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Abstract  

 
 We propose a novel approach to generating fuzzy rules 

which, different from most known fuzzy rules induction, is 
not based on attributes reduction (AR) but granulation 
order and variational universe. Most rule induction 
algorithms based on fuzzy rough sets (FRS) usually 
include two steps: AR and fuzzy rules induction. It’s 
helpful to shorten the time of rule mining to some extent 
by AR.. However, AR may make against the induction of 
fine rules due to its limitation. Avoiding AR in fuzzy rules 
induction permits to improve the adaptability of fuzzy 
rules and reduce computational complexity. In this paper, 
the dynamic FRS is presented in two different ways. Then, 
an algorithm based on dynamic FRS is put forward for 
decision rule mining. At last, an initial experimentation is 
conducted, comparing the new method with a 
conventional FRS-based rule mining.  

 
 

1. Introduction 
 

Rough sets theory was originally based on the notions 
of classical sets theory. Dubois and Prade [1] were among 
the first who showed that the basic idea of rough sets can 
be extended in order to describe concept in fuzzy 
approximation space. The idea of fuzzy rough sets (FRS) 
was pursued and investigated in many papers [2-7]. 

Based on FRS, many rule induction algorithms are 
presented, which usually include two steps: attributes 
reduction (AR) based on FRS and fuzzy rules induction 
based on conventional rules mining algorithms. AR 
usually acts as a preprocessor of fuzzy rules induction. 
However, for most AR algorithms, three facts should be 
pointed out. The first is that usually only one reduction 
can be obtained by the algorithm. The second is that the 
algorithm may not be convergent on many real data sets 

or the selected attributes are unreliable. The last is that the 
computational complexity of the algorithm often increases 
exponentially with the number of input variables and the 
size of data patterns. Therefore, avoiding the process of 
AR permits to improve the adaptability of fuzzy rules and 
reduce computational complexity. 

This paper, based on the most recent work as reported 
in Refs.[8], puts forward a new approach to generating 
fuzzy rules which, different from most known fuzzy rules 
induction, is not based on AR but granulation order and 
variational universe. From granular computing point of 
view, a concept is characterized by upper and lower 
approximations under static granulation in FRS theory 
defined by Dubois and Prade. Provided that the 
granulation is unchangeable, whether the granulation is 
too small or not may be unacceptable. The former will 
increase the time and cost, the latter may not satisfy the 
requirements. Therefore, a method of describing a concept 
in fuzzy approximation space by variational upper and 
lower approximations under dynamic granulation is 
proposed which nominated as dynamic fuzzy rough sets 
(DFRS). This means that a proper granulation family can 
be selected for a target concept approximation according 
to the practical requirements. 

The rest of this paper is organized as follows. In 
section 2, a review of rough sets approximation based on 
dynamic granulation is given. In section 3, FRS under 
dynamic granulation is proposed by two means: one is 
based on cut sets, another is a direct generalization of 
dynamic rough sets. Some important properties are 
obtained consequently. Then a fuzzy rules induction 
algorithm based on DFRS is designed. An initial 
experimental investigation is conducted. Section 4 shows the 
algorithm is effective, supported by comparisons to the 
application of fuzzy rules induction based on attributes 
reduction in Refs.[4]. Section 5 concludes the paper. 
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2. Rough sets approximation based on 
dynamic granulation 
 

In rough sets theory, a concept is always characterized 
via the upper and lower approximations under static 
granulation. 
   Let ),( AUS = be an information system, where 
U  is a set called universe and A  is a non-empty finite 
set of attributes. X  is  a subset of U  and AP ⊆  

is an attribute set. X  is characterized by )(XP  and 

)(XP , where 

      }|/{)( φ≠∩∈∪= XYPUYXP , 

   }|/{)( XYPUYXP ⊆∈∪= . 
However, the fixed granulation usually limits the 

application of rough sets theory. In Refs.[10], rough sets 
based on dynamic granulation was proposed. Some basic 
concepts are given below. 
   Let ),( AUS =  be an information system, AQP 2, ∈  
are two attribute subsets. Define a partial relation ≺   on 

A2  as follows: QP≺  if and only if, for every PUPi /∈ , 

there exists QUQj /∈  such that ji QP ⊆ , where 

},,,{/ 21 mPPPPU "=  and =QU /  },,,{ 21 nQQQ "  

are partitions induced by P  and Q . 
   In an information system, a partition RU /  induced 
by the equivalence relation ARR 2, ∈ , provides a 
granulation space for describing a concept X . So a 
sequence of attribute sets ),,2,1(2 niR A

i "=∈ with 

nRRR ;";; 21  can determine a sequence of granulation 
spaces, from the biggest to the smallest one. The upper 
and lower approximations of a concept under a 
granulation order are defined as follows. 
Definition 1[8]. Let ),( AUS =  be an information 

system, X  be a subset of U  and },,,{ 21 nRRRP "=  

be a family of attribute sets with nRRR ;";; 21  

,2( A
iR ∈ ),2,1 ni "= , P -upper approximation )(XaprP  

and P -lower approximation )(Xapr
P

 of X are 

defined as follows: 

             XRXapr nP =)( , 

             ∪
n

i
iiP

XRXapr
1

)(
=

= , 

Where XX =1  and ∪
1

1

−

=

−=
i

k
kki XRXX , ni ,,3,2 "= . 

3. Dynamic fuzzy rough sets (DFRS) 
 

This section proposes the FRS under dynamic 
granulation by two means: one is based on cut sets, 
another is a direct generalization of dynamic rough sets. 
 
3.1. Cut sets of a fuzzy set [7]  
 

Let U  be a set called universe. A fuzzy set A  on 
U  is defined by a membership function ]1,0[: →UAµ . 
Given a number ]1,0[∈α , an −α cut of a fuzzy set is 

defined by: })(|{ αµα ≥∈= xUxA A . 

   A fuzzy set A  can be reconstructed from its 
−α cut sets as follows: }|sup{)( ααµ AxxA ∈= . 

Theorem 1. Let ]1,0[,)( ∈αααA , be a family of 

subset of U . The necessary and sufficient conditions for 
the existence of a fuzzy set F  such that ,αα AF =  

]1,0[∈α , are: 

   (1)
2121 αααα AA ⊇⇒≤ , 

   (2) "≤≤ 21 αα , and ∩
∞

=

=⇒→
1n

n AA
n αααα . 

Theorem 2.  Let ]1,0[]1,0[: →ψ  be a given function, 

]1,0[,)( ∈αααA  be a family of subset of U . The 
necessary and sufficient conditions for the existence of a 
fuzzy set F  such that ,)( ααψ AF =  ]1,0[∈α , are:  

(1’)
21

)()( 21 αααψαψ AA ⊇⇒≤ , 

(2’) "≤≤ )()( 21 αψαψ ,and ∩
∞

=

=⇒→
1

)()(
n

n AA
n αααψαψ . 

 
3.2. Dynamic fuzzy rough sets based on cut sets 
 

Approximations of crisp sets in fuzzy approximation 
spaces are called FRS[1]. Consider a fuzzy approximation 
space ),( RUaprR = , WhereU is the universe, R  is a 
fuzzy similarity relation. Each of R ’s −β cut sets is an 
equivalence relation. One can represent R  by a family 
of equivalence relations: ,)( ββRR =  ]1,0[∈β . Based 

on R ’s −β cut sets, we now research how to construct 
dynamic fuzzy rough sets (DFRS). 
   First we extend partial relation ≺  on A2  to fuzzy 
case: Let ),( PUS =  be a fuzzy information system, 
P  be a fuzzy attribute set and PQI ∈, . Define a 
partial relation ≺  as follows: )( IQQI ;≺  if and 
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only if, for every IUI k /∈ , there exists QUQ j /∈  

such that )()(, xxUx
jk QI µµ ≤∈∀ , where =IU /  

},,,{ 21 mIII " and },,,{/ 21 nQQQQU "=  are 

fuzzy equivalence classes induced by I  and Q . 
   Consider the approximation of a crisp set A  in fuzzy 
approximation space ),( PUaprP = , where },,,{ 21 nRRRP "=  

be a family of fuzzy similarity relation with nRRR ;";; 21 . 

Then for ]1,0[∈β , we have βββ nRRR ;";; 21 . 

Based on dynamic granulation, a rough set approximation 
is obtained. P -upper approximation: 

}][|{)( φ
ββ β ≠∩== AxxARAapr

nRnP , 

P -lower approximation: 

∪ ∪
n

i

n

i
iRiiP

AxxARAapr
i

1 1

}][|{)(
= =

⊆==
ββ

β , 

Where AA =1  and 111 −−− −= iiii ARAA β , ni ,,3,2 "= . 

That is, βββ
))(),(( AaprAapr PP

 is a family of rough 

sets with reference to set A . Whether they are the 
families of −β cut sets of two fuzzy sets, we have 
following theorem: 
Theorem 3.Let β

β
))(( Aapr

P
 and ]1,0[,))(( ∈βββ

AaprP  

be a family of P -lower and P -upper approximations 
with respect to A  respectively, then exists a pair of fuzzy 

sets )(Aapr
P

 and )(Aapr P  such that:  

)())(( 1 AaprAapr
PP β

β =− , )())(( AaprAapr PP ββ = .          

Proof. Consider the family of lower approximations 
]1,0[,))(( ∈ββ

β
Aapr

P
. 

(1)Recall that )(Aapr
Pβ

 equals to )(ARnβ  in essence 

and βnR  is derived from a fuzzy similarity relation nR , 

then 
1212 ββββ nn RR ⊇⇒≤ . Let ββψ −=1)( , we 

have )()()()(
21

21 AaprAapr
PP ββ

βψβψ ⊇⇒≤ . 

(2)Since βnR  are derived from a fuzzy similarity relation 

nR , they satisfy property (2) in Theorem 1, that is: for 

"≤≤ 21 ββ , and ββ →m , we have ∩
∞

=

=
1m

nn RR
m ββ .  

Then we obtain: "≤≤ )()( 21 βψβψ , and ⇒→ )()( βψβψ m   

∩
∞

=

=
1

)()(
m

PP
AaprAapr

m ββ
. By Theorem 2, there exists a 

fuzzy set )(Aapr
P

such that ββψ −= 1)( ))(())(( AaprAapr
PP

 

)(Aapr
Pβ

= . 

Similarly, we can show the existence of a fuzzy set 
)( Aapr P

 for the family of upper approximations 

ββ
))(( AaprP  such that )())(( AaprAapr PP ββ = . )(Aapr

P
  

and )(Aapr P  are defined as: 
     }))((|)(sup{)( )()( βψψµ AaprxBx

PAapr
P

∈=  

)}(|1sup{ Aaprx
Pβ

β ∈−= , 

     }))((|sup{)(
)( ββµ Aaprxx PAapr P

∈=  

)}(|sup{ Aaprx Pβ
β ∈= . 

Definition 2:Let ),( PUS =  be a fuzzy information 

system, A  be a crisp set of U  and },,,{ 21 nRRRP "=  

be a family of fuzzy attribute sets with nRRR ;";; 21 , 

where ),2,1( nkRk "=  is a fuzzy similarity relation, 

P -upper approximation )(Aapr P  and P -lower 

approximation )(Aapr
P

 of A  are defined by the      

following membership functions:                          
)}(|sup{)(

)(
Aaprxx PAapr P β

βµ ∈= , 

)}(|1sup{)()( Aaprxx
PAapr

P β
βµ ∈−= ,   

Where }][|{)( φ
ββ β ≠∩== AxxARAapr

nRnP
, 

∪ ∪
n

i

n

i
iRiiP

AxxARAapr
i

1 1

}][|{)(
= =

⊆==
ββ

β
, 

and AA =1  and 111 −−− −= iiii ARAA β ,for 

]1,0[,,,3,2 ∈= βni " . 
Theorem 4.Let ),( PUS =  be a fuzzy information 

system, A  be a crisp set of U  and },,,{ 21 nRRRP "=  

be a family of fuzzy attribute sets with nRRR ;";; 21 , 

where ),2,1( nkRk "=  is a fuzzy similarity relation. 

Let },,,{ 21 ii RRRP "= , then for iP∀ , ),,2,1( ni "= , 
the following properties hold: 

   )()( AaprAAapr PP
⊆⊆ ,                             

   )()()(
21

AaprAaprAapr
nPPP

⊆⊆⊆ " .                 

   In order to describe the uncertainty of concept under a 
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granulation order, the approximation precision is defined 
as follows. 
Definition 3. Let ),( PUS =  be a fuzzy information 

system, A  be a crisp set of U  and },,,{ 21 nRRRP "=  

be a family of fuzzy attribute sets with nRRR ;";; 21 , 

where ),2,1( nkRk "=  is a fuzzy similarity relation. 

The approximation precision )(APα  is defined as: 

 
∑
∑

∈

∈==

Ux
Aapr

Ux
Aapr

P

P
P x

x

Aaprpower

Aaprpower
A

P

P

)(

)(

))((

))((
)(

)(

)(

µ

µ
α , 

Where φ≠A . 

Theorem 5. Let },,,{ 21 ii RRRP "= , then for 

iP∀ , ),,2,1( ni "= , we have 

      )()()(
21

AAA
nPPP ααα ≤≤≤ " . 

Theorem 4 and 5 state that the lower approximation 
enlarges and the approximation precision )(APα  
increases as the granulation order become longer through 
adding fuzzy similarity relations. 
 
3.3. Dynamic fuzzy rough sets 
 

The idea of describing a general concept by using the 
variational upper and lower approximations under 
dynamic granulation can also be extended to FRS directly.  
Definition 4. Let ),( PUS =  be a fuzzy information 

system, A  be a crisp set of U  and },,,{ 21 nRRRP "=  

be a family of fuzzy attribute sets with nRRR ;";; 21 , 

where ),2,1( nkRk "=  is a fuzzy similarity relation. 

P -upper approximation )(AaprP  and P -lower 

approximation )(Aapr
P

 of A  are defined as: 

)(sup)( ][)( yx
nRP

x
Ay

Aapr µµ
∈

= , 













∈−

∈−

∈−

=

+∉

∉

∉

+ 1][

][

1][

)(

)},(1{inf
)},(1{inf

)},(1{inf

)(

1

1

nxAy

nxAy

xAy

Aapr

Uxy
Wxy

Wxy

x

nR

nR

R

P

µ
µ

µ

µ
"

, 

Where ),,,2,1(),,()(][ nkyxy
kkR Rx "== µµ  

),,2,1(/][ nkRUx kkRk
"=∈ , specially, nnR RUx

n
/][ 11 +∈

+
 

and ),1,,3,2(, 111 +=−== −− niWUUUU iii "  

}1)}(1{inf)(|{
11

][)(1 =−==
−− ∉− yxxW

iRiR
xAyAapri µµ . 

Generally, in order to improve adaptability, 1−iW  can be 
modified as 

})}(1{inf)(|{
11

][)(1 ηµµ ≥−==
−− ∉− yxxW

iRiR
xAyAapri , 

where ]1,5.0(∈η  is a suitable threshold chosen 

according to practical requirements. ( )(Aapr
P

, )(AaprP ) 

is called a DFRS.  
Dubois and Prade studied a more general framework 

in which a fuzzy set was approximated in a fuzzy 
approximation space [1], for conciseness, this model is 
named general fuzzy rough sets (GFRS). Similarly, one 
can define GFRS under dynamic granulation. 
Definition 5. Let ),( PUS =  be a fuzzy information 

system, A  be a fuzzy set of U  and },,,{ 21 nRRRP "=  

be a family of fuzzy attribute sets with nRRR ;";; 21 , 

where ),2,1( nkRk "=  is a fuzzy similarity relation. 

P -upper approximation )(Aapr P  and P -lower 

approximation )(Aapr
P

 of A  are defined as: 

                
)}(),(min{sup)( ][)( yyx Ax

Uy
Aapr nRP

µµµ
∈

= ,













∈−

∈−

∈−

=

+∈

∈

∈

+ 1][

][

1][

)(

)},(),(1max{inf

)},(),(1max{inf

)},(),(1max{inf

)(

1

1

nAxUy

nAxUy

AxUy

Aapr

Uxyy

Wxyy

Wxyy

x

nR

nR

R

P

µµ
µµ

µµ

µ
"

Where ),,,2,1(),,()(][ nkyxy
kkR Rx "== µµ

),,2,1(/][ nkRUx kkRk
"=∈ ,specially 

nnR RUx
n

/][ 11 +∈
+

 and 

),1,,3,2(, 111 +=−== −− niWUUUU iii "  

})}(),(1max{inf)(|{
11

][)(1 ηµµµ ≥−==
−− ∈− yyxxW AxUyAapri iRiR

Where ]1,5.0(∈η  is a suitable threshold.  

Theorem 4 and Theorem 5 hold true for )(Aapr
P

 

in Definition 4 and Definition 5. 
 
3.4. An algorithm of mining rules in decision table 
based on DFRS 
 

In this section, an algorithm is designed to generating 
fuzzy rules based on DFRS. 

 Let ),( DCUS ∪=  be a decision table, where 
C  is a fuzzy condition attribute set and D  is a crisp(or 
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fuzzy) decision attribute set, and φ=∩ DC . The 
positive region of D  with respect to C  is defined as: 

)(sup)( )(
/

)( xx Aapr
DUA

Dpos
CC

µµ
∈

= .The dependency 

degree )(DCγ  of C  with regard to D  is defined as:  

||

)(
)(

)(

U

x
D Ux

Dpos

C

C∑
∈=

µ
γ . 

   Based on DFRS in Definition 4 or Definition 5, we 
propose an algorithm of mining rules. 
Algorithm MRBDFRS (mining rules based on DFRS) 
Input: decision table ),( DCUS ∪=  
Output: decision rules. 
(1)For Cc∈∀ , compute the dependency degree )(Dcγ  

of D  to c , let }|)(max{)(
1

CcDD cc ∈= γγ  and 

11 cP = ; 

(2) },,,{/ 21 dAAADU "= ; 

(3)Let φ===== RuleRuleUUiPP ',,1},{ *
1 ; 

(4)Let ,)}(1{inf)(|{ ][)( ηµµ ≥−==
∉

yxxW
iP

j
jP

xAyAapri

},,2,1 dj "= . If φ≠iW , then for iWx∈∀ , put 

)()( xdesxdes
jAP → ),,2,1( dj "=  into 'Rule . 

Let 'RuleRuleRule ∪=  and iWUU −= ** ; 

(5)If φ=− PC  and φ≠*U , then for *Ux ∈∀ , 

put )()( xdesxdes
jAP →  ),,2,1( dj "=  into 

Rule , go to (8); 
(6)If φ=*U , go to (8); 

(7)For PCc −∈∀ , compute )(}{ DcP ∪γ , let 

}|)(max{)( }{}{ 2
PCcDD cPcP −∈= ∪∪ γγ . Let 

1,},{ 121 +=∪=∪= ++ iiPPPcPP iii ,go to (4); 

(8)Output Rule . 
   It’s clear that the generation of decision rules is based 
on granulation order P and variational *U . The time 
complexity to extract rules is polynomial. At the first step, 
we need to compute )(Dcγ  for Cc ∈∀ , the time 

complexity is )|||(| 2UCO . At step 2, the time 

complexity for computing DU /  is )|(| 2UO . At step 

7, the time complexity for computing )(}{ DcP∪γ is 

)|||||(| 2UCPCO i− . From step 5 to step 7, |C| − 1 is 
the maximum value for the circle times. Therefore, the 
time complexity of this algorithm is )|||(| 22 UCO . 

3.5. An example 
 

Initial experimentation is carried out by MRBDFRS. 
The decision table ),( DCUS ∪=  comes from Refs.[4] 
and is given by Table 1, whereC is a fuzzy condition 
attribute set that includes FGB ,, , each with 

corresponding linguistic terms, e.g. B  has terms 21 , BB  

and 3B . The decision attribute D is also fuzzy, separated 
into three linguistic decision X ,Y  and Z . According 
to MRBDFRS, we can obtain:  

BrRule :{ 1=  is 1B  D→  is X , 

       Br :2  is 2B  and F  is DF →1  is Z ; 

Br :3  is 2B  and F  is DF →2  is Y ; 

Br :4  is 3B  and F  is DF →1  is Z ; 

       Br :5  is 3B  and F  is DF →2  is }Y . 
 
4. Comparison with rules induction based on 
attributes reduction 
 

The existing researches of fuzzy rules induction based 
on FRS are mainly found in [3-6].The process usually 
includes two steps: attributes reduction based on FRS and 
fuzzy rules induction based on conventional rules mining 
algorithms. A representative work is found in Refs.[4], 
which developed an algorithm to compute a reduction 
employing the idea of relative reduction in Pawlak rough 
sets to keep the dependence degree invariant. The 
attributes reduction is applied as a preprocessor to an 
existing fuzzy rule induction algorithm (RIA). The RIA 
begins with organizing the dataset objects into subgroups 
according to their highest decision value. Within each 
subgroup, the fuzzy subsethood between each decision 
and condition attribute term is calculated. Fuzzy 
subsethood is defined as follows: 

∑
∑

∈

∈=∩=

Uu
A

Uu
BA

u

uu

AM
BAMBAS

)(

)}(),(min{

)(
)(),(

µ

µµ
. 

These subsethood values indicate the relatedness between 
condition and decisions attribute terms. A suitable 
threshold ]1,0[∈α  must be chosen in order to 
determine whether terms are close enough or not. At most, 
one term is selected per attribute. When there are no 
suitable terms for a decision, a rule is produced that 
classifies cases to the rest decision value. In order to entail 
the learned rules full cover the entire problem domain, 
this requires another threshold value, ]1,0[∈β , which 
determines whether a classification is reasonable or not. 

In order to compare MRBDFRS with method in 
Refs.[4], the dataset given in Table 1 is reused. Firstly,
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Table 1: Decision table with fuzzy attributes 

B  G  F  D  U
 

1B  2B  3B  1G  2G  3G  1F  2F  X  Y  Z  

１ 0.3 0.7 0.0 0.2 0.7 0.1 0.3 0.7 0.1 0.9 0.0 

２ 1.0 0.0 0.0 1.0 0.0 0.0 0.7 0.3 0.8 0.2 0.0 

３ 0.0 0.3 0.7 0.0 0.7 0.3 0.6 0.4 0.0 0.2 0.8 

４ 0.8 0.2 0.0 0.0 0.7 0.3 0.2 0.8 0.6 0.3 0.1 

５ 0.5 0.5 0.0 1.0 0.0 0.0 0.0 1.0 0.6 0.8 0.0 

６ 0.0 0.2 0.8 0.0 1.0 0.0 0.0 1.0 0.0 0.7 0.3 

７ 1.0 0.0 0.0 0.7 0.3 0.0 0.2 0.8 0.7 0.4 0.0 

８ 0.1 0.8 0.1 0.0 0.9 0.1 0.7 0.3 0.0 0.0 1.0 

９ 0.3 0.7 0.0 0.9 0.1 0.0 1.0 0.0 0.0 0.0 1.0 

according to attributes reduction algorithm based on the 
dependency degree, the attribute G  is removed. Using 
this reduced dataset, the RIA generates the rules as 
follows[4]: 
Rule 1:IF B  is 1B  THEN D  is X ; 

Rule 2:IF F  is 2F  THEN D  is Y ; 
Rule 3:IF MF(Rule 1) β<  AND MF(Rule 2) β<  
THEN D  is Z , 
where MF(Rule i)=MF(condition part of Rule i) and MF 
means the membership function value. 

By comparing above rules with the ones in section 3.5, 
one can easy see that the Rule 1 is the same as Rule 1r  
(in section 3.5), the others are different. It seems as if 
Rule 2 and Rule 3 were more simple than rules in section 
3.5, however, a conflict may generate by using Rule 1 and 
Rule 2. For case 4, which satisfies B  is 1B , then due to 
Rule 1, D  should be X . At the same time, attribute F  
is 2F , by using Rule 2, we get D  is Y . Hence, an 
inconsistency produces, which may ascribe to too simple 
rules rooted in attribute reduction process. Again, for case 
7, the same situation happens. 

Most significant, however, is the fact that the 
complexity of computing the dependency degree in 
MRBDFRS is less than the one in attributes reduction 
algorithm due to the universe dwindles gradually. For 
larger dataset, the effect can be expected to be greater. 

 

5. Conclusions 
 

Today, the grand challenge is to generate useful rules 
from a mass of data in a database for users to make 
decisions. This paper has presented such an approach for 
fuzzy rules induction, which different from most known 
fuzzy rules induction, is not based on attributes reduction 

but DFRS. The experimentation shows the algorithm is 
effective. The generality of this approach should enable it 
to be applied to broad domains.  
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