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Many efforts have focused on studying techniques for selecting most informative features from data sets.
Especially, the related family-based approaches have been provided for attribute reduction of covering in-
formation systems. However, the existing related family-based methods have to recompute reducts for dynamic
covering decision information systems. In this paper, firstly, we investigate the mechanisms of updating the
related families and attribute reducts by the utilization of previously learned results in dynamic covering de-
cision information systems with variations of attributes. Then, we design incremental algorithms for attribute

reduction of dynamic covering decision information systems in terms of attribute arriving and leaving using the
related families and employ examples to demonstrate that how to update attribute reducts with the proposed
algorithms. Finally, experimental comparisons with the non-incremental algorithms on UCI data sets illustrate
that the proposed incremental algorithms are feasible and efficient to conduct attribute reduction of dynamic
covering decision information systems with immigration and emigration of attributes.

1. Introduction

Covering rough set theory, pioneered by Zakowski[62] in 1983, has
become a useful mathematical tool for dealing with uncertain and im-
precise information in practical situations. As a substantial constituent
of granular computing, covering-based rough set theory has been ap-
plied to many fields such as feature selection and data mining without
any prior knowledge. Especially, covering rough set theory is being
attracting more and more attention in the era of artificial intelligence,
which provides powerful supports for the development of data pro-
cessing technique.

Many researchers[1,5,8-11,15,17-22,25,27,28,31,34,41,42,48-50,
52-56,58-61,64-69] have studied covering-based rough set theory. For
example, Hu et al.[8] proposed a matrix representation of multi-
granulation approximations in optimistic and pessimistic multi-
granulation rough sets and matrix-based dynamic approaches for up-
dating approximations in multigranulation rough sets when a single
granular structure evolves over time. Lang et al.[15] presented incre-
mental approaches to computing the second and sixth lower and upper
approximations of sets in dynamic covering approximation spaces. Luo
et al.[29] investigated the updating properties for dynamic
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maintenance of approximations when the criteria values in the set-va-
lued decision system evolve with time and proposed two incremental
algorithms for computing rough approximations with the addition and
removal of criteria values. Wang et al.[49] transformed the set ap-
proximation computation into products of the type-1 and type-2 char-
acteristic matrices and the characteristic function of the set in covering
approximation spaces. Yang et al.[54] provided a new type of fuzzy
covering-based rough set model by introducing the notion of fuzzy f3-
minimal description and generalized the model to L-fuzzy covering-
based rough set which is defined over fuzzy lattices. Yang et al.[56]
provided related family-based methods for computing attribute reducts
and relative attribute reducts for covering rough sets, which remove
superfluous attributes while keeping the approximation space of cov-
ering information system unchanged. Yao et al.[61] classified all ap-
proximation operators into element-based approximation operators,
granule-based approximation operators, and subsystem-based approx-
imation operators.

Knowledge reduction of dynamic information systems[2-4,6,7,
12-14,16,19,23,24,26,29,30,32,33,35,36,38-40,43-47,51,57,63,66]
has attracted more attention. For example, Chen et al.[3] employed an
incremental manner to update minimal elements in the discernibility
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matrices at the arrival of an incremental sample. Huang et al.[12]
presented the extended variable precision rough set model based on the
A-tolerance relation in terms of Bhattacharyya distance and incremental
mechanisms by the utilization of previously learned approximation
results and region relation matrices for updating rough approximations
in set-valued information systems. Lang et al.[14] focused on knowl-
edge reduction of dynamic covering information systems with varia-
tions of objects using the type-1 and type-2 characteristic matrices. Li
et al.[19] discussed the principles of updating P-dominating sets and P-
dominated sets when some attributes are added into or deleted from the
attribute set P. Luo et. al[30] analyzed the dynamic characteristics of
conditional partition and decision classification on the universe when
the insertion or deletion of objects occurs and presented incremental
algorithms for updating probabilistic approximations, which are profi-
cient to efficiently classify the incremental objects into decision regions
by avoiding re-computation efforts. Qian et al.[35] defined a new at-
tribute reduct for sequential three-way decisions and designed attribute
reduction algorithms satisfying the monotonicity of the probabilistic
positive region, which provide a new insight into the attribute reduc-
tion problem of sequential three-way decisions. Xu et al.[51] in-
troduced the stream computing learning method on the basis of existing
incremental learning studies and solved the challenges resulted from
simultaneous addition and deletion of objects. Yang et al.[57] provided
an insight into the incremental process of attribute reduction with fuzzy
rough sets which reveals how to add new attributes into the current
reduct and delete existing attributes from the current reduct and two
incremental algorithms of attribute reduction with fuzzy rough sets for
one incoming sample and multiple incoming samples, respectively.
Zhang et al.[63] proposed incremental approaches for computing the
lower and upper approximations with dynamic attribute variation in
set-valued information systems.

In real-world decision making, there are many covering decision
information systems such as incomplete information systems and set-
valued information systems, and researchers have proposed many
methods for attribute reduction of covering decision information sys-
tems on the basis of discernibility matrices. Especially, we observe that
the third lower and upper approximation operators are regarded as the
most reasonable in covering-based rough sets, and discernibility ma-
trices-based attribute reduction methods can not work for constructing
attribute reducts of covering decision information systems with respect
to the third type approximation operators. Meanwhile, we see that the
related families-based methods proposed by Yang[56] are very effective
for knowledge reduction of covering decision information systems,
which bridge the gap where the discernibility matrix is not applicable.
In practical situations, covering decision information systems are
varying with time. Especially, there are many dynamic covering deci-
sion information systems with variations of object sets, attribute sets
and attribute values, and knowledge reduction of dynamic covering
decision information systems is a significant challenge of covering-
based rough sets. Furthermore, we find that there are few researches on
knowledge reduction of dynamic covering decision information systems
using the related families, and non-incremental approaches are time-
consuming for knowledge reduction of dynamic covering decision in-
formation systems with respect to the third lower and upper approx-
imation operators. Therefore, the incremental learning technique is
desired to improve computational efficiency of attribute reduction of
dynamic covering decision information systems by employing the pre-
vious reduct results.

The purpose of this paper is to investigate attribute reduction of
dynamic covering decision information systems. First, we study attri-
bute reduction of dynamic covering decision information systems with
immigrations of attributes. Concretely, we analyze the mechanisms of
updating the related sets of objects in dynamic covering decision in-
formation systems with attribute arriving, and construct the related
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families of dynamic covering decision information systems based on
those of original covering decision information systems. Meanwhile, we
investigate the relationship between attribute reducts of dynamic cov-
ering decision information systems and those of original covering de-
cision information systems, and provide incremental algorithms for
updating attribute reducts of dynamic covering decision information
systems with attribute arriving. Second, we investigate attribute re-
duction of dynamic covering decision information systems with emi-
grations of attributes. Concretely, we illustrate the mechanisms of
constructing the related families of dynamic covering decision in-
formation systems based on those of original covering decision in-
formation systems. After that, we investigate the relationship between
attribute reducts of dynamic covering decision information systems and
those of original covering decision information systems and propose
incremental algorithms for updating attribute reducts of dynamic cov-
ering decision information systems with attribute leaving. Finally, we
provide heuristic incremental algorithms for updating attribute reducts
of dynamic covering decision information systems with immigration
and emigration of attributes and employ the experimental results on
UCI data sets to indicate that the proposed algorithms outperform the
static algorithms while inserting into or removing from attribute sets in
dynamic covering decision information systems.

The rest of this paper is organized as follows: In Section 2, we briefly
review the basic concepts of covering-based rough set theory. In
Section 3, we study updated mechanisms for constructing attribute
reducts of dynamic covering decision information systems with varia-
tions of attribute sets. In Section 4, we provide heuristic algorithms for
computing reducts of dynamic covering decision information systems.
In Section 5, we employ the experimental results to illustrate that the
related families-based incremental approaches are effective to perform
attribute reduction of dynamic covering decision information systems.
Concluding remarks and further research are given in Section 6.

2. Preliminaries

In this section, we briefly review some concepts of covering-based

rough sets.
Suppose S=(U,A,V,f) is an information system, where
U = {x, %, ---,X,} is a finite set of objects, A is a finite set of attributes,

V={V,la € A}, where V, is the set of values of attribute a,
and card(V,) > 1, f is a function from U X A into V, and the indis-
cernibility relation INDB)CU X U is defined as follows:
INDB) ={(x,y) e UX U|VYbe€B,b(x)=>b(y)}, where b(x) and
b(y) denote the values of objects x and y on beBCA, respectively.
Especially, we have the equivalence class [x]p = {y € Ul(x, y) € IND(B)}
for x e U.

Definition 2.1. [37] Let S = (U, A, V, f) be an information system, and
BCC. Then the Pawlak upper and lower approximations of XC U with
respect to IND(B) are defined as follows:

RX)={xeUllxlg nX # @}, RX) = {x € Ul[x]s € X}.

According to Definition 2.1, we see that Pawlak rough set model is
constructed on an indiscernibility relation or a family of equivalence
classes, and each object is classified into a certain concept in the Pawlak
rough set model. But different concepts of the universe usually overlap,
and the condition of the equivalence relation is so strict that limit its
application in practical situations.

Subsequently, Zakowski[62] employed the covering of the universe
to establish a covering based generalized rough sets as follows.

Definition 2.2. [62] Let U be a finite universe of discourse, and % a
family of subsets of U. Then % is called a covering of U if none of
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elements of ¢ is empty and |J{C|C € &} = U. Furthermore, (U, %) is
referred to as a covering approximation space.

If U is a finite universe of discourse, and A = {#, %, ..., %}, where
% (1 <i<m)is a covering of U, then (U, A) is called a covering in-
formation system; (U, A, &) is called a covering decision information
system, where A and 2 denote coverings and partition based on con-
ditional attributes and decision attributes, respectively.

Example 2.3. Let U = {x, %, X3, X4, X5, Xg, X7, Xg} be eight houses,
C = {quality} the attribute set, the domain of quality is {high, middle,
low}. We employ the specialists A and B to evaluate these houses and
show their evaluation reports as follows:

highy, = {x, X4, Xs, X7}, middles = {X, xs}, lowy = {x3, X¢};
highs = {x1, %, X4, X7}, middleg = {xs}, low = {x3, X, Xs},
where high, denotes the houses belonging to high quality by the

specialist A, and the meanings of other symbols are similar. Since
their evaluations are of equal importance, we consider all their advice
and derive the covering approximation space (U, %), Where
Bprice = {highaye, middle,yp, lowyyp}, and

highayp = highy U highg = {x1, %, X4, Xs, X7};

middleyyg = middley, U middleg = {x,, X5, Xs};

lowyy g lowy U lowg = {x3, X¢, Xg}.

Definition 2.4. [69] Let (U, %) be a covering approximation space, and
Md,(x)={Ke ¢IxeKA(VSEFAXESASCK=>K=S)} for
x € U. Then Mdy(x) is called the minimal description of x.

By Definition 2.4, we observe that the minimal description of x is a
set of the minimal elements containing x in %. For a covering % of U, K
is a union reducible element of %, ¥ — {K} and ¢ have the same Md(x)
for x € U. If K is a union reducible element of # if and only if K ¢ Md(x)
for any x € U, and denote .7, = {Mdys(x)|x € U} with respect to a
family of coverings A.

Definition 2.5. [69] Let (U, %) be a covering approximation space, and
Md,(x) the minimal description of x € U. Then the third lower and
upper approximations of X C U with respect to % are defined as follows:

CLy(X) = U{K e %K C X};
CHy(X) = U{K € Mdy(x)|x € X}.

According to Definition 2.5, we see that the third lower and upper
approximation operators are typical representatives of non-dual ap-
proximation operators for covering approximation spaces. Further-
more, we have CL,(X)=UlKe %|3xeU, s.t.
(K € Mdg(x)) A (K C X)} with the minimal descriptions. Especially,
we have CLyx(X) = U{K € Mda(x)|K C X} and CHyx(X) For simpli-

= U{K € Md ,(x)|x € X}.
city, we denote POSys(X) = CLys(X), NEGys(X) = UNCH (X)) and
BNDys(X) = CHya (X)\CLya (X).

Definition 2.6. [56] Let (U, A, &) be a covering decision information
system, where U= {x,X%, ...x,}, A={%, %, .., %m}, and
2 = {D, D, ...,D¢}. Then

(1) if there exists K€ MdA(y) and D; € & such that x e KCD; for
any x € U, where y € U, then (U, A, 2) is called a consistent covering
decision information system.

(2) if there exists xeU but 3 K € UA and D; € & such that
x€KCD;, then (U, A, 2) is called an inconsistent covering decision
information system.

By Definition 2.6, we see that all covering information systems are
classified into consistent covering decision information systems and
inconsistent covering decision information systems. For simplicity, the
symbols .Z <2 and .#Z,;x» ¥ 2 denote (U, A, Z) is a consistent cov-
ering decision information system and an inconsistent covering decision
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information system, respectively.

Definition 2.7. [56] Let (U, A, 2) be a covering decision information
system, where U= {x, %, ..Xn} A={A, %, .., Gm}s
Z ={Dy, Dy, ..,Dy}, and POS A (2) = |J{POSya(D;) |Di€Z}. Then

(1) if POSyA(2) = POSua—(¢3(2) for % € A, then ¢ is called su-
perfluous relative to Z; Otherwise, %; is called indispensable relative to
7

(2) if every element of PCA satisfying POS p(Z) = POSys(2) is
indispensable relative to &, then P is called a reduct of A relative to 7.

By Definition 2.7, we observe that a reduct P satisfies two conditions
as follows: (1) POS p(Z) = POS,a(2); (2) POSya(2) # POS p—i43(2)
for any %; € A. Furthermore, the first condition indicates the joint suf-
ficiency of the covering set P, and the second condition means that each
covering in P is individually necessary. Therefore, P is the minimum
covering set keeping the positive regions of decision classes.

Definition 2.8. [56] Let (U, A, 2) be a covering decision information
system, where U = {x, %, Xn} A={A, %, .., G}y
A={C, €UA| 3D, € 7, s.t. CGeCD}, and r(x) = {# € A| 3 G € %,
s.t. x€ Ce?}, and R(U, A, Z) = {r(x)|x € POS,a(Z)} the related
family of (U, A, ). Then

D) fU, A, 2) = AfVrx)|r(x) € R(U, A, 2)} is the related func-
tion, where \/r(x) is the disjunction of all elements in r(x);

2 gU, A 2)= £=1{/\A[|A,- C A} is the reduced disjunctive form
of f(U, A, 2) with the multiplication and absorption laws.

By  Definition 2.8, we get the related function
fU, A 2)= AN{Vr@)|r(x) € R(U, A, 2)} and its reduced disjunctive
form g(U, A, 2) = \/'_1{\AilA; C A}. Especially, we obtain attribute
reducts Z(U, A, Z) = {Ay, Ay, ...,A} for the covering decision informa-
tion system (U, A, 2) with the reduced disjunctive form g(U, A, 2).

Algorithm 2.9. (Non-Incremental Algorithm of Computing Z (U, A, 2)
of (U, A, 2))

Step 1: Input (U, A, 2);

Step 2: Construct POS s (2) = |J{POSua (D)) |D:€Z};

Step 3: Compute R(U, A, Z) = {r(x)|x € POSua(2)};

Step 4: Construct f(U, A, 2) = A{Vr®)|r(x) € R(U, A, 2)} =

{AAA; € AL
Step 5: Output Z (U, A, 2).

We employ two examples to illustrate how to construct attribute
reducts of consistent and inconsistent covering decision information
systems as follows.

Example 2.10. (1) Let (U, A, Z) be a consistent covering decision
information system, where U = {x, %, ....Xs}, A = {41, %5, €, %, %}, and
7 = {1, %, X3}, (X4, Xs, Xg}, {x7, xs}}, where

% = {Pa, xh D, x3, xa}, {3}, {xal, (s, X6}, X6, X7, x5}};

% = {Pa, %3, xa}, o, x3}, (x4, x5}, {xs, X6}, (X6}, X7, x8}};

% = {Pak, ba, %, x3}, Do, X3}, {6, X4, Xs, X6}, 1%s, X7, Xs}};

% = {{a, %, x4}, Do, X3}, (x4, Xs, X6}, (X6}, X7, Xs}};

% = {{a, %, x3}, {xa}, (x5, X6}, {xs, X6, Xs}, {x45 X7, Xg}}.

By Definition 2.8, firstly, we have r(xq)=1{%, 6, %}, r(%)

=1{%, G, G, G, G} r(a)={%, ¢, 6, 4G, %L () ={4, 6, G, G},
r(xs) = {4, ©, G, G 1(x6) =1{4, @, G, G}, 1(x7) ={%, %} and
r(xg) = {%, %}. Secondly, we get R(U, A, 2) = {{%, %, %}, {4, &,
G, Gy G} G, G G G}, {6, G} and
AVr®|r(x) € RU, A, 2)}
(GV GV B)AN(ANY G GV GY %)

ANGONY GV G G)A(GBY )
(v GV %) A (B G)
(GAGC)V(GAG)V(GHAG)Y (G A G

V(%A GGV (G A G).

fW, A, 2)
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Therefore, we have AU, A, 2)={{@, 6}, {6, %},
(%, &3 1%, 4} (%, G4 1{%, Gl

(2) Let (U, A, 2) be an inconsistent covering decision information
system, where U={x,%, ..X}, A={%, %, &, %}, and
Z = {{x, %, X3}, X4, Xs, X6}, {X7, Xs}}, where

7 = (P, %, X3, X4}, {6, X6, X7}, (X4, X5}, (X6}, (X7, Xs}}s

% = {Pa), e, X3, X4}, x4, X5}, (X4, Xs, X6}, {X6, X7, Xs}};

% = {Pak, ba, X3, x4}, 09, x5, X4, X8}, 03, X4, X5, X6, X735

% = {Pa, x4, xs}, Do, X3, X4, X5}, (X4, X5, Xg, X7, Xg}}.

By Definition 2.8, firstly, we get r

() ={%, @G}, r(e) = B, r() = &, r(xs) = {%, &}, r(xs)
={%, %}, r(xe)

={%, @} r) ={%} and r(xs) ={%}.

R, A, 2) ={{%, &}, {4, %} {4} and

fW, A, 2) = NVr®)Ir(x) € RU, A, )}
(Bav &) NGV ) NG
(B2V &) A&

(GLn &)V (G A B

After that, we obtain

Therefore, we get Z (U, A, 2) = {{#4, 6}, {4, 41},

3. Related family-based attribute reduction of dynamic covering
decision information systems

In this section, we study the related family-based attribute reduction
of dynamic covering decision information systems with variations of
attribute sets.

Definition 3.1. Let (U, A, 2) and (U, A", &) be covering decision
information systems, where U = {x3, %, ...X;,}, A = {4, %, ..., %}, and
A ={%, ©,..., 6m» m+1}. Then (U, At, 2) is called a dynamic covering
decision information system of (U, A, 2).

According to Definition 3.1, if (U, A, 2) is a consistent covering
decision information system, then we see that (U, A, 2) is consistent
when adding %,4+1 into (U, A, &). Furthermore, if (U, A, ) is an in-
consistent covering decision information system, we notice that
(U, &, Z) is consistent or inconsistent when adding 4,4, into
(U, A, 2). In practical situations, there are many dynamic covering
information systems, and we only discuss dynamic covering decision
information systems with variations of attribute sets in this section.

Example 3.2. (Continuation from Example 2.10) (1) Let (U, A, Z) and
(U, &, Z) be covering decision information systems, where U = {x, %,
Xl A={A, G, G, G, G, A ={7, &, G, G, G, %), and
7 = {{x, %, 13}, (x4, x5, X6}, 07, xg}},  Where % ={{x, x4, x5}, {0}, {x3, x4, X6},
{3, X5, X7}, {x7, xg}}. According to Definitions 2.6 and 3.1, we see that
(U, &, 7) is a dynamic covering decision information system of
(U, A, 2). Especially, we observe that (U, A, &) and (U, A", &) are
consistent covering decision information systems.

(2) Let (U, A, ) and (U, A", Z) be covering decision information
systems, where U = {x, %, \eXg), A =1{R, ¢, 6, G},
& ={@, 6, &, G, %}, and Z = {{x, %, X3}, {x4, X5, X}, {X7, Xs}}, where
% = {{xa, Xs, X}, (X4, X5}, 1%, X3, X4}, {Xs, Xg, X7, Xg}}. By Definitions 2.6
and 3.1, we observe that (U, A", 2) is a dynamic covering decision
information system of (U, A, &). Specially, we see that (U, A, &) and
(U, A, &) are inconsistent covering decision information systems.

Suppose (U, A", 7) and (U, A, &) are covering decision information
systems, where U = {x, %, Xn} A={7, G, ...Cnl and
& = {B, Coyeres by Gt S ={CeUAIDj€Z, st CCDy
S ={CEUN|IDj€T, st. CCD},  Agu, ={CE Gu1lIDj€Z, st CCDj
r(x)={#€A3Ce ., st. xeCe %}, and r*(x) ={% € A I C € .y,

st. xe Ce ¢}

Theorem 3.3. Let (U, A, 2) and (U, AY, &) be covering decision
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information systems, where U = {x, %, ...X,}, A ={@, %, ..., 6n}, and

A = {4, C,..., Gy Cmsr1}. Then we have

() U{Gns), if x€ Uy,
rt(x) =

r(x), otherwise.

Proof. By Definition 2.8, we have r(x)={#€ A|3C € .#4,
st. xe Ce 7}, and r={ZeA|ICe . Zy st.xelCec}
Since N={F, Coyeees by Cmsr)s it follows that rt
xX)={F€eAICeE ¥, st. xeCE F}U{Gus1|l ICE Gy,

s.t. x € C € Gp4} for xe U. For simplicity, we denote U .o%,  , = U
{C|C € €nt1, 3D € Z, st. CC D So we get rt(x) = r(x) U {Gn+1}
and r*(y) =r() for xeu.o%,,, and y¢& U, respectively.
Therefore, we obtain

r() U{Gnsd, if xe Uy 1
rr(x) =

rx), otherwise.

a

Theorem 3.3 illustrates the relationship between r(x) of (U, A, 2)
and r*(x) of (U, A, &). Concretely, we construct the related set r*(x)
on the basis of the related set r(x), which reduces time complexity of
computing the related family R(U, A", &). Especially, we only need to
compute .oZ;,, , for attribute reduction of dynamic covering decision
information system (U, Af, &), and we get r*(x)=r(x) and
rt(x) = r(x) U {%n+1} when U.o%, =@ and U .o%, , = U, respec-
tively, for x e U.

Theorem 3.4. Let (U, A, Z) and (U, AY, Z) be covering decision
information systems, where U ={x, %, .. X}, A={%, G, ... %}
& =A%, Crs by Gt

Af (U, A, 2) = (Nsxerosia@ rsgvsa, VFOD N Gner = Vicd A A
|AjCAl,  and  AZ(U, A, 2)={N|TA €U, A, D), st AcC
A, 1 <j< 1} If POSyst(2) = POSya(2), then #W, &, 2)= #(U, A, 2)u
(A2 (U, A, 2)).

Proof. Taking A; € #Z(U, A, Z), by Definition 2.5, we have
POSuA(Z) = POSa(Z) and POSua(Z) # POSua_14y(2) for % € A,
We also get POSyx+(Z) = POSya,(2) and POSys,(Z) # POSp—143(2)
for % € A, So A € #(U, &, 2). Thus, we obtain
2U, A, ) C #(U, &, 7). Furthermore, taking A’j € A (U, A, 2),
it implies that POSys (2) = POSL)AVJ. (2) and POSL)AVJ. (2) + POSM},W(@)
for % €4, It follows that A€ #(U, A, ). So we get
AU, A, Z2)U (a2 (U, A, 2)) C #(U, &, Z). Furthermore, we
have #(U, &, 7) = %,(U, &, 7) U %, (U, &, Z), where
(U, &, 2) ={Ai| G & A, A € Z(U, &, 2)} and %, (U, A, ) =
{Ai|Gur1 € A, A € 2 (U, A, 2)). Obviously, we obtain
AZ (U, A, 2) C (U, &, Z). To prove #,(U, &, 2)CAZ (U, A, 2),
we only need to prove %,(U, A", 2)~\(a#Z (U, A, Z)) = @. Suppose we
have A ={@y, @,y &1, Guia) € (U, &, 2)AZ(U, A, 7), there
exists xe€ #(U, A, ) such that %yert(x)X <i'<l). If
%m+1 € rT(x), then % is superfluous relative to 2. It implies that
bms1 & rT(x). It follows that A € AZ (U, A, Z), which is contradicted.
So (U, &, D)NARU, A, 2))=@. Thus AZU, A, 2)=
#, (U, &, 7). Since % (U, &, 2) C #(U, A, Z), so we have
AU, &, 2)C#(U, A, 2)U (aAZ(U, A, Z)). Therefore, #(U, &+, 7) =
AU, A, 2)U (a2 (U, A, 2)). O

Theorem 3.4 illustrates the relationship between # (U, Af, &) of
(U, &, 2) and #Z(U, A, Z) of (U, A, Z). Concretely, we construct the
attribute reducts #Z(U, A, &) on the basis of #(U, A, &), which re-
duces time complexities of computing attribute reducts of (U, A, Z).
Especially, we only need to construct A#Z (U, A, &) for attribute re-
duction of (U, A, &). Furthermore, each reduct of Z(U, A, ) belongs
to #(U, A, Z), so there is no need of computation if we want to get
only a reduct of (U, A", Z), and we get reducts containing &, for
(U, &, 2) by Theorem 3.4.
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Theorem 3.5. Let (U, A, 2) and (U, &Y, &) be covering decision
information systems, where U = {X;, %, ..., Xn}, A ={%, &, ..., %y}, and
A ={B, Geres by Cur1)- If POSus+(2) # POSya(Z), then we have
r*(x) = {Gn41} for x € POS x+(Z)~POS A (D).

Theorem 3.5 illustrates some properties of the related family
R(U, A", 2) when POS xt(Z) # POSua(Z). Concretely, we get the re-
lated set r*(x) = {%,+1} for x € POS x+(Z)~POSys(Z). In other words,
%m+1  belongs to each reduct of #(U,AY,Z) when
POS s+ (Z) # POS_A(D).

Theorem 3.6. Let (U, Af, ) and (U, A, &) be covering decision
information systems, where U = {x, %, ...X.}, A={%, %, .., %n},
A& ={G, Coperes Gy Gnrr)s Af (U, B, D) = Gt N(N\xeposoa (@) axgu,
Vre)=Vio{AAIA; C A}, and 42U, A, 2)={NN1 <j<D. If
POS () # POS_A(2), then #(U, &, 2) = AZ (U, A, 2).

Proof. It is similar to the proof of Theorem 3.4. []

Theorem 3.6 illustrates the relationship between # (U, A", 2) and
#(U, A, ) when POSyx+(2) # POSus(2). Especially, there is no di-
rect relationship between # (U, A, 2) and Z (U, A", 2), and we should
compute Z (U, &, &) with the related family R(U, A", 2).

We provide an incremental algorithm for computing attribute re-
ducts of dynamic covering decision information systems as follows.

Algorithm 3.7. (Incremental Algorithm of Computing # (U, A, &) of
U, &, 7))

Step 1: Input (U, A*, 2);

Step 2: Construct POSyx+(2);

Step 3: Compute R(U, &, ) = {rt(x)|x € POS x+(2)}, where
X € Uy, 1}

{V(X) U {@n+1}s
rt(x) =
r(x),

otherwise.

Step 4: Construct af (U, A, 2) = %41 /\(/\xePOSuA(f/)/\erm/ngr lVr(x)) =V,
{AAllA] C Al

Step S Compute
st A CAL1Lj<k

Step 6: Output Z (U, A", 2).

AZ(U, A, 2)={K]3 A € 2(U, A, 2),

We employ an example to illustrate how to construct attribute re-
ducts of dynamic covering decision information systems by
Algorithm 3.7 as follows.

Example 3.8. (Continuation from Examples 2.10) (1) By Definition 2.8,
firstly, we have rt(a) = r(a), rt(e) = re) U {%!},
rt () = r(a), rt(xg) = r(xq), r*(xs) = r(xs), r*(xs) = r(x), r*(x;) and

=1(x7) U {%5}

rt(xg) = rxg) U {%}. Consequently, we get R
U, &, 2) = {4, &, L%, @ G G G {G, G G "

s Coh \C1, Gy Gy G}, (G, Gy G}, and

fU, & 2) = NVrr@)|rt(x) € R(U, &Y, 2)}
= (GVGBYGE NG GV G GN GV G)
NG GV G GV GNG
VG N G N GINGN GV G)
= (VG BAGY GV GY G)AN(GLY GN CG)
= (GADDV(GANG Y (AN (GHAG)
VGABNV(GBAG)Y (GADG)YV(GA .
So we have 2, &, 7) = {4, 6}, {4, G4, %L 1% 4,

{6, &} {6, 6, (%, 6}, {6, &)
Secondly, by Theorem 3.4, we get
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Af(U &, Z) = GA GV GY B ANGY GV GY GV 6)
NGBV GV GV 6)

GA(GY GV E)N(GNY GV G )

(GLAG) V(G NG)V (G2 N G A G)

V(%A G N %)

It follows that AZ (U, A, 2) = {{%, %)}, {%, %}}. Therefore, we have
AU, &, D=4, G, (1, @), (63, G}, 1%, 6, {6, G, (%, G} {4, G} { %5, G}

(2) By Definition 2.8, we have that r*(x) = {%, %}, r(x)
=@, 1" () =@, r*(xy) = {%, %, %}
rt(xs) = {4, &, G} rt(xe) = {4, %}, r*(x7) = {4} and r*(x) = {7}
Subsequently, we have

fW, & 2) = NVrr)rt(x) € R(U, &Y, 2)}

GV AN (GG NGNGBV EG) NG
= (GVEB NG

= (GAG)V(GAG.

So we obtain Z(U, &, 2) = {{%, %}, {41, G}
Secondly, by Theorem 3.6, we have

Af(U, A, 2) = AN ) AVt (xe) A (Vrt ()

A (Vr*(xs))
= GA(GYVB)AGY G NG
= (AAGBANG) Y (GAGA ).

It follows that A2 (U, A, Z)= Q. we

2U, &, 7) = {{&, &}, {4, 61}

Therefore, get

Example 3.8 illustrates how to compute attribute reducts of dy-
namic covering decision information systems by Algorithms 2.9 and
3.7. We see that the incremental algorithm is more effective than the
non-incremental algorithm for attribute reduction of consistent and
inconsistent dynamic covering decision information systems.

In practical situations, there are a lot of dynamic covering decision
information systems caused by deleting attributes, and we study attri-
bute reduction of covering decision information systems when deleting
attributes as follows.

Definition 3.9. Let (U, A, 2) and (U, A", &) be covering decision
information systems, where U = {x, %, ...X,}, A ={#, %, ..., %}, and
X ={%, ..., %n—1}. Then (U, A, Z) is called a dynamic covering
decision information system of (U, A, 2).

By Definition 3.9, we see that (U, A, &) is consistent or incon-
sistent when deleting %,, from (U, A, Z) since (U, A, &) is a consistent
covering decision information system. Furthermore, we notice that
(U, &7, 2) is inconsistent when deleting %,, from (U, A, &) since
(U, A, 2) is an inconsistent covering decision information system. In
the following, we study two types of dynamic covering decision in-
formation systems when deleting attributes as follows: (1)(U, A™, &) is
a consistent covering decision information system; (2)(U, A", &) is an
inconsistent covering decision information system.

Example 3.10. (Continuation from Examples 2.10) (1) Let (U, A, 2)
and (U, A, Z) be covering decision information systems, where
U=1{,%, ..Xs}, A={G, & G, % %}, &N ={%, %, %, %), and
Z = {{x, %, X3}, {X4, Xs, X6}, {X7, Xs}}, where

% = {ba, %} D, X3, X4}, (s}, {xad, {xs, X6}, (X6, X7, Xs}};
% = {Pa, %3, x4}, Do, x3}, {xa, x5}, {xs, X6}, (X6}, X7, X8}
% = {bal, b, %, xa}, (o, 3}, Da, x4, Xs, X6}, {5, X7, X8}
% = {Pa, %, xa}, o, x5}, P, x5, X6}, (X6}, X7, X1}

% = {{a, %, x3}, {xa}, (X5, X6}, {xs, X6, Xs}, {X45 X7, Xg}}.

By Definition 3.9, we see that (U, A™, &) is a dynamic covering decision
information system of (U, A, Z). Especially, we observe that (U, A, 2)
and (U, A", Z) are consistent covering decision information systems.
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(2) Let (U, A, 2) and (U, &, Z) be covering decision information
systems, where U = {x;, %, ...Xs}, A ={@, &, &, G}, & ={G, 6, &),
and 2 = {{x, %, X3}, {X4, X5, X¢}, {X7, xg}}. By Definition 3.9, we see that
(U, &, Z) is a dynamic covering decision information system of
(U, A, 2). Specially, we observe that (U, A, 2) and (U, A, Z) are in-
consistent covering decision information systems.

Suppose (U, A, ) and (U, A, &) are covering decision information
systems, where U = {x, %, ...Xn}, A ={%, %, ...%n}, and & = {4, G,.., Gu-1},
A={CeuAlIDjeZ, st. CCD}, r(x)={¢¥€AICe ., stxeCe?}
and r(x)={¢#eA|3CeE .7y, st. xeCE F).

Theorem 3.11. Let (U, A, ) and (U, A, &) be covering decision

information systems, where U = {x}, %, ...X,}, A ={%, %, ..., 6n}, and
&K ={%, %,...,6n_1}. Then we have

rON %), if x e vy,
r(x) =

r(x), otherwise.
Proof. By Definitions 2.8, for any xeU, we
have r(x)={7€Al3Ce .4, st xeCe 7z} and r(x)=

{Fenx|iaice .-, st. xeCe %}. If %,€r(x), then we have
r—(x) = r(x)\{%,}. After that, if %,, & r(x), then we have r=(x) = r(x).
Therefore, we have r~(x) = r(x)\{%,}. O

Theorem 3.12 illustrates the relationship between r(x) of (U, A, 2)
and r~(x) of (U, A", &). Concretely, we construct the related set r~(x)
on the basis of the related set r(x), which reduces time complexity of
computing the related families for attribute reduction of dynamic
covering decision information systems.

Theorem 3.12. Let (U, A, Z) and (U, X, &) be covering decision
information systems, where U = {x, %, ...X,}, A ={@, &, ..., 6n}, and
N ={%, G bm-1}. If POSux(Z)=POS,a(Z), then we have
AU, &, D)= {Al%n & A € Z(U, A, D)}

Proof. The proof is straightforward by Definition 2.6. [

Theorem 3.12 illustrates the relationship between # (U, A~, &) of

(U,A,2) and #U,A,2) of (U, A&, 2), and we have
#U, K, D)={N|%, & A€ #(U, A, 2)}  when  POSux(2) =

POS A (Z). Furthermore, each element of #Z(U, A, ) which does not
contain %,, belongs to Z(U, A~, &), so there is no need of computation
if we want to get only a reduct of (U, A", &), which reduces time
complexities of computing attribute reducts of dynamic covering deci-
sion information systems.

Theorem 3.13. Let (U, A, ) and (U, X, &) be covering decision

information systems, where U = {x, %, ...X,}, A ={%, &, ..., 6n}, and
X ={F, G bm_1}. If POS x(Z) # POS,A(Z), then we have

r(x) = {%n} for x € POSya(2)~\POS s (Z). Especially, we get %, € A;
for any a; € #(U, A, 2).

Proof. The proof is straightforward by Definition 2.8. [J

Theorem 3.13 illustrates some properties of the related family
R(U, A, ) when POS x(Z) # POS,A(2). Especially, there is no direct
relationship between #(U, A, ) and #(U, A, ), and we should
compute #(U, X, ) by Definition 2.8 after constructing the related
family R(U, A", &), which reduces time complexities of computing
attribute reducts of dynamic covering decision information systems.

Theorem 3.14. Let (U, A, ) and (U, A, Z) be covering decision
information systems, where U = {x, %, ...xn}, A ={@, %, ..., %}, and
N ={F, ¢, by-1}, and fU, &, 7)= ANVr @I~ ) € RU, &7, 2)} = V!,
{A\Aila C &) If  POSux(Z) # POSua(Z), then we  have
2U, &, 7) ={Ay, Ay,..., A} for (U, X, 2).

Proof. The proof is straightforward by Definition 2.8. []

We provide an incremental algorithm for computing attribute re-
ducts of dynamic covering decision information systems as follows.

166
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Algorithm 3.15. Incremental Algorithm of Computing # (U, X~, &) of
w, &7, 2))

Step 1: Input (U, &A™, 2);

Step 2: Construct POS x-(2);

Step 3: Compute R(U, &, Z) = {r~(x)|x € POSyx-(2)}, where

-0 reONM%G), if x € Uy,
r(x) =
r(x), otherwise.

Step 4: Compute # (U, &, £) by Theorems 3.12 and 3.14;
Step 5: Output Z(U, X, 2).

We employ an example to illustrate how to construct attribute re-
ducts of dynamic covering decision information systems by
Algorithm 3.15 as follows.

Example 3.16. (Continuation from Example 3.8) (1) By Definition 2.8,
firstly, we have r (o) =1{% %4, ) ={% % % %,
r~(a) = {4, G, G, G} r~(x4) = {4, %, 4}, r~(xs) (ZANN re

={@, %, 4}, r (xe)={%,
(x7) = {%, %} and r~(xg) = {%>, %,}. Secondly, we derive

ANVl &) € RU, A, 2)}
(AN BN (BN C)
(GABYV(GAG) N (B AR Y (G A G,

f, x5, 2)

and 2 (U, &, 2)={{%, %},
Theorem 3.12, we
{4, 4}, 1%, 4}, (%, 4}

(2) By Definition 2.8, firstly, we have r~(x) = {%, %}, r (%)
=@, 1 (6) =0, r (xa) ={%, G}, r () ={%, %}, r (x¢) and r
={4, ¢}, r (x7) = {6}

(xg) = {#}. Secondly, we obtain

ANV~ @)|r=(x) € R(U, A, 2)}
(VG A(GY D) AG
(BV &) A%

(G A B) V(% A B),

{5, 4}, 1%, 4}, {%, %)}, Thirdly, by
get 2U, &, 7)={{%, &},

f, x5, 2)

and Z(U, &, 2) = {{%, %}, {4, %}}. Thirdly, by Theorem 3.14, we
have #(U, &, 2)={{%1, %}, {41, %}}.

Example 3.16 illustrates how to compute attribute reducts of dy-
namic covering decision information systems when deleting attributes
by Algorithms 2.9 and 3.14. We see that the incremental algorithm is
more effective than the non-incremental algorithm for attribute re-
duction of consistent and inconsistent dynamic covering decision in-
formation systems.

4. Heuristic algorithms for attribute reduction of dynamic
covering decision information systems

In this section, we present heuristic algorithms for computing at-
tribute reducts of dynamic covering decision information systems with
variations of attribute sets.

Suppose (U, A, 2) is a covering decision information system, where
U ={x, %, ....Xu} A={a, %, .., Gl 9 ={Dy, D, ...,Dy},
R(U, A, Z) = {r(x)|x € POS_r(2)},

SR(U, A, 2) ={r(x) € R(U, A, 2)|x

€ POSuA(Z) A (Vy € POSuA(2), r(y) L r(x) Ar(y)

€ R(U, A, 2))},
and ||%]| denotes the number of times for a covering # appeared in
SR(U, A, 2).

Algorithm 4.1. (Heuristic Algorithm of Computing a Reduct of
(U, A, 2))(NIHA).

Step 1: Input (U, A, 2);

Step 2: Construct POS s (2) = |J{POSua(Dy) |D,EZ};
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Step 3: Compute R(U, A, Z) = {r(x)|x € POSua (j)},

Step 4: Construct a reduct AN\={%, €,. éj}, where
SR, (U, A, ) = SR(U, A, 2),
14, || = max{||]||% € r(x) € SRi(U, A, 2)};
SRZ(U, A, 7) ={r(x) € SR(U, A, 2)|%, & r(x)},
1%, 1| = max{[|%i]||% € r(x) € SR(U, A, 2)};
SR;(U, A, ) ={r(x) € SR(U, A, D)|%, € r(x) Vv &, & r(x)},
1% || = max{[| %|||% € r(x) € SR:(U, A, 2)}; ; S
Ri(U, A, 2) ={r(x) € SRWU, A, D)%, Er(x) V G, Er(x) V ...

@y & r()},
;1 = maxHI%I\W €r(x) € SRi(U, A, 2)},
frx)|g,erx) v e,er(x) v.. v %; € r(x)};
Step 5: Output the reduct /\*.

and SR(U, A, 2) =

By Algorithm 4.1, we observe that constructing all attribute reducts
of covering decision information systems by Algorithm 2.9 is NP hard
problem, and it is enough to compute a reduct for covering decision
information systems by Algorithm 4.1. Furthermore, if there exist two

coverings %; and % such that Il
%l = 1%l = max{||%]|% € r(x) € SR (U, A, Z)}, then we select
1]l = max{|| % ||| % € r (x) € SR (U, A, 2)} or 1551l = max{]|

%% € r(x) € SR (U, A, 2)}.

Example 4.2. (Continuation from Example 2.10) (1) In Example 2.10(1),
we derive SR(U, A 2)={{#, % G}, {%, %}}. By Algorithm 4.1,

firstly, ~we  obtain  SR(U, A, 2) = {4, %, %}, (%, G} and
|41 = max{||%|||% € r(x) € SR(U, A, 2)}. Secondly, we get

SR(U, A, ) = {{#%, @), and || %] = max{||%]||% € r(x) € SR(U, A, 2)}.
Finally, we have a reduct ={%, %} of (U, A, 2).

(2) In Example 2.10(2), we derive SR(U, A, 2) = {{%, %}, {%}}. By
Algorithm 4.1, firstly, we obtain SR (U, A, ) = {{%, %}, {¢1}} and
|4l = max{||%]||% € r(x) € SR{(U, A, 2)}. Secondly, we get
SR,(U, A, 2) = {{%, %)}, and || % || = max{||%|||% € r(x) € SR, (U, A, 2)}.
Finally, we have a reduct /\* = {4, %} of (U, A, 2).

Suppose (U, A, Z) and (U, A, &) are covering decision information

systems, where U={xq,%, ..X,}, A=1{%,%, ...%,), and
& ={B, Coeeer Cons G} = {D1, Dy, ...,Dy}, R(U, &, 2)

= {r*(@)Ix € POSus+(2)},
SR(U, A, 2) = {rt(x) € R(U, A, 2)|x

€ POS s (Z) A (Vy

€ POSus+(2), r*(y) £ rt(x) Art(y) € R(U, &Y, 2))},
and ||%]| denotes the number of times for a covering # appeared in
SR(U, Af, 2).

Algorithm 4.3. (Heuristic Algorithm of Computing a Reduct of
(U, &%, 2))(IHAA)

Step 1: Input (U, A, 2);

Step 2: Construct POS x+(2);

Step 3: Compute R(U, A", Z) = {r+(x)|x € POSyx+(Z)}, where

if xeug,;
otherwise.

+ _ r(x) U {gm+1})
rt(x) = ()

Step 4: Construct a reduct where
SR(U, &, 2) = SR(U, &, ),

1%, 1| = max{[|%[l|%; € r*(x) € SRi(U, &, 2)};

SRZ(U, &, 2) ={rt(x) € SR(U, &, 2)|%, & r*(x)},

1%, Il = max{||]l| ¢ € r*(x) € SR(U, &%, 2)};

SRy (U, &, ) = {r*(x) € SR(U, &, D)%, & r*(x) V &, & r*(x)},

1% 1| = max{[|%|l| 6 € r*(x) € SR:(U, &, 2)}; ; N

R(U, &, 2)={r*(x) € SRWU, &, DG, r*(xX) V G, Ert(x) V..
G E YO0}

;1 = max{\l%lnlff € rt(x) € SR(U, &, 2)},

frrolg,ertx) v é,ert(x) V..

Step 5: Output the reduct /\**.

N = (G G B,

and SR(U, &Y, ) =
Vv & etk
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In Algorithm 4.3, there are two situations for constructing reducts of
dynamic covering decision information systems with immigration of
attributes as follows: (1) if we have POS x(Z) = POSya(Z), then a
reduct of (U, A, ) belongs to #(U, Af, 7); (2) if we have
POS x+(Z) # POSyA(2), then we compute a reduct by Algorithm 4.3.
Furthermore, if there are two coverings 4 and % such that
111 = 11l = max{l|%|l| 6 € r*(x) € SR (U, A, )}, then we select
1]l = max{||]|%; € r*(x) € SRe(U, &, 2)}  or  ||%]l = max{||
%% € r*(x) € SR (U, &, 2)}.

Example 4.4. (Continuation from Example 3.8) (1) In Example 3.8 (1),
we have SR(U, &, 7) = ({4, &, G} (G, © G, %}, (% G C6}}. By
Algorithm 4.3, firstly, we obtain SR (U, A&F, 2) ={{%, &%, %}
{9, @, G, G}, {4, G, %)} and 141 = max{l|%]l|% € r*(x) € SRUU, &, 9)}.
Secondly, we obtain SR, (U, &, 2) = {{%, €, %}y
|%:|| = max{||%|||% € r*(x) € SR, (U, A, 2)}. Finally, we get a
reduct N\ = {4, %} of (U, &, Z).

(2) In Example 3.8 (2), we get SR(U, A, 2) = {{41}, {%, %}}. By
Algorithm 4.3, firstly, we obtain SR;(U, &', 2) = {{#4}, {%,, ¢3}} and
|61l] = max{||%|||% € rt(x) € SR (U, A*, Z)}. Secondly, we get
SR, (U, &, 2) = {{%, G},

[|%2|| = max{||%|||% € r*(x) € SR, (U, A, 2)}. Finally, we have a re-
duct N = {7, %} of (U, &, D).

Suppose (U, &, Z) and (U, A, 2) are covering decision informa-
tion systems, where U ={x,X%, ..X,}, A={%, %, ...%,}, and
K ={G, Gy Gm_1}, Z =1{D1, Dy, ..Di}, R(U, &, 2) ={r=(x)|x € POSyx-(2)},
SR(U, &, Z)={r (x) e R(U, &7, Z)|x

€ POSux-(Z) A (VY

€ POSyx (2), 1~ () L r~ () AT~(») €ER(U, &, 7))},
and ||%]| denotes the number of times for a covering # appeared in
SR(U, &, 2).

Algorithm 4.5. (Heuristic Algorithm of Computing a Reduct of
(U, &, 2))(IHAD)
Step 1: Input (U, A, 2);
Step 2: Construct POS x-(2);
Step 3: Compute R(U, A, &) =

MGl
() = {:8 (o}

{r=(x)|x € POSy x-(2)}, where

if xe UM{m;
otherwise.

Step 4: Construct a reduct /N = where
SR (U, &, 7) = SR(U, &, 2),

1 1| = max{||%]||% € r~(x) € R(U, &, 2)};

SR(U, &7, ) = {r~(x) € SR(U, &, 2)|%; & r~ ()},

1%, || = max{|| % ]|% € r~(x) € SR,(U, &, 2)};

SRy (U, &7, 7) ={r~(x) € SR(U, &, |G, g r~(x) V %, &€ r- ()},
125 1| = max{||%|l| % € r~(x) € SRy (U, &, 2)}; ;

R(U, &, 2)={rr x) € SRWU, &, DG, €r X))V G ErX) V..
VG &€r (0}
1l = max{ll%l\l?’ IS r‘(x) € SRi(U, A, 2)}, and SR(U, A, Z) =
frx|g,erx)ve,erxv. / er X}
Step 5. Output the reduct A*‘.

In Algorithm 4.5, we see that there are two situations for con-
structing reducts of dynamic covering decision information systems
with emigration of attributes as follows: (1) if we have
POS - (Z) = POSya(2), then a reduct of (U, A, Z) belongs to
# (U, &, Z); (2) if we have POS x-(Z) # POS A (Z), then we compute
a reduct by Algorithm 4.5. Furthermore, if there exist two coverings %;
and ¢; such that || || = || %]l = max{||¢]||%; € r~(x) € SR (U, &, 2)},

then we select ||%| = max{||%|||% € r~(x) € SRy (U, &, Z)} or
151l = max{||]||4 € r~(x) € SR (U, &7, 2)}.
Example 4.6. (Continuation from Example 3.16) (1) In

Example 3.16(1), we derive SR(U, &, 2)={{%, %}, {%, %}}. By
Algorithm 4.5, firstly, we obtain SR (U, A, 2) = {{#, &}, {%, %)}
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Table 1
Data sets for experiments.
No. Name Samples  Conditional Decision
attributes attribute
1 Wine 178 13 1
2 Breast Cancer Wisconsin 569 30 1
(wdbc)
3 Seismic-Bumps 2584 18 1
4 Abalone 4177 1
5 Car Evaluation 1728 6 1
6 Chess (King-Rook vs. King- 3196 36 1
Pawn)
7 Optical Recognition of 5620 64 1
Handwritten Digits
8 Letter Recognition 20,000 16 1

and ||41|| = max{||%|||% € r~(x) € SR (U, &, 2)}. Secondly, we have
SR,(U, &, 2) = {{%, G}},

%] = max{||%|||% € r~(x) € SR,(U, &, 2)}. Finally, we get a reduct
LN =G, G} of (U, &7, D).

(2) In Example 3.16(2), we have SR(U, &, 2) = {{#}, {%2, %}}. By
Algorithm 4.5, we firstly obtain SR (U, X, Z) = {{@1}, {42, %}} and
|4 = max{||%]||% € r(x) € SR(U, A, Z)}. Secondly, we get
SR(U, &, 7) = {{%, %},

1% || = max{||%|||% € r~(x) € SR, (U, A, 2)}. Finally, we obtain a re-
duct '~ = {4, %} of (U, &, D).

5. Experimental analysis

In this section, we perform experiments to illustrate the effective-
ness of Algorithms 4.1, 4.3 and 4.5 for computing attribute reducts of
dynamic covering decision information systems with immigration and
emigration of attributes.

To test Algorithms 4.1, 4.3 and 4.5, we converted eight data sets
downloaded from UCI and depicted by Table 1 into covering decision
information systems. Concretely, we derive a covering and a partition
by a conditional attribute and a decision attribute, respectively. For the
category attribute, we classify objects with the same attribute value into
a block. For the numerical attribute, we classify two objects into a block
if the Euclid Distance between them is less than 0.05 after normal-
ization processing. Because the purpose of the experiment is to test the
efficiency of Algorithms 4.1, 4.3 and 4.5 for attribute reduction in dy-
namic covering decision information systems, we do not discuss which
is the best way to transform data sets into covering decision information
systems. Especially, we see that {(U;, A;, Z;)|1 <i < 4} are consistent
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covering decision information systems, and {(U;, A;, £)|5 <i < 8} are
inconsistent covering decision information systems. Moreover, we
conducted all computations on a PC with a Intel(R) Dual-Core(TM) i7-
7700K CPU @ 4.20 GHZ 4.20 GHZ and 32 GB memory, running 64-bit
Windows 10; the software was 64-bit Matlab R2016a.

5.1. Compare effectiveness of computing attribute reducts using
Algorithms 4.1 and 4.3

In this section, we construct attribute reducts of dynamic covering
decision information systems when adding attributes with
Algorithms 4.1 and 4.3, and compare their effectiveness of computing
attribute reducts in dynamic covering decision information systems.

Firstly, we compare the times of computing a reduct using
Algorithm 4.1 with those using Algorithm 4.3 in dynamic covering
decision information systems when adding an attribute. Concretely, we
perform each experiment ten times, and show all times of computing
attribute reducts of dynamic covering decision information systems in
Table 2. For instance, we have the computation times {0.5456, 0.5511,
0.5527, 0.5398, 0.5486, 0.5442, 0.5394, 0.5478, 0.5411, 0.5561} and
{0.1510, 0.1491, 0.1476, 0.1486, 0.1480, 0.1520, 0.1477, 0.1476,
0.1494, 0.1828} for constructing reducts by Algorithms 4.1 and 4.3,
respectively, in (U, Af, 2,). We see that the times of computing a re-
duct using Algorithm 4.1 are larger than those using Algorithm 4.3 in
(U, A}, Z)). For example, we have the computation times
0.5456 = 0.1510, 0.5511 = 0.1491, 0.5527 = 0.1476, 0.5398 =
0.1486, 0.5486 = 0.1480, 0.5442 = 0.1520, 0.5394 = 0.1477,
0.5478 = 0.1476, 0.5411 = 0.1494 and 0.5561 = 0.1828 when com-
puting a reduct in (U, A}, 2).

Secondly, we employ Fig. 1 to illustrate the effectiveness of
Algorithms 4.1 and 4.3. For example, Fig. 1(i) illustrates the times of
computing a reduct with Algorithms 4.1 and 4.3 in (U, A}, Z). In each
figure, NIHA and IHAA mean Algorithms 4.1 and 4.3, respectively; j
stands for the jth experiment on the dynamic covering decision in-
formation system (U, Af, %) in X Axis, where j = 1, 2, ...,10, while the
y-coordinate stands for the time to construct a reduct. Therefore,
Algorithm 4.3 performs better than Algorithm 4.1 in dynamic covering
decision information systems when adding attributes.

Thirdly, we show the average time f of ten experimental results in
the 13th column of Table 2 and Fig. 2, which illustrates that
Algorithm 4.3 executes faster than Algorithm 4.1 in dynamic covering
decision information systems with immigrations of attributes. In Fig. 2,
NIHA and IHAA mean Algorithms 4.1 and 4.3, respectively; i stands the
experiment on the dynamic covering decision information system
(U, Af, 2) in X Axis, wherei = 1, 2, ...,8, while the y-coordinate stands

Table 2
Computational times using NIHA and IHAA in {(U;, Af, Z)|1 <i < 8}.
No  t(s) Algo. 1 2 3 4 5 6 7 8 9 10 i SD
Uy, AT, 1) NIHA 0.5456 0.5511 0.5527 0.5398 0.5486 0.5442 0.5394 0.5478 0.5411 0.5561 0.5466 0.0057
THAA 0.1510 0.1491 0.1476 0.1486 0.1480 0.1520 0.1477 0.1476 0.1494 0.1828 0.1524 0.0108
(U, A-{» D) NIHA 12.2361 12.1000 12.2665 12.1443 12.0938 12.0783 12.1472 12.1665 12.1751 12.1190 12.1527 0.0611
THAA 2.3138 2.3140 2.3219 2.3546 2.3145 2.3045 2.3005 2.2972 2.3155 2.3198 2.3156 0.0159
(Us, AF, 23) NIHA 15.7149 15.7251 15.7259 15.8077 15.6864 15.7181 15.7144 15.6278 15.7817 15.6703 15.7172 0.0513
THAA 0.4880 0.5055 0.4843 0.4937 0.5091 0.5254 0.4962 0.5098 0.5082 0.4931 0.5013 0.0125
(Us, AT, Z) NIHA 71.1000 71.1486 71.0970 71.1462 71.0236 71.5354 71.0191 70.6481 70.7136 71.0167 71.0448 0.2442
THAA 12.1369 12.1072 12.1357 12.1055 12.0998 12.0906 12.1626 12.1099 12.1588 12.0843 12.1191 0.0276
(Us, AL, Z5) NIHA 0.5205 0.5167 0.5064 0.5094 0.5061 0.5006 0.5177 0.5030 0.5107 0.5005 0.5092 0.0072
THAA 0.1010 0.1051 0.1055 0.1004 0.1013 0.1017 0.1010 0.1004 0.1004 0.1004 0.1017 0.0019
(Us, AL, ) NIHA 7.1708 7.1779 7.1221 7.1867 7.1616 7.2006 7.1731 7.1350 7.3827 7.1822 7.1893 0.0719
THAA 0.2026 0.2000 0.2028 0.2133 0.1942 0.2007 0.1973 0.1975 0.1999 0.1986 0.2007 0.0051
(Uy, A?, F7) NIHA 42.1162 42.0302 42.1370 42.2014 42.1242 42.1460 42.2470 42.1718 42.1203 42.0872 42.1381 0.0599
THAA 1.1013 1.0864 1.0815 1.1246 1.1178 1.0869 1.0932 1.1178 1.1056 1.0937 1.1009 0.0151
(Us, AY, Zg) NIHA 54.0630 54.1615 54.0686 54.1015 54.0985 54.0088 54.1642 53.9911 53.9212 54.1004 54.0679 0.0761
THAA 3.8415 3.8329 3.8280 3.8307 3.8462 3.8390 3.8444 3.8290 3.8315 3.8338 3.8357 0.0066
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Fig. 1. Computational times using Algorithms 4.1 and 4.3 in {(U;, A}, Z)|1 <i < 8}.
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for the time to construct a reduct. From the last column of Table 2, we
get the standard deviations(SD) of ten computational times using
Algorithms 4.1 and 4.3 in the dynamic covering decision information
system (U;, Af, Z)(1 < i < 8), which illustrate that Algorithms 4.1 and
4.3 are stable for computing attribute reducts of dynamic covering
decision information systems with emigrations of attributes.

Remark. In this experiment, we take eight covering decision
information systems induced by data sets of UCI as dynamic covering
decision information systems, and get the original covering decision
information system by deleting the last covering from a dynamic
covering decision information system. For example, we transformed
Wine data set into a dynamic covering decision information system
(Uy, AT, 2y), and get the original covering decision information system
(U, Ay, 1) by deleting %3 from (Uy, Af, 2,), where |U;| = 178,
|Af] =13, 1A, = 12 and | 24| = 1.

5.2. Compare effectiveness of computing attribute reducts using
Algorithms 4.1 and 4.5

In this section, we construct attribute reducts of dynamic covering
decision information systems when deleting attributes with
Algorithms 4.1 and 4.5, and compare their effectiveness of computing
attribute reducts in dynamic covering decision information systems.

Firstly, we compare the times of computing a reduct using
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Algorithm 4.1 with those using Algorithm 4.5 in dynamic covering
decision information systems when deleting an attribute. Concretely,
we perform each experiment ten times and show all times of con-
structing attribute reducts of dynamic covering decision information
systems in Table 3. For instance, we have the computation times
{0.7177, 0.5120, 0.5026, 0.4946, 0.4931, 0.4897, 0.5035, 0.4916,
0.4909, 0.4861} and {0.1050, 0.0977, 0.1069, 0.1133, 0.0993, 0.0967,
0.0972, 0.0970, 0.0978, 0.0969} for computing reducts by
Algorithms 4.1 and 4.5, respectively, in (U, A7, Z;). We observe that
the times of computing a reduct using Algorithm 4.1 are larger than
those wusing Algorithm 4.5 in (U, A7, %). For example, we
see the computation times 0.1050 < 0.7177, 0.0977 < 0.5120,
0.1069 < 0.5026, 0.1133 < 0.4946, 0.0993 < 0.4931, 0.0967 <
0.4897, 0.0972 < 0.5035, 0.0970 < 0.4916, 0.0978 < 0.4909, and
0.0969 =< 0.4861 when computing a reduct in (U, A7, Z).

Secondly, we employ Fig. 3 to illustrate the effectiveness of
Algorithms 4.1 and 4.5. For example, Fig. 3(i) illustrates the times of
computing a reduct using Algorithms 4.1 and 4.5 in dynamic covering
decision information systems (U;, Aj, Z;). In each figure, NIHA and
IHAD mean Algorithms 4.1 and 4.5, respectively; j stands for the jth
experiment in the dynamic covering decision information system
(U, A7, Z;) in X Axis, where j =1, 2, ..,10, while the y-coordinate
stands for the time to construct a reduct. Therefore, Algorithm 4.5
performs better than Algorithm 4.1 for computing reducts of dynamic
covering decision information systems when deleting attributes.

Thirdly, we depict the average time { of ten experimental results for
covering decision information systems in the 13th column of Table 3
and Fig. 4, which illustrates that Algorithm 4.5 executes faster than
Algorithm 4.1 in dynamic covering decision information systems with
emigrations of attributes. In Fig. 4, NIHA and [HAA mean
Algorithms 4.1 and 4.3, respectively; i stands the experiment on the
dynamic covering decision information system (U;, A7, <) in X Axis,
where i = 1, 2, ...,8, while the y-coordinate stands for the time to con-
struct a reduct. From the last column of Table 3, we get the standard
deviations(SD) of ten computational times using Algorithms 4.1 and 4.5
in the dynamic covering decision information system (U, A;, %),
which illustrate that Algorithms 4.1 and 4.5 are stable for computing
attribute reducts of dynamic covering decision information systems
with emigrations of attributes.

Remark. In this experiment, we take eight covering decision
information systems induced by data sets of UCI as the original
covering decision information systems and get a dynamic covering
decision information system by deleting the last covering from the
original covering decision information system. For example, we
transformed Wine data set into a covering decision information

Table 3
Computational times using NIHA and IHAD in {(U, A}, Z)|1 <i < 8}.
No « t(s) Algo. 1 2 3 4 5 6 7 8 9 10 i SD
(U, AT, Z1) NIHA 0.7177 0.5120 0.5026 0.4946 0.4931 0.4897 0.5035 0.4916 0.4909 0.4861 0.5182 0.0705
IHAD 0.1050 0.0977 0.1069 0.1133 0.0993 0.0967 0.0972 0.0970 0.0978 0.0969 0.1008 0.0057
(U, AS, Z5) NIHA 11.7085 11.7356 11.6772 11.7660 11.6128 11.6953 11.7016 11.7953 11.6521 11.7422 11.7086 0.0540
IHAD 1.8740 1.8793 1.8742 1.8628 1.8543 1.8580 1.9130 1.9525 1.8774 1.8667 1.8812 0.0299
(Us, A3, 73) NIHA 15.4702 15.3512 15.3561 15.4176 15.5611 15.6066 15.4625 15.3614 15.4634 15.3918 15.4442 0.0870
IHAD 0.2330 0.2302 0.2298 0.2300 0.2323 0.2324 0.2350 0.2355 0.2366 0.2299 0.2325 0.0025
(Us, AY, D) NIHA 59.2708 59.4960 59.6643 59.4157 59.0895 59.4361 59.3471 59.7387 59.4707 59.6875 59.4616 0.2003
IHAD 0.7984 0.7838 0.7756 0.7955 0.7887 0.7749 0.7742 0.7895 0.8173 0.7774 0.7875 0.0136
(Us, A5, Zs) NIHA 0.4130 0.4127 0.4153 0.4121 0.4109 0.4156 0.4092 0.4161 0.4122 0.4168 0.4134 0.0025
IHAD 0.0127 0.0119 0.0121 0.0118 0.0122 0.0119 0.0123 0.0123 0.0125 0.0121 0.0122 0.0003
(Us, Ay Z6) NIHA 7.0067 7.0072 6.9822 6.9787 6.9936 7.0719 7.0488 6.9692 6.9778 6.9946 7.0031 0.0331
IHAD 0.0334 0.0335 0.0343 0.0440 0.0340 0.0334 0.0336 0.0331 0.0334 0.0339 0.0347 0.0033
(U, A7, Z7) NIHA 41.2621 41.2001 41.4330 41.2749 41.2382 41.3336 41.5394 41.5857 41.4748 41.4061 41.3748 0.1331
IHAD 0.2605 0.2605 0.2662 0.2579 0.2581 0.2743 0.2704 0.2602 0.2596 0.2643 0.2632 0.0055
(Ug, A3, Z3) NIHA 50.4549 50.7105 50.5666 50.8127 50.6475 50.4567 50.4641 50.6006 50.6763 50.4885 50.5878 0.1237
IHAD 0.4483 0.4325 0.4369 0.4220 0.4297 0.4242 0.4263 0.4312 0.4254 0.4304 0.4307 0.0076
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Fig. 3. Computational times using Algorithms 4.1 and 4.5 in {(U, A}, Z)|1 <i < 8}.
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system (Uy, A, 21), and get a dynamic covering decision information
system (Uj, A7, Z;) by deleting %13 from (U, A, Z1), where |U;| = 178,
|A| =13, |A7| =12 and | 2| = 1.

6. Conclusions

Knowledge reduction of dynamic covering information systems is a
significant challenge of covering-based rough sets. In this paper, firstly,
we have analyzed the related families-based mechanisms of con-
structing attribute reducts of dynamic covering decision information
systems with variations of attributes and employed examples to illus-
trate how to compute attribute reducts of dynamic covering decision
information systems when varying attribute sets. Secondly, we have
presented the related families-based heuristic algorithms for computing
attribute reducts of dynamic covering decision information systems
with attribute arriving and leaving and employed examples to de-
monstrate how to update attribute reducts with the heuristic algo-
rithms. Finally, we have employed the experimental results to illustrate
that the related families-based incremental approaches are effective and
feasible for attribute reduction of dynamic covering decision informa-
tion systems.

In the future, we will study knowledge reduction of dynamic cov-
ering decision information systems with variations of object sets.
Especially, we will provide effective algorithms for knowledge reduc-
tion of dynamic covering decision information systems when object sets
are varying with time.
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