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Abstract
Due to the characteristics of high resolution and rich texture information, visible light
images are widely used for maritime ship detection. However, these images are suscep-
tible to sea fog and ships of different sizes, which can result in missed detections and false
alarms, ultimately resulting in lower detection accuracy. To address these issues, a novel
multi‐granularity feature enhancement network, MFENet, which includes a three‐way
dehazing module (3WDM) and a multi‐granularity feature enhancement module
(MFEM) is proposed. The 3WDM eliminates sea fog interference by using an image
clarity automatic classification algorithm based on three‐way decisions and FFA‐Net to
obtain clear image samples. Additionally, the MFEM improves the accuracy of detecting
ships of different sizes by utilising an improved super‐resolution reconstruction con-
volutional neural network to enhance the resolution and semantic representation capa-
bility of the feature maps from YOLOv7. Experimental results demonstrate that
MFENet surpasses the other 15 competing models in terms of the mean Average Pre-
cision metric on two benchmark datasets, achieving 96.28% on the McShips dataset and
97.71% on the SeaShips dataset.
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1 | INTRODUCTION

With the rapid development of the economy, China's demand
for inland river and ocean shipping is increasing. How to
ensure the safety of shipping has become one of the important
research pursuits in the field of modern shipping research. Ship
detection can not only significantly reduce the probability of
collision accidents during navigation, ensure the safety of
navigation and transportation, but also help detect instances of
illegal entry and illegal operations in time. At present, Tongji
University is taking the lead in coordinating the construction of
the major national scientific and technological infrastructure of

the Seafloor Observatory Network. Intensive fishing activities
in the East China Sea have posed a significant threat to the safe
operation of the observation network, necessitating real‐time
monitoring of surface ships.

In the field of maritime ship detection against ocean
backgrounds, various detection methods have been proposed
in the literature. Four types of images have been explored for
this purpose: (1) satellite remote sensing imagery, which has
low resolution and cannot correctly identify illegal activities in
real time [1]; (2) synthetic aperture radar images, which lack
rich spectral information on objects and are not convenient for
subsequent object segmentation or tracking [2–4]; (3) infrared
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imaging, which suffers from low resolution and is easily
affected by inhomogeneous noise, leading to reduced detection
efficiency [5, 6]; and (4) visible light images, which are widely
used due to their high resolution and rich texture information
[7]. Therefore, the use of visible light images for ship detection
has become one of the important research directions of our
research on maritime ship detection. However, the issues of sea
fog and diverse ship sizes will seriously affect the accuracy of
ship detection in visible light images. Therefore, how to ach-
ieve accurate ship detection in visible light images has become
a challenging and timely research topic.

Ship detection in visible light images is a typical object
detection task that can be accomplished using traditional image
processing or deep learning methods. Traditional ship detec-
tion algorithms rely mainly on manually designed feature ex-
tractors to solve image tasks in specific scenarios, with poor
generalisation ability and robustness. In contrast, deep
learning‐based ship detection algorithms do not require
manual feature design, can adapt to detection tasks in various
complex environments, have strong generalisation and
robustness, and have fast detection speed. The deep learning‐
based methods can be classified into two categories: (1) two‐
stage algorithms, including Faster R‐CNN [8], GWFEF‐Net
[9], and MIDN [10]. (2) single‐stage algorithms, such as
YOLOv5 [11], HyperLi‐Net [12], CBNet [13], and FCOS [14].

Due to the influence of sea fog on the clarity of visible light
ship images, image preprocessing is required before conducting
ship image detection, wherein blurry images are selected
through image clarity classification. Subsequently, deep
learning methods are used to detect all preprocessed images.
Nevertheless, all existing dehazing algorithms apply direct
dehazing processing to all visible light images, including those
without sea fog. This practice may result in excessively blurry
clear images, reducing clarity. Therefore, using the three‐way
decisions (3WD) [15] for image clarity classification can lead
to better dehazing processing and further improve the accuracy
of ship detection. The 3WD is a classical granular computing
model that can be used for image clarity classification. The
model reflects the way humans think to solve problems. First,
the acceptance and rejection domains are determined. Then,
the uncertainty domain is studied. Finally, objects within the
uncertainty domain are transformed into the acceptance and
rejection domains, thereby reducing their uncertainty [16, 17].
Therefore, using the 3WD can achieve better image clarity
classification.

Meanwhile, when using deep learning methods to detect a
large amount of image data, single‐granularity features can only
extract image feature information at specific angles. Therefore,
it becomes necessary to consider multi‐granularity features,
fully utilise the interrelationships between different granularity,
and achieve multi‐granularity information fusion to obtain
better feature representations [18–20], which is beneficial to
improving the accuracy of ship detection.

This paper proposes a network called MFENet, which
effectively improves the accuracy of multi‐sized ship detection
under sea fog interference. First, an automatic classification
algorithm for image clarity based on three‐way decisions is

designed to obtain blurry images with sea fog and clear images
without sea fog. The FFA‐Net [21] is then introduced to
process the blurry images, eliminating the influence of sea fog
on the clarity of visible images. This operation is conducive to
subsequent ship detection. Next, a multi‐granularity feature
enhancement module (MFEM) is designed to perform super‐
resolution reconstruction on the three feature maps extracted
by YOLOv7 [22] and enhance the semantic information of the
feature maps. This refinement aims to reduce missed de-
tections and false alarms, further elevating the accuracy of ship
detection at sea. In short, our main contributions are as
follows:

1) A 3WDM is proposed to reduce the interference of sea fog
on ship detection in visible light images. 3WDM can effi-
ciently classify blurred images with sea fog and perform
dehazing processing to avoid excessive blurring of clear
images without fog. This further enhances the quality of
data samples and greatly promotes subsequent feature
extraction.

2) AnMFEM is designed to enhance the feature representation
capability of multi‐sized ship detection. MFEM employs the
improved super‐resolution reconstruction convolutional
neural network (SRCNN) to conduct super‐resolution
reconstruction on the three feature maps extracted by the
Head of YOLOv7, aiming to enhance the details and clarity
of these feature maps. This strategy enriches the feature
representation of multi‐sized ship detection.

3) To verify the effectiveness of the proposed MFENet, we
conduct extensive experiments on the McShips and Sea-
Ships datasets. The mean Average Precision (mAP) can
reach 96.28% and 97.71%, respectively, achieving state‐of‐
the‐art detection performance.

The remainder of this paper is organised as follows. Sec-
tion 2 provides a review of related work. Section 3 presents a
detailed description of the proposed MFENet. Section 4 dis-
cusses experimental results. Section 5 draws some conclusions
and potential future work.

2 | RELATED WORK

This subsection mainly introduces the ship detection method,
the image dehazing method, and the network structure of
SRCNN.

2.1 | Ship detection method

Early maritime ship detection methods such as HOG [23],
SIFT [24], and LBP [25] typically use handcrafted features
combined with traditional classifiers. However, these methods
are not only slow in detection speed but also poor in detection
effects. In recent years, technologies based on convolutional
neural networks (CNNs) [26–28] gradually replaced traditional
methods and have become a research hotspot. Some CNN‐
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based maritime ship detection methods use single‐stage de-
tectors, such as Deformable DETR [29], CFP [30], and PDNet
[31], which can achieve fast and accurate detection. However,
these methods have limitations in detecting small targets. In
addition, some methods use two‐stage detectors, such as
Quad‐FPN [32], BUAA‐PAL‐OICR [33], and SCSD [34],
which are more effective for small objects, but the detection
speed is slower.

To solve the above problems, some improved methods for
maritime ship detection have been proposed. These methods
incorporate attention mechanisms, feature pyramid network
(FPN), multi‐granularity feature fusion, and other techniques to
enhance detection accuracy and efficiency. These approaches
are continuously emerging, introducing novel ideas and meth-
odologies to the field of marine ship detection research and
application. Cui et al. [35] proposed DAPN, which achieves
efficient and accurate detection of multi‐sized ships by
employing a multi‐granularity feature pyramid and an attention
mechanism. Zhang et al. [36] designed MDCN, which can share
similar feature representations among domains with different
granularities, thus enabling more generalised ship detection. Li
et al. [37] designed HSF‐Net, which employs a multi‐granularity
deep feature embedding method to capture image features of
different granularities, enhancing ship detection. Zhang et al.
[38] proposed BL‐Net, which combines synthetic data and real
data, and introduces an attention mechanism to solve the data
imbalance problem, thereby improving the performance of
ship detection. Although these methods can enhance the
detection performance of ships of different sizes to some
extent, they do not fully consider the sea fog problem existing
in ship detection. Given the unique characteristics of visible
light ship data, including factors such as sea fog and multi‐sized
ship targets, this paper integrates 3WDM and MFEM into
YOLOv7. This integration aims to enhance detection perfor-
mance while maintaining high‐speed detection, achieving a
better balance between speed and accuracy.

2.2 | Image dehazing method

Currently, traditional image processing dehazing algorithms
[39–41] mainly rely on enhancing contrast to improve the vi-
sual effect of images or modelling haze images based on at-
mospheric scattering laws and image degradation reasons to
achieve dehazing restoration. However, these algorithms are
computationally complex and are not completely effective for
dehazing different hazy scenes. In recent years, CNN has been
rapidly developed in various fields, benefiting from its powerful
learning ability, and has been used to process hazy images.
CNN algorithms combine the characteristics of the haze itself
and the reasons for dehazing, making them have better per-
formance in dehazing. Li et al. [42] designed AOD‐Net, which
appropriately transformed the atmospheric scattering model
formula and learnt its related parameters through a neural
network. Zhang et al. [43] proposed DCPDN, which can
automatically learn image dehazing and adopts a pyramid‐
shaped dense connection structure to improve the

effectiveness and speed of dehazing. Shao et al. [44] proposed a
domain adaptation method based on generative adversarial
networks, which improves dehazing performance by learning
the mapping from a labelled source domain to an unlabelled
target domain. Liu et al. proposed GridDehazeNet [45], which
utilises an attention mechanism to effectively remove haze
from images and has strong robustness and generalisation
performance in complex scenes. Qin et al. designed FFA‐Net
[21], which removes haze from single images through feature
fusion and attention mechanism and has high dehazing quality
and real‐time performance.

The above dehazing algorithm usually performs dehazing
processing on all images, which may cause some images
without fog or uncertain whether there is fog to become
blurry, which is not conducive to the extraction of image
features in subsequent target detection. Therefore, in this
study, we design a 3WDM to alleviate the problem of excessive
image dehazing.

2.3 | The structure of SRCNN

The SRCNN [46] is a popular method for solving the problem
of image super‐resolution. SRCNN mainly uses a three‐layer
CNN to fit the non‐linear mapping between low‐resolution
and high‐resolution images and obtain the network output,
which is the reconstructed high‐resolution image. The struc-
ture of SRCNN is shown in Figure 1, where the three con-
volutional operations are used for feature block extraction and
representation, non‐linear mapping, and reconstruction,
respectively. The first convolutional layer uses kernels of size
f1 � f1, with n1 kernels and n1 feature maps as outputs. The
second convolutional layer uses kernels of size f2 � f2, with n2
kernels and n2 feature maps as output. The third convolutional
layer uses kernels of size f3 � f3, with n3 kernels and n3 feature
maps as outputs. The final output feature map is the recon-
structed high‐resolution image. In SRCNN, the values of f1, f2,
f3, n1, n2, and n3 are set to 9, 1, 5, 64, 32, and 3, respectively.

3 | PROPOSED METHOD

This section presents the details of the proposed method. First,
a brief review of the baseline YOLOv7 is presented. Then, the
overall architecture of the proposed MFENet (as shown in
Figure 2) is introduced. Finally, the three‐way dehazing module
(3WDM) and the multi‐granularity feature enhancement model
(MFEM) in the proposed MFENet are explained in detail.

3.1 | YOLOv7 as baseline

Compared with two‐stage detectors, YOLOv7 is a real‐time
object detection model based on a deep neural network,
which quickly identifies and locates objects. The Backbone
uses ELANet‐l to extract image features, which are composed
of ELAN and MP‐1 structures. By feeding the features
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extracted from the Backbone into the Head, YOLOv7 gener-
ates predictions at three different scales (20 � 20, 40 � 40, and
80 � 80), capturing objects of various sizes and preserving
spatial information at different levels within the model.

The Stem layer consists of three convolutional layers, and
the Conv layer consists of convolution, batch normalisation,
and SiLU activation functions. The ELAN layer is used to
adjust the length of the gradient path to force the network to
learn more features. The difference between ELAN and
ELAN‐H is the number of splices. MP‐n is mainly responsible
for spatial downsampling, generating features with n times the
input feature channels while halving the spatial resolution. The
SPPCSPC module utilises maximal pooling to alleviate

computational load, enhance speed and accuracy, catering to
the demands of multi‐resolution images. The RepConv layer is
mainly used for structural reparameterisation, which helps
deploy and accelerate the model.

3.2 | Proposed MFENet

YOLOv7 is a single‐stage object detector. To make it more
suitable for maritime ship target detection, this paper selected
YOLOv7 as the baseline and proposed MFENet (as shown in
Figure 2), which combines three‐way dehazing modules
(3WDM) and a MFEM to improve YOLOv7. The proposed

F I GURE 1 Architecture of SRCNN. SRCNN consists of feature block extraction and representation, non‐linear mapping, and reconstruction. SRCNN,
super‐resolution reconstruction convolutional neural network.

F I GURE 2 Architecture of the proposed MFENet. Compared with the baseline YOLOv7, MFENet proposes a 3WDM, which aims to eliminate the
interference of sea fog on ship detection in visible light images. Simultaneously, it also designs an MFEM to improve the resolution and details of the feature
map, thereby enhancing the feature representation of ships of different sizes. Conv, BN, SiLU, Maxpool, and Concat refer to convolution, batch normalisation,
SiLU activation function, max pooling, and tensor concatenation, respectively. MFEM, multi‐granularity feature enhancement model; 3WDM, three‐way
dehazing module.
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MFENet consists of Preprocessing, Backbone, and M‐Head.
Preprocessing is mainly to insert our 3WDM into the Input of
YOLOv7 to eliminate the influence of sea fog on visible light
images. The Backbone remains unchanged from YOLOv7. M‐
Head represents adding an MFEM after the Head of YOLOv7,
which further enhances the model's ability to express the target
features of ships of different sizes, thereby obtaining accurate
detection results.

3.3 | Three‐way dehazing module

Visible light images have broad application prospects in
maritime ship detection. However, they are often greatly
affected by sea fog, resulting in varying degrees of attenua-
tion in contrast, colour fidelity, and other aspects of the
image, making the image blurry, which further affects the
detection accuracy and leads to seriously missed detections
and false alarms. To solve this problem, this paper proposes
a three‐way dehazing module (3WDM) to defog from visible
light ship images and obtain high‐quality visible light image
samples for subsequent training (as shown in Figure 3). First,
the idea of three‐way decisions is integrated into the K‐
means algorithm to design an automatic classification algo-
rithm for visible light image clarity to obtain clear images
without sea fog and blurry images with sea fog. Second, the
FFA‐Net [21] is used to defog blurry images. Finally, the
obtained clear images are fed into the deep neural network
for training.

In the process of designing the automatic classification
algorithm for visible light image clarity, the image is mainly
classified according to different feature values. Since the se-
lection of features directly affects the timeliness of the algo-
rithm, we select the image entropy and gradient as features and
input them into the K‐means algorithm based on three‐way
decisions for classification. Finally, blurry images with sea
fog and clear images without sea fog are obtained.

The pseudocode of our proposed 3WD‐based automatic
classification algorithm for visible light image clarity is shown
in Algorithm 1. The algorithm primarily classifies image clarity
based on different feature values. Since the selection of

features directly affects the real‐time performance of the al-
gorithm, we choose the entropy function [47] and Laplacian
gradient function [48] of the image as features to determine the
clarity of the images. The steps of Algorithm 1 are as follows.
First, for all images I = (i1, i2, …, in), we calculate the entropy
function value e(ij) and the Laplacian gradient function value l
(ij) for each image ij (j = 1, 2, …, n), that is, the sample sets
E = (e(i1), e(i2), …, e(in)) and L = (l(i1), l(i2), …, l(in)).

The entropy function of image ij can be expressed as
follows:

e
�
ij
�
¼ −

XN−1

a¼0
paln

�
pa
�
; ð1Þ

where N is the number of greyscale levels in the image
(N = 256), and pa represents the probability of each greyscale
level. The larger e(ij) is, the clearer the image becomes, and vice
versa. Meanwhile, the Laplacian gradient function of image ij
can be written as follows:

l
�
ij
�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2xðs; tÞ þ g2yðs; tÞ

q
;

gxðs; tÞ ¼ gðs; tÞ ∗ A;

gyðs; tÞ ¼ gðs; tÞ ∗ A;

A¼
1
6

2

6
6
6
6
4

1 4 1

4 −20 4

1 4 1

3

7
7
5;

ð2Þ

where gx and gy are the convolution of the Laplacian horizontal
convolution kernel A and the vertical convolution kernel A at
the pixel point ðs; tÞ, respectively. The larger l(ij) is, the clearer
the image becomes, and vice versa. Then, we use the
K − means clustering algorithm and the three‐way decisions
theory to cluster E and L separately. The specific steps are as
follows:

F I GURE 3 The structure of 3WDM. First, the 3WDM divides all input images into three categories based on the three‐way decisions, including clear
images without sea fog, uncertain images, and blurry images with sea fog. Second, the uncertain images are further divided by calculating the Euclidean distance.
Then, the FFA‐Net is used to defog the blurry images. Finally, the obtained clear images are inputted into a deep neural network for training. 3WDM, three‐way
dehazing module.
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Step 1: Randomly select k samples from E as the initial
mean vector

�
μ1; μ2;…;μk

�
ð1 ≤ m ≤ kÞ.

Step 2: Let Cm ¼ ϕð1 ≤ m ≤ kÞ and calculate the distance
djm between the sample ej and each mean vector μm. djm
can be expressed as follows:

djm ¼
�
�e
�
ij
�

− μm
�
�
2 ð1 ≤ m ≤ k; j ¼ 1; 2;…; nÞ: ð3Þ

Step 3: Determine the cluster label λj of e(ij) according to
the nearest mean vector, which can be expressed as
follows:

λj ¼ arg minm∈f1;2;…;kgdjm: ð4Þ

Step 4: Assign the calculated samples e(ij) to the corre-
sponding cluster Cλj ¼ Cλj

S �
e
�
ij
��

, e(ij) and ij are one‐
to‐one correspondence.
Step 5: Calculate the new mean vector μ0i, which can be
expressed as follows:

μ0m ¼
1
jCmj

X

x∈Cm

x ð1 ≤ m ≤ kÞ: ð5Þ

Step 6: Repeat steps 2 and 5 until the current mean vector
μm remains unchanged.
Step 7: Use E to divide all images I into blurry images Cb

1
and clear images Cc

2. Similarly, use L to divide all images I
into blurry images Cb

3 and clear images Cc
4.

Next, based on the three‐way decisions theory, we divide
all images into blurry images Cb ¼ Cb

1 ∩ Cb
3, clear images

Cc ¼ Cc
2 ∩ Cc

4, and uncertain images Cu = I − (Cb [ Cc).
Finally, we calculate the threshold α belonging to the blurry
image, and the threshold β belonging to the clear image is as
follows:

α1
Cb
¼minjl

�
ij
�

− e
�
ij
��
�
�
ij ∈ Cb

�
;

α2
Cb
¼maxjl

�
ij
�

− e
�
ij
��
�
�
ij ∈ Cb

�
;

α¼
n

α1
Cb
; α2

Cb

o
:

ð6Þ

β1
Cc
¼minjl

�
ij
�

− e
�
ij
��
�
�
ij ∈ Cc

�
;

β2
Cc
¼maxjl

�
ij
�

− e
�
ij
��
�
�
ij ∈ Cc

�
;

β¼
n

β1
Cc
; β2

Cc

o
;

ð7Þ

where l(ij) is the Laplace gradient function value of image ij. e
(ij) is the entropy function value of image ij. And we calculate
the Euclidean distance between the uncertain images Cu and α
and β to determine the category of the uncertain images Cu as
follows:

γ1Cu
¼minjl

�
ij
�

− e
�
ij
��
�
�
ij ∈ Cu

�
;

γ2Cu
¼maxjl

�
ij
�

− e
�
ij
��
�
�
ij ∈ Cu

�
;

B¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

γ1Cu
− α1

Cb

�2
þ
�

γ2Cu
− α2

Cb

�2
r

;

D¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

γ1Cu
− β1

Cc

�2
þ
�

γ2Cu
− β2

Cc

�2
r

;

ð8Þ

where B represents the distance between the uncertain image
and the blurry image in terms of the values of the Laplacian
gradient function and the entropy function. D represents the
distance between the uncertain image and the clear image in
terms of the values of the Laplacian gradient function
and the entropy function. If B > D, image ij (ij ∈ Cu) is
assigned to the cluster of the clear image, and vice versa.
Therefore, Cu is divided into blurry images Cb

5 and clear
images Cc

6, resulting in the final clear images without
sea fog Ic ¼ Cc

2 ∩ Cc
4 [ C

c
6 and blurry images with sea

fog Ib ¼ Cb
1 ∩ Cb

3 [ C
b
5.

Algorithm 1 Automatic screening of image clarity
based on 3WD.

Require: All images I¼ ði1;i2;…;inÞ, cluster k
Ensure: Clear images Ic, blurry images Ib
1: For all images I, e

�
ij
�
ðj¼ 1;2;…;nÞ and

l
�
ij
�
are obtained by Equations (1) and

(2). Note the sample set E ¼ ðeði1Þ;eði2Þ;…;
eðinÞÞ;L¼ ðlði1Þ;lði2Þ;…;lðinÞÞ

2: Select k samples randomly from E as the
initial mean vector fμ1;μ2;…;μkgð1 ≤ m ≤ kÞ

3: Repeat
4: Let Cm ¼ ϕð1 ≤ m ≤ kÞ
5: for j = 1, 2, …, n do
6: Assign sample e(ij) into the

corresponding cluster
Cλj ¼ Cλj

S �
e
�
ij
��

by Equations (3) and
(4), e(ij) and ij are one-to-one
correspondence. Update the mean
vector μ0m by Equation (5).

7: end for
8: Until the stop condition is met, the

current μm remains unchanged.
9: The E is divided into blurry images Cb1 and

clear images Cc2. Similarly, the L is
divided into Cb3 and C

c
4

10: Combined with the three-way decisions
thought, get blurry images Cb ¼ Cb1 ∩ C

b
3,

clear images Cc ¼ Cc2 ∩ C
c
4, and uncertain

images Cu = I − (Cb [ Cc)
11: The uncertain images Cu is divided into

clear images Cc6 and blurry images C
b
5 by

Equations (6)–(8).
12: Return Ic ¼ Cc2 ∩ C

c
4 [ C

c
6, Ib ¼ C

b
1 ∩ C

b
3 [ C

b
5
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3.4 | Multi‐granularity feature enhancement
module

Aiming at the characteristics of various sizes of ships in visible
light images, this paper designs an MFEM (as shown in
Figure 4). This module aims to improve the quality of the
feature maps Y1, Y2, and Y3 outputted by the Head part of
YOLOv7. It utilises information from multi‐granularity layers
to effectively accommodate various sizes of ship features in
visible light images. Specifically, we introduce an improved
SRCNN (as shown in Figure 4) for the feature maps Y1, Y2, and
Y3 of sizes 20 � 20, 40 � 40, and 80 � 80 output by the Head
part and perform feature enhancement processing on them.
The improved SRCNN reconstructs and enhances the detailed
information of feature maps by learning the mapping rela-
tionship of feature maps. In this way, we can obtain richer and
more accurate feature representations from different granularity
levels to better capture the tiny features of ships of different
sizes. This multi‐granularity enhancement strategy fully utilises
the information from different granularity levels, improving the
quality and details of the feature maps. It enables better adap-
tation to the detection requirements of ships of different sizes
and enhances the overall performance of ship detection.

Compared with SRCNN, the improved SRCNN maintains
the same receptive field size while reducing the number of
parameters, which benefits the model by adding MFEM to
obtain the best ship detection accuracy at a faster speed. The
improved SRCNN mainly consists of the following three
convolutional layers.

The first convolutional layer is to extract and represent the
features of the low‐resolution feature map Yi, and its operation
can be expressed as F1:

F1ðYiÞ ¼maxð0; W1 ∗ Yi þ B1Þ ði ¼ 1; 2; 3Þ ð9Þ

where F1 represents the mapping relationship of the feature
extraction layer, and W1 and B1 represent the filter and bias,
respectively. W1 contains 64 convolution kernels, and each of
which is a 5 � 5 kernel with a dilation rate of 2 [49]. B1 is a 64‐
dimensional vector, and each element is associated with a filter.

After the first layer, a 64‐dimensional feature map is extracted
for each low‐resolution feature map.

The second convolutional layer remaps a 64‐dimensional
feature map into a 32‐dimensional feature map. The opera-
tion of the second layer can be expressed as F2.

F2ðYiÞ ¼maxð0; W2 ∗ F1ðYiÞ þ B2Þ ði ¼ 1; 2; 3Þ ð10Þ

where F2 represents the mapping relationship of the non‐linear
mapping layer, and W2 contains 32 convolution kernels, each
of which is a 1 � 1 kernel. B2 is a 32‐dimensional vector. After
the second non‐linear mapping layer, the mapping process
from low‐resolution features to high‐resolution features is
completed.

The third convolutional layer recombines the high‐
resolution features obtained from the second layer, and its
operation can be expressed as F.

FðYiÞ ¼ W3 ∗ F2ðYiÞ þ B3 ði ¼ 1; 2; 3Þ ð11Þ

where F represents the mapping relationship of the recon-
struction layer, W3 contains 3 convolution kernels, each of
which is a 5 � 5 kernel, and B3 is a 3‐dimensional vector.

4 | EXPERIMENTS

4.1 | Datasets

We primarily choose two benchmark datasets, McShips and
SeaShips, for marine ship detection. Table 1 shows the ship
category distribution for each dataset. Next, we will introduce
these two datasets.

McShips [50] is a challenging and multi‐class dataset pro-
vided by Northwestern Polytechnical University, which in-
cludes military ships in addition to the ship types found on the
SeaShips dataset. The dataset contains 14,709 images (9000
images are publicly available) with characteristics such as
changing weather conditions, multiple scale changes, and
cluttered backgrounds. The dataset is split into training and

F I GURE 4 The structure of MFEM. MFEM includes three branches, each consisting of an improved SRCNN. The improved SRCNN contains three
convolutional layers for feature extraction, representation, non‐linear mapping, and reconstruction. The main purpose of MFEM is to improve the accuracy of
the model in detecting ships of different sizes in visible light images. MFEM, multi‐granularity feature enhancement module; SRCNN, super‐resolution
reconstruction convolutional neural network.

YING ET AL. - 655



testing sets with an 8:2 ratio, and each image is cropped to a
size of 640 � 640.

SeaShips [51] is the first publicly available ship detection
dataset provided by Wuhan University. The dataset includes
31,455 images (7000 images are publicly available) with a res-
olution of 1080 � 1920 pixels, captured by 156 surveillance
cameras installed in Hengqin Island, Zhuhai, China. It contains
six different categories of ships with varying sizes, including
bulk carriers, general cargo ships, container ships, fishing boats,
passenger ships, and ore carriers, and has characteristics such
as variations in ship scale, complex background interference,
and changes in lighting conditions. The dataset is divided into
training and test sets in an 8:2 ratio, with each image resized to
640 � 640.

4.2 | Evaluation metrics

We primarily use average precision (AP), mAP, and frames per
second (FPS) as evaluation metrics to assess the performance of
differentmaritime ship detectionmethods. The IoU is calculated
by dividing the overlapping area of the detection box with the
ground truth box by their union area. The detection box is
labelled as true positive (TP) if the IoU between the two boxes
exceeds a threshold. Otherwise, it is labelled as false positive
(FP). A ground truth box is labelled as false negative (FN) if it has
no corresponding detections. AP and mAP are obtained by
calculating precision P= TP/(TPþ FP) and recall rateR= TP/
(TP þ FN). They can be expressed as AP¼

R 1
0PðRÞdR and

mAP¼ 1
N
PN

i¼1APi, where APi represents an AP value for each
class i, A denotes the total number of classes. Meanwhile, we
consider model parameters (Params) and floating point opera-
tion counts (FLOPs) to evaluate the complexity of the proposed
method.

4.3 | Experimental settings

The experiments are run on 2 T V100 GPUs with 32 GB
memory, and we use CUDA11.4, CUDNN8.0.4, and

Pytorch1.9.0. We set k to two in Algorithm 1. ELANet‐l serves
as the backbone network. We utilise the SGD optimiser with
an initial learning rate of 1 � 10−3 and a batch size of 8. The
momentum and weight decay are set to 0.9 and 0.0001,
respectively. The McShips dataset is trained for 60 epochs,
while the SeaShips dataset is trained for 50 epochs.

4.4 | Parametric analysis

4.4.1 | Comparing the effects of different
dehazing algorithms on 3WDM

In Section 3.3, we propose a 3WDM and study the impact of
different dehazing algorithms on the detection performance of
3WDM. We conduct a comparison of FFA‐Net with other
dehazing algorithms to verify the effects of FFA‐Net on
3WDM. We keep other settings unchanged and only replace
FFA‐Net with AOD‐Net or DCPDN, as shown in Table 2. We
find that 3WDM using FFA‐Net outperforms the baseline by
1.09% and 1.02% in terms of mAP on the McShip and Sea-
Ships datasets, respectively. In contrast, the performance of
AOD‐Net and DCPDN models is relatively weak. This in-
dicates that FFA‐Net is very effective in improving the
detection performance of the model.

4.4.2 | Comparing the impact of different anchor
boxes on YOLOv7

To improve the accuracy of ship detection, it is necessary to
redesign the anchor box. Because the original anchor box of
YOLOv7 is mainly suitable for general object detection and
cannot meet the needs of ship detection. We use the K‐means
algorithm to redesign the anchor box on the McShips and
SeaShips datasets, which are listed in Tables 3 and 4. Figure 5
compares the redesigned anchor box with the original
YOLOv7 anchor box in two datasets. Furthermore, Figure 6
shows the distribution of ground truth width and height for
ships in two datasets. By comparing Figures 5 and 6, we

TABLE 1 Number of images for each ship category on different datasets.

Dataset Ship category Images Percentage Objects Percentage

McShips Civilian ship 4129 0.4919 5382 0.4750

Warship 4265 0.5081 5949 0.5250

Total 8394 1 11,331 1

SeaShips Container ship 2084 0.2537 2199 0.2385

Passenger ship 455 0.0554 474 0.0514

Ore carrier 898 0.1093 901 0.0977

General cargo ship 1426 0.1736 1505 0.1632

Bulk cargo carrier 1811 0.2205 1952 0.2117

Fishing boat 1539 0.1874 2190 0.2375

Total 8213 1 9221 1
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clearly observe that there are significant differences between
the two anchor boxes. Simultaneously, we also conduct a
series of experiments on the original and the redesigned an-
chor box on the two datasets, and the results are shown in
Table 5. Experiments show that the redesigned anchor box
can significantly improve the accuracy of the YOLOv7 al-
gorithm in ship detection, increasing the detection accuracy
of McShips and SeaShips by 1.86% and 1.75%, respectively.
Therefore, it is necessary to redesign the anchor box to
improve the accuracy of ship detection.

4.4.3 | Comparing the impact of training epochs
on different datasets

To investigate the effects of training epochs on the McShips
and SeaShips datasets, Figure 7 presents the accuracy‐epoch
and loss‐epoch curves on the McShips and SeaShips datasets
during training. The McShips dataset quickly converges after 60
training epochs and exhibits minor variations in the subse-
quent training. In contrast, the SeaShips dataset requires fewer
training epochs to achieve sufficient convergence and dem-
onstrates a more stable trend within 50 training epochs. The
McShips and SeaShips datasets are trained for 60 and 50
epochs, respectively.

4.5 | Ablation study

To investigate the impact of different modules on MFENet,
this subsection conducts a series of experiments on the
McShips and SeaShips datasets to validate the proposed
MFENet.

4.5.1 | YOLOv7 as baseline

YOLOv7 is a single‐stage object detection network with the
most balanced speed and accuracy, especially for the detection
of small targets. As shown in Tables 6 and 7, YOLOv7 ach-
ieves 93.26% mAP and 93.92% mAP on the McShips and
SeaShips datasets, respectively. These results demonstrate the
good competitive performance of our baseline.

TABLE 2 Comparison of experimental results in 3WDM using
different dehazing algorithms.

Methods

McShips SeaShips

mAP (%) FPS mAP (%) FPS

Baseline 93.26 60.85 93.92 67.57

AOD‐Net 93.84 53.02 94.02 58.63

DCPDN 94.01 54.34 94.56 59.24

FFA‐Net 94.28 55.17 95.01 60.12

Note: Bold highlights best results.

TABLE 4 Redesigned anchor boxes on SeaShips.

The granularity of
feature map

Anchor
box 1

Anchor
box 2

Anchor
box 3

Fine‐grained (30, 14) (61, 25) (86, 42)

Medium‐grained (114, 27) (135, 72) (146, 46)

Coarse‐grained (211, 97) (242, 57) (338, 105)

TABLE 3 Redesigned anchor boxes on McShips.

The granularity of
feature map

Anchor
box 1

Anchor
box 2

Anchor
box 3

Fine‐grained (25, 17) (45, 53) (69, 27)

Medium‐grained (100, 122) (169, 60) (214, 230)

Coarse‐grained (391, 106) (425, 309) (441, 183)

F I GURE 5 Comparison of the redesigned anchor box and the original
YOLOv7 anchor box in two datasets. (a) McShips. (b) SeaShips.

F I GURE 6 Distribution of ground truth width and height for ships in
two datasets. (a) McShips. (b) SeaShips.

TABLE 5 The detection effect of different anchor boxes on different
datasets.

Detection algorithm

The original
anchor boxes

Redesigned anchor
boxes

mAP (%) FPS mAP (%) FPS

YOLOv7(McShips) 91.40 60.85 93.26 60.85

YOLOv7(SeaShips) 92.17 67.57 93.92 67.57

Note: Bold highlights best results.
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4.5.2 | Performance of 3WDM

The proposed MFENet uses 3WDM to dehaze images con-
taining sea fog in visible light images. To verify the effective-
ness of 3WDM, we test Baseline and Baseline þ 3WDM on
McShips and SeaShips, as shown in Tables 6 and 7. In Table 6,
compared with Baseline, the addition of 3WDM increases the
AP of civilian ships and warships by 1.31% and 0.72%,
respectively, and the mAP reaches 94.28%. In Table 7, the AP
on each category is higher than the Baseline, reaching 95.01%
mAP. The experimental results verify that the designed 3WDM
significantly improves the detection accuracy of ships at sea.
Because using 3WDM can effectively classify blurry images
with sea fog and clear images without sea fog and defog the
blurry images, it avoids the influence of sea fog on the clarity
of visible light ship images, reduces missed and false detections
in ship detection, and achieves efficient localisation and clas-
sification of ships.

4.5.3 | Performance of MFEM

To evaluate the effectiveness of MFEM, we conduct experi-
ments on the McShips and SeaShips datasets and compare the
results with Baseline and Baseline þ 3WDM, as shown in
Tables 6 and 7. In Table 6, compared with Baseline,
BaselineþMFEM increases the AP of each class by 2.19% and
1.87%, respectively. Meanwhile, Baseline þ 3WDM þ MFEM
not only achieves 96.28% mAP but also increases the AP of
civilian ships and warships to 93.85% and 98.71%, respectively.
InTable 7, we can see that BaselineþMFEM increases theAPof
container ship, passenger ship, ore carrier, general cargo ship,

bulk cargo carrier, and fishing boat by 2.54%, 2.69%, 2.92%,
2.10%, 4.20%, and 1.93%, respectively, reaching 96.65% mAP.
Moreover, Baselineþ 3WDMþMFEM improves the mAP by
2.60% compared to Baselineþ 3WDM. This demonstrates that
MFEM can effectively improve the detection accuracy of ships
of different sizes by improving the resolution of feature maps of
different granularity layers, thereby reducing missed detections
and false alarms in visible light ship detection.

In addition, it is worth noting that, compared to the
Baseline, the number of parameters and FLOPs of MFENet
(Baseline þ 3WDM þ MFEM) on the McShips dataset only
increase by 4.61 M and 9.59 G. Similarly, on the SeaShips
dataset, MFENet only adds 4.61 M parameters and 11.64 G
FLOPs. Therefore, our MFENet significantly improves
detection performance without significantly increasing the
number of parameters and computing overhead.

4.6 | Comparison with state‐of‐the‐art

This subsection compares our MFENet with other state‐of‐
the‐art methods on the two datasets, that is, McShips and
SeaShips. To ensure a fair comparison, we do not use the
preprocessing module 3WDM for all algorithms. Meanwhile,
to evaluate the performance of our MFENet more compre-
hensively, we also select several excellent algorithms that use
our proposed 3WDM in the preprocessing. This step elimi-
nates the influence of the preprocessing module 3WDM on the
experimental results and ensures a fair evaluation of the per-
formance of our MFENet.

4.6.1 | Results on McShips

We evaluate MFENet on the mAP metric. Under the mAP
metric, we evaluate Faster R‐CNN [8], FCOS [14],YOLOv5
[11], Deformable DETR [29], CBNet [13], PDNet [31],
BUAA‐PAL‐OICR [33], CFP [30], HSF‐Net [37], DAPN [35],
Quad‐FPN [32], BL‐Net [38], SCSD [34], MDCN [36] and
YOLOv7 [22] methods. The experimental results of MFENet
on McShips are shown in Table 8. When all algorithms do not
use our proposed preprocessing module 3WDM, our MFENet
achieves 95.29% mAP, demonstrating the effectiveness of the
network design of MFENet. This achievement benefits from
incorporating the multi‐granularity concept into SRCNN and

F I GURE 7 The accuracy‐epoch and loss‐epoch curves on the
McShips and SeaShips datasets during training. (a) Accuracy‐epoch.
(b) Loss‐epoch.

TABLE 6 Performance of different module combination strategies on McShips.

Baseline 3WDM MFEM

AP (%)

mAP (%) Params (M) FLOPs (G) FPSCivilian ship Warship

✓ 90.82 95.70 93.26 36.90 104.70 60.85

✓ ✓ 92.13 96.42 94.28 41.36 113.53 55.17

✓ ✓ 93.01 97.57 95.29 37.05 105.46 56.46

✓ ✓ ✓ 93.85 98.71 96.28 41.51 114.29 50.78

Note: Bold highlights best results.
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using the improved SRCNN to enhance the resolution of
different granularity features extracted by YOLOv7. Moreover,
compared with several state‐of‐the‐art methods using the same
preprocessing module 3WDM, MFENet achieves the best
performance, achieving 96.28% mAP. MDCN has the best
detection performance on small and medium‐sized ships,
achieving 92.44% mAP at a speed of 7.32 FPS, while MFENet
achieves 93.85% mAP at 50.78 FPS, far superior to MDCN.
CFP performs best for large ships, achieving 97.81% mAP,
while MFENet outperforms YOLOv7 by 0.9%. Therefore,

MFENet can effectively detect ships of different sizes in visible
light images, and its detection performance is far superior to
other excellent algorithms.

4.6.2 | Results on SeaShips

We evaluate our MFENet on the SeaShips and compared it
with other state‐of‐the‐art methods. The results are presented
in Table 9. As shown in Table 9, we can see that when all

TABLE 7 Performance of different module combination strategies on SeaShips.

Baseline 3WDM MFEM

AP(%)

mAP
(%)

Params
(M)

FLOPs
(G) FPS

Container
ship

Passenger
ship

Ore
carrier

General cargo
ship

Bulk cargo
carrier

Fishing
boat

✓ 96.29 92.02 93.13 95.78 93.23 93.09 93.92 36.90 95.81 67.57

✓ ✓ 96.77 92.82 94.53 95.84 96.40 93.67 95.01 41.36 105.94 60.12

✓ ✓ 98.83 94.71 96.05 97.88 97.43 95.02 96.65 37.05 97.32 62.75

✓ ✓ ✓ 99.03 95.47 97.98 98.93 98.55 96.27 97.71 41.51 107.45 56.43

Note: Bold highlights best results.

TABLE 8 Comparisons with state‐of‐the‐art methods on McShips.

Methods Backbone

AP(%)

mAP (%) FPSCivilian ship Warship

Object detection

Faster R‐CNN [8] VGG16 70.19 83.23 76.71 11.46

FCOS [14] VGG16 86.50 90.02 88.26 15.79

YOLOv5 [11] CSPDarknet53 90.52 95.02 92.77 48.21

Deformable DETR [29] ResNet50 89.01 92.43 90.72 12.13

CBNet [13] ResNet50 91.27 96.07 93.67 23.10

PDNet [31] ResNet50 90.77 94.12 92.45 15.74

BUAA‐PAL‐OICR [33] VGG‐16 91.05 92.57 91.81 17.13

CFP [30] CSPDarknet53 91.58 96.52 94.05 30.17

CFP [30]* CSPDarknet53 92.31 97.81 95.06 25.49

Ship detection

HSF‐Net [37] VGG16 85.16 89.08 87.12 11.25

DAPN [35] ResNet101 88.14 91.01 89.58 10.34

Quad‐FPN [32] ResNet50 90.19 93.25 91.72 11.88

BL‐Net [38] ResNet101 92.09 95.64 93.87 25.08

SCSD [34] ResNet‐101 91.55 94.36 92.96 9.46

MDCN [36] ResNet‐50 91.73 96.08 93.91 13.01

MDCN [36]* ResNet‐50 92.44 97.45 94.95 7.32

YOLOv7 [22] ELANet‐l 90.82 95.70 93.26 60.85

YOLOv7 [22]* ELANet‐l 92.13 96.42 94.28 55.17

MFENet (ours) ELANet‐l 93.01 97.57 95.29 56.46

MFENet (ours)* ELANet‐l 93.85 98.71 96.28 50.78

Note: Bold highlights best results.
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algorithms did not use our proposed preprocessing module
3WDM, our MFENet improves the mAP from 93.92% to
96.65% compared to the baseline YOLOv7 [22]. Our MFENet
outperforms object detection algorithms in terms of perfor-
mance, and this advantage is even more pronounced compared
to ship detection methods. In particular, the ship detection
method MDCN [36] achieves 94.06% mAP at a speed of 15.44
FPS, while our MFENet outperforms MDCN by 2.59% mAP,
with the highest accuracy of 96.65% mAP and high speed than
MDCN. In addition, Table 9 shows that compared to other
state‐of‐the‐art methods using the same preprocessing module
3WDM, our MFENet achieved the highest detection accuracy,
reaching 97.71% mAP at 56.43 FPS. Compared with CFP,
MDCN, and YOLOv7, our MFENet improves the detection
accuracy by 1.11%, 2.41%, and 3.79%, respectively. Meanwhile,
our MFENet achieves the best detection accuracy in the
container ship, ore carrier, bulk cargo carrier, and bulk cargo
carrier detection categories. It can accurately identify and

process blurry images while avoiding unnecessary processing
of clear images, thereby improving the quality and clarity of the
images. This further enhances the detection performance of
ships of different sizes in visible light images.

4.7 | Visualising results and insight

4.7.1 | Visualisation results of different module
combinations on McShips and SeaShips

To further elaborate on the combination effects of 3WDM and
MFEM, we select two visible light images from McShips and
SeaShips, respectively, and visualise their detection results. The
visualisation results are shown in Figures 8 and 9. The first
column is clear images without sea fog, and the second is blurry
images with sea fog. There are two missed detections and one
false alarm in Figure 8b, while there is one missed detection in

TABLE 9 Comparisons with state‐of‐the‐art methods on SeaShips.

Methods Backbone

AP(%)

mAP
(%) FPS

Container
ship

Passenger
ship

Ore
carrier

General cargo
ship

Bulk cargo
carrier

Fishing
boat

Object detection

Faster R‐CNN [8] VGG16 85.71 88.01 89.72 91.05 87.85 87.56 88.32 13.34

FCOS [14] VGG16 95.41 91.01 90.03 91.04 91.41 92.34 91.87 20.34

YOLOv5 [11] CSPDarknet53 96.11 91.08 93.34 94.77 93.61 91.53 93.41 56.05

Deformable
DETR [29]

ResNet50 90.34 87.12 84.79 84.96 83.33 86.76 86.22 15.03

CBNet [13] ResNet50 96.01 93.05 94.23 95.67 93.74 93.07 94.30 29.02

PDNet [31] ResNet50 89.04 92.25 94.21 93.04 93.22 92.38 92.36 22.36

BUAA‐PAL‐
OICR [33]

VGG‐16 93.04 91.27 93.26 94.11 92.54 92.79 92.84 24.17

CFP [30] CSPDarknet53 96.56 93.75 94.12 97.75 95.71 94.86 95.46 40.17

CFP [30]* CSPDarknet53 98.51 94.92 96.07 97.92 96.63 95.53 96.60 35.75

Ship detection

HSF‐Net [37] VGG16 90.34 87.12 84.79 84.96 83.33 86.76 86.22 12.54

DAPN [35] ResNet101 85.73 89.22 89.04 90.45 88.33 87.65 88.40 11.20

Quad‐FPN [32] ResNet50 90.47 92.64 93.76 94.59 91.14 90.61 92.20 12.76

BL‐Net [38] ResNet101 94.70 91.01 93.38 94.67 93.41 92.74 93.82 30.77

SCSD [34] ResNet‐101 90.47 92.64 93.76 94.59 91.14 90.61 92.20 10.31

MDCN [36] ResNet‐50 95.56 92.45 94.12 93.51 93.31 95.43 94.06 15.44

MDCN [36]* ResNet‐50 97.64 93.01 95.60 96.03 94.22 95.27 95.30 9.70

YOLOv7 [22] ELANet‐l 96.29 92.02 93.13 95.78 93.23 93.09 93.92 67.57

YOLOv7 [22]* ELANet‐l 96.77 92.82 94.53 95.84 96.40 93.67 95.01 60.12

MFENet (ours) ELANet‐l 98.83 94.71 96.05 97.88 97.43 95.02 96.65 62.75

MFENet (ours)* ELANet‐l 99.03 95.47 97.98 98.93 98.55 96.27 97.71 56.43

Note: Bold highlights best results.
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Figure 8c.Meanwhile, it is worth noting that all ships in Figure 8d
are detected correctly. In addition, Figure 9b shows one missed
detection and one false alarm. Figure 9c shows one false alarm.
In contrast, every ship in Figure 9d is correctly detected.
Therefore, MFENet (Baseline þ 3WDM þ MFEM) uses the
fusion of three‐way decisions and multi‐granularity ideas to not
only correctly distinguish different‐sized ship targets in clear
images without sea fog but also improve the detection accuracy
of different‐sized ship targets by improving the clarity of blurry
images with sea fog.

4.7.2 | Visualisation results of different methods
on McShips

To facilitate the comparison of ship detection performance
among different algorithms, we show the visualisation results
of several excellent algorithms and visually compare their

missed detection and false alarm rates. These comparisons aim
to highlight the unique strengths of our proposed MFENet
compared to other methods. Figure 10 shows the visual
comparison of detection results on McShips for ground truth,
CFP [30], MDCN [36], YOLOv7 [22], and MFENet. In
Figure 10, the first column is clear images without sea fog, and
all compared detectors exhibit a certain degree of missed
detection or false alarm. Specifically, YOLOv7 has the highest
missed detection rate, missing one civilian ship. Meanwhile,
CFP has the highest false alarm rate and a false alarm of one
civilian ship. However, our MFENet can accurately detect each
type of ship with low missed detection and false alarm rates.
The second column is blurry images with sea fog. Due to the
impact of sea fog and ship sizes, it is difficult to effectively
detect all ships. Other detection methods also have varying
degrees of missed detections and false alarms, with YOLOv7
having the most serious issues. Compared to other methods,
MFENet exhibits significantly lower rates of false alarms and

F I GURE 8 Comparison of detection visualisation results of different
module combinations on McShips. Each row represents the detection
results of ground truth, Baseline, Baseline þ MFEM, and the proposed
MFENet (Baseline þ 3WDM þ MFEM). Different coloured boxes
represent different types of ship targets. Red and yellow boxes indicate
missed detections and false alarms, respectively.

F I GURE 9 Comparison of detection visualisation results of different
module combinations on SeaShip. Each row represents the detection results
of ground truth, Baseline, Baseline þ MFEM, and the proposed MFENet
(Baseline þ 3WDM þ MFEM). Different coloured boxes represent
different types of ship targets. Red and yellow boxes indicate missed
detections and false alarms, respectively.
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missed detections. Additionally, its prediction accuracy for
ships of various sizes in sea fog scenes is notably superior to
that of other detection methods, highlighting its effectiveness
in detecting ships of different sizes.

4.7.3 | Visualisation results of different methods
on SeaShips

The visual comparison results of ground truth, CFP [30],
MDCN [36], YOLOv7 [22], and MFENet on SeaShips are

shown in Figure 11. The first column is clear images without
sea fog, where MDCN and YOLOv7 falsely detect one fishing
boat each. Both CFP and MFENet accurately detect all ship
targets. The second column is blurry images with sea fog,
where CFP and MDCN falsely detect one fishing boat each,
while YOLOv7 misses one fishing boat. In contrast, our
MFENet can effectively detect ship targets of different sizes in
sea fog scenes. MFENet has the best detection performance,
with very few missed detections and false alarms, indicating
that MFENet is more suitable for detecting multi‐sized ship
targets in sea fog scenes.

F I GURE 1 0 Comparison of detection visualisation results of different
methods on McShips. Each row represents the detection results of ground
truth, CFP, MDCN, YOLOv7, and the proposed MFENet. Different
coloured boxes represent different types of ship targets. Red and yellow
boxes indicate missed detections and false alarms, respectively.

F I GURE 1 1 Comparison of detection visualisation results of different
methods on SeaShips. Each row represents the detection results of ground
truth, CFP, MDCN, YOLOv7, and the proposed MFENet. Different
coloured boxes represent different types of ship targets. Red and yellow
boxes indicate missed detections and false alarms, respectively.
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4.8 | Comparison with SAR ship dataset

To evaluate the generalisation ability of our MFENet on the
SSDD [52] and LS‐SSDD‐v1.0 [53] SAR ship detection, we
conduct a series of experiments, and the results are shown in
Table 10. Table 10 indicates that our MFENet achieves higher
accuracy and FPS on both SSDD and LS‐SSDD‐v1.0,
demonstrating its adaptability to SAR ships. This shows that
MFENet not only performs well for the visible light ship but
also exhibits good accuracy for the SAR ship.

5 | CONCLUSION

This paper proposes a novel single‐stage network, MFENet,
for ship detection in visible light images. We design 3WDM
based on 3WD, which is used for dehazing foggy images and
obtaining high‐quality training samples. In addition, we also
integrate the idea of multi‐granularity into SRCNN and
enhance the resolution of feature maps of different scales in
YOLOv7 through the improved SRCNN, thereby improving
the detection accuracy of YOLOv7 for ships of different sizes.
Extensive ablation experiments show that the proposed
MFENet can effectively improve the baseline performance and
achieve the best performance on McShips and SeaShips data-
sets. Although 3WDM and MFEM significantly improve
model performance by implementing data augmentation and
enhancing multi‐granularity feature representation. However,
when ships tilt or rotate at different angles within the image,
the use of rectangular bounding boxes fails to accurately cap-
ture the true shape of the ships, leading to a decrease in
detection accuracy. In the future, to further improve the ac-
curacy of visible light image ship detection, we will investigate
the use of rotation rectangular boxes with angle information to
detect ship targets in visible light images without reducing
detection speed.
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