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Shadowed Neighborhoods Based on Fuzzy Rough
Transformation for Three-Way Classification

Xiaodong Yue , Member, IEEE, Jie Zhou , Member, IEEE, Yiyu Yao, and Duoqian Miao

Abstract—Neighborhoods form a set-level approximation of data
distribution for learning tasks. Due to the advantages of data
generalization and nonparametric property, neighborhood models
have been widely used for data classification. However, the existing
neighborhood-based classification methods rigidly assign a certain
class label to each data instance and lack the strategies to handle
the uncertain instances. The far-fetched certain classification of
uncertain instances may suffer serious risks. To tackle this prob-
lem, in this article, we propose a novel shadowed set to construct
shadowed neighborhoods for uncertain data classification. For the
fuzzy–rough transformation in the proposed shadowed set, a step
function is utilized to map fuzzy neighborhood memberships to
the set of triple typical values {0, 1, 0.5} and thereby partition a
neighborhood into certain regions and uncertain boundary (neigh-
borhood shadow). The threshold parameter in the step function
for constructing shadowed neighborhoods is optimized through
minimizing the membership loss in the mapping of shadowed sets.
Based on the constructed shadowed neighborhoods, we implement
a three-way classification algorithm to distinguish data instances
into certain classes and uncertain case. Experiments validate the
proposed three-way classification method with shadowed neigh-
borhoods is effective in handling uncertain data and reducing the
classification risk.

Index Terms—Fuzzy rough transformation, shadowed
neighborhood, three-way classification, uncertain data analysis.

I. INTRODUCTION

N EIGHBORHOODS are constructed through grouping
neighboring data instances into sets [1]. In contrast to

K-Nearest Neighbors as instance prototypes [2]–[4], neighbor-
hoods provide the set-level prototypes and thus facilitate the
data generalization [5], [6]. Moreover, neighborhood models
are generally nonparametric and need not assume the proba-
bility distribution of data, which make the neighborhood-based
learning easy to implement and flexible to data diversity [7],
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[8]. The union of the homogeneous neighborhoods belonging
to the same class approximates the data distribution for classi-
fication [9], [10]. The classifications based on neighborhoods
were proven to be more efficient than the classifications based
on nearest-neighbor search [11].

However, the existing neighborhood-based classification
methods rigidly assign a certain class label to each data instance
and lack the strategies to handle the instances with uncertainty.
The methodology of uncertain data classification is very helpful
in reducing the decision risk and in the meantime improves
the decision efficiency through human–machine cooperation,
and therefore plays an important role in decision support sys-
tems [12]. For an example, when we apply the neighborhood-
based classification methods to implement a computer-aided
diagnosis (CAD) system for liver cancer, it is required to classify
the uncertain tumors for further cautious diagnosis and certain
far-fetched classifications produced by the system may cause
serious costs [13].

Aiming to tackle the limitation of neighborhood models for
uncertain data classification, in this article, we utilize shad-
owed sets [14] to extend the traditional neighborhoods to
shadowed ones and thereby propose a three-way classifica-
tion method based on the shadowed neighborhoods. To inte-
grate the two important paradigms of granular computing [15],
[16]: Rough sets [17], [18] and fuzzy sets [19], [20], fuzzy
rough sets [21], [22] have been widely investigated to achieve
the unified methodology for uncertain data analysis [23]–[25].
Based on the fuzzy–rough transformation, shadowed sets are
constructed through mapping fuzzy memberships into a triplet
set {0, [0, 1], 1} [26]. With the triple elements of shadowed sets,
a fuzzy concept is tri-partitioned to form a rough representation
which consists of certain positive region (denoted by 1), certain
negative region (denoted by 0), and uncertain shadow region
(denoted by [0, 1]). The traditional shadowed sets balance the un-
certainty variations on certain and uncertain regions [26], which
facilitate the uncertain data clustering [27] but may not suit
supervised learning tasks. Motivated by this, we propose a novel
shadowed set on fuzzy neighborhood memberships to construct
the shadowed neighborhoods of certain regions and uncertain
boundary (neighborhood shadow) to classify uncertain data.

To implement the uncertain classification based on shadowed
neighborhoods, we refer to the methodology of three-way de-
cisions (3WD) [28], [29] to design a three-way classification
strategy. In the process of three-way decision making, deci-
sion rules are generated through tripartitioning data space into
positive, negative, and boundary regions. Like the union of

1063-6706 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on October 12,2022 at 01:40:22 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-0536-1345
https://orcid.org/0000-0001-5882-3649
https://orcid.org/0000-0001-6588-1468
mailto:yswantfly@shu.edu.cn
mailto:jie_jpu@163.com
mailto:yyao@cs.uregina.ca
mailto:dqmiao@tongji.edu.cn
http://ieeexplore.ieee.org


YUE et al.: SHADOWED NEIGHBORHOODS BASED ON FUZZY ROUGH TRANSFORMATION 979

neighborhoods forms an approximation of data distribution for
classification, the union of the shadowed neighborhoods forms
a tripartitioned approximation of data distribution for three-way
classification. The data instances will be classified into a certain
class or uncertain case according to their locations with respect
to the shadowed neighborhoods, such as the positive regions of
the neighborhoods of same class certainly determine the class
of instances but the neighborhood shadows have uncertainty for
classification. The contributions of this article are summarized
as follows.

1) Construct and Optimize Shadowed Neighborhoods
for Modeling Uncertain Data.
We propose a novel shadowed set on fuzzy neighborhood
memberships to construct shadowed neighborhoods. In
the proposed shadowed set, a step function is utilized to
map neighborhood memberships to the set of triple typical
values {0, 1, 0.5} and thereby partitions a neighborhood
into the certain positive region, negative region, and uncer-
tain boundary region. Through minimizing the informa-
tion loss in the transformation from fuzzy memberships
to the shadowed set, we obtain the optimum threshold in
the step function to optimize the construction of shadowed
neighborhoods.

2) Implement a Three-way Classification Algorithm
With Shadowed Neighborhoods (3WC-SNB).
Based on the approximation of global data distribution
formed by the shadowed neighborhoods, we design a
group of three-way classification rules for both the data
instances within and beyond neighborhoods, and also
implement a 3WC-SNB to distinguish data instances into
certain classes and uncertain case.

The rest of this article is organized as follows. Section II
briefly introduces the preliminaries of shadowed sets and three-
way decisions. Section III introduces the shadowed neighbor-
hood model, which includes neighborhood membership formu-
lation, shadowed neighborhood construction and optimization.
Section IV presents a 3WC-SNB. In Section V, experimental
results validate the effectiveness of the proposed method for
uncertain data classification. Finally, Section VI concludes the
article.

II. PRELIMINARIES

A. Shadowed Sets of Fuzzy–Rough Transformation

As fuzzy rough sets [21], [22], shadowed sets [14], [26] were
proposed by Pedrycz to bridge rough sets [17], [18] and fuzzy
sets [19], [20] and thereby provide an effective tool to model and
analyze the concepts with uncertainty. Shadowed sets are con-
structed through the fuzzy–rough transformation of fuzzy sets. In
the fuzzy–rough transformation, the fuzzy memberships μA(x)
of data instancesx ∈ X are mapped into a triplet set {0, [0, 1], 1}
and the mapping is formulated as Sα

μA
: X → {0, [0, 1], 1}. Re-

ferring to the fuzzy–rough sets [30], [31], the values 0 and 1
denote the certain negative region and certain positive region,
and the interval [0, 1] denotes the uncertain region.

In the mapping of shadowed sets Sα
μA

, α ∈ [0, 0.5] is the
threshold parameter to tripartition the fuzzy memberships

Fig. 1. Shadowed set of triangular membership function.

as

Sα
μA

(x) =

⎧
⎪⎨

⎪⎩

1, μA(x) ≥ 1− α

[0, 1] , α < μA(x) < 1− α

0, μA(x) ≤ α.

(1)

The tripartition of fuzzy memberships forms a shadowed con-
cept representation. The low memberships of instances no more
than α will be reduced to the certain negative membership 0, the
high memberships no less than 1− α will be elevated to the cer-
tain positive membership 1, and the uncertain instances whose
memberships locating in the interval (α, 1− α) constitute the
shadow area. The uncertainty of a shadowed set is measured by
the number of the uncertain instances in the shadowed area.

Fig. 1 illustrates a shadowed set constructed on a triangular
membership function. It can be found that the transformation
from fuzzy memberships to a shadowed set relocates the uncer-
tainty. The uncertainty in the positive and negative regions is re-
duced, and in the meantime, the uncertainty in the shadowed area
is increased. Based on this, Pedrycz established the objective of
uncertainty invariance to optimize the threshold parameter to
construct shadowed sets.

Given a fuzzy membership function μA, for any data instance
xi ∈ X , its membership μA(xi) is briefly denoted as μi. The
uncertainty variance of transforming fuzzy memberships into a
shadowed set [14], [15] is formulated as

V (α) =

∣
∣
∣
∣
∣

∑

μi≤α

μi +
∑

μi≥1−α

(1− μi)

−card{xi ∈ X|α < μi < 1− α}
∣
∣
∣
∣
∣
. (2)

The uncertainty variance V (α) consists of two parts, namely,
the uncertainty decrement of membership loss in the certain
regions and the uncertainty increment in the uncertain region,
which is represented by the number of uncertain instances in
the shadow. Besides the membership loss, we can also interpret
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the uncertainty variance from the view of the areas of member-
ships [32], [33]

V (α) = |ElevatedArea(Sα
μA

) + ReducedArea(Sα
μA

)

− ShadowArea(Sα
μA

)|. (3)

The optimum threshold parameter α∗ should balance the
shadowed area and the changing areas of memberships, i.e.,
the tradeoff between uncertainty and membership loss. α∗ =
argminα V (α), V (α) = 0 will lead to the optimum member-
ship threshold α∗.

Pedrycz’s shadowed sets have been investigated and extended.
Yao summarized the optimization strategies to construct shad-
owed sets in the framework of three-way decision theory, which
include the strategies for minimizing distance and achieving
the least cost [32]. Tahayori constructed the shadowed sets
based on a gradual grade of fuzziness [34]. Nguyen proposed
a distance-based shadowed approximation method to transform
fuzzy recommendations to determined ones [35]. Grzeforzewski
presented a shadowed set approximation to simplify fuzzy num-
bers, which also provided the interval and trapezoidal approxi-
mation methods for fuzzy sets [36]. Zhang proposed the game-
theoretic shadowed sets, in which the thresholds of three-way
approximation were determined by the principle of tradeoff with
games [37].

Besides the construction of shadowed sets, they have been
widely used to implement soft clusterings of data with uncer-
tainty. Through mapping the fuzzy cluster memberships to a
shadowed set with tripartition structure, fuzzy clustering [38],
[39], and rough clustering [40], [41] can be represented in a
uniform framework of shadowed clustering [27]. Based on this,
the optimization strategies for constructing shadowed sets can
be also utilized to optimize the threshold parameters of fuzzy
and rough clusterings. Mitra proposed a shadowed C-means
algorithm which integrates fuzzy and rough clustering [42]. And
the rough–fuzzy clustering methods were also reinvestigated
from the view of shadowed sets [43]. Zhou proposed a rough
fuzzy clustering method based on shadowed sets, in which the
clusters containing uncertain instances are modeled by shad-
owed sets and the thresholds for partitioning the certain and
uncertain regions of clusters are determined through optimizing
the shadowed sets [44], [45]. In general, the existing shadowed
sets aim to maintain data uncertainty and the research focuses on
the concept approximation and the applications of shadowed sets
for uncertain data clustering. For the supervised learning tasks,
such as data classification and regression, the related works are
very limited.

B. Methodologies of Three-Way Decisions

Many soft computing models for leaning uncertain concepts,
such as interval sets, many-valued logic, rough sets, fuzzy sets,
and shadowed sets, have the common property of tripartition-
ing [28], [46]. Motivated by this, the methodology of 3WD
is proposed as as an extension of the commonly used binary-
decision model through adding a third option [29]. In general,

the approach of 3WD divides the universe into the positive, neg-
ative, and boundary regions which denote the regions of accep-
tance, rejection, and noncommitment for ternary classifications.
Specifically, for data classification, if the data instances partially
satisfy the classification criteria, it is difficult to directly identify
them without uncertainty. Instead of making a binary decision,
we use thresholds on the degrees of satisfiability to make one
of three decisions, i.e., accept, reject, or noncommitment. The
third option may also be referred to as a deferment decision that
requires further judgments.

With the ordered evaluation of acceptance, the three regions of
decisions are formally defined through thresholding the evalua-
tion values. Suppose (L,≺) is a totally ordered set of evaluation
values, in which ≺ is a total order. For two thresholds α ≺ β,
suppose the set of the values for acceptance is given by L+ =
{t ∈ L|t�α} and the set for rejection is L− = {b ∈ L|b≺β}.
For an evaluation function v : U → L, the positive, negative,
and boundary regions are defined as

POSα,β(v) = {x ∈ U |v(x)�α}
NEGα,β(v) = {x ∈ U |v(x)≺β}
BNDα,β(v) = {x ∈ U |α ≺ v(x) ≺ β}. (4)

Various kinds of decision-making methods have been rein-
vestigated within the framework of 3WD [47]–[49]. Three-
way decision models were established from the perspectives of
fuzzy sets, hesitant fuzzy sets, and interval-valued sets, respec-
tively [50]–[52]. The three-way decision model was also revis-
ited and extended from the views of game theory [53], sequential
decision making [54], and formal concept analysis [55]. Be-
sides, 3WD were utilized to construct the methods of uncertain
clustering [56], [57], cost-sensitive classification [58], [59], and
dynamic data classification [60]. Through integrating with ma-
chine learning methods, three-way decisions have been widely
applied in the fields of recommendation system [61], network
security [62], management analysis [63], social networks [64],
natural language processing [65], disease diagnosis [13], and
software detection [66]. Referring to the methodology of 3WD,
we expect to reformulate neighborhoods with shadowed sets and
thereby implement a 3WD method for uncertain data analysis.

III. SHADOWED NEIGHBORHOODS

A. Fuzzy Neighborhood Membership

To construct the shadowed neighborhoods for classification,
first we construct certain neighborhoods for data classification
and fuzzify the neighborhoods to formulate the fuzzy neigh-
borhood memberships. For a data instance x, its neighborhood
consists of the surrounding instances with the same class.

Definition 1. Neighborhood [9]: Given a data instance x ∈
X , the neighborhood O(x) of x is defined as

O(x) = {y | d(x, y) ≤ η, y ∈ X}, (5)

where d(x, y) is the distance between the instances x and y, η
denotes the radius of the neighborhood.

To handle the mixed-type data of both numerical and symbolic
attributes, we adopt HEOM (Heterogeneous Euclidean-Overlap
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Metric) function [67] as the distance measure to construct neigh-
borhoods. To guarantee all the instances in the neighborhood
belonging to the same class, i.e., the neighborhood homogene-
ity, we adopt the measures of nearest hit NH(x) and nearest
miss NM(x) of the neighborhood center x to calculate the
neighborhood radius referring to the strategy of neighborhood
construction in [68].NH(x) is defined as the nearest instance to
xwith the same class label andNM(x) is the nearest instance to
x, which belongs to different classes. The neighborhood radius is
calculated by η = d(x,NM(x))− 0.01× d(x,NH(x)). Ob-
viously, all the instances within the neighborhood of radius η
belong to the same class as x.

The union of all the neighborhoods forms a covering of data,
in which some neighborhoods may be contained in others, thus
we further remove the redundant neighborhoods to simplify the
model [69]. The remaining neighborhoods actually provide an
approximation of global data distribution on set level and the
instances within neighborhoods are uniformly distributed. Next
we formulate the membership distribution of neighborhoods ac-
cording to the distances from instances to neighborhood centers.

Definition 2. Neighborhood Membership: Given an instance
x and a neighborhood O(xk), xk is the neighborhood center,
the membership of x belonging to O(xk) is defined based on
the distance between x and xk

μO(xk)(x) = 1− 1

1 + e−t[d(x,xk)−η]
=

e−t[d(x,xk)−η]

1 + e−t[d(x,xk)−η]
.

(6)
The formula of neighborhood membership is a logistic function
of “S” shape, in which d(x, xk) is the distance between x and
xk, t ≥ 1 is the function order, and the neighborhood radius
η > 0 is adopted as the function bias.

The neighborhood membership μO(xk)(x) ∈ (0, 1). It can
be found that, for the instance locating at the neighborhood
boundary, i.e., d(x, xk) = η, its neighborhood membership
μO(xk)(x) = 0.5 and the membership decreases as the distance
between data instance and neighborhood center increasing. In
the next paragraphs, we briefly denote μO(xk)(x) as μk(x).

B. Shadowed Neighborhood Construction

Based on the fuzzy–rough transformation of shadowed sets,
we can transform the fuzzy neighborhood memberships of in-
stances into rough ones and formulate a shadowed representation
of neighborhoods. Different from the traditional shadowed sets
mapping fuzzy memberships to {0, 1, [0, 1]} as introduced in
Section II, we propose a novel shadowed set which utilizes a
step function to map fuzzy neighborhood memberships to the
set of triple values {0, 1, 0.5} for uncertain data classification.
Specifically, the low memberships no more thanαwill be further
reduced to 0 and the high memberships no less than 1− αwill be
elevated to 1, and the most uncertain membership value “0.5”
is adopted to unify the neighborhood memberships of all the
uncertain instances in the interval (α, 1− α). The shadowed
neighborhood based on the shadowed set is defined as follows.

Definition 3. Shadowed Neighborhood: Given a neighbor-
hood membership μk(x) and a threshold α ∈ [0, 0.5], the shad-
owed neighborhood is constructed through defining a shadowed

Fig. 2. Shadowed neighborhoods for binary classification.

set mapping of the neighborhood membership as

Nα
μk
(x) =

⎧
⎪⎨

⎪⎩

1, μk(x) ≥ 1− α

0.5, α < μk(x) < 1− α

0, μk(x) ≤ α.

(7)

The mapping of shadowed neighborhood Nα
μk
(x) utilizes a

step function to approximate the neighborhood membership
μk(x) and partitions the space into three regions according to
the neighborhood belongingness, i.e., the positive region repre-
sented by membership grade 1, the negative region represented
by membership grade 0, and the boundary region represented by
membership grade 0.5, which forms the neighborhood shadow.
For the three regions of a shadowed neighborhood, the positive
region represents the data instances which certainly belong to
the neighborhood, the negative region represents the instances
which are certainly beyond the neighborhood, and the boundary
region (neighborhood shadow) consists of the instances which
are uncertain to belong to the neighborhood. Fig. 2 shows the
shadowed neighborhoods of the data instances of one class for
binary classification.

From the formula ( 7), we know that a shadowed neighbor-
hood is constructed through discretizing quantitative neighbor-
hood memberships using a step function to obtain qualified rep-
resentations of neighborhood belongingness. The memberships
of the instances in the positive region are elevated from [1− α, 1]
to 1, the memberships in the negative region are reduced from
[0, α] to 0, and in the boundary region, the memberships ranging
in (α, 1− α) are simplified to a unified value 0.5. The transfor-
mation from neighborhood membership μk(x) to a shadowed
set Nα

μk
(x) causes the membership loss which is formulated as

L(α) = λ ·
⎡

⎣
∑

μk(x)≤α

μk(x) +
∑

μk(x)≥1−α

(1− μk(x))

⎤

⎦

+
∑

α<μk(x)<1−α

|0.5− μk(x)|. (8)
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Fig. 3. Transformation from neighborhood membership to shadowed set.

L(α) consists of the membership losses in the certain positive
region, negative region, and uncertain boundary region respec-
tively. λ > 0 is the factor to balance the membership loss of
the certain regions and uncertain region and we set λ = 0.1
as default. Fig. 3 illustrates the transformation from the neigh-
borhood membership to a shadowed set and the corresponding
membership loss. We find that for a given membership function
(or a set of memberships), the membership loss is determined by
the threshold α, thus we can optimize the threshold to construct
shadowed neighborhoods through minimizing the membership
loss.

C. Optimization of Shadowed Neighborhood

The threshold α tripartitions the neighborhood membership
domain into certain positive, negative, and uncertain shadow
regions, and thereby determines the structure of the shadowed
neighborhoods. Improper thresholds will cause great mem-
bership loss and lead to over big or small uncertain regions
of shadowed neighborhoods. A reasonable threshold should
maintain the information of memberships when transforming
neighborhood memberships into a shadowed neighborhood.

Suppose the membership function of a neighborhood is μ(x)
and the neighborhood membership of any data instance xi ∈ X
is μ(xi) = μi, referring to the formula ( 8), the membership
loss for transforming the neighborhood memberships into a
shadowed set becomes

L(α) = λ ·
[
∑

μi≤α

μi +
∑

μi≥1−α

(1− μi)

]

+
∑

α<μi<1−α

|0.5− μi|. (9)

Aiming to maintain the information in the transformation, the
optimum threshold α∗ should lead to the minimum membership

loss,

α∗ = argmin
α

L(α). (10)

Based on the following piecewise representation of member-
ship μi

ui =

{
μi, μi ≤ 0.5

1− μi, μi > 0.5
(11)

we rewrite the neighborhood memberships of n data instances
{μ1, . . ., μi, . . ., μn} to {u1, . . ., ui, . . ., un}, ui ≤ 0.5 and re-
formulate the membership loss as

L(α) = λ ·
∑

ui≤α

ui +
∑

ui>α

(0.5− ui). (12)

L(α) consists of two parts, the first part denotes the membership
loss in certain regions and the second part denotes the member-
ship loss in uncertain region. Fixing the balance factor λ, the
optimal threshold α∗ of the minimum L(α) should tradeoff the
two parts of membership loss.

Lemma 1: In the objective of membership loss L(α), for
α ∈ [0, 0.5], λ ·∑ui≤α ui is monotonically increasing and∑

ui>α (0.5− ui) is monotonically decreasing with respect to
α. Therefore, the threshold α∗ which leads to the minimum
L(α) should tradeoff the membership loss of both certain and
uncertain regions.

Based on the Lemma 1, we can infer the calculation of the
optimal threshold to achieve the minimum membership loss
L(α), see the following theorem.

Theorem 1: For a given λ ∈ R+, suppose α ∈ [0, 0.5], the
membership loss L(α) achieves the minimum when α= 0.5

1+λ
,

i.e., the optimal threshold α∗ = argminα L(α) = 0.5
1+λ

.
Proof: L(α) = λ ·∑ui≤α ui +

∑
ui>α (0.5− ui), accord-

ing to Lemma 1, in the objective ofL(α), whenα increases from
0 to 0.5, the membership loss of certain region λ ·∑ui≤α ui

monotonically increases and the increments grow as α increas-
ing, in the meantime, the membership loss of uncertain region∑

ui>α (0.5− ui) monotonically decreases and the decrements
gradually reduce. Therefore, the optimal threshold α∗ leading to
the minimum L(α∗) should tradeoff the growing loss increment
of the certain region and the reducing loss decrement of the
uncertain region.

Suppose α ∈ [0, 0.5] and ε is a small positive number. If there
exists no membership value in the interval (α, α+ ε], we directly
have L(α) = L(α+ ε), otherwise ∃uk, α < uk ≤ α+ ε. We
use diffL(α) to denote the difference between the membership
loss L(α) and L(α+ ε) which can be also considered as the
gradient of L(α) at α.

diffL(α) = L(α+ ε)− L(α)

= λ ·
∑

ui≤α+ε

ui +
∑

ui>α

(0.5− ui)

−
[

λ ·
∑

ui≤α

ui +
∑

ui>α+ε

(0.5− ui)

]
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Fig. 4. Thresholding of the minimum L(α) on continuous membership.

= λ ·
[
∑

ui≤α+ε

ui −
∑

ui≤α

ui

]

+

[
∑

ui>α+ε

(0.5− ui)−
∑

ui>α

(0.5− ui)

]

= λ ·
[
∑

ui≤α

ui + uk −
∑

ui≤α

ui

]

+

[
∑

ui>α+ε

(0.5− ui)−
(
∑

ui>α+ε

(0.5− ui) + (0.5− uk)

)]

= λ · uk − (0.5− uk)

= (1 + λ) · uk − 0.5.

From the formulas above, we know that the gradient
diffL(α) is the sum of the membership loss variation in the
certain and uncertain regions. Let diffL(α) = L(α)− L(α+
ε) ≤ 0, diffL(α) = (1 + λ) · uk − 0.5 ≤ 0 ⇒ uk ≤ 0.5

1+λ
. Be-

cause α < uk ≤ α+ ε, α < uk ≤ 0.5
1+λ

and thus ∀α ∈ [0, 0.5
1+λ

),
diffL(α) ≤ 0. Similarly, diffL(α) ≥ 0 ⇒ uk ≥ 0.5

1+λ
, we

have α+ ε ≥ uk ≥ 0.5
1+λ

and infer that ∀α ∈ [ 0.5
1+λ

, 0.5],
diffL(α) ≥ 0. Therefore, L(α) is monotonically decreasing
in the interval [0, 0.5

1+λ
) and increasing in [ 0.5

1+λ
, 0.5] with respect

to α. The gradient diffL(α) = 0 ⇒ α∗ = 0.5
1+λ

, which is the
optimum threshold to tradeoff the membership loss of the cer-
tain and uncertain regions and L(α∗) achieves the minimum
membership loss. �

According to Theorem 1, for a continuous neighborhood
membership function, we set the optimal threshold α∗ = 0.5

1+λ
,

and for the discrete neighborhood memberships, we adopt the
closest membership value to 0.5

1+λ
as the optimal threshold to

construct shadowed neighborhoods. Fig. 4 presents the optimal
thresholds for the continuous neighborhood membership func-
tion of Definition 2 under multiple λ values. Discretizing the
continuous neighborhood membership function with multiple
step lengths of 0.1, 0.2, and 0.5, we calculate the optimal thresh-
olds for the three sets of discrete membership values and present
the results in Fig. 5. It can be found that the optimal thresholds

Fig. 5. Thresholding of the minimum L(α) on discrete memberships.

Fig. 6. Variation of neighborhood shadow against the balance factor λ.

obtained by Theorem 1 are effective to achieve the minimum
membership loss for both continuous and discrete memberships.

Besides the optimal membership threshold, we further inves-
tigate the correlation between neighborhood shadows and the
balance factor λ and infer the theorem as follows.

Theorem 2: The neighborhood shadow (uncertain boundary
region) is monotonically increasing with respect to the balance
factor λ of membership loss.

Proof: The neighborhood shadow is determined by the op-
timal threshold α∗ and the size of shadow is denoted by
the interval (α∗, 1− α∗). ∀λ1, λ2 ∈ R+, λ1 ≤ λ2, α∗

1 = 0.5
1+λ1

,
α∗
2 = 0.5

1+λ2
, thus we have α∗

2 ≤ α∗
1 and infer that α∗ monotoni-

cally decreases as λ increasing. Moreover, because λ1 ≤ λ2 ⇒
α∗
2 ≤ α∗

1 ⇒ 1− α∗
2 ≥ 1− α∗

1, the corresponding intervals sat-
isfy (α∗

1, 1− α∗
1) ⊆ (α∗

2, 1− α∗
2), which prove that the shadow

size is monotonically increasing with respect to λ. �
Fig. 6 illustrates the variation of shadow against the balance

factor λ = {0.5, 1, 2, 4, 10} and the shadow area gradually in-
creases as λ increasing. As seen from the formula (12), the
factor factor λ is used to tradeoff the membership losses of
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certain and uncertain regions in the transformation of shadowed
neighborhood, and also can be viewed as the cost for changing
the memberships in certain regions. Large values of λ indicate
the great costs for reducing low memberships to certain 0 or
elevating high memberships to certain 1. Therefore, the shadow
area will be increased to include more instances as uncertain
cases to reduce the costs of certain judgements. For the three-way
classification with shadowed neighborhoods, we can control the
rates of uncertain instances through adjusting the factor λ.

IV. THREE-WAY CLASSIFICATION WITH

SHADOWED NEIGHBORHOODS

Constructing a set of shadowed neighborhoods on labeled
training data, we can implement a three-way classification
method to classify unknown data instances into certain classes
and uncertain case. The union of the shadowed neighborhoods
of a class forms a tripartitioned approximation of the data
distribution of the class. The classification of data instances is
determined by the belongingness of the instances to the shad-
owed neighborhoods of different classes. To classify an instance
x, we should first determine the regions of x in shadowed neigh-
borhoods through thresholding its neighborhood memberships.

As shown in Theorem 1, the optimum threshold α∗ of shad-
owed neighborhoods is determined by the factor λ which balance
the costs of the membership losses on certain and uncertain re-
gions. Therefore, we compute α∗ = 0.5

1+λ
to threshold neighbor-

hood memberships and partition the shadowed neighborhoods.
Referring to Theorem 2, through setting λ, we can adjust the
shadow regions of neighborhoods and the decision risk to suit the
requirements of different classification tasks. For the cautious
decision making, we can set high λ values to enlarge shadow
regions of neighborhoods and thereby separate more uncertain
instances for delayed decision making. For the efficient decision
making which needs more automatic classifications, we can set
low λ values to produce narrow shadow regions and lead to a
few uncertain cases.

Suppose μk(x) is the membership of x to the kth neighbor-
hood, POSk, NEGk and BNDk are the certain positive region,
certain negative region, and the uncertain boundary region of
the neighborhood, we distribute x into the three neighborhood
regions in the following way.

α < μk(x) < 1− α ⇒ x ∈ BNDk

μk(x) ≤ α ⇒ x ∈ NEGk

μk(x) ≥ 1− α ⇒ x ∈ POSk.

With the high memberships ≥ 1− α, POSk consists of the
data instances certainly belonging to the kth neighborhood.
NEGk consists of the instances with the low memberships ≤ α,
which are certainly beyond the neighborhood. BNDk consists
of the uncertain instances locating in the neighborhood shadow
area. Obtaining the neighborhood regions of x, we further define
the following sets of neighborhood indexes to describe the region
location of x to all the shadowed neighborhoods.

SNP(x) = {k|x ∈ POSk},
SNU(x) = {k|x ∈ BNDk},
SNN(x) = {k|x ∈ NEGk}.

Fig. 7. 3-Way classification for instances within shadowed neighborhoods.

Obviously, SNP(x) is the set of the indexes of the neighbor-
hoods whose positive regions containing the instancex, SNU(x)
is the set of the indexes of the neighborhoods in which x locates
in the uncertain boundary region, and SNN(x) denotes the set
of neighborhoods excluding x. Given a set of neighborhoods
O = {O1, . . .Ok, . . .OK}, based on the region description of
x provided by the neighborhood index sets, we can design a
group of three-way classification rules to classify x in both
conditions ofxwithin and beyond the neighborhood setO. In the
classification rules, we adopt class(Ok) to denote the class of the
neighborhood Ok, i.e., the class of the neighborhood center xk.

A. Classification Rules Within Shadowed Neighborhoods

For a data instance x locating within the neighborhoods of O,
we have ∃Ok ∈ O, μk(x) > α, |SNP (x)| ≥ 1 or |SNU(x)|
≥ 1.

1) If |SNP(x)| = 1, x certainly belongs to the class of the
unique neighborhood in SNP(x).

2) If |SNP(x)| > 1 and ∀k1, k2 ∈ SNP(x), class(Ok1
) =

class(Ok2
), x certainly belongs to the class of the neigh-

borhoods in SNP(x), otherwise if ∃k1, k2 ∈ SNP(x) and
class(Ok1

) 
= class(Ok2
), x belongs to multiple neigh-

borhoods of different classes with conflict and should be
judged as an uncertain data instance.

3) If |SNP(x)| = 0, |SNU(x)| > 0, the major class of the
neighborhoods in SNU(x) is Cm, |{k|k ∈ SNU(x) ∧
class(Ok) = Cm}|/|SNU(x)| ≥ 60%, x belongs to the
class Cm, otherwise if |{k|k ∈ SNU(x) ∧ class(Ok) =
Cm}|/|SNU(x)| < 60%, x is judged as an uncertain data
instance.

The within-neighborhood classification rules indicate that, if
the shadowed neighborhoods whose positive regions containing
x belong to the same class, we can certainly classify the in-
stance, otherwise x belonging to heterogenous neighborhoods
will lead to classification conflict and x should be considered
as an uncertain instance. If x locates in the boundary regions
(shadows) of multiple neighborhoods, we classify the instance
through checking whether most of these neighborhoods belong
to the same class. Fig. 7 illustrates the three-way classification
rules for the instances within shadowed neighborhoods.

B. Classification Rules Beyond Shadowed Neighborhoods

For a data instance x beyond the neighborhood setO, we have
∀Ok ∈ O, μk(x) ≤ α, |SNP (x)| = 0, |SNU(x)| = 0.
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Fig. 8. 3-Way classification for instances beyond shadowed neighborhoods.

1) μf (x) = maxOk∈O{μk(x)}, Of is the nearest neighbor-
hood of x, if μf (x) < Tf , x is judged as an uncertain data
instance.

2) μf (x) = maxOk∈O{μk(x)}, μs(x) = maxOk∈O−{Of }
{μk(x)},Of , Os are the first and second nearest neighbor-
hoods of x, if μf (x) ≥ Tf and class(Of ) = class(Os),
x belongs to the class of Of and Os.

3) μf (x) = maxOk∈O{μk(x)}, μs(x) = maxOk∈O−{Of }
{μk(x)}, Of , Os are the first and second nearest neigh-
borhoods of x, if μf (x) ≥ Tf , class(Of ) 
= class(Os)
and 1− μs(x)/μf (x) ≥ Tr, x belongs to the class of Of ,
otherwise if 1− μs(x)/μf (x) < Tr, x is judged as an
uncertain data instance.

Different from the rules within neighborhoods, the three-way
classification of the instances beyond neighborhoods depends
on the distances between instances and neighborhoods. If the
membership of x to its nearest neighborhood is too small and
less than the thresholdTf ,x is far from all the neighborhoods and
should be considered as an uncertain instance. For the instances
nearby neighborhoods, we determine the class of x according to
its nearest two neighborhoods. If the two neighborhoods belong
to the same class, we can perform the certain classification. Oth-
erwise we further check the difference between the memberships
of x to its first and second nearest neighborhoods of different
classes. If the membership difference is less than the threshold
Tr, which means the distances from x to the referenced two
neighborhoods are similar, the class inconsistency of the two
neighborhoods leads to the uncertain judgement of x. If the
membership difference is big enough (≥ Tr), we can certainly
determine the class of x referring to only the nearest neigh-
borhood. In the experiments, we set Tf = 0.05 and Tr = 0.1
as default. The three-way classification rules beyond shadowed
neighborhoods are illustrated in Fig. 8.

Summarizing the three-way classification rules within and
beyond neighborhoods, we implement a three-way classifica-
tion algorithm with shadowed neighborhoods (3WC-SNB). The
detailed flow of the algorithm is presented in Algorithm 1.

Utilizing Algorithm 1 to classify a set of data instances X ,
the number of instances |X| = n, it is required to calculate
the memberships of each instance to K neighborhoods. In the
algorithm implementation, we build up a n×K matrix of
instance-neighborhood memberships to achieve this. Thus the

computational complexity of the test phase is O(n×K). Be-
causeK � n, the classification based on neighborhoods is more
efficient than the neighbor-based classification. In the training
phase, the construction of neighborhoods needs to search the
nearest homogeneous and heterogeneous neighbors of each
instance, thus the computational complexity of neighborhood
construction is O(n2). We can further speed up the neighbor-
hood construction under divide-and-conquer strategies, such as
using K-Dimensional tree to speed up the neighbor searching.
Moreover, extending neighborhoods to shadowed ones requires
to compute the membership threshold for each neighborhood
and thus needsO(K) calculations. The computational complex-
ity in training phase is summarized as O(n2 +K) ≈ O(n2).

V. EXPERIMENTAL RESULTS

Different from the certain classification methods, the three-
way classification method based on shadowed neighborhoods
(3WC-SNB) classifies data instances into certain classes and
the uncertain case, which is is helpful to avoid the farfetched
classification of uncertain (or challenging) instances and thereby
reduce the classification risk. To validate this, we implement
three tests in the experiment. In the first test, we compare the
certain classification with neighborhoods and the three-way
classification with shadowed neighborhoods on noisy data to
verify the effectiveness of 3WC-SNB for uncertain data classifi-
cation. The second test validates the superiority of 3WC-SNB in
low-risk classification through comparing the proposed method
with other typical certain classification methods. In the third test,
we further compare 3WC-SNB with the 3WD method based
on attribute reduction [28] to validate the superiority of the
proposed method for numeric data analysis. Focusing on the risk
of classification, we collect 13 datasets in the areas of medicine
and economics from the University of California Irvine machine
learning data repository to implement the experiment. For all the
tests in the experiment, tenfold cross validation is performed on
each data set. The descriptions of the adopted data sets are given
in Table I.

We set the minor class as the positive class for each data
set. For an example, in the breast cancer datasets, the class
of “malignant” will be set as the positive class. Suppose the
number of the positive-class instances is P and the number of
the negative-class instances is N, TP, and FP denote the numbers
of true positive and false positive classified instances, TN and FN
denote the numbers of true negative and false negative classified
instances. To overall evaluate the classification methods, we
adopt the measures of accuracy, precision, recall rate, F1 score,
ratio of uncertain instances (UR), and classification cost as the
evaluation criteria. The calculations of these measures are listed
as follows.

Accuracy = (TP + TN)/(P +N),
Precision = TP/(TP + FP ),
Recall Rate = TP/P,
F1Score = 2 · Precsion · Recall/(Precsion+Recall),
UR = |{x|x ∈ Xtest ∧ class(x) = uncertain}|/|Xtest|,
Cost = CNP · FP

P+N + CPN · FN
P+N + CU · UR.
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Algorithm 1: Three-Way Classification With Shadowed
Neighborhoods (3WC-SNB).

Input: K shadowed neighborhoods with the optimized
thresholds
N = {Nα

μ1
, Nα

μ2
, . . ., Nα

μK
};

Unknown data instance x;
Output: Three-way classification result of x, class(x);

1: Initialize SNP(x),SNU(x) → ∅;
2: Compute neighborhood memberships of x for K

neighborhoods {μ1(x), μ2(x), . . ., μK(x)} according
to the formula ( 6);

3: //Determine the region of x according to
neighborhood memberships

4: for each shadowed neighborhood Nα
μk

do
5: if μk(x) ≥ 1− α then
6: Nα

μk
(x) = 1, SNP(x) = SNP(x) ∪ {k};

7: else
8: if μk(x) > α then
9: Nα

μk
(x) = 0.5, SNU(x) = SNU(x) ∪ {k};

10: end if
11: end if
12: end for
13: //Instance x in positive regions of neighborhoods
14: if |SNP(x)| ≥ 1 then
15: Obtain the classes CSNP of the neighborhoods in

SNP;
16: if |CSNP : {Cp}| = 1 then
17: class(x) = Cp;
18: else
19: class(x) = uncertain;
20: end if
21: else
22: //Instance x in boundary regions of neighborhoods
23: if |SNU(x)| ≥ 1 then
24: Obtain the major class Cm of the neighborhoods in

SNU(x);
25: if |{k|k∈ SNU(x)∧class(Ok)=Cm}|

|SNU(x)| ≥ 60% then
26: class(x) = Cm;
27: else
28: class(x) = uncertain;
29: end if
30: end if
31: end if
32: //Instance x beyond neighborhoods
33: if |SNP(x)| = 0 and |SNU(x)| = 0 then
34: Compute the memberships of x for the first and

second nearest neighborhoods Of , Os,
μf (x) = max1≤k≤K{μk(x)},
μs(x) = max1≤k≤K∧k 
=f{μk(x)};

35: if μf (x) < Tf then
36: class(x) = uncertain;
37: else
38: if class(Of ) = class(Os) then
39: class(x) = class(Of );
40: else

41: if 1− μs(x)/μf (x) ≥ Tr then
42: class(x) = class(Of );
43: else
44: class(x) = uncertain;
45: end if
46: end if
47: end if
48: end if
49: Return class(x).

TABLE I
EXPERIMENTAL DATASETS

In the cost measure, the cost of correct classification is zero,
CNP , CPN , CU denote the costs of false-positive classification,
false-negative classification, and the classification of uncertain
instances, respectively. For the medical and economic data,
misclassifying positive instances (of minor class) as negative
ones causes more costs than the misclassification of negative
instances, such as classifying malignant tumors as benign will
suffer more risk than judging benign tumors as malignant. The
classification of uncertain instances will delay the decision mak-
ing and thus has less cost than false-positive and false-negative
classifications. Therefore, we setCPN/CNP /CU = 5/1/0.5 in
the following tests.

A. Test of Uncertain Data Classification

To validate the effectiveness of the proposed shadowed neigh-
borhoods for uncertain data classification, we expect to apply
3WC-SNB method to classify the data with multilevel uncer-
tainty. The inconsistency between training data and test data
gives rise to the uncertainty in classification process, thus we
produce the uncertain instances for classification through adding
multilevel noise to test data. Specifically, we randomly change
the class labels of partial instances from 0% to 50% in the test
dataset and produce the test dataset with multilevel label noise.

We construct both the shadowed neighborhoods and
traditional neighborhoods [68] on the same training datasets and
perform the 3WC-SNB and the certain classification based on
the nearest neighborhoods (2WC-NB) on the test datasets with
multilevel noise. Fig. 9 shows the TP rate (TP/P) and FN rate
(FN/P) of 3WC-SNB and 2WC-NB against the noise level from
0% to 50%. We can find that on different noise levels, 3WC-SNB
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Fig. 9. TP rates and FN rates of 3WC-SNB and 2WC-NB on noisy data.

Fig. 10. Classification results of 3WC-SNB and 2WC-NB on noisy data.

and 2WC-NB achieve the very similar TP rates but 3WC-SNB
generates less FN rates than 2WC-NB. This indicates that
3WC-SNB can correctly classify the typical positive instances
as 2WC-NB, and in the meantime, reduce the misclassifications
of positive instances to negative class through separating
uncertain instances. We can also find that the gap of FN rate
between 3WC-SNB and 2WC-NB is widening as the noise
level increasing, which means the 3WC-SNB tends to recognize
more uncertain instances when the test datasets contain more
noise.

Due to the similar TP rates and less FN rates, the 3WC-SNB
achieves more precise classification results than the certain clas-
sification based on traditional neighborhoods. Fig. 10 illustrates
the precision, recall rates, classification costs, and F1 scores of
the classification results produced by 3WC-SNB and 2WC-NB
on the multilevel noisy datasets. More detailed evaluations of
the classification results are presented in Table II. Comparing
with 2WC-NB, 3WC-SNB produces the higher recall rates and
F1 scores, and the lower classification costs. Especially for
the datasets with heavy noise (much uncertainty), the proposed
three-way classification method can avoid the serious misclas-
sifications and greatly reduces the classification risk.

TABLE II
CLASSIFICATION RESULTS ON MULTILEVEL NOISY DATA

TABLE III
CLASSIFICATION RESULTS OF OF DIFFERENT CLASSIFICATION METHODS

The bold entities indicate the experimental results generated by the method
proposed in this article.

B. Comparison With Certain Classification Methods

The second test overall evaluates the proposed shadowed-
neighborhood-based uncertain classification method through
comparing with multiple kinds of certain classification methods.
We compare 3WC-SNB method with three elegant classification
methods, namely, naive Bayes, support vector machine (SVM),
and decision trees (J48) [70]. Moreover, focusing on the evalua-
tion of classification risk, we also compare the proposed method
with other three typical cost-sensitive classification methods,
namely, cost-sensitive Bayes, cost-sensitive decision trees, and
cost-sensitive Bayes net [71]. Fig. 11 and Table III present the
average classification results on all the test datasets for each
classification method and the details are listed in the appendix.

From the experimental results, we find that comparing
with the certain classification methods, the proposed uncertain
method generally produces lower classification accuracy. This
is because that the uncertain data instances without class labels
should not be counted in the calculation of accuracy. However,
in contrast to all the certain classification methods, 3WC-SNB
achieves higher recall rates and F1 scores, and thereby induces
the lower classification costs. Only considering the classification
error, SVM and decision trees produce precise classification
results but suffer too much classification costs. Involving risks
of misclassifications in classification process, the cost-sensitive
methods reduce the classification costs but over classify data
instances into the more risky class. Different from the cost-
sensitive methods forcing to classify instances into the classes
of high risks, 3WC-SNB reduces classification costs through
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Fig. 11. Comparison of classifications of different methods.

TABLE IV
CLASSIFICATION RESULTS OF 3WC-SNB AND 3WD WITH DISCRETIZATION

The bold entities indicate the experimental results generated by the method
proposed.

delaying the challenging classifications of a limited number
of uncertain instances. In general, the uncertain classification
method based on shadowed neighborhoods outperforms the
certain classification methods and is effective to reduce the
classification costs.

C. Comparison With Three-Way Decision Method

Besides the certain classification methods, we also compare
the proposed three-way classification method 3WC-SNB with
another elegant 3WD method which is constructed based on
probabilistic attribute reduction [28]. Probabilistic attribute re-
duction formulates three-way decision rules through construct-
ing the probabilistic attribute reducts, which partition data in-
stances into positive, negative, and boundary regions for a given
class. Different from the shadowed neighborhoods constructed
on the numerical data (or mixed-type data), probabilistic at-
tribute reduction is used to extract decision rules from symbolic
datasets and requires data discretization for numerical data anal-
ysis. Moreover, different from 3WC-SNB estimates the member-
ship threshold α∗ through optimizing the neighborhood shadow,
3WD method utilizes a pair of parameters (α, β) ∈ [0, 1],α < β
to threshold the memberships and thereby tripartitions data
instances into certain classes and uncertain case.

Performing 3WD method to classify the numerical data,
we apply both the supervised multiinterval discretization
method (MDL) and the unsupervised Equal-width Discretiza-
tion method (5 bins and 3 bins) [72] to discretize the numer-
ical attribute values of the test datasets, and set the threshold
parameters α = 0.5, β = 0.8 as default. Fig. 12 illustrates the
classification results of 3WC-SNB and 3WD with different
discretization strategies and Table IV presents the details. The
experimental results indicate that the classification based on

Fig. 12. Comparison of classifications of 3WC-SNB and discretized 3WD.

3WD is not stable for different discretization methods. The pre-
processing of discretization may bring about the information loss
and thus make the three-way decision rules produce imprecise
classification results. Besides the effects of data discretization,
the classification of 3WD is also sensitive to the threshold
parameter setting. The quality of the decision rules generated by
the attribute reducts relies on the predefined α, β adopted in the
probabilistic attribute reduction. Depending on the superiorities
of shadowed neighborhoods in numerical data processing, and
the optimization of thresholding parameter, the proposed 3WC-
SNB method achieves stable and precise classification results.

VI. CONCLUSION

In this article, we propose a novel shadowed set to con-
struct shadowed neighborhoods for uncertain data classification.
Specifically, the proposed shadowed sets utilize a step function
to map neighborhood memberships to the set of typical certain
and uncertain membership values and thereby partition a neigh-
borhood into the certain positive, negative, and uncertain bound-
ary regions. The threshold parameter in the step function for
constructing shadowed neighborhoods was optimized through
minimizing the membership loss in the shadowed mapping.
Based on the constructed shadowed neighborhoods, we also
design three-way classification rules and thereby implement a
three-way classification algorithm to distinguish data instances
into certain classes and uncertain case. Experiments verify the
superiorities of the proposed three-way method for classifying
uncertain data and reducing classification risks.

Our future works may include the following issues. First, the
memberships of shadowed neighborhood are computed based
on distances, and thereby model the ball-shaped data distribution
well but are not flexible enough for complex data distributions.
To handle the diverse data, we should consider the distributions
in local regions to compute neighborhood memberships.
Second, we will further investigate the optimization strategy of
shadowed neighborhoods through involving the classification
error (or costs) in the objective. The final issue is that, we
adopt Euclidean distances to construct the neighborhoods and
compute the memberships, but this distance metric will not
be effective for high-dimensional data. Therefore the feature
reduction and kernel methods will be further involved in the
construction of shadowed neighborhoods.
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APPENDIX

TABLE V
CLASSIFICATION RESULTS ON DATASET “APPENDICITIS”

The bold entities indicate the experimental results generated by the method
proposed.

TABLE VI
CLASSIFICATION RESULTS ON DATA SET “BANKNOTE”

The bold entities indicate the experimental results generated by the method
proposed.

TABLE VII
CLASSIFICATION RESULTS ON DATASET “BLOOD”

The bold entities indicate the experimental results generated by the method
proposed.

TABLE VIII
CLASSIFICATION RESULTS ON DATASET “WOBC”

The bold entities indicate the experimental results generated by the method
proposed.

TABLE IX
CLASSIFICATION RESULTS ON DATASET “FERTILITY”

The bold entities indicate the experimental results generated by the method
proposed.

TABLE X
CLASSIFICATION RESULTS ON DATASET “GERMANCREDIT”

The bold entities indicate the experimental results generated by the method
proposed.

TABLE XI
CLASSIFICATION RESULTS ON DATASET “HABERMAN”

The bold entities indicate the experimental results generated by the method
proposed.

TABLE XII
CLASSIFICATION RESULTS ON DATASET “INDIAN LIVER PATIENTS”

The bold entities indicate the experimental results generated by the method
proposed.

TABLE XIII
CLASSIFICATION RESULTS ON DATASET “MOGRAPHIC”

The bold entities indicate the experimental results generated by the method
proposed.

TABLE XIV
CLASSIFICATION RESULTS ON DATASET “THORACIC”

The bold entities indicate the experimental results generated by the method
proposed.
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TABLE XV
CLASSIFICATION RESULTS ON DATASET “WDBC”

TABLE XVI
CLASSIFICATION RESULTS ON DATASET “WPBC”

The bold entities indicate the experimental results generated by the method
proposed.

TABLE XVII
CLASSIFICATION RESULTS ON DATASET “SDD”

The bold entities indicate the experimental results generated by the method
proposed.
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