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Clustering, as an essential technique in unsupervised learning, plays a pivotal role in the 
fields of data mining and machine learning. However, the classic K-means clustering algorithm 
has intrinsic drawbacks such as sensitivity to initial cluster centers, susceptibility to a local 
optimal solution, and challenges in handling data uncertainty. To address these problems, this 
paper proposes an artificial hummingbird algorithm (AHA)-based three-way K-means clustering 
algorithm, called AHA-3WKM. First, AHA is introduced to address the problems of sensitivity 
to initial cluster centers and local optima. Second, a fitness function of AHA is specifically 
constructed to find the best initial clustering centers so that the hummingbirds can search for 
high-quality food sources, i.e., the global optimum cluster centers. Third, a three-way clustering 
approach is utilized to capture information about data uncertainty. In this way, the results 
of clustering are divided into three distinct regions based on the relationship between objects 
and clusters. The experimental results demonstrate that AHA-3WKM has good performance, and 
enhances the stability and the accuracy of clustering results.

1. Introduction

In the era of rapid development of information technology [1,2], the generation of data has shown an unprecedented speed and 
scale. Consequently, the extraction of meaningful information from massive data has become a crucial challenge in the fields of 
data mining and machine learning. Clustering, as an important unsupervised learning technique, has been widely adopted in the 
analysis of massive data [3]. The primary goal of clustering is to categorize unlabeled data into different clusters, so that data points 
within the same cluster demonstrate a high degree of similarity, while the similarity in different clusters is low. Clustering has a 
wide range of applications in different domains, including image processing [4], bioinformatics [5], recommendation systems [6], 
air transportation [7], and so on.

The classic K-means algorithm is one of the most commonly used clustering methods that is simple and effective. Its fundamental 
principle involves dividing data into K clusters by minimizing the sum of distances between each data point and the center of its 
respective cluster. Although the K-means has been broadly applied in the variety of fields owing to its simplicity and efficiency [8], 
there are still the following problems that need to be improved.
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Fig. 1. An example on the Aggregation dataset, which can demonstrate the sensitivity of K-means algorithm to initial cluster centers.

Fig. 2. The accuracy(%) of the K-means algorithm increases as the overlap between different clusters increases [11].

(1) Sensitivity to initial cluster centers. The results of K-means algorithm are significantly influenced by the initial cluster centers 
selected. Fig. 1 illustrates the sensitivity of K-means algorithm to initial cluster centers.

(2) Proneness to local optima. Another challenge is the algorithm’s susceptibility to getting trapped in local optima. Inappropriate 
initial center selection may cause the algorithm’s iterations to converge to local optima, resulting in unstable or inaccurate clustering 
results [9].

(3) Difficulty in capturing the relationships among uncertain information. K-means is a hard clustering algorithm with clear-cut 
cluster boundaries. It performs better with more overlapping clusters [10], as shown in Fig. 2. However, the more the overlapping 
clusters, the higher likelihood that data points in these regions might exhibit similarities with multiple clusters. This further hinders 
the K-means algorithm from effectively capturing relationships among uncertain information, thereby limiting its ability to improve 
the clustering accuracy and increasing the risk in decision-making.

To address the problems of the K-means algorithm mentioned in (1) and (2), many scholars have attempted to enhance it by 
using Swarm Intelligence (SI). SI provides an innovative problem-solving approach by simulating the principles of natural selection 
observed in biological systems, which can effectively find the global optimal solutions to given problems [12]. Saida et al. [13]
proposed a K-means clustering algorithm based on the cuckoo search algorithm. This algorithm employs the Sum of Squared Errors 
(SSE) as the fitness function to find the optimal cluster centers. Wang et al. [14] improved the K-means algorithm by using the 
flower pollination algorithm with bee pollinators. The algorithm defines the fitness function by minimizing the distance between 
each data point and the center of its respective cluster. Nayak et al. introduced Particle Swarm Optimization (PSO) [15] and Firefly 
Algorithm(FA) [16] to enhance K-means. Both PSO and FA included two self-defined parameters, 𝑘 and 𝑑, in the fitness function to 
calculate the sum of the distances between objects and cluster centers. Li et al. [17] proposed an algorithm, called FPSO-GAK, based 
on fuzzy system, PSO, and genetic algorithm (GA). They optimized the parameters of PSO using a fuzzy system and further refined 
the results using GA. The sum of distances between objects and cluster centers serves as the fitness function of the algorithm. Despite 
these methods having shown powerful ability, their applications are still limited by two challenges. The first challenge involves the 
construction of the fitness function, which mainly focuses on the intra-cluster similarity while ignoring the inter-cluster similarity, 
or although both aspects are considered, the defined formula is computationally complex which may reduce the efficiency of the 
algorithm. In addition, the inherent challenge of the K-means algorithm still exists, that is, it cannot effectively capture the uncertain 
information within the dataset.

In this paper, we introduce the Artificial Hummingbird Algorithm (AHA) to address the problems of the sensitivity to initialization 
and the proneness to local optima. AHA [18] is a swarm intelligence algorithm, which mimics the flight and foraging behaviors of 
hummingbirds. It is used as a meta-heuristic approach for global optimization problems. AHA has shown excellent performance 
in addressing problems across low to medium dimensions and has potential adaptability to diverse search space magnitudes [19]. 
Thus, it has robustness in finding the optimal solutions. These characteristics collectively make AHA well-suited for addressing 
the above two problems of K-means clustering. In addition, AHA is widely used because of its simplicity in implementation and 
ability to produce high-quality solutions with minimal parameter tuning. For example in the domains of artificial intelligence [20], 
engineering technology [21], clean energy [22]. We define the fitness function of AHA based on the clustering concepts of high intra-
2

cluster similarity and low inter-cluster similarity, and the definition is simplified to improve the computational efficiency. This fitness 
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Fig. 3. The TAO (Triading-Acting-Optimizing) framework of three-way decision [23].

Fig. 4. Diagram of the three-way clustering.

function enables the hummingbird swarm to purposely optimize clustering outcomes, attains the optimal initial cluster centers, and 
speeds up the convergence of the algorithm. Thus, this approach overcomes the problem of local optima and improves the efficiency 
of clustering.

To solve problem (3), this paper incorporates the three-way decision into clustering analysis. The three-way decision theory 
was introduced by Yao [24,25] as a strategy to tackle the problem of information uncertainty. The fundamental idea involves 
constructing the universe into a triad and adopting a set of strategies for processing the triad. The framework of three-way decision 
can be described as the TAO (Triading-Acting-Optimizing), as shown in Fig. 3. Yu [26] applied the concept of three-way decision 
to clustering analysis and proposed the method of three-way clustering. This innovative method incorporates the concept of fringe 
regions into traditional binary clustering results and establishes three regions within each cluster, which effectively captures the 
uncertainty of clustering and reduces the risk of decision-making associated with inaccuracy. The three regions within each cluster 
are the core region, the trivial region, and the fringe region, as depicted in Fig. 4. These regions represent three distinct types of 
relationships between objects and clusters: (1) the objects within the core region are definitively assigned to a cluster; (2) the objects 
within the trivial region are definitively excluded from a cluster; (3) the objects within the fringe region may belong to a cluster. By 
incorporating the fringe region, the three-way clustering quantifies the extent of the influence that samples have on their respective 
clusters, thereby solving the problem of uncertainty in traditional clustering methods and reducing the decision risks caused by 
uncertain information.

Recently, scholars have endeavored to integrate the three-way clustering theory into K-means clustering, and promising results 
have been yielded. Wang et al. [27] introduced a novel three-way K-means clustering algorithm (called TWKM). TWKM incorporates 
the overlapping clusters and utilizes the perturbation analysis to implement the three-way clustering. However, similar to the con-
ventional K-means algorithm, the three-way K-means algorithm is also influenced by the initial selection of cluster centers, which 
makes it prone to local optima. In response to this challenge, some scholars have integrated swarm intelligence algorithms into 
this context for improvement. Gao et al. [28]proposed a method that combines PSO with the three-way K-means algorithm. In this 
method, SSE serves as the fitness function of PSO to optimize the cluster centers, and the difference sorting method of three-way 
clustering is used to measure the relationships between data points and clusters. Similarly, Guo et al. [29] introduced the Ant Colony 
Optimization (ACO) into the three-way K-means clustering process. They used the ACO to address the susceptibility of K-means to 
3

local optima. Each of the aforementioned algorithms has considered both intra-cluster and inter-cluster similarities when defining 



Information Sciences 672 (2024) 120661X. Chen, C. Liu, B. Lin et al.

the fitness function and has been verified for its efficiency through experimentation. It is worth noting that, currently, there are 
relatively few methods that combine swarm intelligence with the three-way clustering to enhance the K-means algorithm.

To address the aforementioned issues, this paper proposes an artificial hummingbird algorithm-based three-way K-means clus-
tering algorithm, called AHA-3WKM. AHA-3WKM uses the flight patterns and foraging strategies of hummingbirds through multiple 
iterations to discover the optimal food source locations, which are then utilized as the optimal initial cluster centers. Subsequently, 
the three-way decision framework is applied to handle the results of K-means clustering, and further divides the clustering results into 
core regions and fringe regions based on the similarity between data points and clusters. Experimental comparisons are conducted on 
14 UCI datasets against 6 relevant clustering algorithms, and the experiment results show that AHA-3WKM exhibits higher accuracy. 
In addition, the results in terms of Davies-Bouldin Index (DBI) demonstrate that clustering results generated by the proposed algo-
rithm have low inter-cluster similarity and high intra-cluster similarity. Our approach effectively alleviates the problems related to 
the randomness of cluster centers and the inclination of clustering to converge to local optima. Moreover, it categorizes each cluster 
into a core region and a fringe region, thereby enhancing its ability to represent the uncertainty within the dataset and reducing the 
risk of decision-making.

The main contributions of this paper are as follows.
(1) AHA is introduced to address the problems of the sensitivity to initial cluster centers and the proneness to local optima. 

Hummingbirds are treated as data points, which dynamically update their strategies and effectively find the optimal cluster centers 
during multiple iterations.

(2) A fitness function is designed based on the clustering principle of “birds of a feather flock together”, with the aim of simplifying 
calculations, which enhances the specificity and practicality of K-means algorithm.

(3) An AHA-based three-way K-means clustering algorithm (i.e., AHA-3WKM) is proposed. The clustering process is initialized 
with cluster centers optimized by AHA, and the results are represented in three regions, which can capture the uncertainty within 
the datasets.

(4) Comparative experiments are conducted on 14 UCI datasets, and the results demonstrate the effectiveness of the proposed 
algorithm.

The remaining sections of this paper are organized as follows. Section 2 introduces the fundamental concepts of the three-
way clustering and AHA. In Section 3, we delve into the intricate details of AHA-3WKM. Section 4 is dedicated to verifying the 
effectiveness of the proposed algorithm through experiments. Finally, the conclusions and the outlines of potential future work are 
given in Section 5.

2. Preliminary

In this section, we provide an overview of concepts related to our algorithm, including those in three-way clustering, three-way 
K-means, and AHA.

2.1. Three-way clustering

Assume that 𝑈 = {𝑥1, 𝑥2, ..., 𝑥𝑛, ..., 𝑥𝑁} is a nonempty finite set of objects called the universe, and 𝐶𝑆 = {𝐶1, 𝐶2, ..., 𝐶𝐾, ..., 𝐶𝐾} is 
a family of 𝐾 clusters, where for any 1 ≤ 𝑘 ≤ 𝐾 , 𝐶𝑘 ∈ 𝑈 , and 𝑈 =

⋃𝐾

𝑘=1 𝐶𝑘. Differing from hard clustering, which represents each 
cluster as a single set, three-way clustering divides each cluster 𝐶𝑘(1 ≤ 𝑘 ≤ 𝐾) into three regions: the core region (𝐶𝑜), the fringe 
region (𝐹𝑟), and the trivial region (𝑇 𝑟). For any 𝑥 ∈ 𝑈 , if 𝑥 ∈ 𝐶𝑜(𝐶𝑘), then the object 𝑥 definitely belongs to the cluster 𝐶𝑘. If 
𝑥 ∈ 𝐹𝑟(𝐶𝑘), then it implies that 𝑥 could potentially be associated with 𝐶𝑘. If 𝑥 ∈ 𝑇 𝑟(𝐶𝑘), then 𝑥 definitely does not belong to 𝐶𝑘.

Typically, the three regions of 𝐶𝑘(1 ≤ 𝑘 ≤ 𝐾) satisfy the following properties:

(1) 𝑇 𝑟(𝐶𝑘) = 𝑈 −𝐶𝑜(𝐶𝑘) − 𝐹𝑟(𝐶𝑘)

(2) 𝐶𝑜(𝐶𝑘) ∩ 𝐹𝑟(𝐶𝑘) = ∅

(3) 𝐶𝑜(𝐶𝑘) ∩ 𝑇 𝑟(𝐶𝑘) = ∅

(4) 𝑇 𝑟(𝐶𝑘) ∩ 𝐹𝑟(𝐶𝑘) = ∅

Based on the aforementioned discussion, each cluster 𝐶𝑘(1 ≤ 𝑘 ≤ 𝐾) in the three-way clustering can be represented as a pair of 
sets:

𝐶𝑘 = (𝐶𝑜(𝐶𝑘), 𝐹 𝑟(𝐶𝑘)),

where for any 1 ≤ 𝑘 ≤ 𝐾 , 𝐶𝑜(𝐶𝑘) denotes the core region of the cluster 𝐶𝑘, and 𝐹𝑟(𝐶𝑘) denotes the fringe region of 𝐶𝑘.
In general, the core region and the fringe region satisfy the following properties:

(𝑖) ∀𝐶𝑘 ∈ 𝐶𝑆, 𝐶𝑜(𝐶𝑘) ≠∅,

(𝑖𝑖)
𝐾

∪
𝑘=1

(𝐶𝑜(𝐶𝑘) ∪ 𝐹𝑟(𝐶𝑘)) = 𝑈,
4

(𝑖𝑖𝑖) 𝐶𝑜(𝐶𝑘) ∩𝐶𝑜(𝐶𝑗 ) = ∅, 𝑗 ≠ 𝑘.
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Property (𝑖) ensures that each cluster has a non-empty core region, indicating the presence of at least one object in each cluster. 
Property (𝑖𝑖) ensures that we can effectively partition all objects through clustering. Property (𝑖𝑖𝑖) ensures that the core regions of 
different clusters are mutually exclusive. Based on the discussion above, the result of three-way clustering can be represented as:

𝐶𝑆 = {(𝐶𝑜(𝐶1), 𝐹 𝑟(𝐶1)), (𝐶𝑜(𝐶2), 𝐹 𝑟(𝐶2)), ..., (𝐶𝑜(𝐶𝑘), 𝐹 𝑟(𝐶𝑘)), ..., (𝐶𝑜(𝐶𝐾 ), 𝐹 𝑟(𝐶𝐾 ))}.

It is evident that, in the case of 𝐹𝑟(𝐶𝑘) = ∅, three-way clustering generates the same results as hard clustering, where 𝐶𝑘 is 
represented as 𝐶𝑜(𝐶𝑘) and 𝑇 𝑟(𝐶𝑘) = 𝑈 −𝐶𝑜(𝐶𝑘). It can be seen that hard clustering is a special case of three-way clustering, and the 
latter provides an effective solution for handling data uncertainty.

2.2. Three-way K-means

The Three-way K-means clustering algorithm incorporates the three-way decision into the standard K-means clustering. This 
algorithm mainly consists of the following two steps.

Step 1: It employs the overlapping clustering method to obtain the support set by determining the minimum distance between an 
object and its nearest cluster center. For each object 𝑣, if the difference between the distance from 𝑣 to other cluster centers and the 
minimum distance is less than 𝛼 (𝛼 is a given threshold), then 𝑣 is assigned to the supports.

Assume that 𝑈 = {𝑥1, 𝑥2, … , 𝑥𝑛, … , 𝑥𝑁} is a nonempty finite set of objects (called the universe), and the results of three-way K-
means clustering are represented as 𝐶𝑆 = {(𝐶𝑜(𝐶1), 𝐹𝑟(𝐶1)), (𝐶𝑜(𝐶2), 𝐹𝑟(𝐶2)), … , (𝐶𝑜(𝐶𝐾 ), 𝐹𝑟(𝐶𝐾 ))}, where for each cluster 𝐶𝑘(1 ≤
𝑘 ≤ 𝐾), the support 𝑃𝑘 is the union of the core region and the fringe region, i.e.,

𝑃𝑘 = 𝐶𝑜(𝐶𝑘) ∪ 𝐹𝑟(𝐶𝑘), 1 ≤ 𝑘 ≤ 𝐾. (1)

Assume that 𝑣 is an object, and 𝑐1, 𝑐2, ..., 𝑐𝐾 are 𝐾 initial cluster centers which are randomly selected from 𝑈 . By calculating the 
minimum distance from object 𝑣 to the 𝐾 cluster centers, i.e., 𝑑(𝑣, 𝑐𝑖) = min1≤𝑘≤𝐾 (𝑣, 𝑐𝑘), we can obtain the set 𝑆 = {𝑗 ∶ 𝑑(𝑣, 𝑐𝑗 ) −
𝑑(𝑣, 𝑐𝑖) ≤ 𝛼 𝑎𝑛𝑑 𝑖 ≠ 𝑗}, where 𝛼 is a pre-defined parameter. This process may lead to two scenarios:

(1) 𝑖𝑓 𝑆 =∅, 𝑡ℎ𝑒𝑛 𝑣 ∈ 𝑃𝑖

(2) 𝑖𝑓 𝑆 ≠∅, 𝑡ℎ𝑒𝑛 𝑣 ∈ 𝑃𝑖 𝑎𝑛𝑑 𝑣 ∈ 𝑃𝑗

Subsequently, the center of each cluster is updated using the following equation:

𝑐𝑘 =
∑

𝑣∈𝑃𝑘
𝑣||𝑃𝑘

|| , 1 ≤ 𝑘 ≤ 𝐾, (2)

where 𝑣 ∈ 𝑃𝑘 is an object in 𝑃𝑘, and ||𝑃𝑘
|| denotes the cardinality of set 𝑃𝑘.

Step 2: It uses perturbation analysis to partition the supports into the core region and the fringe region. This approach effectively 
categorizes the elements within 𝑃𝑘(1 ≤ 𝑘 ≤ 𝐾) into two specific categories.

condition I = {𝑣 ∈ 𝑃𝑘 | ∃𝑗 = 1,2,… ,𝐾, 𝑗 ≠ 𝑘, 𝑣 ∈ 𝑃𝑗};

condition II = {𝑣 ∈ 𝑃𝑘 | ∀𝑗 = 1,2,… ,𝐾, 𝑗 ≠ 𝑘, 𝑣 ∉ 𝑃𝑗}.

When an object 𝑣 satisfies condition I, it indicates that 𝑣 exists in multiple supports. In this case, 𝑣 ∈ 𝐹𝑟(𝐶𝑘). Condition II indicates 
that the object 𝑣 only exists in one support. In this scenario, multiple identical objects are added to 𝑃𝑘, forming the new support 𝑃 ∗

𝑘
. 

Subsequently, the new center 𝑐∗
𝑘

is computed using Equation (2), and the distance between the new and old centers is then compared. 
If this distance is less than a given parameter 𝛽, then 𝑣 ∈ 𝐶𝑜(𝐶𝑘), otherwise 𝑣 ∈ 𝐹𝑟(𝐶𝑘).

2.3. Artificial hummingbird algorithm (AHA)

AHA is a bio-inspired optimization algorithm based on the special flight and intelligent foraging behaviors of hummingbirds. 
According to the comparative research in [18], this algorithm has strong global search capability and high optimization accuracy. 
The algorithm constructs a visit table to keep track of each hummingbird’s visitation level to every food source. And the visit 
table indicates the time since the last visit to a particular food source and its fitness. Each food source acts as a solution vector and 
participates in optimization operations, with its quality determined by the value of fitness function. The position of each hummingbird 
corresponds to the location of a food source, and the fitness value represents the nectar volume of the food source (the higher the 
fitness value, the greater the nectar volume). The foraging behaviors of hummingbirds consist of three stages: guided foraging, 
territorial foraging, and migration foraging.

2.3.1. Initialization

Assume that a population of 𝑛 hummingbirds is randomly placed on 𝑛 food sources, let 𝑥𝑖 represent the location of the 𝑖th food 
source, which is randomly initialized as follows:
5

ℎ𝑖 = 𝐿𝑜𝑤+ 𝑟 × (𝑈𝑝−𝐿𝑜𝑤) , 𝑖 = 1,2, ..., 𝑛, (3)



Information Sciences 672 (2024) 120661X. Chen, C. Liu, B. Lin et al.

where 𝐿𝑜𝑤 and 𝑈𝑝 represent the lower and upper boundaries of the 𝑑-dimensional problem, respectively, and 𝑟 is a random vector 
in [0, 1]. Each hummingbird can locate a target food source using the visit table. The visit table is typically updated during each 
iteration, and is initialized as follows:

𝑉 𝑇𝑖,𝑗 =
{

0 𝑖𝑓 𝑖 ≠ 𝑗

𝑛𝑢𝑙𝑙 𝑖𝑓 𝑖 = 𝑗
, 𝑖, 𝑗 = 1,2, ..., 𝑛, (4)

where 𝑖 represents the 𝑖th hummingbird, 𝑗 represents the 𝑗th food source. If 𝑖 = 𝑗, then 𝑉 𝑇𝑖,𝑗 = 𝑛𝑢𝑙𝑙, indicating that the 𝑖th hum-
mingbird is feeding on its own food source. If 𝑖 ≠ 𝑗, then 𝑉 𝑇𝑖,𝑗 = 0, indicating that during the current iteration, the 𝑖th hummingbird 
has just visited the 𝑗th food source, which represents the visitation level of the 𝑖th hummingbird to the 𝑗th food source.

2.3.2. Flight patterns

AHA defines three flight patterns of hummingbirds: axial flight, diagonal flight, and omnidirectional flight. During the foraging 
process, the flying skills of hummingbirds are simulated by introducing direction switch vectors, which are used to control their 
direction in the 𝑑-dimensional space. The axial flight is defined as follows:

𝑉 (𝑖) =
{

1, 𝑖𝑓 𝑖 = 𝑟𝑎𝑛𝑑([1, 𝑑])
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 𝑖 = 1,2, ..., 𝑑. (5)

The diagonal flight is defined as follows:

𝑉 (𝑖) =
{

1, 𝑖𝑓 𝑖 = 𝑆(𝑗), 𝑗 ∈ [1, 𝑘], 𝑆 = 𝑝𝑒𝑟𝑚𝑟𝑎𝑛𝑑(𝑘), 𝑘 ∈ [2,⌈𝑟1 × (𝑑 − 2)⌉+ 1]
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 𝑖 = 1,2, ..., 𝑑. (6)

The omnidirectional flight is defined as follows:

𝑉 (𝑖) = 1 , 𝑖 = 1, ..., 𝑑, (7)

where 𝑟𝑎𝑛𝑑([1, 𝑑]) generates a random integer between [1, 𝑑], 𝑝𝑒𝑟𝑚𝑟𝑎𝑛𝑑(𝑘) generates a random integer between [1, 𝑘], and 𝑟1 repre-
sents a random number within [0, 1]. The axial flight means that hummingbirds can fly along any coordinate axis; the diagonal flight 
allows hummingbirds to move from one corner of a rectangle to another, determined by any two axes in the coordinate system; the 
omnidirectional flight means that any flight direction can be projected onto every individual coordinate axis. Only hummingbirds 
are capable of axial and diagonal flights.

2.3.3. Guided foraging

The guided foraging is an optimization strategy in which hummingbirds search for food sources near the location of the highest 
visitation level. According to the visit table, the algorithm prioritizes the visit to the food source that has not been visited for the 
longest time. In cases where visitation levels are equal, the food source with the highest nectar-refilling rate is generally favored by 
hummingbirds.

The updated location of a new food source is determined based on both the flight direction of the hummingbird and its target 
food source, which is defined as follows:

ℎ𝑛𝑒𝑤
𝑖

(𝑡+ 1) = ℎ𝑖,𝑡𝑎𝑟(𝑡) + 𝑎 × 𝑉 × (ℎ𝑖(𝑡) − ℎ𝑖,𝑡𝑎𝑟(𝑡)), (8)

where ℎ𝑛𝑒𝑤
𝑖

(𝑡 +1) represents the updated food source location of the 𝑖th hummingbird; ℎ𝑖(𝑡) denotes the position of the 𝑖th humming-
bird at the 𝑡th iteration; ℎ𝑖,𝑡𝑎𝑟(𝑡) denotes the target food source location with the highest visitation level for the 𝑖th hummingbird; 𝑎
represents the guided factor following a normal distribution, i.e., 𝑎 ∼ 𝑁(0, 1); and 𝑉 is the direction change vector of hummingbirds, 
calculated by Equations (5)-(7). Moreover, ℎ𝑛𝑒𝑤

𝑖
(𝑡 + 1), ℎ𝑖,𝑡𝑎𝑟(𝑡), ℎ𝑖(𝑡) and 𝑉 are all 𝑑-dimensional vectors.

After updating the location, the nectar-refilling rate of the new food source location is revised, and the subsequent foraging 
location of the hummingbird is determined by comparing it with the current location, which is defined as follows:

ℎ𝑖(𝑡+ 1) =
{

ℎ𝑖(𝑡) 𝑓 (ℎ𝑖(𝑡)) ≤ 𝑓 (ℎ𝑛𝑒𝑤
𝑖

(𝑡+ 1))
ℎ𝑛𝑒𝑤

𝑖
(𝑡+ 1) 𝑓 (ℎ𝑖(𝑡)) > 𝑓 (ℎ𝑛𝑒𝑤

𝑖
(𝑡+ 1)) . (9)

2.3.4. Territorial foraging

The territorial foraging is another optimization strategy employed by AHA, enabling hummingbirds to navigate towards their 
own food source locations. This strategy is updated based on Equation (10).

ℎ𝑛𝑒𝑤
𝑖

(𝑡+ 1) = ℎ𝑖(𝑡) + 𝑏 × 𝑉 × ℎ𝑖(𝑡), (10)

where ℎ𝑛𝑒𝑤
𝑖

(𝑡 + 1) represents the updated location of the food source for the 𝑖th hummingbird; ℎ𝑖(𝑡) denotes the position of the 𝑖th 
hummingbird at the 𝑡th iteration; 𝑏 represents the territorial factor following a normal distribution, i.e., 𝑏 ∼ 𝑁(0, 1); and 𝑉 is a 
𝑑-dimensional vector representing the direction change of hummingbirds.

After discovering a new food source, the position update of hummingbirds is performed according to the foraging update rule 
6

outlined in Equation (9).
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2.3.5. Migration foraging

The migration foraging is a crucial step in the later stages of the algorithm to prevent falling into local optima. When humming-
birds encounter food shortages in the regions they visit, they migrate to more distant regions in search of new food sources. Once 
the number of iterations reaches a predetermined value based on the migration coefficient (𝑡 = 2𝑛, where 𝑛 is the population size), 
the hummingbird with the lowest fitness abandons its current food source. It then conducts a random search in the search space for 
a new food source and updates its position accordingly, which is defined as follows:

ℎ𝑤𝑜𝑟(𝑡+ 1) = 𝐿𝑜𝑤+ 𝑐 × (𝑈𝑝−𝐿𝑜𝑤), (11)

where ℎ𝑤𝑜𝑟(𝑡 + 1) is the updated location of the food source with the worst fitness; 𝑐 is a 𝑑-dimensional vector of random numbers 
within [0, 1]; and 𝑈𝑝 and 𝐿𝑜𝑤 denote the upper and lower boundaries of the optimization problem, respectively.

2.3.6. Visit table updates

The visit table is automatically updated after the completion of any foraging model. After the guided foraging, the visitation 
level ℎ𝑖,𝑡𝑎𝑟(𝑡) of the current hummingbird’s target food source is reset to zero, while the visitation levels of other food sources are 
increased by one unit. In cases of territorial foraging or migration foraging, the visitation level ℎ𝑖,𝑡𝑎𝑟(𝑡) is increased by one unit. In 
addition, if the newly generated position of a hummingbird after foraging can lead to an improved fitness, then the visitation levels 
of that food source are increased by one unit based on their respective highest visitation level. Furthermore, the visitation levels of 
all hummingbirds will be updated by increasing them by one unit if a hummingbird discovers a new foraging position with higher 
fitness, based on their respective highest visitation levels.

3. The proposed algorithm

In this section, we introduce the relevant concepts of the proposed algorithm and provide the steps involved. To overcome the 
randomness of initial cluster centers and the problem of clustering being trapped in local optima, we introduce AHA and define 
a corresponding fitness function to find the optimal food source locations as the optimal initial cluster centers. Next, we use the 
obtained cluster centers for clustering and employ the three-way clustering method to partition the clustering results into three 
regions, aiming to better capture the uncertainty in objects.

3.1. Basic concepts of AHA-3WKM

The fitness function plays a crucial role in swarm intelligence algorithms, guiding the search and optimization process of SI 
and ultimately determining the quality of the solution found. In order to ensure efficient exploration and identification of high-
quality solutions in clustering problems, the fitness function of AHA in this paper is defined based on the fundamental principles 
of maximizing the intra-cluster similarity and minimizing the inter-cluster similarity. The high-quality clustering results typically 
exhibit high intra-cluster similarity and low inter-cluster similarity [30]. In AHA, the nectar-refilling rate of food sources has a 
significant contribution to the formation of hummingbirds’ foraging behaviors, and is quantified as a fitness value calculated by the 
fitness function. The nectar-refilling rate of food sources increases with the fitness value.

Definition 1 (Intra-cluster Cohesion of A Cluster). Let 𝑈 = {𝑥1, 𝑥2, … , 𝑥𝑛, … , 𝑥𝑁} be a nonempty finite set of objects, 𝐶𝑆 =
{𝐶1, 𝐶2, … 𝐶𝑘, … , 𝐶𝐾} be a partition of 𝑈 , and 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑘, … , 𝑐𝐾} be the set of cluster centers. For each cluster 𝐶𝑘 ∈ 𝐶𝑆(1 ≤
𝑘 ≤ 𝐾), the intra-cluster cohesion 𝐶𝑜ℎ𝑒(𝐶𝑘) of 𝐶𝑘 is defined as:

𝐶𝑜ℎ𝑒(𝐶𝑘) =
1||𝐶𝑘
||
∑

𝑥𝑖∈𝐶𝑘

𝑑𝑖𝑠𝑡(𝑥𝑖, 𝑐𝑘), (12)

where for any 𝑐𝑘 ∈ 𝐶 and 𝑥𝑖 ∈ 𝐶𝑘, 𝑑𝑖𝑠𝑡(𝑥𝑖, 𝑐𝑘) denotes the distance between object 𝑥𝑖 and cluster center 𝑐𝑘, and |𝐶𝑘| represents the 
cardinality of set 𝐶𝑘.

In order to comprehensively represent the clustering results, we take the minimum cohesion value of all clusters as the intra-
cluster cohesion metric of 𝐶𝑆 (denoted as 𝐶𝑜ℎ𝑒(𝐶𝑆)), that is,

𝐶𝑜ℎ𝑒𝑠(𝐶𝑆) = min
𝑘=1,2,…,𝐾

{𝐶𝑜ℎ𝑒(𝐶𝑘)}. (13)

𝐶𝑜ℎ𝑒𝑠(𝐶𝑆) is used to assess the overall compactness of clustering results obtained at different numbers of clusters. The larger the 
value of 𝐶𝑜ℎ𝑒𝑠(𝐶𝑆), the better the cohesion of the entire clustering result, while the smaller the value, the worse the cohesion.

Definition 2 (Inter-cluster Separation Metric). Let 𝑈 = {𝑥1, 𝑥2, … , 𝑥𝑛, … , 𝑥𝑁} be a nonempty finite set of objects, 𝐶𝑆 = {𝐶1, 𝐶2, … 𝐶𝑘,

… , 𝐶𝐾} be a partition of 𝑈 , and 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑘, … , 𝑐𝐾} be the set of cluster centers. The inter-cluster separation metric of 𝐶𝑆

(denoted as 𝑆𝑒𝑝𝑐𝑠(𝐶𝑆)) is defined as:

𝑆𝑒𝑝𝑐𝑠(𝐶𝑆) = max𝑑𝑖𝑠𝑡(𝑐 , 𝑐 ), (14)
7
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Fig. 5. Searching process of the optimal cluster centers 𝐶𝑜𝑝𝑡 .

where for any 𝑐𝑖, 𝑐𝑗 ∈ 𝐶(𝑖 ≠ 𝑗), 𝑑𝑖𝑠𝑡(𝑐𝑖, 𝑐𝑗 ) denotes the distance between cluster centers 𝑐𝑖 and 𝑐𝑗 .

𝑆𝑒𝑝𝑐𝑠(𝐶𝑆) is used to comprehensively assess the separability of clustering results under different numbers of clusters. The higher 
the value of 𝑆𝑒𝑝𝑐𝑠(𝐶𝑆), the higher the degree of separation in the entire clustering result, while the lower the value, the lower the 
degree of separation.

Due to the difference in scale between 𝐶𝑜ℎ𝑒𝑠(𝐶𝑆) and 𝑆𝑒𝑝𝑐𝑠(𝐶𝑆), the intra-cluster cohesion metric is normalized during com-
putation, which is defined as follows:

𝐶𝑜ℎ𝑒𝑠(𝐶𝑆) =
max

𝑘=1,2,⋅⋅⋅,𝐾
{𝐶𝑜ℎ𝑒(𝐶𝑘)}

𝐾∑
𝑘=1

𝐶𝑜ℎ𝑒(𝐶𝑘)
. (15)

Definition 3. The fitness function of AHA is defined as follows.

𝑓𝑖𝑡𝐴𝐻𝐴(𝐶𝑆) = 𝐶𝑜ℎ𝑒𝑠(𝐶𝑆) −𝑆𝑒𝑝𝑐𝑠(𝐶𝑆), (16)

where 𝐶𝑜ℎ𝑒𝑠(𝐶𝑆) is the intra-cluster cohesion metric of 𝐶𝑆 , and 𝑆𝑒𝑝𝑐𝑠(𝐶𝑆) is the inter-cluster separation metric of 𝐶𝑆 .

The fitness value increases when 𝐶𝑜ℎ𝑒𝑠(𝐶𝑆) increases and 𝑆𝑒𝑝𝑐𝑠(𝐶𝑆) decreases, indicating a better quality of clustering with 
closer objects within each cluster and greater separation between different clusters. On the contrary, if the cohesion within each 
cluster is low and the separation between different clusters is high, then the fitness value will be low, indicating a poorer clustering 
quality. By maximizing this fitness function, we can find the food source with the optimal nectar-refilling rate as an approximate 
global optimum value, which represents the cluster center with the best quality.

Definition 4 (Optimal Cluster Centers). Let 𝑈 = {𝑥1, 𝑥2, … , 𝑥𝑛, … , 𝑥𝑁} be a nonempty finite set of objects, and 𝐶𝑆 = {𝐶1, 𝐶2, … 𝐶𝑘,

… ,𝐶𝐾} be a partition of 𝑈 . The optimal cluster centers 𝐶𝑜𝑝𝑡 obtained by AHA is defined as:

𝐶
𝑜𝑝𝑡

= argmax
𝐶𝑆

𝑓𝑖𝑡𝐴𝐻𝐴(𝐶𝑆). (17)

To better understand the acquisition of 𝐶𝑜𝑝𝑡, we briefly outline the optimization process in Fig. 5. This process comprises four 
key steps: initialization, optimization, updating, and multiple iterations until convergence. The hummingbird swarm is regarded as 
a set of cluster centers with 𝐾 × 𝐷 dimensions, where 𝐾 is the number of clusters, and 𝐷 is the dimension of data. In Fig. 5, we 
set 𝑛𝑃𝑜𝑝 = 3, 𝐾 = 2, and 𝐷 = 2, where 𝑛𝑃𝑜𝑝 is the count of hummingbird. First, during the initial phase, we randomly select 𝐾
data points from the dataset as the initial cluster centers. Second, we perform the optimization process based on fitness values and 
visitation levels to maximize the fitness function. Third, all parameters are updated, and the convergence state is reached by iterating 
over two processes (i.e., the optimization process and the updating process). Finally, all hummingbirds converge to the same position, 
i.e., the solution for the optimal cluster centers 𝐶𝑜𝑝𝑡.

The following example demonstrates how hummingbirds perform a guided foraging strategy in the first iteration to find the target 
food source and explore the optimal solutions. As shown in Fig. 6, 𝑓 (ℎ) is the fitness value of the current position, and 𝑓 (ℎ𝑛𝑒𝑤) is 
the updated fitness value. Given three hummingbirds, their positions and the visit tables are initialized using Equations (2) and (3), 
8

respectively.
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Fig. 6. Example for exploring the optimal solutions with a guided foraging strategy in the first iteration.

The first hummingbird 𝑥1 finds two food sources: 𝑥2 and 𝑥3, which have the same visitation level, i.e., 0. Since the fitness value 
of 𝑥3 is higher than that of 𝑥2, 𝑥3 is the target food source of 𝑥1. Then, Equations (8) and (9) are applied to update the visitation 
levels. In this process, the target food source 𝑥3 is initialized to 0, and the food source 𝑥2 is increased by 1 because it is not visited.

The second hummingbird 𝑥2 also finds two food sources: 𝑥1 and 𝑥2, which have the same visitation level, i.e., 0. Since the fitness 
value of 𝑥3 is higher than that of 𝑥1, 𝑥3 is the target food source of 𝑥2. Then, Equations (8) and (9) are applied to update the 
visitation levels. In this process, the target food source 𝑥3 is initialized to 0, and the food source 𝑥1 is increased by 1. In addition, 
since the updated fitness value 𝑛2 is better than the food source 𝑥2, 𝑥2 is replaced with 𝑛2, and the visitation level of 𝑥2 to other 
hummingbirds needs to be increased by 1 based on their corresponding row’s highest visitation level.

For the third hummingbird 𝑥3, the food source of 𝑥2 is the target food source since it has the highest visitation level. Therefore, 
the visitation level of the target food source 𝑥2 is initialized to 0, and the visitation levels of the food sources of 𝑥1 are increased by 
1.

After one iteration, the updated visit table is shown as ‘Final’ in Fig. 6. In this process, the positions of all hummingbirds are 
updated.

Based on Definition 4, we introduce the process of three-way K-means clustering (3WKM). The 3WKM process mainly consists of 
two steps: firstly, utilizing overlapping clustering method to obtain the upper approximate support sets (the supports) for clustering; 
secondly, employing perturbation analysis to divide the upper approximate support sets into core region and fringe region. Due 
to the limitations of the K-means algorithm in capturing uncertain information, it cannot handle situations where an object might 
simultaneously belong to two or more clusters with similar proximity. To address this issue, the concept of Minimum Distance is 
introduced, which is used to determine the cluster with the highest similarity to each object.

Definition 5 (Minimum Distance). Let 𝑈 = {𝑥1, 𝑥2, … , 𝑥𝑛, … , 𝑥𝑁} be a nonempty finite set of objects, and 𝐶𝑜𝑝𝑡 = {𝑐𝑜𝑝𝑡

1 , 𝑐𝑜𝑝𝑡

2 , … , 𝑐𝑜𝑝𝑡

𝑘
,

… , 𝑐𝑜𝑝𝑡

𝐾
} be the optimal cluster centers of 𝑈 , where 𝐾 is the number of centers. For any 𝑥 ∈𝑈 , the minimum distance 𝑑(𝑥, 𝑐𝑜𝑝𝑡

min) from 
object 𝑥 to 𝐾 centers is defined as:

𝑑(𝑥, 𝑐
𝑜𝑝𝑡

min) = min
1≤𝑘≤𝐾

𝑑𝑖𝑠𝑡(𝑥, 𝑐
𝑜𝑝𝑡

𝑘
), (18)

where 𝑐𝑜𝑝𝑡

min represents the cluster center with the minimum distance from object 𝑥.

In addition, the Euclidean distance is used as the distance metric in this paper. To determine whether the data is uncertain, 
we introduce the concept of relative distances set based on the minimum distance. It is used to determine whether the difference 
between the minimum distance of object 𝑥 and its distances to other optimal cluster centers is less than a threshold 𝛼. Based on this 
benchmark, we categorize data into two groups: deterministic data and uncertain data.

Definition 6 (Relative Distances Set). Let 𝑈 = {𝑥1, 𝑥2, … , 𝑥𝑛, … , 𝑥𝑁} be a nonempty finite set of objects, and 𝐶𝑜𝑝𝑡 = {𝑐𝑜𝑝𝑡

1 , 𝑐𝑜𝑝𝑡

2 , … , 𝑐𝑜𝑝𝑡

𝑘
,

… , 𝑐𝑜𝑝𝑡

𝐾
} be the optimal cluster centers of 𝑈 , where 𝐾 is the number of centers. For any 𝑥 ∈ 𝑈 , the relative distances set of object 𝑥

is defined as:

𝑍(𝑥) = {𝑗 ∣ |𝑑(𝑥, 𝑐
𝑜𝑝𝑡

𝑗
) − 𝑑(𝑥, 𝑐

𝑜𝑝𝑡

min)| ≤ 𝛼 and min ≠ 𝑗}, (19)

where 𝑑(𝑥, 𝑐𝑜𝑝𝑡

min) is the minimum distance of object 𝑥, 𝑑(𝑥, 𝑐𝑜𝑝𝑡

𝑗
) is the distance between object 𝑥 and the center of the 𝑗th cluster, and 
9

𝛼 is a predetermined parameter.
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Fig. 7. Illustration of the Minimum Distance and the Relative Distances set.

When 𝑍(𝑥) =∅, the object 𝑥 belongs to only one cluster, which means that 𝑥 is deterministic; when 𝑍(𝑥) ≠∅, 𝑥 may belong to 
multiple clusters, which means that 𝑥 is uncertain, and the elements in 𝑍(𝑥) correspond to the clusters that 𝑥 may belong to.

To further clarify the concepts of the minimum distance and the relative distances set, we present an illustrative example, as 
shown in Fig. 7. Assume that the parameter 𝛼 is equal to 0.2, and the distances between the object 𝑥 and the three clusters 𝐶1, 𝐶2, 
and 𝐶3 are 𝑑(𝑥, 𝑐𝑜𝑝𝑡

1 ) = 0.5, 𝑑(𝑥, 𝑐𝑜𝑝𝑡

2 ) = 0.7, and 𝑑(𝑥, 𝑐𝑜𝑝𝑡

3 ) = 1.6, respectively. In this scenario, the minimum distance of the object 𝑥
is 𝑑(𝑥, 𝑐𝑜𝑝𝑡

2 ) = 0.5, and the relative distances set of 𝑥 is 𝑍(𝑥) = {1}. Consequently, we can classify 𝑥 as uncertain data, and conclude 
that 𝑥 could potentially belong to either 𝐶1 or 𝐶2, but it is definitely excluded from 𝐶3.

Definition 7 (Upper Approximate Support). Let 𝑈 = {𝑥1, 𝑥2, … , 𝑥𝑛, … , 𝑥𝑁} be a nonempty finite set of objects, and 𝐶𝑜𝑝𝑡 =
{𝑐𝑜𝑝𝑡

1 , 𝑐𝑜𝑝𝑡

2 , … , 𝑐𝑜𝑝𝑡

𝑘
, … , 𝑐𝑜𝑝𝑡

𝐾
} be the optimal cluster centers of 𝑈 , where 𝐾 is the number of centers. The upper approximate support 

𝑅
𝑜𝑝𝑡

𝑘
of the 𝑘th cluster is defined as:

𝑅
𝑜𝑝𝑡

𝑘
= 𝐶𝑜𝑟𝑒(𝑐𝑜𝑝𝑡

𝑘
) ∪ 𝐹𝑟𝑖𝑛𝑔𝑒(𝑐𝑜𝑝𝑡

𝑘
). (20)

The upper approximate support is the set of the upper approximate supports of all clusters, that is,

ℝ𝑜𝑝𝑡 = {𝑅𝑜𝑝𝑡

1 ,𝑅
𝑜𝑝𝑡

2 ,… ,𝑅
𝑜𝑝𝑡

𝑘
,… ,𝑅

𝑜𝑝𝑡

𝐾
}. (21)

For the two cases of the 𝑍(𝑥), we assign object 𝑥 to the upper approximate supports of the corresponding clusters according to 
the following rules.{

𝑥 ∈ 𝑅
𝑜𝑝𝑡

min 𝑖𝑓 𝑍𝑥 =∅
𝑥 ∈ 𝑅

𝑜𝑝𝑡

min 𝑎𝑛𝑑 𝑥 ∈ 𝑅
𝑜𝑝𝑡

𝑗
(𝑗 ∈ 𝑍(𝑥)) 𝑖𝑓 𝑍𝑥 ≠∅ , (22)

where 𝑚𝑖𝑛 corresponds to the cluster center with the minimum distance from object 𝑥.
Consider the extreme case where object 𝑥 has the minimum distance from two or more cluster centers simultaneously. In this 

particular case, object 𝑥 will be present in multiple approximate support sets for certain. Thus, one cluster center is randomly selected 
as the minimum distance for object 𝑥.

The upper approximate supports ℝ𝑜𝑝𝑡 satisfy the following properties:

(1) ∀𝑅
𝑜𝑝𝑡

𝑘
∈ℝ𝑜𝑝𝑡, 𝑅

𝑜𝑝𝑡

𝑘
≠∅

(2)
𝐾⋃

𝑖=1
(𝐶𝑜𝑟𝑒(𝑐𝑜𝑝𝑡

𝑘
) ∪ 𝐹𝑟𝑖𝑛𝑔𝑒(𝑐𝑜𝑝𝑡

𝑘
)) =ℝ𝑜𝑝𝑡.

Property (1) ensures that the upper approximate support of each cluster is nonempty, which means that there is at least one 
object in each cluster; Property (2) ensures that all objects can be effectively partitioned by the upper approximate supports.

The object within 𝑅𝑜𝑝𝑡

𝑘
(1 ≤ 𝑘 ≤ 𝐾) can be divided into the following two types:{

Type I = {𝑥 ∈ 𝑅
𝑜𝑝𝑡

𝑘
∣ ∀𝑗 = 1,… ,𝐾, 𝑗 ≠ 𝑘,𝑥 ∉ 𝑅

𝑜𝑝𝑡

𝑗
}

Type II = {𝑥 ∈ 𝑅
𝑜𝑝𝑡

𝑘
∣ ∃𝑗 = 1,… ,𝐾, 𝑗 ≠ 𝑘,𝑥 ∈ 𝑅

𝑜𝑝𝑡

𝑗
}

. (23)

If an object 𝑥 belongs to Type I, then 𝑥 only exists in one upper approximate support, which means that 𝑥 definitely belongs to 
a cluster. If an object 𝑥 belongs to Type II, then 𝑥 exists in multiple upper approximate supports, which means that 𝑥 may belong 
10

to multiple clusters. Following the concept of three-way clustering, we assign objects belonging to Type II to the fringe region. As 
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Fig. 8. Different similarities within the core region (Note: the orange data points in the core domain have a high similarity, while the blue data points have a low 
similarity).

for Type I, within the same cluster, there can also be variations in the strength of similarity among objects, as illustrated in Fig. 8. 
Taking into consideration the relationships within a cluster, we employ perturbation analysis and introduce the parameter 𝛽 to 
further classify objects belonging to Type I into the core region and the fringe region. This method involves adding |||𝑅𝑜𝑝𝑡

𝑘

||| identical 
objects to the upper approximate support of the 𝑘th cluster, where denotes the cardinality of 𝑅𝑜𝑝𝑡

𝑘
. The new upper approximate 

support of the 𝑘th cluster, denoted as 𝑅𝑜𝑝𝑡

𝑘

∗
, is then obtained. Using the mean-based Equation (4), we recalculate the center of 𝑅𝑜𝑝𝑡

𝑘

∗
, 

and obtain a new center 𝑐𝑜𝑝𝑡

𝑘

∗
. Then, we compare the distance between the new and old centers, denoted as |||𝑐𝑜𝑝𝑡

𝑘
− 𝑐

𝑜𝑝𝑡

𝑘

∗|||, to determine 
whether object 𝑥 belongs to the core region of the 𝑘th cluster. The core region is defined as follows.

Definition 8 (Core Region). Let 𝑈 = {𝑥1, 𝑥2, … , 𝑥𝑛, … , 𝑥𝑁} be a nonempty finite set of objects, and 𝐶𝑜𝑝𝑡 = {𝑐𝑜𝑝𝑡

1 , 𝑐𝑜𝑝𝑡

2 , … , 𝑐𝑜𝑝𝑡

𝑘
, … , 𝑐𝑜𝑝𝑡

𝐾
}

be the optimal cluster centers of 𝑈 , where 𝐾 is the number of centers. The core region of the 𝑘th cluster is defined as:

𝐶𝑜𝑟𝑒(𝑐𝑜𝑝𝑡

𝑘
) = {𝑥 ∣ 𝑥 ∈ Type I, |||𝑐𝑜𝑝𝑡

𝑘
− 𝑐

𝑜𝑝𝑡

𝑘

∗||| ≤ 𝛽}, (24)

𝑐
𝑜𝑝𝑡

𝑘

∗ =

∑
𝑥∈𝑅

𝑜𝑝𝑡

𝑘

∗ 𝑥|||𝑅𝑜𝑝𝑡

𝑘

∗||| , (25)

𝑅
𝑜𝑝𝑡

𝑘

∗ = 𝑅
𝑜𝑝𝑡

𝑘
∪ {𝑥1, 𝑥2,… , 𝑥

|||𝑅𝑜𝑝𝑡

𝑘

|||}, (26)

where 𝑐𝑜𝑝𝑡

𝑘
represents the current center, 𝑅𝑜𝑝𝑡

𝑘

∗
represents the new upper approximate support of the 𝑘th cluster (calculated using 

Equation (26)), 𝑐𝑜𝑝𝑡

𝑘

∗
represents the new center for 𝑅𝑜𝑝𝑡

𝑘

∗
(calculated using Equation (25)), and 𝛽 is a given parameter.

Definition 9 (Fringe Region). Let 𝑈 = {𝑥1, 𝑥2, … , 𝑥𝑛, … , 𝑥𝑁} be a nonempty finite set of objects, and 𝐶𝑜𝑝𝑡 = {𝑐𝑜𝑝𝑡

1 , 𝑐𝑜𝑝𝑡

2 , … , 𝑐𝑜𝑝𝑡

𝑘
, … , 𝑐𝑜𝑝𝑡

𝐾
}

be the optimal cluster centers of 𝑈 , where 𝐾 is the number of centers. The fringe region of the 𝑘th cluster is defined as:

𝐹𝑟𝑖𝑛𝑔𝑒(𝑐𝑜𝑝𝑡

𝑘
) = {𝑥 ∣ 𝑥 ∈ Type II} ∪ (Type I ∖𝐶𝑜𝑟𝑒(𝑐𝑜𝑝𝑡

𝑘
)), (27)

where 𝑐𝑜𝑝𝑡

𝑘
represents the current center.

3.2. Algorithmic form of AHA-3WKM

Based on the concepts discussed above, this subsection provides a detailed description of the AHA-based three-way K-means 
clustering algorithm (AHA-3WKM). The parameter settings for AHA are as follows. First, the product of the dimension 𝑑 of dataset 
and the number of clusters 𝐾 is set to the population size, denoted as 𝑛𝑃𝑜𝑝. Second, the upper and lower limits, referred to as 𝑈𝑝 and 
𝐿𝑜𝑤, are defined based on the maximum and minimum values found within the dataset respectively. The pseudocode of AHA-3WKM 
is given in Algorithm 1, and its flowchart is illustrated in Fig. 9.

4. Experimental results and analysis

4.1. Clustering validity metric

Clustering performance measurement, also known as clustering validity metric, is a crucial process for evaluating the quality 
11

of clustering results. A good validity metric helps in comparing different clustering methods and analyzing whether one method is 
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Algorithm 1: AHA-3WKM

Input: 𝑈 = {𝑥1, 𝑥2, ..., 𝑥𝑁}, the number 𝐾 of clusters, 𝛼, 𝛽, Maxt

Output: 𝐶𝑆𝑜𝑝𝑡 = {(𝐶𝑜(𝑐𝑜𝑝𝑡

1 ), 𝐹𝑟(𝑐𝑜𝑝𝑡

1 )), (𝐶𝑜(𝑐𝑜𝑝𝑡

2 ), 𝐹𝑟(𝑐𝑜𝑝𝑡

2 )), ..., (𝐶𝑜(𝑐𝑜𝑝𝑡

𝐾
), 𝐹𝑟(𝑐𝑜𝑝𝑡

𝐾
))}

1 Initialization: The positions of 𝑛𝑃𝑜𝑝 hummingbirds are initialized using Equation (3), and their fitness values are calculated using 𝑓𝑖𝑡𝐴𝐻𝐴 . 
The visit table 𝑉 𝑖𝑠𝑖𝑡𝑇 is initialized using Equation (4).

2 Randomly select 𝐾 objects as the initial cluster centers, denoted as 𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑘..., 𝑐𝐾}.
3 for 𝑡 ← 1 to 𝑀𝑎𝑥𝑡 do

4 for 𝑖 ← 1 to 𝑛𝑃𝑜𝑝 do

5 Randomly select a flight pattern and generate a direction change vector V according to Equations (5)-(7) ;
6 Stochastically select either guided foraging or territorial foraging for the current hummingbird;
7 if guided foraging then

8 Perform Equation (8) and update the hummingbird’s position and the optimal cluster center 𝐶𝑜𝑝𝑡 according to Equation (9). 
Update the visit table 𝑉 𝑖𝑠𝑖𝑡𝑇 based on the rules of guided foraging.

9 else if territorial foraging then

10 Perform Equation (10) and update the hummingbird’s position and the optimal clustering centers 𝐶𝑜𝑝𝑡 according to Equation 
(9). Update the visit table 𝑉 𝑖𝑠𝑖𝑡𝑇 based on the rules of territorial foraging.

11 end

12 if 𝑚𝑜𝑑(𝑡, 2𝑛𝑃𝑜𝑝) == 0 then

13 Conduct the migration foraging, perform Equation (11), update the optimal cluster centers 𝐶𝑜𝑝𝑡 and adjust 𝑉 𝑖𝑠𝑖𝑡𝑇 according to 
the rules of migration foraging.

14 end

15 end

16 end

17 Obtain the optimal cluster centers 𝐶𝑜𝑝𝑡 = {𝑐𝑜𝑝𝑡

1 , 𝑐𝑜𝑝𝑡

2 , ..., 𝑐𝑜𝑝𝑡

𝑘
..., 𝑐𝑜𝑝𝑡

𝐾
}.

18 for 𝑖 ← 1 to 𝑁 do

19 Calculate the minimum distance 𝑑(𝑥𝑖, 𝑐𝑜𝑝𝑡

𝑚𝑖𝑛
) of object 𝑥𝑖 according to Equation (18);

20 Determine the relative distances set 𝑍(𝑥𝑖) according to Equation (19);
21 if 𝑍(𝑥𝑖) ≠∅ then

22 𝑥𝑖 ∈ 𝑅
𝑜𝑝𝑡

𝑚𝑖𝑛
, 𝑥𝑖 ∈ 𝑅

𝑜𝑝𝑡

𝑗
, 𝑗 ∈ 𝑍(𝑥𝑖);

23 else

24 𝑥𝑖 ∈ 𝑅
𝑜𝑝𝑡

𝑚𝑖𝑛
.

25 end

26 end

27 for 𝑖 ← 1 to 𝐾 do

28 Perform Equation (23), and determine sets Type I and Type II;
29 Divided 𝑅𝑖 into the core region and the fringe region according to Equations (24) and (27).
30 end

superior to another. Generally, clustering validity metrics are divided into two major categories: external index and internal index. 
This paper employs three external indices and two internal indices, aiming to assess the effectiveness of clustering algorithms.

(1) Accuracy (ACC)
ACC is a widely used external index, representing the proportion of correctly classified samples within the entire dataset. A higher 

value indicates a better clustering performance. It can be calculated according to Equation (28).

𝐴𝐶𝐶 = 1
𝑁

𝐾∑
𝑖=1

𝐶𝑖, (28)

where 𝑁 is the number of samples; 𝐾 is the number of clusters; 𝐶𝑖 represents the number of samples correctly clustered into the 𝑖th 
cluster.

(2) Davies-Bouldin Index (DBI)
The Davies-Bouldin Index (DBI) is an internal index. It measures the separation between different clusters and the compactness 

within each cluster. A lower DBI value indicates higher intra-cluster similarity and lower inter-cluster similarity, suggesting better 
clustering performance. It can be calculated according to Equation (29).

𝐷𝐵𝐼 = 1
𝐾

𝐾∑
𝑖=1

max
𝑗≠𝑖

(
𝑆𝑖 +𝑆𝑗

𝑀𝑖𝑗

), (29)

where 𝐾 is the number of clusters; 𝑆𝑖 is the average distance between samples in the 𝑖th cluster and the center of the 𝑖th cluster, 
representing the inner tightness of the cluster; 𝑀𝑖𝑗 represents the distance between the center of the 𝑖th cluster and that of the 𝑗th 
12

cluster, representing the degree of separation between clusters.
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Fig. 9. The flowchart of AHA-3WKM. The blue part represents the process of finding the optimal cluster centers, and the red part represents the process of three-way 
clustering.

(3) Average Silhouette Index (AS)
The Average Silhouette Index (AS) is used to measure the consistency between clustering results and true labels. The calculation 

involves comparing pairwise matches between all data points, and adjusts for the influence of random matching. AS falls within the 
range of [−1, 1], where a value closer to 1 indicates higher consistency between clustering results and true labels. It can be calculated 
according to Equation (30).

𝐴𝑆 = 1
𝑁

𝑁∑
𝑖=1

𝑏𝑖 − 𝑎𝑖

max{𝑎𝑖, 𝑏𝑖}
, (30)

where 𝑁 represents the number of objects, 𝑎𝑖 represents the average distance between object 𝑖 and other objects within the same 
cluster, and 𝑏𝑖 represents the average distance between object 𝑖 and the nearest cluster (other than its own).

(4) Adjusted Rand Index (ARI)
The Adjusted Rand Index (ARI) is a metric used to measure the consistency between clustering results and true labels. It considers 

all possible matching scenarios between clustering results and true labels and corrects for random matching. The value of ARI ranges 
from -1 to 1, with a value closer to 1 indicating higher consistency between clustering results and true labels. It can be calculated 
according to Equation (31).

𝑅𝐼 = 𝑎+ 𝑏(
𝑁

2

) , (31)

𝐴𝑅𝐼 = 𝑅𝐼 −𝐸[𝑅𝐼]
max(𝑅𝐼) −𝐸[𝑅𝐼]

, (32)

where 𝑁 represents the number of objects, and 
(

𝑁

2

)
= 𝐶2

𝑁
= 𝑁(𝑁−1)

2 . Obviously, the range of RI is [0, 1].
To calculate ARI, a contingency table is introduced, which displays the matching between clustering results and true labels. Rows 
13

in the contingency table represent the clusters from the clustering results, columns represent the categories from the true labels, and 
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Table 1

Description of 14 UCI datasets.

ID Datasets Number of samples Dimensions Number of classes

1 Iris 150 4 3
2 Wine 178 13 3
3 Seeds 210 7 3
4 WDBC 569 30 2
5 Glass 214 9 6
6 Breasttissue 106 9 6
7 Liver 345 6 2
8 Libras 360 90 15
9 CMC 1473 9 3
10 Ionosphere 351 34 2
11 Waveform 5000 21 3
12 Newthyroid 215 5 3
13 Balancescale 625 4 3
14 Vehicle 946 18 4

the values in the table represent the number of samples that belong to both the corresponding cluster and category. The adjusted 
ARI formula is defined as follows:

𝐴𝑅𝐼 =

∑
𝑖𝑗

(
𝑁𝑖𝑗

2

)
−
[∑

𝑖

(
𝑎𝑖

2

)∑
𝑗

(
𝑏𝑗

2

)]
∕
(

𝑁

2

)
1
2

[∑
𝑖

(
𝑎𝑖

2

)
+
∑

𝑗

(
𝑏𝑗

2

)]
−
[∑

𝑖

(
𝑎𝑖

2

)∑
𝑗

(
𝑏𝑗

2

)]
∕
(

𝑁

2

) . (33)

(5) Adjusted Mutual Information (AMI)
The Adjusted Mutual Information (AMI) measures the degree of information sharing between clustering results and true labels. 

Similar to ARI, AMI also corrects for random information and ranges from 0 to 1, with higher values indicating a better level of 
information sharing between clustering results and true labels. It can be calculated according to Equation (34).

𝐴𝑀𝐼 = 𝑀𝐼(𝑈,𝑉 ) −𝐸{𝑀𝐼(𝑈,𝑉 )}
𝐹 (𝐻(𝑈 ),𝐻(𝑉 )) −𝐸{𝑀𝐼(𝑈,𝑉 )}

, (34)

where 𝑀𝐼(𝑈, 𝑉 ) represents the mutual information, 𝐸{𝑀𝐼(𝑈, 𝑉 )} is the expected mutual information, 𝐻(𝑈 ) is the entropy of label 
𝑈 , and 𝐻(𝑉 ) is the entropy of label 𝑉 . The function 𝐹 (𝐻(𝑈 ), 𝐻(𝑉 )) can be chosen as the maximum function, geometric mean, or 
arithmetic mean. In this paper, we select the arithmetic mean as the function to adjust mutual information, and the calculation of 
AMI is adjusted as follows:

𝐴𝑀𝐼 = 𝑀𝐼(𝑈,𝑉 ) −𝐸{𝑀𝐼(𝑈,𝑉 )}
(𝐻(𝑈 ) +𝐻(𝑉 ))∕2 −𝐸{𝑀𝐼(𝑈,𝑉 )}

. (35)

4.2. Experimental environment and dataset

The experimental environment in this paper consists of an Intel Core i7 2.30 GHz CPU, 16 GB of RAM, a 512 GB hard drive, 
and the Windows 11 operating system. The programming was done using the Python language. To validate the effectiveness of 
AHA-3WKM, 14 UCI datasets were used in the comparative experiments. In order to make the data more general and representative, 
datasets with varying numbers of clusters, data points, and features were chosen. In addition, since the Euclidean distance used in 
this paper is not suitable for measuring distances between high-dimensional vectors, we do not consider high-dimensional datasets. 
The detailed information of the experimental datasets can be found in Table 1.

4.3. Experimental results of AHA-3WKM

In order to calculate ACC, DBI, AS, ARI, and AMI values, we selected the core regions in the clustering results. Smaller DBI 
values and larger ACC, AS, ARI, and AMI values indicate better clustering results. To highlight the improvements of the proposed 
algorithm on these performance metrics, it was compared with the other six algorithms: K-means, K-mediods, fuzzy c-means (FCM), 
TWKM [27], PSOK [31], and PTWC [28]. The detailed parameter settings for the above algorithms are shown in Table 2, where 
SSE represents the sum of squares due to error, 𝑁 is the number of objects in the dataset, 𝐷 is the dimension of the dataset, and 
𝐾 is the number of clusters. Note that the values of 𝛼 and 𝛽 for the proposed algorithm were determined based on the suggestions 
from Ref. [27] and extensive experiments. In addition, according to the suggestions from Ref. [19] on swarm intelligence algorithm 
and the results of numerous experiments, it was observed that AHA and PSO converge after 150 iterations. Therefore, the iteration 
number for both algorithms was set to 150.

To ensure that all features are on similar scales and avoid that any feature has a dominant impact on the model, each dataset was 
14

subjected to the min-max normalization in our experiment. In addition, each experiment was repeated 10 times, and the average 
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Table 2

Parameter settings of different algorithms.

Algorithms Iterations Fitness functions Population size Parameter Value 1 Parameter Value 2 Parameter Value 3

FCM —— —— —— m=2 error=0.0005 max iterations = 1000
TWKM —— —— —— 𝛼 = 0.02 𝛽 = 0.00023×𝑁 ——
PSOK/PTWC 150 SSE 20 inertia factor = 0.9 learning factor 1 = 0.9 learning factor 2 = 0.5
AHA-3WKM 150 𝑓𝑖𝑡𝐴𝐻𝐴 𝐷 ×𝐾 𝛼 = 0.02 𝛽 = 0.00023×𝑁 ——

Table 3

Comparison of experimental results on different datasets.

Datasets Algorithm ACC DBI AS ARI AMI Datasets Algorithm ACC DBI AS ARI AMI

K-means 0.8133 0.8277 0.4602 0.6048 0.6448 K-means 0.9438 1.3135 0.3001 0.8478 0.8316
K-mediods 0.7467 0.9529 0.3370 0.4565 0.5436 K-mediods 0.8904 1.7921 0.1917 0.4573 0.4913
FCM 0.8933 0.7746 0.4955 0.7287 0.7401 FCM 0.9494 1.3181 0.2993 0.8498 0.8318
TWKM 0.8859 0.7713 0.5074 0.6572 0.7058 TWKM 0.9697 1.1865 0.3300 0.9130 0.8961
PSOK 0.9133 0.7881 0.4823 0.7709 0.7644 PSOK 0.9494 1.3086 0.3009 0.8537 0.8400
PTWC 0.9488 0.7677 0.4316 0.7996 0.7984 PTWC 0.9506 1.4013 0.2892 0.8810 0.8687

Iris

AHA-3WKM 0.9811 0.4201 0.7123 0.9489 0.9322

Wine

AHA-3WKM 0.9775 1.1149 0.3510 0.9299 0.9169

K-means 0.8905 0.8766 0.4221 0.6991 0.6669 K-means 0.9297 1.1212 0.3874 0.7386 0.6350
K-mediods 0.8238 1.1430 0.3115 0.5741 0.5537 K-mediods 0.9165 1.4063 0.3570 0.4663 0.4128
FCM 0.9190 0.9312 0.4010 0.7723 0.7251 FCM 0.9315 1.1327 0.3817 0.7427 0.6288
TWKM 0.8900 0.8727 0.4251 0.7031 0.6701 TWKM 0.9327 1.1075 0.3931 0.7519 0.6506
PSOK 0.8905 0.8759 0.4221 0.7049 0.6714 PSOK 0.9279 1.1363 0.3845 0.7302 0.6226
PTWC 0.9136 0.9903 0.3595 0.3118 0.2922 PTWC 0.9011 1.2239 0.2998 0.6425 0.5490

Seeds

AHA-3WKM 1.0000 0.4965 0.6459 1.0000 1.0000

WDBC

AHA-3WKM 0.9357 1.0952 0.3985 0.7570 0.6575

K-means 0.4299 1.2092 0.3550 0.1874 0.3135 K-means 0.4434 0.9335 0.3609 0.2896 0.4721
K-mediods 0.3855 1.8396 0.1169 0.1200 0.2253 K-mediods 0.4481 1.3656 0.1284 0.3376 0.4314
FCM 0.3505 1.5432 0.2670 0.1614 0.2659 FCM 0.4717 1.0734 0.3028 0.2960 0.4785
TWKM 0.4258 1.1760 0.3791 0.1815 0.3063 TWKM 0.4700 0.9143 0.3419 0.2644 0.4419
PSOK 0.4678 1.5346 0.1702 0.1065 0.1672 PSOK 0.4497 1.1012 0.2297 0.3417 0.4531
PTWC 0.4763 2.5633 0.0775 0.1326 0.2546 PTWC 0.4560 3.1514 0.0715 0.3954 0.5293

Glass

AHA-3WKM 0.5049 1.09638 0.39258 0.17806 0.3104

Breasttissue

AHA-3WKM 0.4731 0.6511 0.4500 0.2787 0.4463

K-means 0.5113 1.3792 0.4076 -0.0039 -0.0023 K-means 0.1259 1.3414 0.2351 0.2983 0.5287
K-mediods 0.5229 1.6176 0.3320 -0.0029 -0.0018 K-mediods 0.1278 1.9148 0.1180 0.1925 0.4003
FCM 0.5026 1.6190 0.3013 -0.0049 -0.0015 FCM 0.1306 1.6761 -0.0326 0.0724 0.2163
TWKM 0.5130 1.3433 0.4170 -0.0046 -0.0021 TWKM 0.1324 1.3423 0.2459 0.3032 0.5322
PSOK 0.5385 1.9469 0.0987 -0.0027 0.0005 PSOK 0.1222 1.7096 0.1707 0.2600 0.4711
PTWC 0.5404 7.3083 -0.0004 0.0046 0.0050 PTWC 0.1338 2.8134 0.0273 0.3149 0.5328

Liver

AHA-3WKM 0.5459 1.3168 0.4288 -0.0026 -0.0024

Libras

AHA-3WKM 0.1447 1.2628 0.2593 0.3233 0.5469

K-means 0.4114 1.6072 0.2263 0.0251 0.0289 K-means 0.7108 1.5367 0.2949 0.1578 0.1185
K-mediods 0.4070 1.8954 0.1882 0.0166 0.0126 K-mediods 0.6942 2.0845 0.2097 0.0474 0.0471
FCM 0.3870 1.5369 0.2336 0.0242 0.0271 FCM 0.7094 1.5374 0.2945 0.1727 0.1280
TWKM 0.4258 1.5024 0.2570 0.0220 0.0249 TWKM 0.7290 1.1515 0.4040 0.1747 0.1162
PSOK 0.4291 1.5301 0.2557 0.0205 0.0233 PSOK 0.6942 1.5332 0.2165 0.0157 0.0338
PTWC 0.4326 7.9799 -0.0292 0.0059 0.0279 PTWC 0.7070 5.2288 0.1637 -0.1031 0.0513

CMC

AHA-3WKM 0.4355 1.4493 0.2660 0.0331 0.0300

Ionosphere

AHA-3WKM 0.7473 1.1458 0.4987 0.1905 0.1257

K-means 0.3703 1.4971 0.2329 0.2535 0.3639 K-means 0.7930 0.8474 0.5624 0.6283 0.5909
K-mediods 0.3841 2.3006 0.1385 0.2528 0.2893 K-mediods 0.8047 1.5787 0.1207 0.2081 0.2843
FCM 0.3705 1.5457 0.2251 0.2436 0.3299 FCM 0.8023 0.8872 0.5382 0.6927 0.6568
TWKM 0.3860 1.5013 0.2327 0.2545 0.3690 TWKM 0.8884 0.8462 0.5634 0.6346 0.5973
PSOK 0.4214 1.4971 0.2330 0.2535 0.3639 PSOK 0.8225 1.0280 0.3202 0.4239 0.4671
PTWC 0.4435 2.3737 0.0948 0.2546 0.3611 PTWC 0.8627 1.0041 0.5347 0.0090 0.1171

Waveform

AHA-3WKM 0.4984 1.4232 0.2572 0.2558 0.3691

Newthyroid

AHA-3WKM 0.8925 0.8459 0.5636 0.6359 0.5986

K-means 0.4104 1.7145 0.1703 0.1367 0.1178 K-means 0.3747 1.4414 0.2581 0.0820 0.1082
K-mediods 0.4166 1.8012 0.1417 0.1775 0.1489 K-mediods 0.4279 2.0481 0.1406 0.0725 0.1028
FCM 0.4413 2.0357 0.0815 0.1413 0.1089 FCM 0.3712 1.5268 0.2487 0.0745 0.0951
TWKM 0.4320 1.6959 0.1756 0.1581 0.1354 TWKM 0.3788 1.4021 0.2728 0.0856 0.1190
PSOK 0.5482 1.6980 0.1609 0.1165 0.1082 PSOK 0.4009 1.4433 0.2564 0.0855 0.1213
PTWC 0.5529 4.0935 0.0827 0.1022 0.0949 PTWC 0.4141 7.9369 -0.0104 0.0687 0.0937

Balancescale

AHA-3WKM 0.4613 1.6406 0.1842 0.1578 0.1318

Vehicle

AHA-3WKM 0.3805 1.3243 0.2839 0.1114 0.1640

values were taken as the experimental results for the algorithms to compare their overall performance. The detailed experimental 
15

results for each dataset can be found in Table 3, with the best performance for each dataset highlighted in bold.
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Fig. 10. A comparison of evaluation metrics on the 14 UCI datasets.

The experimental results in Table 3 demonstrate that the proposed algorithm outperforms other algorithms in 9 out of 14 datasets. 
Notably, it achieves the best values in terms of DBI and AS across all datasets. This result can be visually depicted in Fig. 10. In 
addition, AHA-3WKM correctly classifies all samples in the core region of the Seeds dataset. Although AHA-3WKM does not achieve 
the highest scores in all evaluation metrics for the Glass, Breasttissue, and Liver datasets, it performs well in terms of ACC, DBI, 
and AS. For the Vehicle dataset, although AHA-3WKM does not achieve the best performance in terms of ACC, it obtains the best 
performance in terms of the other four evaluation metrics. For the Balancescale dataset, while the performance of AHA-TWKM ranks 
16

fourth in terms of ACC, it still outperforms other algorithms in terms of DBI and AS.
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Table 4

The running time (second) of different algorithms.

Datasets K-means K-mediods FCM TWKM PSOK PTWC AHA-3WKM

Iris 0.0131 0.0143 0.0148 0.0941 1.4513 1.7204 8.7291
Wine 0.0116 0.0133 0.0139 0.0803 1.2035 1.2415 28.4824
Seeds 0.0149 0.0161 0.0169 0.1287 1.0870 1.5145 15.9862
WDBC 0.0163 0.0137 0.0172 0.1569 2.1202 2.7504 52.5227
Glass 0.0125 0.0122 0.0161 0.1112 1.5803 3.0076 37.3314
Breasttissue 0.0109 0.0083 0.0107 0.0812 1.7193 2.4740 36.6716
Liver 0.0114 0.0102 0.0122 0.0923 1.0091 1.2610 7.5809
Libras 0.0306 0.0273 0.0833 0.6527 17.7266 18.6240 210.9312
CMC 0.0464 0.0399 0.0873 0.5361 2.9159 3.1326 29.8079
Ionosphere 0.0228 0.0201 0.0211 0.1330 2.5788 2.8284 50.6678
Waveform 0.2818 0.2629 0.3169 3.0693 37.9876 39.1054 69.2494
Newthyroid 0.0087 0.0073 0.0186 0.0828 0.9199 1.2628 10.9537
Balancescale 0.0264 0.0236 0.1190 0.1650 1.7079 2.3224 12.5306
Vehicle 0.0200 0.0157 0.0340 0.4600 2.9750 3.0241 77.2584

Average 0.0377 0.0346 0.0559 0.4174 5.4987 6.0192 46.3360

In the proposed algorithm, the time complexity of AHA is determined by the size and dimensionality of the dataset, which means 
it may not have a computational advantage in terms of time complexity. The running time of different algorithms, i.e., the average 
time for each algorithm to repeat 10 times, can be found in Table 4. The time complexity of AHA-3WKM is 𝑂(𝑇 𝑓𝑛 +𝑇 𝑛𝑑+ 𝑇 𝑑

2 ), where 
𝑇 is the maximum number of iterations, 𝑓 is the number of fitness evaluations, 𝑛 is the population size, and 𝑑 is the dimensionality. 
Fortunately, the impact of varying dataset sizes and dimensions on the performance of AHA-3WKM is relatively small.

Through the comparative analysis of experimental results, it can be observed that AHA-3WKM exhibits significant improvements 
on most datasets in terms of various clustering metrics. The improvement of AHA-TWKM can be attributed to the definition of the 
fitness function for AHA and the allocation of samples with uncertain information to the fringe regions, which are not taken into 
consideration when calculating evaluation metrics. Unlike traditional clustering algorithms, AHA-TWKM overcomes the problem 
related to local optima resulting from random selection of initial cluster centers, and it can successfully identify uncertain samples 
and make deferred decisions, which effectively reduces the risk of decision-making caused by blind clustering and improves the 
clustering results. In conclusion, this algorithm can effectively improve the clustering accuracy and demonstrate better clustering 
results.

4.4. Statistical test analysis

In order to verify the advantages of the proposed algorithm, the Friedman test [32] and the Nemenyi post-hoc test [33] were used 
to determine the differences in performance among the five algorithms, with a focus on the ACC and DBI metrics.

First, the DBI values of each algorithm on each dataset were sorted in ascending order from good to bad and assigned ordinal 
values 1, 2, 3, … . If multiple algorithms have equal indicator values, their ordinal values are evenly divided. Second, the average 
ordinal value of each algorithm was calculated. Third, the results of the Friedman test were computed by 𝜏𝐹 and 𝜏𝜒2 , where follows 
the 𝐹 -distribution with (𝑆 − 1) and (𝑆 − 1)(𝐸 − 1) degrees of freedom (Note: the Friedman test is a non-parametric method used to 
assess the overall performance of 𝑆 algorithms on 𝐸 datasets). If the hypothesis that “all algorithms have the same performance” 
is rejected, then it indicates a significant difference in the performance of algorithms. In this case, further tests are needed to 
distinguish between the algorithms, and the Nemenyi post-hoc test was adopted in this paper. Fourth, the critical difference (𝐶𝐷) for 
the difference in average ordinal values was calculated by 𝐶𝐷 = 𝑞𝛼

√
𝑆(𝑆+1)

6𝐸 , where 𝑞𝛼 represents the critical value. If the difference 
in average ordinal values between two algorithms exceeds the 𝐶𝐷, then the hypothesis that “the two algorithms have the same 
performance” is rejected with the corresponding level of confidence.

In our experiments, since 𝑆=7 and 𝐸=14, the data follows an 𝐹 -distribution with 6 and 78 degrees of freedom. According to the 
Friedman test, when 𝛼=0.05, if we consider ACC, then the 𝜏𝐹 value is 11.5168 which is greater than the critical value (i.e., 2.209); 
if we consider DBI, then the 𝜏𝐹 value is 51.5063 which is also greater than the critical value. Therefore, the null hypothesis that 
all algorithms have the same performance is rejected, and it can be concluded that there are significant differences in performance 
among all clustering algorithms. Fig. 11 visually represents these significant differences between algorithms.

When the significance level is 0.05, 𝑞0.05 = 2.949. According to the Nemenyi post-hoc test, the 𝐶𝐷 is equal to 2.4078. The 
Nemenyi post-hoc test results under ACC and DBI are shown in Fig. 12. From Fig. 12, it can be seen that the performance of AHA-
3WKM in terms of ACC and DBI ranks first compared to the other six algorithms, namely K-means, K-mediods, FCM, TWKM, PSOK, 
and PTWC. This indicates a significant difference of AHA-3WKM compared to the other six algorithms. Although the average ordinal 
values between AHA-3WKM and PTWC do not exceed the 𝐶𝐷 value in terms of ACC, and those between AHA-3WKM and TWKM 
do not exceed the 𝐶𝐷 value in terms of DBI, the actual rankings demonstrate that AHA-3WKM ≻ PTWC and AHA-3WKM ≻ TWKM. 
17

Consequently, from the statistical perspective, AHA-3WKM demonstrates a superior performance in the field of clustering.



Information Sciences 672 (2024) 120661X. Chen, C. Liu, B. Lin et al.

Fig. 11. The Friedman test results.

Fig. 12. The Nemenyi test results.

5. Conclusions and future work

In this paper, we introduce a novel K-means method, AHA-3WKM, based on the artificial hummingbird algorithm and the three-
way clustering. The proposed algorithm overcomes the limitations of traditional K-means algorithms in terms of sensitivity to initial 
cluster centers, local optimization problems, and difficulty in capturing data uncertainty. By incorporating AHA and defining a suit-
able fitness function, the flight and foraging strategies of hummingbirds are utilized to search for the optimal cluster centers in 
multiple iterations on the dataset. This optimization improves the stability and accuracy of the K-means algorithm. In addition, a 
three-way decision rule is used to divide the clustering results into three regions, effectively capturing information about data uncer-
tainty and reducing the risk of decision-making. The effectiveness of AHA-3WKM was validated by evaluating five validity metrics, 
including ACC, DBI, AS, ARI, and AMI, on 14 UCI datasets and comparing them with the other six algorithms. The experimental 
results demonstrate the excellent performance and stability of the proposed algorithm. In future research, efforts will be made to en-
hance the efficiency and applicability AHA-3WKM in handling large datasets, due to its limitations when applied to high-dimensional 
data. In addition, effective approaches will be explored to tackle the challenges related to adaptive parameters, in order to improve 
the generalization ability of AHA-3WKM.
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