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A B S T R A C T

Domain adaptation is a good way to boost BERT’s performance on domain-specific natural language processing
(NLP) tasks. Common domain adaptation methods, however, can be deficient in capturing domain knowledge.
Meanwhile, the context fragmentation inherent in Transformer-based models also hinders the acquisition
of domain knowledge. Considering the semi-structural characteristics of documents and its potential for
alleviating these problems, we leverage the semi-structured information of documents to supplement domain
knowledge to BERT. To this end, we propose a topic-based domain adaptation method, which enhances
the capture of domain knowledge at various levels of text granularity. Specifically, topic masked language
modeling is designed at the paragraph level for pre-training; topic subsection matching degree dataset is
automatically constructed at the subsection level for intermediate fine-tuning. Experiments are conducted
over four biomedical NLP tasks across six datasets. The results show that our method benefits BERT,
RoBERTa, SpanBERT, BioBERT, and PubMedBERT in nearly all cases. And we see significant gains in two
question answering (QA) tasks, especially customer health QA, the topic-related one, with an average accuracy
improvement of 4.8%. Thus, the semi-structured information of documents can be exploited to make BERT
capture domain knowledge more effectively.
1. Introduction

Transformer-based pre-trained language models (TPLM) obtain ex-
cellent results in natural language understanding (NLU) tasks (Devlin,
Chang, Lee, & Toutanova, 2019; Joshi, Chen, Liu, Weld, Zettlemoyer,
& Levy, 2020; Lan, Chen, Goodman, Gimpel, Sharma, & Soricut, 2020;
Liu et al., 2019), among them the most representative one is Bidi-
rectional Encoder Representations from Transformers (BERT) (Devlin
et al., 2019). The main feature of BERT is the ‘‘Pre-train + Fine-tune’’
paradigm. BERT conducts self-supervised learning on massive general
domain text, to learn universal language representations (i.e., pre-
training), then re-trains on small scale, labeled data to quickly adapt
to target tasks (i.e., fine-tuning). Research shows BERT captures rich
syntactic, semantic, and world knowledge during pre-training, and
transfers these knowledge to specific tasks via fine-tuning (Rogers,
Kovaleva, & Rumshisky, 2020). This knowledge-transfer fails when it
comes to specific domains, biomedical domain for example (Lee et al.,
2020). To close the gap between specific domain and general domain,
several domain-customized BERT models are developed (Chalkidis,
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Fergadiotis, Malakasiotis, Aletras, & Androutsopoulos, 2020; Gu et al.,
2021; Lee et al., 2020; Yang, Uy, & Huang, 2020). Researchers use
in-domain text, either to further pre-train general-domain pre-trained
models, or to pre-train language models from scratch. And new state-
of-the-art results are observed in many domain-specific NLU tasks.
However, such domain adaptation methods can be deficient in cap-
turing the domain knowledge focused by domain experts (Kalyan,
Rajasekharan, & Sangeetha, 2021).

Domain knowledge is knowledge of a specific, specialized disci-
pline or field, in contrast to general (or domain-independent) knowl-
edge (Hjørland & Albrechtsen, 1995). For example, in clinical medicine,
domain knowledge involves clinicians may diagnose, treat, and other-
wise care for patients. So how do humans learn domain knowledge? We
find the semi-structured information of documents, including heading
and hierarchy, plays a significant role in this learning process. Hier-
archy is the order in which the ideological content of an article is
expressed, reflects the development stages of objective things or all
aspects of contradictions. Hierarchy typically consists of several natural
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Fig. 1. Length distributions of sections, subsections and paragraphs. Note the subsections here are not natural ones, but ‘‘functional subsections’’ (for details, see Section 3.2.1).
It is obvious the lengths vary widely between them, almost 40% of sections exceed 200 words, whereas the proportion is 25% for subsection, and only 3% for paragraphs.
paragraphs, and can be subdivided into section, subsection, with para-
graph being the smallest. Heading is a brief statement that identifies the
central argument of a specific content, which divides into the first-level
heading (h1, i.e., the article title), the second-level heading (h2, i.e., the
section title), the third-level heading (h3, i.e., the subsection title), etc.
For example, in the Wikipedia article ‘‘COVID-19’’, cause, diagnosis and
treatment in the table of contents are second-level headings and section
divisions. Combining heading and hierarchy, we could learn various
aspects of the disease, i.e., the domain knowledge interests clinicians
and patients.

Regrettably, the semi-structured information has been seriously ne-
glected in BERT’s domain adaptation: (1) The pre-training data from
Wikipedia only retains unstructured text passages, whereas headers
and hierarchy information of the article are discarded (Devlin et al.,
2019); (2) The training sequence forms either by sampling and concate-
nating two segments of text (Devlin et al., 2019), or by packing full
sentences sampled contiguously from one or more documents (Joshi
et al., 2020; Liu et al., 2019). In addition, BERT requires a fixed-length
input sequence of up to 512 tokens, then the overlong ones are trun-
cated without respecting the sentence or any other semantic boundary.
Hence, the model lacks the necessary contextual information to predict
the first few symbols of input sequence, leading to inefficient optimiza-
tion and inferior performance (i.e., context fragmentation) (Dai, Yang,
Yang, Carbonell, Le, & Salakhutdinov, 2020). Clearly, the negligence of
the semi-structured information and the context fragmentation problem
all hinder BERT to capture domain knowledge.

Some researchers try to resolve the two problems. Dai et al. (2020)
propose a novel Transformer architecture – Transformer-XL, which ad-
dresses the context fragmentation problem with a segment-level recur-
rence mechanism. But until now, the Transformer-XL based pre-trained
language model (PLM) is rare. He, Zhu, Zhang, Chen, and Caverlee
(2020) introduce a disease knowledge infusion training procedure (dis-
easeBERT). It takes question-answer pairs as training sequences, where
the question is constructed with a disease name (the article title) and
an aspect name of the disease (the section title), and the answer is
the whole section’s content. Then pre-train BERT using a modified
masked language modeling (MLM) (Devlin et al., 2019), which merely
masks the title words. To our knowledge, DiseaseBERT is the first work
to explicitly use the semi-structured information for BERT’s domain
adaptation, but there are still deficiencies: (1) Its usage of the semi-
structured information is limited, the questions only cover two kinds
2

of titles; (2) The answers are generally long, and simple chunking
leads to contextual fragmentation. Fig. 1(a) and (c) illustrate this more
intuitively, the lengths of almost 40% of sections exceed 200 words,
whereas the proportion is only 3% for paragraphs, so taking paragraphs
as answers are more helpful for alleviating contextual fragmentation.

In this paper, we propose topic-based domain adaptation (TDA),
to enable BERT to better capture domain knowledge with the semi-
structured information of documents. TDA emphasizes the intrinsic
relation among heading, hierarchy, and domain knowledge, and al-
lows BERT to capture the domain knowledge at various levels of
text granularity. Specifically, at the paragraph level, we create topic-
paragraph pairs as training sequences, where a paragraph’s topic is
derived by concatenating the headings of each level hierarchy the
paragraph belongs to, i.e., h1, h2, h3, etc., with separators, for details,
see Section 3.1.2. Then topic masked language modeling (TMLM) is
designed, to selectively mask some heading elements in the topic part.
It forces BERT to learn the semantic relationship between a paragraph
and its topic, and thereby capture the domain knowledge embedded
in paragraphs. At the subsection level, the paragraphs under the same
topic are merged into a functional subsection, then topic-subsection
pairs are available. On this basis, topic subsection matching degree
(TSMD) dataset is automatically constructed, which is used for interme-
diate fine-tuning, to help target task via transfer learning. The overall
framework of TDA is shown in Fig. 2.

The biomedical domain is taken as a case study to illustrate our
TDA method, and it is evaluated on four disease-related tasks across
six datasets. Experiments show that TDA can benefit BERT in various
domain-specific tasks, especially customer health QA (CHQA). More
than that, TDA can be easily drawn on to other domains. The data and
code are available at Code Ocean.1

The rest of the paper is structured as follows: The related work is
discussed in Section 2; The TDA method composed of TMLM and TSMD
is detailly presented in Section 3; The datasets, baselines, implementa-
tion, as well as results and discussion are reported in Section 4; Finally,
the conclusion and future work of this study are given in Section 5.

1 https://codeocean.com/capsule/1721209/tree

https://codeocean.com/capsule/1721209/tree
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Fig. 2. The framework of TDA. TMLM: The Wikipedia disease-related articles are collected as in-domain text corpus. Then topic-paragraph pairs are created with the paragraph
level semi-structured information. We further pre-train a general-domain BERT model with TMLM on the topic-paragraph pairs, before fine-tune it on various domain-specific tasks.
TSMD: Topic-subsection pairs are transformed from Topic-paragraph pairs. On this basis, we create TSMD dataset with Algorithm 1. After intermediate fine-tuning BERT with
TSMD, we can fine-tune it on the target CHQA task.
2. Related work

2.1. Domain knowledge enhanced PLM

The current TPLMs mainly train on massive unstructured data from
Internet, the lack of industry related domain knowledge leads to their
poor performance in domain-specific NLP tasks. The application of
CBLUE (Zhang et al., 2022) shows the general TPLM is less effective
than human in handling biomedical domain tasks. Thus, incorporating
domain knowledge into TPLM is a research hotspot. The mainstream
domain knowledge enhanced TPLM divides into two categories.

One category annotates the domain knowledge contained in text
with weak supervision, and designs knowledge-driven pre-training
tasks. Considering the features of in-domain text corpus, the general do-
main vocabulary can be extended with in-domain vocabulary (Poerner,
Waltinger, & Schütze, 2020; Tai, Kung, Dong, Comiter, & Kuo, 2020;
Yao, Huang, Wang, Dong, & Wei, 2021; Zhang et al., 2020), which
allows PLMs to learn prior domain knowledge during pre-training and
fine-tuning. Considering the features of downstream tasks, Gururangan
et al. (2020) present task-adaptive pre-training – it involves further pre-
training on task-related unlabeled instances; Gu, Zhang, Wang, Liu, and
Sun (2020) propose a selective masking strategy, which enables lan-
guage model to learn task-specific patterns during pre-training; Zhang
et al. (2020) formulate synthetic tasks with the inherent structure in
unlabeled data for intermediate fine-tuning. Our TMLM falls into this
category, as a variant of MLM, it tasks the semi-structured information
as weak supervision signal, and emphasizes its importance for domain
knowledge learning.

Another category conducts joint pre-training on in-domain struc-
tured knowledge base and unstructured text. For the heterogeneous
embedding space problem, K-BERT (Liu et al., 2020) first expands the
original text into a tree structure using triples of knowledge graph (KG),
and then compresses it back into a text sequence with soft-position and
visible matrix; whereas, QA-GNN (Yasunaga, Ren, Bosselut, Liang, &
Leskovec, 2021) connects the QA context and KG to form a joint graph,
3

and mutually update their representations through graph neural net-
works; BERT-MK (He, Zhou, et al., 2020) designs a vanilla Transformer
encoder based knowledge fusion module – K-Encoder, to extract entity
knowledge and fuse heterogeneous information. To avoid knowledge
forgetting, DAKI (Lu, Dou, & Nguyen, 2021) and MoP (Meng, Liu,
Clark, Shareghi, & Collier, 2021) integrate domain knowledge via
lightweight adapters, the former independently trained adapters for
different sources of domain knowledge, and the latter partitioned a big
KG into smaller sub-graphs and train their respective adapters.

2.2. Clever use of the semi-structured information

The concept of semi-structured information is rarely seen in the
current research, but many datasets did use this concept knowingly or
unknowingly, especially the cloze-style QA datasets. They were created
with the semi-structured information in news articles (Hermann et al.,
2015) or in books (Bajgar, Kadlec, & Kleindienst, 2016; Hill, Bordes,
Chopra, & Weston, 2016) or in scientific literature (Kim et al., 2018;
Pappas, Androutsopoulos, & Papageorgiou, 2018; Pappas, Stavropou-
los, Androutsopoulos, & McDonald, 2020). These datasets are generally
large in scale (ranging from 100 K to 16.4 M instances) and thus can
be used for pre-training or as a task itself (Jin et al., 2022). However,
insufficient use of the semi-structured information make them noisy.
Besides, the non-cloze-style QA datasets, PubMedQA (Jin, Dhingra, Liu,
Cohen, & Lu, 2019) and MedQuAD (Ben Abacha & Demner-Fushman,
2019), use the semi-structured information more accurately, which
allows their data quality to be greatly enhanced. As a consumer health
QA-like dataset, our TSMD is automatically created by emphasizing se-
mantic integrity of the semi-structured information, and greatly benefit
specific downstream task through intermediate fine-tuning.

In addition to the datasets, there are works incorporate the semi-
structured information into pre-training corpus. HTLM (Aghajanyan
et al., 2021), a hyper-text language model trained on a large-scale web
crawl, designs prompts that incorporate the established semantics of
HTML to better control for the desired model output. LinkBERT (Ya-
sunaga, Leskovec, & Liang, 2022) creates the pre-training inputs by
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Fig. 3. Generation of topic-paragraph pairs. The focal step of the whole process is getting the topic of a paragraph. Considering the hierarchy of an article, a paragraph topic is
formed by concatenating the headings of each level hierarchy the paragraph belongs to, with separators. Then pair it with the paragraph, a topic-paragraph pair is generated.
placing linked documents in the same context, to capture dependencies
or knowledge that span across documents. HKLM (Zhu, Peng, Lyu,
Hou, Li, & Xiao, 2023), a unified PLM for all forms of text, including
unstructured text, semi-structured text, and well-structured text, it
models the semi-structured text by proposing title matching training,
which classify whether the title matches the paragraph. Inspired by this,
our TDA, a novel domain adaptation framework, aims to make BERT
capture more domain knowledge with better use of the semi-structured
information. TMLM and TSMD are the two key technologies, which
enable BERT to capture the domain knowledge embedded in paragraph
and subsection respectively during multiple training phases.

3. Methods

In this section, topic-based domain adaptation (TDA) is presented
detailly. We firstly introduce the pre-training task — topic masked
language modeling (TMLM), that enables BERT to capture the domain
knowledge contained in paragraph. And then describe the way of
automatically building the dataset — topic subsection matching degree
(TSMD), with the subsection level semi-structured information.

3.1. Topic masked language modeling

TMLM is the paragraph level TDA method, which consists of three
main steps: (1) build in-domain text corpus; (2) construct topic-
paragraph pairs; (3) propose a new language modeling task — TMLM.
After pre-training BERT with TMLM on the topic-paragraph pairs we
created, the domain knowledge contained in paragraphs is encoded.
Next, we will discuss each step in more detail.

3.1.1. In-domain text corpus
Following He, Zhu, et al. (2020), we verify the effectiveness of

TDA in the biomedical domain, and the disease-related articles from
English Wikipedia are used as in-domain text source. To get as many
articles as possible, we collect disease terms from two main branches
of the Medical Subject Headings (MeSH) tree,2 i.e. Diseases [C] and
Mental Disorders [F03]. In addition, the Wikipedia page ‘‘Category:
Lists of diseases’’3 serves as a supplement source of disease terms. After
eliminating those duplicate or empty entries, 4930 disease-themed
English Wikipedia articles are obtained.

To construct an in-domain text corpus that incorporates the semi-
structured information of document, we retain the heading and hier-
archy of articles in web crawler phase. During data cleaning, the texts

2 https://meshb.nlm.nih.gov/treeView
3 https://en.wikipedia.ahmu.cf/wiki/Category:Lists_of_diseases
4

Table 1
Statistics of the topic-paragraph pairs.

Number of articles 4930
Number of sections 30,432
Average length of sections (in words) 250.14
Average length of sections (in tokens) 359.14
Average length of section topics (in words) 3.26
Average length of section topics (in tokens) 6.79
Number of paragraphs 104,696
Average length of paragraphs (in words) 72.47
Average length of paragraphs (in tokens) 104.39
Average length of paragraph topics (in words) 4.27
Average length of paragraph topics (in tokens) 7.94

irrelevant to the article topic, and those images, complicated tables,
special characters that are hard to process for BERT are filtered out.
After data pre-processing, the obtained in-domain text corpus is further
organized into topic-paragraph pairs — the pre-training corpus with
paragraph level semi-structured information.

3.1.2. Topic-paragraph pairs
As discussed in Section 1, paragraphs are better candidates as

answers compared to sections in terms of length, and thus we focus
on the domain knowledge contained in paragraph. Generally speaking,
paragraph title along with paragraph itself can depict paragraph level
domain knowledge, but the following defects exist: (a) many para-
graphs do not have a title; (b) the title of a paragraph alone cannot
fully summarize its topic. Considering the hierarchy of an article, we
concatenate the headings of each level hierarchy a paragraph belongs
to, i.e., h1, h2, h3, etc., with separators to form the paragraph topic,
then pair it with the paragraph, a topic-paragraph pair is generated.
The whole process is shown in Fig. 3. Also worth noting is that when a
table or a list appears as supplementary content of one paragraph, we
do the following: (1) convert the table to a list, (2) convert the list to
plain text, then concatenate it to the paragraph.

The statistics of the pre-training corpus are shown in Table 1.
For fair comparison, we also get topic-section pairs by following the
similar process depicted in Fig. 3, and obtain their statistics. As you
can see, there are more heading elements in paragraph topics than that
of section topics, and the average length of paragraphs are evidently
shorter than that of sections, with less than one third of its length. All
of which demonstrate the superiority of topic-paragraph pairs, whether
in the high usage of the semi-structured information or the potential to
reduce context fragmentation.

https://meshb.nlm.nih.gov/treeView
https://en.wikipedia.ahmu.cf/wiki/Category:Lists_of_diseases
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Fig. 4. Examples of the topic masking strategy adopted by TMLM. For one training instance, odd term and even term heading elements in the topic part is masked with equal
probability, and the words in the masked heading element are replaced by ‘[MASK]’.
3.1.3. Topic masking strategy
To make BERT capture the domain knowledge contained in topic-

paragraph pairs, we propose a topic masking strategy for TMLM, which
selectively masks some heading tokens in the topic part by an average
50% masking rate. Specifically, if there is only one heading element in
the topic part, mask it. If the number of heading elements in the topic
part exceeds 1, mask the odd and even heading elements with equal
probability. Thereby the topic part can serve as a cloze-style question,
and the paragraph is the target answer. The final training instances are
shown in Fig. 4.

BERT predicts the masked heading elements in the same way as
BERT predicts the randomly masked words in input sequences, i.e., the
MLM task. And MLM for BERT just like human solves cloze test ques-
tions. We can guess the missing words from context, and BERT adopts
a multi-layer, bidirectional Transformer encoder architecture, and the
word representations obtained by MLM are jointly conditioned on both
left and right context. So when BERT predicts the masked heading
elements, it has to learn the semantic relationship between the para-
graph and its topic. In this way, BERT captures the domain knowledge
embedded in paragraphs during pre-training.

3.2. Topic subsection matching degree

TSMD is the subsection level TDA method, the dataset creation
follows three steps: (1) provide theoretical basis; (2) construct topic-
subsection pairs; (3) generate MEDIQA-like QA instances. Before fine-
tuning BERT on MEDIQA-2019, we use TSMD for intermediate fine-
tuning, to benefit target task via transfer learning. Next, we will flesh
out these steps.

3.2.1. Theoretical basis
Gu et al. (2020) note that because of the high cost and long time-

consuming of tagging data, insufficient supervised data is frequently
a matter during BERT fine-tuning. This issue becomes particularly
prominent in the specific domain, for data annotation here requires
the intervention of domain expert. Thus, BERT shows poor perfor-
mance in domain-specific tasks. However, intermediate fine-tuning on
large, related dataset allows BERT to learn more domain-specific and
task-specific patterns, which improves BERT performance on domain-
specific target tasks (Kalyan et al., 2021).

The questions of CHQA typically raise by the general public on
search engines, range from self-diagnosis to finding medications, and
the hospitable netizens provide uneven answers. It is vitally impor-
tant to provide accurate answers for such questions, because con-
sumers are unable to judge the quality of medical contents. Thus rating
and re-ranking the candidate answers to consumer health questions
are the objectives of CHQA task. MEDIQA-2019 is the representative
dataset (Abacha, Shivade, & Demner-Fushman, 2019), Xu, Liu, Li, Poon,
and Gao (2019) cast it as a regression problem – a numerical score
ranging from −2 to 2 is assigned to each QA instance, which effectively
simplifies BERT’s prediction process on this task.

Based on them, and considering the semantic integrity of topic
at the subsection level, we create a MEDIQA-like dataset — TSMD,
with the subsection level semi-structured information, and use it for
intermediate fine-tuning.
5

3.2.2. Topic-subsection pairs
We convert the topic-paragraph pairs obtained in Section 3.1.2 to

topic-subsection pairs. It is worth noting that the subsection here is a
‘‘functional subsection’’, which merges all paragraphs under the same
topic. Then concatenate each ‘‘functional subsection’’ with its topic to
get topic-subsection pairs (called subsection in the following content).

Fig. 1(b) shows the length distribution of subsections. Compare
Fig. 1(b) with Fig. 1(c), it is evident that subsection usually has richer
and fuller context about the topic. Therefore it is more favorable for cre-
ating MEDIQA-like QA instances with topic-subsection pairs, and rating
them based on the matching degree between topic and subsection.

3.2.3. QA instance generation
We create QA instances with articles as units. First, the topic-

subsection pairs are split by article, then to ensure a relatively balanced
score distribution of QA instances, the articles with less than three
topic-subsection pairs are filtered out. We take the remaining 4,619
articles as the collection of articles, denoted by A. And two negative
instances are generated for each positive one, to make TSMD have a
similar data distribution with MEDIQA-2019.
Preparation: we randomly select an article  from A, let 𝐁 be the list
of its topic-subsection pairs, and 𝑏 be the randomly selected element
from 𝐁, to prepare for the positive instance. A non-𝑏 element 𝑏 is ran-
domly selected from 𝐁, to prepare for one 𝑏-related negative instance.
Besides, let  be the non- article randomly selected from A, and 𝐂 be
the list of its topic-subsection pairs. An element 𝑐 is randomly selected
from 𝐂, to prepare for the other 𝑏-related negative instance.

The proportion of positive instances for an article should be set in
advance. On one hand, we hope to get as many as QA instances from
an article, on the other, it should leave choice space for the negative
instances. Then the number of positive instances generated by  is:

𝑛𝑝 = 𝑙𝑒𝑛(𝐁) × 𝑝0 (1)

where 𝑝0 is the proportion of positive instances. To satisfy the above
two conditions, we set 𝑝0 as 0.4.
Note: To help you better understand the scoring mechanism about
the matching degree between topic and subsection, we define two
key topic-related concepts, the first filial (F1) topics, and the offspring
topics. Here, we take the topic-subsection pairs of the Wikipedia ar-
ticle ‘‘COVID-19’’ as an example to illustrate the two concepts: the
term ‘‘COVID-19’’ is seen as a maternal topic, and its F1 topics are
the ones that contain and only contain its sub-level headings besides
itself, such as COVID-19 | Etymology, COVID-19 | Cause, COVID-19 |

Pathophysiology, etc. While the topics descending from the root node
– ‘‘COVID-19’’ are all its offspring topics, such as COVID-19 | Cause,
COVID-19 | Prevention ∥ Vaccine and COVID-19 | Mortality ∥ Infection
fatality rate ||| Estimates.

Positive instance generated by 𝑏 The topic of 𝑏 is denoted as 𝑡𝑜𝑝𝑖𝑐𝑏,
and the subsection of 𝑏 is denoted as 𝑠𝑢𝑏𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑏. We assume that the
contribution of each F1 topic to the maternal topic is equal, if the
number of 𝑡𝑜𝑝𝑖𝑐𝑏’s F1 topics is 𝑡, then we can rate 𝑏 by:

𝑠𝑐𝑜𝑟𝑒𝑏 =
{

2∕𝑡 𝑡 > 0
2 𝑡 = 0

(2)

Negative instance generated by 𝑏 We measure a topic’s level by
the level of its last heading element. The levels of 𝑡𝑜𝑝𝑖𝑐𝑏 and 𝑡𝑜𝑝𝑖𝑐𝑏 are
denoted as 𝑙 and 𝑙 , respectively; the initial differentiation level of
𝑏 𝑏
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𝑡𝑜𝑝𝑖𝑐𝑏 and 𝑡𝑜𝑝𝑖𝑐𝑏, i.e. the level of their first different heading element
s denoted as 𝑙𝑑 .

We combine 𝑡𝑜𝑝𝑖𝑐𝑏 and 𝑠𝑢𝑏𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑏 into a new instance 𝑏′, and then
ate 𝑏′ according to the distance 𝑑 between 𝑡𝑜𝑝𝑖𝑐𝑏 and 𝑡𝑜𝑝𝑖𝑐𝑏, which can

be further divided into 3 cases:

(1) if 𝑙𝑏 < 𝑙𝑏, and 𝑡𝑜𝑝𝑖𝑐𝑏 is an offspring topic of 𝑡𝑜𝑝𝑖𝑐𝑏, then the
distance 𝑑 is:

𝑑 = 𝑙𝑏 − 𝑙𝑏 (3)

we assume that the F1 topics of 𝑡𝑜𝑝𝑖𝑐𝑏 is 𝑡1, and the number of
topics at 𝑙𝑏–level under the F1 topic it belongs to is 𝑑th power of
2, then we can rate 𝑏′ by the following expression:

𝑠𝑐𝑜𝑟𝑒𝑏′ = (2∕𝑡1)∕2𝑑 (4)

(2) if 𝑙𝑏 > 𝑙𝑏, and 𝑡𝑜𝑝𝑖𝑐𝑏 is an offspring topic of 𝑡𝑜𝑝𝑖𝑐𝑏, then the
distance 𝑑 is:

𝑑 = 𝑙𝑏 − 𝑙𝑏 + 1 (5)

when 𝑡𝑜𝑝𝑖𝑐𝑏 has 𝑡2 F1 topics, similar to case (1) we rate 𝑏′ by:

𝑠𝑐𝑜𝑟𝑒𝑏′ = (2∕𝑡2)∕2𝑑 (6)

(3) in addition to the above cases, the distance 𝑑 between 𝑡𝑜𝑝𝑖𝑐𝑏 and
𝑡𝑜𝑝𝑖𝑐𝑏 is:

𝑑 = max(𝑙𝑏, 𝑙𝑏) − min(𝑙𝑏, 𝑙𝑏) + 1 (7)

and we can rate 𝑏′ by:

𝑠𝑐𝑜𝑟𝑒𝑏′ = 2𝑑 × 𝑠0 (8)

𝑠0 is the score of unit-distance between topics under the same
level, which can be measured by cosine similarity. We can ob-
tain the embedding vector of a topic by word2vev (Mikolov,
Sutskever, Chen, Corrado, & Dean, 2013). In this paper, the 𝑠0
is set as −0.6, which is an average cosine similarity for 30 pairs
topics.

inally, to limit the scores within [−2, 2], we constrain the scores via:

𝑐𝑜𝑟𝑒𝑏′ = max(𝑠1, 𝑠𝑐𝑜𝑟𝑒𝑏′ ) (9)

here 𝑠1 is the minimum score set for 𝑏′, we just need to make sure
t falls in [−2, −1.75]. When we evaluate TSMD on downstream tasks,
e find the effect of this value is kind of slight, here we set it as −1.95.
Negative instance generated by 𝑐 We combine 𝑡𝑜𝑝𝑖𝑐𝑏 and

𝑢𝑏𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑐 into a new instance 𝑏′′, and we assume the topic-subsection
airs from different articles are independent of each other, then we rate
′′ by:

𝑐𝑜𝑟𝑒𝑏′′ = −2 (10)

The complete procedure for automatically constructing the TSMD
ataset is presented in Algorithm 1. Finally we obtained 32,695 TSMD
nstances.

. Experiments

In this section, we will evaluate TDA over four disease-related tasks,
.e. CHQA, yes/no QA, medical language inference and disease name
ecognition. We expect CHQA, the topic-related task, will particularly
enefit from it.

As previously mentioned, TMLM and TSMD are the key technologies
f TDA. To systematically assess it, we design three experimental
odes; (1) TPLM + TMLM, which conducts continual pre-training of an

xisting TPLM on the topic-paragraph pairs constructed in Section 3.1.2
ith TMLM, can be used for all downstream tasks; (2) PLM + TSMD,
hich conducts intermediate fine-tuning of an existing TPLM on TSMD
efore fine-tuning on the target CHQA task; (3) PLM + TMLM + TSMD,
hich investigates the effect of using TMLM and TSMD sequentially
efore fine-tuning on CHQA. The rest of the tasks can hardly benefit
6

rom TSMD, for their low correlation.
Algorithm 1 TSMD construction procedure
Require: the articles collection, A
Ensure: TSMD dataset
1: for each article  in A do
2: Determine the number of positive instance 𝑛𝑝 by Eq. (1)
3: Extract 𝑛𝑝 elements from List 𝐁 based on simple random sampling

method, to get List 𝐁𝟏

4: for each element 𝑏 in 𝐁𝟏 do
5: Rate 𝑏 by Eq. (2)
6: end for
7: Randomly sample 𝑛𝑝 elements from 𝑠𝑒𝑡(𝐁) − 𝑠𝑒𝑡(𝐁𝟏) to get List 𝐁𝟐

8: Let the elements from 𝐁𝟏 and 𝐁𝟐 be bijective, get the elements of List
𝐁𝟑 by the way 𝑏′ generates

9: for each element 𝑏′ in 𝐁𝟑 do
10: Rate 𝑏′ by Eq. (3)–Eq. (9)
11: end for
12: Randomly sample 𝑛𝑝 elements from the topic-subsection pair list 𝐂 to

get List 𝐂𝟏

13: Let the elements from 𝐁𝟏 and 𝐂𝟏 be bijective, get the elements of List
𝐁𝟒 by the way 𝑏′′ generates

14: for 𝑏′′ in 𝐁𝟒 do
15: Rate 𝑏′′ by Eq. (10)
16: end for
17: end for

4.1. Downstream tasks

Consumer Health Question Answering MEDIQA-2019
(Ben Abacha & Demner-Fushman, 2019) and TRECQA-2017 (Abacha,
Agichtein, Pinter, & Demner-Fushman, 2017) are the two typical
datasets of this task. Originally, a Reference Score (1 to 10) and a
Reference Rank (4: Excellent, 3: Correct but Incomplete, 2: Related,
1: Incorrect) are assigned to each CHQA pair. Later, Xu et al. (2019)
cast this task as a regression problem to predict the score, which greatly
simplifies the task.

Yes/no QA We consider PubMedQA (Jin et al., 2019) for this task,
it is collected from PubMed abstracts that use binary questions as
titles (e.g.: Can vitamin C prevent complex regional pain syndrome
in patients with wrist fractures?) and have structured abstracts. The
task is to answer such research questions with yes/no/maybe using the
corresponding abstracts (the conclusive parts are cropped) as contexts.

Medical Language Inference MEDNLI (Romanov & Shivade, 2018)
is a clinical natural language inference (NLI) dataset, where a descrip-
tion about a patient from MIMIC-III clinical notes is seen as the premise,
and clinicians generate three descriptions of it as hypotheses: a true one
(entailment), a false one (contradiction), and one that might be true
(neutral). It is clearly a multi-classification problem.

Disease Name Recognition NCBI (Doğan, Leaman, & Lu, 2014)
nd BC5CDR (Wei et al., 2016) are the datasets chose for the named
ntity recognition (NER) task, they are developed by medical experts
nnotating diseases mentioned in the collections of PubMed titles and
bstracts. Peng, Yan, and Lu (2019) cast this task as a classification task
o label tokens in sentences with B, I, or O.

As is shown in Table 2, the six datasets are small in size (ranging
rom 500 to 10,000 instances), with only hundreds (MEDIQA-2019
nd TRECQA-2017) or even tens (PubMedQA) of Dev instances for the
wo QA tasks. Sellam et al. (2022) note the model’s performance may
ary for the multiple sources of randomness in experiments, i.e. the
andomness due to the pre-training seed, the fine-tuning seed, and the
inite test data. The main idea is to use the average behavior over seeds
s a means of summarizing expected behavior in an ideal world with
nfinite samples. Thus following Gu et al. (2021), we report the average
cores from ten runs for MEDIQA-2019, TRECQA-2017 and PubMedQA,
nd five runs for the other datasets.
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Table 2
Summary of task datasets.

Datasets Train Dev Test

MEDIQA-2019 1701 234 1107
TRECQA-2017 1969 234 839
PubMedQA 450 50 500
MEDNLI 11,232 1395 1422
BC5CDR-disease 4182 4244 4424
NCBI-disease 5145 787 960

4.2. Baselines

We take BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019),
and SpanBERT (Joshi et al., 2020) the three general domain TPLMs,
and BioBERT (Lee et al., 2020), PubMedBERT (Gu et al., 2021) the
two biomedical domain TPLMs as the mian baselines. For fair com-
parison and carbon reduction, their base models from HuggingFace
Transformers4 are used in our experiments.

BERT A Transformer-based bidirectional language representation
model. Hailed as a milestone, it set new states of the art on 11
NLU tasks, it has been a basic tool in NLU now. We find that the
cased version is slightly better than the uncased version in preliminary
experiments and therefore bert-base-cased is selected in our study.

RoBERTa A robustly optimized BERT, it made the following im-
rovements in training method: (1) removing the next sentence pre-
iction (NSP) task, each input is packed with full sentences sampled
ontiguously from one or more documents; (2) dynamic masking, it
enerated the masking pattern every time it feed a sequence to the
odel; (3) text encoding, it used a byte-level BPE vocabulary of 50 K

ubword units. We use roberta-base in experiments.
SpanBERT It differs from BERT by: (1) removing the NSP task; (2)

pan masking, it masks contiguous random spans of tokens; (3) span
oundary objective, which used the representations of the tokens at
he span’s boundary to predict the span. SpanBERT outperforms BERT
n nearly all tasks, and spanbert-base-cased is used in our experiments.
BioBERT As the first biomedical-domain TPLM, Bio-BERT initializes

ith Google BERT pre-trained with the general-domain text and in-
erits its vocabulary, then further pre-trains on the biomedical-domain
ext. Again, biobert-base-cased-v1.1 is selected.
PubMedBERT It generates an in-domain vocabulary and pre-trains

BERT from scratch with purely the biomedical-domain text. PubMed-
BERT is the first to show ‘‘for domains with abundant unlabeled text,
pretraining language models from scratch results in substantial gains
over continual pretraining of general-domain language models’’ (Gu
et al., 2021). It only trained uncased models, so PubMedBERT-Base-
Uncased-abstract-fulltext is selected.

In addition, diseaseBERT (He, Zhu, et al., 2020) and DAKI-BERT
(Lu et al., 2021) that encoded domain knowledge stored in multiple
sources via adapters (Houlsby et al., 2019) are relatively new domain
adaptation methods, and they are taken as supplement baselines. It
should be noted that continual pre-training with BERT’s vanilla MLM
and SpanBERT’s span masking on the topic-paragraph pairs constructed
in Section 3.1 is included as part of the ablation study.

4.3. Implementation

We initialize a language model with the pre-trained parameters of a
baseline model, then adopt the proper mode of TDA before fine-tuning
on the downstream tasks. We use AdamW (Loshchilov & Hutter, 2017)
to update the model parameters across the entire experiment, including
further training with TMLM, intermediate fine-tuning on TSMD and,
fine-tuning on the downstream tasks. We set 𝑚𝑎𝑥_𝑠𝑒𝑞_𝑙𝑒𝑛𝑔𝑡ℎ = 384 for
7

TMLM pre-training, TSMD intermediate fine-tuning, and all QA tasks.
Table 3
Hyperparameters for TPLM + TMLM.

Hyperparameter Value

Max sequence length 384
Batch size 24
Learning rate 1e−5
Train epochs 5
Optimizer AdamW
GPU 1 NVIDIA V100 GPU

The rest hyperparameters are inherited from diseaseBERT (He et al.
2020). We list the main hyperparameters of TMLM in Table 3.

For TPLM + TMLM, our pre-training corpus (52 MB) is about
2.5 times bigger than that of diseaseBERT (He, Zhu, et al., 2020),
then a longer training time is needed. When the mode is performed
on one NVIDIA V100 GPU, it takes about 80 min to complete one
training epoch, and just 1–5 epochs are enough to enhance PLMs’ better
performance on the four downstream tasks. For TPLM + TSMD, owning
to the smaller size of TSMD dataset (35MB), intermediate fine-tuning
on TSMD is faster (about 30 min). And it takes no more than 10 epochs
to reach its best performance.

4.4. Results

Fig. 5 shows the impact of the input 𝑚𝑎𝑥_𝑠𝑒𝑞_𝑙𝑒𝑛𝑔𝑡ℎ length on
ubMedBERT + TMLM. And We take the performance of PubMed-
ERT + TMLM on MEDIQA-2019 to illustrate it. We can see the
erformance continually improves with 𝑚𝑎𝑥_𝑠𝑒𝑞_𝑙𝑒𝑛𝑔𝑡ℎ, but when it
eaches 𝑚𝑎𝑥_𝑠𝑒𝑞_𝑙𝑒𝑛𝑔𝑡ℎ = 384, the rapid rising slows down. The figure

explains to some extent the reason why we set 𝑚𝑎𝑥_𝑠𝑒𝑞_𝑙𝑒𝑛𝑔𝑡ℎ = 384 is
that: (1) The lengths (in tokens) of topic-paragraph pairs used by TMLM
are generally within 384 (the ratio is 99.43); (2) In contrast with the full
length (512 tokens), the smaller 𝑚𝑎𝑥_𝑠𝑒𝑞_𝑙𝑒𝑛𝑔𝑡ℎ can accelerate training,
and nearly no performance degrade.

Table 4 shows the performance of consumer health QA tasks. Pre-
dictably, the topic-related task benefits a lot from TDA. The part of
the best results, TPLM + TSMD and TPLM + TMLM + TSMD, almost
equal shares. TPLM + TSMD increases the accuracy by 5% for MEDIQA-
2019 and 3.56% for TRECQA-2017 on average. TPLM + TMLM + TSMD
increases the accuracy by 5.44% for MEDIQA-2019 and 4.12% for
TRECQA-2017 on average. The results suggest: (1) The three experi-
mental modes all work, although TPLM + TMLM is less prominent in
this task, but it has a more widely application, which can be shown in
later part of the paper; (2) TPLM + TMLM + TSMD is slightly better
than TPLM + TSMD, which suggests continual pre-training on the two
tasks is more effective than on just one; (3) Our TSMD constructed with
the semi-structured information and the CHQA datasets embody the
same essence, thereby can help it via transfer learning; (4) Intermediate
fine-tuning is more effective in capturing task-specific domain knowl-
edge than continual pre-training with TMLM. Overall, the excellent
performance of TDA confirms our predictions that the semi-structured
information does have the potential to help TPLM learn more domain
knowledge.

The results of the Yes/no QA task are shown in Table 5. TMLM
helps TPLMs do better on PubMedQA, attaining a performance boost of
3.32% absolute on average. We conjecture that it rewards the learning
of semantic relationship between the paragraph and its topic, which
involves domain knowledge and logical reasoning ability needed by the
Yes/no QA task. As for the results of MEDNLI, we see from Table 5 that
TMLM makes limited improvement, by 0.9% on average. And different
from the previous experiments, the biomedical TPLMs benefit more
from TMLM than the general TPLMs, which can be explained by the

4 https://huggingface.co/models

https://huggingface.co/models
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Fig. 5. Impact of the input 𝑚𝑎𝑥_𝑠𝑒𝑞_𝑙𝑒𝑛𝑔𝑡ℎ length on PubMedBERT + TMLM. The performance continually improves with 𝑚𝑎𝑥_𝑠𝑒𝑞_𝑙𝑒𝑛𝑔𝑡ℎ, but when it reaches 𝑚𝑎𝑥_𝑠𝑒𝑞_𝑙𝑒𝑛𝑔𝑡ℎ = 384,
the rapid rising slows down.
Table 4
Experimental results on consumer health QA task.

Datasets MEDIQA-2019 TRCEQA-2017

Metrics(%) Accuracy MRR Precision Accuracy MRR Precision

BERT (Devlin et al., 2019) 67.75 79.28 72.22 79.02 52.48 62.12
BERT + TMLM 71.91 83.56 75.84 81.05 53.13 64.96
BERT + TSMD 73.98 83.22 78.29 81.41 51.76 66.5
BERT + TMLM + TSMD 73.62 86.22 79.91 81.88 51.28 67.10

RoBERTa (Liu et al., 2019) 70.1 83.74 70.67 76.16 43.59 57.8
RoBERTa + TMLM 71.43 81.22 73.53 78.22 41.2 60.77
RoBERTa + TSMD 76.15 89.06 77.72 81.13 43.27 71.28
RoBERTa + TMLM + TSMD 75.79 87.02 77.05 80.57 43.44 67.19

SpanBERT (Liu et al., 2019) 66.31 83.33 67.4 69.01 47.41 45.13
SpanBERT + TMLM 70.64 85.83 73.43 76.28 47.44 58.72
SpanBERT + TSMD 71.54 85 72.92 77.71 45.03 58.44
SpanBERT + TMLM + TSMD 73.8 85.89 76.34 80.43 45.99 69.62

BioBERT (Lee et al., 2020) 71.54 84.44 73.67 80.45 50.96 65.29
BioBERT + TMLM 74.43 88.72 76.53 80.81 55.72 64.05
BioBERT + TSMD 75.79 89.53 79.88 81.41 55.53 65.13
BioBERT + TMLM + TSMD 74.8 89.56 79.36 81.17 54.65 66.36

PubMedBERT (Gu et al., 2021) 72.9 84 77.25 80.45 52.24 62.96
PubMedBERT + TMLM 75.7 89.11 77.84 81.76 54.65 67.3
PubMedBERT + TSMD 76.24 86.34 83.56 81.29 54.33 66.22
PubMedBERT + TMLM + TSMD 77.78 92.22 81.71 81.88 54.11 67.28

diseaseBERT (He, Zhu, et al., 2020) 66.40 83.33 68.94 75.33 56.41 54.01
DAKI-BERT (Lu et al., 2021) 69.47 85.06 70.17 77.95 54.65 58.27

diseaseBioBERT (He, Zhu, et al., 2020) 72.09 87.78 74.40 78.43 54.76 58.45
DAKI-BioBERT (Lu et al., 2021) 72.54 87.33 77.46 78.55 54.17 59.04
knowledge needed by MEDNLI is distinguished from those captured
by TMLM, more logical reasoning ability instead of more domain
knowledge is needed by this task. Making TPLM to incorporate more
logical reasoning ability will be our future direction. Table 5 also shows
the performance on NER task. For BC5CDR, the accuracy of the models
equipped with TMLM increases by 0.45% on average, and 0.58% for
8

NCBI. Although NER-related task is not covered in TDA, it still works,
which probably owing to that TMLM forces PLMs remember the disease
terms during pre-training.

Fig. 6 shows the impact of train epoch of PubMedBERT + TSMD on
MEDIQA-2019. We can see that it takes just two train epochs to reach
the best performance, on both accuracy and precision. And MRR shows
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Fig. 6. Impact of train epoch of PubMedBERT + TSMD on MEDIQA-2019. It takes just two train epochs to reach the best performance, on both accuracy and precision.
Table 5
Experimental results on Yes/no QA, NLI and NER tasks.

Tasks Yes/no QA NLI NER NER
Datasets PubMedQA MEDNLI BC5CDR NCBI
Metrics(%) Accuracy Accuracy F1 F1

BERT (Devlin et al., 2019) 55.4 78.83 83.28 85.56
BERT + TMLM 58.2 79.82 84.23 86.52

RoBERTa (Liu et al., 2019) 55.6 82.49 83.47 87.01
RoBERTa + TMLM 57.4 83.54 83.7 87.63

SpanBERT (Joshi et al., 2020) 55.2 80.66 84.18 87.13
SpanBERT + TMLM 58.8 80.8 84.42 88.32

BioBERT (Lee et al., 2020) 60.2 82.77 85.58 87.70
BioBERT + TMLM 61.4 84.04 86.13 87.91

PubMedBERT (Gu et al., 2021) 55.8 83.76 87.82 88.3
PubMedBERT + TMLM 63 84.6 87.89 88.83

diseaseBERT (He, Zhu, et al., 2020) 56.6 77.29 83.47 86.81
DAKI-BERT (Lu et al., 2021) 57.1 77.85 83.43 85.67

diseaseBioBERT (He, Zhu, et al., 2020) 60.7 82.21 86.52 87.14
DAKI-BioBERT (Lu et al., 2021) 61.2 83.41 86.51 89.01
a contrary growth trend compared to the former two metrics. Now we
know the knowledge transfer from TSMD to MEDIQA-2019 is efficient,
which in turn demonstrate our TSMD is indeed a MEDIQA-like dataset.

4.5. Ablation study

In the above experiments, the masking strategies used by these
TPLMs can be divided into two classes: Vanilla MLM used by BERT,
RoBERTa, BioBERT and PubMedBERT; span masking used by Span-
BERT. And we have shown no matter what masking strategy the TPLM
used during pre-training, they all benefited from our selective masking
strategy during continual pre-training. Now we want to know: (1)
whether our selective masking is superior than the two vanilla masking
strategies, thus we conduct continual pre-training BERT with vanilla
MLM and span masking on the in-domain text corpus obtained in
Section 3.1, for a fair comparison. (2) whether the Hyperparameter we
set for our selective masking is optimal, thus we compare the effect of
different making rates for the heading elements and random masking
or not. We report the ablation study on MEDIQA-2019 and PubMedQA,
the results are shown in Table 6. Similar results are observed on the
remaining tasks, but omitted here due to the space limitation.

Table 6 shows the superiority of our selective masking: (1) For ran-
dom masking, increasing the heading elements masking rate in a certain
9

Table 6
Ablation study on MEDIQA-2019 and PubMedQA.

Datasets MEDIQA-2019 PubMedQA

Metrics(%) Accuracy MRR Precision Accuracy

Default
(selective
masking)

71.91 83.56 75.84 58.2

75% random
heading masking

70.55 83.28 71.65 56

50% random
heading masking

71.18 82.61 73.82 57.2

30% random
heading masking

70.73 82.94 74.31 56.4

15% random
heading masking

70.46 82.84 73.33 55.8

BERT + Vanilla
MLM

69.74 79.0 74.23 57

BERT + Vanilla
span masking

68.85 83.34 73.02 57.8

range is suitable for this task, and 50% works best; (2) Our selective
masking (Default) works better than the randomized one (50% random
heading masking), which on one hand shows masking heading elements
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enables TPLM to capture more domain knowledge than the randomized
one, and on the other reveals the semi-structured information offers
more possibilities for domain knowledge learning; (3) For BERT, TMLM
is a more effective masking strategy in capturing domain knowledge
than the two vanilla the masking strategies, especially in the CHQA
task, we owning this to the domain knowledge captured by TMLM is
just what CHQA needs.

5. Conclusion and future work

In this paper, we show the importance of semi-structured infor-
mation of documents for BERT models capturing domain knowledge.
Firstly, we realize the value of semi-structured information in human
learning domain knowledge and design a novel pre-training corpus con-
struction method, which incorporates the semi-structured information
well. Secondly, we propose TDA, which enhances the capture of domain
knowledge at various levels of text granularity. As key technologies of
TDA, TMLM and TSMD enable BERT to capture the domain knowledge
embedded in paragraph and subsection respectively during pre-training
and intermediate fine-tuning. The experimental results show the effec-
tiveness of TDA on four biomedical domain tasks, and a significant
improvement is observed in the QA tasks, especially the topic-related
one — CHQA. The last that must be emphasized is that our TDA can
be easily applied to other domain, even the general domain. Because
of the experimental conditions and equipment limitations, the further
validation of TDA on the other domain can be served as part of the
future research work.

Although our TDA works well from the experimental results, it still
has room for improvement: (1) Hyperparameters optimization. While it
usually requires huge computation, a small-scale grid search is neces-
sary; (2) TDA implementation. The three modes of TDA all belong to the
continual learning, with the drawback that it may forget the previously
learned knowledge, and our experiments also confirm this. Fortunately,
sequential multi-task learning from ERNIE 2.0 (Sun et al., 2020) and
adapters (Houlsby et al., 2019; Lu et al., 2021; Wang et al., 2021) are
both effective solutions to the problem. (3) Integration of TMLM and
MLM. Our TMLM and BERT’s MLM are basically the same. However,
we use them in different phases, which would increase computation and
lead to the same problem of continual learning. Therefore, integrating
the two into one training procedure is a valuable question to be studied.
These limitations can be directions for future work.
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