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Abstract

Inconsistent data distributions among multiple views is
one of the most crucial aspects of person re-identification.
To solve the problem, this paper presents a novel strate-
gy called consistent iterative multi-view transfer learning
model. The proposed model captures seven groups of multi-
view visual words (MvVW) through an unsupervised clus-
ter method (K-means) from human body. For each group of
MvVW, a multi-view discriminative common subspace can
be obtained by the fusion of transfer learning and discrim-
inative analysis. In these common subspaces, the original
samples can be reconstructed based on MvVW under the
low-rank and sparse constraints. Then, we solve it via the
inexact augmented Lagrange multiplier method. The pro-
posed strategy is performed on three different challenging
person re-identification databases (i.e., VIPeR, CUHK01
and PRID450S), which shows that our model outperform-
s several state-of-the-art models with improving of 6.36%,
7.7% and 4.0% respectively.

1. Introduction

The central theme of person re-identification (Re-ID)

is to match the same person undergoing a multiple non-

overlapping system [14]. This is a challenging problem

due to significant variations of human appearance with sub-

stantial changes in viewpoint, illumination and pose across

camera views (e.g., Figure 1). One approach to address this

challenge is to capture robust feature descriptor from hu-

man appearance [11, 7, 27]. However, this is not always

possible when it comes to the complex and uncontrollable

environment or small sample size (SSS). Other approach-

es pay more attention to the metric learning which tries to

learn a similarity function or a robust distance to optimize

the matching. According to the above two different ways

of the treatment, many state-of-the-art methods have been

Figure 1. Examples of person re-identification databases.

proposed [28, 20, 8, 23, 24, 13, 30].

Currently, most Re-ID methods based on appearance,

focus mainly on the low-level visual features such as col-

or [21] and texture [10]. To improve the performance of Re-

ID, a wide variety of fusion methods have been designed,

such as Hierarchical Gaussian Descriptor [11], local maxi-

mal occurrence representation [7], Structure Learning [17]

and Salience Matching [29]. Apart from these methods,

deep learning is also a noteworthy method which has ex-

hibited an excellent performance in learning representation

of data [22]. Unfortunately, it is extremely difficult to de-

sign a feature that is distinct, reliable and invariant to severe

changes and misalignment across disjoint views.

Another interesting aspect of Re-ID is metric learning,

and typical methods include Relative Distance Compari-

son (RDC) [30], Local Fisher Discriminant Analysis (LF-

DA) [13], Kernel-based Method [24], Cross-view Quadratic

Discriminant Analysis (XQDA) [7], Dual-regularized KISS

(DR-KISS) [20], Discriminative Null Space [28] and Deep

Metric Learning [18]. There are still many other kinds of

methods which try to slove the problem of Re-ID by rank-

ing methods [12, 2]. Although these metric-based methods

outperform the existing Re-ID benchmarks, they are never-

theless limited by some of classical problems, such as the

inconsistent distributions for multiple views and small sam-

ple size (SSS) for model learning.
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To address these problems, we propose a novel approach

called Consistent Iterative Multi-view Transfer Learning

(CIMvTL),by which seven groups of multi-view visual

words (MvVW) can be captured including six groups of

local features and one group of global features via an un-

supervised cluster method (K-means) so that it is feasible

to effectively describe the structure of human body. Al-

so, the MvVW has the ability to integrate the multi-view

information. Based on these MvVW groups, we can then

reconstruct the original samples with the assistance of the

transformation matrix, reconstruction coefficient matrix and

noise matrix. Note that, for the sake of ensuring the consis-

tent distributions of sample data, we utilize transfer learn-

ing [16] to obtain a common subspace, denoted as the

transformation matrix. Meanwhile, we impose joint low-

rank and sparse constraints on the reconstruction matrix and

noise matrix in order that more relevant samples from dif-

ferent domains are interlaced, compared to irrelevant sam-

ples in these domains [9]. Furthermore, we apply discrimi-

native analysis to restrict the reconstruction coefficient ma-

trix that is defined as the mid-level features in our model.

To get the consistent optimal solutions, we combine the dis-

criminative analysis with the mid-level features and transfer

learning, and then produce the solutions via the proposed

method of consistent iterative multi-view transfer learning

(CIMvTL) which can maintain the consistency of represen-

tation and metric learning [5]. In addition, by employing

a simple weighted method, max operator and min operator,

we can expand the samples to reduce the influence of the

small sample size (SSS) problem for Re-ID.

2. Related Work
In the real-world, the data taken from different domains

have different feature spaces and different data distribution

characteristics [16]. To address the problem of inconsistent

distributions, a lot of approaches based on transfer learn-

ing have been proposed and been applied for various visual

tasks [25].

For person Re-ID systems, one of the essential require-

ments is to built a robust recognition model which can al-

ways work well from one type of scene to another under

the challenges of camera viewing angles, posture variation,

occlusion change, and so on [23]. Accordingly, the transfer

learning methods have been exploited to address the chal-

lenges of cross-scenario transfer [1, 23, 19, 31]. In [1],

Tamar et al. proposed the approach of Implicit Camera

Transfer (ICT) to model the binary relation by training a

(non-linear) binary classifier with concatenations of pairs

of vectors captured from different camera views. Simi-

larly, considering the consistency of cross-view, Wang et
al. [23] combined the learning of the shared latent sub-

space and the learning of the corresponding task-specific

subspace to get the similarity measurement for each task in

cross-scenario transfer person Re-ID. Furthermore, Zheng

et al. [31] formulated a novel transfer local relative distance

comparison (t-LRDC) model to address the open-world per-

son re-identification problem. In addition, Shi et al. [19]

contributed a new framework to learn a semantic attribute

model from the existing fashion databases, and adapted the

resulting model to facilitate person Re-Id.

3. Method
3.1. Multi-view Visual Words by K-means

To capture structure information and multi-view infor-

mation, we propose a novel descriptor called Multi-view Vi-

sual words (MvVW) using an unsupervised cluster method

of K-means. Firstly, we divide a person image (xi) into

six horizontal stripes, in view of the consistency of body-

structures in vertical direction. Next, we define each low-

level feature histogram as a visual word, and then capture

six groups of local visual words from six horizontal stripes

and one group of global visual words from the whole person

images, as shown in Figure 2. Furthermore, we employ K-
means to fuse the multi-view information and obtain seven-

group multi-view visual words (MvVW). Note that, a simple

weighted method, together with max operator and min op-

erator, is employed to expand the sample data for reducing

the influence of the small sample size (SSS) problem.

In what follows, define MvVW as MvVW = {Di},
where Di represents the i-th group of multi-view visual

words, {D1, D2, ..., D6} are local multi-view visual words

obtained from six horizontal stripes for person images and

D7 is global multi-view visual words obtained from the w-

hole person images. Then, we use each group of MvVW to

reconstruct the corresponding region of multi-view person

sample data X . It is noticeable that the head of a human

body is most probably represented by the other heads with

similar structures. We can therefore formulate the recon-

struction problem as:

X = DZ (1)

where Z is the reconstruction coefficient matrix and can be

captured from the low-level features, denoted as the mid-

level features for person Re-ID.

3.2. Consistent Iterative Multi-view Transfer
Learning

In the proposed method, we assume that the original

samples can be linearly represented by MvVW in a common

subspace. According to [16], we can reconstruct the origi-

nal samples (X) using the coefficient matrix Z and transfer

learning (ensuring the consistency of distributions), rewrit-

ing Eq.(1) as:

PTX = PTDZ (2)
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Figure 2. The framework of our proposed method (MvVW+CIMvTL)

where P denotes the transfer matrix, which can be used

to obtain a common subspace and can minimize the diver-

gence between the distributions of both domains. However,

due to the fact that n samples belong to c different classes

and n� c, these samples should be drawn from c different

subspaces, and therefore, the coefficient matrix Z is expect-

ed to be low rank [25]. Plus the sparse constraint can be

utilized to preserve the local structure of data such that each

source sample can be well reconstructed by a few MvVW.

Therefore, Eq.(2) can be further written as

min
P,Z

rank(Z) + α‖Z‖2F , s.t.PTX = PTDZ (3)

where ‖ • ‖F is the Frobenius norm, rank(•) is a noncon-

vex function, and α is the penalty parameter. In order to

alleviate the influence of noise, we use the matrix E within

the sparse constraint to model the noise and replace Eq.(3)

with the following

min
P,Z,E

rank(Z) + α‖Z‖2F + β‖E‖1,

s.t.PTX = PTDZ + E
(4)

We select nuclear norm to substitute the rank func-

tion [25], changing Eq.(4) into

min
P,Z,E

‖Z‖∗ + α‖Z‖2F + β‖E‖1,

s.t.PTX = PTDZ + E
(5)

where ‖Z‖∗ is the nuclear norm of matrix Z.

As for the label information, we design a discriminant

metric learning function φ(Z�) based on the idea of Fisher

criterion [4], that is φ(Z�) = Tr(SB(Z�))− Tr(Sw(Z�)),
where Z� ∈ Z is the reconstruction coefficient matrix of la-

bel samples and Tr(Z�) is the trace of matrix Z�. SB(Z�)
and SW (Z�) are the between-class and within-class scatter

matrices related to the label samples X�, defined respec-

tively by SB(Z�) =
∑c

i=1 ni(Zmi
− Zm)(Zmi

− Zm)T

and SW (Z�) =
∑c

i=1

∑ni

j=1(z̃�i,j − Zmi
)(z̃�i,j − Zmi

)T ,

where Zmi
is the mean sample of the i-th person in Z�, Zm

is the overall mean sample of Z�, z̃�i,j is the j-th sample

in the i-th person of Z�, and ni is the number of samples

in i-th person. To ensure consistency in model learning [5],

the discriminant metric learning can be combined with the

representation transfer learning, encoding Eq.(5) as

min
P,Z,E

λφ(Z�) + ‖Z‖∗ + α‖Z‖2F + β‖E‖1,

s.t.PTX = PTDZ + E
(6)

Notice that the first term φ(Z�) in Eq.(6) is not convex

to Z� [6], so we add an elastic term to ensure the convexity

of Z�, which can be defined as

φ(Z�) = Tr(SB(Z�))− Tr(Sw(Z�)) + η‖Z�‖2F
= ‖Z�(I −Hb)‖2F − ‖Z�(Hb −Ht)‖2F
+ η‖Z�‖2F

(7)

where η is a trade-off parameter, I is an identity matrix

in Rp×p , p is the number of different person, Hb and Ht

are two constant coefficient matrices. In detail, Hb(i, j) =
1/nc, where nc is the number of samples in each class, and

Ht(i, j) = 0, only if xi and xj belong to the same person,

otherwise Hb(i, j) = 0 and Ht(i, j) = 1/p.

In addition, an orthogonal constraint PTP = Ip is incor-

porated into our framework, where Ip ∈ Rd×d is an identity

matrix.

As the last point of this part, with the combination of

Eq.(6) and Eq.(7), we can obtain the objective function:

min
P,Z,E

αφ(Z�) + ‖Z‖∗ + β‖E‖1,

s.t.PTX = PTDZ + E,PTP = Ip, Z� ∈ Z
(8)

where the term αφ(Z�) is formed by merging the optimiza-

tion terms of λφ(Z�) and α‖Z‖2F .
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3.3. Optimization

In the light of the non-convexity of Eq.(8), we adopt

the inexact ALM (IALM) algorithm [25] to solve this op-

timization problem. IALM algorithm is an iterative method

that can solve each variable in a coordinate descent manner.

First, we introduce a variable Z1 and impose a constraint on

Z, i.e., Z = Z1, to relax the original problem, yielding

arg min
P,Z,Z�,Z1,E

αφ(Z�) + ‖Z1‖∗ + β‖E‖1
s.t.PTX = PTDZ + E,

PTP = Ip, Z = Z1, Z� = Z∗

(9)

where Z∗ is the reconstruction coefficient matrix of label

sample in Z. More specifically, Eq.(9) can further be con-

verted into the following problem:

arg min
P,Z,Z1,Z�,E,L1,L2,L3

αφ(Z�) + ‖Z1‖∗
+ β‖E‖1 + 〈L1, P

TX − PTDZ − E〉
+ 〈L2, Z∗ − Z�〉+ 〈L3, Z − Z1〉
+
μ

2
(‖PTX − PTDZ − E‖2F

+ ‖Z − Z�‖2F + ‖Z − Z1‖2F ) + γ‖PTP − Ip‖1

(10)

where μ > 0 and γ > 0 are penalty parameters. L1 ∈
Rm×n, L2 ∈ Rm×p and L3 ∈ Rm×n are Lagrange multi-

pliers. The main steps of solving Eq.(10) are given as fol-

lows and all steps have closed form solutions.

Step 1 (Update P ): P can be updated by solving opti-

mization problem of Eq.(11).

argmin
P

μ

2
‖PTX − PTDZ − E +

L1

μ
‖2F

+ γ‖PTP − Ip‖1
(11)

Then, we can obtain the closed-form solution of Eq.(12)

P ∗ = (μG1G
T
1 + 2γI)−1(μG1G

T
2 ) (12)

where G1 = X −DZ and G2 = E − L1

μ .

Step 2 (UpdateZ ): Z is updated by solving optimization

problem of Eq.(13).

argmin
Z
‖PTX − PTDZ − E +

L1

μ
‖2F

+ ‖Z∗ − Z� +
L2

μ
‖2F + ‖Z − Z1 +

L3

μ
‖2F

(13)

Then, we can obtain the closed-form solution of Eq.(13)

Z∗ = (μDTPPTD+2μI)−1(G4+G5−DTPG3) (14)

where G3 = PTX − E + L1

μ , G4 = ψ(Z� − L2

μ ) and

G5 = Z1 − L3

μ . ψ represents the transformation function

and Z� serves as the reconstruction coefficient matrix of la-

beled samples in Z to ensure the consistent dimensionality.

Step 3 (Update Z� ): Z� is updated by solving optimiza-

tion problem of Eq.(15)

argmin
Z�

α(‖Z�(I −Hb)‖2F − ‖Z�(Hb −Ht)‖2F

+ η‖Z�‖2F ) +
μ

2
‖Z� − (Z∗ +

L2

μ
)‖2F

(15)

Then, we can obtain the closed-form solution of Eq.(15)

Z∗
�
= (μG8)(2αG6G

T
6 −2αG7G

T
7 +(2αη+μ)I)−1 (16)

where G6 = I −Hb, G7 = Hb −Ht and G8 = Z∗ + L2

μ

Step 4 (Update Z1 ): Z1 is updated by solving optimiza-

tion problem of Eq.(17)

argmin
Z1

‖Z1‖∗ + μ

2
‖Z − Z1 +

L3

μ
‖2F (17)

The closed-form solution of Eq.(17) is

Z∗1 = θ 1
μ
(Z +

L3

μ
) (18)

where θλ(X) = USλ(Σ)V
T is a thresholding oper-

ator with respect to a singular value λ; Sλ(Σi,j) =
sign(Σi,j)max(0, |Σi,j − λ|) is the soft-thresholding op-

erator. X = UΣV T is the singular value decomposition of

X .

Step 5 (UpdateE): E is updated by solving optimization

problem of Eq.(19)

argmin
E

β‖E‖1 + 〈L1, P
TX − PTDZ − E〉

+
μ

2
‖PTX − PTDZ − E‖2F

(19)

According to the shrinkage operator [25], the above prob-

lem of Eq.(19) has the following closed form solution

E∗ = shrink(PTX − PTDZ − E +
L1

μ
,
β

μ
) (20)

where shrink(x, a) = signmax(|x| − a, 0).
Step 6 Multipliers L1,L2 and L3 and iteration step-size

ρ(ρ > 1) are updated using Eq.(21),

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L1 = L1 + μ(PTX − PTDZ − E)

L2 = L2 + μ(Z∗ − Z�)

L3 = L3 + μ(Z − Z1)

μ = min(ρμ, μmax)

(21)

To close this section, the process of solving Eq.(8) is sum-

marized in Algorithm 1.
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Algorithm 1: Solving Problem of Eq.(8) by IALM
Input: X,D, λ, β, η, γ, ρ, μ, μmax.

Initialization:Z = Z1 = 0, Z� = 0, E = 0,

L1 = 0,L2 = 0,L3 = 0, α = 0.11, β = 1.0, η = 1.0,

γ = 0.05, μ = 0.8, μmax = 107, ρ = 1.01, ε = 10−5.

Begin:
While not converged end
Update P by sloving Eq.12, given others fixed.

Update Z by sloving Eq.14, given others fixed.

Update Z� by sloving Eq.16, given others fixed.

Update Z1 by sloving Eq.18, given others fixed.

Update E by sloving Eq.20, given others fixed.

Update the multipliers and parameters by sloving Eq.21,

given others fixed.

Check the convergence condition:

‖PTX − PTDZ − E‖∝ < ε, ‖PTP − Ip‖∝ < ε
‖Z − Z1‖∝ < ε, ‖Z∗ − Z�‖∝ < ε.
End while

Output:Z,P,E

3.4. Metric Learning

In our approach, we firstly get the low-level feature of

Local Maximal Occurrence Feature(LOMO) [7] and Hier-

archical Gaussian Descriptor (GOG) [11]. Then, we ob-

tain the mid-level feature via the aforementioned method

(MvVW+CIMvTL), defined respectively as ẐLOMO and

ẐGOG, which all include seven reconstruction coefficient

matrices. Furthermore, we combine the low-level features

(FLOMO ∈ RdLOMO×n, FGOG ∈ RdGOG×n) and the mid-

level feature (ẐLOMO ∈ Rm×n, ẐGOG ∈ Rm×n) to for-

mulate our descriptor. Note that, in order to reduce the

dimensionality of our descriptor, we define the new low-

level features as F̂LOMO = FT
LOMOFLOMO ∈ Rn×n and

F̂GOG = FT
GOGFGOG ∈ Rn×n. Therefore, the ultimate

dimensionality of our descriptor is (2n+ 2× 7m). Finally,

we apply the metric learning method of XQDA [7] to the

measure of the similarity for person Re-ID.

4. Experiments

We evaluate the proposed method on three benchmark

databases: VIPeR [3], CUHK01 [29] and PRID450S [11].

All images are scaled to 128×48 pixels. For these databas-

es, we divide all of the images randomly into half for train-

ing and the other half for testing, and repeat this proce-

dure 10 times to get an average performance. Besides, we

compare our proposed method (MvVW+CIMvTL) with the

state-of-the-art methods, including GOG [11], LSSL [26],

LOMO+XQDA [7], Semantic [19], SCNCD [27], kLF-

DA [24], KISSME [15] and SalMatch [29].

Table 1. The recognition results of our model and other the state-

of-the-art methods on VIPeR database at Rank-1,10.

Method Rank=1 Rank=10 Reference
CIMvTL(Fusion) 56.04 91.01 Proposed
CIMvTL(GOG) 50 89.14 Proposed

CIMvTL(LOMO) 42.66 84.68 Proposed
GOG+LOMO 45.76 87.34 Fusion
GOG+XQDA 49.68 88.67 CVPR2016 [11]

LSSL 47.86 87.63 AAAI2016 [26]

LOMO+XQDA 40 80.51 CVPR2015 [7]

kLFDA 22.17 47.23 ECCV2014 [24]

KISSME 22.53 49.57 Spring2014 [15]

Figure 3. The CMC curves and rank-1 matching rates on the Viper

database

4.1. Experiments on the VIPeR Dataset

VIPeR is a challenging person Re-ID database with great

variations in background, illumination and viewpoint, con-

taining 632 person image pairs from two cross-view. We

choose randomly 316 pairs of images for training and the

rest for testing.

4.1.1 Comparison to the State-of-the-Art Methods

We utilize the K-means method to obtain 7×100 multi-view

visual words (MvVW) including 6-group local and 1-group

global features. The results of Cumulative Matching Char-

acteristic (CMC) curves are shown in Figure 3 and Table 1.

It can been seen that our proposed method (CIMvTL) is ob-

viously better than other state-of-the-art methods, achieving

a rate of 56.04%, 91.01% with an improvement of 6.36%

and 2.34%, compared with the method of GOG+XQDA, at

rank=1,10. From these results, we can see that the consid-

eration of the multi-view information and applying the dis-

criminative transfer learning to a common subspace under

consistent contributions, is necessity for person Re-ID.

In addition, we compare the performances of our method

with different low-level features (GOG, LOMO and Fusion
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of them). As shown in Figure 3, our model achieves rank-1

match rates of 50%, 42.66%, with GOG and LOMO respec-

tively, and all of them outperform the original models with

improvements of (0.32% and 2.26%). Moreover, by the fu-

sion of these two low-level features (MvVW+CIMvTL), we

can obtain a superior results with an increase of 10.28%,

compared with the method of GOG+LOMO+XQDA . It fur-

ther proves our model, capturing the mid-level features, can

improve effectively the performance of person Re-ID.

4.1.2 Comparison to the Metric Learning Methods

We evaluate the proposed method of MvVW+CIMvTL
with different metric learning methods, including L1-Norm

distance, kLFDA and XQDA. The resulting Cumulative

Matching Characteristic (CMC) curves are shown in Figure

4 and Table 2. It can be seen that the proposed method with

XQDA is better than the other metric learning algorithms,

with an improvement of 33.51%, compared with kLFDA.

This indicates that our model with XQDA can successfully

learn a discriminant transfer subspace as well as an effective

metric.

Table 2. The recognition results of our model with different metric

methods on the VIPeR database at Rank-1,10,20.
Method Rank=1 Rank=10 Rank=20

CIMvTL+XQDA 56.04 91.01 95.75
CIMvTL+kLFDA 22.53 49.57 34.49

CIMvTL+L1-Norm 9.18 24.68 60.75

Figure 4. The CMC curves and rank-1 matching rates with differ-

ent metric methods on the Viper database

4.1.3 Comparison with the Number of Multi-view Vi-
sual Words

In this part, we compare the performances with different

numbers of multi-view visual words (MvVW) obtained by

the cluster method of K-means, and the results are shown

Table 3. The results of comparison with different numbers of

Multi-view visual words, (m = 50, 100, 150, 200, All).

Method Rank = 1 Rank = 5 Rank = 10
CIMvTL (50-MvVW) 47.59 78.77 90.03

CIMvTL (100-MvVW) 56.04 83.04 91.01
CIMvTL (150-MvVW) 57.69 81.23 88.80

CIMvTL (200-MvVW) 57.72 80.57 87.85

CIMvTL (ALL-MvVW) 49.78 70.09 78.48

Figure 5. The CMC curves and rank-1 matching rates on the Viper

database with m = 50, 100, 150, 200 and all

in Figure 5 and Table 3. It is obvious that our method

with the values of (100, 150 and 200) can do better than

other models. It can also be observed that CIMvTL per-

forms consistently best under all numbers of (MvVW). Es-

pecially, we can obtain the best result of 57.72% at rank-1

with m = 150, achieving an increase of recognition rate of

7.94%, compared with the visual words without K-means
(All-MvVW). This indicates the original visual words have

more redundant information and the MvVW, fusing multi-

view information with the K-means, can achieve an excel-

lent recognition rate. Of course, we should also ensure that

the available information is sufficient, so we set m = 150
on VIPeR database.

4.1.4 Comparison with Parameters Selection

In this experiment, we compare the performances with d-

ifferent parameters and describe the method of parameter-

s selection. In our model, the parameters include mainly

α, β, γ, η, μ and ρ. We provide the results of our model

with different parameters at rank-1,5,10,20 in Figure 6. As

we can see in this figure, these parameters are not sensitive,

with the best performing on a small change for person Re-

ID. In our model, the optimal parameters can be obtained

through a method of adjusting one parameter while fixing

other parameters, and by setting the values of α, β, γ, η, μ
and ρ as 0.11, 1.0, 0.05, 1.0, 0.8 and 1.01 with m = 100 on

. Note that, if a fast convergence speed is required, we can
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(a) α=0.01, 0.02,..., 0.19. (b) β=0.7, 0.8,..., 1.6.

(c) γ=0.01, 0.03,..., 0.19. (d) η=0.6, 0.7,..., 1.5.

(e) μ=0.6, 0.7,..., 1.5. (f) ρ=1.02, 1.04,..., 2.0.

Figure 6. The matching rates of our model with different parame-

ters at Rank-1,5,10,15,20.

Table 4. The recognition results of our model (CIMvTL) and oth-

er the state-of-the-art models with Rank-1,10 on the CUHK01

database.

Method Rank = 1 Rank = 10 Reference
MvVW+CIMvTL 65.5 91.6 Proposed

GOG+XQDA 57.8 86.2 CVPR2016 [11]

LOMO+XQDA 49.2 84.2 CVPR2015 [7]

Semantic 32.7 64.4 ECCV2014 [19]

SalMatch 28.5 55 ICCV2013 [29]

set a large value for μ.

4.2. Experiments on the CUHK01 Database

The CUHK-01 database was captured from two camera

views, with higher resolution, containing 971 persons, and

each person has two images in each view. We choose ran-

domly 486 pairs of images for training and the rest for test-

ing. And we utilize the K-means method to obtain 7× 200
MvVW. The results are described in Table 4. Our method

outperforms obviously other methods, achieving the best

rank-1 matching rate of 65.5% and 91.6% with an improve-

ment of 7.7% and 5.4%.

4.3. Experiments on the PRID450S Database

The PRID450S dataset contains 450 image pairs record-

ed from two different static surveillance cameras. In this

experiment, we choose randomly 250 pairs of images for

training and the rest for testing. And we utilize the K-means

method to obtain 7 × 100 MvVW. The results are reported

in Table 5. As can be seen from this table, our proposed

method improves the state-of-the-art rank-1,10 matching

rates by 4.0% and 0.5%, respectively.

Table 5. The recognition results of our model (CIMvTL) and oth-

er the state-of-the-art models with Rank-1,10 on the PRID450S

database.

Method Rank=1 Rank=10 Reference
MvVW+CIMvTL 71.6 94.9 Proposed

GOG+XQDA 67.9 94.4 CVPR2016 [11]

LOMO+XQDA 52.3 84.6 CVPR2015 [7]

SCNCD 41.6 79.4 ECCV2014 [27]

Semantic 43.1 78.2 CVPR2015 [19]

5. Conclusion

In this paper, we have proposed a new model for per-

son Re-ID, based on the integration of the mid-level fea-

ture representation and the metric learning. After formu-

lating as a consistent iterative multi-view transfer learning

optimal problem, we solved this model using IALM. The

obtained solution has been proven to be robust against in-

consistent data distributions in terms of viewpoint changes

and illumination variations. Meanwhile, we discussed the

problem of parameters selection in our model, including

m,α, β, γ, η, μ and ρ, where m is the number of MvVW
obtained by K-means. Experiments on three challenging

person Re-ID benchmark databases, VIPeR, CUHK01 and

PRID450s, show that the proposed method improves the

state-of-the-art rank-1 identification rates by 6.36%, 7.7%

and 4.0%, respectively. The future work will try to address

optimal choice of the number of MvVW instead of the use

of K-means which has a high time complexity. In addition,

the on-line learning with our model is also a valuable re-

search issue.
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