recognition by a simple MLP. After training, the router
achieves 100% accuracy with high confidence, demonstrat-
ing that our router achieves sparse routing in fact.

Conclusion

In this paper, we propose Wills Aligner. It achieves multi-
subject collaborative brain visual decoding by anatomical
alignment, learning inter-subject commonality, and learning
various fMRI patterns. We have substantiated its effective-
ness and generalization through extensive experiments. Fu-
ture works could consider fusing fMRI data from different
subjects to achieve unbiased visual decoding or use trained
decoding models to assist neuroscience research.
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