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a b s t r a c t 

Neighborhood Covering (NC) is the union of homogeneous neighborhoods and provides a 

set-level approximation of data distribution. Because of the nonparametric property and 

the robustness to complex data, neighborhood covering has been widely used for data 

classification. Most existing methods directly classify data samples according to the nearest 

neighborhoods. However, the certain classification methods strictly classify the uncertain 

data and may lead to serious classification mistakes. To tackle this problem, we extend tra- 

ditional neighborhood coverings to fuzzy ones and thereby propose a Three-Way Classifica- 

tion method with Fuzzy Neighborhood Covering (3WC-FNC). Fuzzy neighborhood covering 

consists of membership functions and forms an approximate distribution of neighborhood 

belongingness. Based on the soft partition induced by the memberships of fuzzy neigh- 

borhood coverings of different classes, data samples are classified into Positive (certainly 

belonging to a class), Negative (certainly beyond classes) and Uncertain cases. Experiments 

verify that the proposed three-way classification method is effective to handle the uncer- 

tain data and in the meantime reduce the classification risk. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Neighborhood Systems were proposed through extending the strategies of the nearest neighbors [26] . In a neighborhood

system, an object is associated with its neighborhood rather than its nearest neighbors [21] . The classifications based on

neighborhoods were proven to be more efficient than the classifications based on nearest-neighbor search [29] . The space of

neighborhoods was also investigated to approximate global data distribution. From the view of topology, it has been demon-

strated that the neighborhood spaces are more general than the data-level spaces [20,42] . This indicates that transforming

original data into neighborhood systems will facilitate the data generalization [34] . 

Through extending Rough Sets [22,23] with neighborhoods, Neighborhood Rough Sets were proposed to construct ap-

proximations of data space [16,20,34] . Different from the equivalence classes defined by symbols in the classic rough sets,

the basic granules in neighborhood rough sets are the neighborhoods in numerical/norminal data spaces, which makes the

model represent the mixed-type data well [16,17] . Formulating data space with neighborhood rough sets, data distributions

can be approximated by Neighborhood Covering (NC), which consists of a group of homogeneous neighborhoods, i.e. all

the data samples in a neighborhood belonging to the same class. Neighborhood covering provides us an effective way to
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represent data distributions on neighborhood level [41,42] . Moreover, to obtain the concise representation of data distribu-

tion, Neighborhood Covering Reduction (NCR) methods were used to remove the redundant neighborhoods from the initial

neighborhood coverings [8,32,38] . 

Based on the neighborhood coverings of data distributions, the learning methods can be implemented for classifica-

tion [14,37] and feature selection [15,16,27] . Comparing with other kinds of learning methods, NC-based methods require no

parameter setting and are robust to complex data. For the classification with neighborhood covering, the existing methods

directly classify an unknown sample into a class according to its nearest neighborhood. However, this certain classification

strategy strictly classifies the uncertain data and may lead to serious classification mistakes. Because of the unavoidable

inconsistency between the training data and the unknown world, there generally exit uncertain cases in data classification.

Thus it is required to design a cautious NC-based classification for uncertain data to reduce the classification risk. 

To implement the uncertain classification with neighborhood covering, we expect to construct a possibilistic measure

of the belongingness of neighborhood coverings and thereby design a three-way classification strategy. This solution origi-

nates from the methodologies of Three-Way Decisions (3WD) [35,36] . In the process of three-way decision making, decision

rules are extracted from the data with uncertainty through tri-partitioning data space into Positive, Negative and Boundary

regions [2,12] . From the view of classification, the three regions correspond to the cases of certainly belonging to a class,

certainly beyond a class and non-commitment, i.e. uncertain case [6,19] . 

In the light of the superiority of fuzzy sets for the learning tasks on uncertain data [1,7,24] , we adopt fuzzy membership

functions to measure the possibilities of data samples belonging to neighborhoods. Based on the neighborhood memberships

of data samples, we apply tri-partitioning methodology to reformulate the neighborhood-based classification and propose a

Three-Way Classification method with Fuzzy Neighborhood Covering (3WC-FNC). The proposed method involves two parts:

fuzzy extension of neighborhood coverings and three-way classification with fuzzy neighborhood coverings. Different from 

the traditional covering model formed by the union of neighborhoods, the fuzzy neighborhood covering consists of a group

of neighborhood membership functions which are integrated to form the membership distribution of neighborhood cov-

erings. The membership distribution of neighborhood coverings of different classes induces a soft partition of data space.

According to the memberships of neighborhood coverings, data samples are classified into certain classes and uncertain

case. The contributions of this paper are summarized as follows. 

• Extend neighborhood covering to Fuzzy Neighborhood Covering (FNC). Fuzzy neighborhood covering consists of a group of

neighborhood membership functions and forms an uncertain measure of neighborhood covering belongingness. In con- 

trast to the set-level approximation of neighborhood coverings, the fuzzy neighborhood covering provides a membership-

level approximation of data distributions. 

• Propose Three-Way Classification with Fuzzy Neighborhood Covering (3WC-FNC). Based on the fuzzy neighborhood covering

of a class, data samples are classified into Positive (certainly belonging to the class), Negative (certainly beyond the

class) and Uncertain cases according to their memberships. The three-way strategy separates uncertain cases to reduce

the classification risk. 

The remainder of this paper is organized as follows. Section 2 introduces the related work. Section 3 describes the

entire workflow of the proposed three-way classification method. Section 4 introduces the strategy of the fuzzy extension

of neighborhood coverings and also presents the three-way classification algorithms with fuzzy neighborhood coverings. In

Section 5 , experimental results validate the effectiveness of the proposed three-way method for uncertain data classification.

The work conclusion is given in Section 6 . 

2. Related work 

2.1. Neighborhood covering model 

Neighborhood Covering (NC) is the union of homogeneous neighborhoods and thereby provides a set-level approximation

of data distribution. Because of the advantages of nonparametric property and model robustness to complex data, neighbor-

hood covering models have been improved and widely used in data mining tasks. There are two kinds of NC-based learning

methods. The first one aims to approximate the data distributions of different classes for data classification [8,14,32,37,39] .

Another kind of methods aims to select the independent features through removing the coverings related to redundant fea-

tures from the covering family [15,16,27] . In this paper, we focus on the NC-based classification. Next we briefly introduce

the preliminaries of neighborhood covering model. 

Definition 1 Neighborhood covering. Suppose U = { x 1 , x 2 , . . . , x n } is the data space and O (x ) = { y ∈ U| �(x, y ) ≤ η} be the

neighborhood of x ∈ U , where �( · ) is a distance function and η is the threshold. The set of neighborhoods O U = { O (x ) | x ∈ U}
forms a covering of data space U and the pair C = 〈 U, O U 〉 denotes the neighborhood covering approximation space. 

The neighborhoods in a covering overlap each other and some of them may be redundant to maintain the structure of

data distribution. In order to obtain the essential structure of data distribution, it is necessary to reduce redundant neigh-

borhoods to generate concise neighborhood coverings. 
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Definition 2 Neighborhood covering reduction. Let C = 〈 U, O U 〉 be a neighborhood covering approximation space. For any

x ∈ U , if ∪ y ∈ U−{ x } O (y ) = U, O ( x ) is reducible, otherwise it is irreducible. In addition, C is irreducible iff for any x ∈ U, O ( x ) is

irreducible. 

For the samples of the same class, the relative reduction of neighborhoods will produce a concise approximation of the

data distribution of the class and thus can be used for data classification. 

Definition 3 Relative neighborhood covering reduction. Let C = 〈 U, O U 〉 be a neighborhood covering approximation space,

X ⊆U and x i ∈ U . If ∃ x j ∈ U and j 
 = i such that O ( x i ) ⊆O ( x j ) ⊆X, O ( x i ) is a relatively reducible neighborhood with respect to X ,

otherwise O ( x i ) is relatively irreducible. 

The existing NC-based classification methods classify data samples according to their nearest neighborhoods. The certain

classification induces hard partition of data space and cannot handle the uncertain data well. To tackle this problem, we

expect to construct a flexible neighborhood covering model for uncertain classification through fuzzy extension. 

2.2. Tri-partition methodology 

The basic idea of tri-partition methodology is to divide a universal set into three pair-wise disjoint regions which denote

the certain and uncertain parts in problem domain [4,36] . Tri-partition methodology is built on solid cognitive foundations

and provides flexible ways for human-like problem solving and information processing [12,28] . As typical approaches, Three-

ay Decisions (3WD) [35,36] , Orthopairs and Hexagon of Opposition represent knowledge and perform reasoning through

tri-partitioning the universe [5] . These approaches have been applied to extend the design and implementation of intelligent

systems and the investigations of tri-partition methodology are gaining interest [3,18,25,40] . 

Three-Way Decisions (3WD) is an extension of the commonly used binary-decision model through adding a third op-

tion [35] . The approach of Three-Way Decisions divides the universe into the Positive, Negative and Boundary regions which

denote the regions of acceptance, rejection and non-commitment for ternary classifications [36] . Specifically, for the ob-

jects partially satisfy the classification criteria, it is difficult to directly identify them without uncertainty. Instead of making

a binary decision, we use thresholds on the degrees of satisfiability to make one of three decisions: accept, reject, non-

commitment. The third option may also be referred to as a deferment decision that requires further judgments. With the

ordered evaluation of acceptance, the three regions are formally defined as 

Definition 4 Three-way decision with ordered set. Suppose ( L , ≺) is a totally ordered set, in which ≺ is a total order. For

two thresholds α, β with α≺β , suppose that the set of designated values for acceptance is given by L + = { t ∈ L | t �α} and

the set for rejection is L − = { b ∈ L | b ≺β} . For an evaluation function v : U → L , its three regions are defined by 

P O S α,β (v ) = { x ∈ U| v (x ) �α} , 
NE G α,β (v ) = { x ∈ U| v (x ) ≺β} , 
BN D α,β (v ) = { x ∈ U| α ≺ v (x ) ≺ β} . (1)

Many soft computing models for leaning uncertain concepts, such as Interval Sets, Many-valued Logic, Rough Sets, Fuzzy

Sets and Shadowed Sets, have the tri-partitioning properties and can be reinvestigated within the framework of three-

way decisions. At present, the research issues of Three-Way Decisions focus on the strategies for trisecting a universe, the

evaluation functions of acceptance/rejection, the optimization and interpretation of the thresholds and etc. [36] . 

Orthopair consists of a pair of disjoint sets O = (P, N) which commonly exists in many tools for managing data uncer-

tainty. The set P and N stand for the positive and negative regions and an orthopair tri-partitions the universe into three

regions O = (P, N, (P ∪ N) c ) , in which the last term denotes the boundary region Bnd . Combining the three regions to con-

struct the orthopairs such as ( P, Bnd ) and ( P, N 

c ), we can obtain multiple set approximations to abstract concepts at multiple

levels. Orthopair has strict links to Three-valued Logics and can be generalized to Atanassov Intuitionistic Fuzzy Sets, Possi-

bility Theory and Three-way Decision [4] . It actually provides us a common representation to formulate the partial knowl-

edge, positive/negative examples and trust/distrust for uncertain reasoning. The orthopairs and their hierarchical structures

are also discussed in the light of Granular Computing [5,33] . 

An opposition is a relation between two logical statements expressing an opposite point of view. Square of Opposition

is a diagram representing the relations between four propositions or four concepts. The origin of the square can be traced

back to Aristotle making the distinction between two oppositions: contradiction and contrariety. The traditional square of

opposition has been generalized to the Hexagon of Opposition through adding new kinds of oppositions into the relationship

diagram. As explained by Dubois and Prade, a hexagon of opposition can be obtained by any tri-partition of a universe,

hence by any orthopair. Given an orthopair ( P, N ), the six vertices of the hexagon are ( P, N, Bnd, Upp, P ∪ N, P c ). The different

links between the vertices represent different kinds of oppositions. Hexagon of opposition has been used to discover new

paradigm in formal concept analysis. 

Although the tri-partition methodology has been investigated in many areas, its applications in neighborhood systems

are still limited. In this paper, we expect to extend the neighborhood coverings to fuzzy ones and apply the tri-partition

methodology to implement the three-way classification with fuzzy neighborhood covering, in which data samples are clas-

sified into certain classes and uncertain cases according to the neighborhood memberships. 
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Fig. 1. Workflow of 3-way classification with fuzzy neighborhood covering. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Workflow 

In this section, we present the entire workflow of the proposed three-way classification method with fuzzy neighborhood

covering. Fig. 1 provides an overview of the workflow, which can be divided into three stages: neighborhood covering con-

struction, fuzzy extension of neighborhood covering and three-way classification with fuzzy neighborhood covering. Different

from the neighborhood union, fuzzy neighborhood covering consists of neighborhood membership functions which quantify 

the neighborhood belongingness into continuous membership values. Based on the fuzzy neighborhood membership, we can

further formulate the membership distribution of different classes for data classification. Referring to the three-way deci-

sion making, for a specific class, the three-way classifiers of fuzzy neighborhood covering judge the data samples as Positive

(certainly belonging to the class), Negative (certainly beyond the class) and Uncertain according to their memberships. The

uncertain samples can be post-processed to reduce the classification risk. 

The stage of neighborhood covering construction involves neighborhood construction and neighborhood reduction. As in- 

troduced in Section 2 , the neighborhoods are constructed according the distance measure and the data samples distributed

into a neighborhood have the same class label, i.e. the neighborhoods are homogeneous. The union of the neighborhoods

forms a covering of data samples and the covering of the neighborhoods belonging to the same class actually form an ap-

proximation of the data distribution of the class. Moreover, to simply the approximation of data distribution, redundant

neighborhoods should be reduced to generate the concise neighborhood covering. In the second stage, we extend the neigh-

borhood coverings to fuzzy ones. Specifically, we map the possibilities of data samples belonging to neighborhoods into

fuzzy memberships according to distances between samples and neighborhoods. Moreover, through integrating the neigh-

borhood memberships, we formulate the membership distribution of data belongingness to neighborhood coverings. 

Based on the membership distributions of neighborhood coverings of different classes, we implement the three-way

classification in the final stage. The stage of three-way classification involves the modules of classification and optimization.

The three-way classifier with fuzzy neighborhood coverings classifies unknown samples according to their memberships

to different classes, and in the meantime adopts membership thresholds to divide the classified samples into certain and

uncertain cases. The parameters of membership thresholds play an important role in three-way classification and deter-

mine the uncertain boundary between different classes. Classifying samples into uncertain cases is helpful to avoid serious

misclassifications but over classification of uncertain samples will lead to bad effects. To optimize the uncertain boundary

of three-way classification, in the algorithm implementation, we use Receiver Operating Characteristic curve (ROC) [9,11] to

search for the optimum membership thresholds. ROC point consists of the True Positive (TP) rate and False Positive (FP) rate,

and the curve of ROC points under varying thresholds reflect the influences of the threshold parameters to classification. In

the ROC curve of data training, the membership thresholds corresponding to the points of high TP rate and low FP rate are

chosen as the optimal parameters for uncertain classification. 

4. Fuzzy neighborhood covering for 3-Way classification 

4.1. Neighborhood covering construction 

Neighborhood is constructed based on the similarity/distance between samples. To handle the ubiquitous mixed-type 

data with the attributes of nominal and numerical value domain, Heterogeneous Euclidean-Overlap Metric (HEOM) [30] is
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adopted to measure the sample distance according to the following formula. 

�(x, y ) = 

√ 

m ∑ 

i =1 

w a i × d 2 a i 
( x a i , y a i ) (2)

in which m is the number of attributes, w a i is the weight to present the significance of attribute a i , d a i denotes the distance

between samples x and y with respect to attribute a i and is defined as 

d a i (x, y ) = 

{
ov erla p a i (x, y ) , if a i is a symbolic attribute 
rn _ di f f a i (x, y ) , if a i is a numerical attribute 

(3)

ov erla p a i (x, y ) = 

{
0 , i f a i (x ) = a i (y ) 
1 , otherwise 

rn _ di f f a i (x, y ) = 

| a i (x ) − a i (y ) | 
max a i − min a i 

To simplify the neighborhood construction, we set all the attribute weights w a i = 1 as default. 

Based on the HEOM distance, we can construct neighborhoods through grouping nearby samples. Given a sample x , the

neighborhood O ( x ) consists of the samples surrounding x , O (x ) = { y | �(x, y ) ≤ η} , η is a distance threshold to denote the

neighborhood radius. To guarantee the neighborhood homogeneity, the radius of neighborhood O ( x ) is computed according

to the distances between x and its nearest homogeneous and heterogeneous samples [8,13] . Specifically, for a sample x ,

its Nearest Hit NH ( x ) is defined as the nearest sample belonging to the same class. For the class of only one sample, we

set NH(x ) = x . On the contrary, NM ( x ) denotes the nearest sample to x with different class label and is named the Nearest

Miss. The neighborhood radius is computed by η = �(x, NM(x )) − constant × �(x, NH(x )) . Obviously, all the samples located

within the neighborhood of radius η belong to the same class as x . 

As introduced in Section 2 , for a set of data samples { x 1 , x 2 , . . . x n } , the union of all the neighborhoods O = ∪ 

n 
i =1 

O ( x i )

forms a covering and also a set-level approximation of global data distribution. Specially, the union of the homogeneous

neighborhoods belonging to the same class d , O d = ∪{ O ( x i ) |∀ x ∈ O ( x i ) , class (x ) = d} forms an approximation of the data

distribution of d . The integration of neighborhoods can approximate data distribution but the neighborhood covering may

contain redundant neighborhoods which lead to high model complexity. Therefore, the redundant neighborhoods in ini-

tial neighborhood coverings should be further removed to simplify the approximation of data distribution. Referring to

Definition 2 and 3 , ∀ O ( x i ), O ( x j ) ∈ O d , if O ( x i ) ⊆O ( x j ), O ( x i ) is relatively reducible with respect to class d and considered to

be redundant. Through neighborhood covering reduction [8] , the reducible neighborhoods will be filtered out to generate

concise neighborhood coverings of data distribution. 

The neighborhood covering introduced above actually provides a set-level approximation of data distribution. Data sam-

ples are certainly distributed into neighborhoods, which lead to hard partitions of data space. This strategy is risky to distin-

guish uncertain data. To handle this problem, we expect to extend the set-level neighborhood coverings of different classes

to a membership mapping. 

4.2. Fuzzy extension of neighborhood covering 

Distinguishing uncertain samples requires to form a soft partition of data space. Thus we expect to construct a member-

ship mapping of different classes for uncertain data classification. To achieve this, we extend the traditional neighborhood

coverings to Fuzzy Neighborhood Coverings (FNC). The basic idea of this extension is to quantify the discrete neighbor-

hood belongingness {0, 1} to fuzzy memberships. The data samples will be distributed into neighborhoods according to

their memberships with uncertainty. Comparing with the traditional neighborhood covering model, a fuzzy neighborhood

covering consists of a group of neighborhood membership functions rather than the neighborhoods of sample sets. 

Definition 5 Fuzzy neighborhood covering. Suppose U = { x 1 , x 2 , . . . x n } is a data set and O U = { O ( x 1 ) , O ( x 2 ) , . . . , O ( x n ) } is
the set of neighborhoods of data samples. Comparing with the neighborhood covering 〈 U, O U 〉 , fuzzy neighborhood cov-

ering consists of fuzzy membership functions of neighborhoods P O U = { P O ( x 1 ) , P O ( x 2 ) , . . . P O ( x n ) } , in which P O ( x i ) denotes the

membership function of neighborhood O ( x i ) and is briefly denoted as P O i . 

The neighborhood membership functions are used to measure the possibilities of samples belonging to neighborhoods

and computed based on the distances between samples and neighborhoods. It is intuitive that the samples far from the

neighborhoods should have low memberships and the near ones should have higher possibilities. For the data samples

within neighborhoods, their memberships should be close to 1. 

Definition 6 Neighborhood membership. Given a data sample x and a neighborhood O ( x i ), x i is the neighborhood center,

the possibility of x belonging to O ( x i ) is defined based on the distance between x and x i , 

P O ( x i ) (x ) = P O i (x ) = 1 − 1 

1 + e −λ[ d(x, x i ) −η−r] 
= 

e −λ[ d(x, x i ) −η−r] 

1 + e −λ[ d(x, x i ) −η−r] 
(4)
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in which d ( x, x i ) is the distance between x and x i , η > 0 is the radius of neighborhood, λ≥ 1 denotes the distance or-

der and r ≥ 0 denotes the distance bias. The formula of neighborhood membership is similar to the sigmoid function and

∀ x i , x, P O ( x i ) (x ) ∈ [0 , 1] . 

Through investigating the possibilistic measure of neighborhood membership, we obtain the correlation between the 

sample-neighborhood distance and the neighborhood membership, see Theorem 1 . 

Theorem 1. Suppose O ( x i ) is a neighborhood, d is the distance between the neighborhood center x i and a sample x, η is the

radius of neighborhood, setting the distance order λ≥ 1 as a positive integer and the distance bias as a ratio of neighborhood

radius r = τ · η, 0 ≤ τ < 1, we infer the following results about the neighborhood membership P O ( x i ) (x ) . 

(1) If the distance d( x i , x ) = (1 + τ ) · η, P O ( x i ) (x ) = 0 . 5 . 

(2) If the distance d( x i , x ) = η, P O ( x i ) (x ) = 

e λ·τ ·η
1+ e λ·τ ·η . 

(3) P O ( x i ) (x ) → 1 at the distance η + C, C ∈ [ −η, τ · η) . 

Proof. (1) and (2) can be directly obtained according to the formula (4) , we prove (3) in the following way. Suppose d is

the distance between a sample and the neighborhood center, ε → 0 is a small positive constant, we have 

P O ( x i ) (x ) → 1 ⇒ 

e −λ·(d−η−τ ·η) 

1 + e −λ·(d−η−τ ·η) 
= 1 − ε 

⇒ e −λ·(d−(1+ τ ) ·η) = (1 − ε) · (1 + e −λ·(d−(1+ τ ) ·η) ) 

⇒ ε · [1 + e −λ·(d−(1+ τ ) ·η) ] = 1 

⇒ e −λ·(d−(1+ τ ) ·η) = 

1 − ε 

ε 

⇒ −λ · (d − (1 + τ ) · η) = ln 

(
1 − ε 

ε 

)
⇒ d = − 1 

λ
ln 

(
1 − ε 

ε 

)
+ (1 + τ ) · η

⇒ d = η + 

[ 
τ · η − 1 

λ
ln 

(
1 − ε 

ε 

)] 
Because ε → 0 is a small positive constant and λ≥ 1, we have 1 

λ
ln ( 1 −ε 

ε ) > 0 , thus d < η + τ · η. It is required that the dis-

tance d ≥ 0, for any given ε, ∃ λ, 1 
λ

ln ( 1 −ε 
ε ) ≤ (1 + τ ) · η, thus we have [ τ · η − 1 

λ
ln ( 1 −ε 

ε )] ≥ −η and d ≥ η + (−η) . �

From Theorem 1 , we know that the neighborhood membership decreases as the sample-neighborhood distance increas-

ing. The distance bias r determines the position of neighborhood membership 0.5. For the samples beyond neighborhoods,

if the distance between the samples and the neighborhood boundary is equal to r , the neighborhood membership will be

0.5. When the samples are more distant, their belongingness to the neighborhoods will become less. The distance order λ
controls the change rate of membership against distance. Setting a proper λ, we can make the samples within (or nearly

within) neighborhoods have the high membership close to 1. Fig. 2 illustrates the variation of neighborhood membership

against distance under multiple orders. In this paper work, we set the distance order λ = 1 and the bias r = η/ 3 . 

Based on the neighborhood memberships, we can further define the possibilistic measure of sample belongingness to

neighborhood coverings. 

Definition 7 Neighborhood covering membership. Given a neighborhood covering C = 〈 U, O U 〉 , P O U = { P O ( x 1 ) , P O ( x 2 ) , . . . ,
P O ( x n ) } is the corresponding fuzzy neighborhood covering, the membership of a sample x belonging to C is defined by the

maximum neighborhood membership, 

P C (x ) = max 
O ( x i ) ∈ O U 

{ P O ( x i ) (x ) } = max 
O i ∈ O U 

{ P O i (x ) } (5) 

Based on the membership of neighborhood covering, we can directly represent the possibilities of data samples belonging

to a specified class. For all the samples with class label d , U d = { x | x ∈ U ∧ class (x ) = d} , we construct the neighborhood

covering C d and further extend C d to the fuzzy neighborhood covering P C d (x ) = max 
O i ∈ O U d 

{ P O i (x ) } , P C d (x ) denotes the possibility

of a data sample x belonging to the class d . Fig. 3 shows the membership distribution of the neighborhood covering of one

class. 

4.3. Three-way classification with fuzzy neighborhood covering 

Based on the fuzzy neighborhood covering, we can construct the possibilistic representation of different classes and

thereby implement data classification. The neighborhood memberships provide an uncertain measure of sample belonging-

ness to different classes and facilitate uncertain classification. Referring to the methodologies of three-way decisions, we

formulate the Three-Way Classification with Fuzzy Neighborhood Covering (3WC-FNC). Similar to the three-way decision
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Fig. 2. Neighborhood membership. 

Fig. 3. Membership distribution of neighborhood covering. 

 

 

 

 

 

 

 

 

making, through thresholding the memberships of neighborhood coverings, the three-way classifiers based on FNC classify

the samples into three cases: Positive (certainly belonging to a class), Negative (certainly beyond a class) and Uncertain

(uncertain belongingness with respect to a class). 

Definition 8 Three-way classification with fuzzy neighborhood covering. For a class d , suppose C d = 〈 U d , O U d 
〉 is the

neighborhood covering of d and P C d (x ) is the fuzzy membership representation of C d . Given a couple of membership thresh-

olds α and β , 0 ≤β < α ≤ 1, the three-way classification of a sample x for class d is defined as follows. 

C α,β (x, d) = 

{ 

P ositi v e (certainl y bel onging to d) , P C d (x ) ≥ α
Uncertain (uncertain f or d) , β< P C d (x ) < α
Negati v e (certainly beyond d) , P C d (x ) ≤ β

(6)

If we just focus on the classification of one specific class d , we can directly perform three-way classification according

to the formula (6) . If the membership of x belonging the neighborhood covering C d is no less than the upper threshold

P C (x ) ≥ α, x is certainly classified into the class d . If P C (x ) ≤ β, x is certainly classified into the negative class of d . If

d d 
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Fig. 4. Three-way classification with FNC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

β< P C d (x) < α, x is judged as an uncertain sample with respect to the class d . Fig. 4 illustrates the one-class three-way

classification with fuzzy neighborhood covering. 

For multi-class problems, to classify an unknown sample x , we compute its memberships belonging to the neighborhood

coverings of different classes { P C d 1 (x ) , P C d 2 
(x ) , . . . , P C d m 

(x ) } and perform three-way classification according to the member-

ships. It is intuitive to certainly classify the sample x into a class iff there exists at least one neighborhood covering to judge

x as certain positive. If there is only one neighborhood covering P C d to judge x as certain positive, we certainly classify x

into the class d . For the cases of multiple certain positive judgments by heterogeneous neighborhood coverings, we assign x

to the class d that has the maximum membership d = arg max d i { P C d i | P C d i (x ) > = αd i 
} . For the non-positive cases, the classifi-

cation criteria will be relaxed, if the sample x is judged as uncertain for one class d , and in the meantime judged negative

for all the other classes, x can be classified into class d . The sample x is judged as negative for all the classes iff all the

neighborhood coverings judge x as certain negative, i.e. ∀ C d i , P C d i 
(x ) < βd i 

. Otherwise, x is classified as an uncertain sample.

To avoid the blind area of classification, the negative samples that are rejected by all the classes can also be considered as

uncertain in the algorithm implementation. The process of multi-class Three-Way Classification with Fuzzy Neighborhood 

Coverings (3WC-FNC) is formally presented in Algorithm 1 . 

5. Experimental results 

Fuzzy Neighborhood Covering (FNC) is the fuzzy extension of set-level neighborhoods and provides a more flexible way

to approximate data distributions. Based on the fuzzy neighborhood coverings of different classes, we propose a three-way

classification method (3WC-FNC) . In contrast to traditional certain classifiers, the proposed three-way classifier separates

the uncertain data and leads to robust classification results. To validate this, we implement two experiments. The first ex-

periment aims to test the ability of 3WC-FNC for uncertain data classification. In the second experiment, we overall evaluate

the performances of 3WC-FNC through comparing with other typical classification methods. To demonstrate the three-way

strategy is effective to reduce the risk of classification, we adopt multiple medical and economic data sets in the experi-

ments. The data sets are collected from the machine learning data repository, University of California at Irvine (UCI). For all

the tests of classification, 10-fold cross validation is performed on each data set. The descriptions of the adopted UCI data

sets are given in Table 1 . 

To overall evaluate the performance of the proposed three-way classification method, we adopt the measures of Accuracy,

Precision, Recall, F1 Score, Uncertain Ratio (UR) and Classification Cost as the evaluation criteria. Given a data set, suppose

the number of the positive-class samples is P and the number of the negative-class samples is N, classifying the data samples

with classifiers, TP and FP denote the numbers of true positive classified samples and false positive samples, TN and FN

denote the numbers of true negative samples and false negative samples respectively. Based on the statistics above, the

accuracy, precision, recall rate and F1 score are computed as follows to evaluate the quality of classification results. 

accuracy = (T P + T N ) / (P + N ) 

precision = T P/ (T P + F P ) 
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Algorithm 1 3WC-FNC. 

Input: Fuzzy neighborhood covering of m classes P C , C = C d 1 ∪ . . . ∪ C d m ; 
Membership thresholds of m classes, < αd 1 , βd 1 >, . . . , < αd m , βd m > ; 

Unknown sample x ; 

Output: Three-way classification result of x , Cls (x ) ; 

1: Separate P C into m fuzzy neighborhood coverings of different classes, P C = { P C d 1 , . . . , P C d m } ; 
2: Compute the memberships of x for neighborhood coverings P C d 1 

(x ) , . . . , P C d m (x ) ; 

3: Initialize classification results of x for m classes, Cls (x, d 1 ) , . . . , Cls (x, d m ) ← φ; 

4: for each class d i , i = 1 , . . . , m do 

5: if P C d i 
(x ) ≥ αd i 

then 

6: Cls (x, d i ) = positive ; 

7: else 

8: if P C d i 
(x ) ≤ βd i 

then 

9: Cls (x, d i ) = negative ; 

10: else 

11: Cls (x, d i ) = uncertain ; 

12: end if 

13: end if 

14: end for 

15: 

PD = { d i | Cls (x, d i ) = positive } ;
ND = { d j | Cls (x, d j ) = negative } ;
UD = { d j | Cls (x, d j ) = uncertain } ;

16: if | PD = { d}| = 1 then 

17: Cls (x ) = positive d ; 

18: else 

19: if | PD | > 1 then 

20: d = arg max 
d i ∈ PD 

{ P C d i (x ) } , Cls (x ) = positive d; 

21: else 

22: if | UD = { d}| = 1 and | ND | = m − 1 then 

23: Cls (x ) = positive d ; 

24: else 

25: Cls (x ) = uncertain ; 

26: end if 

27: end if 

28: end if 

29: Return Cls (x ) . 

Table 1 

Experimental data sets. 

Data sets Feature Instance Class ratio Attribute type 

Australian Credit 14 690 45% vs. 55% Mixed 

Banknote Authentication 4 1372 44% vs. 56% Numerical 

Breast Cancer (Diagnostic) 32 569 37% vs. 63% Numerical 

Breast Cancer (Original) 10 699 35% vs. 65% Mixed 

Diabetes 8 768 35% vs. 65% Mixed 

Mammographic Mass 6 961 49% vs. 51% Numerical 

Sonar 60 208 47% vs. 53% Numerical 

Vertebral Column 6 310 32% vs. 68% Numerical 

 

 

 

 

 

recall = T P/ (T P + F N) 

F 1 = 2 · precision · recal l / (precision + recal l ) 

Besides the measures of classification precision, we also adopt the uncertain ratio, i.e. the ratio of classified uncertain sam-

ples, to evaluate the ability of classifiers to distinguish uncertain cases. 

ur = | Uncertain (U ) | / | U | 
Assuming correct classifications cause no cost, λNP , λPN , λU denote the costs of false-positive classification, false-negative

classification and uncertain case classification respectively, the total classification costs are defined in the following formula

to measure the classification risk. 

cos t = λNP · F P 

P + N 

+ λPN · F N 

P + N 

+ λU · ur 

In the medical and economic data sets, the minimum class generally denotes the class of high classification risk, such as the

class ’malignant’ in Breast Cancer data. Thus we assume the minimum class as positive class and set λPN / λNP / λU = 5 / 1 / 0 . 5

in the following experiments. 
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Fig. 5. Classification costs of 3WC-FNC and NC on multilevel noisy data. 

Fig. 6. F1 scores of 3WC-FNC and NC on multilevel noisy data. 

 

 

 

 

 

 

 

 

 

 

 

5.1. Evaluation on uncertain classification 

This experiment involves two tests to validate the ability of the proposed 3WC-FNC for uncertain classification. First we

expect to demonstrate the fuzzy extension of neighborhood covering is helpful to improve the classification of uncertain

cases. Because the inconsistency between training data and test data will bring about uncertain cases for classification,

we produce the uncertain cases for classification through adding noise to test data. Adding multilevel noise to test data

to produce the multi-grade uncertain data, we compare the classification with traditional neighborhood covering (NC) and

the three-way classification with fuzzy neighborhood covering (3WC-FNC). Figs. 5–8 show the classification cost, F1 score,

precision and accuracy of NC and 3WC-FNC methods against the noise level from 0% to 50% and Table 2 presents the

corresponding classification results. 

It can be found that the three-way classification with FNC achieves better performance than the certain classification with

NC on multi-grade uncertain data. The fuzzy neighborhood membership and the three-way classification strategy facilitate

to distinguish the uncertain cases and thereby greatly reduce the classification cost. Moreover, 3WC-FNC produces the higher

precision and recall rate, which means the more precise classification for the positive class (risky class). Separating uncertain
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Fig. 7. Recall rates of 3WC-FNC and NC on multilevel noisy data. 

Fig. 8. Classification accuracies of 3WC-FNC and NC on multilevel noisy data. 
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cases without assigning classes, 3WC-FNC produces lower accuracy on low-level noisy data than the certain classification

method. But for the classification on high-level noisy data, as the certain misclassification increases, 3WC-FNC achieves the

similar accuracy as the certain NC-based classification. 

In the second test, we further compare the proposed three-way classification method (3WC-FNC) with a typical Three-

ay Decision (3WD) model based on Probabilistic Attribute Reduction [35] . Probabilistic attribute reduction formulates

three-way decision rules through constructing the probabilistic attribute reducts, which partition samples into positive, neg-

ative and boundary cases for a given class. Different from the neighborhood covering handling mixed-type data, probabilistic

attribute reduction is used to extract decision rules from discrete data. For the tests on mixed/numerical data, we apply the

supervised Multi-interval Discretization methods (MDL) and the unsupervised Equal-width Discretization methods (5 bins

and 3 bins) [10,31] to discretize the numerical attribute values into discrete ones. Fig. 9 illustrates the classification re-

sults of 3WC-FNC and 3WD with different discretization strategies and Table 3 presents the details. We find that the 3WD

based on attribute reduction is sensitive to discretization methods. The preprocessing of discretization may bring about the

information loss and thus leads to low-quality decision rules. Depending on the superiority of neighborhood covering on

mixed-type data, 3WC-FNC achieves better performances. 
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Table 2 

Classification results on multilevel noisy data. 

Noise level Methods Cost ( 10 −2 ) Accuracy (%) Precision (%) Recall (%) F1 score (%) 

No noise 3WC-FNC 44.8 76.7 73.5 88.3 80.1 

NC 62.6 77.8 76.3 79.2 77.5 

5% 3WC-FNC 51 74.5 71.1 86.3 77.8 

NC 67.2 76.1 74.3 77.7 75.7 

10% 3WC-FNC 63.3 70.3 67.6 81.9 73.9 

NC 81.9 71.1 69 72.5 70.5 

15% 3WC-FNC 76.9 65.4 62.7 77.2 69 

NC 91.1 67.7 65.5 69.4 67.1 

20% 3WC-FNC 78.1 65.6 63.7 76.7 69.4 

NC 95 67.1 65.6 68.1 66.6 

25% 3WC-FNC 80.6 64.1 61.6 75.8 67.7 

NC 96.6 66 63.9 67.4 65.4 

30% 3WC-FNC 101.7 57.5 56.4 68.6 61.6 

NC 124.1 57.3 55.8 58.5 56.7 

35% 3WC-FNC 135.1 48.7 51.6 58.2 54.6 

NC 157.5 48.6 50.2 48.5 49.3 

40% 3WC-FNC 138.1 48.1 51.7 57.6 54.3 

NC 159.3 48.2 50.6 48.7 49.5 

45% 3WC-FNC 135.6 48.7 52 58.3 54.5 

NC 161 48 50.9 48.4 49.2 

50% 3WC-FNC 128.8 46.7 44.8 57.3 50.1 

NC 144.4 49.2 45.4 49.3 47.2 

Fig. 9. Classification results of fuzzy neighborhood covering (3WC-FNC) and probabilistic attribute reduction (3WD- discretization). 

Table 3 

Classification results of 3WC-FNC and 3WD with discretization. 

Methods TP (%) FN (%) ur (%) Cost ( 10 −2 ) Acc (%) Prec (%) Recall (%) F1 (%) 

3WC-FNC 85 4.72 6.12 13.11 90.88 96.74 94.63 95.48 

3WD-MDL 76.36 13.39 7.42 28.28 86.97 97.39 83.71 88.27 

3WD-5bins 83.13 16.87 0 34.58 92.1 95.93 83.13 88.62 

3WD-3bins 74.6 22.28 1.4 44.29 88.75 96.11 76.59 84.58 

 

 

 

5.2. Overall evaluation 

The second experiment overall evaluates the proposed 3WC-FNC method. Focusing on the evaluation of classification risk,

we compare 3WC-FNC with three elegant classification methods: Naive Bayes, Support Vector Machine (SVM) and Decision

Trees (J48), and other three typical cost-sensitive classification methods: Cost-sensitive Bayes, Cost-sensitive Decision Trees
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Fig. 10. Classification results of different classification methods. 

Table 4 

Overall evaluation of different classification methods. 

Methods TP (%) TN (%) Cost ( 10 −2 ) Acc (%) Prec (%) Recall (%) F1 (%) 

Naive Bayes 80.65 82.01 48.03 81.89 75.93 80.65 77.76 

Decision-Tree (J48) 76.76 87.59 51.63 83.69 79.5 76.76 78.04 

SVM 75.36 89.79 51.29 85.06 83.2 75.36 78.36 

Cost-sensitive Bayes 89.99 73.29 35.55 80.12 70.8 89.99 78.7 

Cost-sensitive J48 90.39 72.45 35.51 79.29 70.12. 90.39 78.15 

Cost-sensitive Bayes Net 90.41 74.94 34.59 80.88 71.96 90.41 79.43 

3WC-FNC 85.75 82.96 33.49 84.56 80.19 87.26 83.10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and Cost-sensitive Bayes Net. We perform the classification methods on all the test data sets, Fig. 10 illustrates the average

classification results for each method and the details are presented in Table 4 . 

From the experimental results, we find that 3WC-FNC and SVM obtain the top precise results, and 3WC-FNC achieves

the lowest classification cost. Because of the abstaining uncertain samples in three-way classification, 3WC-FNC produces

slightly lower accuracy and precision than SVM. However, without considering the classification risks, SVM suffers much

classification costs. Considering the classification risks of different classes, all the cost-sensitive methods achieve lower clas-

sification costs. To reduce the classification costs, the cost-sensitive methods tend to over classify the negative samples

into the positive class (risky class) and thus lead to the low precision. Through separating uncertain samples according to

memberships, 3WC-FNC can balance the classification precision and recall rate and therefore induce the highest F1 score.

In general, the three-way classifier based on fuzzy neighborhood coverings achieves better performances than the certain

classifiers. The three-way strategy and the fuzzy representation of neighborhood belongingness are effective to reduce the

classification cost, and in the meantime guarantee the precise classification results. 

6. Conclusion 

To improve the classification with neighborhood covering for uncertain data, in this paper, we propose a three-way classi-

fication method with fuzzy neighborhood covering. The research work involves two parts: fuzzy extension of neighborhood

covering and three-way classification with fuzzy neighborhood covering. Rather than neighborhoods, fuzzy neighborhood

covering consists of neighborhood membership functions and the neighborhood belongingness is quantified into continuous

membership values. Based on the fuzzy neighborhood membership, we further formulate the three-way classification. Data

samples are classified into three cases of Positive (certainly belonging to a class), Negative (certainly beyond classes) and

Uncertain through thresholding memberships. The separation of uncertain samples facilitates to reduce the classification

risk. Experiments verify the effectiveness of the proposed three-way method for uncertain data classification. Our future

work will focus on the following issues. The first issue is to further investigate the parameter optimization strategy which

involves the uncertain classification results. Second, the memberships are computed based on Euclidean distances which
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is not effective in the extremely high-dimensional data space, therefore we try to utilize the kernel methods to construct

neighborhood coverings to implement uncertain classification on high-dimensional data. 
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