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Relation of Relative Reduct Based on Nested
Decision Granularity

LI Dao-Guo, MIAO Duo-Qian, and YIN Yi-Qi

Abstract— A granulation structure for stratified rough sets’
approximation is examined. This paper mainly explores the
relationships between their cores and their reductions based on
consistent and inconsistent information tables. At the end, some
conclusions are drawn as following: The relative core of coarser
decision granularity must be included by that of finer decision
granularity; A relative reduction of coarser decision granularity
can be enlarged to be the one of the finer decision granularity,
contrarily, a relative reduction of finer decision granularity is
sure to contain that of coarser decision granularity, all of which
take on special significance in practice for knowledge reduction
and dynamic solution problems.

Index Terms— Relative reduction, Inclusion degree, Granular
partition, Nested decision granularity.

[. INTRODUCTION

NOWLEDGE Representation System!!! based on the
decision table generally includes a mass of data and
information records. These records make up of a relational
database and reflect connections between condition attributes
and decision attributes to a certain extent, therefore, they
are carriers of domain knowledge. The main objective of
Knowledge Discovery In Database!?! (abbreviation, KDD) is
how to acquire potential, novel, correct and available knowl-
edge that involves vague, incomplete, uncertain, partly truth
and vast information, then we can solve many problems in
correlative fields via these acquired knowledge. In the course
of problem-solving and information-processing, a granularity
and abstraction of information is necessary in most cases.
Observing the real world by using various grain sizes, we
can abstract and consider only those that serve our present
interest, Information Granulation[®! has a great influence on
the design and application of intelligent system. Our ability to
conceptualize the world at different granularities and to switch
among these granularities is fundamental to our intelligence
and flexibility. It enables us to map the complexities of the
world around us into simpler theories that are computationally
tractable to reason in.
The principles of the granularity theory have been applied in
many studies. Giunchigalia and Walsh put forward a theory of
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abstraction which is thought of as “the process which allows
people to consider what is relevant and to forget a lot of
irrelevant details which would get in the way of what they
are trying to do”. In fact, Abstraction methods are essential
ideas of information granulation. Zadeh and Pawlak are ex-
ploiters in the research domain, namely Granular Computing,
subsequently Skowron .A ., Yao. Y.Y., T.Y.Lin., Zhong.N.,
Zhang.. and Zhang B et al, have developed the theory,
which recently received much attention from computational
intelligence communities!*->-].

Because rough set is one of main tools for granular
computing and knowledge reduction plays an important role
in information and knowledge predigest, we analyze some
notions of rough sets and explore relationships among relative
cores / relative reducts of nested sequence of granulations
about decision attribute and prove it based on inclusion degree
concept in the end.

II. BASIC CONCEPTS AND THEOREMS

Definition 11" Partitioning and Covering: Let U denote
a finite and non-empty set called the universe. R C U x U
denotes an equivalence relation on U, where ”x” denotes the
Cartesian product of sets, (namely R is reflective, symmetric
as well as transitive.) By the equivalence relation R on the
universe U, one can divide the set U into a family of subsets
Gi(G; = [z]g,i = 1,2,---,n) that satisfies: ()G; # 0;
(DG NG; =0,i # j (namely there are no overlaps among

n

them); 3)() G; = U, then call 7(U/R) = {[z]r : V& €

U} = {Ci'l,lG%---,Gn} = {G;}, the partition on the
universe induced by R, which can be denoted by 7(R) when
U and R are explicit, where [z]r = {y|zRy,Vx,y € U}.
Because intersection of finite equivalence relations on a
universe is still an equivalence relation, one can define the
partition by intersection of finite equivalence relations on a
universe. Given a universe U and a family of equivalence
relations ® on U, if B € R A B # 0, then ind(B) =

(| « is still an equivalence relation on the U, it is called
YaeB
a indiscernibility relation on U and is denoted by ind(B), B,

therefore 7(B) is called the granular partition of the universe
induced by B,where [z]p = {y| A zRy,Vx,y € U}. In

VREB
addition, {(w) = {r|r = B,VBCRVB=0vB="="}
denotes all the partitions of the universe U induced by the
family of finite equivalence relations.

Definition 2 The size of granular partitioning:
Let m(Ry) = {Gi1,Gi2,--,Gim} and my(R2) =
{G21,Ga2, -, G2y} be two granular partitions on a universe.
If VG1; € w1, always 3Go; € o satisfies Gi; € Gy, then we
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call ; finer granular partitioning than 7o, denoted by m; < 5.
There also has the case on which the sizes of two granular
partitions can’t be compared with.

Definition 3 The size of equivalence relations on the
universe U : Let R denote the set of all the equivalence
relations on the given universe U, if VRy, Ry € R,Vx,y € U
satisfies (1) xRy = xRoy then call R; finer than R, simply
denoted Ry < R2:;(2) xRy < xRay then call the size of R,
is equal to that of Ry; (3) if (1),(2) are not valid, then call the
size of R; unable to compare with the one of Rs.

Definition 4 Inclusion degree® : Let (U, <) be a partial
order set, if for Vz,y € U ,there is a real number d(y/x)
with respect to « and y and it satisfies (1) 0 < 9(y/x) < 1,
Qzx<y=0y/r)=1,0B z<y<z=09x/z)<
d(z/y), then O(y/x) is called a inclusion degree in the partial
order set. One can integrate many granular computing and
rough sets models by inclusion degree, which leads to a more
general approximation structure for computing and reasoning
with information granules.

Example 1: Let U denote a finite and non-empty set called
the universe. P(U) is the power set of the universe U, where
(P(U), C) constitutes a partial order set. For VX,Y € P(U),
one can define:

aY/X) =[XnY|/|X] (1)

Then it’s a kind of inclusion degrees on the P(U).

Proof: @ for VX, Y € P(U), -0 < |XNY| < |X],..0<
a(Y/X) = [X N Y|/|X| < L
® 2 C y,0(Y/X) = |X N Y|/|X| = |X|/|X] = L
@X CY CZ so|X| <Y <|Z, 0X/Z) =|XnN
2|/12| = |X|/12) < |X|/[Y| = |X N Y|/|Y] = d(X/Y).

So the formula (1) is the inclusion degree on the P(U)
according to the definition 4.

Definition 5(°0 The significance degree of condition at-
tribute a(Va € C) with respect to the decision attribute
D: Let (U,CUD,V, f) be a decision table, 7(D) denotes a
granular partitioning on the universe induced by the decision
attribute D. For Va € C, sig(a) = 1—9(n(D)/n(C —{a}) is
called the significance degree of condition attribute (Va € C)
with respect to the decision attribute D. Where 0 is an
inclusion degree on the (y(w). The significance degree play
an important role in analyzing the dependent degree among
attributes and constructing heuristic arithmetic of knowledge
reduction.

Definition 68/ The positive field of relation Q with
respect to relation P: Let U be a universe. ) and P are two
equivalence relations on the U , then POSpQ =X € U/Q.
P(X) is called the positive field of relation () with respect
to relation P. It shows the sets of all objects on the U
that are partitioned exactly into the equivalence classes of
relation @ by the classification information of U/P, where
P(X) = {Yi|(Y; € U/P) A (Y, C X)}

Definition 7!8/ The core attribute and the relative core
to decision attribute D of a decision table: Let a quaternion
(U, A, V, f) be a decision table. For Va € C, if the single
attribute a satisfies one of the conditions as following: (1)
POSc(D) # POSc_143(D) . (2) In the discernibility matrix
M = (7ij)nxn based on objects, for Vz;,xz; € U,i,j =

1,2,---,n.(n = |U|),3r;; = {a} is a single attribute set (3)
In a given consistent decision table, ind(C — {a}) < ind(D)
is not held, namely either 7(C' — {a}) < 7(D) or Rc_q3) <
Rp is not held.

Then we call the single attribute a is a core attribute. The set
of all core attributes of the decision table is called the relative
core to D, denoted corec(D). A core attribute is necessary
for keeping the classification ability about the decision table,
because if any one of core attribute is deleted, the classification
ability about the information table will be weaken.

Definition 8 The relative reduction to decision attribute
DU7l: Let (U,C U D,V, f) be a decision table, if 3P C C,
satisfies
(1) P is independent, namely for Va € P, POSp_,(D) #
POSp(D)

(2)POSp(D) = POSc(D) then the relation P is called a the
relative reduction to decision attribute D about the decision
table, denoted by P € redq(D).

Definition 9 The consistent decision table: Let (U,C U
D,V,f) be a decision table. If 7(C) < =(D), namely
POSc(D) = U, then the decision table is called a consis-
tent decision table. Otherwise, the decision table is called a
inconsistent decision table. Knowledge being acquired based
on a consistent decision table is determinate, which show the
information table does not contain any confliction information
/instances, but the case in a inconsistent decision table is
reverse.

III. BASIC THEOREMS

Theorem 18): Let (;(7) denote the set of all granular
partitions on a given universe U. The ((y (), <) constitutes a
partial order set, and 9 is a inclusion degree on the (P(U), C).

koo

For Vﬂ'l,ﬂ'g € CU(TF) define 8(7‘(’2/7‘(1) = /\ v 8(YJ/XZ),

i=1j=1
then it is called a inclusion degree on the ({(w), <). Where
m = {Xi}j_;,m = {Y;}}_, are two kind of granular

partitions on the universe U.

Theorem 28): Let (U,C' U D,V, f) be a given consistent
decision table, then for Va € C, a is a core attribute, iff (if
and only if )

sig(a) =1—0(x(D))/7(C —{a})) > 0 2)
IV. RESEARCH ON THE RELATIONSHIPS AMONG RELATIVE
CORES AND THAT OF AMONG RELATIVE REDUCTS OF
NESTED DECISION GRANULARITIES

A. Based on a family of consistent and nested decision table

When we solves many practice problems, we usually need
subdivide or coarsen decision granularity in a information table
0 as to solve problems dynamically according to accuracy of
approximation, hence we will study the relationships of nested
decision granularity’s relative cores and that of their relative
reducts.

Definition 10: A family of consistent and nested deci-
sion granularities about a information table: Let (U,C' U
D;,V, f) be a family of decision tables, if they satisfy: (1)
m(C) < n(D;), 2) m(D1) > w(D2) > --- > w(Dy),i =

398



1,2,--- N, then it is called a family of consistent and
nested decision granularities about the information system

(Ui C7 Vi f)'
Theorem 3: Let (U, CUD;,V, f) be a family of consistent
and nested decision granularities. ¢ = 1,2,---,N, 0 is a

inclusion degree on the (y (7). Then the formulas as following
are held:

corec:(D1) C corec(D3) C -+ Ccorec(Dy)  (3)
VB' € redc(Dis1) = 3B C B AB€redo(D;)  (4)

Proof: Let w(D;) > m(D;4+1), next to prove: for Va €
corec(D;) = a € corec(Diy1).

- w(C) < w(Dit1) < (Dj)for Ya € corec(D;),i =
1,2,---,N.& sigla) = 1 = 0(n(Dy)/m(Cra}) > 0 <
d(m(D;)/m(Cra}) < 1 < w(Cra}) < 7(D;) is not held.
= m(Cra}) < m(Diy1) is not held.= a € corec(Djy1).
Otherwise,m(C' —{a}) < 7(D;y1) , and " 7(D;y1) < w(D;),
then 7(C' — {a}) < 7(D;i11) < 7(D;) = a ¢ corec(D1),
which lead to contradiction. So corec(D;) C corec(Diy1).

Owing to values of variable ¢ from 1 to n — 1 in above the
formula ,obviously proposition (1) is right.

Supposed 7(D;) > 7(D;+1), next to prove:

@ for VB’ € red.(D;+1), always exists B C B’, gets B €
redc(D;),

@ for VB € redc(D;) An(B) < m(Diy1) = (3B’ 2 B) A
(BI € TedC(DH_l)).

Let B’ € redc(DHl) < 7(B') < m(D;y1) and Va €
B 7(B" = {a}) < 7w(D;41) not be held. .- #(D;) >
m(Dit1) = pz(B’) < w(Dit1) < w(Dy), if for Va €
B’ w(B' — {a}) < 7(D;) is not held, then B’ € redc(D;).
One can get B = B’, namely B satisfies B C B’ and
B € redc(D;). if 3a € B', get n(B’ — {a}) < m(D;) can
be held, then take B” = B’ — {a}, in succession to reason
for V8 € B” whether (B’ — {8}) < w(D;) comes into
existence. If it is not held, then B” = B’ — {a} € redc(D;),
take B = B” = B = B” C B’ and B € redc(D;).If it is
valid, then the above reasoning processes are continued, due
to the finite attributes set, we can find always B C B’, get B
satisfies (7(B) < m(D;) and Vb(m(B — {b}) < w(D;) is not
held, so B € redc(D;). Owing to values of variable i from
1 to n, the proposition @ is right. In the same, we can prove
the proposition @ is right too.

Theorem 3 shows the relations of relative cores and reduc-
tions to D of nested decision granularities, which can be used
to acquire knowledge dynamically in information tables and
solve practical problems easily based on granular computing.

B. Based on a family of inconsistent and nested decision table
induced from relational database

For discussing relationships of relative cores and that of
among relative reducts of nested decision granularities induced
from the relational database (namely no identical object in
decision table), a new inclusion degree (we call § inclusion
degree in the following text) is defined and applied here to
measure the inconsistent and nested decision table.

Definition 11: A family of inconsistent and nested
decision granularities induced from a relational database:

Let (U,C U D;,V, f) be a family of decision tables, if they
satisfy:
(1) #(D1) > w(Dg) > -+- > w(Dn),i =1,2,---,N
(2) POSc(D;) #U,i=1,2,--- N
(3) Va;,z; € U, # j,x; and x; are not identical.

Then it is called a family of inconsistent and nested decision
granularities induced from relational database.

Definition 12: Let U denote a finite and non-empty set
called the universe, P(U) is the power set of the universe U.
For VX,Y C P(U), ¢ inclusion degree is defined as:

LXCY

0Y/X) = { 0, (others) (5)

Furthermore, §(Y/X) is inclusion degree on the P(U).

Definition 13: Let (y(w) denote the set of all granular
partitions on a given universe U. The ({(7), <) constitutes a
partial order set, and ¢ function is defined on the (P(U), Q).
For Vmy,m € (y(m) define §(ma/m) = Z Z I(Y;/Xs),

1=17=
Where m = {X}F_,,m = {Y}\_, are two kind of granular
partitions on the universe U.

Lemma 1: Let (U,C U D;,V, f) be a family of inconsis-
tent and nested decision granularities induced from relational
database. i = 1,2,---, N. So 6(n(D;)/w(C)) = |[POSc(D)].
Where m = {X}F_ ), mp = {Y'}._, are two kind of granular
partitions on the universe U.

Proof: @ if X; satisfies |X;| =1 and x 6 X, always and

only exist one Y; € m(D;),X; CY; = Zé(Y/X)—l

From the definition 6, we can know ob]ect must satisfy = €
POSc(D;) (namely X; C POSc(D)).

@ if X; satisfies | X;| > 1, that mean the elements of X; have
confliction information or instances. So there is no such Y

!
satisfies (X; C Y;) namely > 6(Y;/X;) = 0, and X; €
j=1
POSc(D).
From (i)(ii)),we can conclude d(w(D;)/w(C)) =

|POSc(D)| are equal with the number of X; which
satisfies |X;| = 1. Actually in an inconsistent decision table
induced from relational database, |X;| = 1 means = € X is
consistent object and d(w(D;)/7(C)) denotes the number of
consistent object in decision table.

Lemma 2: Let (U,C U D;,V, f) be a family of inconsis-
tent and nested decision granularities induced from relational
database. ¢ = 1,2, .-, N. The following formula comes into
existence. §(m(D;)/m(C)) = 6(w(D;11)/m(C)) Where m =
{X}_),m = {Y},_, are two kind of granular partitions on
the universe U 7T(D ) > m(Diy1).

Proof: - D;)/n(C)) = |POSc(D)| and fining of the
decision attrlbute won’t change the inconsistent degree of the
decision table induced from relational database. Therefore the
proposition comes into existence.

Theorem 4: Let (U,C U D,V, f) be a given inconsistent
decision table induced from relational database, then for Va €
C, a is a core attribute, iff (if and only if )

(m(D))/m(C)) # 6(m(D))/m(C — {a}) (6)
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Proof: -+ 8(x(D))/n(C)) #(x(D)/x(C — {a})e
Posc—gay(D) # posc(D), So a is a core attribute of the
decision table.

Theorem 5: Let (U,C U D;,V, f) be a family of inconsis-
tent and nested decision granularities induced from relational
database. ¢ = 1,2,---, N. The relative reduction about the
decision table B € redc(D) is equivalent with following
equations which are held

§(m(D)/m(B)) = é(n(D)/m(C)) (7)
Va € B,5(n(D)/m(B —{a})) # 6(x(D)/7(C))  (8)

Proof:(1) .+ B € redc(D) = POSg(D) = POSc(D) A
Va € BPOSp_q}(D) # POSc(D) = §(n(D)/m(B)) =
§(m(D)/m(C)) N Va € B, d(x(D)/n(B — {a})) #
6(r(D)/x(C))
@ -+ 3(x(D)/=(B)) = d(x(D
we can know |POSg(D)| = |POSc(D)| and VX €
m(B) AN X C POSg(D) = |X| = 1" wn(B) <
m(C) . X must satisfies X € 7(C) A X C POSc(D),
so 0(m(Dy)/m(B)) 6(m(D;)/m(C)) = posp(D) =
posc (D). In the same, foralla € B,§(w(D)/n(B —{a})) #
5(x(D)/7(C)) = Va € B,posp_(sy(D) # posc(D).
Therefore o(m(D)/m(B )) = 6(7r(D)/7r(C)) and VYa €
3(x(D)/n(B —{a})) # 8(x(D)/x(C)) = B € redo(D)

come into existence.

Theorem 6: Let (U,C U D;,V, f) be a family of inconsis-
tent and nested decision granularities induced from relational
database. © = 1,2, ---, N. Then following formulas is held:

)/7(C)). From Lemma 1

corec(D1) C corec(Da) C --- Ccorec(Dy)  (9)

VB’ € redc(Dit1) = 3B C B'AB € redc(D;)  (10)

Proof: Let w(D;) > w(Djit1),
corec(D;) = a € corec(Djt1).

next to prove Va €

For Va € corec(D;), 1 =1,2,---,N. & §(n(D;)/m(C —
{a})) # 0@x(Di)/n(C)) < 7(Di) = 7(Diy1) &
o(m(D;)/m(C)) = d(m(Dit1)/m(C)) and §(m(Dy)/m(C —

{a})) = 6(n(Dit1)/n(C = {a})) . 6(7(Dip1)/7(C —
{a})]) 75 5(7T(Dbi+(11)/7r(0)) < a € corec(Dit1) So next

(11)

Owing to values of variable ¢ from 1 to n — 1 in above the

formula(14), which show the proposition (1) is right.
Supposed 7(D;) > 7(D;+1), next to prove:

@ for VB’ € red.(D;y1),always exists B C B’,gets B €

corec(D;) C corec(Djt1)

redc(D;),

@ for VB € redc(D;) = (3B’ 2 B) A (B’ € redc(Diy1)).
Let B € vredc(Dit1) < 5(7T(D1+1)/7T(B’)) =

8(m(Diy1)/m(C)) and Va € B, 6(m(Diy1)/m(B" — {a})) #

8(n(Dy11)/m(C)) - w(Ds) = 7(Dyy1) = 8(n(Dy)/m(C)) =

(m(Dis1)/m(C)) and 6(m(Di) /7 (B)) = 6(m(Diy1)/7(B)),

o 8(m(Dy)/m(B")) = §(x(D;)/w(C)) if forVa €

B §(n(D;)/n(B" — {a})) # 6(x(D;)/w(C)) then B’ €
redc(D;). One can get B = B’, namely B satisfies B C B’
and B € redc(D;). if Ja € B, get §(n(D;)/7(B' —{a})) =
0(m(D;)/w(C)), then take B” = B’ — {a}, in succession

to reason for V3 € B” whether é(n(D;)/m(B" — {5})) =
d(m(D;)/m(C)) comes into existence. If it is not held, then
B" = B' - {B} € redc(D;), take B = B = B =
B"” C B’ and B € redc(D;). If it is valid, then the above
reasoning process will be went on. Because the attributes set
is finite, so we can surely find B C B’ while B satisfies
5(r(D,)/x(B)) = 3(x(D;)/(C))and

o(m(D;)/m(B — {B})) # d(x(D;)/n(C)) . Therefore
B € redc(D;). Owing to values of variable ¢ from 1 to n,
the proposition @ is right. In the same, we can prove the
proposition @ is right too.

V. CONCLUSION

In this paper, we explored the relationships among relative
cores and relative reducts of nested granularities based on con-
sistent and inconsistent information tables, while concluded
futher that the cores of nested sequence of granulations about
decision attribute keep reverse order nested relations. A reduc-
tion of coarser decision granulation can enlarge a reduction
of its finer decision granulation; reversely a reduction of finer
decision granulation is sure to contain a reduction of its coarser
decision granulation. The findings have the certain practical
significance to knowledge reduction and dynamically solution
problems. At the same time these findings are beneficial in
further studies models of revision and recursion of knowledge
acquisition based on a decision table.
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