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Abstract-A great number of biclustering algorithms have been
proposed for analyzing gene expression data. Many of them
assume to find exclusive biclusters whose subsets of genes are
co-regulated under subsets of conditions without intersection.
This is not consistent with a general understanding of biological
processes that many genes participate in multiple different
processes. Therefore nonexclusive biclustering algorithms are
required. In this paper we present a novel approach (ROB) to
find potentially overlapping biclusters in the framework of
generalized rough sets. Our scheme mainly consists of two
phases. First, we generate a set of highly coherent seeds (original
biclusters) based on two-way rough k-means clustering. And
then, the seeds are iteratively adjusted (enlarged or degenerated)
by adding or removing genes and conditions based on a proposed
criterion. We illustrate the method on yeast gene expression data.
The experiments demonstrate the effectiveness of this approach.

Keywords-biclustering; gene expression data; rough clustering;
overlapping biclusters

I. INTRODUCTION

Clustering has been one of the most popular approaches of
analyzing gene expression data and has proven to be successful
in many applications, such as discovering gene pathway, gene
classification, and function prediction. Traditional clustering
methods, such as hierarchical clustering[1], K-means[2], or
SOM[3] assume that genes in a cluster behave similarly over
all the conditions. These methods produce reliable results for
microarray experiments performed on homogeneous
conditions. However, when the conditions of an experiment
vary greatly, the assumption is no longer appropriate. In this
case, it is desirable to develop approaches that can detect those
relevant conditions under which the behavior similarity
between genes of a potential group exists. This leads to a
promising paradigm of clustering, biclustering. Unlike
traditional clustering that reveals genes behaving similarly over
all the conditions, biclustering of expression data captures a
subset of genes exhibiting strikingly pattern similarity
(coherent fluctuation) across a subset of conditions. So
biclustering paradigm is more consistent with a general
understanding of cellular processes that subsets of genes are
co-regulated and co-expressed under certain experimental
conditions, but behaves almost independently under other
conditions.

The notion of biclustering (also known as direct clustering
[4], co-clustering [7], box clustering[8]) was first introduced by

Hartigan[4] in 1972 to describe simultaneously grouping of
both row and column subsets in a data matrix. The term
biclustering was first used by Cheng & Church [6] in gene
expression data analysis in 2000. Since then, numerous
microarray biclustering algorithms have been developed. Yang
et al.[9]generalized the additive biclustering model proposed
by Cheng & Church to incorporate null values and proposed a
probabilistic algorithm(FLOC) that can discover a set of k
possibly overlapping biclusters simultaneously. Getz et al.[10]
developed the coupled two-way iterative clustering approach to
identify biclusters. Tang et al.[ll]presented the interrelated
two-way clustering algorithm that combines the results of
one-way clustering on both gene and sample dimensions to
produce biclusters. Lazzeroni and Owen[12] introduced the
plaid model which can be seen as a generalization of the
additive model where the value of an element in the data
matrix is viewed as a sum of terms called layers(biclusters).
Segal et al.[13]proposed rich probabilistic models based on the
language of probabilistic relational models which allows to
include multiple types of information to identify similar
objects. Its outcome can be interpreted as a collection of
disjoint biclusters generated in a supervised manner. Tanay et
al.[14]combined graph theoretic and statistical considerations
and devised the SAMBA algorithm by modeling the expression
data as a bipartite graph and transforming the biclustering
problem to that of finding the heaviest subgraphs in a bipartite
graph. This approach can find statistically significant biclusters
in gene expression data. Kluger et al.[15]presented a spectral
biclustering method to find distinctive checkerboard patterns in
expression matrices. The checkerboard structures can be found
in eigenvectors which can be readily identified by commonly
used linear algebra approaches. Sheng et al.[16]implemented
Gibbs sampling to biclustering discretized microarray data. In
[17], Wu et al. proposed a simpler Gibbs sampling scheme and
expand its application to biclustering continuous gene
expression data. Cano et al.[5]recently proposed a possibilitic
spectral biclustering algorithm (PSB) to obtain potentially
overlapping biclusters, based on Fuzzy Technology and
Spectral Clustering. A review of most biclustering methods can
be found in [25]. Since the biclustering problem is proven to be
NP-hard[6], most biclustering algorithms use heuristic
approaches that are not guaranteed to find optimal solutions.
To address the problem, some stochastic search techniques
have been employed recently due to their potential to escape
local minima. Bryan et al.[18] exploited Simulated Annealing
to improve upon greedy techniques. Divina and Jesu's[19]used

Supported by the National Natural Science Foundation of China (No.
60475019) and the Research Fund for the Doctoral Program ofHigher
Education (No. 20060247039).

1-4244-1509-8/07/$25.00 02007 IEEE 828



Evolutionary Algorithms to search for biclusters following a
sequential covering strategy.

Most of above algorithms find exclusive biclusters which is
inappropriate in the biological context. Since biological
processes are not independent of each other, many genes
participate in multiple different processes. Each gene therefore
should be assigned to multiple biclusters whenever biclusters
are identified with processes.

We addressed the above concern in the framework of
generalized rough sets [20][24] by associating each bicluster to
a pair of distinct sets, a lower approximation and an upper
approximation. The lower approximation is a subset of the
upper approximation. The members (genes or conditions) of
the lower approximation belong to and only belong to the
bicluster. However, the members of the upper approximation
may belong to more than one biclusters among which there are
nonempty intersections. The boundary region between the
lower and upper approximation forms an overlapping part
among corresponding biclusters. Therefore it is expected that
lower and upper approximation derived directly from
expression data would better capture the overlapping feature
among the co-regulated genes.

In this paper, we propose a novel biclustering approach
based on generalized rough sets, named Rough Overlapping
Biclustering(ROB for short), to find biclusters of maximum
size, with stronger coherence, and particularly with a
reasonable degree of overlapping. Our approach uses a similar
bicluster model given in [19], which is a generalized bicluster
model of Cheng & Church [6]. The main processes of our
approach consist of two phases: seeds generating phase and
iterative bicluster refining phase. In the seeds generating phase,
we devise a two-way rough k-means clustering algorithm
which can produce naturally a set of very tightly co-regulated
submatrices or seeds from expression data. Starting with these
initial submatrices(or seeds), our approach can avoid random
interference suffered by replacing the missing value and
masking discovered biclusters with random numbers in [6]. In
the iterative bicluster refining phase, seeds are enlarged or
degenerated when the biclusters membership of each
row/column in expression data is adjusted iteratively. The rule
of thumb is to guide the adjustment to optimize the overall
quality of biclusters. To this end, we introduce a criterion by
which the biclusters membership of each row/column can be
decided. Base on the criterion, we propose a novel overlapping
biclustering algorithm to discover a set of overlapping
biclusters simultaneously. Our algorithm iterates adjusting the
memberships of rows and/or columns in a random order until
there exists a row or column whose potential operation would
lead to the corresponding mean squared residue being bigger
than a predefined threshold a.

We implemented the proposed method to find 100
biclusters on the same yeast data containing 2884 genes and
17conditions with same parameters setting as in [6] and [9].
The results show that the biclusters produced by our approach,
on average, have comparative size but a smaller mean squared
residue than that of Cheng &Church's algorithm [6] and FLOC
[9], partly because the proposed method avoids the random
interference suffered by the Cheng & Church's algorithm and

partly because the use of two-way clustering strategy to
construct seeds (initial biclusters) well captures the intrinsic
coherence of expression data. In addition, our approach can
produce a set of a -biclusters simultaneously with a
reasonable degree of overlapping, due to introducing of the
lower and upper approximation.

The remainder of the paper is organized as follows. Section
2 introduces the general model of bicluster. Section 3 presents
the algorithm in detail. Section 4 gives the experimental results
on yeast expression dataset. And finally, the conclusion is
provided in Section 5.

II. THE MODEL OF BICLUSTER

In this section, we present a brief description of the
bicluster model that is similar to the bicluster model in [19] and
a merit function to assess the quality of a bicluster.

A bicluster is defined on a gene-expression data. Let
G {g1, ,gN} be a set of genes and C = {cl,-- ,CM} be a set
of conditions. The data can be viewed as an NxM expression
matrix D. D is a matrix of real numbers, with possible null
values, where each entry di corresponds to the logarithm of
the relative abundance of the mRNA of a gene g, under a
specific condition C. Although each entry in expression
matrix D may have a null value, each entry in a bicluster is
supposed to be specified in this paper.

A bicluster essentially corresponds to a submatrix that
exhibits some coherent tendency. Each bicluster can be
uniquely identified by a set of relevant genes and conditions,
which determine the submatrix. Thus, a bicluster is a matrix
I x J, represented by a pair (I, J) where I c {1, *, N} is a
subset of genes (rows) and J c{1,, M} is a subset of
conditions [19].

Definition 2.1 The volume of a bicluster (I, J) is defined
as the number of entries dijsuch that i e I and je J [19].

In order to assess the quality of a bicluster, we use mean
squared residue defined by Cheng & Church [6]. In the
following, we give some definitions related to the measure,
which are taken from [6] [9] [19].

Definition 2.2 For a given bicluster (I, J), the base of a

gene gi is defined as dij=j Jdij lJ|. Similarly, the base

of a condition C is defined as = I| The base of
a bicluster is the average value of all the entries contained

in (I,J) , dj = tLicjjdD

Defintion 2.3 The residue of an entry dij in a bicluster

(I, J) is rij = dij - duJ - djj + djj
The residue is an indicator of the degree of coherence of an

entry with the remaining entries in the bicluster, given the
tendency of the relevant gene and the relevant condition. The
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lower the residue is, the stronger the coherence. To evaluate the
overall coherence of a bicluster, Cheng & Church [6] defined
the mean squared residue of a bicluster (I, J) as the sum of
the squared residue.

Definition 2.4 The mean squared residue of a bicluster

(I,J) is H(I,J) 2

The mean squared residue well indicates the overall
coherence of a bicluster. The lower the mean squared residue,
the stronger the coherence exhibited by the bicluster, and the
better quality of the bicluster. A bicluster is called a -bicluster
if H(I, J) < S for some5> 0. It has been proven that the
problem of finding the largest square 5 -biclusters is NP-hard
[6].

In this paper, we are interested in finding biclusters of
maximum size, with relative small mean squared residue
(lower than a given5 ), and particularly with a reasonable
degree of overlapping. We define the overlapping degree of
two biclusters as follows.

Definition 2.5 Given two biclusters A and B, the
overlapping degree R of the two biclusters is defined
as R =AnB| / AuBI , where IAnB| is the volume of

AnB,IAUBI isthevolumeof AuB.

III. ROUGH OVERLAPPING BICLUSTERING

In this section, we present a description in detail of our
Rough Overlapping Biclustering (ROB) approach, which can
effectively and efficiently find a set of overlapping biclusters
with relative lower average mean squared residue and average
larger volume simultaneously. The ROB first generates a set of
very tightly co-regulated submatrices or seeds from expression
data. Starting with the seeds (initial biclusters), an iterative
adjustment process is conducted to improve the overall quality
of these biclusters. At each iteration, the bicluster membership
of each gene (row) and/or condition (column) is adjusted to
produce better biclusters in terms of lower average residue and
larger volume. The algorithm terminates when there exists a
row or column whose potential operation (add or remove)
would lead to the corresponding mean squared residue being
bigger than threshold a.

In ROB approach, a pre-processing procedure is conducted
first, and then a two-way rough k-means clustering algorithm
as well as an overlapping biclustering algorithm is applied on
the gene expression matrix .The whole procedure of Rough
Overlapping Biclustering is presented in Fig. 1.

A. Pre-processing ofData
In gene expression matrix, different genes have different

range of intensity values. In order to eliminate the influence of
different gene-dimensions, the data are normalized by the
formula as follows [ 1].

d - A where
I-i

(1)
m m

m j=l

4-|ir / Seeds

Two-way clustering results combination generating

Initial seeds improvement

Determine potential biclusters
membership of each gene and

condition

T_+ S/ Iterative
Perform respective operation to adjust bicluster

membership of each gene and/or refining
condition

Termination

condition

Figure 1. The structure ofROB

dJ represents normalized intensity value for gene i under

condition j, d, denotes the original intensity value for gene i

under condition j, m is the number of conditions, and ui is
the mean of the intensity value of the original intensity values
for gene i over all conditions.

Gene expression matrix usually has thousands of genes

(rows). Among them, some genes have little reaction to the
experiment conditions and contribute little in biclustering the
data. We believe genes whose normalized intensity values keep
invariant or fluctuate very little belong to this class. These
genes which are called 'flat genes' in the remainder of the
paper need to be removed. Cheng & Church [6] introduced the
row variance as an accompanying score to reject trivial
biclusters where there is no fluctuation. Their method can

remove 'flat genes' in the trivial biclusters during each iteration
of greedy node deletion algorithm, but increase computing
complexity as well. In this paper, we consider to remove 'flat
genes' in the preprocessing phase and reduce gene-dimension
at the same time. We follow the method proposed in [11].

Let's assume we have n genes and m conditions. Each gene

is represented by m-dimensional vector (after normalization) as

follows.

gi = (dil 7 di2 7 7 dim), (2)

where i = 1,2,2-, n for each gene. We use vector-cosine
between each gene vector and a pre-defined stable pattern E to
test whether a gene intensity value (after normalization) varies
much over all conditions. The pattern can be denoted
asE = (el, e2, ,emn),whereall e areequal[11].
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cos(6)= <i"E >

gii11* ~

m

Z di xe
j=1

Zjld)xZYe2

E v -E v
veA(m ) ve(A(mj)-A(mj))

IA(mj)| A(mj) - A(mj)|(3)

where 6 is the angle between g, and Ei in m-dimensional
space. If the two vector patterns are more similar, the
vector-cosine will be closer to 1. Therefore, we can choose a
threshold q to remove genes matching pattern E (those genes'
vector-cosine values with E are higher than the threshold q ).

After the pre-processing procedure, we usually reduce
twenty to thirty percent of genes, which facilitates biclustering
in the next stage.

B. Two-way Rough K-means Clustering
To handle missing value and avoid random interference

suffered by Cheng & Church's algorithm [6], our approach
ROB starts with a set of seeds (original small biclusters) from
gene expression data. Intuitively, seeds that demonstrate higher
coherence will facilitate refining biclusters with lesser iteration
steps in the next phase. We address these concerns within the
framework of Two-Way Clustering (TWC). Generally, any
standard clustering method can be used in the framework of
TWC. The optimal algorithm for overlapping biclustering
analysis of gene expression data should have the potential to
produce overlapping clusters. Therefore, we choose rough
k-means clustering algorithm [21][22] and use it on both gene
and condition dimensions.

In rough k-means clustering, each cluster has two
approximations, a lower and an upper approximation. Strictly
speaking, the lower and upper approximations are not looked
upon as Pawlak's rough sets [20][28], but rather interval sets
[23].

The rough k-means algorithm begins by randomly choosing
k objects as the centroids(means) of the k clusters. The objects
are assigned to the lower approximation or upper
approximation based on the following ratio [22].

For each object vector v, let d(v,mj) be the distance
between itself and the centroid of cluster mj , and

d(v,m,) = mnl<j<k d(v,mj), 1< i, j < k. The ratio

d(v, mi) I d(v, mij) is used to determine the membership ofv.
Let

T = {j|d(v,mj) d(v,m)< and i j},

1. If T.0,veA(m,) and veA(mj),VjeT.
2. Otherwise,if T= 0,vEA(mi).
After the assignment of all the objects to various clusters,

the new centriod (means) vectors of the clusters are calculated
by:

if A(mi) - A(mj)0AA(mj) .0

else if A(mj) - A(mj) = 0 A A(mj) 0

1 v

veA(mj) IA(mj)l

else if A(m) - A(mj)0AA(mj) 0

z v

vG(A_(mj)-A(mj)) A(mj)-A(mj)|

where 1< j <m The parameters co and cob correspond to
the relative importance of lower approximation and boundary
region of the cluster, and c, + coh= The expression

|A(mj)| indicates the number of objects in lower

approximation of the cluster and A(m) -A(mj)| is the
number of objects in the boundary region.

The process stops when the centroids of clusters stabilize,
i.e. the centroid vectors from the previous iteration are identical
to those generated in the current iteration.

In the paper, we apply the rough k-means method on the
gene(row) and condition(column) dimensions of the expression
data matrix after pre-processing procedure separately, and then
combine the results to obtain seeds(small co-regulated
submatrices). Given a gene expression data matrix D, let kg be
the number of clusters on gene-dimension and kc be the
number of clusters on condition-dimension after rough
k-means clustering. Cg is the family of gene clusters and Cc
denotes the family of condition clusters. Let cg be a subset of
genes and cg E Cg I < i < kg ). Let cc be a subset of

conditions and c Cc(1< j < kc). The pair (cg,cJc) denotes
a submatrix (seeds) of D. Therefore, by combining the results
of gene-dimensional rough k-clustering and
condition-dimensional rough k-clustering, we obtain
kg x kc seeds.

Two-way clustering methods apply standard clustering
methods on the row and column dimension of data matrix
separately and combine the results to obtain biclusters. The
combined results exhibit similarity on either gene dimension or
condition dimension; however, they may not well capture the
overall coherence of both a subset of genes and a subset of
conditions. To improve the seeds obtained by two-way rough
k-means, we use the Single Node Deletion algorithm given in
[6] to remove gene (row) or column (condition) such that the
mean squared residue of each seed is less than or equal to a
predefined threshold. Among these refined seeds, we are
interested in those which exhibit relative higher coherence and
larger size. Thus, we choose the largest K < kg x kc seeds as
input to the following overlapping biclustering algorithm.
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C. Overlapping Biclustering Based on Generalized Rough
Sets
In this section, we present a novel overlapping biclustering

algorithm based on generalized rough sets, which can

effectively and efficiently approximate a set of overlapping
biclusters simultaneously with relative lower mean squared
residue. This algorithm starts from a set of seeds produced by a

preceding two-way rough k-means clustering algorithm and
iteratively conducts adjustments to approach the best solution.

In the framework of generalized rough sets[20][24], we

view each bicluster as a generalized rough set which has two
approximations, a lower and an upper approximation. The
lower approximation is a subset of the upper approximation.
The members (genes or conditions) of the lower approximation
belong to and only belong to the bicluster. However, the
members of the upper approximation may belong to the
bicluster as well as other biclusters. Therefore, the boundary
region between the lower and upper approximation forms an

overlapping part among corresponding biclusters.

Given a gene expression data matrix D, for each object
(gene or condition), there are possible three kinds of bicluster
membership. They are as follows.

* It may not belong to any biclusters in D.

* Otherwise, if the object belongs to a bicluster, it is key
step to determine whether an object belongs to the
lower approximation of the bicluster or upper

approximation of the bicluster in D.

To determine the bicluster membership, we give the
following criterion.

For each object(gene or condition) vector v , let
AH(v,X)X HQ -Hx ( 1<i,j<k, k is the number of

biclusters) be the gain of the adjustment (insert or remove),
where Hx and H' are mean squared residue of bicluster XAT

(see definition 2.4) before and after the v is inserted to or

remove from bicluster Xj , respectively. Let

AH(v,XA) = minl<j<k AH(v,Xi) The difference of gains

AH(v,XJ)-AH(v,Xi) is used to determine the membership
of v. Let

T ={jjAH(v,X1)-AH(v,AX)<e fi.j},

1. IfH' >2a, vo Xj => vo X.,vo Xj;

2. Otherwise, v e XT .Furthermore,

a) ifT.0, veXAand veAXJ,VjeT;

b) otherwise, ifT =0, veX.

where and £ are predefined thresholds. The parameter
is to guarantee that all biclusters discovered have mean

squared residues less than 3. The parameter £ determines the
degree of overlapping among these biclusters. By selecting

proper -
, we can find a set of overlapping biclusters

simultaneously.

Based on the criterion, we devise the overlapping
biclustering algorithm as shown in fig.2. Given gene

expression matrix D, n is the number of genes in D, and m is
the number of conditions in D.

Figure 2. Overlapping biclustering algorithm based on Rough Sets

Our heuristic algorithm is sensitive to the input order of
genes and conditions in each iteration. Note for gene
expression data, the number of genes is much larger than the
number of conditions. It may be more acceptable to put genes
in front of conditions. Therefore, in this paper, we generate a

random sequence at the beginning of each iteration by the
following strategy. We first generate a random list of genes and
a random list of conditions respectively, and then combine
them by arranging the gene list in front of the condition list. In
the each iteration, genes and conditions are examined one by
one in the proposed random sequence. The adjustment to a

gene or condition will be conducted based on the proposed
criterion. The process iterates until the termination condition is
met. In order to explain the termination condition, we define
the Average H/Volume ratio as follows.

AvH/V=1
k mean squared residue of bicluster X

kj=1 volume of bicluster X(

Average H/Volume ratio reflects the overall quality of
biclusters generated in the algorithm. The lower the Average
H/Volume is, the higher the coherence of biclusters exhibits.
Suppose the algorithm will obtain the best solution after many
iterations, it can be expected that the Average H/Volume ratio
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Output: X1,1<j<k<K, a set of koverlapping
biclusters.

Iteration:
1) generate a random sequence of genes and

conditions;
for each object(gene or condition) v along the
sequence, do
1.1) compute every gain AH(v,Xi) for the

possible insert/remove and find the
minimal gain.

1.2) compute the AH(v,X) -AH(v,X) and
find T, do

If H >3, remove v from X

Else if H' <S and T.0, insert v
Xi

to Xi and X1,for Vj E T;
Else if H' <d and T=0, insert v

to AXi.
2) goto 1), until termination condition for

adjustment is satisfied.
3) output the best solution.
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will stabilize from then on, i.e. the Average H/Volume ratio
from the previous iteration is identical to the one generated in
the current iteration. Thus, the iteration will be stopped when
the Average H/Volume ratio stabilized.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of our ROB algorithm, we
conduct experiments on yeast expression data [26], available at
website [27]. The yeast expression matrix consists of 2884
genes and 17 experimental conditions. We compare our ROB
with the Cheng & Cheng's algorithm [6] and FLOC[9] on the
same yeast expression data set with the same parameter setting,
i.e. =300, and for the same objective to find 100 largest
biclusters with mean squared residue less than 300.

A. Parameters Setting
As most threshold soft clustering methods, the proposed

ROB uses several parameter to approximate the optimal
solution.

During data pre-processing procedure, by sorting genes
using vector-cosine calculated from (3), we choose threshold
0.7(See Table I), then remove genes which vector-cosine with
pattern E is higher than that threshold. 802 genes which
intensity values vary little across the conditions are removed
from 2884 genes.

In the two-way clustering phase, we use rough k-means
clustering algorithm on both gene dimension and condition
dimension. Euclidean distance is exploited as the distance
measure. Weight pair (co , cob) is set to (0.75, 0.25) as proposed
in [21]. Various gene and condition radio threshold pair
(;g , 41) values ranging [1.1, 1.5] are tried. It is found that

when the values of pair (g, 41) are set at (1.3,1.2), the
resulting clusters leaded to good seeds with lower average
mean squared residue. We group yeast expression data into 284
gene clusters and 5 condition clusters, and then combine them
into 284*5 submatrices (seeds) each containing at least 10
close genes and at least 5 close conditions.

During the iterative overlapping biclustering procedure, we
choose the same parameter setting a as that reported by
[6][9],i.e. 3= 300, and then remove those genes or conditions
that will cause corresponding mean squared residue larger than
300. As fore, we try £ = 0,1,2,,18 It shows that when £
is chosen from 8 to 10, the average H/Volume of final
biclusters approximates the global optimum, i.e. 0.12 (See
Fig.3). From e> 10, the average H/Volume increases a little
and then stabilizes. Moreover, it is interesting to note that our
algorithm delivers meaningful results over the range [7,9] of
£ where the overlapping degree increase dramatically from
3% and reach its maximum 18%, as depicted in Fig.4. For £
smaller than 7, average degree of overlapping fluctuates little
and nears a constant value 0.02. When £ is greater than 9, the
average overlapping degree decreases quickly and
convergences towards a stable value 0.1. The Fig.4 shows the
overlapping degree of biclusters in dependency of £. In order
to produce biclusters of lower average mean squared residue,
with larger volume and reasonable degree of overlapping, we
set the threshold of £ to 8 in this paper.

TABLE I. PARAMETER SETTING

Parameter Value
Preprocessing Vector-cosine threshold 17 0.7

Lower-approximation weigh co 0.75

Boundary-region weight cob 0.25

Gene clusters num. kg 284

Condition clusters num. k 5
Two-WayC

Rough k-means Gene radio threshold 4g 1.3
clustering

Condition radio threshold 4c 1.2

Overlapping Mean squared residue threshold a 300
biclustering Difference threshold £ 8

3

2. 5

2

1. 5
b0
; 1

O. 5

0 2 4 6 8 10 12 14 16 18
eps i ion

Figure 3. Relationship between Average H/Volume and £

20%

Q, 18% -
~Q 16%-

Q) 14% -

1 40o,,
100o-
8o%

Z60o
> 4%

20o
0%

0 2 4 6 8 10 12 14 16 18

epsilon

Figure 4. Relationship between overlapping degree and £

B. Performance Comparisons
Table II shows the performance comparison of ROB with

that of Cheng & Church's algorithm (henceforth CC)[6] and
the algorithm FLOC[9] for what concerns the average mean
squared residue and the average dimension of the biclusters
found. We can see that ROB and FLOC are comparable in
terms of finding biclusters characterized by a larger average
volume than the ones detected by CC. This is largely due to the
different strategies adopted by ROB and FLOC to avoid
random interference suffered by CC[6].As for average number
of genes and average number of conditions, the proposed ROB
discovers biclusters with higher number of genes and lower
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number of condition averagely than that ofCC and FLOC. This
is probably because ROB puts the random gene list in front of
random condition list at the beginning of each iteration and has
a bias towards finding coherent genes as much as possible. As
far as the mean squared residue is concerned, ROB is able to
find biclusters of relatively lower average mean squared
residue than that of CC and FLOC. FLOC outperforms CC
with respect to average mean squared residue as well as
average volume of biclusters found.

TABLE II. PERFORMANCE COMPARISON OF ROB, CC AND FLOC

Avg.mean Avg.volume Avg.gene Avg.condnu
squared num. m
residue

ROB 159 1759.45 226 7.1

CC 204.293 1576.98 167 12

FLOC 187.543 1825.78 195 12.8

V. CONCLUSION

In this paper, we proposed a suite of biclustering algorithms
in framework of generalized rough sets. In this framework, a
two-way rough k-means clustering method and a rough
overlapping biclustering algorithm are developed and applied
on gene expression matrix. Our method is able to find a set of
biclusters of maximum size, with stronger coherence, and
particularly with a reasonable degree of overlapping
simultaneously. By associating each bicluster with a lower and
an upper approximation, our approach dynamically adjusts the
memberships of genes and conditions and temporarily blocks
certain adjustment which has a potential to violate the propose
criterion. The experimental results confirmed that our ROB
approach is capable of finding highly coherent biclusters with a
reasonable degree of overlapping effectively.
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