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A B S T R A C T

K-anonymity is a widely used privacy-preserving technique which defends against linking attacks by suppres-
sion and generalization. The existing k-anonymity algorithms prevent attackers from illegally obtaining private
information by constraining at least k records in an equivalence group. However, this unified anonymity
method ignores individual differences and leads to a large amount of information loss. To this end, we
introduce sequential three-way decisions into k-anonymity, using a dynamic k-value sequence instead of the
fixed k-value to achieve personalized k-anonymity. Specifically, we first construct a hierarchical decision
table for k-anonymity by attribute generalization trees and sensitive decision values provided with users.
Then, we propose a multi-level personalized k-anonymity privacy-preserving model based on sequential
three-way decisions, where we anonymize the partitioning granular data with a dynamic k-value sequence,
respectively. Furthermore, we present three practical algorithms to implement the proposed model and discuss
the differences between them. Finally, the experimental results demonstrate that the proposed model not only
provides a more flexible anonymization method to achieve personalized anonymity, but greatly reduces the
information loss. This study provides a complete framework for multi-level privacy protection and enriches
the application of sequential three-way decisions.
1. Introduction

In era of big data, data sharing has become the mainstream. In
order to fully exploit the potential value from big data, the scope
of information sharing is now gradually expanding, meanwhile large
volumes of data are being released and shared out. However, when data
sharing brings convenience to people, it inevitably leads to the problem
of privacy leakage. Inappropriate data publishing has led to huge
amount of sensitive information being leaked, which endangers the
information security of data providers. In recent years, many researches
on privacy-preserving technologies have been in full swing (Cao, Wang,
Li, Ren, & Lou, 2013; Denham, Pears, & Naeem, 2020; He, Zeadally, Xu,
& Huang, 2015; Mehta & Rao, 2022; Wang et al., 2022). How to carry
out efficient privacy protection has become a hot topic of research in
various fields.

Data anonymization is a basic and widely-adopted privacy protec-
tion technology, which ensures the information security while maximiz-
ing data availability (Kacha, Zitouni, & Djoudi, 2022; Liang & Samavi,
2020; Mortazavi & Erfani, 2020; Song, Ma, Tian, & Al-Rodhaan, 2019).
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Since L. Sweeney first proposed the k-anonymity model in 2002
(Sweeney, 2002b), a variety of research results on k-anonymity have
appeared. Wong et al. proposed the (𝛼, 𝑘)-anonymity model, which
used the parameter ‘‘𝛼’’ to control the frequency of sensitive attribute
values to resist the probabilistic attack problem (Wong, Li, Fu, & Wang,
2006). Machanavajjhala et al. proposed the l-diversity model based on
the k-anonymity model which can resist homogeneous (Machanava-
jjhala, Kifer, Gehrke, & Venkitasubramaniam, 2007). In order to resist
similarity attacks and skewing problems, Li et al. proposed the t-
closeness model (Li, Li, & Venkatasubramanian, 2006). To prevent
attribute disclosure, the p-sensitive k-anonymity principle was pro-
posed (Sun, Sun, & Wang, 2011; Truta & Vinay, 2006). For improving
the efficiency of k-anonymity, Lin et al. proposed a genetic algorithm-
based clustering method for k-anonymity using genetic algorithm (Lin
& Wei, 2009). Subsequently, Ye et al. combined rough set theory to
implement k-anonymity and improved the data utilization (Ye, Wu, Hu,
& Hu, 2013). Considering the risk of disclosure in 1:M data publishing,
Gong et al. proposed a novel privacy model called (𝑘, 𝑙)-diversity (Gong,
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Luo, Yang, Ni, & Li, 2017). However, while these anonymization
models solve most of problems, they all suffer from the same problem:
they anonymize all data in a universal approach, and ignore the need
for individualized privacy protection.

In fact, real-world datasets are unbalanced and the security require-
ments for different datasets may differ. To solve this problem, Xiao
et al. first proposed the concept of personalized anonymity (Xiao &
Tao, 2006). In recent years, a large number of scholars have paid
attentions to the personalized anonymity and many research results
were subsequently given out. Gedik et al. proposed a flexible pri-
vacy personalization framework to support the location k-anonymity,
enabling the user to specify the minimum level of anonymity and
the maximum temporal and spatial tolerance it desires (Gedik & Liu,
2008). Gao et al. proposed a personalized anonymization model to
select the k-anonymized set of trajectories by considering different
preference settings for trajectory privacy and data utility ratio in dif-
ferent scenarios (Gao, Ma, Sun, & Li, 2014). Liu et al. proposed a new
personalized extended model based on the general (𝛼, 𝑘)-anonymity
model, which enables personalized services while effectively protecting
privacy (Liu, Xie, & Wang, 2016). Xiong et al. proposed a personalized
privacy preservation (PERIO) framework based on game theory and
data encryption, which achieves a reasonable balance between crowd-
sensing service quality and privacy protection (Xiong et al., 2019). Guo
et al. combined and optimized k-anonymity and differential privacy
mechanisms to propose a new entropy-based personalized k-anonymity
algorithm that improves the security of privacy protection (Guo, Yang,
& Wan, 2021). Ren et al. proposed a new personalized (𝛼, 𝛽, 𝑙, 𝑘)-
anonymity model of social network, using the parameters 𝛼, 𝛽, 𝑙 and

to satisfy the need for personalized privacy protection (Ren & Jiang,
022). Unfortunately, an obvious weakness of the existing researches
s that they only focus on the constraints of attributes and rarely
nvestigate the personalized setting of k-values. For example, for a
ataset with both 2-anonymity and 6-anonymity requirements, most
xisting anonymity models must use 6-anonymity for the entire table to
nsure that the data can be safely published. Obviously, this approach
s not reasonable and will result in unnecessary information loss. As a
esult, the study of the personalized settings of k-values is necessary to
chieve efficient and cost-effective personalized k-anonymity. In order
o further improve the personalized anonymity system, we focus on
he personalized setting of k-values in this paper. Fig. 1 depicts the
omparison between the traditional anonymity model and our proposed
odel.

Before implementing the personalized k-anonymity, we first need
o separate the dataset for different anonymity requirements, and one
ey issue is how to divide the data with the lowest cost. The three-
ay decisions (3WD) (Yao, 2010, 2011, 2018) model provides a new
pproach to the classified anonymity. As is well-known to all, 3WD
s an effective tool to deal with uncertain information, which can
iscover potential knowledge at minimal cost. In recent years, three-
ay decisions have been successfully applied in various fields (Hu,
014; Liang, Pedrycz, Liu, & Hu, 2015; Liang, Xu, Liu, & Wu, 2018;
u, Zheng, Liu, Yao, & Li, 2022; Yao, 2020; Yu, Zhang, & Wang, 2016;
han, Ye, Ding, & Liu, 2022). Sequential three-way decisions model
S3WD) is a commonly used 3WD model, which is closer to the human
hinking mode and is recognized as a low-cost and high-efficiency clas-
ification decision-making model. As a dynamic multi-stage decision
odel, S3WD provides a more flexible decision-making mechanism

or complex problems and has been well developed and applied in
ecent years. Qian et al. combined the multi-granulation rough set
nd sequential three-way decisions, proposed a generalized model of
ulti-granularity sequential three-way decisions, and enriched the de-

elopment of multi-granularity three-way decisions (Qian, Liu, Miao,
Yue, 2020). Fang et al. considered the cost of the decision pro-

ess or decision result, and proposed a granularity-driven sequential
hree-way decisions model (Fang, Gao, & Yao, 2020). Zhang et al.
2

esigned a penalty function to optimize the cost parameters, proposed
a new sequential three-way decisions model based on penalty function
(S3WDPF) and further improved the classification accuracy (Zhang,
Pang, & Wang, 2020). Qian et al. combined sequential three-way
decisions and hierarchical rough set model, and proposed a hierarchical
sequential three-way decisions model, which can mine hierarchical
sequential three-way decision rules under different levels of granu-
larity (Qian, Tang, Yu, Yang, & Gao, 2022). Qian et al. proposed
a cost-sensitive sequential three-way decisions model for fuzzy deci-
sion information systems and achieved better classification with lower
cost (Qian, Zhou, Qian, & Wang, 2022).

To sum up, existing data anonymization techniques ignore the
personalized setting of k-value, which not only ignores the user’s
personalized needs but also leads to a large amount of unnecessary
information loss. Therefore, investigating how to achieve multi-level
k-anonymity is necessary to achieve efficient and accurate personalized
anonymity. As we all know, the key to achieve multi-level k-anonymity
is to efficiently classify the dataset, and S3WD provides a new idea for
multi-level classification and anonymity. S3WD is a very cost-effective
and efficient classification and decision model, and the progressive
multi-stage processing model is well suited to achieve the personalized
k-anonymity. However, few people have noticed the advantages of
S3WD in dealing with the personalized privacy protection. To this end,
we first introduce S3WD into k-anonymity, and present a multi-level
personalized k-anonymity privacy-preserving model based on sequen-
tial three-way decisions (MKS3WD). In summary, this paper makes the
following contributions:

1. We combine the sequential three-way decisions and the k-
anonymity to propose a multi-level personalized k-anonymity
privacy-preserving model based on sequential three-way deci-
sions (MKS3WD). Different from the traditional k-anonymity
with only one fixed k-value, our model uses a dynamic k-
value sequence for anonymity and achieves multi-constrained
personalized k-anonymity.

2. We present a hierarchical decision table for k-anonymity based
on attribute generalization trees and sensitive decision values
provided by users, and then propose a sequential three-way
decisions model for classification, which is able to divide data
with different sensitivities into different granularity structures
at the lowest cost

3. We propose three practical algorithms to implement the
MKS3WD model, namely, the security downscaling scheme (SD-
MKS3WD), the sensitivity extraction scheme (SE-MKS3WD) and
the equivalence class extraction scheme (ECE-MKS3WD), which
further reduces the information loss while ensuring data security
and availability.

The remainder of this paper is organized as follows. In Section 2, we
briefly introduce the basic models of k-anonymity, decision-theoretic
rough set and sequential three-way decisions. Section 3 presents a
hierarchical decision table for k-anonymity and a sequence three-
way decisions model for classification, then describe a generalized
multi-level personalized k-anonymity privacy-preserving model based
on sequential three-way decisions. In Section 4, we propose three prac-
tical algorithms to implement our model, some corresponding examples
are given for illustration. Section 5 gives the relevant experiments and
conclusions. Section 6 summarizes the work of this paper as well as
provides an outlook on future research directions.

2. Preliminaries

In this section, we will review some basic concepts of k-anonymity,
decision-theoretic rough set and sequential three-way decisions. For a
detailed description, please refer to papers (Sweeney, 2002b; Yao &

Deng, 2011; Yao & Wong, 1992; Yao, Wong, & Lingras, 1990).
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Fig. 1. Comparison of the traditional anonymity model and our proposed model (MKS3WD).
2.1. K-anonymity model

K-anonymity is an important anonymity model, which defends
against link attacks by suppression and generalization (Sweeney, 2002a,
2002b). Here are some brief introductions of k-anonymity.

Definition 1. T is an original information table, according to the
characteristics of attributes, the attributes of 𝑇 can be divided into the
following four categories.

∙ Identification Attributes (ID):
The attributes which can clearly identify the identity of the objects.

∙ Quasi-Identifier Attributes (QID):
Also known as semi-sensitive attributes, the union of several quasi-

identifier attributes can determine the identity of the objects with a
higher probability.

∙ Sensitive Attributes (SA):
Attributes that contain sensitive information about the objects.

∙ Other Attributes (OA):
Attributes that are different from the above three and do not require

special treatment.

Definition 2 (Equivalence Class and Equivalence Group). The objects
with the same quasi-identifier attribute values are equivalence classes
to each other. The sets of identical equivalence classes are equivalence
groups.

Definition 3 (K-anonymity Sweeney, 2002b). Given an information
table 𝑇 = (𝑈, 𝐴𝑡) , where 𝑈 = {𝑥1, 𝑥2,… , 𝑥𝑛} is a finite non-empty set
of objects, 𝐴𝑡 = {𝑎1, 𝑎2,… , 𝑎𝑚} is a finite nonempty set of attributes.
𝑄𝐼𝐷 denotes the quasi-identifier attribute in 𝑇 , 𝑄𝐼𝐷 ⊆ 𝐴𝑡. 𝑇 [𝑄𝐼𝐷]
denotes the set of all quasi-identifier attribute value sequences in 𝑇 . 𝑇
is said to satisfy k-anonymity if and only if each sequence of values in
𝑇 [𝑄𝐼𝐷] appears with at least k occurrences in 𝑇 [𝑄𝐼𝐷] .
3

2.2. Decision-theoretic rough set models (DTRS)

Decision-theoretic rough set (DTRS) (Yao & Wong, 1992; Yao et al.,
1990) is a probabilistic extension of algebraic rough set model. By in-
troducing Bayesian risk decision theory, DTRS uses tolerance threshold
pairs (𝛼, 𝛽) to partition the data (0 ≤ 𝛽 ≤ 𝛼 ≤ 1).

Definition 4. Given a set of states 𝛺 = {𝑂, ¬𝑂} indicating that the
object 𝑥 is in 𝑂 and not in 𝑂, respectively. The set of action is given
by 𝐴 = {𝑎𝑃 , 𝑎𝑁 , 𝑎𝐵}, which represents the three different decisions for
the object 𝑥. These three decisions deciding 𝑥 ∈ POS(O), 𝑥 ∈ BND(O)
and 𝑥 ∈ NEG(O), where 𝑃𝑂𝑆(𝑂), 𝐵𝑁𝐷(𝑂) and 𝑁𝐸𝐺(𝑂) represent
the probabilistic positive, boundary and negative regions, respectively.
When object 𝑥 belongs to 𝑂, {𝜆𝑃𝑃 , 𝜆𝐵𝑃 , 𝜆𝑁𝑃 } denotes the loss incurred
for making decision of {𝑎𝑃 , 𝑎𝑁 , 𝑎𝐵}. Similarly, {𝜆𝑃𝑁 , 𝜆𝐵𝑁 , 𝜆𝑁𝑁} denotes
the loss incurred for making corresponding decision when object 𝑥
belongs to ¬𝑂. For the object 𝑥, the expected losses associated with
taking different decisions can be expressed as (Yao & Wong, 1992;
Yao et al., 1990):

𝑅(𝑎𝑃 |[𝑥]) = 𝜆𝑃𝑃𝑃 (𝑂|[𝑥]) + 𝜆𝑃𝑁𝑃 (¬𝑂|[𝑥]),

𝑅(𝑎𝐵|[𝑥]) = 𝜆𝐵𝑃𝑃 (𝑂|[𝑥]) + 𝜆𝐵𝑁𝑃 (¬𝑂|[𝑥]),

𝑅(𝑎𝑁 |[𝑥]) = 𝜆𝑁𝑃𝑃 (𝑂|[𝑥]) + 𝜆𝑁𝑁𝑃 (¬𝑂|[𝑥]).

(1)

According to Bayesian decision-theoretic framework, when 0 ≤
𝜆𝑃𝑃 ≤ 𝜆𝐵𝑃 ≤ 𝜆𝑁𝑃 and 0 ≤ 𝜆𝑁𝑁 ≤ 𝜆𝐵𝑁 ≤ 𝜆𝑃𝑁 , the minimum-risk
decision rules are given as follows:

(P1) if 𝑃 (𝑂|[𝑥]) ≥ 𝛼 and 𝑃 (𝑂|[𝑥]) ≥ 𝛾, decide 𝑥 ∈ 𝑃𝑂𝑆(𝑂),
(B1) if 𝑃 (𝑂|[𝑥]) ≤ 𝛼 and 𝑃 (𝑂|[𝑥]) ≥ 𝛽, decide 𝑥 ∈ 𝐵𝑁𝐷(𝑂),
(N1) if 𝑃 (𝑂|[𝑥]) ≤ 𝛽 and 𝑃 (𝑂|[𝑥]) ≤ 𝛾, decide 𝑥 ∈ 𝑁𝐸𝐺(𝑂).

where 𝛼, 𝛽 and 𝛾 are defined as:

𝛼 =
(𝜆𝑃𝑁 − 𝜆𝐵𝑁 )

(𝜆𝑃𝑁 − 𝜆𝐵𝑁 ) + (𝜆𝐵𝑃 − 𝜆𝑃𝑃 )
,

𝛽 =
(𝜆𝐵𝑁 − 𝜆𝑁𝑁 )

(𝜆𝐵𝑁 − 𝜆𝑁𝑁 ) + (𝜆𝑁𝑃 − 𝜆𝐵𝑃 )
,

𝛾 =
(𝜆𝑃𝑁 − 𝜆𝑁𝑁 )

.

(2)
(𝜆𝑃𝑁 − 𝜆𝑁𝑁 ) + (𝜆𝑁𝑃 − 𝜆𝑃𝑃 )
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When 0 ≤ 𝛽 ≤ 𝛾 ≤ 𝛼 ≤ 1, we can obtain the decision rules:
(P2) if 𝑃 (𝑂|[𝑥]) ≥ 𝛼, decide 𝑥 ∈ 𝑃𝑂𝑆(𝑂) ,
(B2) if 𝛽 < 𝑃 (𝑂|[𝑥]) < 𝛼, decide 𝑥 ∈ 𝐵𝑁𝐷(𝑂),
(N2) if 𝑃 (𝑂|[𝑥]) ≤ 𝛽, decide 𝑥 ∈ 𝑁𝐸𝐺(𝑂).

Thus, given two parameters 𝛼 and 𝛽 for a decision class 𝐷𝑖 with
respect to an equivalence relation 𝐸𝐶, the probabilistic lower and
upper approximations can be defined by:

𝑎𝑝𝑟(𝛼, 𝛽)

𝐸𝐶
(𝐷𝑖) = {𝑥 ∈ 𝑈 |𝑃 (𝐷𝑖|[𝑥]𝐸𝐶 ) ≥ 𝛼},

𝑎𝑝𝑟
(𝛼, 𝛽)

𝐸𝐶 (𝐷𝑖) = {𝑥 ∈ 𝑈 |𝑃 (𝐷𝑖|[𝑥]𝐸𝐶 ) > 𝛽}.
(3)

Similarly, the probabilistic positive, boundary and negative regions are
given by:

𝑃𝑂𝑆(𝛼, 𝛽)
𝐸𝐶 (𝐷𝑖) = 𝑎𝑝𝑟(𝛼, 𝛽)

𝐸𝐶
(𝐷𝑖)

= {𝑥 ∈ 𝑈 |𝑃 (𝐷𝑖|[𝑥]𝐸𝐶 ) ≥ 𝛼};
(4)

𝑁𝐷(𝛼, 𝛽)
𝐸𝐶 (𝐷𝑖) = 𝑎𝑝𝑟

(𝛼, 𝛽)

𝐸𝐶 (𝐷𝑖) − 𝑎𝑝𝑟(𝛼, 𝛽)

𝐸𝐶
(𝐷𝑖)

= {𝑥 ∈ 𝑈 | 𝛽 < 𝑃 (𝐷𝑖|[𝑥]𝐸𝐶 ) < 𝛼};
(5)

𝑁𝐸𝐺(𝛼, 𝛽)
𝐸𝐶 (𝐷𝑖) = 𝑈 − 𝑎𝑝𝑟(𝛼, 𝛽)

𝐸𝐶
(𝐷𝑖) ∪ 𝑎𝑝𝑟

(𝛼, 𝛽)

𝐸𝐶 (𝐷𝑖)

= {𝑥 ∈ 𝑈 |𝑃 (𝐷𝑖|[𝑥]𝐸𝐶 ) ≤ 𝛽}.
(6)

where 𝑃 (𝐷𝑖|[𝑥]𝐸𝐶 ) denotes the conditional probability, 𝑃 (𝐷𝑖|[𝑥]𝐸𝐶 ) =
[𝑥]𝐸𝐶∩𝐷𝑖
[𝑥]𝐸𝐶

.
In conclusion, DTRS is a low-cost classification decision model,

hich divides the parameters of the probabilistic positive, boundary
nd negative regions by calculating the cost (risk) concept. DTRS fur-
her improves the Pawlak rough set model and is the basis for three-way
ecisions.

.3. Sequential three-way decisions (S3WD)

As we all know, sequential three-way decisions model (S3WD) is a
rogressive multi-stage decision model (Yao, 2013; Yao & Deng, 2011).
n S3WD, we can select appropriate threshold pairs (𝛼, 𝛽)𝑙 depending

on the DTRS, and then we divide the data into different granularity
spaces to make appropriate decisions for each space separately. With
the granularity calculation, S3WD can obtain the most accurate results
with the best cost effectiveness. In this subsection, we briefly review a
general model of sequential three-way decisions.

Definition 5. For an information table S = (𝑈,𝐴𝑡 = 𝐶
⋃

𝐷, 𝑉 , 𝑓 ),
given a decision class 𝐷𝑙

𝑖 , a dynamic threshold parameter sequence
(𝛼, 𝛽)𝑙 = {(𝛼1, 𝛽1), (𝛼2, 𝛽2),… , (𝛼𝑙 , 𝛽𝑙)). For an equivalence relation
𝐸𝐶, the (𝛼𝑙 , 𝛽𝑙)-lower approximation 𝑎𝑝𝑟(𝛼

𝑙 , 𝛽𝑙 )
𝐸𝐶 and the (𝛼𝑙 , 𝛽𝑙)-upper

approximation 𝑎𝑝𝑟
(𝛼𝑙 , 𝛽𝑙 )

𝐸𝐶 are defined by

𝑝𝑟(𝛼
𝑙 , 𝛽𝑙)

𝐸𝐶
(𝐷𝑙

𝑖) = {𝑥 ∈ 𝑈 𝑙
|𝑃 (𝐷𝑙

𝑖 |[𝑥]𝐸𝐶 ) ≥ 𝛼𝑙},

𝑎𝑝𝑟
(𝛼𝑙 , 𝛽𝑙 )

𝐸𝐶 (𝐷𝑙
𝑖) = {𝑥 ∈ 𝑈 𝑙

|𝑃 (𝐷𝑙
𝑖 |[𝑥]𝐸𝐶 ) > 𝛽𝑙}.

(7)

where 𝑈1 = 𝑈 , 𝑈 𝑙+1 = 𝐵𝑁𝐷(𝛼𝑙 ,𝛽𝑙 )
𝐸𝐶 (𝐷𝑙

𝑖) = 𝑎𝑝𝑟
(𝛼𝑙 , 𝛽𝑙 )

𝐸𝐶 (𝐷𝑙
𝑖) − 𝑎𝑝𝑟(𝛼

𝑙 , 𝛽𝑙 )
𝐸𝐶 (𝐷𝑙

𝑖),
𝑙
𝑖 represents the equivalence class including 𝑥 in the partition 𝑈 𝑙∕𝐷𝑙

𝑖 ,
nd [𝑥]𝐸𝐶 represents the equivalence class including 𝑥 in the partition
𝑙∕𝐸𝐶.

The pair < 𝑎𝑝𝑟(𝛼
𝑙 , 𝛽𝑙 )

𝐸𝐶 , 𝑎𝑝𝑟
(𝛼𝑙 , 𝛽𝑙 )

𝐸𝐶 > is called the 𝑙𝑡ℎ-level lower and up-
per approximations induced by 𝐸𝐶 with respect to 𝐷𝑙

𝑖 in 𝑈 𝑙. Therefore,
we can obtain the three probabilistic regions as follows

𝑃𝑂𝑆(𝛼𝑙 ,𝛽𝑙 )
𝐸𝐶 (𝐷𝑙

𝑖) = 𝑎𝑝𝑟(𝛼
𝑙 , 𝛽𝑙 )

𝐸𝐶
(𝐷𝑙

𝑖)

= {𝑥 ∈ 𝑈 𝑙
|𝑃 (𝐷𝑙

𝑖 |[𝑥]𝐸𝐶 ) ≥ 𝛼𝑙};
(8)

𝐵𝑁𝐷(𝛼𝑙 ,𝛽𝑙 )
𝐸𝐶 (𝐷𝑙

𝑖) = 𝑎𝑝𝑟
(𝛼𝑙 , 𝛽𝑙 )

𝐸𝐶 (𝐷𝑙
𝑖) − 𝑎𝑝𝑟(𝛼

𝑙 , 𝛽𝑙 )
𝐸𝐶

(𝐷𝑙
𝑖)

= {𝑥 ∈ 𝑈 𝑙
| 𝛽𝑙 < 𝑃 (𝐷𝑙

𝑖 |[𝑥]𝐸𝐶 ) < 𝛼𝑙};
(9)

𝑁𝐸𝐺(𝛼𝑙 ,𝛽𝑙 )
𝐸𝐶 (𝐷𝑙

𝑖) = 𝑈 𝑙 − 𝑃𝑂𝑆(𝛼𝑙 ,𝛽𝑙 )
𝐸𝐶 (𝐷𝑙

𝑖) ∪ 𝐵𝑁𝐷(𝛼𝑙 ,𝛽𝑙 )
𝐸𝐶 (𝐷𝑙

𝑖)
𝑙 𝑙 𝑙

(10)
4

= {𝑥 ∈ 𝑈 |𝑃 (𝐷𝑖 |[𝑥]𝐸𝐶 ) ≤ 𝛽 }.
Table 1
An original information table.
𝐼𝐷 𝑄𝐼𝐷 𝑆𝐴

NO. Name Sex Age Unit GPA(𝑑) 𝑓

1 Mary F 20 CT1 3.6 0.8
2 Kelly F 21 IS2 4.0 0.5
3 Tome M 24 ME1 4.3 0.3
4 Mango M 15 BE1 3.4 0.9
5 Lisa F 16 BS1 4.0 0.5
6 Alice F 18 BS2 4.5 0.1
7 Peter M 22 AM2 3.0 0.2
8 White F 22 CT3 3.8 0.9
9 Lili M 25 AM2 2.8 0.7
10 Amy F 19 BE3 4.4 0.6

3. Multi-level personalized k-anonymity privacy-preserving model
based on sequential three-way decisions

In this section, we first propose a hierarchical decision table for k-
anonymity. Then, in order to introduce sequential three-way decisions
into k-anonymity, we present a sequential three-way decision model
for classification. Finally, we propose a generalized multi-level person-
alized k-anonymity privacy-preserving model by combining sequential
three-way decisions model for classification and k-anonymity model.

3.1. Hierarchical decision table for k-anonymity

K-anonymity is a widely-adopted privacy protection model, in which
suppression and generalization are two major operations. In the real-
world applications, the generalization of attribute can form a com-
plete attribute generalization tree and have obvious hierarchical rela-
tions. Thus, to facilitate the construction of multi-level personalized
k-anonymity privacy-preserving model, in this subsection, we define
attribute generalization tree and attribute generalization forest, and
then define a hierarchical decision table for k-anonymity using the
attribute generalization forest and the personalized sensitive decision
values.

Definition 6. Given an information table 𝑇 = {𝑈,𝐴𝑡}, where 𝑈 =
𝑥1, 𝑥2,… , 𝑥𝑛} is a finite non-empty set of objects, 𝐴𝑡 = {𝑎1, 𝑎2,… , 𝑎𝑚}
s a finite nonempty set of attributes. Suppose attribute 𝑎𝑖 has c attribute
eneralization levels, then 𝐺𝑇𝑖 = {𝑎1𝑖 , 𝑎

2
𝑖 ,… , 𝑎𝑐𝑖 } is an attribute general-

zation tree with respect to 𝑎𝑖, where 𝑎𝑙𝑖 represents the set of values for
attribute 𝑎𝑖 generalized to the 𝑙th level (𝑙 = 1, 2,… , 𝑐). 𝐺𝑇 =

⋃𝑚
𝑖=1 𝐺𝑇 𝑖

is the attribute generalization forest of 𝑇 .

Definition 7. Let 𝐻𝐷𝑇 = {𝑈,𝑄𝐼𝐷,𝐷 = (𝑑, 𝑓 )} be a hierarchical de-
cision table for k-anonymity, where 𝑈 = {𝑥1, 𝑥2,… , 𝑥𝑛} is a finite non-
empty set of objects, 𝑄𝐼𝐷 = {{𝑎11, 𝑎

2
1,… , 𝑎𝑐1},

{𝑎12, 𝑎
2
2,… , 𝑎𝑐2},… , {𝑎1𝑚, 𝑎

2
𝑚,… , 𝑎𝑐𝑚}} is a finite non-empty set of quasi-

identifier attributes, 𝑐 is the maximum height of the attribute general-
ization trees for 𝑄𝐼𝐷, 𝐷 denotes the sensitive attribute, 𝑑 denotes the
sensitive attribute value of 𝐷, and 𝑓 denotes the personalized sensitive
decision value of 𝐷, 𝑓 ∈ [0, 1].

It is worth noting that different attributes may generate attribute
generalization trees with inconsistent heights in the real-world prob-
lems. Thus, if there exists |𝐻(𝑎𝑖)| < 𝑐, where |𝐻(𝑎𝑖)| is the height of
the attribute generalization tree for attribute 𝑎𝑖, and 𝑐 is the maximal
height of the generalization trees for 𝑄𝐼𝐷, we supplement the data in
the hierarchical decision table by repeating the values of the maximum
generalization level for 𝑎𝑖.

Example 1. Table 1 is an original information table. ‘‘No.’’ and
‘‘Name’’ are the identification attributes (𝐼𝐷); ‘‘Sex’’, ‘‘Age’’ and ‘‘Unit’’
are the quasi-identifier attributes (𝑄𝐼𝐷); ‘‘𝑆𝐴’’ is the sensitive at-
tribute; ‘‘𝐺𝑃𝐴’’ denotes the sensitive attribute value of 𝑆𝐴; ‘‘𝑓 ’’ denotes
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Fig. 2. The attribute generalization forest of Table 1.
Table 2
The hierarchical decision table for k-anonymity of Table 1.
𝑈 𝑄𝐼𝐷 𝐷

Sex Age Unit SA

𝑎11 𝑎21 𝑎31 𝑎41 𝑎12 𝑎22 𝑎32 𝑎42 𝑎13 𝑎23 𝑎33 𝑎43 GPA(𝑑) 𝑓

𝑥1 F * * * 20 [20, 25) [20, 100) [1, 100] CT1 CT CC Univ 3.6 0.8
𝑥2 F * * * 21 [20, 25) [20, 100) [1, 100] IS2 IS CC Univ 4.0 0.5
𝑥3 M * * * 24 [20, 25) [20, 100) [1, 100] ME1 ME MC Univ 4.3 0.3
𝑥4 M * * * 15 [1, 18) [1, 20) [1, 100] BE1 BE BC Univ 3.4 0.9
𝑥5 F * * * 16 [1, 18) [1, 20) [1, 100] BS1 BS BC Univ 4.0 0.5
𝑥6 F * * * 18 [18, 20) [1, 20) [1, 100] BS2 BS BC Univ 4.5 0.1
𝑥7 M * * * 22 [20, 25) [20, 100) [1, 100] AM2 AM MC Univ 3.0 0.2
𝑥8 F * * * 22 [20, 25) [20, 100) [1, 100] CT3 CT CC Univ 3.8 0.9
𝑥9 M * * * 25 [25, 100) [20, 100) [1, 100] AM2 AM MC Univ 2.8 0.7
𝑥10 F * * * 19 [18, 20) [1, 20) [1, 100] BE3 BE BC Univ 4.4 0.6

the personalized sensitive decision value of 𝑆𝐴. From Definition 6, we
can obtain the attribute generalization forest of 𝑄𝐼𝐷, which are shown
in Fig. 2. Then, we can generate a hierarchical decision table for k-
anonymity by the attribute generalization forest. To do this, we first
obtain that 𝑄𝐼𝐷 = {{𝑎11, 𝑎

2
1}, {𝑎

1
2, 𝑎

2
2, 𝑎

3
2, 𝑎

4
2}, {𝑎

1
3, 𝑎

2
3, 𝑎

3
3, 𝑎

4
3}} by observing

Fig. 2. According to the previous analysis, 𝑐 = 4 and |𝐻(𝑎1)| = 2 <
4, we can supplement the attribute ‘‘Sex’’ by repeating the value of
𝑎21. Finally, we can obtain the final set of quasi-identified attributes
𝑄𝐼𝐷 = {{𝑎11, 𝑎

2
1, 𝑎

3
1, 𝑎

4
1}, {𝑎

1
2, 𝑎

2
2, 𝑎

3
2, 𝑎

4
2}, {𝑎

1
3, 𝑎

2
3, 𝑎

3
3, 𝑎

4
3}}, where 𝑎21 = 𝑎31 =

𝑎41. Table 2 illustrates the hierarchical decision table for k-anonymity
of Table 1.

In the end, by constructing a hierarchical decision table for k-
anonymity, we can perform the unified hierarchical process for both
numerical and category attributes. At the same time, we also consider
the personalized sensitive values and use them as the sensitive deci-
sion values. All these works provide the basis for the construction of
multi-level personalized k-anonymity model.
5

3.2. Sequential three-way decisions model for classification

In order to classify the data with different security requirements into
the appropriate granular spaces in a reasonable manner, in what fol-
lows, we combine the hierarchical decision table for k-anonymity and
the sequential three-way decisions to propose a sequential three-way
decisions model for classification.

Definition 8. Given a hierarchical decision table 𝐻𝐷𝑇 = {𝑈,𝑄𝐼𝐷,𝐷
= (𝑑, 𝑓 )}, a dynamic threshold parameter sequence (𝛼, 𝛽)𝑙 = {(𝛼1,
𝛽1), (𝛼2, 𝛽2),… , (𝛼𝑙 , 𝛽𝑙)}, 𝐸𝐶𝑡 is an equivalence relation induced by
𝑄𝐼𝐷𝑡(𝑡 = 1, 2,… , 𝑙), then the 𝑡th level of granular structure 𝐺𝑆𝑡 is
defined as

𝐺𝑆𝑡 = {𝐻𝐷𝑇𝑡, 𝑄𝐼𝐷𝑡, 𝐸𝐶𝑡, 𝛼
𝑡, 𝛽𝑡} (11)

where 𝐻𝐷𝑇𝑡 denotes a hierarchical decision table for k-anonymity
under the 𝑡th level granular structure 𝐺𝑆𝑡, 𝑄𝐼𝐷𝑡 denotes the quasi-
identifier attributes under 𝐺𝑆𝑡.

Definition 9. For a hierarchical decision table 𝐻𝐷𝑇 = {𝑈,𝑄𝐼𝐷,𝐷 =
(𝑑, 𝑓 )}, where 𝑈 = {𝑥1, 𝑥2,… , 𝑥𝑛} is a finite non-empty set of objects,
𝑄𝐼𝐷 = {𝑎1, 𝑎2,… , 𝑎𝑚} is a finite nonempty set of quasi-identifier at-
tributes, where 𝐷 denotes the sensitive attribute, 𝑑 denotes the sensitive
attribute values of 𝐷, and 𝑓 denotes the personalized sensitive decision
values of 𝐷. Given a dynamic threshold parameter sequence (𝛼, 𝛽)𝑙 =
{(𝛼1, 𝛽1), (𝛼2, 𝛽2),… , (𝛼𝑙 , 𝛽𝑙)}. For a multilevel granular structure
𝐺𝑆 = {𝐺𝑆1, 𝐺𝑆2,… , 𝐺𝑆𝑙}, the (𝛼𝑙 , 𝛽𝑙)-lower approximation 𝑎𝑝𝑟(𝛼

𝑙 , 𝛽𝑙 )
𝐺𝑆𝑙

and the (𝛼𝑙 , 𝛽𝑙)-upper approximation 𝑎𝑝𝑟
(𝛼𝑙 , 𝛽𝑙 )

𝐺𝑆𝑙
are defined by

𝑎𝑝𝑟(𝛼
𝑙 , 𝛽𝑙 )

𝐺𝑆𝑙
(𝐷) = {𝑥 ∈ 𝑈 𝑙

|𝑓𝑥(𝐷) ≥ 𝛼𝑙},

(𝛼𝑙 , 𝛽𝑙 ) 𝑙 𝑙
(12)
𝑎𝑝𝑟𝐺𝑆𝑙
(𝐷) = {𝑥 ∈ 𝑈 |𝑓𝑥(𝐷) > 𝛽 }.
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where 𝑈1 = 𝑈 , 𝑈 𝑙+1 = 𝐵𝑁𝐷(𝛼𝑙 ,𝛽𝑙 )
𝐺𝑆𝑙

(𝐷) = 𝑎𝑝𝑟
(𝛼𝑙 , 𝛽𝑙 )

𝐺𝑆𝑙
(𝐷) − 𝑎𝑝𝑟(𝛼

𝑙 , 𝛽𝑙 )

𝐺𝑆𝑙
(𝐷), and

𝑥(𝐷) represents the sensitive decision value of object 𝑥 corresponding
o the sensitive attribute 𝐷.

The pair < 𝑎𝑝𝑟(𝛼
𝑙 , 𝛽𝑙 )

𝐺𝑆𝑙
, 𝑎𝑝𝑟

(𝛼𝑙 , 𝛽𝑙 )

𝐺𝑆𝑙
> is called the 𝑙th-level lower and

upper approximations induced by 𝐺𝑆𝑙 with respect to 𝐷 in 𝑈 𝑙. Thus, we
can obtain the positive, boundary and negative regions 𝑃𝑂𝑆(𝛼𝑙 ,𝛽𝑙 )

𝐺𝑆𝑙
(𝐷),

𝐵𝑁𝐷(𝛼𝑙 ,𝛽𝑙 )
𝐺𝑆𝑙

(𝐷) and 𝑁𝐸𝐺(𝛼𝑙 ,𝛽𝑙)
𝐺𝑆𝑙

(𝐷) as follows

𝑃𝑂𝑆(𝛼𝑙 ,𝛽𝑙 )
𝐺𝑆𝑙

(𝐷) = 𝑎𝑝𝑟(𝛼
𝑙 , 𝛽𝑙)

𝐺𝑆𝑙
(𝐷)

= {𝑥 ∈ 𝑈 𝑙
|𝑓𝑥(𝐷) ≥ 𝛼𝑙};

(13)

𝑁𝐷(𝛼𝑙 ,𝛽𝑙 )
𝐺𝑆𝑙

(𝐷) = 𝑎𝑝𝑟
(𝛼𝑙 , 𝛽𝑙 )

𝐺𝑆𝑙
(𝐷) − 𝑎𝑝𝑟(𝛼

𝑙 , 𝛽𝑙 )
𝐺𝑆𝑙

(𝐷)

= {𝑥 ∈ 𝑈 𝑙
| 𝛽𝑙 < 𝑓𝑥(𝐷) < 𝛼𝑙};

(14)

𝑁𝐸𝐺(𝛼𝑙 ,𝛽𝑙 )
𝐺𝑆𝑙

(𝐷) = 𝑈 𝑙 − 𝑃𝑂𝑆(𝛼𝑙 ,𝛽𝑙 )
𝐺𝑆𝑙

(𝐷) ∪ 𝐵𝑁𝐷(𝛼𝑙 ,𝛽𝑙 )
𝐺𝑆𝑙

(𝐷)

= {𝑥 ∈ 𝑈 𝑙
|𝑓𝑥(𝐷) ≤ 𝛽𝑙}.

(15)

It is worth mentioning that since the sequential three-way decisions
is a cost-effective way of decision making, the threshold pair (𝛼, 𝛽)𝑙

satisfies the decision-theoretic rough set and can achieve the highest
accuracy at the lowest cost. Furthermore, our proposed sequential
three-way decision model for classification only adjusts the decision
values, and still inherit the advantages of low-cost data classification
of sequential three-way decisions. Example 2 illustrates the application
of sequential three-way decision model for classification with a specific
case.

Example 2. Given a set of objects 𝑈 = {𝑥1, 𝑥2,… , 𝑥17}, a decision class
𝐷, and sensitive decision values 𝑓𝑈 (𝐷) = {0.41, 0.89, 0.54, 0.94, 0.42,
0.48, 0.61, 0.17, 0.56, 0.70, 0.53, 0.85, 0.87, 0.80, 0.62, 0.68, 0.65}.
Let (𝛼, 𝛽)3 = {(0.8 ,0.2), (0.6, 0.5), (0.55, 0.54)}, based on Definition 9,
we can conclude the following

(a) For the first level of granular, 𝑈1 = 𝑈 , (𝛼1, 𝛽1) = (0.8, 0.2), we
can compute
𝑃𝑂𝑆(𝛼1 ,𝛽1)

𝐺𝑆1
(𝐷) = {4, 2, 13, 12, 14};

𝐵𝑁𝐷(𝛼1 ,𝛽1)
𝐺𝑆1

(𝐷) = {10, 16, 17, 15, 7, 9, 3, 11, 6, 5, 1};

𝑁𝐸𝐺(𝛼1 ,𝛽1)
𝐺𝑆1

(𝐷) = {8};

(b) For the second level of granular, 𝑈2 = 𝐵𝑁𝐷(𝛼1 ,𝛽1)
𝐺𝑆1

(D), (𝛼2, 𝛽2) =
(0.6, 0.5), we can compute
𝑃𝑂𝑆(𝛼2 ,𝛽2)

𝐺𝑆2
(𝐷) = {10, 16, 17, 15, 7};

𝐵𝑁𝐷(𝛼2 ,𝛽2)
𝐺𝑆2

(𝐷) = {9, 3, 11};

𝑁𝐸𝐺(𝛼2 ,𝛽2)
𝐺𝑆2

(𝐷) = {6, 5, 1};

(c) For the last level of granular, 𝑈3 = 𝐵𝑁𝐷(𝛼2 ,𝛽2)
𝐺𝑆2

(D), (𝛼3, 𝛽3) =
(0.55, 0.54), we can compute
𝑃𝑂𝑆(𝛼3 ,𝛽3)

𝐺𝑆3
(𝐷) = {9};

𝐵𝑁𝐷(𝛼3 ,𝛽3)
𝐺𝑆3

(𝐷) = ∅;

𝑁𝐸𝐺(𝛼3 ,𝛽3)
𝐺𝑆3

(𝐷) = {3, 11}.

However, since the risk functions 𝜆 may not be consistent in dif-
ferent application scenarios, the threshold sequences (𝛼𝑙 , 𝛽𝑙) used may
not be the same. In this paper, since we cannot consider all scenarios,
the threshold sequence (𝛼𝑙 , 𝛽𝑙) used in our experiments may also not
be applicable to all application scenarios and can only represent some
of them, and we obtain better results, which reflects the usability of
the proposed model. Fortunately, this problem can be well solved in
real applications. This best thresholds can be solved in the practical
applications by calculating accurate risk assessment values given by
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experts, which is beyond the scope of this paper. w
3.3. A generalized multi-level personalized k-anonymity privacy-preserving
model based on sequential three-way decisions (MKS3WD)

In this subsection, we define a multi-level k-anonymity and then
combine the sequential three-way decisions model for classification
and the k-anonymity model to propose a generalized multi-level per-
sonalized k-anonymity privacy-preserving model based on sequential
three-way decisions (MKS3WD).

Definition 10 (Multi-Level k-anonymity). Given a hierarchical decision
table 𝐻𝐷𝑇 = {𝑈,𝑄𝐼𝐷,𝐷 = (𝑑, 𝑓 )}, a dynamic k-value sequence
(𝐻𝐾,𝐿𝐾)𝑙 = {(𝐻𝐾1, 𝐿𝐾1), (𝐻𝐾2, 𝐿𝐾2), ⋯, (𝐻𝐾 𝑙, 𝐿𝐾 𝑙)}, a dynamic
threshold parameter sequence (𝛼, 𝛽)𝑙 = {(𝛼1, 𝛽1), (𝛼2, 𝛽2),… , (𝛼𝑙 , 𝛽𝑙)),
or a multilevel granular structure 𝐺𝑆 = {𝐺𝑆1, 𝐺𝑆2,… , 𝐺𝑆𝑙}, if
𝑂𝑆(𝛼𝑡 ,𝛽𝑡)

𝐺𝑆𝑡
(𝐷) satisfies 𝐻𝐾 𝑡 and 𝑁𝐸𝐺(𝛼𝑡 ,𝛽𝑡)

𝐺𝑆𝑡
(𝐷) satisfies 𝐿𝐾 𝑡(𝑡 = 1, 2,

, 𝑙), then 𝑇 satisfies multi-level k-anonymity.

As we all know, the existing k-anonymity models use a fixed pa-
ameter 𝑘 to anonymize the entire table, which is not suitable for
andling unbalanced data in the real world. To solve this drawback,
e focus on how to personalize data anonymization with different
arameters 𝑘 for different security requirements in this paper. To
o this, we combine the sequential three-way decisions model for
lassification and the k-anonymity model to propose a multi-level
ersonalized k-anonymity privacy-preserving model, using a dynamic
-value sequence (𝐻𝐾,𝐿𝐾)𝑙 to implement the multi-level k-anonymity.
ccording to Definition 10, the dataset satisfies multi-level k-anonymity
hen and only when all the granular datasets satisfy the corresponding
nonymous requirements. Fig. 3 shows our model.

Specifically, our proposed model is implemented in two major
tages. In the first stage, we divide the dataset into l-level granular
tructures by the sequential three-way decisions model for classifica-
ion, and then at each granularity level, we divide the data into three
egions by the sensitive decision values. High and low sensitive data are
ivided into the positive region and negative region, respectively, while
he data with the ambiguous sensitivity will form the boundary region.
n the second stage, we anonymize the positive and negative regions
ith high requirements 𝐻𝐾 𝑙 and low requirements 𝐿𝐾 𝑙, respectively.
or the objects in the boundary regions, we delay anonymizing them
nd process them at the next level for the finer anonymization. As
he level increases, the degree of anonymity decreases in the positive
egions and increases in the negative regions, namely, 𝐻𝐾1 > 𝐻𝐾2 >
> 𝐻𝐾 𝑙 > 𝐿𝐾 𝑙 > ⋯𝐿𝐾2 > 𝐿𝐾1.
However, this hierarchical anonymization approach inevitably raises

new question: how do we handle the remaining data in the up-
er levels that cannot be anonymized? To address this problem, we
resent three practical algorithms to implement our model using secure
ownscaling scheme (SD-MKS3WD), sensitivity extraction scheme (SE-
KS3WD) and equivalence class extraction scheme (ECE-MKS3WD). In
hat follows, we will illustrate these three algorithms in details.

. Three practical algorithms of multi-level personalized k-ano-
ymity privacy-preserving model based on sequential three-way
ecisions

In this section, we mainly investigate how to handle data that
annot be anonymized in the upper levels. It is well known that k-
nonymity defends against linking attacks by ensuring that there are at
east k records in the equivalence group to interfere with the attacker’s
udgment. Thus, when the number of records in the equivalence group
s less than k or the remaining records cannot satisfy k-anonymity
ven generalized to the root node, the remaining data will not be
nonymized successfully, and the number of such unanonymizable data

ill increase with the diversity of k-values.
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Fig. 3. A generalized multi-level personalized k-anonymity privacy-preserving model based on sequential three-way decisions (MKS3WD).
Fig. 4. Three practical algorithms of multi-level personalized k-anonymity privacy-preserving model based on sequential three-way decisions.
To solve this drawback, we propose three practical algorithms to
implement our model. SD-MKS3WD downscales the data that cannot be
anonymized from the upper level to the lower level to process the re-
maining data, SE-MKS3WD processes the remaining data by extracting
the data with the closest sensitivity from the lower levels, and ECE-
MKS3WD directly extracts the equivalence of the remaining data from
the lower levels to achieve the anonymization of remaining data. These
two data extraction algorithms (SE-MKS3WD and ECE-MKS3WD) use
different strategies to extract data from the lower levels, respectively.
Fig. 4 describes the core ideas of these three algorithms.
7

4.1. Multi-level personalized k-anonymity privacy-preserving model based
on sequential three-way decisions using secure downscaling (SD-MKS3WD)

The security downscaling scheme is the simplest, where we merge
the data that cannot be anonymized in the positive and negative regions
with the objects in the boundary region, and then use them as a new
theoretical domain for the next level. In this way, we can link different
granular structures so that the data that cannot be anonymized in the
upper granular structure can be fully utilized, and the data availability
is improved. Fig. 4(a) shows the model of SD-MKS3WD.

Specifically, as shown in Algorithm 1, we first sort the dataset
with the sensitive decision value 𝑓 , then use the sequential three-
way decisions model for classification to divide them into different
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granular structures 𝐺𝑆𝑙. Next, we set up the appropriate k-value pairs
𝐻𝐾 𝑙 , 𝐿𝐾 𝑙) for every granular structure and anonymize them sepa-
ately. For the data that cannot be anonymized at 𝐺𝑆𝑡 (𝑡 = 1, 2,… , 𝑙−1),

we merge them with the objects at 𝐺𝑆𝑡+1 for (𝐻𝐾 𝑡+1, 𝐿𝐾 𝑡+1)-anonymity
and so on. Moreover, it is important to note that for the implementation
of k-anonymity in our algorithm, we adopt the means of suppression
and generalization. Specifically, we build the hierarchical decision table
for k-anonymity, please refer to Section 3.1 for details. First, we take
the quasi-identified attributes of level 1 in the hierarchical decision
table to divide the data into equivalence classes, and if the divided
equivalence groups satisfy k-anonymity, they are imported into the
secure dataset 𝑄 and are not involved in the subsequent operations. On
the contrary, the data that does not satisfy the anonymity requirement
is generalized in the next step by taking the values of the attributes
at level 2 in the hierarchical decision table to divide the equivalence
classes again, and so on until the anonymization is completed or the
quasi-identified attribute reaches the maximum generalization level. If
there are data that still do not satisfy the anonymity requirement even if
the quasi-identified attribute is generalized to the top level, we suppress
it, i.e., delete the whole record. Therefore, on the basis of the above
analysis, this is easy to see that the time complexity of the SD-MKS3WD
is O(𝑚 ⋅ 𝑙).

To make it easier to understand, we also provide a concise expla-
nation with a specific example as shown in Example 3. To simplify the
description, in the following we replace 𝑃𝑂𝑆(𝛼𝑡 ,𝛽𝑡)

𝐺𝑆𝑡
(𝐷), 𝐵𝑁𝐷(𝛼𝑡 ,𝛽𝑡)

𝐺𝑆𝑡
(𝐷),

𝑁𝐸𝐺(𝛼𝑡 ,𝛽𝑡)
𝐺𝑆𝑡

(𝐷) with 𝑃𝑂𝑆𝐺𝑆𝑡
(𝐷), 𝐵𝑁𝐷𝐺𝑆𝑡

(𝐷), 𝑁𝐸𝐺𝐺𝑆𝑡
(𝐷), respectively.

Example 3 (Continued with Example 2). Consider a partition of equiv-
alence classes 𝑈∕𝑄𝐼𝐷 = {{4, 2, 13, 12, 14, 7}, {10, 16, 17, 15, 9},
{3, 11, 5}, {6, 1}, {8}}, a dynamic anonymous parameters sequence
(𝐻𝐾,𝐿𝐾)3 = {(6, 1), (5, 2), (4, 3)}, we can conclude the following

(a) For the first level of granular, 𝑈1 = 𝑈 , (𝛼1, 𝛽1) = (0.8, 0.2),
(𝐻𝐾1, 𝐿𝐾1) = (6, 1), we can compute
𝑃𝑂𝑆𝐺𝑆1

(𝐷) = {4, 2, 13, 12, 14};
𝐵𝑁𝐷𝐺𝑆1

(𝐷) = {10, 16, 17, 15, 7, 9, 3, 11, 6, 5, 1};
𝑁𝐸𝐺𝐺𝑆1

(𝐷) = {8};
The data that cannot be anonymized in the positive and negative
region are {4, 2, 13, 12, 14} and ∅, respectively.

(b) For the second level of granular, 𝑈2 = {4, 2, 13, 12, 14} ∪
𝐵𝑁𝐷𝐺𝑆1

(𝐷) = {4, 2, 13, 12, 14, 10, 16, 17, 15, 7, 9, 3, 11, 6, 5,
1}, (𝛼2, 𝛽2) = (0.6, 0.5), (𝐻𝐾2, 𝐿𝐾2) = (5, 2), we can compute
𝑃𝑂𝑆𝐺𝑆2

(𝐷) = {4, 2, 13, 12, 14, 10, 16, 17, 15, 7};
𝐵𝑁𝐷𝐺𝑆2

(𝐷) = {9, 3, 11};
𝑁𝐸𝐺𝐺𝑆2

(𝐷) = {6, 5, 1};
Since {4, 2, 13, 12, 14, 7} satisfies 5-anonymity and {6, 1} satisfies
2-anonymity, the data that cannot be anonymized in the positive
and negative region are {10, 16, 17, 15} and {5}, respectively.

(c) For the last level of granular, 𝑈3 = 𝐵𝑁𝐷𝐺𝑆2
(𝐷)∪{10, 16, 17, 15}∪

{5} = {10, 16, 17, 15, 9, 3, 11, 5}, (𝛼3, 𝛽3) = (0.55, 0.54),
(𝐻𝐾3, 𝐿𝐾3) = (4, 3), we can compute
𝑃𝑂𝑆𝐺𝑆3

(𝐷) = {10, 16, 17, 15, 9};
𝐵𝑁𝐷𝐺𝑆3

(𝐷) = ∅;
𝑁𝐸𝐺𝐺𝑆3

(𝐷) = {3, 11, 5};
Since {10, 16, 17, 15, 9} satisfies 4-anonymity and {3, 11, 5} satis-
fies 3-anonymity, all data satisfy the anonymity requirements.
Output securely publishable dataset 𝑄 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6,
𝑥7, 𝑥8, 𝑥9, 𝑥10, 𝑥11, 𝑥12, 𝑥13, 𝑥14, 𝑥15, 𝑥16, 𝑥17}, the algorithm
terminates.

However, since the degree of anonymity decreases level by level
or positive regions (𝐻𝐾 𝑡+1 < 𝐻𝐾 𝑡), SD-MKS3WD may cause some
ata with high anonymity requirements to reduce their requirements
or anonymity, which affects the security of the data. To solve this
8

roblem, we treat the remaining data in the positive and negative
Algorithm 1: Secure downscaling scheme (SD-MKS3WD).
input : An universal set of object, 𝑈 , a dynamic threshold

sequence, (𝛼, 𝛽)𝑙 = {(𝛼1, 𝛽1), (𝛼2, 𝛽2),⋯ , (𝛼𝑙 , 𝛽𝑙)), the
maximum attribute level, 𝑚, a dynamic k-value
sequence, (𝐻𝐾,𝐿𝐾)𝑙 = {(𝐻𝐾1, 𝐿𝐾1), (𝐻𝐾2, 𝐿𝐾2)
,⋯ , (𝐻𝐾 𝑙 , 𝐿𝐾 𝑙)}.

output: Secure Database 𝑄.

1 Import sensitive decision values and sort them from highest to
lowest;

2 𝑡 = 1, 𝑈 𝑡 = 𝑈,𝑄 = ∅ ;
3 for 𝑡 ← 1 to 𝑙 do
4 if 𝑈 𝑡 = ∅ or 𝑡 > 𝑙, then break;
5 end if;
6 Compute 𝑃𝑂𝑆𝐺𝑆𝑡

(𝐷) = {𝑥 ∈ 𝑈 𝑡
|𝑓𝑥(𝐷) ≥ 𝛼𝑡},

𝐵𝑁𝐷𝐺𝑆𝑡
(𝐷) ={𝑥 ∈ 𝑈 𝑡

| 𝛽𝑡 < 𝑓𝑥(𝐷) < 𝛼𝑡} and
𝑁𝐸𝐺𝐺𝑆𝑡

(𝐷) = {𝑥 ∈ 𝑈 𝑡
|𝑓𝑥(𝐷) ≤ 𝛽𝑡};

7 𝑐 = 1;
8 for 𝑐 ← 1 to 𝑚 do
9 if 𝑃𝑂𝑆𝐺𝑆𝑡

(𝐷) = ∅ or 𝑁𝐸𝐺𝐺𝑆𝑡
(𝐷) = ∅ then

10 break;
11 end if;
12 𝑈𝑛𝑠𝑎𝑓𝑒𝐷𝑎𝑡𝑎 = ∅ ;
13 check whether 𝑃𝑂𝑆 ′

𝐺𝑆𝑡
(𝐷) satisfies 𝐻𝐾 𝑡-anonymity or

𝑁𝐸𝐺′

𝐺𝑆𝑡
(𝐷) satisfies 𝐿𝐾 𝑡-anonymity;

14 if satisfies then
15 𝑄+ = 𝑃𝑂𝑆 ′

𝐺𝑆𝑡
(𝐷) or 𝑄+ = 𝑁𝐸𝐺′

𝐺𝑆𝑡
(𝐷) ;

16 else
17 𝑈𝑛𝑠𝑎𝑓𝑒𝐷𝑎𝑡𝑎+ = 𝑃𝑂𝑆 ′

𝐺𝑆𝑡
(𝐷) or

𝑈𝑛𝑠𝑎𝑓𝑒𝐷𝑎𝑡𝑎+ = 𝑁𝐸𝐺′

𝐺𝑆𝑡
(𝐷) ;

18 end if;
19 end check;
20 if 𝑈𝑛𝑠𝑎𝑓𝑒𝐷𝑎𝑡𝑎 ≠ ∅ then
21 𝑐 = 𝑐 + 1, 𝑃𝑂𝑆𝐺𝑆𝑡

(𝐷) = 𝑈𝑛𝑠𝑎𝑓𝑒𝐷𝑎𝑡𝑎 or
𝑁𝐸𝐺𝐺𝑆𝑡

(𝐷) = 𝑈𝑛𝑠𝑎𝑓𝑒𝐷𝑎𝑡𝑎; turn to line 8;
22 else
23 break;
24 end if;
25 end
26 𝑈 𝑡+1 = 𝐵𝑁𝐷𝐺𝑡

(𝐷)+𝑈𝑛𝑠𝑎𝑓𝑒𝐷𝑎𝑡𝑎;
27 𝑡 = 𝑡 + 1; turn to line 3;
28 end
29 Output 𝑄;

regions differently and propose two new algorithms: sensitivity extrac-
tion scheme (SE-MKS3WD) and equivalence class extraction scheme
(ECE-MKS3WD).

Specifically, we first use the three-way decisions to divide the
dataset into three regions, and the positive and negative regions are di-
vided into two separate parts with different anonymization approaches.
Due to the highly sensitive data are concentrated in the positive region,
we adopt a stricter anonymization approach for the positive region to
prevent privacy leakage: we process the highly sensitive records first,
and only after ensuring that all highly sensitive records are success-
fully anonymized, the next level of processing is performed (𝐻𝐾 𝑡 >
𝐻𝐾 𝑡+1). However, for the negative region, we process the low-sensitive
data first, and the low-sensitive records that cannot be anonymized
will enter the high-sensitive level to assist the high anonymization
implementation (𝐿𝐾 𝑡 < 𝐿𝐾 𝑡+1). Fig. 4(b) depicts the two different
strategies in the positive and negative regions. Obviously, compared
to the traditional hierarchical anonymity, our model is more flexible
and requires less costly cost.
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In what follows, we will introduce these two algorithms (SE-MK-
S3WD and ECE-MKS3WD) in details.

4.2. Multi-level personalized k-anonymity privacy-preserving model based
on sequential three-way decisions using sensitivity extraction (SE-MKS3WD)

In this subsection, we improve the approach for handling positive
regions in SD-MKS3 W to achieve strict anonymity, and prioritize the
anonymization of data with high anonymization requirements in the
upper levels. For data that cannot be anonymized in the upper level, we
extract the data with the closest sensitivity to the remaining data from
the lower levels until all remaining data are successfully anonymized.

As shown in Algorithm 2, we sort the dataset in order of the
sensitive decision values from highest to lowest in line 1. From line
2 to 30, we use the sequential three-way decisions for classification
to divide the dataset into different granular structures and anonymize
each granular structure individually. To do this, in line 6, we divide the
positive, negative and boundary regions for every granularity level by
the sensitive decision values. From line 7 to 22, we determine whether
the data in the positive region satisfy 𝐻𝐾-anonymity, and directly
store the data which satisfies 𝐻𝐾-anonymity into the secure database

. During this process, we still adopt the k-anonymity approach from
lgorithm 1. Finally, from line 23 to 27, for the remaining data, we
xtract the data with the closest sensitivity to them from the lower
evels. Due to the sorting in the line 1, we only need to extract the first
ata from the next level. From line 28 to 30, we start the anonymization
rocess for the next level only when all the remaining data in the
pper level are successfully anonymized. In line 32, we export the final
ataset that can be safely published. In summary, it is easy to observe
hat the time complexity of Algorithm 2 is O(𝑚 ⋅ 𝑙2).

Example 4 illustrates the SE-MKS3WD using the same case in Ex-
ample 2. Note that Algorithm 2 only describes how the sensitivity
extraction scheme handles the data in the positive region, and the
negative region is handled in the same way as in Algorithm 1 and will
not be repeated.

Example 4 (Continued with Example 2). Consider a partition of equiva-
lence classes 𝑈∕𝑄𝐼𝐷 = {{4, 2, 13, 12, 14, 7}, {10, 16, 17, 15, 9}, {3,
11, 5}, {6, 1}, {8}}, a dynamic k-value sequence (𝐻𝐾,𝐿𝐾)3 = {(6, 1),
(5, 2), (4, 3)}, we can conclude the following

(a) For the first level of granular, 𝑈1 = 𝑈 , (𝛼1, 𝛽1) = (0.8, 0.2),
(𝐻𝐾1, 𝐿𝐾1) = (6, 1), we can compute
𝑃𝑂𝑆𝐺𝑆1

(𝐷) = {4, 2, 13, 12, 14};
𝐵𝑁𝐷𝐺𝑆1

(𝐷) = {10, 16, 17, 15, 7, 9, 3, 11, 6, 5, 1};
𝑁𝐸𝐺𝐺𝑆1

(𝐷) = {8};
The data that cannot be anonymized in the positive and negative
region are {4, 2, 13, 12, 14} and ∅, respectively. Thus, in order
to handle the remaining data in the positive region, we can
extract the data with the closest sensitivity from the next levels
until anonymization is completed. According to Algorithm 2, we
can compute 𝑃𝑂𝑆𝐺𝑆2

(𝐷) = {10, 16, 17, 15, 7}. Since we sorted
the data by sensitive attribute values in advance, we only need
to extract the records in 𝑃𝑂𝑆𝐺𝑆2

(𝐷) one by one sequentially
until all the remaining data have been successfully anonymized.
𝑃𝑂𝑆𝑖

𝐺𝑆 1
(𝐷) denotes the dataset after the 𝑖th extraction in the

positive region. The following is the exact extraction process.
𝑃𝑂𝑆1

𝐺𝑆 1
(𝐷) = {4, 2, 13, 12, 14, 10};

𝑃𝑂𝑆2
𝐺𝑆 1

(𝐷) = {4, 2, 13, 12, 14, 10, 16};
𝑃𝑂𝑆3

𝐺𝑆 1
(𝐷) = {4, 2, 13, 12, 14, 10, 16, 17};

𝑃𝑂𝑆4
𝐺𝑆 1

(𝐷) = {4, 2, 13, 12, 14, 10, 16, 17, 15};
𝑃𝑂𝑆5

𝐺𝑆 1
(𝐷) = {4, 2, 13, 12, 14, 10, 16, 17, 15, 7}.

Obviously, after extracting the data five times, {4, 2, 13, 12,
14, 7} satisfies 6-anonymity and the data in the positive re-
gion that cannot be anonymized is {10, 16, 17, 15}. At this time,
9

Algorithm 2: Sensitivity extraction scheme (SE-MKS3WD).
input : An universal set of object, 𝑈 ; a dynamic threshold

sequence, (𝛼, 𝛽)𝑙 = {(𝛼1, 𝛽1), (𝛼2, 𝛽2),⋯ , (𝛼𝑙 , 𝛽𝑙)); the
maximum attribute level, 𝑚; a dynamic k-value
sequence, (𝐻𝐾,𝐿𝐾)𝑙 = {(𝐻𝐾1, 𝐿𝐾1), (𝐻𝐾2, 𝐿𝐾2), ⋯,
(𝐻𝐾 𝑙 , 𝐿𝐾 𝑙)}.

output: Secure Database 𝑄.

1 Import sensitive decision values and sort them from highest to
lowest;

2 𝑡 = 1, 𝑈 𝑡 = 𝑈,𝑄 = ∅ ;
3 for 𝑡 ← 1 to 𝑙 do
4 if 𝑈 𝑡 = ∅ or 𝑡 > 𝑙, then break;
5 end if;
6 Compute 𝑃𝑂𝑆𝐺𝑆𝑡

(𝐷) = {𝑥 ∈ 𝑈 𝑡
|𝑓𝑥(𝐷) ≥ 𝛼𝑡},

𝐵𝑁𝐷𝐺𝑆𝑡
(𝐷) ={𝑥 ∈ 𝑈 𝑡

| 𝛽𝑡 < 𝑓𝑥(𝐷) < 𝛼𝑡} and
𝑁𝐸𝐺𝐺𝑆𝑡

(𝐷) = {𝑥 ∈ 𝑈 𝑡
|𝑓𝑥(𝐷) ≤ 𝛽𝑡};

7 𝑐 = 1;
8 for 𝑐 ← 1 to 𝑚 do
9 if 𝑃𝑂𝑆𝐺𝑆𝑡

(𝐷) = ∅ then break;
10 end if;
11 𝑈𝑛𝑠𝑎𝑓𝑒𝐷𝑎𝑡𝑎 = ∅ ;
12 check whether 𝑃𝑂𝑆 ′

𝐺𝑆𝑡
(𝐷) satisfies 𝐻𝐾 𝑡-anonymity;

13 if satisfies then
14 𝑄+ = 𝑃𝑂𝑆 ′

𝐺𝑆𝑡
(𝐷);

15 else
16 𝑈𝑛𝑠𝑎𝑓𝑒𝐷𝑎𝑡𝑎+ = 𝑃𝑂𝑆 ′

𝐺𝑆𝑡
(𝐷);

17 end if; end check;
18 if 𝑈𝑛𝑠𝑎𝑓𝑒𝐷𝑎𝑡𝑎 ≠ ∅ then
19 𝑐 = 𝑐 + 1, 𝑃𝑂𝑆𝐺𝑆𝑡

(𝐷) = 𝑈𝑛𝑠𝑎𝑓𝑒𝐷𝑎𝑡𝑎; turn to line 8;
20 else break;
21 end if;
22 end
23 if 𝑈𝑛𝑠𝑎𝑓𝑒𝐷𝑎𝑡𝑎 ≠ ∅ and 𝑡 + 1 ≤ 𝑙 then Compute

𝑈 𝑡+1 = 𝐵𝑁𝐷𝐺𝑆𝑡
(𝐷),

𝑃𝑂𝑆𝐺𝑆𝑡+1
(𝐷) = {𝑥 ∈ 𝑈 𝑡+1

|𝑓𝑥(𝐷) ≥ 𝛼𝑡+1};
24 if 𝑃𝑂𝑆𝐺𝑡+1

(𝐷) ≠ ∅ then
25 Extract the first record 𝑃𝑂𝑆𝐺𝑆1

𝑡+1
(𝐷) from 𝑃𝑂𝑆𝐺𝑆𝑡+1

(𝐷),
𝑃𝑂𝑆𝐺𝑆𝑡

(𝐷) =𝑈𝑛𝑠𝑎𝑓𝑒𝐷𝑎𝑡𝑎 + 𝑃𝑂𝑆𝐺𝑆1
𝑡+1

(𝐷),
𝐵𝑁𝐷𝐺𝑆𝑡

(𝐷) = 𝐵𝑁𝐷𝐺𝑆𝑡
(𝐷) − 𝑃𝑂𝑆𝐺𝑆1

𝑡+1
(𝐷); turn to line 7;

26 else 𝑡 = 𝑡 + 1, turn to line 23;
27 end if;
28 else
29 𝑈 𝑡+1 = 𝐵𝑁𝐷𝐺𝑆𝑡

(𝐷), 𝑡 = 𝑡 + 1; turn to line 3;
30 end if;
31 end
32 Output 𝑄;

𝑃𝑂𝑆𝐺𝑆2
(𝐷) = ∅, we can continue to compute 𝑃𝑂𝑆𝐺𝑆3

(𝐷) = {9},
make the next data extraction:
𝑃𝑂𝑆6

𝐺𝑆 1
(𝐷) = {10, 16, 17, 15, 9};

Since the data of next levels is empty (𝑃𝑂𝑆𝐺𝑆2
(𝐷) = ∅ and

𝑃𝑂𝑆𝐺𝑆3
(𝐷) = ∅), the anonymity of the first level finishes.

(b) For the second level of granular, 𝑈2 = {3, 11, 6, 5, 1}, (𝛼2, 𝛽2) =
(0.6, 0.5), (𝐻𝐾2, 𝐿𝐾2) = (5, 2), we can compute
𝑃𝑂𝑆𝐺𝑆2

(𝐷) = ∅;
𝐵𝑁𝐷𝐺𝑆2

(𝐷) = {3, 11};
𝑁𝐸𝐺𝐺𝑆2

(𝐷) = {6, 5, 1}.
Since {6, 1} satisfies 2-anonymity, the data which cannot be
anonymized in the positive and negative region are ∅ and {5},

respectively.



Expert Systems With Applications 239 (2024) 122343J. Qian et al.
(c) For the last level of granular, 𝑈3 = {3, 11, 5}, (𝛼3, 𝛽3) = (0.55,
0.54), (𝐻𝐾3, 𝐿𝐾3) = (4, 3), we can compute
𝑃𝑂𝑆𝐺𝑆3

(𝐷) = ∅;
𝐵𝑁𝐷𝐺𝑆3

(𝐷) = ∅;
𝑁𝐸𝐺𝐺𝑆3

(𝐷) = {5, 3, 11};
Since {5, 3, 11} satisfies 3-anonymity, all data satisfy the anony-
mity requirements.
Output securely publishable dataset 𝑄 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6,
𝑥7, 𝑥8, 𝑥11, 𝑥12, 𝑥13, 𝑥14}, the algorithm terminates.

4.3. Multi-level personalized k-anonymity privacy-preserving model based
on sequential three-way decisions using equivalence class extraction (ECE-
MKS3WD)

By observing Example 3, it is not difficult to find that directly
extracting the data with the closest sensitivity may result in invalid
extracted data (For example, the dataset {𝑥10, 𝑥16, 𝑥17, 𝑥15} in Exam-
ple 3). To address this problem, in this subsection, we construct another
algorithm (ECE-MKS3WD) to process the remaining data in the upper
levels by extracting the equivalence classes from the lower levels,
as shown in Algorithm 3. Different from SE-MKS3WD, ECE-MKS3WD
extracts only the equivalence classes of the remaining data from the
lower levels to avoid extracting invalid data. Thus, Algorithm 3 has
the same time complexity as Algorithm 2 as O(𝑚 ⋅ 𝑙2).

In order to compare the advantages of different schemes for the
same dataset, Example 5 still uses the same case from Example 2 to
describe the ECE-MKS3WD. Note that same as Algorithm 2, Algorithm
3 only describes how to handle data in the positive region, and the
negative region is handled in the same way as Algorithm 1, and will
not be repeated.

Example 5 (Continued with Example 2). Consider a partition of equiva-
lence classes 𝑈∕𝑄𝐼𝐷 = {{4, 2, 13, 12, 14, 7}, {10, 16, 17, 15, 9}, {3,
11, 5}, {6, 1}, {8}}, a dynamic k-value sequence (𝐻𝐾,𝐿𝐾)3 = {(6, 1),
(5, 2), (4, 3)}, and we can conclude the following

(a) For the first level of granular, 𝑈1 = 𝑈 , (𝛼1, 𝛽1) = (0.8, 0.2),
(𝐻𝐾1, 𝐿𝐾1) = (6, 1), we can compute
𝑃𝑂𝑆𝐺𝑆1

(𝐷) = {4, 2, 13, 12, 14};
𝐵𝑁𝐷𝐺𝑆1

(𝐷) = {10, 16, 17, 15, 7, 9, 3, 11, 6, 5, 1};
𝑁𝐸𝐺𝐺𝑆1

(𝐷) = {8};
The data that cannot be anonymized in the positive and neg-
ative region are {4, 2, 13, 12, 14} and ∅, respectively. To avoid
extracting invalid data, different from Example 4, we extract
the equivalent class of the remaining data from the next levels
directly, and we can compute 𝑃𝑂𝑆𝐺𝑆2

(𝐷) = {10, 16, 17, 15, 7},
Since {4, 2, 13, 12, 14, 7} is an equivalence group, we extract {7}
from 𝑃𝑂𝑆𝐺𝑆2

(𝐷), we can compute
𝑃𝑂𝑆1

𝐺𝑆 1
(𝐷) = {4, 2, 13, 12, 14, 7};

Since 𝑃𝑂𝑆1
𝐺𝑆 1

(𝐷) satisfies 6-anonymity, the first level of anony-
mity is completed.

(b) For the second level of granular, 𝑈2 = {10, 16, 17, 15, 9, 3, 11, 6,
5, 1}, (𝛼2, 𝛽2) = (0.6, 0.5), (𝐻𝐾2, 𝐿𝐾2) = (5, 2), we can compute
𝑃𝑂𝑆𝐺𝑆2

(𝐷) = {10, 16, 17, 15};
𝐵𝑁𝐷𝐺𝑆2

(𝐷) = {9, 3, 11};
𝑁𝐸𝐺𝐺𝑆2

(𝐷) = {6, 5, 1};
Since {6, 1} satisfies 2-anonymity, the data which cannot be
anonymized in the positive and negative region are {10, 16, 17,
15} and {5}, respectively. And we can compute 𝑃𝑂𝑆𝐺𝑆3

(𝐷) =
{9}, Since {10, 16, 17, 15, 9} is an equivalence group, we extract
{9} from 𝑃𝑂𝑆𝐺𝑆3

(𝐷), we can compute
𝑃𝑂𝑆1

𝐺𝑆 2
(𝐷) = {10, 16, 17, 15, 9};

Since 𝑃𝑂𝑆1
𝐺𝑆 2

(𝐷) satisfies 5-anonymity, the second level of
10

anonymity is completed.
Algorithm 3: Equivalence class extraction scheme (ECE-
MKS3WD).

input : An universal set of object, 𝑈 ; a dynamic threshold
sequence, (𝛼, 𝛽)𝑙 = {(𝛼1, 𝛽1), (𝛼2, 𝛽2), ⋯, (𝛼𝑙 , 𝛽𝑙); the
maximum attribute level, 𝑚; and a dynamic k-value
sequence, (𝐻𝐾,𝐿𝐾)𝑙 = {(𝐻𝐾1, 𝐿𝐾1), (𝐻𝐾2, 𝐿𝐾2), ⋯,
(𝐻𝐾 𝑙 , 𝐿𝐾 𝑙)}.

output: Secure Database 𝑄.

1 Import sensitive decision values and sort them from highest to
lowest;

2 𝑡 = 1, 𝑈 𝑡 = 𝑈,𝑄 = ∅ ;
3 for 𝑡 ← 1 to 𝑙 do
4 if 𝑈 𝑡 = ∅ or 𝑡 > 𝑙, then break;
5 end if;
6 Compute 𝑃𝑂𝑆𝐺𝑆𝑡

(𝐷) = {𝑥 ∈ 𝑈 𝑡
|𝑓𝑥(𝐷) ≥ 𝛼𝑡},

𝐵𝑁𝐷𝐺𝑆𝑡
(𝐷) ={𝑥 ∈ 𝑈 𝑡

| 𝛽𝑡 < 𝑓𝑥(𝐷) < 𝛼𝑡} and
𝑁𝐸𝐺𝐺𝑆𝑡

(𝐷) = {𝑥 ∈ 𝑈 𝑡
|𝑓𝑥(𝐷) ≤ 𝛽𝑡};

7 𝑐 = 1;
8 for 𝑐 ← 1 to 𝑚 do
9 if 𝑃𝑂𝑆𝐺𝑆𝑡

(𝐷) = ∅ then break;
10 end if;
11 𝑈𝑛𝑠𝑎𝑓𝑒𝐷𝑎𝑡𝑎 = ∅ ;
12 check whether 𝑃𝑂𝑆 ′

𝐺𝑆𝑡
(𝐷) satisfies 𝐻𝐾 𝑡-anonymity;

13 if satisfies then
14 𝑄+ = 𝑃𝑂𝑆 ′

𝐺𝑆𝑡
(𝐷);

15 else
16 𝑈𝑛𝑠𝑎𝑓𝑒𝐷𝑎𝑡𝑎+ = 𝑃𝑂𝑆 ′

𝐺𝑆𝑡
(𝐷);

17 end if;
18 end check;
19 if 𝑈𝑛𝑠𝑎𝑓𝑒𝐷𝑎𝑡𝑎 ≠ ∅ then
20 𝑐 = 𝑐 + 1, 𝑃𝑂𝑆𝐺𝑆𝑡

(𝐷) = 𝑈𝑛𝑠𝑎𝑓𝑒𝐷𝑎𝑡𝑎; turn to line 8;
21 else break;
22 end if;
23 end
24 if 𝑈𝑛𝑠𝑎𝑓𝑒𝐷𝑎𝑡𝑎 ≠ ∅ and 𝑡 + 1 ≤ 𝑙 then Compute

𝑈 𝑡+1 = 𝐵𝑁𝐷𝐺𝑆𝑡
(𝐷),

𝑃𝑂𝑆𝐺𝑆𝑡+1
(𝐷) = {𝑥 ∈ 𝑈 𝑡+1

|𝑓𝑥(𝐷) ≥ 𝛼𝑡+1};
25 if 𝑃𝑂𝑆𝐺𝑡+1

(𝐷) ≠ ∅ then
26 Extract an equivalence class 𝐸𝐶𝐺𝑆𝑡+1

of 𝑈𝑛𝑠𝑎𝑓𝑒𝐷𝑎𝑡𝑎 from
𝑃𝑂𝑆𝐺𝑆𝑡+1

(𝐷), 𝑃𝑂𝑆𝐺𝑆𝑡
(𝐷) =𝑈𝑛𝑠𝑎𝑓𝑒𝐷𝑎𝑡𝑎 + 𝐸𝐶𝐺𝑆𝑡+1

,
𝐵𝑁𝐷𝐺𝑆𝑡

(𝐷) = 𝐵𝑁𝐷𝐺𝑆𝑡
(𝐷) − 𝐸𝐶𝐺𝑆𝑡+1

; turn to line 7;
27 else 𝑡 = 𝑡 + 1, turn to line 24;
28 end if;
29 else
30 𝑈 𝑡+1 = 𝐵𝑁𝐷𝐺𝑆𝑡

(𝐷), 𝑡 = 𝑡 + 1; turn to line 3;
31 end if;
32 end
33 Output 𝑄;

(c) For the last level of granular, 𝑈3 = {3, 11, 5}, (𝛼3, 𝛽3) = (0.55,
0.54), (𝐻𝐾3, 𝐿𝐾3) = (4, 3), we can compute
𝑃𝑂𝑆𝐺𝑆3

(𝐷) = ∅;
𝐵𝑁𝐷𝐺𝑆3

(𝐷) = ∅;
𝑁𝐸𝐺𝐺𝑆3

(𝐷) = {5, 3, 11}.
Since 𝑁𝐸𝐺𝐺𝑆3

(𝐷) satisfies 3-anonymity, all data satisfy the
anonymity requirements.
Output securely publishable dataset 𝑄 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6,
𝑥7, 𝑥8, 𝑥9, 𝑥10, 𝑥11, 𝑥12, 𝑥13, 𝑥14, 𝑥15, 𝑥16, 𝑥17}, the algorithm

terminates.
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By observing Example 5, it is clear that the ECE-MKS3WD further
improves the data availability compared to the SE-MKS3WD. Moreover,
it is worth noting that in all three algorithms, for data that cannot be
anonymized even after the algorithm ends, we judge them as unsuitable
for publication and discard them directly.

4.4. Algorithm analysis and discussion

(1) Security Analysis
In this paper, we combine the k-anonymity model and sequential

three-way decisions to propose a multi-level personalized k-anonymity
privacy-preserving model based on sequential three-way decisions.
Therefore, fundamentally, the privacy-preserving effect of the proposed
methods is based on the k-anonymity. According to the previous
analysis, the proposed models all satisfy the multi-level k-anonymity
principle in Definition 10, and have high security. The specific security
analysis is provided as follows.

Theorem 1. In the proposed methods of this paper, for any 𝑡 (𝑡 =
, 2,… , 𝑙), where 𝑙 represents the total level of division, the risk of privacy
eakage in the positive probability region (𝑃𝑂𝑆(𝛼𝑡 ,𝛽𝑡)

𝐺𝑆𝑡
(𝐷)) is 1

𝐻𝐾 𝑡 , and the
risk of privacy leakage in the negative probability region (𝑁𝐸𝐺(𝛼𝑡 ,𝛽𝑡)

𝐺𝑆𝑡
(𝐷)) is

1
𝐿𝐾 𝑡 .

roof. In this paper, three practical algorithms (SD-MKS3WD, SE-
KS3WD and ECE-MKS3WD) are proposed to realize the proposed
odel. According to the previous analysis, these three algorithms adopt

he same data anonymization principle, and all of them satisfy the
ulti-level k-anonymity principle.

Specifically, each of these algorithms first classifies data with dif-
erent sensitivities into different levels of granularity structure by the
equential three-way decisions model for classification, and then makes
he data in the different granularity structures satisfy the personalized
-anonymity, respectively. According to Definition 10, for any 𝑡 (𝑡 =
, 2,… , 𝑙), where 𝑙 represents the total level of division, the proposed
lgorithms ensure that the probabilistic positive regions all satisfy
𝐾 𝑡-anonymity and the probabilistic negative regions all satisfy 𝐿𝐾 𝑡-

nonymity. Meanwhile, according to Definition 3, it is not difficult to
onclude that the privacy leakage risk of a dataset that satisfies k-
nonymity is 1

𝑘 . Thus, for our algorithms, the risk of privacy leakage
n the positive probability region (𝑃𝑂𝑆(𝛼𝑡 ,𝛽𝑡)

𝐺𝑆𝑡
(𝐷)) is 1

𝐻𝐾 𝑡 , and the risk
of privacy leakage in the negative probability region (𝑁𝐸𝐺(𝛼𝑡 ,𝛽𝑡)

𝐺𝑆𝑡
(𝐷)) is

1
𝐿𝐾 𝑡 .

(2) Algorithm Discussion
According to the previous analysis, this paper introduces the se-

uential three-way decisions into the k-anonymity, and then proposes
multi-level personalized k-anonymity privacy protection model based
n sequential three-way decisions. The proposed methods make the
ata anonymization more flexible and provide a new idea for the
ealization of multilevel privacy protection, but there are still some vul-
erabilities and problems that need further exploration and research.

First of all, the proposed model is an extended model based on k-
nonymity, therefore, the security of the proposed algorithms depends
n the security of k-anonymity. In fact, k-anonymity has been proved
o be vulnerable to many attacks at present, thus, the security of
he proposed model needs to be improved. For this problem, we can
earn about the latest data anonymization techniques and then explore
hether they can be applied to the proposed algorithmic framework

o improve the security, which is also a focus of our next work. In
ddition, ‘‘how to set the appropriate dynamic k-value sequence’’ is also
problem that needs to be solved. As known, personalized anonymity
11

i

Table 3
Description of the datasets.

No. Dataset |𝑈 | |𝑄𝐼𝐷|

1 Glass Identification 214 9
2 Statlog 690 14
3 Winequality-red 1599 11
4 Abalone 4177 8
5 Agaricus-lepiota 8124 16
6 MAGIC Gamma Telescope 19 020 10

is an uncertainty problem, and the personalization sensitivity value
directly affects the degree of anonymity that the data should attain.
However, the personalization sensitive value generally depends on the
personal preference of the data provider, which is ambiguous and
unstable. Therefore, how to set the appropriate k-value sequence is also
an uncertain problem with strong subjectivity. In order to solve this
problem, we may try to combine various aspects such as the subjective
needs of data providers and the environmental needs of anonymized
data distribution, and propose a comprehensive metric function to
provide a theoretical basis for the setting of dynamic k-value sequences.
The specific solution is also what we need to focus on afterwards.

5. Experimental results and analysis

In this section, some experiments are conducted to evaluate the
utility of the proposed algorithms. We implement these experiments on
a personal computer with Intel(R) Core (TM) i5-1135G7 @ 2.40 GHz
2.42 GHz; 16.0 GB (RAM) memory. The software is Eclipse IDE 2022-
03.

5.1. Data sets

The datasets we used are all publicly available datasets from the
UCI Machine Learning Repository, which are described in Table 3.
Before starting our experiments, we pre-processed the selected datasets.
We remove the records with missing values and employ Rosetta soft-
ware (http://www.lcb.uu.se/tools/rosetta/) to transform the continu-
ous data into the discrete values Since the original datasets do not have
the personalized sensitive values, we randomly inserted a personalized
sensitive value in the range [0, 1] for each record in order to facilitate
the subsequent experiments. In addition, we constructed the attribute
generalization trees for the quasi-identifier attributes (𝑄𝐼𝐷) based on
the general social cognition, and then stratified the experimental data.

5.2. Cost metric

During the anonymization process, we inevitably lose some orig-
inal information and generate some information loss, which directly
affect the usability of the data. Therefore, information loss is an im-
portant metric to measure the performance of a privacy-preserving
algorithm. In this paper, considering the k-anonymity approach used
in the proposed algorithms, we define two evaluation functions to
measure the information loss, namely, information suppression rate
(𝐼𝑆𝑅) and information generalization rate (𝐼𝐺𝑅).

Definition 11 (Information Suppression Rate, ISR). Given an original
information table 𝑇 , 𝑇 ′ is a dataset that can be safely published after
anonymization, the information suppression rate of 𝑇 is defined as
follows

𝐼𝑆𝑅 =
|𝑇 | − |𝑇 ′

|

|𝑇 |
(16)

here |𝑇 | and |𝑇 ′
| denote the total number of records in the original

nformation table 𝑇 and the securely published dataset 𝑇 ′, respectively.

http://www.lcb.uu.se/tools/rosetta/
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Obviously, the lower the information suppression rate, the closer
he final published data will be to the original information table, and
he higher the data availability and information utility.

efinition 12 (Information Generalization Rate, IGR). Given a hierar-
chical decision table 𝑇 = {𝑈,𝑄𝐼𝐷,𝐷 = (𝑑, 𝑓 )}, all quasi-identifier
attributes in 𝑇 have 𝑚 attribute levels. Suppose the anonymized table
𝑇 ′ has |𝑆𝑖| rows at the 𝑖th attribute level (𝑖 = 1, 2,… , 𝑚), then the
information generalization rate from the anonymity of 𝑇 is defined as
follows

𝐼𝐺𝑅 =
∑𝑚

𝑖=1 (𝑖 × |𝑆𝑖|)
𝑚 × |𝑇 ′

|

(17)

here |𝑇 ′
| denotes the total number of records in the table 𝑇 ′, 𝑚 is the

aximum number of attribute levels, and |𝑆𝑖| represents the number
f attributes generalized to the 𝑖th level.

It can be seen that with the increase of the information generaliza-
ion rate, the availability of data decreases, and when all the attributes
re generalized to the highest level, the information generalization rate
qual to 1. In order to combine the measures of information suppression
ate (𝐼𝑆𝑅) and information generalization rate (𝐼𝐺𝑅) into a single
ramework, we define another measure called information loss rate
𝐼𝐿𝑅) as follows.

efinition 13 (Information Loss Rate, ILR). The sum of ISR and IGR as
he final information loss rate is defined as follows

𝐿𝑅 = 𝐼𝑆𝑅 + 𝐼𝐺𝑅 =
|𝑇 | − |𝑇 ′

|

|𝑇 |
+

∑𝑚
𝑖=1 (𝑖 × |𝑆𝑖|)
𝑚 × |𝑇 ′

|

(18)

The measure of 𝐼𝐿𝑅 considers both the suppression rate 𝐼𝑆𝑅
and the generalization rate 𝐼𝐺𝑅, which has a more comprehensive
valuation capability. According to the above analysis, it is easy to
bserve that a smaller value of 𝐼𝐿𝑅 indicates lower information loss
12

nd higher data availability. e
Table 4
Setting of parameters.

No. K (𝐻𝐾,𝐿𝐾)𝑙

1 4 {(4, 1), (3, 2)}
2 6 {(6, 1), (5, 2), (4, 3)}
3 8 {(8, 1), (7, 2), (6, 3), (5, 4)}
4 10 {(10, 1), (9, 2), (8, 3), (7, 4), (6, 5)}
5 12 {(12, 1), (11, 2), (10, 3), (9, 4), (8, 5), (7, 6)}
6 14 {(14, 1), (13, 2), (12, 3), (11, 4), (10, 5), (9, 6), (8, 7)}

5.3. Comparison of the information losses at different k-values

In this subsection, we compare the information loss of the tra-
ditional k-anonymity (KA) and our proposed three algorithms (SD-
MKS3WD, SE-MKS3WD, ECE-MKS3WD) on six datasets and analyze the
effect of different k-values on information loss. To facilitate the exper-
iment, we use the dynamic k-value sequence (𝐻𝐾,𝐿𝐾)𝑙 = {(𝑘, 1), (𝑘 −
, 2),… , (𝑘 − 1 + 𝑙, 𝑙)} as the anonymous parameter sequence, where 𝑘
enotes the anonymous parameters used in the traditional k-anonymity
nd 𝑙 denotes the total granularity level of the sequential three-way
ecisions, as detailed in Table 4. Fig. 5 shows the experimental results
n the six datasets.

From the differences between the broken lines in Fig. 5, we can
onclude as follows:

∙ As the value of 𝑘 increases, the information loss tends to increase.
his is because the larger the value of k, the stricter the anonymity
equirement, and the enhanced security will inevitably lead to greater
nformation loss.

∙ For all datasets, our proposed three algorithms produce lower
nformation loss than the traditional k-anonymity, which is sufficient
o demonstrate the superiority of our algorithms.

∙ Among these three proposed algorithms, both SE-MKS3WD and
CE-MKS3WD generate higher information loss than SD-MKS3WD. This
s because although extracting data can ensure absolute security, it in-
vitably raises the anonymity requirements to achieve the high level of
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Fig. 6. Comparison of the runtimes of KA, SD-MKS3WD, SE-MKS3WD, ECE-MKS3WD at different k-values.
nonymity, leading to extra information loss, which is well illustrated
n Example 4.

∙ From Fig. 5, we can easily observe that ECE-MKS3WD produces
ower information loss than SE-MKS3WD for most datasets. This also
emonstrates that the approach of extracting equivalence classes is
uperior to the approach of directly extracting the data with the closest
ensitivity in most situations.

.4. Comparison of the runtimes at different k-values

To further investigate the performance of our proposed algorithms,
e also compare the running time of these four algorithms at different
-values. Fig. 6 shows the experimental results on the six datasets.

From Fig. 6, we can easily see that our algorithms generally take
ore time than the traditional k-anonymity, this is because we addi-

ionally consider the personalized anonymity. However, the experimen-
al results show that among these three algorithms, the running time
f SD-MKS3WD is less than those of SE-MKS3WD and ECE-MKS3WD,
nd is even close to the traditional k-anonymity (KA). This suggests
hat, in terms of the running time, SD-MKS3WD is the best choice
or personalized k-anonymity when the security requirements are less
tringent. For example, when the security level is divided into 10 levels,
he user’s security tolerance for ‘‘obesity’’ is 3–6. In other words, level

is the optimal security level, but level 3 is also tolerable for the
ser if level 6 is not guaranteed. In such case, the security degradation
ill not affect the user’s anonymity request excessively, and the SD-
KS3WD is certainly suitable to realize personalized anonymity with

igh efficiency and low information loss.
Furthermore, the comparison of SE-MKS3WD and ECE-MKS3WD in

unning time indicates that ECE-MKS3WD outperforms SE-MKS3WD in
ost cases, which is because extracting equivalence classes can avoid

xtracting invalid data. However, for datasets with a larger number of
uasi-identified attributes, the running time of ECE-MKS3WD is more
han that of SE-MKS3WD because judging the equivalence classes may
onsume more extra time, such as ‘‘Agaricus-lepiota’’, which is shown
13

n Fig. 6(e).
5.5. Comparison of the information losses under different granularity levels

Finally, we investigate the effects of different granularity levels on
the information loss, and compare the variation of information loss
generated by the proposed three algorithms under different granularity
levels on six datasets. Fig. 7 depicts the experimental results, where the
horizontal coordinates represent the three anonymization algorithms
corresponding to the proposed models, the vertical coordinates indi-
cate the information loss under different granularity levels, and the
anonymization parameter k is equal to 8.

By observing the experimental results, it is easy to see that with
the increase of the granularity level, the information loss generated by
anonymity shows a trend of first decreasing and then increasing. This
is because as the granularity level increases, the data division becomes
more detailed and the anonymous diversity increases can avoid a lot
of unnecessary information loss. Thus, we can also conclude that a
reasonable increase in the number of sequential levels can reduce the
information loss.

However, the re-increase of information loss also illustrates that
dividing excessive granular structures will lead to extra information
loss. This is because the excessive personalized anonymity can increase
the difficulty of anonymity and reduce the availability of data, resulting
in new information loss. Therefore, when we perform hierarchical
anonymization, designing an appropriate level of anonymity is essential
to reduce unnecessary information loss.

5.6. Comparison of the utility of the proposed algorithm to anonymize data
at different k-values

To further validate the utility of the proposed algorithm to anony-
mize data, we use F1-Measure to evaluate the utility of KA, SD-
MKS3WD, SE-MKS3WD and ECE-MKS3WD to anonymize data on six
experimental datasets.

First, we define True Positive (TP), True Negative (TN), False Posi-
tive (FP) and False Negative (FN), as follows:

∙ True Positive (TP): Data that needs to be anonymized is anony-

mized;
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Fig. 7. Comparison of the information losses of SD-MKS3WD, SE-MKS3WD, ECE-MKS3WD under different granularity levels (k = 8).
∙ True Negative (TN): Data that does not need to be anonymized is
ot anonymized;
∙ False Positive (FP): Data that does not need to be anonymized is

nonymized;
∙ False Negative (FN): Data that needs to be anonymized is not

nonymized.
Then with the above definitions, Precision and Recall are defined as

ollows:

𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(19)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(20)

It is easy to observe that the Precision calculates the probability of
actual positive samples among all samples predicted to be positive, and
the Recall calculates the probability of actual positive samples among
all samples that should be positive. Thus, in order to balance Precision
and Recall, we use F1-Measure to evaluate the model performance,
defined as follows:

𝐹 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(21)

The value of F1-Measure ranges from 0 to 1, with 1 representing
the best performance and 0 representing the worst performance. When
𝐹 is higher, the model performance is better. The experimental results
are shown in Fig. 8.

By Fig. 8, we can get the following conclusions:
∙ In the six experimental datasets, as the k-value increases, the

values of F1-Measure shows a tendency to become smaller, and the
utility of algorithms to anonymize data is reduced. This is because, as
the k-value increases, it becomes more difficult to anonymize the data.

∙ From Fig. 8, one can notice that the F1-measures of proposed
algorithms are lower than k-anonymity (KA) on some datasets. This
is because the proposed algorithms may fail to anonymize a few data
14
successfully in order to achieve accurate personalized anonymization,
however, F1-Measure only considers the data utility from whether the
data is successfully anonymized or not. In addition, for most datasets,
the difference between k-anonymity and the proposed algorithms is
not very large or even almost close, which also reflects that the pro-
posed algorithm’s data utility is still not far from k-anonymity despite
considering personalized anonymity.

∙ Among all the datasets, SD-MKS3WD has the highest anonymiza-
tion utility for the proposed algorithms, which is due to the fact
that its anonymization requirements are not as strict as those of SE-
MKS3WD and ECE-MKS3WD. In addition, ECE-MKS3WD has higher
anonymization utility than SE-MKS3WD in some datasets, but some
are opposite. This is because the efficiency of data extraction in both
algorithms depends on the characteristics of the original dataset, which
confirms our previous analysis.

∙ Finally, it is easy to find that the anonymization utility of the
proposed algorithm is excellent on most of the datasets, which confirms
that the proposed model has a good performance. While there also exist
some that performs average on the dataset, which is caused by the
characteristics of the dataset, and maybe these datasets are not suitable
for privacy protection with data anonymization.

6. Conclusions

In this paper, we first combine sequential three-way decisions and k-
anonymity to propose a multi-level personalized k-anonymity privacy-
preserving model. Within this framework, we divide the datasets with
different security requirements into different granular spaces by the
sequential three-way decisions model for classification, and then use
a dynamic k-value sequence to personalize the anonymity of each
granularity space separately. Finally, the experimental results show that
the proposed model is effective and available. It is worth mentioning
that our model is also scalable and can theoretically be applied to
most of the current state-of-the-art anonymization models with bet-
ter anonymization results yet to be obtained, and we will further

investigate those in the future.
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