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In order to address the problem of instability of existing principal curve algorithms and 
their difficulties to deal with complex distribution data, in this study, invoking the ideas 
of information granulation, we propose a local-to-global multi-granularity principal curves 
extraction approach based on improved spectral clustering. Firstly, we propose an improved 
spectral clustering algorithm based on inflection point estimation to granulate complex 
distribution data into several granular data, and develop techniques of an automatic 
selection of a parameter, which determines the number of clusters (granular data). 
Secondly, PL (polygonal line) principal curves algorithm proposed by Kégl is utilized to 
extract the local principal curves of each granular data. Finally, with the use of the shortest 
Hamiltonian path algorithm and noise variance, the local principal curves are gradually 
connected together to form a global curve. A number of numeric studies completed for 
synthetic and publicly available data sets provide a useful quantifiable insight into the 
effectiveness of the proposed algorithm.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

As a nonlinear generalization of principal component analysis [1], principal curve is a well-known technique encountered 
in multivariate analysis. Principal curve was defined by Hastie [2] as a one-dimensional (1D) smooth curve, which passes 
through the “middle” of a set of p-dimensional data points, which can truly reflect the shape of the data. That is, the curve 
is the “skeleton” of the dataset, while the dataset is the “cloud” of the curve. It means that the principal curve can preserve 
useful information about the data. Hastie put forward the HS’s principal curves algorithm (HSPC) to extract the principal 
curves by iterating between projecting data onto the curve and estimating conditional expectations on projectors by the 
scatter smoother or the spline smoother [2]. Referring to the HS’s algorithm, many researchers have offered improvements 
to the theory as well as the ensuing algorithmic developments. To address the problem of model bias of the HSPC algorithm, 
Tibshirani introduced a semi-parametric principal curve model (hereafter TPC), in which an EM algorithm was used to 
estimate principal curves [3]. In 2000, Kégl et al. defined a polygonal curve with k segments and length L as principal curves 
to solve the problem of convergence of the HSPC algorithm (KPC) [4]. Delicado in 2001 defined principal curves as principal 
curves of oriented points to correct estimation bias (DPC) [5]. Verbeek et al. in 2001 defined soft K -segment principal 
curves to extract principal curves from circular data distribution [6]. More recently, Zhang et al. proposed Riemannian 
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principal curves to address the problem of non-constant data distributions in 2010 (hereafter RPC) [7]. Zhang et al. extended 
principal curves to granular principal curves, and completed some preliminary studies to extract principal curves from 
large-scale data in 2014 [8]. Principal curves have been found to be an important method to summarize information residing 
in experimental data. Considerable work has been reported on applications of principal curves to various problems, such as 
shape detection [9,10], speech recognition [11], intelligent transportation analysis [12], high-dimensional data partitioning 
[13], image skeletonization [14], and interest point detection [15]. However, with the rapid development of the Internet 
and information systems, we often need to handle complex data, and here the efficiency of the existing principal curves 
algorithms becomes lower when dealing with complex data owing to the lack of prior knowledge.

Granular Computing (GrC) has emerged as a new way to model ways of complex problem solving by concentrating on 
forming information granules and realizing processing at various levels of resolution (scales) or granularities. Information 
granulation is a powerful tool supporting processing and interpreting complex data [16]. In this paper, referring to the idea 
of GrC [17–22], we granulate complex distribution data into local data, and propose a local-to-global multi-granularity prin-
cipal curves extraction approach. In the design process, according to the characteristics of data distribution, we first propose 
an improved spectral clustering algorithm to granulate complex distribution data into several granular data, and develop 
a technique to automatically determine the number of such granular data. At this step, we compute low dimensional em-
bedding of initial data with complex distribution using the spectral clustering algorithm [23,24] based on manifold distance 
kernel [25], and transform the initial data into low-dimensional representative data with spherical shapes. Afterwards, based 
on the concept of local density and minimum distance of CFSFDP (clustering by fast search and finding of density peaks) 
algorithm [26], we propose the method of inflection point estimation to automatically determine the number of granules 
and obtain the results of granulation. Then, the PL principal curve algorithm proposed by Kégl is employed to extract the 
local principal curves of each granular data, and the local principal curves are optimized by deleting the overfitting edges. 
Finally, by means of the Hamiltonian path algorithm and noise variance, the local principal curves are gradually connected 
to form the final smooth global curve.

The paper is organized as follows. In Section 2, the improved spectral clustering based on the inflection point estimate 
is introduced. Section 3 elaborates on the proposed multi-granularity principal curve algorithm. Experimental studies are 
covered to evaluate and analyze the performance of the proposed algorithm in Section 4. Finally, Section 5 delivers some 
conclusions.

2. The improved spectral clustering based granulation for complex distribution data

Manifold distance is considered to address the problem of learning the underlying global geometry of a data. As it is 
capable of reflecting the complex space distribution of data, we choose spectral clustering algorithm based on the manifold 
distance kernel [23] to granulate the complex distribution data. In the process of granulation, the selected algorithm can 
deal with more complex datasets, but it still exhibits two drawbacks. Firstly the number of cluster (granule) and cluster 
centers need be manually determined. Secondly, granulation results are unstable owing to the improper cluster centers. 
To alleviate these drawbacks, we improve the algorithm and propose an improved spectral clustering algorithm based on 
inflection point estimation to granulate complex distribution data.

2.1. The idea and drawbacks of spectral clustering algorithms based on manifold distance kernel

Spectral clustering algorithm based on manifold distance kernel introduces the manifold distance kernel into the NJW-
Spectral (Ng–Jordan–Weiss-Spectral) clustering algorithm [27]. Firstly, all the data points are considered as the vertices of a 
graph. Secondly, the manifold distance between the vertexes is computed and the similarity matrix and the Laplacian ma-
trix are constructed based on the manifold distance. Then, low-dimensional representative data embedded into the initial 
data are obtained by calculating the eigenvectors of the Laplacian matrix. Finally, the representative data are divided into k
clusters by running the K -means clustering algorithm.

The manifold distance kernel based NJW algorithm can obtain acceptable clustering results on some datasets, but it still 
exhibits two drawbacks.

(1). In the K -means step, the number of clusters needs to be predetermined; the cluster number exhibits a great influence 
on the clustering results. For example, a spiral dataset consists of three spirals. When we specify the number of clusters 
to be 3, the results are correct. When we set the number of clusters to be 2, 4 or 5, the results exhibit a large deviation 
from the original structure. As shown in Fig. 1, the number of clusters has a visible impact on the final clustering 
results, however a “correct” number of clusters is not known in advance.

(2). The clustering results obtained by the algorithm proposed in [23] are not stable as it uses the K -means clustering 
algorithm to cluster the representative data. The performance of the K -means clustering algorithm depends on the 
random selection of initial cluster centers; when these centers are not properly selected, the algorithm may be trapped 
in a local minimum. As presented in Fig. 2, the results show the drawback mentioned above.
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Fig. 1. Cluster results obtained for different number of clusters.

Fig. 2. Example of unstable clustering result.

With the use of the manifold distance, the NJW algorithm can deal with more complex datasets. However the K -means 
step of the algorithm cause the algorithm to become incorrect and unstable if the cluster number and cluster centers are 
not correctly determined. Hence, an improved spectral clustering algorithm is proposed here to deal with those drawbacks.

2.2. An improved spectral clustering based on inflection point estimate

CFSFDP [26] algorithm is robust with respect to data distribution. Hence, compared to K -means clustering algorithm, it is 
more suitable to cluster the data exhibiting complex distribution, such as spherical-like data and spiral-like data. Besides, it 
is able to automatically find the cluster centers. Considering that the distribution of representative data is spherical, CFSFDP 
is a viable option.

The CFSFDP algorithm relies on the assumptions that cluster centers are surrounded by neighbors with lower local 
density and that they are positioned at a relatively large distance from any points with a higher local density. For each 
data point i, we compute two quantities: its local density ρi and distance δi . Both these quantities depend only on the 
distances dij between data points, which are assumed to satisfy the triangular inequality. The local density ρi of data point 
i is defined as

ρi =
∑

j

χ(dij − dc) (1)

where χ(x) = 1 if x < 0 and χ(x) = 0 otherwise, and dc is a cutoff distance. Basically, ρi is equal to the number of points 
that are closer than dc to point i. The algorithm is only sensitive to the relative magnitude of ρi in different points, implying 
that, for large datasets, the results of the analysis are robust with respect to the choice of dc .

δi is measured by computing the minimum distance between the point i and any other point with higher density.

δi = min
j:ρ j>ρi

(dij) (2)

For the point with highest density, we let δi = max j(dij). Note that δi is much larger than the typical nearest neighbor 
distance only for the points that are local or global maxima of the density. Thus, cluster centers are recognized as points for 
which the value of δi is anomalously large.

The cluster centers are automatically determined by the CFSFDP but the cluster numbers are required to be set up 
manually. Based on the concept of the local density and minimum distance of CFSFDP algorithm, we develop a method of 
inflection point estimation to automatically determine the number of clusters and produce clustering results.

Specifically, a new quantity γi called decision attribute is introduced:

γi = ρi ∗ δi (3)

where ρi is the local density and δi is the minimum distance proposed by the CFSFDP algorithm. Hence, we can obtain γi in 
the dimension reduction step of the spectral clustering algorithm. As shown in Fig. 3, the values of γi of the Spiral dataset 
are sorted from the largest to the smallest. The overall distribution of the values is similar to the log function, and most of 
the values are close to 0.



JID:IJA AID:8308 /FLA [m3G; v1.248; Prn:12/12/2018; 12:55] P.4 (1-12)

4 H. Zhang et al. / International Journal of Approximate Reasoning ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61
Fig. 3. Values of γi of Spiral dataset.

Fig. 4. Subtraction slope. Fig. 5. Division slope.

Fig. 6. Inflection point estimate.

The number of cluster centers is determined by finding the inflection point of the decision attribute distribution. The 
change of slope is maximal at the location of inflection point. Due to the x axis is 1, the slope can be obtained by subtracting 
the adjacent decision attributes, which is denoted as subtraction slope. As shown in Fig. 4, the subtraction slopes of the first 
few data are larger, and the subtraction slopes of the majority of the data are smaller. By observing the subtraction slopes 
of decision attribute, we find values of the subtraction slopes have a sharp difference between the non-cluster centers and 
the cluster centers. The sharp difference can be obtained by dividing the adjacent subtraction slopes, which is denoted as 
division slope. As shown in Fig. 5, the first convexity point (division slope of the point is larger than its adjacent points) is 
considered as an inflection point. That is, the number of the cluster centers is the index of the inflection point.

Fig. 6 shows a number of Spiral datasets with larger decision attributes. There are four steps to estimate the inflection 
point. Firstly, compute the decision attribute γi , as step 1 in Fig. 6. Secondly, obtain subtraction slope by subtracting the 
right adjacent decision attribute, as step 2 in Fig. 6. Thirdly, we obtain a division slope by dividing the right adjacent 
subtraction slope, shown in the step 3 of Fig. 6. Finally, take the first convex point as the inflection point and select the 
sorted index of the inflection point as the number of clusters. For the Spiral data in Fig. 6, the cluster number is 3.

To sum up, the complete algorithm is outlined as follows:

Algorithm 1. An improved spectral clustering based on inflection point estimate
Input: Gauss kernel parameter σ , sample points XN = {x1, x2, . . . , xN } ∈ Rd

Output: Clustering result cluster_labels

Step 1: Compute the manifold distance dG (xi, x j) [25]. Compute the similarity between point and point produced by the 
Gaussian kernel. As shown below, we obtain the similarity matrix A ∈ Rn×n .

Aij = e
−dG (xi ,x j )

2

2σ2 (4)
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Fig. 7. The flowchart of Algorithm 2.

Step 2: Compute the Laplacian matrix L following the manifold distance kernel-based spectral algorithm [23].
Step 3: Suppose λ1, λ2, . . . , λm are m largest eigenvalues of the Laplacian matrix; v1, v2, . . . , vm are eigenvectors associ-

ated with the corresponding eigenvalues. We construct the matrix V = [v1, v2, . . . , vm] ∈ Rn×m , Only when the row i of V
is assigned to class j, the sample Xi is assigned to class j.

Step 4: We take each row of V as the representative data of every initial data and use CFSFDP to cluster them. According 
to the two parameters ρi and δi , the decision variables γi are calculated and sorted from the largest to the lowest value. 
We use the inflection point estimation to calculate the number of cluster centers (n) and select n points which have the 
largest values of γi to be the cluster centers. Label other points as the same to the closest points whose density is larger.

Step 5: Get the clustering result cluster_labels.

The algorithm can solve the problem of manually inputting clustering number and instability. Meanwhile, the algorithm 
needs fewer parameters and has strong robustness in a certain range.

3. Multi-granularity principal curve algorithm based on improved spectral clustering

Assume that a set of numeric data XN = {x1, x2, . . . , xN } ∈ Rd is given. In the multi-granularity principal curve algorithm, 
we follow the strategy covered by following algorithm

Algorithm 2. Multi-granularity principal curve algorithm based on improved spectral clustering
Input: cluster_labels
Output: principal curves

Step 1: Form k_max granular data by running the improved spectral clustering algorithm;
Step 2: Extract the local principal curves of each granular data with the use of the PL principal curves algorithm [4];
Step 3: Delete overfitting edges with a designed objective function;
Step 4: Construct multi-granularity principal curves based on the Hamilton path algorithm;
Step 5: Optimize the global principal curves by removing false edges.

To clarify the essence of the algorithm, we illustrate it in Fig. 7.
In the following sections, we elaborate on these steps in more detail.
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3.1. Formation of the local principal curves

Considering information granulation as a powerful tool of processing complex data and addressing the instability of the 
existing principal curve algorithms, the improved spectral clustering proposed in Section 2 is used to construct granular 
data. Hence, Algorithm 1 is employed to form k_max granular data, where k_max is the number of clusters.

To extract the local principal curves of each granular data, we employ the PL principal curves algorithm [4]. The algorithm 
defines principal curves as continuous curves of a given length L, which minimizes the expected squared distance between 
the curve and points of the space randomly chosen according to a given distribution. The basic idea is to start with a straight 
line segment f0,n , the shortest segment of the first principal component line which contains all of the projected data points, 
and in each iteration of the algorithm it increases the number of segments by one by adding a new vertex to the polygonal 
line fk,n produced in the previous iteration. After adding a new vertex, the positions of all vertices are updated so that the 
value of a penalized distance function becomes minimized.

The algorithm mainly consists of a projection step and an optimization step. In the projection step the data points are 
partitioned into “nearest neighbor regions” according to which segment or vertex they project on. The “nearest neighbor 
regions” is denoted as Voronoi region [4]. In the optimization step, the new position of a vertex is determined by minimizing 
an average squared distance criterion penalized by a measure of the local curvature, while all other vertices are kept fixed. 
These two steps are iterated so that the optimization step is applied to each vertex in a cyclic fashion (so that after the 
last vertex, the procedure starts again with the first vertex), until convergence has been achieved and fk,n produced. Then 
a new vertex is added.

The algorithm stops when k exceeds a certain threshold c(n, �). This stopping criterion is based on a heuristic complexity 
measure, determined by the number of segments k, the number of data points n, and the average squared distance �n( fk,n).

During running the PL principal curves algorithm, in order to avoid overfitting, we construct a new cost function to 
delete false polygonal lines

d fi,n = num_Voronoi′

S( f i,n)
(5)

where Voronoi′ means the Voronoi region of the polygonal line for f i,n , and num_Voronoi′ means the number of the data 
points in the Voronoi′ region. S( f i,n) is the length the line f i,n . If d fi,n > θ , we delete f i,n . If not, f i,n is preserved, where θ
is an empirical parameter. The cost function implies that we delete those polygonal lines that can represent too few data 
points.

For all the k_max granular data, we extract the local principal curve { f i
0,n, f i

1,n, . . . , f
i
k,n} by PL principal curve al-

gorithm, where i = 1, 2, . . . , k_max. Thus we can denote all of the local principal curves as {s1, s2, . . . , sk_max}, where 
si = { f i

0,n, f i
1,n, . . . , f i

k,n}.

3.2. Construction of multi-granularity principal curves from local to global

After obtaining k_max local principal curves, multi-granularity global principal curves are constructed with the use of 
the Hamilton path algorithm. Firstly, we define a fully connected graph G = (V , E), where the set of vertices V consists 
of the 2k_max end-points of the k_max local principal curves. Also, we define a set of edges A ⊂ E which contains all 
edges that correspond to the local principal curves. A sequence of the edges {(v0, v1), (v1, v2), . . . , (vk_max−2, vk_max−1),

(vk_max−1, vk_max)} in which all edges are distinct is called a ‘path’. A path is ‘open’ if v0 �= vm . An open path that passes 
through every vertex in the graph exactly once is called a ‘Hamiltonian path’ (HP). Note that we can consider a HP as a set 
P ⊂ E . We wish to find the HP P minimizing the total cost of the path, under the constraint: A ⊂ P ⊂ E . The cost function 
of a path P is defined as l(P ) + λa(P ), with 0 ≤ λ ∈ R being a parameter to be set manually. The term l(P ) denotes the 
length of the path, defined as the sum of the length of the edges in P . The length of an edge e = (vi, v j) is taken as the 
Euclidean distance between its vertices, namely l(e) = ‖vi − v j‖. The second term, a(P ), is a penalty term equal to the sum 
of the angles between adjacent edges. The parameter λ controls the trade-off between preferring short paths and paths that 
do not contain sharp turns. The λa(P ) term is introduced to implement a preference for ‘smooth’ (not having sharp turns) 
curves. The smaller λ, is the smaller the preference for the smooth curves becomes.

Greedy strategy outlined below is employed to construct the global multi-granularity principal curve. A HP on a subset 
of V is called as a sub-HP. We start with the k_max local principal curves as k_max sub-HPs. At each step we connect two 
sub-HPs with an edge e. Note that the total cost of a (sub-)HP consisting of two sub-HPs Pi and P j linked together by 
an edge e is the sum of the costs of each sub-HP plus l(e) plus an angle penalty a(e). Fig. 8 illustrates the angle penalty 
a(e) = α + β incurred by an edge e = (vi, v j) that connects two sub-HPs Pi and P j . We assign to each edge e ∈ (E − A)

cost c(e) = l(e) + λa(e). The edge that minimizes c(e) over all edges that connects two sub-paths is inserted at each step. 
Summarizing, the procedure reads as follows:

1. Start with k_max sub-HPs defined by A.
2. While there are at least two sub-HPs.
3. Join those two sub-HPs Pi and P j i �= j by edge e ∈ (E − A) such that e minimizes c(e) over all edges connecting two 

distinct sub-HPs.
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Fig. 8. Connecting two sub-paths: the angle penalty of (vi , v j) is the sum of the angles between an edge and the adjacent edges, i.e. α + β .

Fig. 9. Multi-granularity principal curves extraction.

To remove false edges in the process of connecting local principal curves to global principal curves, unnecessary connec-
tions between local principal curves should be removed. Firstly, we compute the distance between pairwise principal curves 
in s1, s2, . . . , sk_max . Take si as an example: we compute the projection distance between the endpoints of other principal 
curves and si , denoted as dsi ,s j , where i = 1, 2, . . . , k_max. The adaptive threshold is selected as:

O F = λσ 2
2 (6)

If dsi ,s j < λσ 2, delete the shorter line between si and s j . If dsi ,s j ≥ λσ 2, preserve the two line segments. Here λ is the 
adaptive parameter, σ 2 is the variance of noise.

Fig. 9 illustrates an underlying idea of the proposed methodology. First, a large collection of similar objects is arranged 
together by running the improved spectral clustering algorithm to form a few granular data. Next, following the PL principal 
curve algorithm and the procedure of deleting overfitting edges, the local principal curves are obtained. Finally, based on 
the Hamilton path algorithm and false edge removal method, the global principal curve is gradually obtained and optimized.

With the optimization method outlined before, the advantage of the proposed algorithm is obvious. Firstly, instead of 
manual inputting of the granular number, the granulation of the initial data is more robust by means of the proposed 
improved spectral clustering algorithm (Algorithm 1). Secondly, with the elaborately designed cost function in step 3, the 
overfitting edges are deleted. The third advantage is the proposed adaptive threshold for removing the false edges in step 5.

3.3. Space and time complexity of the approach

As before, let N be the number of the data points, d be the dimensionality of the data, our algorithm extracts the local 
principal curves of one data granule at one time and we have k_max data granules in total. Hence, the space complexity of 
the proposed algorithm is O (Nd/k_max), while the space complexity of PL algorithm is O (Nd).

As to time complexity, it is composed of two parts: the complexity of the improved spectral clustering algorithm and the 
complexity of the principal curves extraction process. The time complexity of the first part is O (N3), which is the same to 
the time complexity of NJW-Spectral clustering algorithm because the complexity of the inflection estimate can be ignored 
compared to NJW-Spectral clustering. Besides, the complexity PL algorithm is O (kN2), where k is the number of iterations 
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Fig. 10. Synthetic data sets.

Fig. 11. Clustering result reported in [23].

Fig. 12. Clustering result of CFSFDP [26].

of the PL algorithm. After the initial data have been granulated, the number of data which need to be dealt with by PL 
algorithm is reduced to N

k_max . Thus, the complexity of the second part is O (k N2

k_max ) In conclusion, the time complexity of 
the proposed algorithm is O (N3 + k N2

k_max ).

4. Experimental results and analysis

In this section, we first present a validation experiment to explain the effectiveness of the improved spectral clustering 
algorithm. Then, in order to demonstrate the effectiveness of the multi-granularity principal curve algorithm, we design 
two experiments to compare the PL principal curve algorithm and the proposed method. Finally, the impact of the objec-
tive function O F on the performance of the algorithm is investigated. All the experiments are completed for three public 
datasets, say Twomoons, Jain and Spiral and a single synthetic dataset (DisorderThreeCircles). The four datasets are displayed 
in Fig. 10.

4.1. Granulation results and analysis

Compared with [23] and the CFSFDP algorithm [26], we use four datasets to realize a comparative study. The parameters 
of the algorithm are the same and the number of clusters is selected manually as presented in [23].

As shown in Fig. 11, when the number of cluster is unknown, the algorithm proposed in [23] cannot produce good 
clustering results. The algorithm is not stable. Fig. 12 contains the clustering results produced by the CFSFDP algorithm. As 
visualized in Fig. 13, the proposed algorithm not only can determine the number of cluster centers, but also it yields very 
good results. The reasons are as follows.

Firstly, we use manifold distance to alleviate the drawback of the spectral clustering. After we get the representative of 
the original data, we invoke an effective method to determine the cluster number based on CFSFDP. In order to draw the 
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Fig. 13. Clustering results of improved spectral clustering algorithm based on inflection point estimate.

Fig. 14. Representative points of original data.

representative points of the original data in the two-dimensional plane, we take eigenvectors corresponding the first two 
largest eigenvalues, then the representative points are also two-dimensional.

As shown in Fig. 14, the representative points form spherical data and each cluster has some density extremum, which 
can be processed by the CFSFDP. Therefore, the use of inflection point estimate to automatically determine the cluster center 
makes the algorithm more accurate and stable.

In the calculation of similarity, we need to use the Gaussian kernel parameter σ and the neighbor number n. In the 
CFSFDP algorithm, we need neighborhood parameter k. The method of selecting neighbor number n is the one described in 
[23].

In order to observe the effect of kernel parameter σ and neighborhood parameter k on clustering results, we run the 
improved spectral clustering algorithm on the four datasets. By the means of counting the number of the data points 
which are assigned to incorrect clusters with different kernel parameter σ and neighborhood parameter k, we evaluate the 
performance of the improved spectral clustering algorithm. On the one hand, we keep k = 20 unchanged, and we change 
the kernel parameter σ by ranging it from 0.1 to 20. Experiment results show that there are no mistakenly clustered data. 
We can conclude that the proposed algorithm is robust to the Gaussian kernel parameter σ . On the other hand, Gaussian 
kernel parameter σ is set to 5 and six different neighborhood parameter k ranging from 10 to 100 is considered. When 
k is 10, we observed that some points are assigned to the wrong cluster on Jain and Spiral. The reason is that when the 
neighborhood range is too low, there is not a big difference in the density of the data, and data points tend to be assigned to 
adjacent clusters, especially when the data distribution is scattered (see Jain and Spiral). Thus, in the process of determining 
the cluster centers, errors occur. But when k assumes values above 20, the clustering results are accurate, which turns out 
that the algorithm is not sensitive to the parameter k.

4.2. Principal curves result and analysis

To evaluate the performance of the multi-granularity principal curves algorithm, it is tested on four complex datasets. 
Also, to realize a comparative study, the PL algorithm is tested as well. Fig. 15 and Fig. 16 show the results of the proposed 
algorithm and the PL principal curve algorithm. The black line segments shown in the figure are the principal curves 
extracted. We can note that the principal curves extracted by our algorithm can fit data better than the “conventional” 
PL principal curve algorithm. The curves are smoother and exhibit lower noise. On the contrary, the PL principal curve 
algorithm cannot ignore the false edges occurring between different granules.
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Fig. 15. Principal curves extracted by the proposed algorithm.

Fig. 16. Principal curves extracted by PL principal curve algorithm.

Table 1
The values of the objective function O F .

Distance 39.9815 7.2633 12.3076 8.7402 4.1456 0.1871 0.1498
Log_dis 3.1353 3.9556 3.5356 3.6982 3.7774 4.0919 4.0953
O F 39.9928 7.2775 12.3204 8.7535 4.1592 0.2018 0.1645

Based on the principle analysis, the traditional PL principal curve algorithm inserts a new segment by comparing all the 
points in the dataset. It calculates the sum of the distances between each point and the data points around it. Meanwhile, 
it calculates the sum of the distances between the surrounding data points and the nearest segment. If the two distance 
sum differ greatly, the region of the point and its surrounding points is taken as a data block to extract the first principal 
component segment. The principal curve extraction is completed for the entire dataset, which can result in overfitting and 
emergence of false edges. In the PL principal curve algorithm, there is no measure to rectify these problems. However, in 
our algorithm, we granulate the data first, which can generate data with simple distribution. Then, accurate local principal 
curves are obtained to construct global principal curves. The two improvements proposed here also cope well with the 
overfitting problem. As is shown in Fig. 15 and Fig. 16, the experimental results demonstrate that the multi-granularity 
principal curves exhibit some advantages when compared with the corresponding PL principal curves.

4.3. An impact of the objective function O F on the performance of our algorithm

In this section, the objective function O F is investigated. It determines the termination condition of the algorithm. Taking 
the Spiral dataset as an example, when the minimum value of O F is 0.1645 (see Table 1) and the maximum number of 
the principal curves is 8, overfitting problem appears (as shown in Fig. 17(a)). Therefore, it is unreliable to only rely on 
the objective function as the termination condition of the algorithm. To deal with the problem, we introduce an auxiliary 
function (step 3) and an adaptive parameter based on noise variance (step 5) in the Algorithm 2. Fig. 17(b) validates the 
effectiveness of the improvements.

4.4. Comparison of the running time

Table 2 shows the running time of PL algorithm and our algorithm applied to the four datasets. The running time of 
the algorithm is composed of two parts: the clustering time and the principal curve extraction time. With the use of the 
improved spectral clustering algorithm to granulate data, this is not surprising as our algorithm has no advantage in runtime. 
It is noticeable that the distribution of the dataset has an impact on the run time of both of the two algorithms. However, 
the principal curves extracted by our algorithm are more precise and smooth than those extracted by PL algorithm. Besides, 
our algorithm sacrifices a little bit of time complexity, but according to the analysis in Section 3, the space complexity of PL 
algorithm is k_max times the size of that of our algorithm.
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Fig. 17. Results obtained before and after optimization.

Table 2
Comparison of running time.

Twomoons Jain Spiral DisorderThreeCircles

PL algorithm 0.5071 34.3108 0.8667 4.3233
Our algorithm 1.0075 34.5324 0.9329 5.6917

5. Conclusions

For large scale complex data, although the traditional principal curve algorithm can greatly improve the processing speed, 
the performance of them is not stable. For instance, the existing PL principal curve algorithm still cannot well handle the 
complex data with self-intersecting characteristics, high curvature, and significant dispersion. Therefore, new approaches 
are badly needed to solve the principal curve learning problem realized in the presence of complex data. In our study, we 
combined the idea of GrC to improve the algorithm of the principal curve. We proposed the improved spectral clustering 
algorithm as the way of granulation and validation of its effectiveness. Based on the idea of GrC, this study designs and 
realizes the algorithm of extracting the principal curve from local to global, and compares and analyzes the performance 
of the algorithm in the public datasets and the artificial dataset. Experiments demonstrate that the constructed algorithm 
exhibits a significant level of stability and robustness. Several further pursuits can be envisioned including investigations 
dealing with set valued (interval) data, nominal data, and mixed data.
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