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A B S T R A C T

The goal of image fusion is to retain the strengths of different images in the fused result. However, existing
fusion algorithms are often complex in design and overlook the influence of attention mechanisms on deep
features. To address these issues, we propose an image fusion network based on spatial/channel attention
mechanisms and gradient-aggregated residual dense blocks(SCGRFuse). Firstly, we design a novel gradient-
aggregated residual dense block (GRXDB) that combines the advantages of ResNeXt and DenseNet, which
integrating the Sobel and Laplacian operators to preserve both strong and weak texture features. Then, we
introduce spatial and channel attention mechanisms to refine the channel and spatial information of feature
maps, enhancing their information capturing capability. Additionally, we leverage a pooling fusion block to
merge the refined spatial and channel feature maps, yielding high-quality fusion features. Compared to the
existing state-of-the-art methods, experimental results on the MSRS, RoadScene and TNO datasets demonstrate
the outstanding fusion performance of our proposed approach. In addition, in the task-driven experiments,
SCGRFuse achieved an mIoU accuracy of 71.37%.
1. Introduction

With the advancement of information collection technologies, sam-
ples are often observed from different perspectives or in different ways,
resulting in multi-view data. The task of integrating these views to aid
in identifying underlying grouping structures is commonly referred to
as the multi-view clustering problem (Chao et al., 2017). Due to limita-
tions in optical imaging, hardware devices, and theoretical techniques,
images captured by single sensors or single-modal sensors often only
capture partial details of a scene and cannot effectively and compre-
hensively depict the entire scene. For example, visible light images are
easily affected by external factors such as illumination and weather,
resulting in lower quality. Infrared sensors can capture the thermal
radiation emitted by objects, which make it easy to distinguish between
background and targets, and they can work in all weather conditions.
However, infrared images often overlook texture, fail to effectively
describe details, and are also susceptible to noise. In contrast, visible
light images have a high spatial distribution rate, strong adaptability to
visual perception, and typically contain abundant texture and structural
information, which are beneficial for enhancing object recognition
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capability. but, visible images are sensitive to lighting and occlusion.
In multi-view learning, the complementarity principle assumes that
each view of the data contains information that is not present in the
other views. Therefore, effectively and accurately utilizing information
from multiple views is expected to result in better models (Chao and
Sun, 2016). To obtain complementary information from both types of
images and achieve higher-quality images, image fusion technology has
emerged (Ali et al., 2020). Image fusion is an important image enhance-
ment technique that extracts meaningful information from different
source images and combines them into a new image. The fused image
typically exhibits strong robustness, information richness, and represent
a more complex and detailed scene representation. It not only re-
duces data redundancy but also promotes the development of provided
subsequent applications and decision-making. Therefore, the fusion of
infrared and visible light images has been widely used in preprocessing
modules for high-level vision tasks, such as re-identification (Lu et al.,
2020), object detection (Li et al., 2017), target tracking (Li et al., 2018),
human motion prediction (Liu et al., 2022b, 2023; Zhang et al., 2024;
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Wang et al., 2024), semantic segmentation (Ha et al., 2017). In the
application of the digital economy, image fusion holds extensive poten-
tial value. In smart city planning and monitoring, the fusion of image
data from different sensors allows city decision-makers to gain a better
understanding of urban environments, such as traffic conditions, facili-
tating more effective urban development planning. In the medical field,
the fusion of images from various imaging technologies such as X-rays,
MRI, and CT scans enables doctors to comprehensively assess patients’
conditions, enhancing diagnostic accuracy. In the transportation sector,
the fusion of infrared and visible light images contributes to achieving
safer and more efficient traffic systems. Integrating information from
cameras, radar, and lidar sensors provides a comprehensive view of
road conditions and vehicle behaviors, supporting the development of
autonomous driving technologies (Li et al., 2020b).

In recent years, numerous image fusion techniques have been de-
veloped due to the increasing practicality of both infrared and visible
light images. These techniques can be broadly classified into two cat-
egories: traditional methods and deep learning-based methods. Tradi-
tional methods can be further divided based on different mathematical
transformations, including multi-scale transform-based methods such as
Discrete Wavelet Transform (DWT) (Li et al., 1995, 2011; Ben Hamza
et al., 2005), representation learning-based methods such as sparse
representation (SR) (Wang et al., 2014) and joint sparse representation
(JSR) (Zhang et al., 2013), subspace-based methods (Bavirisetti et al.,
2017; Kong et al., 2014), saliency-based methods (Zhang et al., 2017;
Zhao et al., 2014), and hybrid models (Liu et al., 2015; Ma et al.,
2017, 2016). On the other hand, deep learning-based methods can be
classified into three categories based on network architectures: models
based on autoencoders (AE) (Li et al., 2021), models based on convo-
lutional neural networks (CNN) (Zhang et al., 2020; Xu et al., 2020b),
and models based on generative adversarial networks (GAN) (Ma et al.,
2019b, 2020a).

Although existing methods have been able to produce satisfactory
fused images for their respective tasks, there are still many challenges
in the field of image fusion. Firstly, the selection of fusion strategies
and the complexity of manual design in traditional methods limit the
improvement of performance. These manually designed fusion strate-
gies not only lack the ability to learn but also introduce artifacts into
the fused results. Secondly, existing methods have introduced overly
complex structures into the network and overlooked the impact of
attention mechanisms on deep features. This may result in the loss
of relevant information and interference from some irrelevant details,
ultimately leading to subpar quality of the fused images. Whether
traditional methods or deep learning-based methods, most of these
algorithms primarily measure the fusion performance and visual effects
of the fused images, but rarely consider whether the fused images can
promote high-level vision tasks in a systematic manner.

To address the aforementioned issues, inspired by SeAFusion (Tang
et al., 2022), We propose a novel end-to-end fusion network called
SCGRFuse for infrared and visible light image fusion. Specifically,
our network eliminates the need for manually designed fusion rules
and instead incorporates spatial and channel attention mechanisms
to design a learnable module suitable for image fusion tasks. Firstly,
a multi-scale feature extraction block is employed to capture multi-
scale deep features. These features are then passed through spatial and
channel attention branches to enhance the ability to capture semantic
information and spatial details. Finally, an efficient fusion is performed
using a pooling fusion block to effectively merge the two feature maps.
Additionally, we have developed a new gradient-aggregated residual
dense block (GRXDB) consisting of three branches. Two branches com-
prise a residual block and a dense residual block, integrating Sobel and
Laplacian operators to preserve both strong and weak texture features,
thereby enhancing feature diversity in feature extraction.

In summary, our contributions are as follows:
2

– We propose a novel fusion network called SCGRFuse, which
effectively avoids the need for manually designing complex fusion
rules.

– We introduce spatial and channel attention mechanisms, enabling
the images to contain rich semantic and spatial information,
thereby improving the performance of image fusion.

– The designed gradient-aggregated residual dense block effectively
integrates deep features and strong-weak texture details, further
enhancing the quality of the fused images.

– We conducted experiments on publicly available datasets and
compared our algorithm with state-of-the-art methods both qual-
itatively and quantitatively. The results demonstrate that our al-
gorithm achieves outstanding performance. In addition, we eval-
uated the quality of our images using high-level vision tasks, and
the results further validate the beneficial impact of our algorithm
on high-level visual tasks.

The remaining structure of this paper is as follows. In Section 2,
we provide a brief overview of relevant deep learning methods and
attention mechanisms for image fusion tasks. In Section 3, we provide
a detailed description of the SCGRFuse network and its application in
infrared and visible light image fusion. In Section 4, we present the
experimental details and results of our algorithm. Finally, we conclude
the paper with a discussion and summary of the findings.

2. Related work

In this section, we provide a concise review of existing methods
in the field of image fusion, encompassing both traditional approaches
and deep learning-based methods. Furthermore, we delve into a com-
prehensive exploration of attention mechanisms within the realm of
deep learning.

2.1. Traditional image fusion methods

Traditional image fusion mainly addresses two problems: feature ex-
traction and feature fusion. The most commonly used fusion method is
based on multi-scale transformations, such as non-subsampled shearlet
transform (NSST) (Kong et al., 2014) and discrete wavelet transform
(DWT) (Li et al., 1995, 2011; Ben Hamza et al., 2005), which decom-
pose the original image into different scale subbands. Each subband
corresponds to information at different frequencies or scales. Then,
based on fusion rules or strategies, these subbands are weighted and
combined layer by layer to obtain the final fused image. Additionally,
methods based on sparse representation are also commonly used for
feature extraction. In these methods, an image is represented by a
sparse coefficient matrix that describes the image’s representation on
a set of basis functions or dictionaries. The commonly used basis
functions include wavelet bases, sparse dictionaries, and so on. By
element-wise fusion or combination of the sparse coefficient matrices
of two or more input images, the final sparse coefficient matrix is
obtained. Then, through an inverse transform or reconstruction process,
the sparse coefficient matrix is transformed into the fused image.
Subspace-based methods have also received considerable attention.
They assume that each input image can be represented in a specific
subspace, which may have different structures and features. Subspace-
based methods utilize the representation characteristics of multiple
input images in different subspaces to fuse them into a comprehensive
subspace and obtain the final fused image. Representative methods
include principal component analysis (PCA) (Fu et al., 2016) and
non-negative matrix factorization (NMF) (Mou et al., 2013). Although
traditional image fusion methods often rely on manually designed rules
and strategies for feature extraction, weight allocation, and fusion
operations, and these rules may only be effective for specific scenarios
and may not adapt well to different data and tasks, they provide new
ideas and prospects for image fusion and have laid a solid foundation
for deep learning methods.
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2.2. Deep learning-based image fusion algorithms

Due to the excellent feature learning ability of neural networks,
deep learning has gained popularity in various tasks. Compared to
traditional methods, deep learning models can not only extract detailed
features from source images but also preserve richer post-processing
information. In 2018, Li et al. proposed a simple autoencoder (AE)
fusion framework (Li and Wu, 2018) consisting of an encoder, fusion
layer, and decoder. The framework effectively extracts more useful
features through convolutional layers and dense blocks in the encoder.
Subsequently, the fusion layer combines the high-level features using
element-wise addition and l1 norm fusion strategy. The decoder, com-
posed of four convolutional layers, is used to reconstruct the fused
image.

However, the aforementioned methods suffer from limitations im-
posed by manually designed fusion rules, which severely restrict their
fusion performance. CNN-based methods inherit the core concepts of
traditional optimization methods and have been widely adopted in
various image fusion domains due to their powerful feature extrac-
tion capabilities. LP-CNN (Liu et al., 2017) pioneered the application
of Convolutional Neural Networks (CNNs) in the field of image fu-
sion. It combines Low-Pass filtering (LP) with a classification-based
CNN, where LP is applied as a preprocessing step to extract the low-
frequency information and reduce noise in the input images. Sub-
sequently, the classification-based CNN leverages these LP-processed
images for feature learning and classification tasks, thus achieving im-
age fusion. Since then, an increasing number of CNN-based algorithms
have been developed, and researchers have explored end-to-end CNN
fusion frameworks to overcome the limitations of handcrafted rules.

In the field of image fusion, obtaining ground truth is often chal-
lenging, and GAN networks have demonstrated unique advantages
in addressing unsupervised deep learning problems. Collecting and
annotating ground truth data for infrared images is prohibitively ex-
pensive. To overcome this challenge, Ali et al. introduced an Attention-
based Generative Adversarial Network (AGAN) (Ali and Cha, 2022)
for enhancing infrared images and training networks. This not only
significantly reduces costs but also applies the approach to real-world
bridge systems. In the field of image fusion, Ma et al. first proposed an
end-to-end image fusion framework based on GANs (FusionGAN) (Ma
et al., 2019b), which utilizes a discriminator to generate fusion images
with rich textures. Additionally, they introduced detail loss and edge-
enhancement loss to improve the quality of detail information and
sharpen the edges of thermal targets. However, since there is only
one discriminator in the framework, the generated fusion images tend
to be biased towards either the visible or infrared image. To address
this issue, Ma et al. further proposed a dual-discriminator conditional
generative adversarial network (Ma et al., 2020b) based on FusionGAN
to maintain a balance between infrared and visible light images.

Although these methods have achieved impressive results in the
field of image fusion, they primarily focus on fusion quality and over-
look the requirements of high-level vision tasks. Furthermore, the goal
of Fine-Grained Image Recognition (FGIR) is to recognize differences
among images classified within subordinate categories (Kang et al.,
2022). However, existing image fusion network architectures cannot
effectively extract fine-grained detailed features. In 2022, Tang et al.
introduced a novel image fusion framework called SeAFusion (Tang
et al., 2022), which integrates high-level vision tasks into the fusion
process. Instead of making significant innovations in network archi-
tecture or learning paradigms, they approached the image fusion task
from a new perspective, leveraging high-level vision tasks to drive
the fusion process. The emergence of SeAFusion (Tang et al., 2022)
has opened up new possibilities for image fusion by incorporating the
considerations of high-level vision tasks. SeAFusion integrates a seman-
tic segmentation network after the image fusion network, providing
semantic feedback to the fusion network through gradient backpropa-
3

gation. Moreover, the newly designed GRDB feature extraction module
enhances the fusion network’s ability to describe fine-grained spatial
details. This approach enhances the quality of image fusion and pro-
motes the application of fused images in semantic segmentation tasks.
Similarly, Liu et al. proposed TarDAL (Liu et al., 2022a), wherein object
detection is employed instead of a segmentation network. TarDAL
constrains the fusion network from the perspective of object detection
to retain rich semantic information. Additionally, Sun et al. trained
two object detection models based on infrared and visible light images,
using both models to jointly constrain the fusion network (Sun et al.,
2022). The attention maps generated in the detection network are
transferred to the fusion network, facilitating comprehensive informa-
tion aggregation and improving the recognition capabilities of fused
images in object detection tasks.

2.3. Deep attention mechanism

The attention mechanism is a technique used to enhance the focus
and processing capability of neural networks on important parts of in-
put data. In neuroscience, researchers have discovered the mechanism
of selective attention in human perception and cognition, where indi-
viduals selectively focus on interesting parts of complex information for
further processing and analysis. This has sparked interest in applying
attention mechanisms in the fields of machine learning and artificial
intelligence. To address the performance limitations of traditional seg-
mentation decoders, Kong and Cha designed a unique decoder (Kang
and Cha, 2022). It maximizes the use of attention operations by config-
uring attention decoders, upsampling, and coarse upsampling, thereby
reducing heavy computational costs while maintaining real-time pro-
cessing performance. For control over environmental noise, Mostafavi
et al. introduced an attention module after each encoder (Mostafavi
and Cha, 2023). This module maintains lower-level features through
skip connections and intelligently selects and utilizes effective feature
mappings. Lewis et al. combined CNN and transformer to develop
a novel dual-encoder–decoder medical segmentation network (Lewis
et al., 2023). The two structures interact, with one component of
the network primarily focusing on global relationships between pixels,
while the other concentrates on extracting local and smaller-scale
feature information. Due to its excellent performance, the attention
mechanism has been widely applied and developed, particularly in the
field of computer vision, including tasks such as image fusion. In 2020,
Li et al. proposed a spatial/channel attention fusion strategy model
called NestFuse (Li et al., 2020a), which integrates multi-scale deep
features and applies them to infrared and visible light image fusion.
Additionally, Chen et al. extended the Transformer model by introduc-
ing spatial transformers and channel transformers (Chen et al., 2023)
to capture global information of each feature and the inter-channel
relationships. Li et al. also incorporated the attention mechanism into
GAN models (Li et al., 2022) by establishing spatial and channel
attention modules to suppress unimportant information such as image
backgrounds, thereby further enhancing the extraction of the original
feature information from the image data.

3. Method

In this section, we will provide a comprehensive introduction to
the infrared and visible light image fusion network based on spa-
tial/channel attention mechanisms and a gradient-aggregated residual
dense block. Firstly, we will briefly introduce the research motivation
and the network architecture proposed in this paper. Then, we will pro-
vide a detailed analysis of the gradient-aggregated residual dense block
used in the network. Finally, we will present a detailed description of

our spatial/channel attention mechanisms and loss function.
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Fig. 1. The overall framework of the proposed infrared and visible image fusion algorithm.
3.1. Motivation

In the field of image fusion, dual-scale decomposition separates
the input image into a background image containing low-frequency
information with large-scale pixel intensity variations and a detail
image containing high-frequency information with small-scale pixel
intensity variations. Currently, most algorithms incorporate certain
prior knowledge and use filters or optimization-based methods for
image decomposition, making them manually designed decomposi-
tion algorithms. We emphasize that image decomposition algorithms
are essentially feature extractors. In formal terms, they transform the
source image from the spatial domain to the feature domain. As is
well known, deep neural networks are a promising data-driven feature
extraction method that offers significant advantages over traditional
manually designed methods. Utilizing CNN to generate fused images
overcomes the difficulties associated with handcrafted activity level
measurements and fusion rules. Therefore, we propose a new design
called the Gradient-aggregated Residual Dense Block (GRXDB) as a
feature extraction block. GRXDB achieves feature reuse through the
main dense stream and enhances the descriptive capability for fine-
grained details and coarse-texture details through the residual gradient
stream. Additionally, existing image fusion methods predominantly
focus on the quality of the fused image while neglecting the con-
nection with downstream tasks. Some studies (Haris et al., 2021)
indicate that only considering visual quality and quantitative metrics
may not assist high-level visual tasks. To address this issue, we intro-
duce spatial/channel attention mechanisms in the network to provide
more accurate semantic information and spatial information for the
images. We evaluate the impact of our fused images on segmentation
performance by incorporating a semantic segmentation task.

3.2. Problem formulation

Given a pair of precisely registered infrared image 𝐼𝑖𝑟 ∈ R𝐻×𝑊 ×1

and visible light image 𝐼𝑣𝑖 ∈ R𝐻×𝑊 ×3, guided by a customized loss
function, image fusion is achieved through feature extraction, aggrega-
tion, and reconstruction. To enhance fusion performance and facilitate
the application of advanced visual tasks, we propose a fusion network
comprised of spatial/channel attention and gradient-aggregation resid-
ual dense blocks. The structure of the framework is shown in Fig. 1.
Firstly, a feature extraction block based on the gradient-aggregation
residual dense block is designed. Specifically, we utilize this feature
extraction block to extract deep features with rich detailed informa-
tion from infrared and visible light images. Additionally, we employ
two convolutional blocks to extract shallow features, which can be
represented as follows:
{

𝐹𝑖𝑟, 𝐹𝑣𝑖, 𝐹𝑐𝑜𝑛𝑣
}

=
{

𝐸𝐹 (𝐹𝑖𝑟), 𝐸𝐹 (𝐹𝑣𝑖), 𝐸𝑐𝑜𝑛𝑣(𝐹𝑖𝑟, 𝐹𝑣𝑖)
}

, (1)

where 𝐹𝑖𝑟, 𝐹𝑣𝑖 and 𝐹𝑐𝑜𝑛𝑣 represent the infrared features, visible light
features, and shallow features, respectively. Furthermore, the GRXDB
module is deployed to enhance the capability of extracting coarse and
fine texture features (its network structure will be discussed in the
4

Section 3.3). Given 𝐹 𝑖 the input of GRXDB, its output 𝐹 𝑖+1 can be
denoted as:
𝐹 𝑖+1 = 𝐺𝑅𝑋𝐷𝐵(𝐹 𝑖)

= 𝐶𝑜𝑛𝑣(▽2𝐹 𝑖 ⊕ 𝐹 𝑖)⊕𝐶𝑜𝑛𝑣(▽𝐹 𝑖)⊕ 𝐹 𝑖,
(2)

where 𝐶𝑜𝑛𝑣(⋅) represents multiple convolution operations, ▽ and ▽2

correspond to Sobel gradient and Laplace gradient operators, respec-
tively, 𝑖.𝑒. , specially designed convolution operations with manually
crafted kernels. Additionally, ⊕ denotes element-wise summation.

Subsequently, employing a concatenation fusion strategy, the deep
infrared and visible light features are concatenated together. Before
computing attention weights, we expand the network’s receptive field
using four different-sized convolution kernels (1 × 1, 3 × 3, 5 × 5,
7 × 7). The process can be represented as follows:

𝐹𝑐𝑜𝑢𝑡 = 𝐶𝑜𝑛𝑣(𝐶(𝐶𝑜𝑛𝑣𝑛×𝑛(𝐶(𝐹𝑖𝑟, 𝐹𝑣𝑖)))), 𝑛 ∈ {1, 3, 5, 7} , (3)

where 𝐶(⋅) denotes the concatenation operation. Then, the output
features are fed into spatial and channel attention masks to calculate
weights. Finally, a pooling fusion method is employed to generate our
ultimate feature map. The process is represented as follows:

𝐹𝑆𝐶 = 𝑃𝐹𝐵(𝐶𝑜𝑛𝑣(𝐹𝑐𝑜𝑢𝑡 ⊗𝐵𝑐 (𝑀𝑠)), 𝑈𝑝(𝐹𝑐𝑜𝑢𝑡 ⊗𝐵𝑠(𝑀𝑐 ))), (4)

where 𝑀𝑐 and 𝑀𝑠 represent the channel attention mask and spatial
attention mask, respectively, and ⊗ denotes element-wise multipli-
cation. Before the multiplication, attention values are appropriately
broadcasted: spatial broadcasting is applied along the spatial dimension
using the operation 𝐵𝑠(⋅), broadcasting channel attention values, and
channel broadcasting is applied along the channel dimension using the
operation 𝐵𝑐 (⋅), broadcasting spatial attention values. 𝑈𝑝(⋅) represents
the upsampling operation.

The final step involves concatenating shallow features with refined
features, and through the image reconstructor 𝑅𝐼 , reconstructing the
fused image 𝐼𝑓 from the merged feature values:

𝐼𝑓 = 𝑅𝐼 (𝐶(𝐹𝑐𝑜𝑛𝑣, 𝐹𝑆𝐶 )), (5)

Finally, by introducing a segmentation model 𝑁𝑠 the fused image 𝐼𝑓
is segmented, further guiding the training of the fusion network. Given
the fused image 𝐼𝑓 the semantic perception process is represented as
follows:

𝐼𝑠 = 𝑁𝑠(𝐼𝑓 ), (6)

3.3. Network architecture

The overall framework proposed in this paper is similar to SeA-
Fusion (Tang et al., 2022). First, the source images are input into
the fusion network. Then, the fused image generated by the fusion
network is further fed into the segmentation network. By introducing
semantic loss, more semantic information is integrated into the fused
image to optimize the overall fusion result. To generate high-quality
fused images and achieve outstanding performance in high-level vision
tasks, we propose a fusion network based on spatial/channel atten-
tion mechanisms and a gradient-aggregated residual dense block, as
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Fig. 2. The architecture of the infrared and visible light image fusion is based on spatial/channel attention mechanisms and gradient-aggregated residual dense blocks.
Fig. 3. The specific design of the gradient-aggregated residual dense block (GRXDB).
shown in Fig. 2. Our fusion network consists of a feature extractor,
spatial/channel attention modules, and a feature reconstructor.

During the training stage, the infrared and visible light images are
first input into the feature extractor separately, then merged along
the channel dimension. The merged features are then passed through
two convolutional blocks to extract shallow-level features. The feature
extractor consists of two parallel branches for infrared and visible light
feature extraction, each containing an identical convolutional block
and two GRXDBs. To better extract feature information, we fuse the
features from the two GRXDBs to obtain dense features. After refine-
ment through the spatial/channel attention modules, the generated
features are added to the shallow-level features and input into the
feature reconstructor to obtain the final fused image. The loss function
is then calculated to optimize the entire framework until the training
process is completed and the desired fusion framework is obtained.
During the testing stage, our network does not require any manually
designed strategies and can directly generate fused images using the
trained fusion network.

3.4. Gradient-aggregated residual dense block

The Aggregated Residual Dense Block (RXDB) (Long et al., 2021) is
a multi-branch architecture that utilizes a split-transform-merge strat-
egy. It provides an effective way of feature extraction and represen-
tation for neural networks, leveraging feature reuse, strong feature
expression, parameter efficiency, and gradient propagation advantages.
Inspired by RXDNFuse (Long et al., 2021), we design a Gradient-
aggregated Residual Dense Block (GRXDB) as shown in Fig. 3. Our
module consists of a residual block and a residual dense block. In
particular, two branches are integrated with gradient operators to
extract strong and weak textures. More specifically, our GRXDB consists
5

of three branches. The main branch is composed of three 3 × 3 con-
volutional blocks and two 1 × 1 convolutional blocks. To fully utilize
various convolutional layers for feature extraction, we introduce dense
connections in the main branch and handle the differences between
channels using 1 × 1 convolutional blocks. Additionally, the main
branch incorporates the Laplacian operator to further extract weak
texture features. The residual branch consists of two 3 × 3 convolu-
tional blocks, one 1 × 1 convolutional block, and the Sobel operator to
preserve strong texture features. The third branch remains unchanged,
serving as the residual branch to retain the input feature information.
Finally, the outputs of the main branch, residual branch, and residual
branch are combined using element-wise addition to integrate deep
features. It is worth noting that the ReLU activation function discards
negative activations, which may be effective for classification tasks but
not suitable for image fusion tasks. To better meet the requirements of
image fusion, we set the activation function of GRXDB to Leaky ReLU,
which retains negative activation information.

3.5. Attention mechanisms

The attention mechanism allows for the allocation of different
weights to amplify useful information while suppressing harmful fea-
tures. Inspired by NestFuse, we propose a lightweight and trainable
multi-scale spatial/channel attention refinement module, which we
refer to as SCAM. Its main structure is shown in Fig. 4. As same-
scale convolutions may hinder the extraction of multi-scale information
from different features, we employ four convolutional blocks with
different kernel sizes (1 × 1, 3 × 3, 5 × 5, and 7 × 7) to capture
deep features with multiple receptive fields and scales. The activation
function for these convolutional blocks remains Leaky ReLU. Afterward,
the obtained deep features are concatenated along the channel axis
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Fig. 4. The network architecture of the spatial/channel attention module (SCAM). PFB:pooling fusion block.
Fig. 5. The process to generate the channel attention and spatial attention masks.
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and then passed through a 1 × 1 convolutional block to adjust the
hannel number before being sent to the spatial and channel attention
ayers. The generation of attention masks Ms and Mc is a crucial
rocess in the attention mechanism, aiming to enhance the network’s
nformation capturing capability and obtain more accurate spatial and
emantic information. Inspired by Woo et al. (2018), we use self-
ttention functions to generate spatial and channel attention masks, as
llustrated in Fig. 5

To generate the channel attention mask, we first perform global
verage pooling on each channel of the feature maps to obtain the
verage value of all pixels within that channel. This process yields a
ew 1 × 1 channel map. Then, we use the Tanh activation function and
1 × 1 convolutional block to adjust the values of the feature map. It is
orth noting that we divide the computed values of the Tanh activation

unction by 2 and add 0.5, which maps the values to the range of
0, 1]. Finally, we multiply the computed channel map with the input
eature map to generate the output of the channel attention branch.
imilarly, to obtain the spatial attention mask, we first reduce the
hannel dimension of the input feature map using a 1 × 1 convolutional

block. Then, we use both max pooling and average pooling to obtain
two feature maps, each having a single channel, and their sizes remain
the same as the input feature map. Next, we concatenate the two
feature maps and use a 1 × 1 convolutional block to reduce their
channel dimension to 1. The Tanh activation function is applied to this
convolutional block, consistent with the channel attention mechanism.
Finally, we multiply the generated spatial attention mask with the input
feature map to obtain the output of the spatial attention branch.

After the refinement of the attention branches, we use upsampling
to restore the channel feature map to its original size, and we use
6

Fig. 6. The whole structure of the pooling fusion block.

convolutional operations to control the channel dimension of the spatial
feature map. In order to generate feature maps that simultaneously
meet the requirements of intra-class similarity and inter-class diver-
sity, we employ the Pooling Fusion Block (PFB) (Peng et al., 2021)
to fuse the generated spatial and channel attention feature maps, as
shown in Fig. 6. We perform 3 × 3 average pooling on the upsampled
hannel feature map to achieve smoothing, and use reflection padding
o construct the true boundaries to reduce boundary artifacts. Finally,
e concatenate it with the spatial feature map and use a 1 × 1

convolutional block with the Leaky ReLU activation function to correct
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the boundaries, thus generating the fused feature map that satisfies the
desired criteria.

3.6. Loss function

Considering that the fusion network needs to fully integrate comple-
mentary information from the source images, ensure the visual fidelity
of the fusion image, and provide effective support for high-level vision
tasks, we use content loss and semantic loss (Tang et al., 2022) to guide
the training of the model. These loss functions are specifically designed
for image fusion tasks; therefore, they cannot be directly applied to
image classification. The definition of the total loss is as follows:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡 + 𝛽𝐿𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 , (7)

here 𝛽 represents the hyperparameter that controls the importance
f the semantic loss. It is essential to emphasize that 𝛽 is dynamically
djusted during the training process, following the approach in the
riginal paper (Tang et al., 2022), where we set it to 𝛾(𝑚 − 1), with 𝑚
enoting the 𝑚th iteration. 𝛾 is a constant used to evaluate the content
oss and semantic loss. For detailed training strategies, please refer to
eAFusion (Tang et al., 2022).

To enhance the visual quality and quantitative metrics of the fusion
odel, we employ content loss to optimize the entire model. The

ontent loss consists of two components: intensity loss 𝐿𝑖𝑛𝑡 and texture
oss 𝐿𝑡𝑒𝑥𝑡𝑢𝑟𝑒, defined as follows:

𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = 𝐿𝑖𝑛𝑡 + 𝛼𝐿𝑡𝑒𝑥𝑡𝑢𝑟𝑒, (8)

here 𝐿𝑖𝑛𝑡 is used to constrain the overall intensity representation of
he fusion image, and 𝐿𝑡𝑒𝑥𝑡𝑢𝑟𝑒 is used to enforce the fusion image to
ontain more detailed texture features. 𝛼 is used to balance the intensity
oss and texture loss.

The intensity loss is used to measure the differences between the
ource image and the fusion image at the pixel level. Therefore, the
ntensity loss is defined as follows:

𝑖𝑛𝑡 =
1

𝐻𝑊
‖

‖

‖

𝐼𝑓 − 𝑚𝑎𝑥(𝐼𝑖𝑟, 𝐼𝑣𝑖)
‖

‖

‖1
, (9)

where 𝐼𝑓 ∈ R𝐻×𝑊 ×1 belongs to the registered infrared image set, and
𝑣𝑖 ∈ R𝐻×𝑊 ×3 represents the corresponding visible light image set.

and 𝑊 denote the height and width of the images, respectively.
⋅‖1 denotes the 𝑙1-norm used to calculate the absolute differences
etween pixels. 𝑚𝑎𝑥(⋅) represents the maximum selection strategy, used
o choose the maximum value during the computation process.

We aim to ensure that the fused image not only maintains the
ptimal intensity distribution but also preserves the rich texture details
rom the source images. Therefore, we introduce the texture loss, which
mposes constraints on the fused image to contain more abundant
exture details. The texture loss is defined as follows:

𝑡𝑒𝑥𝑡𝑢𝑟𝑒 =
1

𝐻𝑊
‖

‖

‖

|

|

|

▽𝐼𝑓
|

|

|

− 𝑚𝑎𝑥(|
|

▽𝐼𝑣𝑖|| , ||▽𝐼𝑖𝑟||)
‖

‖

‖1
, (10)

The ▽ represents the Sobel gradient operator, which is used to measure
the fine-grained texture of the image. The |⋅| denotes the absolute value
operation.

In addition to the content loss, we also use semantic loss (Tang
et al., 2022) to enhance the semantic information in the fused image.
Specifically, we introduce a segmentation model (Peng et al., 2021) to
perform segmentation on the fused image. The output of the segmen-
tation network includes the segmentation result 𝐼𝑠 ∈ R𝐻×𝑊 ×𝐶 and the
auxiliary segmentation result 𝐼𝑠𝑎 ∈ R𝐻×𝑊 ×𝐶 . Therefore, the semantic
loss consists of the main semantic loss and the auxiliary semantic loss,
defined as follows:

𝐿𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 = 𝐿𝑚𝑎𝑖𝑛 + 𝜆𝐿𝑎𝑢𝑥, (11)

𝐿𝑚𝑎𝑖𝑛 =
−1

𝐻
∑

𝑊
∑

𝐶
∑

𝐿(ℎ,𝑤,𝑐)
𝑠𝑜 𝑙𝑜𝑔(𝐼ℎ,𝑤,𝑐

𝑠 ), (12)
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𝐻𝑊 ℎ=1𝑤=1 𝑐=1
𝐿𝑎𝑢𝑥 = −1
𝐻𝑊

𝐻
∑

ℎ=1

𝑊
∑

𝑤=1

𝐶
∑

𝑐=1
𝐿(ℎ,𝑤,𝑐)
𝑠𝑜 𝑙𝑜𝑔(𝐼ℎ,𝑤,𝑐

𝑠𝑎 ), (13)

The parameter 𝜆, as inspired by SeAFusion (Tang et al., 2022), is set
to 0.1 to balance the main semantic loss and the auxiliary semantic
loss. 𝐿𝑠𝑜 ∈ R𝐻×𝑊 ×𝐶 represents the one-hot vector transformed from
the segmentation label 𝐿𝑠 ∈ R𝐻×𝑊 ×𝐶 .

4. Experimental validation

In this section, we first describe our experimental setup and ex-
perimental details. Based on this, we validate the effectiveness of our
method through comparative experiments and generalization experi-
ments. Additionally, we perform semantic segmentation on the gen-
erated fusion images to demonstrate the superiority of our algorithm
in high-level vision tasks. Finally, we conduct ablation experiments to
verify the rationality of the network architecture.

4.1. Experimental configurations

To comprehensively evaluate the proposed algorithm, we conducted
extensive quantitative and qualitative assessments on three datasets:
MSRS (Tang et al., 2022), TNO (Toet and Hogervorst, 2012) and
RoadScene (Xu et al., 2020a). In addition, we compared our algo-
rithm with nine SOTA algorithms, including one traditional approach:
GTF (Ma et al., 2016), one autoencoder-based approach: DenseFuse (Li
and Wu, 2018), two GAN-based approaches: FusionGAN (Ma et al.,
2019b), GANMcC (Ma et al., 2020c), four CNN-based approaches:
IFCNN (Zhang et al., 2020), SDNet (Zhang and Ma, 2021), U2Fusion
(Xu et al., 2020a) and SeAFusion (Tang et al., 2022), one image
decomposition-based approach: DeFusion (Liang et al., 2022). The
implementations of these nine algorithms are publicly available, and
we kept the parameters consistent with the original papers. Specifically,
DenseFuse and IFCNN adopted element-wise addition and element-wise
maximum fusion strategies to fuse the deep features, respectively.

For quaive evaluation, we selected seven metrics to objectively
assess the fusion performance. including entropy(EN) (Roberts et al.,
2008), mutual information(MI) (Qu et al., 2002), visual information
fidelity(VIF) (Han et al., 2013), spatial frequency(SF) (Eskicioglu and
Fisher, 1995), standard deviation(SD) (Rao, 1997), sum of the correla-
tions of differences(SCD) (Aslantas and Bendes, 2015) and 𝑄𝑎𝑏𝑓 (Ma
et al., 2019a). Among them, EN is computed based on information
theory to quantify the information content in the fused image. A
higher EN indicates a more abundant information presence in the fused
image. MI refers to an information-theoretic measure assessing the
amount of information transferred from the source images to the fused
image. Increased MI in the fused image suggests a greater transfer of
information from the source images. VIF is an index based on natural
scene statistics and the human visual system, quantifying the shared
information between the fused image and the source images. A higher
VIF implies that the fusion result aligns more closely with human visual
perception. SF unveils details and texture information in the fused
image by measuring its gradient distribution. A higher SF signifies
richer edge and texture details. SD is an indicator reflecting the contrast
and distribution of the fused image. Regions with higher contrast are
often more appealing to the human visual system, so a higher SD in
the fusion result suggests better contrast. SCD is a metric indicating
the quality of fusion algorithms by measuring the difference between
the fused image and the original image. A higher SCD implies that the
fused image contains more information from the source images. Qabf
is utilized to gauge the edge information transferred from the source
images to the fused image. Additionally, we utilized the Intersection
over Union (IoU) to quantify the segmentation performance. Larger
values of these metrics indicate better fusion performance.
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Algorithm 1 Training procedure
Input: Infrared images 𝐼𝑖𝑟 and visible images 𝐼𝑣𝑖;
Output: Fused images 𝐼𝑓 ;
1: for 𝑚 ≤ 𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑀 do
2: for 𝑝 𝑠𝑡𝑒𝑝 do
3: Select 𝑐 infrared images

{

𝐼1𝑖𝑟, 𝐼
2
𝑖𝑟, 𝐼

3
𝑖𝑟, ⋅ ⋅ ⋅𝐼

𝑐
𝑖𝑟
}

;
4: Select 𝑐 visible images

{

𝐼1𝑣𝑖, 𝐼
2
𝑣𝑖, 𝐼

3
𝑣𝑖, ⋅ ⋅ ⋅𝐼

𝑐
𝑣𝑖
}

;
5: Update the weight of semantic loss;
6: Update the parameters of the fusion network 𝑁𝐹 by Adam

Optimizer: ▽𝑁𝐹
(𝐿𝑡𝑜𝑡𝑎𝑙(𝑁𝐹 ));

7: end for
8: Generate fused images from infrared and visible images in the

training set;
9: for 𝑞 𝑠𝑡𝑒𝑝 do

10: Select 𝑐 fused images
{

𝐼1𝑓 , 𝐼
2
𝑓 , 𝐼

3
𝑓 , ⋅ ⋅ ⋅𝐼

𝑐
𝑓

}

;
11: Update the parameters of the segmentation network 𝑁𝑆 by

SGD Optimizer: ▽𝑁𝑆
(𝐿𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 (𝑁𝑆 ));

12: end for
13: end for

4.2. Implementation details

We trained our fusion network on the MSRS dataset, which consists
of infrared and visible light image pairs captured in both daytime
and nighttime scenes with a spatial resolution of 480 × 640. The
training set contains 1083 pairs of infrared and visible light images,
while the test set includes 361 pairs of images. Additionally, the MSRS
dataset provides semantic labels for 9 objects, including Background,
Car, Person, Bike, Curve, Car Stop, Guardrail, Color cone, and Bump.
Moreover, the images are normalized to the range of [0, 1] before being
fed into the network.

According to the low-level and high-level joint adaptive training
strategy (Tang et al., 2022), we iteratively train the fusion network
and segmentation network. Our training parameters are set as follows:
the maximum number of iterations 𝑀 = 4, fusion network iterations
𝑝 = 3610, segmentation network iterations 𝑞 = 20 000, and the hyperpa-
rameter 𝛾 = 1. The hyperparameter for content loss is set as 𝛼 = 10. We
use the Adam optimizer to optimize our fusion model, with batch size
of 3, 𝛽1 of 0.9, 𝛽2 of 0.99, epsilon of 1𝑒−8, weight decay of 0.0002, and
an initial learning rate of 0.0001. Additionally, for the segmentation
model, we use a mini-batch SGD optimizer with batch-size of 16,
momentum of 0.9, and weight decay of 0.0005. The learning rate is
updated using the initial learning rate multiplied by (1 − 𝑖𝑡𝑒𝑟

𝑚𝑎𝑥𝑖𝑡𝑒𝑟

(𝑝𝑜𝑤𝑒𝑟)
),

with an initial learning rate set to 0.01 and a power factor of 0.9. Our
method is implemented on the PyTorch platform (Paszke et al., 2019).
We further summarized the training process of SCGRFuse in Algorithm
1. All experiments are conducted on NVIDIA RTX A6000 and Intel(R)
Core(TM) i9-10850K CPU @ 3.60 GHz.

Furthermore, since the MSRS and RoadScene datasets contain color
visible light images, we adopt a special strategy (Ram Prabhakar et al.,
2017) to process color information. Specifically, except for DeFusion,
we first convert RGB images to YCbCr images, then use different
fusion algorithms to fuse the Y channel of the visible light image and
the infrared image. This is because the YCbCr color space preserves
the structural details mainly in the Y channel, which emphasizes the
luminance variation and chrominance channels. Finally, we convert the
fused image back to the RGB color space with visible light Cr and Cb
channels.

4.3. Comparative experiment

In order to thoroughly evaluate our algorithm, we first compare the
proposed SCGRFuse with nine other approaches on the MSRS dataset.
8

Fig. 7. Qualitative comparison of SCGRFuse with 9 state-of-the-art methods on 00537D
image from the MSRS dataset.

Fig. 8. Qualitative comparison of SCGRFuse with 9 state-of-the-art methods on 00633D
image from the MSRS dataset.

Fig. 9. Qualitative comparison of SCGRFuse with 9 state-of-the-art methods on 00858N
image from the MSRS dataset.

4.3.1. Qualitative results
We visualize the generated fusion images, as shown in Figs. 7 to 10.

From these four images, it can be observed that our proposed method,
along with the other nine algorithms, achieves good fusion perfor-
mance. In Figs. 7 and 8, during daytime scenes, GTF and FusionGAN
fail to preserve the texture details of the visible light images effectively,
and other methods are also affected by spectral contamination to some
extent. We use red boxes to zoom in on a region to illustrate the varying
degrees of spectral contamination on texture details. Additionally, we
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Fig. 10. Qualitative comparison of SCGRFuse with 9 state-of-the-art methods on
01024N image from the MSRS dataset.

Table 1
Quantitative comparisons of the seven metrics, i.e., EN, SD, SF, MI, SCD, VIF and 𝑄𝑎𝑏𝑓 ,
on 361 image pairs from the MSRS dataset. The best result is indicated by RED and
the second best result is represented by BLUE.

EN SD SF MI SCD VIF Qabf

GTF (Ma et al., 2016) 5.47 19.56 8.48 1.67 0.76 0.51 0.40
DenseFuse (Li and Wu, 2018) 5.94 23.57 6.03 2.65 1.25 0.69 0.37
FusionGAN (Ma et al., 2019b) 5.44 17.07 4.42 1.87 0.98 0.44 0.14
IFCNN (Zhang et al., 2020) 6.28 31.50 10.76 2.82 1.38 0.77 0.60
GANMcC (Ma et al., 2020c) 5.91 22.84 4.92 2.53 1.24 0.59 0.25
SDNet (Zhang and Ma, 2021) 5.25 17.35 8.67 1.65 0.99 0.45 0.38
U2Fusion (Xu et al., 2020a) 5.56 27.71 9.24 1.96 1.26 0.55 N 0.42
DeFusion (Liang et al., 2022) 6.46 37.63 8.60 2.16 1.35 0.77 0.54
SeAFusion (Tang et al., 2022) 6.65 41.84 11.11 4.04 1.69 0.97 0.67
Ours 6.68 42.76 11.28 5.08 1.67 1.04 0.69

Table 2
Quantitative comparisons of the seven metrics, i.e., EN, SD, SF, MI, SCD, VIF and 𝑄𝑎𝑏𝑓 ,
on 50 image pairs from the RoadScene dataset. The best result is indicated by RED
and the second best result is represented by BLUE.

EN SD SF MI SCD VIF Qabf

GTF (Ma et al., 2016) 7.23 44.33 8.70 3.24 1.02 0.45 0.32
DenseFuse (Li and Wu, 2018) 6.66 28.61 8.35 2.65 1.41 0.51 0.35
FusionGAN (Ma et al., 2019b) 6.73 31.92 7.13 2.70 1.06 0.35 0.24
IFCNN (Zhang et al., 2020) 6.96 35.91 13.14 2.99 1.45 0.61 0.53
GANMcC (Ma et al., 2020c) 6.93 36.01 7.40 2.74 1.53 0.47 0.30
SDNet (Zhang and Ma, 2021) 7.14 40.20 13.70 2.21 1.49 0.60 0.51
U2Fusion (Xu et al., 2020a) 7.09 38.12 13.25 1.87 1.70 0.60 0.51
DeFusion (Liang et al., 2022) 7.23 44.44 10.22 2.25 1.69 0.63 0.48
SeAFusion (Liang et al., 2022) 7.36 51.15 15.33 3.24 1.71 0.67 0.52
Ours 7.33 50.45 15.60 3.39 1.72 0.70 0.52

use green boxes to highlight the issue of weakening targets due to the
introduction of irrelevant information. Only our method and SeAFusion
manage to preserve rich texture details and emphasize targets, but our
images have higher contrast compared to SeAFusion. For nighttime
scenes, as shown in Figs. 9 and 10, all algorithms fuse complementary
information from infrared and visible light images to some extent. How-
ever, most algorithms introduce irrelevant information in the fusion
images, leading to the weakening of significant targets and contami-
nation of texture background details. For example, GTF exhibits severe
spectral contamination in the texture regions.

4.3.2. Quantitative results
The quantitative results for 361 pairs of images using 7 statistical

metrics are shown in Table 1. Additionally, we presented cumulative
distribution curve plots to illustrate the credibility of our results, as
9

Table 3
Quantitative comparisons of the seven metrics, i.e., EN, SD, SF, MI, SCD, VIF and 𝑄𝑎𝑏𝑓 ,
on 25 image pairs from the TNO dataset. The best result is indicated by RED and the
second best result is represented by BLUE.

EN SD SF MI SCD VIF Qabf

GTF (Ma et al., 2016) 6.69 40.05 9.54 2.91 0.95 0.52 0.40
DenseFuse (Li and Wu, 2018) 6.42 26.00 6.78 2.30 1.54 0.57 0.35
FusionGAN (Ma et al., 2019b) 6.48 28.84 6.27 2.36 1.27 0.42 0.22
IFCNN (Zhang et al., 2020) 6.80 35.15 12.81 2.50 1.65 0.64 0.52
GANMcC (Ma et al., 2020c) 6.67 32.19 6.22 2.33 1.63 0.51 0.27
SDNet (Zhang and Ma, 2021) 6.64 32.66 12.05 1.52 1.49 0.56 0.44
U2Fusion (Xu et al., 2020a) 6.83 34.55 11.52 1.37 1.71 0.58 0.44
DeFusion (Liang et al., 2022) 6.95 38.41 8.21 1.78 1.64 0.60 0.41
SeAFusion (Tang et al., 2022) 7.10 44.20 12.41 2.89 1.72 0.69 0.51
Ours 7.09 43.55 12.67 3.38 1.71 0.78 0.53

shown in the Fig. 11. Our method exhibits significant advantages in
terms of SD, SF, and MI. A higher SD value indicates that the fused
image has the highest contrast. A higher SF value indicates that the
fused image is clearer and of better quality. A higher MI value indicates
that the fused image conveys more information. Furthermore, our
SCGRFuse achieves the best VIF, indicating that our fused images are
more consistent with the human visual system. Our method also obtains
the best Qabf, suggesting that the fused images preserve more edge in-
formation. Moreover, our method shows the highest EN, indicating that
our images contain the most information. Only a marginal difference
separates our method from SeAFusion in terms of the SCD metric.

4.4. Generalization experiment

To demonstrate the generalization performance of our proposed
SCGRFuse, we conducted generalization experiments on the RoadScene
and TNO datasets. It is worth noting that our model was trained on the
MSRS dataset and directly tested on the RoadScene and TNO datasets.

4.4.1. Qualitative results
The qualitative comparison of different algorithms on the Road-

Scene dataset is shown in Figs. 12 and 13. Almost all methods are
affected by thermal radiation, resulting in the weakening of salient
objects. GTF, DenseFuse, FusionGAN, GANMcC, and SDNet exhibit
particularly noticeable effects. Similarly, we use red boxes to magnify
regions with rich texture details and green boxes to highlight salient
objects. It is worth mentioning that IFCNN and SeAFusion are only
slightly affected by irrelevant information. Furthermore, our fusion
results show similarities with visible light images in the background
region, and the pixel intensities of salient objects are mostly consistent
with the infrared images.

The qualitative results of different algorithms on the TNO dataset
are shown in Figs. 15 and 16. From the figures, it can be observed
that DenseFuse and U2Fusion significantly weaken the salient objects,
while GTF, FusionGAN, and GANMcC blur the edges of salient objects.
Additionally, other methods exhibit some degree of spectral pollution
in the background region. Only our method and SeAFusion successfully
preserve the texture details of visible light images and the intensity of
salient objects.

4.4.2. Quantitative results
We randomly selected 50 pairs and 25 pairs of images from the

RoadScene and TNO datasets, respectively, for quantitative evaluation.
The comparison results of different algorithms on the 7 metrics are
shown in Tables 2 and 3. The cumulative distribution curve plots are
shown in Figs. 14 and 17. From Table 2 and Fig. 14, it can be observed
that SCGRFuse is generally in the leading position, showing significant
advantages in SF, MI, and VIF. This indicates that our images are
not only clear and contain rich texture details but also more in line
with the human visual system. As shown in Table 3 and Fig. 17, on
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Fig. 11. Quantitative comparisons of the seven metrics, i.e., EN, SD, SF, MI, SCD, VIF and 𝑄𝑎𝑏𝑓 , on 361 image pairs from the MSRS dataset. A point (𝑥, 𝑦) on the curve denotes
that there are 100 ∗ 𝑥 percent of image pairs which have metric values no more than 𝑦.
Fig. 12. Qualitative comparison of SCGRFuse with 9 state-of-the-art methods on
𝐹𝐿𝐼𝑅_06832 image from the RoadScene dataset.

Fig. 13. Qualitative comparison of SCGRFuse with 9 state-of-the-art methods on
𝐹𝐿𝐼𝑅_08835 image from the RoadScene dataset.
10
the TNO dataset, SCGRFuse ranks first in MI, VIF, and Qabf, and our
performance is also close to the first place in other metrics. Objec-
tively speaking, our algorithm outperforms others in the 7 objective
evaluation metrics, demonstrating better stability and accuracy of our
model.

4.5. Task-driven evaluation

The fused images can be used not only for visual observation but
also for advanced visual tasks. Therefore, we perform semantic segmen-
tation on the fused images and evaluate the segmentation performance
of different fusion methods. For a fair comparison, we retrain the
Deeplabv3+ (Chen et al., 2018) network with different fusion methods
on the MSRS dataset. Specifically, we first generate fused images using
each fusion method. Then, we separately train Deeplabv3+ on the
infrared images, visible light images, and the nine fused image training
sets. The segmentation performance is measured using the Intersection
over Union (IoU) metric. Our training configuration is as follows: We
use MobileNetv2 (Sandler et al., 2018) as the backbone network and
apply both cross-entropy and Dice loss as supervision for the model.
The training is performed using Stochastic Gradient Descent (SGD) with
a batch size of 4 and 100 epochs. The initial learning rate is set to 7e-
3, and we reduce it with cosine annealing. The segmentation results
are shown in Table 4, where The abbreviations in the table represent
the following categories: Background, Cars, Person, Bike, Curves, Car
Stop, Guardrail, Color cone, Bump, etc. It can be observed that our
algorithm generally takes a leading position in various IoU categories,
with a first-place ranking in terms of MIoU. We attribute our advantage
to two main factors. Firstly, our network effectively integrates the com-
plementary information from both infrared and visible light images,
which helps the segmentation model comprehensively understand the
imaging scene. Secondly, our SCGRFuse, with the utilization of spatial
and channel attention mechanisms, enhances information capturing
ability, and guided by the semantic loss, strengthens spatial and se-
mantic information, enabling the segmentation network to describe the
imaging scene more accurately.

In addition, we provide some visual examples to demonstrate the
segmentation results of both infrared and visible light images and
different fused images. We only present the segmentation results of four
representative fusion algorithms, namely GTF, DenseFuse, U2Fusion,
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Fig. 14. Quantitative comparisons of the seven metrics, i.e., EN, SD, SF, MI, SCD, VIF and 𝑄𝑎𝑏𝑓 , on 50 image pairs from the RoadScene dataset. A point (𝑥, 𝑦) on the curve
denotes that there are 100 ∗ 𝑥 percent of image pairs which have metric values no more than 𝑦.
Table 4
Segmentation performance (mIoU) of visible, infrared and fused images on the MSRS dataset. RED indicates the best result and BLUE represents
the second best result.

BG car Per Bik Cur CS Gr CC Bu mIoU

Infrared 97.58 85.43 70.18 64.61 50.14 53.02 43.39 45.13 58.02 63.05
Visible 97.85 87.18 59.63 68.54 51.72 66.14 73.27 56.48 65.23 69.56
GTF (Ma et al., 2016) 97.81 86.88 69.72 65.66 50.61 61.81 47.80 48.33 63.45 65.79
DenseFuse (Li and Wu, 2018) 97.97 87.16 68.82 67.71 52.80 67.60 63.73 54.15 66.25 69.58
FusionGAN (Ma et al., 2019b) 97.95 87.20 69.59 67.74 51.99 64.69 57.74 54.49 60.93 68.04
IFCNN (Zhang et al., 2020) 97.92 87.51 69.13 68.01 52.41 64.13 71.11 52.21 65.28 69.75
GANMcC (Ma et al., 2020c) 97.87 87.09 68.81 67.98 49.44 65.72 64.67 55.40 62.22 68.80
SDNet (Zhang and Ma, 2021) 97.96 87.42 70.45 67.68 53.71 60.50 49.44 54.36 64.43 67.33
U2Fusion (Xu et al., 2020a) 97.88 87.46 68.79 68.26 51.41 63.67 63.74 53.00 57.88 68.01
DeFusion (Liang et al., 2022) 97.87 87.09 69.06 66.29 51.66 62.83 72.55 50.30 62.50 68.91
SeAFusion (Tang et al., 2022) 98.00 87.66 69.30 67.71 53.09 67.07 74.90 53.46 69.12 71.15
Ours 98.07 87.96 69.23 67.73 54.17 67.95 73.66 54.11 69.43 71.37
Fig. 15. Qualitative comparison of SCGRFuse with 9 state-of-the-art methods on
𝐾𝑎𝑝𝑡𝑒𝑖𝑛_1123 image from the TNO dataset.

and SeAFusion, as shown in Fig. 18. From the results, it can be observed
that the infrared image focuses more on salient objects such as pedes-
trians, while the visible light image better describes the background
information. It is worth noting that our fusion method fully integrates
11
Fig. 16. Qualitative comparison of SCGRFuse with 9 state-of-the-art methods on
𝑇 𝑟𝑒𝑒_4915 image from the TNO dataset.

the semantic information of the images during the fusion process. As a
result, the segmentation model can produce better segmentation results
on our fused images, such as accurately segmenting pedestrians in
image 00127D and identifying curves in scene 00504D.
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Fig. 17. Quantitative comparisons of the seven metrics, i.e., EN, SD, SF, MI, SCD, VIF and 𝑄𝑎𝑏𝑓 , on 25 image pairs from the TNO dataset. A point (𝑥, 𝑦) on the curve denotes
that there are 100 ∗ 𝑥 percent of image pairs which have metric values no more than 𝑦.
Table 5
The fusion evaluation metrics of ablation studies. RED indicates the best result and
BLUE represents the second best result.

EN SD MI VIF Qabf

Without GRXDB 6.51 31.40 3.14 0.49 0.61
Without SCAM 6.54 41.33 4,78 0.79 0.66
Ours 6.68 42.76 5.08 1.04 0.69

Table 6
The segmentation performance of ablation studies. RED indicates the best result and
BLUE represents the second best result.

CS GR Car Bu mIoU

Without GRXDB 65.30 63.75 87.49 67.22 69.64
Without SCAM 64.91 63.95 87.83 67.01 69.98
Ours 67.72 73.54 87.96 68.16 71.37

4.6. Ablation studies

To validate the effectiveness of our GRXDB and spatial/channel
attention mechanism module (SCAM), we conducted ablation experi-
ments. For the GRXDB, we removed the gradient operator and reverted
the Leaky ReLU activation function to ReLU. Additionally, we no longer
fused the features from the two GRXDB. From the visual results shown
in Fig. 19, it can be observed that the fused images highlight salient
objects, but there are issues of information loss and spectral contami-
nation in terms of texture details. This demonstrates that our GRXDB
module effectively integrates feature information and texture details,
further improving the visual quality of the fused image. Regarding
the spatial/channel attention mechanism module, we conducted an
ablation experiment by removing the entire SCAM. Specifically, we
trained a fusion model consisting of only the encoder and decoder parts,
retaining the feature extraction and reconstruction parts. The results are
shown in Fig. 19. It can be noticed that without SCAM, the fused image
lacks amplification of useful information and suppression of harmful
information. As a consequence, the fused image fails to highlight salient
objects and effectively combine the complementary information from
the infrared and visible light images.

Furthermore, we also provide fusion evaluation metrics and par-
tial segmentation results for ablation experiments to illustrate the
importance of GRXDB and SCAM. As shown in Table 5, the fusion
12
performance significantly declines when the feature extraction module
is removed. For the attention mechanism, coarse feature extraction can
lead to inaccurate focusing of the attention mechanism on key areas,
introducing more noise and interference. This makes it challenging
for the attention mechanism to identify and focus on genuinely useful
features. Without the spatial-channel attention module, the visual fi-
delity of the image and the contained information are reduced, further
emphasizing the role of the attention mechanism in preserving critical
information from the source image and highlighting the importance of
focusing on the structure and edge information in the source image. As
shown in the Table 6 We only present IoU for the Car stop, Guardrail,
Car and Bump and mIoU for all categories. It can be observed that
without GRXDB and SCAM, the segmentation performance of the fused
image is significantly reduced. In contrast, our SCGRFuse not only
effectively improves the segmentation performance but also preserves
salient objects and maintains texture details.

5. Conclusion

This paper proposes an image fusion framework called SCGRFuse,
which effectively fuses infrared and visible light images. The Gradi-
ent Aggregation Residual Dense Blocks designed in the Encoder part
can efficiently extract deep features and preserve strong and weak
texture details effectively. Additionally, we introduce a Scale Chan-
nel Attention Module to emphasize the importance of source images,
magnifying useful features, and suppressing harmful features, such as
differences between infrared and visible light images. Through ex-
tensive qualitative and quantitative experiments and ablation analysis
on three publicly available infrared and visible light datasets, the
effectiveness of SCGRFuse is demonstrated. Furthermore, we evaluate
the quality of our fusion images through high-level visual tasks, and
task-driven evaluation experiments reveal that our framework achieves
better performance on high-level visual tasks.

However, there are still limitations in our proposed method: (1) The
hyperparameters of the model, such as the loss function, are determined
based on the experience and experiments from other related literature,
which may face the problem of fine-tuning. (2) SCGRFuse proposed
in this paper is only verified for the fusion of infrared and visible
light images, but there are certain relationships between various image
fusion tasks, and this method may lack generalization.
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Fig. 18. Segmentation results for infrared, visible and fused images from the MSRS dataset. Each two rows represent a scene, and from top to bottom are: 00127D, 00504D and
01066N.
Therefore, future research should focus on finding reasonable pa-
rameter settings and determining the proportional relationship between
various hyperparameters adaptively. In the future, we will continue to
explore image fusion tasks and expand SCGRFuse to other fusion tasks,
such as medical image fusion, and multi-focus fusion.
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